1
|
Ardicli S, Ardicli O, Yazici D, Pat Y, Babayev H, Xiong P, Zeyneloglu C, Garcia-Sanchez A, Shi LL, Viscardi OG, Skolnick S, Ogulur I, Dhir R, Jutel M, Agache I, Janda J, Pali-Schöll I, Nadeau KC, Akdis M, Akdis CA. Epithelial barrier dysfunction and associated diseases in companion animals: Differences and similarities between humans and animals and research needs. Allergy 2024; 79:3238-3268. [PMID: 39417247 DOI: 10.1111/all.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Since the 1960s, more than 350,000 new chemicals have been introduced into the lives of humans and domestic animals. Many of them have become part of modern life and some are affecting nature as pollutants. Yet, our comprehension of their potential health risks for both humans and animals remains partial. The "epithelial barrier theory" suggests that genetic predisposition and exposure to diverse factors damaging the epithelial barriers contribute to the emergence of allergic and autoimmune conditions. Impaired epithelial barriers, microbial dysbiosis, and tissue inflammation have been observed in a high number of mucosal inflammatory, autoimmune and neuropsychiatric diseases, many of which showed increased prevalence in the last decades. Pets, especially cats and dogs, share living spaces with humans and are exposed to household cleaners, personal care products, air pollutants, and microplastics. The utilisation of cosmetic products and food additives for pets is on the rise, unfortunately, accompanied by less rigorous safety regulations than those governing human products. In this review, we explore the implications of disruptions in epithelial barriers on the well-being of companion animals, drawing comparisons with humans, and endeavour to elucidate the spectrum of diseases that afflict them. In addition, future research areas with the interconnectedness of human, animal, and environmental well-being are highlighted in line with the "One Health" concept.
Collapse
Affiliation(s)
- Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Türkiye
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Peng Xiong
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Can Zeyneloglu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Asuncion Garcia-Sanchez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Biomedical & Diagnostic Sciences, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Li-Li Shi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | | | - Stephen Skolnick
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- SEED Inc. Co., Los Angeles, California, USA
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Raja Dhir
- SEED Inc. Co., Los Angeles, California, USA
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wrocław, Poland
| | - Ioana Agache
- Faculty of Medicine, Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Jozef Janda
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Isabella Pali-Schöll
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine and Medical University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
2
|
Criado PR, Miot HA, Bueno-Filho R, Ianhez M, Criado RFJ, de Castro CCS. Update on the pathogenesis of atopic dermatitis. An Bras Dermatol 2024; 99:895-915. [PMID: 39138034 PMCID: PMC11551276 DOI: 10.1016/j.abd.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 08/15/2024] Open
Abstract
Atopic dermatitis is a chronic, recurrent, and multifactorial skin-mucosal manifestation resulting from the interaction between elements mainly associated with the skin barrier deficit, the homeostasis of the immune response, neurological aspects, and patterns of reactivity to environmental antigens, which are established in genetically predisposed individuals. In addition to the skin, atopic diathesis involves other organs such as the airways (upper and lower), eyes, digestive tract, and neuropsychiatric aspects, which inflict additional morbidity on the dermatological patient. The different phenotypes of the disease fundamentally depend on the participation of each of these factors, in different life circumstances, such as age groups, occupational exposure patterns, physical activity, pollution, genetic load, and climatic factors. A better understanding of the complexity of its pathogenesis allows not only the understanding of therapeutic targets but also how to identify preponderant elements that mediate disease activity in each circumstance, for selecting the best treatment strategies and mitigation of triggering factors. This narrative review presents an update on the pathogenesis of atopic dermatitis, especially aimed at understanding the clinical manifestations, the main disease phenotypes and the context of available therapeutic strategies.
Collapse
Affiliation(s)
- Paulo Ricardo Criado
- Centro Universitário Faculdade de Medicina do ABC, Santo André, SP, Brazil; Faculdade de Ciências Médicas de Santos (Centro Universitário Lusíada), Santos, SP, Brazil.
| | - Hélio Amante Miot
- Department of Dermatology, Faculdade de Medicina de Botucatu, Universidade do Estado de São Paulo, Botucatu, SP, Brazil
| | - Roberto Bueno-Filho
- Division of Dermatology, Department of Internal Medicine, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Mayra Ianhez
- Department of Dermatology, Hospital de Doenças Tropicais de Goiás, Goiânia, GO, Brazil
| | - Roberta Fachini Jardim Criado
- Centro Universitário Faculdade de Medicina do ABC, Santo André, SP, Brazil; Alergoskin Alergia e Dermatologia, UCARE Center and ADCARE, Santo André, SP, Brazil
| | - Caio César Silva de Castro
- Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil; Hospital de Dermatologia Sanitária do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
3
|
De Donato DP, Effner R, Nordengrün M, Lechner A, Darisipudi MN, Volz T, Hagl B, Bröker BM, Renner ED. Staphylococcus aureus Serine protease-like protein A (SplA) induces IL-8 by keratinocytes and synergizes with IL-17A. Cytokine 2024; 180:156634. [PMID: 38810500 DOI: 10.1016/j.cyto.2024.156634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Serine protease-like (Spl) proteins produced by Staphylococcus (S.) aureus have been associated with allergic inflammation. However, effects of Spls on the epidermal immune response have not been investigated. OBJECTIVES To assess the epidermal immune response to SplA, SplD and SplE dependent on differentiation of keratinocytes and a Th2 or Th17 cytokine milieu. METHODS Human keratinocytes of healthy controls and a STAT3-hyper-IgE syndrome (STAT3-HIES) patient were cultured in different calcium concentrations in the presence of Spls and Th2 or Th17 cytokines. Keratinocyte-specific IL-8 production and concomitant migration of neutrophils were assessed. RESULTS SplE and more significantly SplA, induced IL-8 in keratinocytes. Suprabasal-like keratinocytes showed a higher Spl-mediated IL-8 production and neutrophil migration compared to basal-like keratinocytes. Th17 cytokines amplified Spl-mediated IL-8 production, which correlated with neutrophil recruitment. Neutrophil recruitment by keratinocytes of the STAT3-HIES patient was similar to healthy control cells. CONCLUSION S. aureus-specific Spl proteases synergized with IL-17A on human keratinocytes with respect to IL-8 release and neutrophil migration, highlighting the importance of keratinocytes and Th17 immunity in barrier function.
Collapse
Affiliation(s)
- D P De Donato
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Vascular Surgery, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - R Effner
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Institute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany; Translational Immunology, Faculty of Medicine, University of Augsburg, Germany
| | - M Nordengrün
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - A Lechner
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Translational Immunology, Faculty of Medicine, University of Augsburg, Germany
| | - M N Darisipudi
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - T Volz
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, Munich, Germany
| | - B Hagl
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Institute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany; Translational Immunology, Faculty of Medicine, University of Augsburg, Germany
| | - B M Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - E D Renner
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Institute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany; Translational Immunology, Faculty of Medicine, University of Augsburg, Germany; Department of Pediatrics, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
4
|
David E, Hawkins K, Shokrian N, Del Duca E, Guttman-Yassky E. Monoclonal antibodies for moderate-to-severe atopic dermatitis: a look at phase III and beyond. Expert Opin Biol Ther 2024; 24:471-489. [PMID: 38888099 DOI: 10.1080/14712598.2024.2368192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION The understanding of atopic dermatitis (AD) pathogenesis has rapidly expanded in recent years, catalyzing the development of new targeted monoclonal antibody treatments for AD. AREAS COVERED This review aims to summarize the latest clinical and molecular data about monoclonal antibodies that are in later stages of development for AD, either in Phase 3 trials or in the pharmacopoeia for up to 5 years, highlighting the biologic underpinning of each drug's mechanism of action and the potential modulation of the AD immune profile. EXPERT OPINION The therapeutic pipeline of AD treatments is speedily progressing, introducing the potential for a personalized medical approach in the near future. Understanding how targeting pathogenic players in AD modifies disease progression and symptomatology is key in improving therapeutic choices for patients and identifying ideal patient candidates.
Collapse
Affiliation(s)
- Eden David
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
| | - Kelly Hawkins
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Albert Einstein College of Medicine, New York, NY, USA
| | - Neda Shokrian
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Albert Einstein College of Medicine, New York, NY, USA
| | - Ester Del Duca
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
- Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Al B, Traidl S, Holzscheck N, Freimooser S, Mießner H, Reuter H, Dittrich-Breiholz O, Werfel T, Seidel JA. Single-cell RNA sequencing reveals 2D cytokine assay can model atopic dermatitis more accurately than immune-competent 3D setup. Exp Dermatol 2024; 33:e15077. [PMID: 38711200 DOI: 10.1111/exd.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/24/2024] [Accepted: 03/30/2024] [Indexed: 05/08/2024]
Abstract
Modelling atopic dermatitis (AD) in vitro is paramount to understand the disease pathophysiology and identify novel treatments. Previous studies have shown that the Th2 cytokines IL-4 and IL-13 induce AD-like features in keratinocytes in vitro. However, it has not been systematically researched whether the addition of Th2 cells, their supernatants or a 3D structure is superior to model AD compared to simple 2D cell culture with cytokines. For the first time, we investigated what in vitro option most closely resembles the disease in vivo based on single-cell RNA sequencing data (scRNA-seq) obtained from skin biopsies in a clinical study and published datasets of healthy and AD donors. In vitro models were generated with primary fibroblasts and keratinocytes, subjected to cytokine treatment or Th2 cell cocultures in 2D/3D. Gene expression changes were assessed using qPCR and Multiplex Immunoassays. Of all cytokines tested, incubation of keratinocytes and fibroblasts with IL-4 and IL-13 induced the closest in vivo-like AD phenotype which was observed in the scRNA-seq data. Addition of Th2 cells to fibroblasts failed to model AD due to the downregulation of ECM-associated genes such as POSTN. While keratinocytes cultured in 3D showed better stratification than in 2D, changes induced with AD triggers did not better resemble AD keratinocyte subtypes observed in vivo. Taken together, our comprehensive study shows that the simple model using IL-4 or IL-13 in 2D most accurately models AD in fibroblasts and keratinocytes in vitro, which may aid the discovery of novel treatment options.
Collapse
Affiliation(s)
- Benjamin Al
- Discovery, Beiersdorf AG, Hamburg, Germany
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Stephan Traidl
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | | | - Sina Freimooser
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | | | | | | | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
6
|
Makino T, Mizawa M, Takemoto K, Shimizu T. Expression of hornerin in skin lesions of atopic dermatitis and skin diseases. Clin Exp Dermatol 2024; 49:255-258. [PMID: 38123340 DOI: 10.1093/ced/llad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Indexed: 12/23/2023]
Abstract
We have previously identified the filaggrin (FLG)-like protein, hornerin (HRNR). Recently, there have been several reports regarding the relationship between HRNR and atopic dermatitis (AD). In the present study, we examined HRNR expression in the skin lesions of seven unrelated patients with AD to clarify the role of HRNR in the pathogenesis of AD. HRNR was detected in chronic AD lesions (n = 4), whereas no HRNR signals were observed in acute AD lesions (n = 3). HRNR was detected in the cytokeratin 6-expressing epidermis, and Ki67-positive keratinocytes were more abundant in the HRNR-positive epidermis. These findings suggest that HRNR may be associated with epidermal hyperproliferation in AD lesions. Next, we examined HRNR expression in skin diseases associated with hyperkeratosis. HRNR signals were irregularly observed in different cells from those expressing FLG in epidermolytic ichthyosis and actinic keratosis. Therefore, HRNR may play a unique role in the molecular process of cornification.
Collapse
Affiliation(s)
- Teruhiko Makino
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| | - Megumi Mizawa
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| | - Keita Takemoto
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| | - Tadamichi Shimizu
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| |
Collapse
|
7
|
Andersson AM, Ingham AC, Edslev SM, Sølberg J, Skov L, Koch A, Ghauharali-van der Vlugt K, Stet FS, Brüggen CM, Jakasa I, Kezic S, Thyssen JP. Ethnic endotypes in paediatric atopic dermatitis depend on immunotype, lipid composition and microbiota of the skin. J Eur Acad Dermatol Venereol 2024; 38:365-374. [PMID: 37822011 DOI: 10.1111/jdv.19565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) endotypes differ with ethnicity. We examined the skin microbiota, cytokine and lipid profiles in Greenlandic Inuit and Danish children with AD. METHODS Twenty-five Inuit children with AD and 25 Inuit control children were clinically examined and compared to previously collected data from 25 Danish children with AD. Skin tape strips and skin swabs were collected from lesional and non-lesional skin. Levels of cutaneous immune biomarkers, free sphingoid bases and their (glycosyl)ceramides were analysed. Skin swabs were analysed with 16S rRNA and tuf gene for characterization of bacterial species communities. RESULTS Bacterial β-diversity was significantly different between Inuit and Danish AD skin, in both lesional (p < 0.001) and non-lesional (p < 0.001) AD skin, and there was a higher relative abundance of Staphylococcus aureus in Danish compared to Inuit lesional (53% vs. 8%, p < 0.01) and non-lesional skin (55% vs. 5%, p < 0.001). Danish AD children had a higher α-diversity than Inuit children in non-lesional (p < 0.05) but not in lesional skin. Significantly higher levels of type 2 immunity cytokine interleukin (IL)-4 (p < 0.05) and IL-5 (p < 0.01) were identified in Inuit compared to Danish AD children. In contrast, IL-33 (p < 0.01) was higher in Danish lesional and non-lesional AD skin. Higher levels of long-chain glucosylceramide (GlcCER)[S](d26:1) were found in lesional (p < 0.001) and non-lesional (p < 0.001) Inuit skin compared with Danish AD skin. NMF levels were similar in Inuit and Danish AD skin. CONCLUSION Skin microbiota, cytokine and lipid composition differed significantly between Inuit and Danish children with AD and showed a stronger type 2 immune signature in Inuit children.
Collapse
Affiliation(s)
- A M Andersson
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Ilisimatusarfik, University of Greenland, Nuuk, Greenland
- Copenhagen Research Group for Inflammatory Skin (CORGIS), Hellerup, Denmark
| | - A C Ingham
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - S M Edslev
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - J Sølberg
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - L Skov
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Copenhagen Research Group for Inflammatory Skin (CORGIS), Hellerup, Denmark
| | - A Koch
- Ilisimatusarfik, University of Greenland, Nuuk, Greenland
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - K Ghauharali-van der Vlugt
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - F S Stet
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - C M Brüggen
- Faculty of Medicine, University Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - I Jakasa
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - S Kezic
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - J P Thyssen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Marsella R, Ahrens K, Wilkes R. Studies Using Antibodies against Filaggrin and Filaggrin 2 in Canine Normal and Atopic Skin Biopsies. Animals (Basel) 2024; 14:478. [PMID: 38338121 PMCID: PMC10854974 DOI: 10.3390/ani14030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Filaggrin is important for the skin barrier and atopic dermatitis. Another filaggrin-like protein, filaggrin 2, has been described. We evaluated antibodies against both filaggrins in normal and atopic skin biopsies from dogs before and after allergen challenges (D0, D1, D3 and D10). Filaggrins expression was evaluated by immunohistochemistry and Western blot. We used PCR to investigate changes in filaggrin gene expression. Effects of group (p = 0.0134) and time (p = 0.0422) were shown for the intensity of filaggrin staining. Only an effect of group was found for filaggrin 2 (p = 0.0129). Atopic samples had higher intensity of staining than normal dogs [filaggrin on D3 (p = 0.0155) and filaggrin 2 on D3 (p = 0.0038) and D10 (p < 0.0001)]. Atopic samples showed increased epidermal thickness after allergen exposure (D3 vs. D0, p = 0.005), while normal dogs did not. In atopic samples, significant increased gene expression was found for filaggrin overtime but not for filaggrin 2. Western blot showed an increase in filaggrin 2 on D3. A small size band (15 kD) containing a filaggrin sequence was found in Western blots of atopic samples only. We conclude that atopic skin reacts to allergen exposure by proliferating and increasing filaggrin production but that it also has more extensive filaggrin degradation compared to normal skin.
Collapse
Affiliation(s)
- Rosanna Marsella
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (K.A.); (R.W.)
| | | | | |
Collapse
|
9
|
Stefanovic N, Irvine AD. Filaggrin and beyond: New insights into the skin barrier in atopic dermatitis and allergic diseases, from genetics to therapeutic perspectives. Ann Allergy Asthma Immunol 2024; 132:187-195. [PMID: 37758055 DOI: 10.1016/j.anai.2023.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide, affecting 20% of children and 5% of adults. One critical component in the pathophysiology of AD is the epidermal skin barrier, with its outermost layer, the stratum corneum (SC), conferring biochemical properties that enable resilience against environmental threats and maintain homeostasis. The skin barrier may be conceptualized as a key facilitator of complex interactions between genetics, host immunity, the cutaneous microbiome, and environmental exposures. The key genetic risk factor for AD development and persistence is a loss-of-function mutation in FLG, with recent advances in genomics focusing on rare variant discovery, establishment of pathogenic mechanisms, and exploration of the role of other epidermal differentiation complex gene variants in AD. Aberrant type 2 inflammatory responses down-regulate the transcription of key epidermal barrier genes, alter the composition of SC lipids, and induce further injury through a neurocutaneous feedback loop and the itch-scratch cycle. The dysbiotic epidermis exhibits reduced bacterial diversity and enhanced colonization with Staphylococcus and Malassezia species, which contribute to both direct barrier injury through the action of bacterial toxins and perpetuation of the inflammatory cascades. Enhanced understanding of each of the pathogenic mechanisms underpinning barrier disruption has led to the development of novel topical and systemic molecules, including interleukin (IL)-4Ra, IL-13, PDE4, and Janus-associated kinase inhibitors, whose clinical effectiveness exceeds conventional treatment modalities. In this narrative review, we aim to summarize the current understanding of the above-mentioned pathophysiological and therapeutic mechanisms, with a focus on the genetic, cellular, and molecular mechanisms underpinning AD development.
Collapse
Affiliation(s)
| | - Alan D Irvine
- Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
10
|
Li B, Fuxench ZC. Atopic Dermatitis: Disease Background and Risk Factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1447:11-19. [PMID: 38724780 DOI: 10.1007/978-3-031-54513-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Multiple risk factors have been associated with the development of atopic dermatitis (AD). Recent advances in understanding the role of genetics in this disease have been made, with discovery of the filaggrin (FLG) gene as the most notable so far. In addition to FLG gene mutations as a risk factor for AD, a positive family history of atopic or allergic disease in either parent has been shown to confer a greater risk of developing AD. Atopic dermatitis usually presents early in life and is thought to represent the initial step in the "atopic march," which is characterized by the development of other atopic diseases later in life such as asthma, allergic rhinitis, and/or rhinoconjunctivitis, food allergies, and hay fever. Other comorbid diseases that have been associated with AD include increase risk of viral and bacterial skin infections, neuropsychiatric diseases such as attention-deficit hyperactivity disorders (ADHD), and autistic spectrum disorder (ASD). Patients with AD have also been found to have worse sleep quality overall compared to patients without AD. In this chapter, we will discuss the risk factors associated with development of atopic dermatitis as well as the most commonly reported comorbidities in patients with this disease.
Collapse
Affiliation(s)
- Becky Li
- Department of Dermatology, Howard University School of Medicine, Washington, DC, USA
| | - Zelma Chiesa Fuxench
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Kim M, Yuk HJ, Min Y, Kim DS, Sung YY. Securinega suffruticosa extract alleviates atopy-like lesions in NC/Nga mice via inhibition of the JAK1-STAT1/3 pathway. Biomed Pharmacother 2023; 169:115903. [PMID: 37979381 DOI: 10.1016/j.biopha.2023.115903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/20/2023] Open
Abstract
Securinega suffruticosa (SS) has well-known antioxidant, anti-vascular inflammation, and anti-bone resorption effects; however, the effects of SS in atopic dermatitis (AD) remain unknown. We examined the effects of SS on AD via application of Dermatophagoides farinae extract (DfE) to the ears and skin of NC/Nga mice. As a result of SS administration, DfE-induced AD mice had reduced ear thickness, epidermal thickness, scratching behavior, and transepidermal water loss. The serum levels of immunoglobulin E and thymic interstitial lymphopoietin (TSLP) were reduced by SS application. SS decreased mast cell and eosinophil recruitment to skin lesions. Phosphorylation of signal transducer and activation of transcription (STAT)1, STAT3, and Janus kinase 1 were reduced in the skin tissue of SS-administered mice, and downregulated filaggrin was restored. SS reduced the levels of interleukin-6, regulated on activation, normal T cell expressed and secreted chemokine, and TSLP in interferon-γ/tumor necrosis factor-α-induced keratinocytes. The main components of SS were rutin and geraniin. These study results indicated that SS extract attenuated AD and has potential as a therapeutic natural product candidate for AD.
Collapse
Affiliation(s)
- Misun Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Heung Joo Yuk
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Yueun Min
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea; Korean Convergence Medical Science Major KIOM, Korea University of Science & Technology (UST), Daejeon 34054, South Korea
| | - Dong-Seon Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea; Korean Convergence Medical Science Major KIOM, Korea University of Science & Technology (UST), Daejeon 34054, South Korea.
| | - Yoon-Young Sung
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea.
| |
Collapse
|
12
|
Sui JY, Eichenfield DZ, Sun BK. The role of enhancers in psoriasis and atopic dermatitis. Br J Dermatol 2023; 190:10-19. [PMID: 37658835 DOI: 10.1093/bjd/ljad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
Regulatory elements, particularly enhancers, play a crucial role in disease susceptibility and progression. Enhancers are DNA sequences that activate gene expression and can be affected by epigenetic modifications, interactions with transcription factors (TFs) or changes to the enhancer DNA sequence itself. Altered enhancer activity impacts gene expression and contributes to disease. In this review, we define enhancers and the experimental techniques used to identify and characterize them. We also discuss recent studies that examine how enhancers contribute to atopic dermatitis (AD) and psoriasis. Articles in the PubMed database were identified (from 1 January 2010 to 28 February 2023) that were relevant to enhancer variants, enhancer-associated TFs and enhancer histone modifications in psoriasis or AD. Most enhancers associated with these conditions regulate genes affecting epidermal homeostasis or immune function. These discoveries present potential therapeutic targets to complement existing treatment options for AD and psoriasis.
Collapse
Affiliation(s)
- Jennifer Y Sui
- Department of Dermatology, University of California San Diego School of Medicine, CA, USA
- Division of Pediatric and Adolescent Dermatology, Rady Children's Hospital of San Diego, CA, USA
| | - Dawn Z Eichenfield
- Department of Dermatology, University of California San Diego School of Medicine, CA, USA
- Division of Pediatric and Adolescent Dermatology, Rady Children's Hospital of San Diego, CA, USA
| | - Bryan K Sun
- Department of Dermatology, University of California San Diego School of Medicine, CA, USA
| |
Collapse
|
13
|
Mok B, Jang YS, Moon JH, Moon S, Jang YK, Kim SY, Jang SJ, Moh SH, Kim DH, Shin JU. The Potential of Campanula takesimana Callus Extract to Enhance Skin Barrier Function. Int J Mol Sci 2023; 24:17333. [PMID: 38139162 PMCID: PMC10743976 DOI: 10.3390/ijms242417333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Atopic dermatitis (AD) is a prevalent inflammatory skin disease characterized by epidermal barrier dysfunction and Th2-skewed inflammation. Campanula takesimana (C. takesimana), a Korean endemic plant grown on Ulleng Island, has long been associated with a traditional alternative medicine for asthma, tonsillitis, and sore throat. In this study, we reported the effect of C. takesimana callus extract on upregulating epidermal barrier-related proteins dysregulated by Th2 cytokines. C. takesimana callus extract induced the expression of skin barrier proteins, such as filaggrin, claudin-1, and zonula occludens-1, in both human primary keratinocytes and Th2-induced AD-like skin-equivalent models. Additionally, RNA sequencing analysis demonstrated that C. takesimana callus extract partially restored Th2 cytokine-induced dysregulation of the epidermal development and lipid metabolic pathways. Considering the advantages of callus as a sustainable eco-friendly source of bioactive substances, and its effect on skin barrier proteins and lipid metabolic pathways, C. takesimana callus extracts can possibly be utilized to improve the integrity of the skin barrier.
Collapse
Affiliation(s)
- Boram Mok
- Department of Biomedical Science, CHA University School of Medicine, CHA University, Seongnam 13488, Republic of Korea
| | - Young Su Jang
- Department of Biomedical Science, CHA University School of Medicine, CHA University, Seongnam 13488, Republic of Korea
| | - Ji Hwan Moon
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Sujin Moon
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Yun Kyung Jang
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Soo Yun Kim
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Sung Joo Jang
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Sang Hyun Moh
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Dong Hyun Kim
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Jung U Shin
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| |
Collapse
|
14
|
Makino T, Mizawa M, Takemoto K, Yamamoto S, Shimizu T. Altered expression of S100 fused-type proteins in an atopic dermatitis skin model. Exp Dermatol 2023; 32:2160-2165. [PMID: 36995036 DOI: 10.1111/exd.14797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder with elevated interleukin (IL)-4 and IL-13 signatures and extensive barrier dysfunction, which is correlated with the downregulation of filaggrin (FLG). FLG is a member of the S100 fused-type protein family and this family also includes cornulin (CRNN), filaggrin-2 (FLG2), hornerin (HRNR) repetin (RPTN), trichohyalin (TCHH) and trichohyalin-like 1 (TCHHL1). The present study aimed to examine the effects of IL-4 and IL-13 and the downregulation of FLG on the expression of S100 fused-type proteins using a three-dimensional (3D) AD skin model by immunohistochemical study and quantitative polymerase chain reaction. In the 3D AD skin model, which was generated by a stimulation of recombinant IL-4 and IL-13, the expression of FLG, FLG2, HRNR and TCHH was decreased, while that of RPTN was increased in comparison to the 3D control skin. In the FLG knockdown (KD) 3D skin model, which was generated using FLG siRNA, the expression of HRNR was increased. The expression of the other proteins did not differ to a statistically significant extent. The expression of fused-S100 type protein family members may differ in AD skin. This suggests that these proteins play different roles in the pathogenesis of AD.
Collapse
Affiliation(s)
- Teruhiko Makino
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| | - Megumi Mizawa
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| | - Keita Takemoto
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| | - Seiji Yamamoto
- Department of Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| | - Tadamichi Shimizu
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| |
Collapse
|
15
|
Focken J, Scheurer J, Jäger A, Schürch CM, Kämereit S, Riel S, Schaller M, Weigelin B, Schittek B. Neutrophil extracellular traps enhance S. aureus skin colonization by oxidative stress induction and downregulation of epidermal barrier genes. Cell Rep 2023; 42:113148. [PMID: 37733587 DOI: 10.1016/j.celrep.2023.113148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/28/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Staphylococcus aureus is the most common cause of bacterial skin infections in humans, including patients with atopic dermatitis (AD). Polymorphonuclear neutrophils (PMNs) are the first cells to infiltrate an infection site, where they usually provide an effective first line of defense, including neutrophil extracellular trap (NET) formation. Here, we show that infiltrating PMNs in inflamed human and mouse skin enhance S. aureus skin colonization and persistence. Mechanistically, we demonstrate that a crosstalk between keratinocytes and PMNs results in enhanced NET formation upon S. aureus infection, which in turn induces oxidative stress and expression of danger-associated molecular patterns such as high-mobility-group-protein B1 (HMGB1) in keratinocytes. In turn, HMGB1 enhances S. aureus skin colonization and persistence by promoting skin barrier dysfunctions by the downregulation of epidermal barrier genes. Using patient material, we show that patients with AD exhibit enhanced presence of PMNs, NETs, and HMGB1 in the skin, demonstrating the clinical relevance of our finding.
Collapse
Affiliation(s)
- Jule Focken
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Jasmin Scheurer
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Annika Jäger
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Sofie Kämereit
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Simon Riel
- Electron-Microscopy, Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Martin Schaller
- Electron-Microscopy, Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Bettina Weigelin
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Birgit Schittek
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
16
|
Pat Y, Ogulur I, Yazici D, Mitamura Y, Cevhertas L, Küçükkase OC, Mesisser SS, Akdis M, Nadeau K, Akdis CA. Effect of altered human exposome on the skin and mucosal epithelial barrier integrity. Tissue Barriers 2023; 11:2133877. [PMID: 36262078 PMCID: PMC10606824 DOI: 10.1080/21688370.2022.2133877] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 10/24/2022] Open
Abstract
Pollution in the world and exposure of humans and nature to toxic substances is continuously worsening at a rapid pace. In the last 60 years, human and domestic animal health has been challenged by continuous exposure to toxic substances and pollutants because of uncontrolled growth, modernization, and industrialization. More than 350,000 new chemicals have been introduced to our lives, mostly without any reasonable control of their health effects and toxicity. A plethora of studies show exposure to these harmful substances during this period with their implications on the skin and mucosal epithelial barrier and increasing prevalence of allergic and autoimmune diseases in the context of the "epithelial barrier hypothesis". Exposure to these substances causes an epithelial injury with peri-epithelial inflammation, microbial dysbiosis and bacterial translocation to sub-epithelial areas, and immune response to dysbiotic bacteria. Here, we provide scientific evidence on the altered human exposome and its impact on epithelial barriers.
Collapse
Affiliation(s)
- Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Medical Microbiology, Faculty of Medicine, Aydin Menderes University, Turkey
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Medical Immunology, Institute of Health Sciences, Bursa Uludag University, Turkey
| | - Ozan C Küçükkase
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sanne S Mesisser
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
17
|
Moran MC, Brewer MG, Schlievert PM, Beck LA. S. aureus virulence factors decrease epithelial barrier function and increase susceptibility to viral infection. Microbiol Spectr 2023; 11:e0168423. [PMID: 37737609 PMCID: PMC10581065 DOI: 10.1128/spectrum.01684-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/03/2023] [Indexed: 09/23/2023] Open
Abstract
Individuals with atopic dermatitis (AD) are highly colonized by Staphylococcus aureus and are more susceptible to severe viral complications. We hypothesized that S. aureus secreted virulence factors may alter keratinocyte biology to enhance viral susceptibility through disruption of the skin barrier, impaired keratinocyte differentiation, and/or inflammation. To address this hypothesis, human keratinocytes were exposed to conditioned media from multiple S. aureus strains that vary in virulence factor production (USA300, HG003, and RN4220) or select purified virulence factors. We have identified the S. aureus enterotoxin-like superantigen SElQ, as a virulence factor of interest, since it is highly produced by USA300 and was detected on the skin of 53% of AD subjects (n = 72) in a study conducted by our group. Treatment with USA300 conditioned media or purified SElQ resulted in a significant increase in keratinocyte susceptibility to infection with vaccinia virus, and also significantly decreased barrier function. Importantly, we have previously demonstrated that keratinocyte differentiation influences susceptibility to viral infection, and our qPCR observations indicated that USA300 S. aureus and SElQ alter differentiation in keratinocytes. CRISPR/Cas9 was used to knock out CD40, a potential enterotoxin receptor on epithelial cells. We found that CD40 expression on keratinocytes was not completely necessary for SElQ-mediated responses, as measured by proinflammatory cytokine expression and barrier function. Together, these findings support that select S. aureus virulence factors, particularly SElQ, enhance the susceptibility of epidermal cells to viral infection, which may contribute to the increased cutaneous infections observed in individuals with AD. IMPORTANCE Staphylococcus aureus skin colonization and infection are frequently observed in individuals with atopic dermatitis. Many S. aureus strains belong to the clonal group USA300, and these strains produce superantigens including the staphylococcal enterotoxin-like Q (SElQ). Our studies highlight that SElQ may play a key role by altering keratinocyte differentiation and reducing barrier function; collectively, this may explain the AD-specific enhanced infection risk to cutaneous viruses. It is unclear what receptor mediates SElQ's effects on keratinocytes. We have shown that one putative surface receptor, CD40, was not critical for its effects on proinflammatory cytokine production or barrier function.
Collapse
Affiliation(s)
- Mary C. Moran
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Matthew G. Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Lisa A. Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
18
|
Ahn M, Cho WW, Park W, Lee JS, Choi MJ, Gao Q, Gao G, Cho DW, Kim BS. 3D biofabrication of diseased human skin models in vitro. Biomater Res 2023; 27:80. [PMID: 37608402 PMCID: PMC10464270 DOI: 10.1186/s40824-023-00415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
Human skin is an organ located in the outermost part of the body; thus, it frequently exhibits visible signs of physiological health. Ethical concerns and genetic differences in conventional animal studies have increased the need for alternative in vitro platforms that mimic the structural and functional hallmarks of natural skin. Despite significant advances in in vitro skin modeling over the past few decades, different reproducible biofabrication strategies are required to reproduce the pathological features of diseased human skin compared to those used for healthy-skin models. To explain human skin modeling with pathological hallmarks, we first summarize the structural and functional characteristics of healthy human skin. We then provide an extensive overview of how to recreate diseased human skin models in vitro, including models for wounded, diabetic, skin-cancer, atopic, and other pathological skin types. We conclude with an outlook on diseased-skin modeling and its technical perspective for the further development of skin engineering.
Collapse
Affiliation(s)
- Minjun Ahn
- Medical Research Institute, Pusan National University, Yangsan, 626841, Kyungnam, Korea
| | - Won-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea
| | - Min-Ju Choi
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea
| | - Qiqi Gao
- School of Medical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ge Gao
- School of Medical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
| | - Byoung Soo Kim
- Medical Research Institute, Pusan National University, Yangsan, 626841, Kyungnam, Korea.
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea.
| |
Collapse
|
19
|
Kang SJ, Gu NY, Byeon JS, Hyun BH, Lee J, Yang DK. Immunomodulatory effects of canine mesenchymal stem cells in an experimental atopic dermatitis model. Front Vet Sci 2023; 10:1201382. [PMID: 37529178 PMCID: PMC10390254 DOI: 10.3389/fvets.2023.1201382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have the potential to differentiate into multi-lineage cells, suggesting their future applicability in regenerative medicine and biotechnology. The immunomodulatory properties of MSCs make them a promising replacement therapy in various fields of animal research including in canine atopic dermatitis (AD), a skin disease with 10-15% prevalence. We investigated the immunomodulatory effects of MSCs in an experimental canine AD model induced by Dermatophagoides farinae extract ointment. Canine adipose tissue-derived MSCs (cAT-MSCs) were differentiated into mesodermal cell lineages at the third passage. Alterations in immunomodulatory factors in control, AD, and MSC-treated AD groups were evaluated using flow cytometric analysis, enzyme-linked immunosorbent assay, and quantitative reverse transcription PCR. In the MSC-treated AD group, the number of eosinophils decreased, and the number of regulatory T cells (Tregs) increased compared to those in the AD group. In addition, the immunoglobulin E (IgE) and prostaglandin E2 levels were reduced in the MSC-treated AD group compared to those in the AD group. Furthermore, the filaggrin, vascular endothelial growth factor, and interleukin-5 gene expression levels were relatively higher in the MSC-treated AD group than in the AD group, however, not significantly. cAT-MSCs exerted immunomodulatory effects in an AD canine model via a rebalancing of type-1 and -2 T helper cells that correlated with increased levels of Tregs, IgE, and various cytokines.
Collapse
Affiliation(s)
- Seok-Jin Kang
- Viral Diseases Research Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Na-Yeon Gu
- Viral Diseases Research Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Jeong Su Byeon
- Viral Diseases Research Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Bang-Hun Hyun
- Viral Diseases Research Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Jienny Lee
- Division of Regenerative Medicine Safety Management, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Dong-Kun Yang
- Viral Diseases Research Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| |
Collapse
|
20
|
Jang HJ, Lee JB, Yoon JK. Advanced In Vitro Three-Dimensional Skin Models of Atopic Dermatitis. Tissue Eng Regen Med 2023; 20:539-552. [PMID: 36995643 PMCID: PMC10313606 DOI: 10.1007/s13770-023-00532-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/19/2023] [Indexed: 03/31/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most prevalent inflammatory skin diseases that is characterized by eczematous rashes, intense itching, dry skin, and sensitive skin. Although AD significantly impacts the quality of life and the number of patients keeps increasing, its pathological mechanism is still unknown because of its complexity. The importance of developing new in vitro three-dimensional (3D) models has been underlined in order to understand the mechanisms for the development of therapeutics since the limitations of 2D models or animal models have been repeatedly reported. Thus, the new in vitro AD models should not only be created in 3D structure, but also reflect the pathological characteristics of AD, which are known to be associated with Th2-mediated inflammatory responses, epidermal barrier disruption, increased dermal T-cell infiltration, filaggrin down-regulation, or microbial imbalance. In this review, we introduce various types of in vitro skin models including 3D culture methods, skin-on-a-chips, and skin organoids, as well as their applications to AD modeling for drug screening and mechanistic studies.
Collapse
Affiliation(s)
- Hye-Jeong Jang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Jung Bok Lee
- Department of Biological Sciences, Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
21
|
van den Bogaard EH, Elias PM, Goleva E, Berdyshev E, Smits JPH, Danby SG, Cork MJ, Leung DYM. Targeting Skin Barrier Function in Atopic Dermatitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1335-1346. [PMID: 36805053 PMCID: PMC11346348 DOI: 10.1016/j.jaip.2023.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/22/2023]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease in the general population. Skin barrier dysfunction is the central abnormality leading to AD. The cause of skin barrier dysfunction is complex and rooted in genetic mutations, interactions between the immune pathway activation and epithelial cells, altered host defense mechanisms, as well as environmental influences that cause epithelial cell activation and release of alarmins (such as thymic stromal lymphopoietin) that can activate the type 2 immune pathway, including generation of interleukins 4 and 13, which induces defects in the skin barrier and increased allergic inflammation. These inflammatory pathways are further influenced by environmental factors including the microbiome (especially Staphylococcus aureus), air pollution, stress, and other factors. As such, AD is a syndrome involving multiple phenotypes, all of which have in common skin barrier dysfunction as a key contributing factor. Understanding mechanisms leading to skin barrier dysfunction in AD is pointing to the development of new topical and systemic treatments in AD that helps keep skin borders secure and effectively treat the disease.
Collapse
Affiliation(s)
- Ellen H van den Bogaard
- Department of Dermatology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M Elias
- Department of Dermatology, University of California San Francisco and VA Medical Center, San Francisco, Calif
| | - Elena Goleva
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, National Jewish Health, Denver, Colo
| | - Evgeny Berdyshev
- Department of Pulmonology, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colo
| | - Jos P H Smits
- Department of Dermatology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simon G Danby
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School at The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Michael J Cork
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School at The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Donald Y M Leung
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, National Jewish Health, Denver, Colo.
| |
Collapse
|
22
|
Chiricozzi A, Maurelli M, Calabrese L, Peris K, Girolomoni G. Overview of Atopic Dermatitis in Different Ethnic Groups. J Clin Med 2023; 12:2701. [PMID: 37048783 PMCID: PMC10095524 DOI: 10.3390/jcm12072701] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease with a high prevalence worldwide, including countries from Asia, Africa, and Latin America, and in different ethnic groups. In recent years, more attention has been placed on the heterogeneity of AD associated with multiple factors, including a patient's ethnic background, resulting in an increasing body of clinical, genetic, epidemiologic, and immune-phenotypic evidence that delineates differences in AD among racial groups. Filaggrin (FLG) mutations, the strongest genetic risk factor for the development of AD, are detected in up to 50% of European and 27% of Asian AD patients, but very rarely in Africans. Th2 hyperactivation is a common attribute of all ethnic groups, though the Asian endotype of AD is also characterized by an increased Th17-mediated signal, whereas African Americans show a strong Th2/Th22 signature and an absence of Th1/Th17 skewing. In addition, the ethnic heterogeneity of AD may hold important therapeutic implications as a patient's genetic predisposition may affect treatment response and, thereby, a tailored strategy that better targets the dominant immunologic pathways in each ethnic subgroup may be envisaged. Nevertheless, white patients with AD represent the largest ethnicity enrolled and tested in clinical trials and the most treated in a real-world setting, limiting investigations about safety and efficacy across different ethnicities. The purpose of this review is to describe the heterogeneity in the pathophysiology of AD across ethnicities and its potential therapeutic implications.
Collapse
Affiliation(s)
- Andrea Chiricozzi
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Martina Maurelli
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Laura Calabrese
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ketty Peris
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giampiero Girolomoni
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, 37126 Verona, Italy
| |
Collapse
|
23
|
Investigations into the filaggrin null phenotype: showcasing the methodology for CRISPR/Cas9 editing of human keratinocytes. J Invest Dermatol 2023:S0022-202X(23)00165-3. [PMID: 36893939 DOI: 10.1016/j.jid.2023.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/20/2023] [Accepted: 02/11/2023] [Indexed: 03/09/2023]
Abstract
Ever since the association between filaggrin (FLG) loss-of-function mutations and ichthyosis vulgaris and atopic dermatitis disease onset was identified, filaggrins function has been under investigation. Intra-individual genomic predisposition, immunological confounders, and environmental interactions complicate the comparison between FLG genotypes and related causal effects. Using CRISPR/Cas9, we generated human FLG knockout (ΔFLG) N/TERT-2G keratinocytes. Filaggrin deficiency was demonstrated by immunohistochemistry of human epidermal equivalent (HEE) cultures. Next to (partial) loss of structural proteins (IVL, HRNR, KRT2, and TGM1), the stratum corneum was more dense and lacked the typical basket weave appearance. In addition, electrical impedance spectroscopy and transepidermal water loss analyses highlighted a compromised epidermal barrier in ΔFLG-HEEs. Correction of FLG reinstated the presence of keratohyalin granules in the stratum granulosum, filaggrin protein expression, and expression of aforementioned proteins. The beneficial effects on stratum corneum formation were reflected by normalization of EIS and TEWL. This study demonstrates the causal phenotypical and functional consequences of filaggrin deficiency, indicating filaggrin is not only central in epidermal barrier function but also vital for epidermal differentiation by orchestrating the expression of other important epidermal proteins. These observations pave the way to fundamental investigations into the exact role of filaggrin in skin biology and disease.
Collapse
|
24
|
Hulme J. Staphylococcus Infection: Relapsing Atopic Dermatitis and Microbial Restoration. Antibiotics (Basel) 2023; 12:antibiotics12020222. [PMID: 36830133 PMCID: PMC9952585 DOI: 10.3390/antibiotics12020222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Atopic Dermatitis (AD) skin is susceptible to Staphylococcus aureus (SA) infection, potentially exposing it to a plethora of toxins and virulent determinants, including Panton-Valentine leukocidin (PVL) (α-hemolysin (Hla) and phenol-soluble modulins (PSMs)), and superantigens. Depending on the degree of infection (superficial or invasive), clinical treatments may encompass permanganate (aq) and bleach solutions coupled with intravenous/oral antibiotics such as amoxicillin, vancomycin, doxycycline, clindamycin, daptomycin, telavancin, linezolid, or tigecycline. However, when the skin is significantly traumatized (sheathing of epidermal sections), an SA infection can rapidly ensue, impairing the immune system, and inducing local and systemic AD presentations in susceptible areas. Furthermore, when AD presents systemically, desensitization can be long (years) and intertwined with periods of relapse. In such circumstances, the identification of triggers (stress or infection) and severity of the flare need careful monitoring (preferably in real-time) so that tailored treatments targeting the underlying pathological mechanisms (SA toxins, elevated immunoglobulins, impaired healing) can be modified, permitting rapid resolution of symptoms.
Collapse
Affiliation(s)
- John Hulme
- Gachon Bio-Nano Institute, Gachon University, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
25
|
Zobiri O, Zucchi H, Dimitrov A, Marrot L. Repeated Exposures to UVA1 and Particulate Matter‒Associated Pollutants Trigger Epidermal Barrier Dysfunction in Skin Epithelialization Model. J Invest Dermatol 2022; 142:3331-3335.e8. [PMID: 35750150 DOI: 10.1016/j.jid.2022.05.1091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Olivia Zobiri
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Helene Zucchi
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | | | - Laurent Marrot
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France.
| |
Collapse
|
26
|
Berna R, Mitra N, Hoffstad O, Wubbenhorst B, Nathanson KL, Margolis DJ. Uncommon variants in FLG2 and TCHHL1 are associated with remission of atopic dermatitis in a large longitudinal US cohort. Arch Dermatol Res 2022; 314:953-959. [PMID: 34984527 PMCID: PMC9250940 DOI: 10.1007/s00403-021-02319-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022]
Abstract
Atopic dermatitis (AD) is a relapsing inflammatory skin disease; filaggrin (FLG) variation has been consistently associated with its pathogenesis. Filaggrin-2 (FLG2) and trichohyalin-like-1 (TCHHL1) are members of the same protein family (S100 fused-type proteins), are similar in structure to FLG, and may be involved in AD pathogenesis. We sought to evaluate the association between variation in FLG2, TCHHL1 and AD remission. We sequenced FLG2 and TCHHL1 in a longitudinal AD cohort using targeted capture-based massively parallel sequencing. Association between individual alleles and AD remission was evaluated with generalized estimating equations for binary outcomes. Association between groups of alleles and AD remission was evaluated using a genetic algorithm to group alleles. We identified two loss-of-function (LoF) mutations in FLG2 (Ser2377Ter, Arg2207Ter) and 2 LoF mutations in TCHHL1 (Gln656Ter, Gln294Ter), none of which were associated with AD remission. Common (MAF > 5%) alleles in FLG2 were similarly unassociated with AD. No common alleles in TCHHL1 were associated with AD remission after multiple testing correction. Among self-described whites, a group of 34 uncommon alleles in FLG2 were associated with increased AD remission (OR 7.64e17; 95% CI 4.41e17-1.32e18; adjusted p < 1.0e-16). Twelve uncommon alleles in TCHHL1 trended toward association with increased AD remission (OR 23.46; 95% CI 7.07-77.89; adjusted p = 0.064). Among self-described African Americans, 13 uncommon FLG2 alleles were associated with increased AD remission (OR 21.01; 95% CI 11.90-37.09; adjusted p < 1.0e-16). No TCHHL1 uncommon allele groups were associated with AD remission among African Americans. Our study supports the role of uncommon alleles in FLG2 and TCHHL1 in AD pathogenesis.
Collapse
Affiliation(s)
- Ronald Berna
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ole Hoffstad
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bradley Wubbenhorst
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Margolis
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Chong AC, Visitsunthorn K, Ong PY. Genetic/Environmental Contributions and Immune Dysregulation in Children with Atopic Dermatitis. J Asthma Allergy 2022; 15:1681-1700. [PMID: 36447957 PMCID: PMC9701514 DOI: 10.2147/jaa.s293900] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/11/2022] [Indexed: 08/01/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most common skin conditions in humans. AD affects up to 20% of children worldwide and results in morbidity for both patients and their caregivers. The basis of AD is an interplay between genetics and the environment characterized by immune dysregulation. A myriad of mutations that compromise the skin barrier and/or immune function have been linked to AD. Of these, filaggrin gene (FLG) mutations are the most evidenced. Many other mutations have been implicated in isolated studies that are often unreplicated, creating an archive of genes with potential but unconfirmed relevance to AD. Harnessing big data, polygenic risk scores (PRSs) and genome-wide association studies (GWAS) may provide a more practical strategy for identifying the genetic signatures of AD. Epigenetics may also play a role. Staphylococcus aureus is the most evidenced microbial contributor to AD. Cutaneous dysbiosis may result in over-colonization by pathogenic strains and aberrant skin immunity and inflammation. Aeroallergens, air pollution, and climate are other key environmental contributors to AD. The right climate and/or commensals may improve AD for some patients.
Collapse
Affiliation(s)
- Albert C Chong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Peck Y Ong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Division of Clinical Immunology and Allergy, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
28
|
Murashkin NN, Opryatin LA, Epishev RV, Materikin AI, Ambarchian ET, Ivanov RA, Savelova AA, Nezhvedilova RY, Rusakova LL. Filaggrin Defect at Atopic Dermatitis: Modern Treatment Options. CURRENT PEDIATRICS 2022. [DOI: 10.15690/vsp.v21i5.2452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Atopic dermatitis is a common chronic skin disease, its pathogenesis is associated with congenital or acquired deficiency of filaggrin protein. In recent years, extensive evidence on the causes of filaggrin deficiency has been obtained. The structure and functions of this protein are described, that opens new approaches for atopic dermatitis management.
Collapse
Affiliation(s)
- Nikolay N. Murashkin
- National Medical Research Center of Children’s Health; Sechenov First Moscow State Medical University; Central State Medical Academy of Department of Presidential Affairs
| | | | | | | | - Eduard T. Ambarchian
- Pediatrics and Child Health Research Institute in Petrovsky National Research Centre of Surgery
| | | | | | | | | |
Collapse
|
29
|
Kim K, Kim H, Sung GY. Effects of Indole-3-Lactic Acid, a Metabolite of Tryptophan, on IL-4 and IL-13-Induced Human Skin-Equivalent Atopic Dermatitis Models. Int J Mol Sci 2022; 23:13520. [PMID: 36362303 PMCID: PMC9655012 DOI: 10.3390/ijms232113520] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2023] Open
Abstract
Indole-3-lactic acid (I3LA) is a well-known metabolite involved in tryptophan metabolism. Indole derivatives are involved in the differentiation of immune cells and the synthesis of cytokines via the aryl hydrocarbon receptors for modulating immunity, and the indole derivatives may be involved in allergic responses. I3LA was selected as a candidate substance for the treatment of atopic dermatitis (AD), and its inhibitory effect on AD progression was investigated. Full-thickness human skin equivalents (HSEs) consisting of human-derived cells were generated on microfluidic chips and stimulated with major AD-inducing factors. The induced AD-HSEs were treated with I3LA for 7 days, and this affected the AD-associated genetic biomarkers and increased the expression of the major constituent proteins of the skin barrier. After the treatment for 14 days, the surface became rough and sloughed off, and there was no significant difference between the increased AD-related mRNA expression and the skin barrier protein expression. Therefore, the short-term use of I3LA for approximately one week is considered to be effective in suppressing AD.
Collapse
Affiliation(s)
- Kyunghee Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
| | - Hyeju Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
- Major in Materials Science and Engineering, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
30
|
Cadau S, Gault M, Berthelemy N, Hsu CY, Danoux L, Pelletier N, Goudounèche D, Pons C, Leprince C, André-Frei V, Simon M, Pain S. An Inflamed and Infected Reconstructed Human Epidermis to Study Atopic Dermatitis and Skin Care Ingredients. Int J Mol Sci 2022; 23:12880. [PMID: 36361668 PMCID: PMC9656979 DOI: 10.3390/ijms232112880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 08/22/2023] Open
Abstract
Atopic dermatitis (AD), the most common inflammatory skin disorder, is a multifactorial disease characterized by a genetic predisposition, epidermal barrier disruption, a strong T helper (Th) type 2 immune reaction to environmental antigens and an altered cutaneous microbiome. Microbial dysbiosis characterized by the prevalence of Staphylococcus aureus (S. aureus) has been shown to exacerbate AD. In recent years, in vitro models of AD have been developed, but none of them reproduce all of the pathophysiological features. To better mimic AD, we developed reconstructed human epidermis (RHE) exposed to a Th2 pro-inflammatory cytokine cocktail and S. aureus. This model well reproduced some of the vicious loops involved in AD, with alterations at the physical, microbial and immune levels. Our results strongly suggest that S. aureus acquired a higher virulence potential when the epidermis was challenged with inflammatory cytokines, thus later contributing to the chronic inflammatory status. Furthermore, a topical application of a Castanea sativa extract was shown to prevent the apparition of the AD-like phenotype. It increased filaggrin, claudin-1 and loricrin expressions and controlled S. aureus by impairing its biofilm formation, enzymatic activities and inflammatory potential.
Collapse
Affiliation(s)
- Sébastien Cadau
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Manon Gault
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Nicolas Berthelemy
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Chiung-Yueh Hsu
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Louis Danoux
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Nicolas Pelletier
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Dominique Goudounèche
- Centre de Microscopie Electronique Appliquée à la Biologie, Paul Sabatier University, 133, Route de Narbonne, 31062 Toulouse, France
| | - Carole Pons
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051and Inserm UMR1291, CHU Purpan BP 3028, CEDEX 3, 31024 Toulouse, France
| | - Corinne Leprince
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051and Inserm UMR1291, CHU Purpan BP 3028, CEDEX 3, 31024 Toulouse, France
| | - Valérie André-Frei
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Michel Simon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051and Inserm UMR1291, CHU Purpan BP 3028, CEDEX 3, 31024 Toulouse, France
| | - Sabine Pain
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| |
Collapse
|
31
|
Genetic Variants in Epidermal Differentiation Complex Genes as Predictive Biomarkers for Atopic Eczema, Allergic Sensitization, and Eczema-Associated Asthma in a 6-Year Follow-Up Case-Control Study in Children. J Clin Med 2022; 11:jcm11164865. [PMID: 36013110 PMCID: PMC9410399 DOI: 10.3390/jcm11164865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Atopic eczema is the most common chronic inflammatory skin disease of early childhood and is often the first manifestation of atopic march. Therefore, one challenge is to identify the risk factors associated with atopic eczema that may also be predictors of atopic disease progression. The aim of this study was to investigate the association of SNPs in hornerin (HRNR) and filaggrin-2 (FLG2) genes with childhood atopic eczema, as well as other atopic phenotypes. Genotyping for HRNR and FLG2 was performed in 188 children younger than 2 years of age, previously screened for the FLG null mutations, and followed at yearly intervals until the age of 6. We demonstrated that risk variants of HRNR rs877776[C] and FLG2 rs12568784[T] were associated with atopic eczema, allergic sensitization, and susceptibility to the complex phenotype—asthma plus eczema. These effects seem to be supplementary to the well-known associations for FLG mutations and may be modulated by gene–gene interactions. Additionally, in children with eczema, these genetic variants may also be considered, along with FLG mutations, as predictive biomarkers for eczema-associated asthma. In conclusion, our results indicate that genetic variants in the epidermal differentiation complex gene could contribute to the pathogenesis of atopic eczema and progression to subsequent allergic disease.
Collapse
|
32
|
Marsella R, Ahrens K, Wilkes R. Differences in Behavior between Normal and Atopic Keratinocytes in Culture: Pilot Studies. Vet Sci 2022; 9:vetsci9070329. [PMID: 35878346 PMCID: PMC9319359 DOI: 10.3390/vetsci9070329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Skin barrier dysfunction is important in atopic dermatitis and can be secondary to inflammation. Observation of keratinocytes in culture may show intrinsic differences. TransEpithelial Electrical Resistance (TEER) measures epithelial permeability. We cultured normal and atopic keratinocytes and found that TEER of atopic keratinocytes was significantly lower (p < 0.0001) than that of normals. Atopic keratinocytes grew upwards, first creating isolated dome-like structures and later horizontally into a monolayer. At time of confluence (D0), atopic keratinocytes were more differentiated, with higher filaggrin gene expression than normals. No differences existed between groups for TJ proteins (claudin, occludin, and Zonula Occludens-1) on D0 and D6. On D6, claudin and occludin were higher than D0, in normal (p = 0.0296 and p = 0.0011) and atopic keratinocytes (p = 0.0348 and 0.0491). Immunofluorescent staining showed nuclear location of filaggrin on D0 and cytoplasmic on D6. ANOVA showed increased cell size from D0 to D6 in both groups (effect of time, p = 0.0076) but no differences between groups. Significant subject effect (p = 0.0022) was found, indicating that cell size was subject-dependent but not disease-dependent. No difference for continuity for TJ protein existed between groups. These observations suggest that decreased TEER in atopics is not linked to TJ differences but is possibly linked to different growth behavior.
Collapse
|
33
|
Moosbrugger-Martinz V, Leprince C, Méchin MC, Simon M, Blunder S, Gruber R, Dubrac S. Revisiting the Roles of Filaggrin in Atopic Dermatitis. Int J Mol Sci 2022; 23:5318. [PMID: 35628125 PMCID: PMC9140947 DOI: 10.3390/ijms23105318] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/31/2022] Open
Abstract
The discovery in 2006 that loss-of-function mutations in the filaggrin gene (FLG) cause ichthyosis vulgaris and can predispose to atopic dermatitis (AD) galvanized the dermatology research community and shed new light on a skin protein that was first identified in 1981. However, although outstanding work has uncovered several key functions of filaggrin in epidermal homeostasis, a comprehensive understanding of how filaggrin deficiency contributes to AD is still incomplete, including details of the upstream factors that lead to the reduced amounts of filaggrin, regardless of genotype. In this review, we re-evaluate data focusing on the roles of filaggrin in the epidermis, as well as in AD. Filaggrin is important for alignment of keratin intermediate filaments, control of keratinocyte shape, and maintenance of epidermal texture via production of water-retaining molecules. Moreover, filaggrin deficiency leads to cellular abnormalities in keratinocytes and induces subtle epidermal barrier impairment that is sufficient enough to facilitate the ingress of certain exogenous molecules into the epidermis. However, although FLG null mutations regulate skin moisture in non-lesional AD skin, filaggrin deficiency per se does not lead to the neutralization of skin surface pH or to excessive transepidermal water loss in atopic skin. Separating facts from chaff regarding the functions of filaggrin in the epidermis is necessary for the design efficacious therapies to treat dry and atopic skin.
Collapse
Affiliation(s)
- Verena Moosbrugger-Martinz
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (V.M.-M.); (S.B.); (R.G.)
| | - Corinne Leprince
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse University, CNRS UMR5051, Inserm UMR1291, UPS, 31059 Toulouse, France; (C.L.); (M.-C.M.); (M.S.)
| | - Marie-Claire Méchin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse University, CNRS UMR5051, Inserm UMR1291, UPS, 31059 Toulouse, France; (C.L.); (M.-C.M.); (M.S.)
| | - Michel Simon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse University, CNRS UMR5051, Inserm UMR1291, UPS, 31059 Toulouse, France; (C.L.); (M.-C.M.); (M.S.)
| | - Stefan Blunder
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (V.M.-M.); (S.B.); (R.G.)
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (V.M.-M.); (S.B.); (R.G.)
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (V.M.-M.); (S.B.); (R.G.)
| |
Collapse
|
34
|
Churnosov M, Belyaeva T, Reshetnikov E, Dvornyk V, Ponomarenko I. Polymorphisms of the filaggrin gene are associated with atopic dermatitis in the Caucasian population of Central Russia. Gene 2022; 818:146219. [PMID: 35092857 DOI: 10.1016/j.gene.2022.146219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022]
Abstract
Association of the filaggrin (FLG) gene with atopic dermatitis (AD) in Caucasians from Central Russia was studied in the sample of 700 patients and 612 controls. In total ten SNPs of the gene (rs61816761, rs12130219, rs77199844, rs558269137, rs4363385, rs12144049, rs471144, rs6661961, rs10888499, rs3126085), their haplotypes and interlocus interactions were analyzed using logistic regression. The functional effects of the AD risk candidate loci and their proxies (136 SNPs) were evaluated by in silico analysis. All analyzed SNPs were associated with AD: two SNPs (rs3126085 and rs12144049) manifested the independent association, nine SNPs were associated within 30 haplotypes, and seven SNPs showed interlocus interaction effects within ten most significant epistatic models. Alleles A rs3126085 and C rs12144049 were associated with a higher risk of AD according to the allelic (ORs being 1.75, pperm = 0.002 and 1.45, pperm = 0.011 respectively), additive (ORs being 1.69, pperm = 0.004 and 1.47, pperm = 0.011 respectively) and dominant (ORs being 1.79, pperm = 0.004 and 1.63, pperm = 0.005 respectively) genetic models. Three haplotypes, GT[rs3126085-rs12144049] (OR = 0.60), GGT[rs61816761-rs3126085-rs12144049] (OR = 0.59), and AWGGT[rs12130219-rs558269137-rs61816761-rs3126085-rs12144049] (OR = 0.63) demonstrated the protective effect (pperm = 0.001). The in silico analysis suggested that the AD risk variants and their proxies apparently produce various effects on 38 genes in various tissue/organs (including 20 genes in the skin). The biological process enrichment analyses suggest that the target AD candidate genes influence the formation of the cornified envelope, keratinization and cornification, and more than twenty other pathways related to skin development, programmed cell death, and regulation of water loss via skin.
Collapse
Affiliation(s)
- Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia.
| | - Tatyana Belyaeva
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Volodymyr Dvornyk
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, 11533 Riyadh, Saudi Arabia
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| |
Collapse
|
35
|
Salimian J, Salehi Z, Ahmadi A, Emamvirdizadeh A, Davoudi SM, Karimi M, Korani M, Azimzadeh Jamalkandi S. Atopic dermatitis: molecular, cellular, and clinical aspects. Mol Biol Rep 2022; 49:3333-3348. [PMID: 34989960 DOI: 10.1007/s11033-021-07081-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Atopic dermatitis (AD) is a complicated, inflammatory skin disease, which numerous genetic and environmental factors play roles in its development. AD is categorized into different phenotypes and stages, although they are mostly similar in their pathophysiological aspects. Immune response alterations and structural distortions of the skin-barrier layer are evident in AD patients. Genetic makeup, lifestyle, and environment are also significantly involved in contextual factors. Genes involved in AD-susceptibility, including filaggrin and natural moisturizing, cause considerable structural modifications in the skin's lipid bilayer and cornified envelope. Additionally, the skin's decreased integrity and altered structure are accompanied by biochemical changes in the normal skin microflora's dysbiosis. The dynamic immunological responses, genetic susceptibilities, and structural modifications associated with AD's pathophysiology will be extensively discussed in this review, each according to the latest achievements and findings.
Collapse
Affiliation(s)
- Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Seyyed Masoud Davoudi
- Department of Dermatology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Korani
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Kim K, Kim H, Sung GY. An Interleukin-4 and Interleukin-13 Induced Atopic Dermatitis Human Skin Equivalent Model by a Skin-On-A-Chip. Int J Mol Sci 2022; 23:ijms23042116. [PMID: 35216228 PMCID: PMC8878506 DOI: 10.3390/ijms23042116] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 12/27/2022] Open
Abstract
Currently, the mechanism of progression of atopic dermatitis (AD) is not well understood because there is no physiologically appropriate disease model in terms of disease complexity and multifactoriality. Type 2 inflammation, mediated by interleukin (IL)-4 and IL-13, plays an important role in AD. In this study, full-thickness human skin equivalents consisting of human-derived cells were fabricated from pumpless microfluidic chips and stimulated with IL-4 and IL-13. The morphological properties, gene expression, cytokine secretion and protein expression of the stimulated human skin equivalent (HSE) epidermis were investigated. The results showed epidermal and spongy formations similar to those observed in lesions in AD, and decreased expression of barrier-related filaggrin, loricrin and involucrin genes and proteins induced by IL-4Rα signaling. In addition, we induced the expression of carbonic anhydrase II (CAII), a gene specifically expressed in the epidermis of patients with AD. Thus, AD human skin equivalents can be used to mimic the key pathological features of atopic dermatitis, overcoming the limitations of existing studies that rely solely on mouse models and have been unable to translate their effects to humans. Our results will be useful for future research on the development of therapeutic agents for atopic dermatitis.
Collapse
Affiliation(s)
- Kyunghee Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea;
- Major in Materials Science and Engineering, Hallym University, Chuncheon 24252, Korea;
| | - Hyeju Kim
- Major in Materials Science and Engineering, Hallym University, Chuncheon 24252, Korea;
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea;
- Major in Materials Science and Engineering, Hallym University, Chuncheon 24252, Korea;
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
- Correspondence:
| |
Collapse
|
37
|
Lunjani N, Tan G, Dreher A, Sokolowska M, Groeger D, Warwyzniak M, Altunbulakli C, Westermann P, Basera W, Hobane L, Botha M, Gray C, Mankahla A, Gray C, Nadeau KC, Hlela C, Levin M, O'Mahony L, Akdis CA. Environment-dependent alterations of immune mediators in urban and rural South African children with atopic dermatitis. Allergy 2022; 77:569-581. [PMID: 34086351 DOI: 10.1111/all.14974] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/09/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND In order to improve targeted therapeutic approaches for children with atopic dermatitis (AD), novel insights into the molecular mechanisms and environmental exposures that differentially contribute to disease phenotypes are required. We wished to identify AD immunological endotypes in South African children from rural and urban environments. METHODS We measured immunological, socio-economic and environmental factors in healthy children (n = 74) and children with AD (n = 78), in rural and urban settings from the same ethno-linguistic AmaXhosa background in South Africa. RESULTS Circulating eosinophils, monocytes, TARC, MCP-4, IL-16 and allergen-specific IgE levels were elevated, while IL-17A and IL-23 levels were reduced, in children with AD regardless of their location. Independent of AD, children living in a rural environment had the highest levels of TNFα, TNFβ, IL-1α, IL-6, IL-8, IL-21, MCP-1, MIP-1α, MIP-1β, MDC, sICAM1, sVCAM1, VEGFA, VEGFD and Tie2, suggesting a generalized microinflammation or a pattern of trained immunity without any specific TH polarization. In contrast, IL-15, IL-22, Flt1, PIGF and βFGF were highest in urban children. Rural healthy children had the lowest levels of food allergen-specific IgG4. Early life nutritional factors, medications, animal exposures, indoor environment, sunlight exposure, household size, household income and parental education levels were associated with differences in circulating cytokine levels. CONCLUSIONS This study highlights the immunological impact of environmental exposures and socio-economic status in the manifestation of immune endotypes in children with AD living in urban and rural areas, which are important in selecting appropriately matched immunological therapies for treatment of AD.
Collapse
Affiliation(s)
- Nonhlanhla Lunjani
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland.,Department of Dermatology, University of Cape Town, Cape Town, South Africa.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland.,Functional Genomics Center, University of Zurich, Zurich, Switzerland
| | - Anita Dreher
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland
| | - David Groeger
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland.,PrecisionBiotics Ltd, Cork, Ireland
| | - Marcin Warwyzniak
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland
| | - Can Altunbulakli
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland
| | - Patrick Westermann
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland
| | - Wisdom Basera
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Lelani Hobane
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Maresa Botha
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Claudia Gray
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Avumile Mankahla
- The Division of Dermatology, Department of Medicine and Pharmacology, Walter Sisulu University, Eastern Cape, South Africa
| | - Clive Gray
- Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Carol Hlela
- Department of Dermatology, University of Cape Town, Cape Town, South Africa
| | - Michael Levin
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Liam O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
38
|
Berna R, Mitra N, Hoffstad O, Wubbenhorst B, Nathanson KL, Margolis DJ. Using a Machine Learning Approach to Identify Low-Frequency and Rare FLG Alleles Associated with Remission of Atopic Dermatitis. JID INNOVATIONS 2021; 1:100046. [PMID: 34909743 PMCID: PMC8659778 DOI: 10.1016/j.xjidi.2021.100046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD) is a common relapsing inflammatory skin disease. FLG is the gene most consistently associated with AD. Loss-of-function variants in FLG have been previously associated with AD. Low-frequency and rare alleles (minor allele frequency < 5%) in this gene have been given less attention than loss-of-function variants. We fine sequenced the FLG gene in a cohort of individuals with AD. We developed a machine learning‒based algorithm to associate low-frequency and rare alleles with the disease. We then applied this algorithm to the FLG data, searching for associations between groups of low-frequency and rare FLG alleles and AD remission. A group of 46 rare and low-frequency FLG alleles was associated with increased AD remission (P = 2.76e-11). Overall, 16 of these 46 FLG variants were identified in an independent cohort and were associated with decreased AD incidence (P = 0.0007). This study presents an application of statistical methods in AD genetics and suggests that low-frequency and rare alleles may play a larger role in AD pathogenesis than previously appreciated.
Collapse
Affiliation(s)
- Ronald Berna
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ole Hoffstad
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bradley Wubbenhorst
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David J Margolis
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Ferrucci S, Romagnuolo M, Maronese CA, Germiniasi F, Tavecchio S, Angileri L, Casazza G, Marzano AV, Genovese G. Skin barrier status during dupilumab treatment in patients with severe atopic dermatitis. Ther Adv Chronic Dis 2021; 12:20406223211058332. [PMID: 34900210 PMCID: PMC8655442 DOI: 10.1177/20406223211058332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/20/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Atopic dermatitis (AD) is a common chronic-relapsing inflammatory skin disease hallmarked by epidermal barrier dysfunction, increased transepidermal water loss (TEWL) and decreased skin hydration. Recent findings on the T helper 2 (Th2)-driven pathogenesis of AD have led to the development of dupilumab, a monoclonal antibody directed against interleukin-4 and interleukin-13 that has been demonstrated to be effective in the treatment of moderate-to-severe AD. The effect of dupilumab on skin barrier dysfunction, however, has not yet been adequately investigated. Objectives: The primary endpoint of this study was to assess the status of the skin barrier in nonlesional skin of patients with severe AD treated with dupilumab, by evaluating the association between the relative variation of TEWL and the achievement of a 75% reduction of EASI (EASI75) over time. Methods: TEWL was measured below the antecubital fossae by means of the Vapometer® at baseline, at week 4 (T4), at week 16 (T16) and at week 32 after dupilumab starting. EASI and NRS-itch were measured at the same time points. Results: Seventy-eight patients with severe AD treated with dupilumab were enrolled. Median TEWL relative variation respect to baseline was significantly higher in patients who achieved EASI75 as compared with those who did not achieve EASI75 at T16 and at T32, but not at T4. Conclusion: During dupilumab treatment, TEWL on nonlesional skin tends to significantly improve 4 months after treatment initiation and could be a good tool for monitoring response to therapy.
Collapse
Affiliation(s)
- Silvia Ferrucci
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Romagnuolo
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Carlo Alberto Maronese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Francesca Germiniasi
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Simona Tavecchio
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Luisa Angileri
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Casazza
- Dipartimento di Scienze Biomediche e Cliniche 'L. Sacco', Università degli Studi di Milano, Milan, Italy
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy. Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Genovese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
40
|
Moon S, Kim DH, Shin JU. In Vitro Models Mimicking Immune Response in the Skin. Yonsei Med J 2021; 62:969-980. [PMID: 34672130 PMCID: PMC8542468 DOI: 10.3349/ymj.2021.62.11.969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
The skin is the first line of defense of our body, and it is composed of the epidermis and dermis with diverse immune cells. Various in vitro models have been investigated to recapitulate the immunological functions of the skin and to model inflammatory skin diseases. The simplest model is a two-dimensional (2D) co-culture system, which helps understand the direct and indirect cell-to-cell interactions between immune and structural cells; however, it has limitations when observing three-dimensional (3D) interactions or reproducing skin barriers. Conversely, 3D skin constructs can mimic the human skin characteristics in terms of epidermal and dermal structures, barrier functions, cell migration, and cell-to-cell interaction in the 3D space. Recently, as the importance of neuro-immune-cutaneous interactions in the inflammatory response is emerging, 3D skin constructs containing both immune cells and neurons are being developed. A microfluidic culture device called "skin-on-a-chip," which simulates the structures and functions of the human skin with perfusion, was also developed to mimic immune cell migration through the vascular system. This review summarizes the in vitro skin models with immune components, focusing on two highly prevalent chronic inflammatory skin diseases: atopic dermatitis and psoriasis. The development of these models will be valuable in studying the pathophysiology of skin diseases and evaluating the efficacy and toxicity of new drugs.
Collapse
Affiliation(s)
- Sujin Moon
- CHA University College of Medicine, Seongnam, Korea
| | - Dong Hyun Kim
- CHA University College of Medicine, Seongnam, Korea
- Department of Dermatology, CHA Bundang Medical Center, Seongnam, Korea
| | - Jung U Shin
- CHA University College of Medicine, Seongnam, Korea
- Department of Dermatology, CHA Bundang Medical Center, Seongnam, Korea.
| |
Collapse
|
41
|
Limbu SL, Purba TS, Harries M, Wikramanayake TC, Miteva M, Bhogal RK, O'Neill CA, Paus R. A folliculocentric perspective of dandruff pathogenesis: Could a troublesome condition be caused by changes to a natural secretory mechanism? Bioessays 2021; 43:e2100005. [PMID: 34486144 DOI: 10.1002/bies.202100005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 01/19/2023]
Abstract
Dandruff is a common scalp condition, which frequently causes psychological distress in those affected. Dandruff is considered to be caused by an interplay of several factors. However, the pathogenesis of dandruff remains under-investigated, especially with respect to the contribution of the hair follicle. As the hair follicle exhibits unique immune-modulatory properties, including the creation of an immunoinhibitory, immune-privileged milieu, we propose a novel hypothesis taking into account the role of the hair follicle. We hypothesize that the changes and imbalance of yeast and bacterial species, along with increasing proinflammatory sebum by-products, leads to the activation of immune response and inflammation. Hair follicle keratinocytes may then detect these changes in scalp microbiota resulting in the recruitment of leukocytes to the inflammation site. These changes in the scalp skin immune-microenvironment may impact hair follicle immune privilege status, which opens new avenues into exploring the role of the hair follicle in dandruff pathogenesis. Also see the video abstract here: https://youtu.be/mEZEznCYtNs.
Collapse
Affiliation(s)
- Susan L Limbu
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Talveen S Purba
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Matthew Harries
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK.,Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Tongyu C Wikramanayake
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mariya Miteva
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ranjit K Bhogal
- Unilever R&D Colworth, Colworth Science Park, Sharnbrook, UK
| | - Catherine A O'Neill
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK.,Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany
| |
Collapse
|
42
|
Pellefigues C, Naidoo K, Mehta P, Schmidt AJ, Jagot F, Roussel E, Cait A, Yumnam B, Chappell S, Meijlink K, Camberis M, Jiang JX, Painter G, Filbey K, Uluçkan Ö, Gasser O, Le Gros G. Basophils promote barrier dysfunction and resolution in the atopic skin. J Allergy Clin Immunol 2021; 148:799-812.e10. [PMID: 33662369 PMCID: PMC8410897 DOI: 10.1016/j.jaci.2021.02.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The type 2 cytokines IL-4 and IL-13 promote not only atopic dermatitis (AD) but also the resolution of inflammation. How type 2 cytokines participate in the resolution of AD is poorly known. OBJECTIVE Our aim was to determine the mechanisms and cell types governing skin inflammation, barrier dysfunction, and resolution of inflammation in a model of AD. METHODS Mice that exhibit expression of IL-4, IL-13, and MCPT8 or that could be depleted of basophils or eosinophils, be deficient in IL-4 or MHC class II molecules, or have basophils lacking macrophage colony-stimulating factor (M-CSF) were treated with calcipotriol (MC903) as an acute model of AD. Kinetics of the disease; keratinocyte differentiation; and leukocyte accumulation, phenotype, function, and cytokine production were measured by transepidermal water loss, histopathology, molecular biology, or unbiased analysis of spectral flow cytometry. RESULTS In this model of AD, basophils were activated systemically and were the initial and main source of IL-4 in the skin. Basophils and IL-4 promoted epidermal hyperplasia and skin barrier dysfunction by acting on keratinocyte differentiation during inflammation. Basophils, IL-4, and basophil-derived M-CSF inhibited the accumulation of proinflammatory cells in the skin while promoting the expansion and function of proresolution M2-like macrophages and the expression of probarrier genes. Basophils kept their proresolution properties during AD resolution. CONCLUSION Basophils can display both beneficial and detrimental type 2 functions simultaneously during atopic inflammation.
Collapse
Affiliation(s)
- Christophe Pellefigues
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand; INSERM UMR1149, CNRS ERL8252, Centre de recherche sur l'inflammation, Inflamex, Université de Paris, Paris, France.
| | - Karmella Naidoo
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Palak Mehta
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Alfonso J Schmidt
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Ferdinand Jagot
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Elsa Roussel
- Novartis Institutes for Biomedical Research (NIBR), Novartis, Basel, Switzerland
| | - Alissa Cait
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Bibek Yumnam
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Sally Chappell
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Kimberley Meijlink
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Mali Camberis
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Tex
| | - Gavin Painter
- Ferrier Research Institute, Victoria University, Wellington, New Zealand
| | - Kara Filbey
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Özge Uluçkan
- Novartis Institutes for Biomedical Research (NIBR), Novartis, Basel, Switzerland
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| |
Collapse
|
43
|
Dubin C, Del Duca E, Guttman-Yassky E. The IL-4, IL-13 and IL-31 pathways in atopic dermatitis. Expert Rev Clin Immunol 2021; 17:835-852. [PMID: 34106037 DOI: 10.1080/1744666x.2021.1940962] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Atopic dermatitis (AD) is the most common inflammatory skin disease. It has a complex pathophysiology, with a combination of immune dysregulation and intrinsic barrier defects driving cutaneous inflammation and allergic symptomatology. The IL-4, IL-13 and IL-31 inflammatory pathways have been identified as hallmark features in the pathogenesis of the disease, contributing uniquely and synergistically to immune and barrier abnormalities as well as the key symptoms, such as pruritis. Novel therapeutics that target these pathways have been under development to find treatments for AD.Areas covered: This review discusses the IL-4, IL-13 and IL-31 pathways in AD. We will also detail novel targeted therapeutics that have recently been or are currently in clinical trials for AD. A literature search was conducted by querying Scopus, Google Scholar, PubMed, and Clinicaltrials.gov up to January 2021 using combinations of the search terms 'IL-4' 'IL-13' 'IL-31' 'atopic dermatitis' 'immune pathway' 'biologics' 'novel therapeutics' 'JAK/STAT inhibitors.'Expert opinion: The complex pathophysiology of AD advocates for innovation. Novel minimally invasive sampling modalities such as tape stripping will allow for a broader characterization of the immunomechanisms behind AD pathophysiology. This will allow for the continued development of a personalized medicine approach to treat AD.
Collapse
Affiliation(s)
- Celina Dubin
- Department of Dermatology, And Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ester Del Duca
- Department of Dermatology, And Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Dermatology, Magna Graecia, Catanzaro, IT, Calabria
| | - Emma Guttman-Yassky
- Department of Dermatology, And Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, USA.,Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York USA
| |
Collapse
|
44
|
Yüksel YT, Nørreslet LB, Thyssen JP. Allergic Contact Dermatitis in Patients with Atopic Dermatitis. CURRENT DERMATOLOGY REPORTS 2021. [DOI: 10.1007/s13671-021-00335-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Dębińska A. New Treatments for Atopic Dermatitis Targeting Skin Barrier Repair via the Regulation of FLG Expression. J Clin Med 2021; 10:jcm10112506. [PMID: 34198894 PMCID: PMC8200961 DOI: 10.3390/jcm10112506] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
Atopic dermatitis (AD) is one of the most common chronic, inflammatory skin disorders with a complex etiology and a broad spectrum of clinical phenotypes. Despite its high prevalence and effect on the quality of life, safe and effective systemic therapies approved for long-term management of AD are limited. A better understanding of the pathogenesis of atopic dermatitis in recent years has contributed to the development of new therapeutic approaches that target specific pathophysiological pathways. Skin barrier dysfunction and immunological abnormalities are critical in the pathogenesis of AD. Recently, the importance of the downregulation of epidermal differentiation complex (EDC) molecules caused by external and internal stimuli has been extensively emphasized. The purpose of this review is to discuss the innovations in the therapy of atopic dermatitis, including biologics, small molecule therapies, and other drugs by highlighting regulatory mechanisms of skin barrier-related molecules, such as filaggrin (FLG) as a crucial pathway implicated in AD pathogenesis.
Collapse
Affiliation(s)
- Anna Dębińska
- 1st Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, Chałubińskiego 2a, 50-368 Wrocław, Poland
| |
Collapse
|
46
|
Luger T, Paller AS, Irvine AD, Sidbury R, Eichenfield LF, Werfel T, Bieber T. Topical therapy of atopic dermatitis with a focus on pimecrolimus. J Eur Acad Dermatol Venereol 2021; 35:1505-1518. [PMID: 33834524 DOI: 10.1111/jdv.17272] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Atopic dermatitis (AD) is a chronic and relapsing, inflammatory skin disease characterized by impaired skin barrier function and immune system dysregulation that results in dryness, skin microbiome dysbiosis and intense pruritus. It is highly heterogeneous, and its management is demanding. Patients with AD are at greater risk of comorbidities such as attention-deficit hyperactivity disorder as well as other atopic diseases. Early-onset AD cases typically improve or resolve in late childhood; however, it is proposed that the prevalence of persistent or adult-onset AD is higher than previously thought. Basic therapy consists of emollient application and trigger avoidance, and when insufficient, topical corticosteroids (TCS) are the first-line treatment. However, corticophobia/steroid aversion and TCS side-effects, particularly on sensitive skin areas, lead to low compliance and insufficient disease control. Several long- and short-term randomized controlled and daily practice studies have demonstrated that topical calcineurin inhibitors, such as pimecrolimus, have similar anti-inflammatory effects to low-to-medium strength TCS, reduce pruritus and improve the quality of life of patients. In addition, pimecrolimus does not cause skin atrophy, is steroid-sparing and has a good safety profile, with no evidence for an increased risk of malignancies or skin infections. In general, pimecrolimus cream is well-accepted and well-tolerated, encouraging patient adherence and leading to its use by many physicians as a preferred therapy for children and sensitive skin areas.
Collapse
Affiliation(s)
- T Luger
- Department of Dermatology, University of Münster, Münster, Germany
| | - A S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - A D Irvine
- Pediatric Dermatology, Children's Health Ireland at Crumlin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.,Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - R Sidbury
- University of Washington School of Medicine, Seattle, WA, USA.,Seattle Children's Hospital, Seattle, WA, USA
| | - L F Eichenfield
- Departments of Dermatology and Pediatrics, University of California, San Diego School of Medicine, Rady Children's Hospital, San Diego, CA, USA
| | - T Werfel
- Department of Dermatology, MHH, Hannover, Germany
| | - T Bieber
- Department of Dermatology and Allergy, Christine Kühne-Center for Allergy Research and Education, University Hospital, Bonn, Germany
| |
Collapse
|
47
|
Luger T, Amagai M, Dreno B, Dagnelie MA, Liao W, Kabashima K, Schikowski T, Proksch E, Elias PM, Simon M, Simpson E, Grinich E, Schmuth M. Atopic dermatitis: Role of the skin barrier, environment, microbiome, and therapeutic agents. J Dermatol Sci 2021; 102:142-157. [PMID: 34116898 DOI: 10.1016/j.jdermsci.2021.04.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
Atopic dermatitis (AD) is a chronic, inflammatory skin disorder characterized by eczematous and pruritic skin lesions. In recent decades, the prevalence of AD has increased worldwide, most notably in developing countries. The enormous progress in our understanding of the complex composition and functions of the epidermal barrier allows for a deeper appreciation of the active role that the skin barrier plays in the initiation and maintenance of skin inflammation. The epidermis forms a physical, chemical, immunological, neuro-sensory, and microbial barrier between the internal and external environment. Not only lesional, but also non-lesional areas of AD skin display many morphological, biochemical and functional differences compared with healthy skin. Supporting this notion, genetic defects affecting structural proteins of the skin barrier, including filaggrin, contribute to an increased risk of AD. There is evidence to suggest that natural environmental allergens and man-made pollutants are associated with an increased likelihood of developing AD. A compromised epidermal barrier predisposes the skin to increased permeability of these compounds. Numerous topical and systemic therapies for AD are currently available or in development; while anti-inflammatory therapy is central to the treatment of AD, some existing and novel therapies also appear to exert beneficial effects on skin barrier function. Further research on the skin barrier, particularly addressing epidermal differentiation and inflammation, lipid metabolism, and the role of bacterial communities for skin barrier function, will likely expand our understanding of the complex etiology of AD and lead to identification of novel targets and the development of new therapies.
Collapse
Affiliation(s)
- Thomas Luger
- Department of Dermatology, University of Münster, Münster, Germany.
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Brigitte Dreno
- Dermatology Department, Nantes University, CHU Nantes, CIC 1413, CRCINA, Nantes, France
| | - Marie-Ange Dagnelie
- Dermatology Department, Nantes University, CHU Nantes, CIC 1413, CRCINA, Nantes, France
| | - Wilson Liao
- Department of Dermatology, University of California, San Francisco, CA, United States
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tamara Schikowski
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Peter M Elias
- San Francisco VA Medical Center, University of California, San Francisco, CA, United States
| | - Michel Simon
- UDEAR, Inserm, University of Toulouse, U1056, Toulouse, France
| | - Eric Simpson
- Department of Dermatology, Oregon Health & Science University, Portland, OR, United States
| | - Erin Grinich
- Department of Dermatology, Oregon Health & Science University, Portland, OR, United States
| | - Matthias Schmuth
- Department of Dermatology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
48
|
Igawa S, Ohzono A, Pham P, Wang Z, Nakatsuji T, Dokoshi T, Di Nardo A. Sphingosine 1-Phosphate Receptor 2 Is Central to Maintaining Epidermal Barrier Homeostasis. J Invest Dermatol 2021; 141:1188-1197.e5. [PMID: 33197483 PMCID: PMC9801230 DOI: 10.1016/j.jid.2020.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
The outer layer of the epidermis composes the skin barrier, a sophisticated filter constituted by layers of corneocytes in a lipid matrix. The matrix lipids, especially the ceramide-generated sphingosine 1-phosphate, are the messengers that the skin barrier uses to communicate with the basal layer of the epidermis where replicating keratinocytes are located. Sphingosine 1-phosphate is a bioactive sphingolipid mediator involved in various cellular functions through S1PR1‒5, expressed by keratinocytes. We discovered that the S1pr2 absence is linked to an impairment in the skin barrier function. Although S1pr2-/- mouse skin has no difference in its phenotype and barrier function compared with that of wild-type mouse, after tape stripping, S1pr2-/- mouse showed significantly higher transepidermal water loss and required another 24 hours to normalize their transepidermal water loss levels. Moreover, after epicutaneous Staphylococcus aureus application, impaired S1pr2-/- mouse epidermal barrier function allowed deeper bacterial penetration and denser neutrophil infiltration in the dermis. Microarray and RNA sequence of S1pr2-/- mouse epidermis linked the barrier dysfunction with a decrease in FLG2 and tight junction components. In conclusion, S1pr2-/- mice have compromised skin barrier function and increased bacteria permeability, making them a suitable model for diseases that present similar characteristics, such as atopic dermatitis.
Collapse
Affiliation(s)
- Satomi Igawa
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA,Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| | - Ayaka Ohzono
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Phoebe Pham
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Zhenping Wang
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA,Corresponding author: Anna Di Nardo, Department of Dermatology, School of Medicine, University of California, San Diego, 9500 Gilman Drive #0869, La Jolla, CA 92093, Tel: 858-822-6712, Fax: 858-822-6985,
| |
Collapse
|
49
|
Abstract
Human filaggrin (FLG) plays a key role in epidermal barrier function, and loss-of-function mutations of its gene are primarily responsible for the development of human atopic dermatitis (AD). FLG expression is also reduced in the epidermis of atopic patients, due to the transcriptional effect of Th2 type cytokines. Canine atopic dermatitis (CAD) is a prevalent skin disease that shares many clinical and pathogenic features with its human homologue. The aim of this review is discuss current knowledge on canine filaggrin (Flg) in both healthy and atopic dogs, as compared to the human protein. Although the molecular structures of the two proteins, as deduced from the sequences of their gene, are different, their sites of expression and their proteolytic processing in the normal epidermis are similar. Concerning the expression of Flg in CAD, conflicting results have been published at the mRNA level and little accurate information is available at the protein level. It derives from a large precursor, named profilaggrin (proFLG), formed by several FLG units and stored in keratohyalin granules of the stratum granulosum. Canine and human proFLG sequences display little amino acid similarity (33% as shown using the Basic Local Alignment Search Tool (BLAST)) except at the level of the S100 homologous part of the N-terminus (75%). Genetic studies in the dog are at an early stage and are limited by the variety of breeds and the small number of cases included. Many questions remain unanswered about the involvement of Flg in CAD pathogenesis.
Collapse
Affiliation(s)
- Daniel Combarros
- UDEAR, Université de Toulouse, INSERM UPS, Toulouse, France.,Université de Toulouse, ENVT, Toulouse, France
| | - Marie-Christine Cadiergues
- UDEAR, Université de Toulouse, INSERM UPS, Toulouse, France.,Université de Toulouse, ENVT, Toulouse, France
| | - Michel Simon
- UDEAR, Université de Toulouse, INSERM UPS, Toulouse, France
| |
Collapse
|
50
|
Leung DYM, Berdyshev E, Goleva E. Cutaneous barrier dysfunction in allergic diseases. J Allergy Clin Immunol 2021; 145:1485-1497. [PMID: 32507227 DOI: 10.1016/j.jaci.2020.02.021] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 01/08/2023]
Abstract
The fundamental defect(s) that drives atopic dermatitis (AD) remains controversial. "Outside in" proponents point to the important association of filaggrin gene mutations and other skin barrier defects with AD. The "inside out" proponents derive support from evidence that AD occurs in genetic animal models with overexpression of type 2 immune pathways in their skin, and humans with gain-of-function mutations in their type 2 response develop severe AD. The observation that therapeutic biologics, targeting type 2 immune responses, can reverse AD provides compelling support for the importance of "inside out" mechanisms of AD. In this review, we propose a central role for epithelial cell dysfunction that accounts for the dual role of skin barrier defects and immune pathway activation in AD. The complexity of AD has its roots in the dysfunction of the epithelial barrier that allows the penetration of allergens, irritants, and microbes into a cutaneous milieu that facilitates the induction of type 2 immune responses. The AD phenotypes and endotypes that result in chronic skin inflammation and barrier dysfunction are modified by genes, innate/adaptive immune responses, and different environmental factors that cause skin barrier dysfunction. There is also compelling evidence that skin barrier dysfunction can alter the course of childhood asthma, food allergy, and allergic rhinosinusitis. Effective management of AD requires a multipronged approach, not only restoring cutaneous barrier function, microbial flora, and immune homeostasis but also enhancing skin epithelial differentiation.
Collapse
Affiliation(s)
| | | | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colo
| |
Collapse
|