1
|
Yu S, Lu J. MicroRNAs in transplant rejection: Emerging roles in immune regulation and applications. Transpl Immunol 2025; 90:102222. [PMID: 40107626 DOI: 10.1016/j.trim.2025.102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/15/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Organ transplantation is the only effective treatment for patients with end-stage organ failure. Although modern immunosuppressive protocols are very effective and improve quality of life, there is still a need for improvements to eliminate their side effects and to induce transplantation tolerance to allografts. The microRNAs (miRNAs) emerged as promising candidates for regulations of several immune functions. The most advanced research of miRNAs documented that several miRNAs form very complex regulatory networks involved in fine and precise mechanisms of multiple pathophysiological process in cells. This review describes the origin of miRNAs and their action mechanisms by which they regulate several immune and cell biology processes, highlighting the fast progress of miRNA research involved in transplant rejection, recent clinical trials, and describing prospects and possible limitations.
Collapse
Affiliation(s)
- Shaochen Yu
- Department of Emergency and Critical Care Medicine, Chuzhou Integrated Traditional Chinese and Western Medicine Hospital, No. 788, Huifeng East Road, Nanqiao District, Chuzhou, Anhui Province 239000, China
| | - Jian Lu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui Province 230022, China.
| |
Collapse
|
2
|
Liu Z, Su M, Wan P, Zhen X, He L, Liang H. Identification of Natural Killer Cell-Related Genes as Potential Diagnostic Biomarkers for Pediatric Sepsis. APMIS 2025; 133:e70030. [PMID: 40411297 DOI: 10.1111/apm.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2025] [Accepted: 05/06/2025] [Indexed: 05/26/2025]
Abstract
Pediatric sepsis is a prevalent severe condition with a high disability rate and mortality. The purpose of this study was to investigate how NK cell-related genes (NKGs) function in the diagnosis of pediatric sepsis. Differential analysis and Venn analysis were utilized to screen differentially expressed NKGs (DE-NKGs) in pediatric sepsis. The PPI network of DE-NKGs was generated using STRING. Candidate drugs are predicted using the CMAP database. miRNA and transcription factor (TF) targeting hub genes were screened using the Networkanalyst website. A total of 22 DE-NKGs were identified, which were mainly enriched in immune-related biological processes. Ten hub genes that were filtered out from DE-NKGs exhibited good diagnostic performance. Immune infiltration analysis revealed that macrophages and neutrophils had higher infiltration abundance in the pediatric sepsis group, whereas NK cells had higher infiltration abundance in the normal group. NKGs (LCK, FCER1G, PRF1, CD247, GZMB, CD2, CCL4, KLRD1, CCL5, and ITGB2) with diagnostic performance were successfully predicted, and some potential miRNAs, TFs, and candidate drugs were also predicted. In conclusion, this study threw light on a comprehensive understanding of the role of NK cells in pediatric sepsis.
Collapse
Affiliation(s)
- Zhihong Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Minghua Su
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Peiqi Wan
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Xiumei Zhen
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Lixia He
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Huan Liang
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| |
Collapse
|
3
|
Xu F, Gao Y, Li T, Jiang T, Wu X, Yu Z, Zhang J, Hu Y, Cao J. Single-Cell Sequencing Reveals the Heterogeneity of Hepatic Natural Killer Cells and Identifies the Cytotoxic Natural Killer Subset in Schistosomiasis Mice. Int J Mol Sci 2025; 26:3211. [PMID: 40244063 PMCID: PMC11989782 DOI: 10.3390/ijms26073211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/08/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Schistosoma japonicum eggs in the host liver form granuloma and liver fibrosis and then lead to portal hypertension and cirrhosis, seriously threatening human health. Natural killer (NK) cells can kill activated hepatic stellate cells (HSCs) against hepatic fibrosis. We used single-cell sequencing to screen hepatic NK cell subsets against schistosomiasis liver fibrosis. Hepatic NK cells were isolated from uninfected mice and mice infected for four and six weeks. The NK cells underwent single-cell sequencing. The markers' expression in the NK subsets was detected through Reverse Transcription-Quantitative PCR (RT-qPCR). The proportion and granzyme B (Gzmb) expression of the total NK and Thy1+NK were detected. NK cells overexpressing Thy1 (Thy1-OE) were constructed, and functions were detected. The results revealed that the hepatic NK cells could be divided into mature, immature, regulatory-like, and memory-like NK cells and re-clustered into ten subsets. C3 (Cx3cr1+NK) and C4 (Thy1+NK) increased at week four post-infection, and other subsets decreased continuously. The successfully constructed Thy1-OE NK cells had significantly higher effector molecules and induced greater HSC apoptosis than the control NK cells. It revealed a pattern of hepatic NK cells in a mouse model of schistosomiasis. The Thy1+NK cells could be used as target cells against hepatic fibrosis.
Collapse
Affiliation(s)
- Fangfang Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Yuan Gao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Teng Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Tingting Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Xiaoying Wu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Zhihao Yu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Jing Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Yuan Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
4
|
Ji Y, Xiao C, Fan T, Deng Z, Wang D, Cai W, Li J, Liao T, Li C, He J. The epigenetic hallmarks of immune cells in cancer. Mol Cancer 2025; 24:66. [PMID: 40038722 PMCID: PMC11881328 DOI: 10.1186/s12943-025-02255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Targeting the dysregulation of epigenetic mechanisms in cancer has emerged as a promising therapeutic strategy. Although the significant rationale progress of epigenetic therapies in blocking cancer cells, how epigenetic regulation shapes tumor microenvironment (TME) and establishes antitumor immunity remains less understood. Recent study focus has been put on the epigenetic-mediated changes in the fate of immune cells, including the differentiation, expansion, recruitment, functionalization, and exhaustion of T cells, natural killer (NK) cells, tumor-associated macrophages (TAMs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), and B cells within the TME. Here, we review the latest molecular and clinical insights into how DNA modifications, histone modification, and epitranscriptome-related regulations shape immune cells of various cancers. We also discuss opportunities for leveraging epigenetic therapies to improve cancer immunotherapies. This review provides the epigenetic foundations of cancer immunity and proposes the future direction of combination therapies.
Collapse
Affiliation(s)
- Yu Ji
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianle Liao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Cho O. Plasma exosomal miR-150-3p, NMT2, and PRDM1 as predictive biomarkers of acute tumor response in patients with cervical cancer undergoing chemoradiotherapy. Am J Cancer Res 2025; 15:546-558. [PMID: 40084359 PMCID: PMC11897638 DOI: 10.62347/spqy5709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/05/2025] [Indexed: 03/16/2025] Open
Abstract
Locally advanced cervical cancer (LACC) is primarily treated with weekly cisplatin-based concurrent chemoradiotherapy (CCRT); however, predicting acute tumor response remains challenging. This study aimed to identify plasma exosomal microRNAs (miRNAs) and messenger RNAs (mRNAs) that could predict rapid tumor regression in patients with LACC undergoing CCRT. Overall, 41 patients with stage IB-IVB cervical cancer were included. All patients received CCRT, and plasma exosomal RNA samples were collected before treatment and 2 weeks after radiation therapy (RT). Acute tumor response (AR) was defined as the regression rate of tumor volume (TV) (cm3) measured at the fourth week of treatment compared with the initial TV (iTV). The log2 fold change of miRNA and mRNA was calculated by comparing RNA read counts before and after the second week of CCRT for each patient. A correlation matrix identified RNAs associated with AR. The selected RNAs were validated through linear regression and Wilcoxon rank-sum tests. Leave-one-out cross-validation was performed in subgroups based on iTV. miR-150-3p, NMT2, and PRDM1 were identified as key predictors of AR, demonstrating significant associations with immune-mediated tumor responses. A decrease in post-RT levels of these RNAs was significantly associated with poor AR, particularly in patients with large iTVs. The predictive model combining miR-150-3p, NMT2, and PRDM1 showed strong correlation with AR (R2 = 0.831, P < 0.0001) in the test dataset and was validated in an independent cohort (R2 = 0.496, P = 0.006). Cross-validation indicated the robustness of these biomarkers in predicting AR across varying TVs. These findings highlight the potential of plasma exosomal miR-150-3p, NMT2, and PRDM1 are promising biomarkers for predicting AR in patients with LACC undergoing CCRT. These findings could facilitate personalized RT strategies and improve patient outcomes. Further multicenter studies are warranted to validate these biomarkers in larger, diverse cohorts.
Collapse
Affiliation(s)
- Oyeon Cho
- Gynecologic Cancer Center, Department of Radiation Oncology, Ajou University School of Medicine 164 World Cup-ro, Yeongtong-gu, Suwon 16499, Korea
| |
Collapse
|
6
|
Wilczyński M, Wilczyński J, Nowak M. MiRNAs as Regulators of Immune Cells in the Tumor Microenvironment of Ovarian Cancer. Cells 2024; 13:1343. [PMID: 39195233 PMCID: PMC11352322 DOI: 10.3390/cells13161343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Ovarian cancer is one of the leading causes of cancer deaths among women. There is an ongoing need to develop new biomarkers and targeted therapies to improve patient outcomes. One of the most critical research areas in ovarian cancer is identifying tumor microenvironment (TME) functions. TME consists of tumor-infiltrating immune cells, matrix, endothelial cells, pericytes, fibroblasts, and other stromal cells. Tumor invasion and growth depend on the multifactorial crosstalk between tumor cells and immune cells belonging to the TME. MiRNAs, which belong to non-coding RNAs that post-transcriptionally control the expression of target genes, regulate immune responses within the TME, shaping the landscape of the intrinsic environment of tumor cells. Aberrant expression of miRNAs may lead to the pathological dysfunction of signaling pathways or cancer cell-regulatory factors. Cell-to-cell communication between infiltrating immune cells and the tumor may depend on exosomes containing multiple miRNAs. MiRNAs may exert both immunosuppressive and immunoreactive responses, which may cause cancer cell elimination or survival. In this review, we highlighted recent advances in the field of miRNAs shaping the landscape of immune cells in the TME.
Collapse
Affiliation(s)
- Miłosz Wilczyński
- Department of Operative Gynecology, Endoscopy and Gynecologic Oncology, Polish Mother’s Health Center-Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland
| | - Jacek Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland;
| | - Marek Nowak
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother’s Health Center-Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
| |
Collapse
|
7
|
Guan X, Guo H, Guo Y, Han Q, Li Z, Zhang C. Perforin 1 in Cancer: Mechanisms, Therapy, and Outlook. Biomolecules 2024; 14:910. [PMID: 39199299 PMCID: PMC11352983 DOI: 10.3390/biom14080910] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
PRF1 (perforin 1) is a key cytotoxic molecule that plays a crucial role in the killing function of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Recent studies have focused on PRF1's role in cancer development, progression, and prognosis. Studies have shown that aberrant PRF1 expression has a significant role to play in cancer development and progression. In some cancers, high expression of the PRF1 gene is associated with a better prognosis for patients, possibly because it helps enhance the body's immune response to tumors. However, some studies have also shown that the absence of PRF1 may make it easier for tumors to evade the body's immune surveillance, thus affecting patient survival. Furthermore, recent studies have explored therapeutic strategies based on PRF1, such as enhancing the ability of immune cells to kill cancer cells by boosting PRF1 activity. In addition, they have improved the efficacy of immunotherapy by modulating its expression to enhance the effectiveness of the treatment. Based on these findings, PRF1 may be a valuable biomarker both for the treatment of cancer and for its prognosis in the future. To conclude, PRF1 has an important biological function and has clinical potential for the treatment of cancer, which indicates that it deserves more research and development in the future.
Collapse
Affiliation(s)
- Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (H.G.); (Y.G.); (Q.H.); (Z.L.)
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (H.G.); (Y.G.); (Q.H.); (Z.L.)
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (H.G.); (Y.G.); (Q.H.); (Z.L.)
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qi Han
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (H.G.); (Y.G.); (Q.H.); (Z.L.)
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhongxun Li
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (H.G.); (Y.G.); (Q.H.); (Z.L.)
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (H.G.); (Y.G.); (Q.H.); (Z.L.)
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
8
|
Pipic D, Rasmussen M, Saleh QW, Tepel M. Induction Therapies Determine the Distribution of Perforin and Granzyme B Transcripts in Kidney Transplant Recipients. Biomedicines 2024; 12:1258. [PMID: 38927465 PMCID: PMC11200803 DOI: 10.3390/biomedicines12061258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Peripheral blood mononuclear cells contain secretory granules with Perforin and Granzyme B for defense against pathogens. The objective of the present study was to compare the effects of immunosuppressive induction therapies on Perforin and Granzyme B transcripts in kidney transplant recipients. Transcripts were determined in 408 incident kidney transplant recipients eight days posttransplant using quantitative real-time PCR. Compared to 90 healthy subjects, the median Perforin transcripts were lower in kidney transplant recipients with blood-group ABO-incompatible donors (N = 52), compatible living donors (N = 130), and deceased donors (N = 226) (25.7%; IQR, 6.5% to 46.0%; 31.5%; IQR, 10.9% to 57.7%; and 35.6%; IQR, 20.6% to 60.2%; respectively; p = 0.015 by the Kruskal-Wallis test). Kidney transplant recipients who were treated with thymoglobulin (N = 64) had significantly lower Perforin as well as Granzyme B compared to all other induction therapies (N = 344) (each p < 0.001). Receiver operator characteristics analysis showed that both Perforin (area under curve, 0.919) and Granzyme B (area under curve, 0.915) indicated thyroglobulin-containing induction therapies. Regression analysis showed that both reduction in plasma creatinine and human leukocyte antigen mismatches were positively associated with elevated Perforin/Granzyme B transcript ratio posttransplant. We conclude clinical parameters and therapies affect Perforin and Granzyme B transcripts posttransplant.
Collapse
Affiliation(s)
- Dino Pipic
- Institute of Molecular Medicine, Clinical Institute, University of Southern Denmark, 5000 Odense, Denmark
- Department of Nephrology, Odense University Hospital, 5000 Odense, Denmark
| | - Marianne Rasmussen
- Department of Nephrology, Odense University Hospital, 5000 Odense, Denmark
| | - Qais W. Saleh
- Institute of Molecular Medicine, Clinical Institute, University of Southern Denmark, 5000 Odense, Denmark
- Department of Nephrology, Odense University Hospital, 5000 Odense, Denmark
| | - Martin Tepel
- Institute of Molecular Medicine, Clinical Institute, University of Southern Denmark, 5000 Odense, Denmark
- Department of Nephrology, Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
9
|
Larouche JD, Laumont CM, Trofimov A, Vincent K, Hesnard L, Brochu S, Côté C, Humeau JF, Bonneil É, Lanoix J, Durette C, Gendron P, Laverdure JP, Richie ER, Lemieux S, Thibault P, Perreault C. Transposable elements regulate thymus development and function. eLife 2024; 12:RP91037. [PMID: 38635416 PMCID: PMC11026094 DOI: 10.7554/elife.91037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.
Collapse
Affiliation(s)
- Jean-David Larouche
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Medicine, Université de MontréalMontréalCanada
| | - Céline M Laumont
- Deeley Research Centre, BC CancerVictoriaCanada
- Department of Medical Genetics, University of British ColumbiaVancouverCanada
| | - Assya Trofimov
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Computer Science and Operations Research, Université de MontréalMontréalCanada
- Fred Hutchinson Cancer CenterSeattleUnited States
- Department of Physics, University of WashingtonSeattleUnited States
| | - Krystel Vincent
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Leslie Hesnard
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Caroline Côté
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Juliette F Humeau
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Joel Lanoix
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Chantal Durette
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | | | - Ellen R Richie
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer CenterHoustonUnited States
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Biochemistry and Molecular Medicine, Université de MontréalMontrealCanada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Chemistry, Université de MontréalMontréalCanada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Medicine, Université de MontréalMontréalCanada
| |
Collapse
|
10
|
Nam DY, Rhee JK. Identifying microRNAs associated with tumor immunotherapy response using an interpretable machine learning model. Sci Rep 2024; 14:6172. [PMID: 38486102 PMCID: PMC10940311 DOI: 10.1038/s41598-024-56843-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Predicting clinical responses to tumor immunotherapy is essential to reduce side effects and the potential for sustained clinical responses. Nevertheless, preselecting patients who are likely to respond to such treatments remains highly challenging. Here, we explored the potential of microRNAs (miRNAs) as predictors of immune checkpoint blockade responses using a machine learning approach. First, we constructed random forest models to predict the response to tumor ICB therapy using miRNA expression profiles across 19 cancer types. The contribution of individual miRNAs to each prediction process was determined by employing SHapley Additive exPlanations (SHAP) for model interpretation. Remarkably, the predictive performance achieved by using a small number of miRNAs with high feature importance was similar to that achieved by using the entire miRNA set. Additionally, the genes targeted by these miRNAs were closely associated with tumor- and immune-related pathways. In conclusion, this study demonstrates the potential of miRNA expression data for assessing tumor immunotherapy responses. Furthermore, we confirmed the potential of informative miRNAs as biomarkers for the prediction of immunotherapy response, which will advance our understanding of tumor immunotherapy mechanisms.
Collapse
Affiliation(s)
- Dong-Yeon Nam
- Department of Bioinformatics & Life Science, Soongsil University, Seoul, Republic of Korea
| | - Je-Keun Rhee
- Department of Bioinformatics & Life Science, Soongsil University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Xu Y, He Z, Du J, Chen Z, Creemers JWM, Wang B, Li F, Wang Y. Epigenetic modulations of immune cells: from normal development to tumor progression. Int J Biol Sci 2023; 19:5120-5144. [PMID: 37928272 PMCID: PMC10620821 DOI: 10.7150/ijbs.88327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
The dysfunction of immune cell development often impairs immunological homeostasis, thus causing various human diseases. Accumulating evidence shows that the development of different immune cells from hematopoietic stem cells are highly fine-tuned by different epigenetic mechanisms including DNA methylation, histone modifications, chromatin remodeling and RNA-related regulations. Understanding how epigenetic regulators modulate normal development of immune cells contributes to the identification of new strategies for various diseases. Here, we review recent advances suggesting that epigenetic modulations can orchestrate immune cell development and functions through their impact on critical gene expression. We also discuss the aberrations of epigenetic modulations in immune cells that influence tumor progression, and the fact that underlying mechanisms affect how epigenetic drugs interfere with tumor progression in the clinic.
Collapse
Affiliation(s)
- Yuanchun Xu
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
- Department of nursing, Daping Hospital, Army Medical University, Chongqing, China
| | - Zongsheng He
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Du
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziqiang Chen
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | | | - Bin Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Fan Li
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yaling Wang
- Department of nursing, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
12
|
Zhang Y, Lu Y, Gao Y, Liang X, Zhang R, Wang X, Zou X, Yang W. Effects of Aire on perforin expression in BMDCs via TLR7/8 and its therapeutic effect on type 1 diabetes. Int Immunopharmacol 2023; 117:109890. [PMID: 36805202 DOI: 10.1016/j.intimp.2023.109890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
AIMS Type 1 diabetes, as a kind of autoimmune diseases, usually results from the broken-down of self-tolerance. Autoimmune regulator (Aire), as a transcription factor, induces peripheral tolerance by regulating Toll-like receptor (TLR) expression in dendritic cells (DCs). Several studies have recently identified a small population of perforin-expressing DCs, which is an important population of tolerogenic DCs (tolDCs) that restricts autoreactive T cells in vivo through a perforin-mediated mechanism. Thus, the present study explored the specific relationship among Aire, perforin-expressing DCs and immune tolerance, as well as their roles in type 1 diabetes. METHODS We conducted studies based on the Aire-overexpressing bone marrow-derived dendritic cell (BMDC) model. And through in vitro and in vivo experiments to observe that Aire-overexpressing BMDCs which express perforin induce immune tolerance and treat type 1 diabetes via TLR7/8. RESULTS Aire enhances the expression of perforin in BMDCs after treatment with the TLR7/8 ligand as well as promotes the expression of TLR7/8 and myeloid differentiation primary response gene 88 (MyD88)-dependent pathway molecules. Aire-overexpressing BMDCs mediate apoptosis of allogeneic CD8+ T cells via perforin in vitro. Moreover, Aire-overexpressing BMDCs enhance the therapeutic effect of type 1 diabetes in non-obese diabetic (NOD) mice via perforin and induce apoptosis of autoreactive CD8+ T cells in vivo. CONCLUSIONS These results provide an experimental basis for comprehensively elucidating the role and significance of Aire expression in peripheral DCs, thereby providing new ideas for the treatment of autoimmune diseases by using Aire as a target to induce the production of perforin-expressing DCs.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yaoping Lu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yan Gao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaojing Liang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Rongchao Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoya Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xueyang Zou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
13
|
Kang HY, Lee SY, Kim HM, Lee SU, Lee H, Cho MY, Oh SC, Kim SM, Park HS, Han EH, Kim SE, Kim H, Yoon SR, Doh J, Chung J, Hong KS, Choi I, Kim TD. A modifiable universal cotinine-chimeric antigen system of NK cells with multiple targets. Front Immunol 2023; 13:1089369. [PMID: 36713381 PMCID: PMC9880444 DOI: 10.3389/fimmu.2022.1089369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Natural killer (NK) cells are immune effector cells with outstanding features for adoptive immunotherapy. Immune effector cells with chimeric antigen receptors (CARs) are promising targeted therapeutic agents for various diseases. Because tumor cells exhibit heterogeneous antigen expression and lose cell surface antigen expression during malignant progression, many CARs fixed against only one antigen have limited efficacy and are associated with tumor relapse. To expand the utility of CAR-NK cells, we designed a split and universal cotinine-CAR (Cot-CAR) system, comprising a Cot-conjugator and NK92 cells (α-Cot-NK92 cells) engineered with a CAR containing an anti-Cot-specific single-chain variable fragment and intracellular signaling domain. The efficacy of the Cot-CAR system was assessed in vitro using a cytolysis assay against various tumor cells, and its single- or multiple- utility potential was demonstrated using an in vivo lung metastasis model by injecting A549-Red-Fluc cells. The α-Cot-NK92 cells could switch targets, logically respond to multiple antigens, and tune cytolytic activation through the alteration of conjugators without re-engineering. Therefore the universal Cot-CAR system is useful for enhancing specificity and diversity of antigens, combating relapse, and controlling cytolytic activity. In conclusion, this universal Cot-CAR system reveals that multiple availability and controllability can be generated with a single, integrated system.
Collapse
Affiliation(s)
- Hee Young Kang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, Republic of Korea
| | - Soo Yun Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, Republic of Korea
| | - Hyun Min Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju-si, Chungcheonbuk-do, Republic of Korea
| | - Su Ui Lee
- Natural Medicine Research Center, KRIBB, Chungcheongbuk-do, Republic of Korea
| | - Hyunseung Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju-si, Chungcheonbuk-do, Republic of Korea
| | - Mi Young Cho
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju-si, Chungcheonbuk-do, Republic of Korea
| | - Se-Chan Oh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, Republic of Korea,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Seok-Min Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, Republic of Korea,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hye Sun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju-si, Chungcheonbuk-do, Republic of Korea
| | - Eun Hee Han
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju-si, Chungcheonbuk-do, Republic of Korea
| | - Seong-Eun Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Gyeongbuk, Republic of Korea
| | - Hyori Kim
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, Republic of Korea,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Institute of Engineering Research, Bio-MAX institute, Seoul National University, Seoul, Republic of Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju-si, Chungcheonbuk-do, Republic of Korea,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea,*Correspondence: Tae-Don Kim, ; Inpyo Choi, ; Kwan Soo Hong,
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, Republic of Korea,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea,*Correspondence: Tae-Don Kim, ; Inpyo Choi, ; Kwan Soo Hong,
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, Republic of Korea,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea,Biomedical Mathematics Group, Institute for Basic Science (IBS), Daejeon, Republic of Korea,Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea,*Correspondence: Tae-Don Kim, ; Inpyo Choi, ; Kwan Soo Hong,
| |
Collapse
|
14
|
Gargiulo E, Viry E, Morande PE, Largeot A, Gonder S, Xian F, Ioannou N, Benzarti M, Kleine Borgmann FB, Mittelbronn M, Dittmar G, Nazarov PV, Meiser J, Stamatopoulos B, Ramsay AG, Moussay E, Paggetti J. Extracellular Vesicle Secretion by Leukemia Cells In Vivo Promotes CLL Progression by Hampering Antitumor T-cell Responses. Blood Cancer Discov 2023; 4:54-77. [PMID: 36108149 PMCID: PMC9816815 DOI: 10.1158/2643-3230.bcd-22-0029] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/04/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023] Open
Abstract
Small extracellular vesicle (sEV, or exosome) communication among cells in the tumor microenvironment has been modeled mainly in cell culture, whereas their relevance in cancer pathogenesis and progression in vivo is less characterized. Here we investigated cancer-microenvironment interactions in vivo using mouse models of chronic lymphocytic leukemia (CLL). sEVs isolated directly from CLL tissue were enriched in specific miRNA and immune-checkpoint ligands. Distinct molecular components of tumor-derived sEVs altered CD8+ T-cell transcriptome, proteome, and metabolome, leading to decreased functions and cell exhaustion ex vivo and in vivo. Using antagomiRs and blocking antibodies, we defined specific cargo-mediated alterations on CD8+ T cells. Abrogating sEV biogenesis by Rab27a/b knockout dramatically delayed CLL pathogenesis. This phenotype was rescued by exogenous leukemic sEV or CD8+ T-cell depletion. Finally, high expression of sEV-related genes correlated with poor outcomes in CLL patients, suggesting sEV profiling as a prognostic tool. In conclusion, sEVs shape the immune microenvironment during CLL progression. SIGNIFICANCE sEVs produced in the leukemia microenvironment impair CD8+ T-cell mediated antitumor immune response and are indispensable for leukemia progression in vivo in murine preclinical models. In addition, high expression of sEV-related genes correlated with poor survival and unfavorable clinical parameters in CLL patients. See related commentary by Zhong and Guo, p. 5. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Elodie Viry
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Pablo Elías Morande
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Anne Largeot
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Susanne Gonder
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Feng Xian
- Proteomics of Cellular Signaling, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Nikolaos Ioannou
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Mohaned Benzarti
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Felix Bruno Kleine Borgmann
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Neurosurgery, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg.,Luxembourg Centre of Neuropathology, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Michel Mittelbronn
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Luxembourg Centre of Neuropathology, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Luxembourg Centre of Neuropathology, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,National Center of Pathology, Laboratoire national de santé (LNS), Dudelange, Luxembourg.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Gunnar Dittmar
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Proteomics of Cellular Signaling, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Petr V. Nazarov
- Multiomics Data Science Group, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Alan G. Ramsay
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Etienne Moussay
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Corresponding Authors: Jérôme Paggetti, Department of Cancer Research, Luxembourg Institute of Health, 6, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg. Phone: 352-26970-344; E-mail: ; and Etienne Moussay. Phone: 352-26970-232; E-mail:
| | - Jérôme Paggetti
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Corresponding Authors: Jérôme Paggetti, Department of Cancer Research, Luxembourg Institute of Health, 6, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg. Phone: 352-26970-344; E-mail: ; and Etienne Moussay. Phone: 352-26970-232; E-mail:
| |
Collapse
|
15
|
Tumino N, Fiore PF, Pelosi A, Moretta L, Vacca P. Myeloid derived suppressor cells in tumor microenvironment: Interaction with innate lymphoid cells. Semin Immunol 2022; 61-64:101668. [PMID: 36370673 DOI: 10.1016/j.smim.2022.101668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022]
Abstract
Human myeloid-derived suppressor cells (MDSC) represent a stage of immature myeloid cells and two main subsets can be identified: monocytic and polymorphonuclear. MDSC contribute to the establishment of an immunosuppressive tumor microenvironment (TME). The presence and the activity of MDSC in patients with different tumors correlate with poor prognosis. As previously reported, MDSC promote tumor growth and use different mechanisms to suppress the immune cell-mediated anti-tumor activity. Immunosuppression mechanisms used by MDSC are broad and depend on their differentiation stage and on the pathological context. It is known that some effector cells of the immune system can play an important role in the control of tumor progression and metastatic spread. In particular, innate lymphoid cells (ILC) contribute to control tumor growth representing a potential, versatile and, immunotherapeutic tool. Despite promising results obtained by using new cellular immunotherapeutic approaches, a relevant proportion of patients do not benefit from these therapies. Novel strategies have been investigated to overcome the detrimental effect exerted by the immunosuppressive component of TME (i.e. MDSC). In this review, we summarized the characteristics and the interactions occurring between MDSC and ILC in different tumors discussing how a deeper knowledge on MDSC biology could represent an important target for tumor immunotherapy capable of decreasing immunosuppression and enhancing anti-tumor activity exerted by immune cells.
Collapse
Affiliation(s)
- Nicola Tumino
- Innate lymphoid cells Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| | | | - Andrea Pelosi
- Tumor Immunology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Paola Vacca
- Innate lymphoid cells Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
16
|
Dhuppar S, Murugaiyan G. miRNA effects on gut homeostasis: therapeutic implications for inflammatory bowel disease. Trends Immunol 2022; 43:917-931. [PMID: 36220689 PMCID: PMC9617792 DOI: 10.1016/j.it.2022.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 01/12/2023]
Abstract
Inflammatory bowel disease (IBD) spans a range of chronic conditions affecting the gastrointestinal (GI) tract, which are marked by intermittent flare-ups and remissions. IBD results from microbial dysbiosis or a defective mucosal barrier in the gut that triggers an inappropriate immune response in a genetically susceptible person, altering the immune-microbiome axis. In this review, we discuss the regulatory roles of miRNAs, small noncoding RNAs with gene regulatory functions, in the stability and maintenance of the gut immune-microbiome axis, and detail the challenges and recent advances in the use of miRNAs as putative therapeutic agents for treating IBD.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Current address: Centre for Business Innovation, The Indian School of Business, Hyderabad 500111, India
| | - Gopal Murugaiyan
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Tang WW, Bauer KM, Barba C, Ekiz HA, O’Connell RM. miR-aculous new avenues for cancer immunotherapy. Front Immunol 2022; 13:929677. [PMID: 36248881 PMCID: PMC9554277 DOI: 10.3389/fimmu.2022.929677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
The rising toll of cancer globally necessitates ingenuity in early detection and therapy. In the last decade, the utilization of immune signatures and immune-based therapies has made significant progress in the clinic; however, clinical standards leave many current and future patients without options. Non-coding RNAs, specifically microRNAs, have been explored in pre-clinical contexts with tremendous success. MicroRNAs play indispensable roles in programming the interactions between immune and cancer cells, many of which are current or potential immunotherapy targets. MicroRNAs mechanistically control a network of target genes that can alter immune and cancer cell biology. These insights provide us with opportunities and tools that may complement and improve immunotherapies. In this review, we discuss immune and cancer cell-derived miRNAs that regulate cancer immunity and examine miRNAs as an integral part of cancer diagnosis, classification, and therapy.
Collapse
Affiliation(s)
- William W. Tang
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Kaylyn M. Bauer
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Cindy Barba
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Huseyin Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, İzmir, Turkey
| | - Ryan M. O’Connell
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
18
|
D’Agostino DM, Raimondi V, Silic-Benussi M, Ciminale V. MiR-150 in HTLV-1-infection and T-cell transformation. Front Immunol 2022; 13:974088. [PMID: 36072598 PMCID: PMC9442802 DOI: 10.3389/fimmu.2022.974088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Human T-cell leukemia virus-1 (HTLV-1) is a retrovirus that persistently infects CD4+ T-cells, and is the causative agent of adult T-cell leukemia/lymphoma (ATLL), tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM) and several inflammatory diseases. T-cell transformation by HTLV-1 is driven by multiple interactions between viral regulatory proteins and host cell pathways that govern cell proliferation and survival. Studies performed over the last decade have revealed alterations in the expression of many microRNAs in HTLV-1-infected cells and ATLL cells, and have identified several microRNA targets with roles in the viral life cycle and host cell turnover. This review centers on miR-150-5p, a microRNA whose expression is temporally regulated during lymphocyte development and altered in several hematological malignancies. The levels of miR-150-5p are reduced in many HTLV-1-transformed- and ATLL-derived cell lines. Experiments in these cell lines showed that downregulation of miR-150-5p results in activation of the transcription factor STAT1, which is a direct target of the miRNA. However, data on miR-150-5p levels in freshly isolated ATLL samples are suggestive of its upregulation compared to controls. These apparently puzzling findings highlight the need for more in-depth studies of the role of miR-150-5p in HTLV-1 infection and pathogenesis based on knowledge of miR-150-5p-target mRNA interactions and mechanisms regulating its function in normal leukocytes and hematologic neoplasms.
Collapse
Affiliation(s)
- Donna M. D’Agostino
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Istituto Oncologico Veneto (IOV)- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
- *Correspondence: Donna M. D’Agostino, ; Vincenzo Ciminale,
| | - Vittoria Raimondi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Micol Silic-Benussi
- Istituto Oncologico Veneto (IOV)- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
| | - Vincenzo Ciminale
- Istituto Oncologico Veneto (IOV)- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- *Correspondence: Donna M. D’Agostino, ; Vincenzo Ciminale,
| |
Collapse
|
19
|
Regis S, Dondero A, Spaggiari GM, Serra M, Caliendo F, Bottino C, Castriconi R. miR-24-3p down-regulates the expression of the apoptotic factors FasL and BIM in human natural killer cells. Cell Signal 2022; 98:110415. [PMID: 35870695 DOI: 10.1016/j.cellsig.2022.110415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/03/2022]
Abstract
MicroRNAs are involved in the regulation of different functions in immune and non-immune cells. Here we show that miR-24-3p functionally interacts with FASLG mRNA and down-regulates its expression. This interaction occurs in human natural killer cells (NK), leading to the modulation of FasL surface expression. Moreover, miR-24-3p also modulates the mRNA and protein expression of BIM in NK cells. Thus, it likely contributes to the control of both the extrinsic and intrinsic apoptotic pathways. In line with this hypothesis, inhibition of miR-24-3p improves both initiator caspase-8 and effector caspase-3 and -7 activities, increases cell apoptosis, and reduces cell viability. Our data suggest that miR-24-3p can act as a survival factor in NK cells, affecting the FasL-mediated killing of Fas expressing cells and the BIM-dependent cell death. More generally, miR-24-3p may condition the level of cell apoptosis, which increases at the contraction phase of the immune response when the clearance of various expanded effector cells is needed.
Collapse
Affiliation(s)
- Stefano Regis
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Grazia Maria Spaggiari
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Martina Serra
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Fabio Caliendo
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cristina Bottino
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Experimental Medicine, University of Genoa, Genoa, Italy.
| | | |
Collapse
|
20
|
Matz AJ, Qu L, Karlinsey K, Zhou B. MicroRNA-regulated B cells in obesity. IMMUNOMETABOLISM (COBHAM, SURREY) 2022; 4:e00005. [PMID: 35966635 PMCID: PMC9359068 DOI: 10.1097/in9.0000000000000005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Obesity is a prevalent health risk by inducing chronic, low-grade inflammation and insulin resistance, in part from adipose tissue inflammation perpetuated by activated B cells and other resident immune cells. However, regulatory mechanisms controlling B-cell actions in adipose tissue remain poorly understood, limiting therapeutic innovations. MicroRNAs are potent regulators of immune cell dynamics through fine-tuning a network of downstream genes in multiple signaling pathways. In particular, miR-150 is crucial to B-cell development and suppresses obesity-associated inflammation via regulating adipose tissue B-cell function. Herein, we review the effect of microRNAs on B-cell development, activation, and function and highlight miR-150-regulated B-cell actions during obesity which modulate systemic inflammation and insulin resistance. In this way, we hope to promote translational discoveries that mitigate obesity-induced health risks by targeting microRNA-regulated B-cell actions.
Collapse
Affiliation(s)
- Alyssa J. Matz
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Lili Qu
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Keaton Karlinsey
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
21
|
Ritiu SA, Rogobete AF, Sandesc D, Bedreag OH, Papurica M, Popovici SE, Toma D, Ivascu RI, Velovan R, Garofil DN, Corneci D, Bratu LM, Pahontu EM, Pistol A. The Impact of General Anesthesia on Redox Stability and Epigenetic Inflammation Pathways: Crosstalk on Perioperative Antioxidant Therapy. Cells 2022; 11:1880. [PMID: 35741011 PMCID: PMC9221536 DOI: 10.3390/cells11121880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
Worldwide, the prevalence of surgery under general anesthesia has significantly increased, both because of modern anesthetic and pain-control techniques and because of better diagnosis and the increased complexity of surgical techniques. Apart from developing new concepts in the surgical field, researchers and clinicians are now working on minimizing the impact of surgical trauma and offering minimal invasive procedures due to the recent discoveries in the field of cellular and molecular mechanisms that have revealed a systemic inflammatory and pro-oxidative impact not only in the perioperative period but also in the long term, contributing to more difficult recovery, increased morbidity and mortality, and a negative financial impact. Detailed molecular and cellular analysis has shown an overproduction of inflammatory and pro-oxidative species, responsible for augmenting the systemic inflammatory status and making postoperative recovery more difficult. Moreover, there are a series of changes in certain epigenetic structures, the most important being the microRNAs. This review describes the most important molecular and cellular mechanisms that impact the surgical patient undergoing general anesthesia, and it presents a series of antioxidant therapies that can reduce systemic inflammation.
Collapse
Affiliation(s)
- Stelian Adrian Ritiu
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Alexandru Florin Rogobete
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
- Anaesthesia and Intensive Care Research Center (CCATITM), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Dorel Sandesc
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
- Anaesthesia and Intensive Care Research Center (CCATITM), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Ovidiu Horea Bedreag
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
- Anaesthesia and Intensive Care Research Center (CCATITM), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Marius Papurica
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
- Anaesthesia and Intensive Care Research Center (CCATITM), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Sonia Elena Popovici
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Daiana Toma
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Robert Iulian Ivascu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.I.I.); (D.C.); (A.P.)
- Clinic of Anaesthesia and Intensive Care, Central Military Emergency Hospital “Dr. Carol Davila”, 010242 Bucharest, Romania
| | - Raluca Velovan
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Dragos Nicolae Garofil
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.I.I.); (D.C.); (A.P.)
| | - Dan Corneci
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.I.I.); (D.C.); (A.P.)
- Clinic of Anaesthesia and Intensive Care, Central Military Emergency Hospital “Dr. Carol Davila”, 010242 Bucharest, Romania
| | - Lavinia Melania Bratu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Elena Mihaela Pahontu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Adriana Pistol
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.I.I.); (D.C.); (A.P.)
| |
Collapse
|
22
|
Noncoding RNAs as novel immunotherapeutic tools against cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:135-161. [PMID: 35305717 DOI: 10.1016/bs.apcsb.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunotherapy is implemented as an important treatment strategy in various malignancies. In cancer, immunotherapy is employed for successful killing of tumor cells with high specificity and greater efficacy, with minimum side effects. Despite various available strategies, cellular immunotherapy including innate (NK cells, macrophages, dendritic cells) and adaptive (B cells and T cells) immune cells plays a critical role in tumor microenvironment. Since past few years, many drugs targeting immune checkpoint proteins including CTLA-4 and PD-1/PD-L1 have been investigated as immunotherapy approach against cancer but complete effectiveness still remains a question, as diverse mechanisms involved in tumorigenesis may result in the development of cancer cell resistance. Number of evidences have highlighted the significant role of non-coding RNAs (ncRNAs) in regulating multiple stages of cancer initiation, progression & immunity. ncRNAs comprises 98% human transcriptome and are basically considered as dark genome. Among ncRNAs, miRNAs and lncRNAs have been extensively studied in regulating diverse processes of cancer tumorigenesis. Upregulation of oncogenic and downregulation of tumor suppressive miRNAs/lncRNAs has been reported to facilitate the cancer progression and invasiveness. This chapter summarizes how an interplay between ncRNAs and immune cells in cancer pathogenesis can be therapeutically targeted to improve current treatment regimen. Strategies should be employed to improve the efficacy and reduce off-target effects of ncRNA based immunotherapy. Henceforth, combination of ncRNAs and available immunotherapy can be argued to enhance the efficacy of existing immunotherapeutic approaches against cancer to improve patient's survival.
Collapse
|
23
|
Jovanovic MZ, Geller DA, Gajovic NM, Jurisevic MM, Arsenijevic NN, Jovanovic MM, Supic GM, Vojvodic DV, Jovanovic IP. Dual blockage of PD-L/PD-1 and IL33/ST2 axes slows tumor growth and improves antitumor immunity by boosting NK cells. Life Sci 2022; 289:120214. [PMID: 34890591 DOI: 10.1016/j.lfs.2021.120214] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 12/09/2022]
Abstract
AIMS Although separate blockage of either IL33/ST2 or PD-L/PD-1 axes has been shown to be beneficial in many tumors, co-blockage of IL33/ST2 and PD-L/PD-1 hasn't been studied yet. MAIN METHODS 4T1 breast cancer and CT26 colon cancer were inducted in BALB/C wild type (WT) and BALB/C ST2 knockout mice, after which mice underwent anti PD-1 and anti IL-33 treatment. KEY FINDINGS Co-blockage of IL33/ST2 and PD-L/PD-1 delayed tumor appearance and slowed tumor growth. Enhanced NK cell cytotoxicity against 4T1 tumor cells in ST2 knockout anti-PD-1 treated mice was associated with overexpression of miRNA-150 and miRNA-155, upregulation of NFκB and STAT3, increased expression of activation markers and decreased expression of immunosuppressive markers in splenic and primary tumor derived NK cells. NK cells from ST2 knockout anti-PD-1 treated mice tend to proliferate more and are less prone to apoptosis. Accumulation of immunosuppressive myeloid derived suppressor cells and regulatory T cells was significantly impaired in spleen and primary tumor of ST2 knockout anti-PD-1 treated mice. SIGNIFICANCE Co-blockage of IL3/ST2 and PD-L/PD-1 axes impedes tumor progression more efficiently than single blockage of either axes, thus offering potential new approach to immunotherapy of tumors.
Collapse
Affiliation(s)
- Marina Z Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - David A Geller
- Department of Surgery, University of Pittsburgh, 3459 Fifth Avenue, UPMC Montefiore, 7 South Pittsburgh, PA 15213 2582, USA.
| | - Nevena M Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Milena M Jurisevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, SvetozaraMarkovica 69, 34000 Kragujevac, Serbia.
| | - Nebojsa N Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Milan M Jovanovic
- Department of Abdominal Surgery, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia.
| | - Gordana M Supic
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; Medical Faculty of Military Medical Academy, University of Defense, Crnotravska 17, 11000 Belgrade, Serbia.
| | - Danilo V Vojvodic
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; Medical Faculty of Military Medical Academy, University of Defense, Crnotravska 17, 11000 Belgrade, Serbia.
| | - Ivan P Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia.
| |
Collapse
|
24
|
Regulation of Immune Cells by microRNAs and microRNA-Based Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:75-108. [DOI: 10.1007/978-3-031-08356-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
The Role of microRNAs in NK Cell Development and Function. Cells 2021; 10:cells10082020. [PMID: 34440789 PMCID: PMC8391642 DOI: 10.3390/cells10082020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
The clinical use of natural killer (NK) cells is at the forefront of cellular therapy. NK cells possess exceptional antitumor cytotoxic potentials and can generate significant levels of proinflammatory cytokines. Multiple genetic manipulations are being tested to augment the anti-tumor functions of NK cells. One such method involves identifying and altering microRNAs (miRNAs) that play essential roles in the development and effector functions of NK cells. Unique miRNAs can bind and inactivate mRNAs that code for cytotoxic proteins. MicroRNAs, such as the members of the Mirc11 cistron, downmodulate ubiquitin ligases that are central to the activation of the obligatory transcription factors responsible for the production of inflammatory cytokines. These studies reveal potential opportunities to post-translationally enhance the effector functions of human NK cells while reducing unwanted outcomes. Here, we summarize the recent advances made on miRNAs in murine and human NK cells and their relevance to NK cell development and functions.
Collapse
|
26
|
Feng Y, Li Y, Zhang Y, Zhang BH, Zhao H, Zhao X, Shi FD, Jin WN, Zhang XA. miR-1224 contributes to ischemic stroke-mediated natural killer cell dysfunction by targeting Sp1 signaling. J Neuroinflammation 2021; 18:133. [PMID: 34118948 PMCID: PMC8196447 DOI: 10.1186/s12974-021-02181-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/21/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Brain ischemia compromises natural killer (NK) cell-mediated immune defenses by acting on neurogenic and intracellular pathways. Less is known about the posttranscriptional mechanisms that regulate NK cell activation and cytotoxicity after ischemic stroke. METHODS Using a NanoString nCounter® miRNA array panel, we explored the microRNA (miRNA) profile of splenic NK cells in mice subjected to middle cerebral artery occlusion. Differential gene expression and function/pathway analysis were applied to investigate the main functions of predicted miRNA target genes. miR-1224 inhibitor/mimics transfection and passive transfer of NK cells were performed to confirm the impact of miR-1224 in NK cells after brain ischemia. RESULTS We observed striking dysregulation of several miRNAs in response to ischemia. Among those miRNAs, miR-1224 markedly increased 3 days after ischemic stroke. Transfection of miR-1224 mimics into NK cells resulted in suppression of NK cell activity, while an miR-1224 inhibitor enhanced NK cell activity and cytotoxicity, especially in the periphery. Passive transfer of NK cells treated with an miR-1224 inhibitor prevented the accumulation of a bacterial burden in the lungs after ischemic stroke, suggesting an enhanced immune defense of NK cells. The transcription factor Sp1, which controls cytokine/chemokine release by NK cells at the transcriptional level, is a predicted target of miR-1224. The inhibitory effect of miR-1224 on NK cell activity was blocked in Sp1 knockout mice. CONCLUSIONS These findings indicate that miR-1224 may serve as a negative regulator of NK cell activation in an Sp1-dependent manner; this mechanism may be a novel target to prevent poststroke infection specifically in the periphery and preserve immune defense in the brain.
Collapse
Affiliation(s)
- Yan Feng
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Li
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo-Hao Zhang
- The Third Affiliated Hospital of Zhengzhou University, No. 7 Kangfu front ST, Zhengzhou, Henan, China
| | - Hui Zhao
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Zhao
- The Third Affiliated Hospital of Zhengzhou University, No. 7 Kangfu front ST, Zhengzhou, Henan, China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
- China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-Na Jin
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.
- China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xiao-An Zhang
- The Third Affiliated Hospital of Zhengzhou University, No. 7 Kangfu front ST, Zhengzhou, Henan, China.
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
27
|
MicroRNA-150 inhibits myeloid-derived suppressor cells proliferation and function through negative regulation of ARG-1 in sepsis. Life Sci 2021; 278:119626. [PMID: 34004247 DOI: 10.1016/j.lfs.2021.119626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023]
Abstract
AIMS Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The majority of sepsis-related deaths occur during late sepsis, which presents as a state of immunosuppression. Myeloid-derived suppressor cells (MDSCs) have been reported to promote immunosuppression during sepsis. Here we aim to understand the role of microRNAs in regulating MDSCs proliferation and immunosuppression function during sepsis. MAIN METHODS Murine sepsis model was established using cecal ligation and puncture (CLP). A microarray was used to identify microRNAs with differential expression in murine sepsis. The effect of microRNA-150 on MDSCs proliferation and function was then evaluated. 140 multiple trauma patients from Tongji Hospital and 10 healthy controls were recruited. Peripheral blood samples were taken and the serum level of miR-150 was measured. KEY FINDINGS In the murine model of sepsis, MDSCs expansion was noted in the spleen and bone marrow, while expression of miR-150 in MDSCs decreased. Replenishing miR-150 inhibited the expansion of MDSCs in both monocytic and polymorphonuclear subpopulations, as well as decreasing the immunosuppressive function of MDSCs, through down-regulation of ARG1. Both pro-inflammatory cytokine IL-6 and anti-inflammatory cytokines TGF-β and IL-10 were reduced by miR-150. In human, the serum level of miR-150 was down-regulated in septic patients and elevated in non-septic trauma patients compared to healthy controls. SIGNIFICANCE Our study showed that MiR-150 is down-regulated during sepsis. Replenishing miR-150 reduces the immunosuppression function of MDSCs by down-regulating ARG1 in late sepsis. MiR-150 might serve as a potential therapeutic option for sepsis.
Collapse
|
28
|
Xia M, Wang B, Wang Z, Zhang X, Wang X. Epigenetic Regulation of NK Cell-Mediated Antitumor Immunity. Front Immunol 2021; 12:672328. [PMID: 34017344 PMCID: PMC8129532 DOI: 10.3389/fimmu.2021.672328] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells are critical innate lymphocytes that can directly kill target cells without prior immunization. NK cell activation is controlled by the balance of multiple germline-encoded activating and inhibitory receptors. NK cells are a heterogeneous and plastic population displaying a broad spectrum of functional states (resting, activating, memory, repressed, and exhausted). In this review, we present an overview of the epigenetic regulation of NK cell-mediated antitumor immunity, including DNA methylation, histone modification, transcription factor changes, and microRNA expression. NK cell-based immunotherapy has been recognized as a promising strategy to treat cancer. Since epigenetic alterations are reversible and druggable, these studies will help identify new ways to enhance NK cell-mediated antitumor cytotoxicity by targeting intrinsic epigenetic regulators alone or in combination with other strategies.
Collapse
Affiliation(s)
- Miaoran Xia
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China.,Department of Oncology, Capital Medical University, Beijing, China
| | - Bingbing Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China.,Department of Oncology, Capital Medical University, Beijing, China
| | - Zihan Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China.,Department of Oncology, Capital Medical University, Beijing, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China.,Department of Oncology, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Lu J, Li S, Li X, Zhao W, Duan X, Gu X, Xu J, Yu B, Sigal LJ, Dong Z, Xie L, Fang M. Declined miR-181a-5p expression is associated with impaired natural killer cell development and function with aging. Aging Cell 2021; 20:e13353. [PMID: 33780118 PMCID: PMC8135006 DOI: 10.1111/acel.13353] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression and thereby influence cell development and function. Numerous studies have shown the significant roles of miRNAs in regulating immune cells including natural killer (NK) cells. However, little is known about the role of miRNAs in NK cells with aging. We previously demonstrated that the aged C57BL/6 mice have significantly decreased proportion of mature (CD27- CD11b+ ) NK cells compared with young mice, indicating impaired maturation of NK cells with aging. Here, we performed deep sequencing of CD27+ NK cells from young and aged mice. Profiling of the miRNome (global miRNA expression levels) revealed that 49 miRNAs displayed a twofold or greater difference in expression between young and aged NK cells. Among these, 30 miRNAs were upregulated and 19 miRNAs were downregulated in the aged NK cells. We found that the expression level of miR-l8la-5p was increased with the maturation of NK cells, and significantly decreased in NK cells from the aged mice. Knockdown of miR-181a-5p inhibited NK cell development in vitro and in vivo. Furthermore, miR-181a-5p is highly conserved in mice and human. MiR-181a-5p promoted the production of IFN-γ and cytotoxicity in stimulated NK cells from both mice and human. Importantly, miR-181a-5p level markedly decreased in NK cells from PBMC of elderly people. Thus, our results demonstrated that the miRNAs profiles in NK cells change with aging, the decreased level of miR-181a-5p contributes to the defective NK cell development and function with aging. This opens new strategies to preserve or restore NK cell function in the elderly.
Collapse
Affiliation(s)
- Jiao Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences Beijing China
| | - Shan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Xiaopeng Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences Beijing China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province The Third Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Wenming Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences Beijing China
| | - Xuefeng Duan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences Beijing China
| | - Xiuling Gu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Jianqiao Xu
- Department of Respiratory Medicine Chinese PLA General Hospital Beijing China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province The Third Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Luis J. Sigal
- Department of Microbiology and Immunology Thomas Jefferson University Philadelphia PA USA
| | - Zhongjun Dong
- School of Medicine Tsinghua University Beijing China
| | - Lixin Xie
- Department of Respiratory Medicine Chinese PLA General Hospital Beijing China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences Beijing China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province The Third Affiliated Hospital of Guangzhou Medical University Guangzhou China
- International College University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
30
|
Wijaya RS, Read SA, Schibeci S, Han S, Azardaryany MK, van der Poorten D, Lin R, Yuen L, Lam V, Douglas MW, George J, Ahlenstiel G. Expansion of dysfunctional CD56-CD16+ NK cells in chronic hepatitis B patients. Liver Int 2021; 41:969-981. [PMID: 33411395 DOI: 10.1111/liv.14784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/12/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Natural killer (NK) cells are primary innate effector cells that play an important role in the control of human viral infections. During chronic viral infection, NK cells undergo significant changes in phenotype, function and subset distribution, including the appearance of CD56-CD16+ (CD56-) NK cells, previously identified in chronic human immunodeficiency virus (HIV) and hepatitis C virus infection. However, the presence of CD56- NK cells in the pathogenesis of chronic hepatitis B (CHB) remains unknown. METHODS Phenotype and function of CD56- NK cells from patients with CHB (n = 28) were assessed using flow cytometry and in vitro stimulation with HBV antigen. RESULTS CHB patients had a higher frequency of CD56- NK cells compared to healthy controls in peripheral blood (6.2% vs 1.4%, P < .0001). Compared to CD56+ NK cells, CD56- NK cells had increased expression of inhibitory receptors, and reduced expression of activating receptors, as measured by MFI and qPCR. CD56- NK cells were less responsive to target cell and cytokine stimulation compared to their CD56+ counterparts. In addition, CD56- NK cells demonstrated defective dendritic cells (DCs) interactions resulting in reduced DCs maturation, lower expression of NK CD69 and impaired capacity of NK cells to eliminate immature DCs in co-culture studies. Finally, frequency of CD56- NK cells was positively correlated with serum HBV DNA levels. CONCLUSION Chronic HBV infection induces the expansion of highly dysfunctional of CD56- NK cells that likely contribute to inefficient innate and adaptive antiviral immune response in chronic HBV infection.
Collapse
Affiliation(s)
- Ratna S Wijaya
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.,Faculty of Medicine, Pelita Harapan University, Tangerang, Indonesia
| | - Scott A Read
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.,Blacktown Clinical School, Western Sydney University, Blacktown, NSW, Australia.,Blacktown Hospital, Blacktown, NSW, Australia
| | - Stephen Schibeci
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Shuanglin Han
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Mahmoud K Azardaryany
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | | | - Rita Lin
- Westmead Hospital, University of Sydney, Westmead, NSW, Australia
| | - Lawrence Yuen
- Westmead Hospital, University of Sydney, Westmead, NSW, Australia.,Discipline of Surgery, University of Sydney, Westmead, NSW, Australia
| | - Vincent Lam
- Westmead Hospital, University of Sydney, Westmead, NSW, Australia.,Discipline of Surgery, University of Sydney, Westmead, NSW, Australia
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.,Westmead Hospital, University of Sydney, Westmead, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.,Westmead Hospital, University of Sydney, Westmead, NSW, Australia
| | - Golo Ahlenstiel
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.,Blacktown Clinical School, Western Sydney University, Blacktown, NSW, Australia.,Blacktown Hospital, Blacktown, NSW, Australia
| |
Collapse
|
31
|
Zhang B, Wang X, Cheng P. Remodeling of Tumor Immune Microenvironment by Oncolytic Viruses. Front Oncol 2021; 10:561372. [PMID: 33680911 PMCID: PMC7934618 DOI: 10.3389/fonc.2020.561372] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/30/2020] [Indexed: 02/05/2023] Open
Abstract
Oncolytic viruses (OVs) are potential antitumor agents with unique therapeutic mechanisms. They possess the ability of direct oncolysis and the induction of antitumor immunity. OV can be genetically engineered to potentiate antitumor efficacy by remodeling the tumor immune microenvironment. The present mini review mainly describes the effect of OVs on remodeling of the tumor immune microenvironment and explores the mechanism of regulation of the host immune system and the promotion of the immune cells to destroy carcinoma cells by OVs. Furthermore, this article focuses on the utilization of OVs as vectors for the delivery of immunomodulatory cytokines or antibodies.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xilei Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Lenart M, Działo E, Kluczewska A, Węglarczyk K, Szaflarska A, Rutkowska-Zapała M, Surmiak M, Sanak M, Pituch-Noworolska A, Siedlar M. miRNA Regulation of NK Cells Antiviral Response in Children With Severe and/or Recurrent Herpes Simplex Virus Infections. Front Immunol 2021; 11:589866. [PMID: 33679688 PMCID: PMC7931645 DOI: 10.3389/fimmu.2020.589866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Severe and/or recurrent infection with Herpes simplex virus (HSV) is observed in a large group of patients treated in clinical immunology facilities. Atypical and prolonged HSV infection is the most common clinical manifestation of disturbed NK cell development and functions, yet the molecular basis of these disorders is still largely unknown. Since recent findings indicated the importance of miRNA in regulating NK cell development, maturation and functions, the aim of our study was to investigate miRNA expression pattern in NK cells in patients with severe and/or recurrent infections with HSV and analyze the role of these miRNAs in NK cell antiviral response. As a result, miRNA expression pattern analysis of human best known 754 miRNAs revealed that patients with severe and/or recurrent HSV infection had substantially upregulated expression of four miRNAs: miR-27b, miR-199b, miR-369-3p and miR-491-3p, when compared to healthy controls. Selective inhibition of miR-27b, miR-199b, miR-369-3p and miR-491-3p expression in NK-92 cells resulted in profound upregulation of 4 genes (APOBEC3G, MAP2K3, MAVS and TLR7) and downregulation of 36 genes taking part in antiviral response or associated with signaling pathways of Toll-like receptors (TLR), NOD-like receptors, the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and type I IFN-related response. Additionally, flow cytometry analysis revealed that miR-369-3p and miR-491-3p inhibitors downregulated NK cell intracellular perforin expression, while the expression of granzyme B and IFNγ remained unchanged. Taken together, our study suggests a novel mechanism which may promote recurrence and severity of HSV infection, based on miRNAs-dependent posttranscriptional regulation of genes taking part in antiviral response of human NK cells.
Collapse
Affiliation(s)
- Marzena Lenart
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Edyta Działo
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Kluczewska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Szaflarska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- II Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Sanak
- II Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Pituch-Noworolska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
33
|
Patil N, Allgayer H, Leupold JH. MicroRNAs in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1277:1-31. [PMID: 33119862 DOI: 10.1007/978-3-030-50224-9_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is decisive for the eradication or survival of any tumor mass. Moreover, it plays a pivotal role for metastasis and for providing the metastatic niche. The TME offers special physiological conditions and is composed of, for example, surrounding blood vessels, the extracellular matrix (ECM), diverse signaling molecules, exosomes and several cell types including, but not being limited to, infiltrated immune cells, cancer-associated endothelial cells (CAEs), and cancer-associated fibroblasts (CAFs). These cells can additionally and significantly contribute to tumor and metastasis progression, especially also by acting via their own deregulated micro (mi) RNA expression or activity. Thus, miRNAs are essential players in the crosstalk between cancer cells and the TME. MiRNAs are small non-coding (nc) RNAs that typically inhibit translation and stability of messenger (m) RNAs, thus being able to regulate several cell functions including proliferation, migration, differentiation, survival, invasion, and several steps of the metastatic cascade. The dynamic interplay between miRNAs in different cell types or organelles such as exosomes, ECM macromolecules, and the TME plays critical roles in many aspects of cancer development. This chapter aims to give an overview on the multiple contributions of miRNAs as players within the TME, to summarize the role of miRNAs in the crosstalk between different cell populations found within the TME, and to illustrate how they act on tumorigenesis and the behavior of cells in the TME context. Lastly, the potential clinical utility of miRNAs for cancer therapy is discussed.
Collapse
Affiliation(s)
- Nitin Patil
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
| | - Heike Allgayer
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
| | - Jörg H Leupold
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany.
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
34
|
Krawczyk PA, Laub M, Kozik P. To Kill But Not Be Killed: Controlling the Activity of Mammalian Pore-Forming Proteins. Front Immunol 2020; 11:601405. [PMID: 33281828 PMCID: PMC7691655 DOI: 10.3389/fimmu.2020.601405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023] Open
Abstract
Pore-forming proteins (PFPs) are present in all domains of life, and play an important role in host-pathogen warfare and in the elimination of cancers. They can be employed to deliver specific effectors across membranes, to disrupt membrane integrity interfering with cell homeostasis, and to lyse membranes either destroying intracellular organelles or entire cells. Considering the destructive potential of PFPs, it is perhaps not surprising that mechanisms controlling their activity are remarkably complex, especially in multicellular organisms. Mammalian PFPs discovered to date include the complement membrane attack complex (MAC), perforins, as well as gasdermins. While the primary function of perforin-1 and gasdermins is to eliminate infected or cancerous host cells, perforin-2 and MAC can target pathogens directly. Yet, all mammalian PFPs are in principle capable of generating pores in membranes of healthy host cells which-if uncontrolled-could have dire, and potentially lethal consequences. In this review, we will highlight the strategies employed to protect the host from destruction by endogenous PFPs, while enabling timely and efficient elimination of target cells.
Collapse
Affiliation(s)
- Patrycja A Krawczyk
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Marco Laub
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Patrycja Kozik
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
35
|
Migueles SA, Rogan DC, Gavil NV, Kelly EP, Toulmin SA, Wang LT, Lack J, Ward AJ, Pryal PF, Ludwig AK, Medina RG, Apple BJ, Toumanios CN, Poole AL, Rehm CA, Jones SE, Liang CJ, Connors M. Antigenic Restimulation of Virus-Specific Memory CD8 + T Cells Requires Days of Lytic Protein Accumulation for Maximal Cytotoxic Capacity. J Virol 2020; 94:e01595-20. [PMID: 32907983 PMCID: PMC7654275 DOI: 10.1128/jvi.01595-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
In various infections or vaccinations of mice or humans, reports of the persistence and the requirements for restimulation of the cytotoxic mediators granzyme B (GrB) and perforin (PRF) in CD8+ T cells have yielded disparate results. In this study, we examined the kinetics of PRF and GrB mRNA and protein expression after stimulation and associated changes in cytotoxic capacity in virus-specific memory cells in detail. In patients with controlled HIV or cleared respiratory syncytial virus (RSV) or influenza virus infections, all virus-specific CD8+ T cells expressed low PRF levels without restimulation. Following stimulation, they displayed similarly delayed kinetics for lytic protein expression, with significant increases occurring by days 1 to 3 before peaking on days 4 to 6. These increases were strongly correlated with, but were not dependent upon, proliferation. Incremental changes in PRF and GrB percent expression and mean fluorescence intensity (MFI) were highly correlated with increases in HIV-specific cytotoxicity. mRNA levels in HIV-specific CD8+ T-cells exhibited delayed kinetics after stimulation as with protein expression, peaking on day 5. In contrast to GrB, PRF mRNA transcripts were little changed over 5 days of stimulation (94-fold versus 2.8-fold, respectively), consistent with posttranscriptional regulation. Changes in expression of some microRNAs, including miR-17, miR-150, and miR-155, suggested that microRNAs might play a significant role in regulation of PRF expression. Therefore, under conditions of extremely low or absent antigen levels, memory virus-specific CD8+ T cells require prolonged stimulation over days to achieve maximal lytic protein expression and cytotoxic capacity.IMPORTANCE Antigen-specific CD8+ T cells play a major role in controlling most virus infections, primarily by perforin (PRF)- and granzyme B (GrB)-mediated apoptosis. There is considerable controversy regarding whether PRF is constitutively expressed, rapidly increased similarly to a cytokine, or delayed in its expression with more prolonged stimulation in virus-specific memory CD8+ T cells. In this study, the degree of cytotoxic capacity of virus-specific memory CD8+ T cells was directly proportional to the content of lytic molecules, which required antigenic stimulation over several days for maximal levels. This appeared to be modulated by increases in GrB transcription and microRNA-mediated posttranscriptional regulation of PRF expression. Clarifying the requirements for maximal cytotoxic capacity is critical to understanding how viral clearance might be mediated by memory cells and what functions should be induced by vaccines and immunotherapies.
Collapse
Affiliation(s)
- Stephen A Migueles
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel C Rogan
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Noah V Gavil
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth P Kelly
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sushila A Toulmin
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lawrence T Wang
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource (NCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland, USA
| | - Addison J Ward
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Patrick F Pryal
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Amanda K Ludwig
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Renata G Medina
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin J Apple
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina N Toumanios
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - April L Poole
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Catherine A Rehm
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara E Jones
- Clinical Research Program Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland, USA
| | - C Jason Liang
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark Connors
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Cantoni C, Wurzer H, Thomas C, Vitale M. Escape of tumor cells from the NK cell cytotoxic activity. J Leukoc Biol 2020; 108:1339-1360. [PMID: 32930468 DOI: 10.1002/jlb.2mr0820-652r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, NK cells, initially identified as potent cytotoxic effector cells, have revealed an unexpected complexity, both at phenotypic and functional levels. The discovery of different NK cell subsets, characterized by distinct gene expression and phenotypes, was combined with the characterization of the diverse functions NK cells can exert, not only as circulating cells, but also as cells localized or recruited in lymphoid organs and in multiple tissues. Besides the elimination of tumor and virus-infected cells, these functions include the production of cytokines and chemokines, the regulation of innate and adaptive immune cells, the influence on tissue homeostasis. In addition, NK cells display a remarkable functional plasticity, being able to adapt to the environment and to develop a kind of memory. Nevertheless, the powerful cytotoxic activity of NK cells remains one of their most relevant properties, particularly in the antitumor response. In this review, the process of tumor cell recognition and killing mediated by NK cells, starting from the generation of cytolytic granules and recognition of target cell, to the establishment of the NK cell immunological synapse, the release of cytotoxic molecules, and consequent tumor cell death is described. Next, the review focuses on the heterogeneous mechanisms, either intrinsic to tumors or induced by the tumor microenvironment, by which cancer cells can escape the NK cell-mediated attack.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Massimo Vitale
- UO Immunologia, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| |
Collapse
|
37
|
Wang J, Zhu M, Zhou X, Wang T, Xi Y, Jing Z, Xi W. MiR-140-3p inhibits natural killer cytotoxicity to human ovarian cancer via targeting MAPK1. J Biosci 2020. [DOI: 10.1007/s12038-020-00036-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Pesce S, Greppi M, Ferretti E, Obino V, Carlomagno S, Rutigliani M, Thoren FB, Sivori S, Castagnola P, Candiani S, Marcenaro E. miRNAs in NK Cell-Based Immune Responses and Cancer Immunotherapy. Front Cell Dev Biol 2020; 8:119. [PMID: 32161759 PMCID: PMC7053181 DOI: 10.3389/fcell.2020.00119] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
The incidence of certain forms of tumors has increased progressively in recent years and is expected to continue growing as life expectancy continues to increase. Tumor-infiltrating NK cells may contribute to develop an anti-tumor response. Optimized combinations of different cancer therapies, including NK cell-based approaches for targeting tumor cells, have the potential to open new avenues in cancer immunotherapy. Functional inhibitory receptors on NK cells are needed to prevent their attack on healthy cells. Nevertheless, disruption of inhibitory receptors function on NK cells increases the cytotoxic capacity of NK cells against cancer cells. MicroRNAs (miRNAs) are small non-coding RNA molecules that target mRNA and thus regulate the expression of genes involved in the development, maturation, and effector functions of NK cells. Therapeutic strategies that target the regulatory effects of miRNAs have the potential to improve the efficiency of cancer immunotherapy. Interestingly, emerging evidence points out that some miRNAs can, directly and indirectly, control the surface expression of immune checkpoints on NK cells or that of their ligands on tumor cells. This suggests a possible use of miRNAs in the context of anti-tumor therapy. This review provides the current overview of the connections between miRNAs and regulation of NK cell functions and discusses the potential of these miRNAs as innovative biomarkers/targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Silvia Pesce
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Marco Greppi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Elisa Ferretti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Valentina Obino
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Mariangela Rutigliani
- Histological and Anatomical Pathology Unit, Department of Laboratory and Service, E.O. Galliera Hospital, Genova, Italy
| | - Fredrik B Thoren
- Tumor Immunology Laboratory (TIMM) Laboratory at Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | | | - Simona Candiani
- Department of Earth Science, Environment and Life (DISTAV), University of Genoa, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
39
|
Xu SJ, Hu HT, Li HL, Chang S. The Role of miRNAs in Immune Cell Development, Immune Cell Activation, and Tumor Immunity: With a Focus on Macrophages and Natural Killer Cells. Cells 2019; 8:cells8101140. [PMID: 31554344 PMCID: PMC6829453 DOI: 10.3390/cells8101140] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME) is the primary arena where tumor cells and the host immune system interact. Bidirectional communication between tumor cells and the associated stromal cell types within the TME influences disease initiation and progression, as well as tumor immunity. Macrophages and natural killer (NK) cells are crucial components of the stromal compartment and display either pro- or anti-tumor properties, depending on the expression of key regulators. MicroRNAs (miRNAs) are emerging as such regulators. They affect several immune cell functions closely related to tumor evasion of the immune system. This review discusses the role of miRNAs in the differentiation, maturation, and activation of immune cells as well as tumor immunity, focusing particularly on macrophages and NK cells.
Collapse
Affiliation(s)
- Shi Jun Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Hong Tao Hu
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Hai Liang Li
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
40
|
Nanbakhsh A, Srinivasamani A, Holzhauer S, Riese MJ, Zheng Y, Wang D, Burns R, Reimer MH, Rao S, Lemke A, Tsaih SW, Flister MJ, Lao S, Dahl R, Thakar MS, Malarkannan S. Mirc11 Disrupts Inflammatory but Not Cytotoxic Responses of NK Cells. Cancer Immunol Res 2019; 7:1647-1662. [PMID: 31515257 DOI: 10.1158/2326-6066.cir-18-0934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/14/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cells generate proinflammatory cytokines that are required to contain infections and tumor growth. However, the posttranscriptional mechanisms that regulate NK cell functions are not fully understood. Here, we define the role of the microRNA cluster known as Mirc11 (which includes miRNA-23a, miRNA-24a, and miRNA-27a) in NK cell-mediated proinflammatory responses. Absence of Mirc11 did not alter the development or the antitumor cytotoxicity of NK cells. However, loss of Mirc11 reduced generation of proinflammatory factors in vitro and interferon-γ-dependent clearance of Listeria monocytogenes or B16F10 melanoma in vivo by NK cells. These functional changes resulted from Mirc11 silencing ubiquitin modifiers A20, Cbl-b, and Itch, allowing TRAF6-dependent activation of NF-κB and AP-1. Lack of Mirc11 caused increased translation of A20, Cbl-b, and Itch proteins, resulting in deubiquitylation of scaffolding K63 and addition of degradative K48 moieties on TRAF6. Collectively, our results describe a function of Mirc11 that regulates generation of proinflammatory cytokines from effector lymphocytes.
Collapse
Affiliation(s)
- Arash Nanbakhsh
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Anupallavi Srinivasamani
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Sandra Holzhauer
- Laboratory of Lymphocyte Signaling, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Matthew J Riese
- Laboratory of Lymphocyte Signaling, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yongwei Zheng
- Laboratory of B Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Demin Wang
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Laboratory of B Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Robert Burns
- Bioinformatics Core, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Michael H Reimer
- Laboratory of Stem Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sridhar Rao
- Laboratory of Stem Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Angela Lemke
- Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shirng-Wern Tsaih
- Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael J Flister
- Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shunhua Lao
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Richard Dahl
- Indiana University School of Medicine, South Bend, Indiana
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin. .,Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
41
|
Valipour B, Velaei K, Abedelahi A, Karimipour M, Darabi M, Charoudeh HN. NK cells: An attractive candidate for cancer therapy. J Cell Physiol 2019; 234:19352-19365. [DOI: 10.1002/jcp.28657] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Behnaz Valipour
- Stem Cell Research Centre Tabriz University of Medical Sciences Tabriz Iran
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Masoud Darabi
- Biochemistry Department, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | | |
Collapse
|
42
|
Bassani B, Baci D, Gallazzi M, Poggi A, Bruno A, Mortara L. Natural Killer Cells as Key Players of Tumor Progression and Angiogenesis: Old and Novel Tools to Divert Their Pro-Tumor Activities into Potent Anti-Tumor Effects. Cancers (Basel) 2019; 11:461. [PMID: 30939820 PMCID: PMC6521276 DOI: 10.3390/cancers11040461] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
. Immune cells, as a consequence of their plasticity, can acquire altered phenotype/functions within the tumor microenvironment (TME). Some of these aberrant functions include attenuation of targeting and killing of tumor cells, tolerogenic/immunosuppressive behavior and acquisition of pro-angiogenic activities. Natural killer (NK) cells are effector lymphocytes involved in tumor immunosurveillance. In solid malignancies, tumor-associated NK cells (TANK cells) in peripheral blood and tumor-infiltrating NK (TINK) cells show altered phenotypes and are characterized by either anergy or reduced cytotoxicity. Here, we aim at discussing how NK cells can support tumor progression and how induction of angiogenesis, due to TME stimuli, can be a relevant part on the NK cell-associated tumor supporting activities. We will review and discuss the contribution of the TME in shaping NK cell response favoring cancer progression. We will focus on TME-derived set of factors such as TGF-β, soluble HLA-G, prostaglandin E₂, adenosine, extracellular vesicles, and miRNAs, which can exhibit a dual function. On one hand, these factors can suppress NK cell-mediated activities but, on the other hand, they can induce a pro-angiogenic polarization in NK cells. Also, we will analyze the impact on cancer progression of the interaction of NK cells with several TME-associated cells, including macrophages, neutrophils, mast cells, cancer-associated fibroblasts, and endothelial cells. Then, we will discuss the most relevant therapeutic approaches aimed at potentiating/restoring NK cell activities against tumors. Finally, supported by the literature revision and our new findings on NK cell pro-angiogenic activities, we uphold NK cells to a key host cellular paradigm in controlling tumor progression and angiogenesis; thus, we should bear in mind NK cells like a TME-associated target for anti-tumor therapeutic approaches.
Collapse
Affiliation(s)
- Barbara Bassani
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Via Monte Generoso, n. 71, 21100 Varese, Italy.
| | - Denisa Baci
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Matteo Gallazzi
- Vascular Biology and Angiogenesis Laboratory, Scientific and Technologic Park, IRCCS MultiMedica, 20138 Milan, Italy.
| | - Alessandro Poggi
- UOSD Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Antonino Bruno
- Vascular Biology and Angiogenesis Laboratory, Scientific and Technologic Park, IRCCS MultiMedica, 20138 Milan, Italy.
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Via Monte Generoso, n. 71, 21100 Varese, Italy.
| |
Collapse
|
43
|
Moein S, Vaghari-Tabari M, Qujeq D, Majidinia M, Nabavi SM, Yousefi B. MiRNAs and inflammatory bowel disease: An interesting new story. J Cell Physiol 2018; 234:3277-3293. [PMID: 30417350 DOI: 10.1002/jcp.27173] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD), as a chronic and recurrent inflammatory disorder, is caused by a dysregulated and aberrant immune response to exposed environmental factors in genetically susceptible individuals. Despite huge efforts in determining the molecular pathogenesis of IBD, an increasing worldwide incidence of IBD has been reported. MicroRNAs (miRNAs) are a set of noncoding RNA molecules that are about 22 nucleotides long, and these molecules are involved in the regulation of the gene expression. By clarifying the important role of miRNAs in a number of diseases, their role was also considered in IBD; numerous studies have been performed on this topic. In this review, we attempt to summarize a number of studies and discuss some of the recent developments in the roles of miRNAs in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mostafa Vaghari-Tabari
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Irantab.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
Yang N, Zhu S, Lv X, Qiao Y, Liu YJ, Chen J. MicroRNAs: Pleiotropic Regulators in the Tumor Microenvironment. Front Immunol 2018; 9:2491. [PMID: 30443251 PMCID: PMC6221902 DOI: 10.3389/fimmu.2018.02491] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that typically inhibit the translation and stability of messenger RNAs (mRNAs). They are ~22 nucleotides long and control both physiological and pathological processes. Altered expression of miRNAs is often associated with human diseases. Thus, miRNAs have become important therapeutic targets, and some clinical trials investigating the effect of miRNA-based therapeutics in different types of diseases have already been conducted. The tumor microenvironment (TME) comprises cells such as infiltrated immune cells, cancer-associated endothelial cells (CAEs) and cancer-associated fibroblasts (CAFs), and all the components participate in the complicated crosstalk with tumor cells to affect tumor progression. Altered miRNAs expression in both these stromal and tumor cells could drive tumorigenesis. Thus, in this review, we discuss how aberrantly expressed miRNAs influence tumor progression; summarize the crosstalk between infiltrated immune cells, CAEs, CAFs, and tumor cells through miRNAs, and clarify the important roles of miRNAs in the tumor microenvironment, which may facilitate the clinical application of miRNA-based therapies.
Collapse
Affiliation(s)
- Ning Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xinping Lv
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yuan Qiao
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yong-Jun Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Sanofi Research and Development, Cambridge, MA, United States
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
45
|
Santangelo L, Bordoni V, Montaldo C, Cimini E, Zingoni A, Battistelli C, D'Offizi G, Capobianchi MR, Santoni A, Tripodi M, Agrati C. Hepatitis C virus direct-acting antivirals therapy impacts on extracellular vesicles microRNAs content and on their immunomodulating properties. Liver Int 2018; 38:1741-1750. [PMID: 29359389 DOI: 10.1111/liv.13700] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) infection is known to cause major alterations in the cross-talk between hepatic and immune cells thus contributing to the liver disease pathogenesis. Extracellular vesicles have been proved to act as major players in cell-cell communication, and their cargo changes in relation to pathophysiological states. The aim of this study was to evaluate the effects of chronic HCV infection and direct-acting antivirals (DAA) on exosome-delivered microRNAs and on their ability to modulate the innate immune response. METHODS Exosomes isolated from the plasma of healthy donors and naïve, viremic HCV patients before and after DAA treatment have been compared for their microRNAs cargo by quantitative polymerase chain reaction. Functional assays with peripheral blood cells from healthy donors were performed to assess exosome-mediated immune responses. RESULTS MicroRNAs associated with HCV-related immunopathogenesis which were found to be enriched in exosomes of HCV viremic patients (in particular, miR-122-5p, miR-222-3p, miR-146a, miR-150-5p, miR-30c, miR-378a-3p and miR-20a-5p) were markedly reduced by DAA therapy. This exosome-microRNA cargo modulation parallels changes in their immunomodulatory properties in ex vivo experiments. Exosomes from HCV patients inhibit NK degranulation activity and this effect correlates with miR-122-5p or miR-222-3p levels. CONCLUSIONS Enrichment of immunomodulatory microRNAs in exosomes of HCV patients was correlated with their inhibitory activity on innate immune cells function. Direct-acting antivirals (DAA) treatment was observed to revert both microRNA content and functional profiles of systemic exosomes towards those of healthy donors. Exosome-associated microRNAs may provide valuable biomarkers to monitor immune response recovery.
Collapse
Affiliation(s)
- Laura Santangelo
- Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Veronica Bordoni
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Claudia Montaldo
- Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Eleonora Cimini
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Pasteur Italia Laboratory - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Cecilia Battistelli
- Department of Cellular Biotechnologies and Haematology - Pasteur Italia Laboratory, Sapienza University of Rome, Rome, Italy
| | - Gianpiero D'Offizi
- Hepatology and Infectious Diseases Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Maria R Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine - Pasteur Italia Laboratory, Sapienza University of Rome, Rome, Italy.,Neuromed I.R.C.C.S.- Istituto Neurologico Mediterraneo, Pozzilli, Italy
| | - Marco Tripodi
- Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy.,Department of Cellular Biotechnologies and Haematology - Pasteur Italia Laboratory, Sapienza University of Rome, Rome, Italy
| | - Chiara Agrati
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| |
Collapse
|
46
|
Shin HW, Lee YJ, Kim J. Role of c-Myb in the regulation of natural killer cell activity. Biochem Biophys Res Commun 2018; 503:2807-2813. [PMID: 30103947 DOI: 10.1016/j.bbrc.2018.08.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/05/2018] [Indexed: 10/28/2022]
Abstract
The regulation of natural killer (NK) cell activity is an important research goal for the development of immunotherapies. In this study, we identified transcription factors affecting NK cell activity. In particular, we screened transcription factors affected by interleukin-2 (IL-2) and transforming growth factor-beta (TGF-β) by protein/DNA arrays using primary NK cells. We found that celastrol, a c-Myb inhibitor, inhibited NK-92 cells more strongly than any other inhibitors of transcription factor candidates. In addition, c-Myb and c-Myb-related signaling molecules, e.g., Nemo-like kinase (NLK) and c-Myc, were regulated by the activation status of NK cells, suggesting that c-Myb is a key regulator of NK cell activity. We also found that celastrol inhibits NK-92-cell-mediated cytotoxicity via the downregulation of NKG2D and granzyme B. Knockdown studies also showed that c-Myb is important for NK cell activation. In particular, the knockdown of c-Myb did not significantly affect NK cell proliferation and survival but decreased the secretion of IFN-γ and the cytotoxicity of NK cells. Our data demonstrate that c-Myb plays a critical role in the activation of NK cells and therefore is a therapeutic target for cancer and viral diseases.
Collapse
Affiliation(s)
- Hee-Wook Shin
- Department of Microbiology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Yoo-Jin Lee
- Department of Microbiology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Jongsun Kim
- Department of Microbiology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| |
Collapse
|
47
|
Mei J, Zhou WJ, Zhu XY, Lu H, Wu K, Yang HL, Fu Q, Wei CY, Chang KK, Jin LP, Wang J, Wang YM, Li DJ, Li MQ. Suppression of autophagy and HCK signaling promotes PTGS2 high FCGR3 - NK cell differentiation triggered by ectopic endometrial stromal cells. Autophagy 2018; 14:1376-1397. [PMID: 29962266 DOI: 10.1080/15548627.2018.1476809] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Impaired NK cell cytotoxic activity contributes to the local dysfunctional immune environment in endometriosis (EMS), which is an estrogen-dependent gynecological disease that affects the function of ectopic endometrial tissue clearance. The reason for the impaired cytotoxic activity of NK cells in an ectopic lesion microenvironment (ELM) is largely unknown. In this study, we show that the macroautophagy/autophagy level of endometrial stromal cells (ESCs) from EMS decreased under negative regulation of estrogen. The ratio of peritoneal FCGR3- NK to FCGR3+ NK cells increases as EMS progresses. Moreover, the autophagy suppression results in the downregulation of HCK (hematopoietic cellular kinase) by inactivating STAT3 (signal transducer and activator of transcription 3), as well as the increased secretion of the downstream molecules CXCL8/IL8 and IL23A by ESCs, and this increase induced the upregulation of FCGR3- NK cells and decline of cytotoxic activity in ELM. This process is mediated through the depression of microRNA MIR1185-1-3p, which is associated with the activation of the target gene PTGS2 in NK cells. FCGR3- NK with a phenotype of PTGS2/COX2high IFNGlow PRF1low GZMBlow induced by hck knockout (hck-/-) or 3-methyladenine (3-MA, an autophagy inhibitor)-stimulated ESCs accelerates ESC's growth both in vitro and in vivo. These results suggest that the estrogen-autophagy-STAT3-HCK axis participates in the differentiation of PTGS2high IFNGlow PRF1low GZMBlow FCGR3- NK cells in ELM and contributes to the development of EMS. This result provides a scientific basis for potential therapeutic strategies to treat diseases related to impaired NK cell cytotoxic activity. ABBREVIATIONS anti-FCGR3: anti-FCGR3 with neutralizing antibody; Ctrl-ESC: untreated ESCs; CXCL8: C-X-C motif chemokine ligand 8; ectoESC: ESCs from ectopic lesion; ELM: ectopic lesion microenvironment; EMS: endometriosis; ESCs: endometrial stromal cells; eutoESC:eutopic ESCs; HCK: hematopoietic cellular kinase; HCK(OE): overexpression of HCK; IFNG: interferon gamma; IL23A (OE): overexpression of IL23A; KLRK1: Killer cell lectin like receptor K1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; 3 -MA: 3-methyladenine; 3-MA-ESC: 3-MA-treated ESCs; MIR1185-1-3p+: overexpression of HsMIR1185-1-3p; NK: natural killer; normESCs: normal ESCs; Rap-ESC:rapamycin-treated ESCs; PCNA: proliferating cell nuclear antigen; PF: peritoneal fluid; SFKs: SRC family of cytoplasmic tyrosine kinases; si-HCK: silencing of HCK; siIL23A: silencing of IL23A; USCs: uterus stromal cells.
Collapse
Affiliation(s)
- Jie Mei
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China.,b Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital , The Affiliated Hospital of Nanjing University Medicine School , Nanjing , People's Republic of China
| | - Wen-Jie Zhou
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Xiao-Yong Zhu
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China.,c Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School , Fudan University , Shanghai , People's Republic of China
| | - Han Lu
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Ke Wu
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Hui-Li Yang
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Qiang Fu
- d Department of Immunology , Binzhou Medical College , Yantai , People's Republic of China
| | - Chun-Yan Wei
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Kai-Kai Chang
- b Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital , The Affiliated Hospital of Nanjing University Medicine School , Nanjing , People's Republic of China
| | - Li-Ping Jin
- e Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , People's Republic of China
| | - Jian Wang
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Yong-Ming Wang
- f State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences , Fudan University , Shanghai , People's Republic of China
| | - Da-Jin Li
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Ming-Qing Li
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| |
Collapse
|
48
|
Ban YH, Oh SC, Seo SH, Kim SM, Choi IP, Greenberg PD, Chang J, Kim TD, Ha SJ. miR-150-Mediated Foxo1 Regulation Programs CD8 + T Cell Differentiation. Cell Rep 2018; 20:2598-2611. [PMID: 28903041 DOI: 10.1016/j.celrep.2017.08.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/30/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023] Open
Abstract
MicroRNA (miR)-150 is a developmental regulator of several immune-cell types, but its role in CD8+ T cells is largely unexplored. Here, we show that miR-150 regulates the generation of memory CD8+ T cells. After acute virus infection, miR-150 knockout (KO) mice exhibited an accelerated differentiation of CD8+ T cells into memory cells and improved production of effector cytokines. Additionally, miR-150 KO CD8+ T cells displayed an enhanced recall response and improved protection against infections with another virus and bacteria. We found that forkhead box O1 (Foxo1) and T cell-specific transcription factor 1 (TCF1) are upregulated during the early activation phase in miR-150 KO CD8+ T cells and that miR-150 directly targets and suppresses Foxo1. These results suggest that miR-150-mediated suppression of Foxo1 regulates the balance between effector and memory cell differentiation, which might aid in the development of improved vaccines and T cell therapeutics.
Collapse
Affiliation(s)
- Young Ho Ban
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Se-Chan Oh
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Sang-Hwan Seo
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Seok-Min Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - In-Pyo Choi
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Philip D Greenberg
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98195, USA
| | - Jun Chang
- Division of Life & Pharmaceutical Sciences, Center for Cell Signaling & Drug Discovery Research, Ewha Womans University, Seoul 03760, Korea
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
49
|
Seo SH, Jang MS, Kim DJ, Kim SM, Oh SC, Jung CR, Park Y, Ha SJ, Jung H, Park YJ, Yoon SR, Choi I, Kim TD. MicroRNA-150 controls differentiation of intraepithelial lymphocytes through TGF-β receptor II regulation. J Allergy Clin Immunol 2017; 141:1382-1394.e14. [PMID: 28797734 DOI: 10.1016/j.jaci.2017.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Intraepithelial lymphocytes (IELs) in the intestines play pivotal roles in maintaining the integrity of the mucosa, regulating immune cells, and protecting against pathogenic invasion. Although several extrinsic factors, such as TGF-β, have been identified to contribute to IEL generation, intrinsic regulatory factors have not been determined fully. OBJECTIVE Here we investigated the regulation of IEL differentiation and the underlying mechanisms in mice. METHODS We analyzed IELs and the expression of molecules associated with IEL differentiation in wild-type control and microRNA (miRNA)-150 knockout mice. Methotrexate was administered to mice lacking miR-150 and control mice. RESULTS miR-150 deficiency reduced the IEL population in the small intestine and increased susceptibility to methotrexate-induced mucositis. Evaluation of expression of IEL differentiation-associated molecules showed that miR-150-deficient IELs exhibited decreased expression of TGF-β receptor (TGF-βR) II, CD103, CD8αα, and Runt-related transcription factor 3 in all the IEL subpopulations. The reduced expression of TGF-βRII in miR-150-deficient IELs was caused by increased expression of c-Myb/miR-20a. Restoration of miR-150 or inhibition of miR-20a recovered the TGF-βRII expression. CONCLUSION miR-150 is an intrinsic regulator of IEL differentiation through TGF-βRII regulation. miR-150-mediated IEL generation is crucial for maintaining intestinal integrity against anticancer drug-induced mucositis.
Collapse
Affiliation(s)
- Sang-Hwan Seo
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Min Seong Jang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seok-Min Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Se-Chan Oh
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Cho-Rok Jung
- the Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Yunji Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Haiyoung Jung
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Young-Jun Park
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Suk Ran Yoon
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Inpyo Choi
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.
| |
Collapse
|
50
|
Kiniry BE, Ganesh A, Critchfield JW, Hunt PW, Hecht FM, Somsouk M, Deeks SG, Shacklett BL. Predominance of weakly cytotoxic, T-bet LowEomes Neg CD8 + T-cells in human gastrointestinal mucosa: implications for HIV infection. Mucosal Immunol 2017; 10:1008-1020. [PMID: 27827375 PMCID: PMC5423867 DOI: 10.1038/mi.2016.100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/01/2016] [Indexed: 02/04/2023]
Abstract
The gastrointestinal mucosa is an important site of HIV acquisition, viral replication, and pathogenesis. Immune cells in mucosal tissues frequently differ in phenotype and function from their non-mucosal counterparts. Although perforin-mediated cytotoxicity as measured in blood is a recognized correlate of HIV immune control, its role in gastrointestinal tissues is unknown. We sought to elucidate the cytotoxic features of rectal mucosal CD8+ T-cells in HIV infected and uninfected subjects. Perforin expression and lytic capacity were significantly reduced in rectal CD8+ T-cells compared with their blood counterparts, regardless of HIV clinical status; granzyme B (GrzB) was reduced to a lesser extent. Mucosal perforin and GrzB expression were higher in participants not on antiretroviral therapy compared with those on therapy and controls. Reduction in perforin and GrzB was not explained by differences in memory/effector subsets. Expression of T-bet and Eomesodermin was significantly lower in gut CD8+ T-cells compared with blood, and in vitro neutralization of TGF-β partially restored perforin expression in gut CD8+ T-cells. These findings suggest that rectal CD8+ T-cells are primarily non-cytotoxic, and phenotypically shaped by the tissue microenvironment. Further elucidation of rectal immune responses to HIV will inform the development of vaccines and immunotherapies targeted to mucosal tissues.
Collapse
Affiliation(s)
- Brenna E. Kiniry
- Department of Medical Microbiology and Immunology, University of California, Davis, CA USA
| | - Anupama Ganesh
- Department of Medical Microbiology and Immunology, University of California, Davis, CA USA
| | - J. William Critchfield
- Department of Medical Microbiology and Immunology, University of California, Davis, CA USA
| | - Peter W. Hunt
- Division of Experimental Medicine, San Francisco General Hospital, San Francisco, CA USA
| | - Frederick M. Hecht
- Positive Health Program, Department of Medicine, San Francisco General Hospital, San Francisco, CA USA
| | - Ma Somsouk
- Division of Gastroenterology, Dept. of Medicine, San Francisco General Hospital, San Francisco, CA USA
| | - Steven G. Deeks
- Positive Health Program, Department of Medicine, San Francisco General Hospital, San Francisco, CA USA
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, University of California, Davis, CA USA,Division of Infectious Diseases, Dept. of Medicine, School of Medicine, University of California, Davis, CA USA,Name and Address for Correspondence: Barbara L. Shacklett, PhD, Dept. of Medical Microbiology and Immunology, UC Davis School of Medicine, 3146 Tupper Hall, Davis CA 95616; Tel: 530 752 6785; Fax: 530 752 8692,
| |
Collapse
|