1
|
Mohany KM, Gamal Y, Raheem YFA. Association of LPCAT1-rs8352 genetic variant with susceptibility and severity of pediatric bronchial asthma: a case-control study. BMC Pediatr 2025; 25:68. [PMID: 39871194 PMCID: PMC11770991 DOI: 10.1186/s12887-025-05425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND This study aimed to investigate the possible association of LPCAT1-rs8352 genetic variant (single nucleotide change C to G) with the onset and severity of pediatric asthma. Additionally, the study examined the influence of LPCAT1-rs8352 genotypes on asthma-related biomarkers including blood eosinophils count (BEC), eosinophil cationic protein (ECP), high-sensitivity C-reactive protein (hs-CRP), and immunoglobulin E (IgE) and on lung function [forced expiratory volume in one second (FEV1) and the forced vital capacity (FVC)]. PATIENTS AND METHODS The study included ninety-six participant grouped into two groups: G1 (46 asthmatics) and G2 (50 healthy controls). ECP, hs-CRP, and total IgE serum levels were measured using their corresponding ELISA kits. Neonatal blood DNA was extracted using the Gene JET™ Whole Blood Genomic DNA Purification Mini Kit. Genotyping was performed by RT-PCR. RESULTS A significantly higher proportion of individuals in G1 had the LPCAT1-rs8352 CC and GC genotypes compared to G2 (p < 0.001). Individuals with the CC genotype exhibited significantly more severe asthma, along with elevated levels of BEC, ECP, hs-CRP, and total IgE. Those with the GC genotype demonstrated a similar, though less severe, pattern, followed by individuals with the GG genotype. The FEV1 and FVC values showed the opposite trend, with individuals having the GG genotype exhibiting the highest lung function values. CONCLUSION The LPCAT1-rs8352 allele C is associated with pediatric asthma onset and severity. Further research on the LPCAT1 genetic variants may provide a deeper understanding of pediatric bronchial asthma mechanisms and lead to improved management strategies.
Collapse
Affiliation(s)
- Khalid M Mohany
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, EL Gammaa street, Assiut, 71515, Egypt.
| | - Yasser Gamal
- Department of Pediatrics, Faculty of Medicine, Assiut University, Egypt, 71515, Assiut, Egypt
| | - Yaser F Abdel Raheem
- Department of Pediatrics, Faculty of Medicine, Assiut University, Egypt, 71515, Assiut, Egypt
| |
Collapse
|
2
|
Sasaki H, Miyata J, Kawashima Y, Konno R, Ishikawa M, Hasegawa Y, Onozato R, Otsu Y, Matsuyama E, Sunata K, Masaki K, Kabata H, Kimizuka Y, Abe T, Ueki S, Asano K, Kawana A, Fukunaga K. Aspergillus fumigatus extract modulates human eosinophils via NOD2 and oxidative stress. Allergol Int 2025; 74:156-165. [PMID: 39307590 DOI: 10.1016/j.alit.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Aspergillus fumigatus is a pathogenic fungus known to be associated with severe asthma and allergic bronchopulmonary mycosis. However, the precise mechanisms underlying airway inflammation remain unclear. In this study, we investigated the direct modulation of human eosinophils by A. fumigatus and identified the specific mechanism of airway inflammation. METHODS Eosinophils isolated from healthy subjects were stimulated with extracts of A. fumigatus. Multi-omics analysis, comprising transcriptomic and proteomic analyses, was performed. The expression of specific factors was evaluated using quantitative real-time polymerase chain reaction and flow cytometry. Mechanistic analyses were performed using NOD2 inhibitor and N-acetyl-l-cysteine (NAC). RESULTS The A. fumigatus extract changed the expression of adhesion molecules (CD62L and CD11b) and CD69 on the surface of eosinophils, without affecting their viability, via nucleotide-binding oligomerization domain-containing protein 2 (NOD2) but not protease activity. Investigation using kinase inhibitors showed that A. fumigatus extract-induced modulation was partly mediated via p38 mitogen-activated protein kinases. Multi-omics analysis revealed that A. fumigatus-induced gene and protein expression profiles were characterized by the upregulation of oxidative stress-related molecules, including heat shock proteins (HSP90AA1, HSP90AB1, SRXN1, and HMOX1). NOD2 inhibitor and NAC differentially inhibited A. fumigatus-induced inflammatory changes. Additional multi-omics analysis identified that NOD2 signaling induced gene signatures different from those of interleukin (IL)-5 and elicited synergistic change with IL-5. CONCLUSIONS A. fumigatus modulates human eosinophils via NOD2 and oxidative stress-mediated signaling. NOD2 signaling potentiated IL-5-induced activation, suggesting its pathogenic role in type 2 inflammation. NOD2 inhibitors and antioxidants can have therapeutic potential against A. fumigatus-related allergic disorders.
Collapse
Affiliation(s)
- Hisashi Sasaki
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Jun Miyata
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan; Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Masaki Ishikawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Ryuta Onozato
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yo Otsu
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Emiko Matsuyama
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keeya Sunata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Kimizuka
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Tomoe Abe
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Akihiko Kawana
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Espuela-Ortiz A, Martin-Gonzalez E, Poza-Guedes P, González-Pérez R, Herrera-Luis E. Genomics of Treatable Traits in Asthma. Genes (Basel) 2023; 14:1824. [PMID: 37761964 PMCID: PMC10531302 DOI: 10.3390/genes14091824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The astounding number of genetic variants revealed in the 15 years of genome-wide association studies of asthma has not kept pace with the goals of translational genomics. Moving asthma diagnosis from a nonspecific umbrella term to specific phenotypes/endotypes and related traits may provide insights into features that may be prevented or alleviated by therapeutical intervention. This review provides an overview of the different asthma endotypes and phenotypes and the genomic findings from asthma studies using patient stratification strategies and asthma-related traits. Asthma genomic research for treatable traits has uncovered novel and previously reported asthma loci, primarily through studies in Europeans. Novel genomic findings for asthma phenotypes and related traits may arise from multi-trait and specific phenotyping strategies in diverse populations.
Collapse
Affiliation(s)
- Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Tenerife, Spain; (A.E.-O.); (E.M.-G.)
| | - Elena Martin-Gonzalez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Tenerife, Spain; (A.E.-O.); (E.M.-G.)
| | - Paloma Poza-Guedes
- Allergy Department, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Tenerife, Spain; (P.P.-G.); (R.G.-P.)
- Severe Asthma Unit, Hospital Universitario de Canarias, 38320 San Cristóbal de La Laguna, Tenerife, Spain
| | - Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Tenerife, Spain; (P.P.-G.); (R.G.-P.)
- Severe Asthma Unit, Hospital Universitario de Canarias, 38320 San Cristóbal de La Laguna, Tenerife, Spain
| | - Esther Herrera-Luis
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Kunč P, Fábry J, Grendár M, Ferenc P, Strachan T, Ištvánková K, Hurtová T, Péčová R. Association of selected inflammatory biomarkers with cough reflex sensitivity in asthmatic children. Physiol Res 2023; 72:349-358. [PMID: 37449748 PMCID: PMC10668995 DOI: 10.33549/physiolres.935063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/31/2023] [Indexed: 08/26/2023] Open
Abstract
Bronchial asthma is the most common chronic respiratory disease of childhood. Cough is one of its defining symptoms. This study investigated the associations between selected inflammatory biomarkers and cough reflex sensitivity after capsaicin inhalation in children with mild and moderate well-controlled type 2 endotype asthma compared with non-asthmatic probands. Sensitivity to the cough reflex was measured by recording the cough response after capsaicin inhalation. The sandwich ELISA method was used to measure serum concentrations of the investigated potential inflammatory biomarkers (interleukin 13, interleukin 1beta, eosinophil-derived neurotoxin). The acquired data were statistically evaluated according to descriptive analyses for summarization and comparison between cough reflex sensitivity parameters and individual biomarker values in the observed and control groups modeled by a simple linear regression model. Statistical significance was defined as p<0.05. We showed a statistically significant association (p-value 0.03) between cough reflex sensitivity - C2 value (capsaicin concentration required for two cough responses) and interleukin 1beta serum concentrations in the asthma group compared with the control group of non-asthmatic children. Our results support the possibility of interleukin 1beta as a potential additive inflammatory biomarker used in clinical practice in children with asthma because of its correlation with the activity of the afferent nerve endings in the airways.
Collapse
Affiliation(s)
- P Kunč
- Clinic of Pediatric Respiratory Diseases and Tuberculosis, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, National Institute of Pediatric Tuberculosis and Respiratory Diseases, Dolny Smokovec, Slovak Republic, Department of Pathological Physiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Ferrante G, Fasola S, Cilluffo G, Piacentini G, Viegi G, La Grutta S. Addressing Exposome: An Innovative Approach to Environmental Determinants in Pediatric Respiratory Health. Front Public Health 2022; 10:871140. [PMID: 35774568 PMCID: PMC9237327 DOI: 10.3389/fpubh.2022.871140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022] Open
Abstract
Developmental age is particularly vulnerable to impacts of environmental exposures. Until recent years, the field of environment and child health has predominantly relied on the study of single exposure-health effect relationships. The exposome is an emerging concept in epidemiology, encompassing the totality of the exposures experienced by an individual throughout life and their changes over time. This innovative approach provides a risk profile instead of individual predictors. Exposome research may contribute to better understand the complex relationships between environmental exposures and childhood respiratory health, in order to implement prevention strategies and mitigate adverse health outcomes across the life span. Indeed, an accurate assessment of the exposome needs several measurements as well as different technologies. High-throughput "omics" technologies may be promising tools to integrate a wide range of exposures. However, analyzing large and complex datasets requires the development of advanced statistical tools. This narrative review summarizes the current knowledge on exposome-based approaches in pediatric respiratory health. Further, it explores practical implementation, associated evidence gaps, research limitations and future research perspectives.
Collapse
Affiliation(s)
- Giuliana Ferrante
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Pediatric Division, University of Verona, Verona, Italy
| | - Salvatore Fasola
- Institute of Translational Pharmacology, National Research Council, Palermo, Italy
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Giovanna Cilluffo
- Department of Earth and Marine Sciences, University of Palermo, Palermo, Italy
| | - Giorgio Piacentini
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Pediatric Division, University of Verona, Verona, Italy
| | - Giovanni Viegi
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Stefania La Grutta
- Institute of Translational Pharmacology, National Research Council, Palermo, Italy
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| |
Collapse
|
6
|
Maroteau C, Espuela-Ortiz A, Herrera-Luis E, Srinivasan S, Carr F, Tavendale R, Wilson K, Hernandez-Pacheco N, Chalmers JD, Turner S, Mukhopadhyay S, Maitland-van der Zee AH, Burchard EG, Pino-Yanes M, Young S, Lassi G, Platt A, Palmer CNA. LTA4H rs2660845 association with montelukast response in early and late-onset asthma. PLoS One 2021; 16:e0257396. [PMID: 34550981 PMCID: PMC8457475 DOI: 10.1371/journal.pone.0257396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
Leukotrienes play a central pathophysiological role in both paediatric and adult asthma. However, 35% to 78% of asthmatics do not respond to leukotriene inhibitors. In this study we tested the role of the LTA4H regulatory variant rs2660845 and age of asthma onset in response to montelukast in ethnically diverse populations. We identified and genotyped 3,594 asthma patients treated with montelukast (2,514 late-onset and 1,080 early-onset) from seven cohorts (UKBiobank, GoSHARE, BREATHE, Tayside RCT, PAGES, GALA II and SAGE). Individuals under montelukast treatment experiencing at least one exacerbation in a 12-month period were compared against individuals with no exacerbation, using logistic regression for each cohort and meta-analysis. While no significant association was found with European late-onset subjects, a meta-analysis of 523 early-onset individuals from European ancestry demonstrated the odds of experiencing asthma exacerbations by carriers of at least one G allele, despite montelukast treatment, were increased (odds-ratio = 2.92, 95%confidence interval (CI): 1.04-8.18, I2 = 62%, p = 0.0412) compared to those in the AA group. When meta-analysing with other ethnic groups, no significant increased risk of asthma exacerbations was found (OR = 1.60, 95% CI: 0.61-4.19, I2 = 85%, p = 0.342). Our study demonstrates that genetic variation in LTA4H, together with timing of asthma onset, may contribute to variability in montelukast response. European individuals with early-onset (≤18y) carrying at least one copy of rs2660845 have increased odd of exacerbation under montelukast treatment, presumably due to the up-regulation of LTA4H activity. These findings support a precision medicine approach for the treatment of asthma with montelukast.
Collapse
Affiliation(s)
- Cyrielle Maroteau
- Centre for Genomics Research, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristobal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristobal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Sundararajan Srinivasan
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Fiona Carr
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Roger Tavendale
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Karen Wilson
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Natalia Hernandez-Pacheco
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristobal de La Laguna, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, San Cristobal de La Laguna, Spain
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Steve Turner
- Child Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Somnath Mukhopadhyay
- Academic Department of Pediatrics, Brighton and Sussex Medical School, Royal Alexandra Children’s Hospital, Brighton, United Kingdom
| | - Anke-Hilse Maitland-van der Zee
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Utrecht, The Netherlands
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Respiratory Medicine and Allergy, Emma’s Children Hospital, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Esteban G. Burchard
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristobal de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Comunidad de Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Simon Young
- BioPharmaceutical Precision Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
- Research & Development Centre, Sysmex, Cambridge, United Kingdom
| | - Glenda Lassi
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Adam Platt
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Colin N. A. Palmer
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
| | | |
Collapse
|
7
|
Gheerbrant H, Guillien A, Vernet R, Lupinek C, Pison C, Pin I, Demenais F, Nadif R, Bousquet J, Pickl WF, Valenta R, Bouzigon E, Siroux V. Associations between specific IgE sensitization to 26 respiratory allergen molecules and HLA class II alleles in the EGEA cohort. Allergy 2021; 76:2575-2586. [PMID: 33742477 DOI: 10.1111/all.14820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Allergy, the most frequent immune disorder affecting 30% of the world's population, is the consequence of immunoglobin E (IgE) sensitization to allergens. Among the genetic factors suspected to be involved in allergy, the HLA class-II genomic region is a strong candidate. OBJECTIVE To assess the association between HLA class-II alleles and specific IgE (sIgE) sensitization to a large number of respiratory allergen molecules. METHODS The analysis relied on 927 participants of the EGEA cohort, including 497 asthmatics. The study focuses on 26 aeroallergens recognized by sIgE in at least 5% of the study population (determined with the MEDALL chip with sIgE ≥ 0.3 ISU) and 23 imputed HLA class-II alleles. For each sIgE sensitization and HLA class-II allele, we fitted a logistic regression model accounting for familial dependence and adjusted for gender, age, and genetic principal components. p-values were corrected for multiple comparisons (False Discovery Rate). RESULTS Most of the 19 statistically significant associations observed regard pollen allergens (mugwort Art v 1, olive tree Ole e 1, timothy grass Phl p 2, Phl p 5 and plantain Pla l 1), three were mold allergen (Alternaria Alt a 1), and a single one regards house dust mite allergen (Der p 7). No association was observed with pet allergens. The strongest associations were found with mugwort Art v 1 (OR = 5.42 (95%CI, 3.30; 8.88), 4.14 (2.65; 6.47), 3.16 (1.88; 5.31) with DQB1*05:01, DQA1*01:01 and DRB1*01:01, respectively). CONCLUSION Our results support the important role of HLA class-II alleles as immune response genes predisposing their carriers for sensitization to various major pollen allergens.
Collapse
Affiliation(s)
- Hubert Gheerbrant
- Service Hospitalier Universitaire Pneumologie Physiologie Centre Hospitalier Universitaire Grenoble Alpes Grenoble France
- Inserm CNRS IAB Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health University Grenoble Alpes Grenoble France
| | - Alicia Guillien
- Inserm CNRS IAB Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health University Grenoble Alpes Grenoble France
| | - Raphaël Vernet
- UMRS 1124 INSERM Group of Genomic Epidemiology of Multifactorial Diseases Université de Paris Paris France
| | - Christian Lupinek
- Division of Immunopathology Department of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Christophe Pison
- Service Hospitalier Universitaire Pneumologie Physiologie Centre Hospitalier Universitaire Grenoble Alpes Grenoble France
- Inserm 1055 Laboratoire de Bioénergétique Fondamentale et Appliquée Grenoble France
| | - Isabelle Pin
- Inserm CNRS IAB Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health University Grenoble Alpes Grenoble France
- Department of Pediatrics Grenoble‐Alpes University Hospital Grenoble France
| | - Florence Demenais
- UMRS 1124 INSERM Group of Genomic Epidemiology of Multifactorial Diseases Université de Paris Paris France
| | - Rachel Nadif
- Université Paris‐Saclay UVSQ Univ. Paris‐Sud Inserm Équipe d'Épidémiologie respiratoire intégrative CESP Villejuif France
| | - Jean Bousquet
- Arnaud de Villeneuve University Hospital and Inserm Montpellier France
| | - Winfried F. Pickl
- Institute of Immunology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Rudolf Valenta
- Division of Immunopathology Department of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- NRC Institute of Immunology FMBA of Russia Moscow Russia
- Laboratory for Immunopathology Department of Clinical Immunology and Allergy Sechenov First Moscow State Medical University Moscow Russia
- Karl Landsteiner University of Health Sciences Krems Austria
| | - Emmanuelle Bouzigon
- UMRS 1124 INSERM Group of Genomic Epidemiology of Multifactorial Diseases Université de Paris Paris France
| | - Valérie Siroux
- Inserm CNRS IAB Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health University Grenoble Alpes Grenoble France
| |
Collapse
|
8
|
Bonner K, Scotney E, Saglani S. Factors and mechanisms contributing to the development of preschool wheezing disorders. Expert Rev Respir Med 2021; 15:745-760. [PMID: 33881953 DOI: 10.1080/17476348.2021.1913057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Half of all children will experience an episode of wheezing by their sixth birthday and acute episodes of wheezing in preschool children account for the majority of all childhood hospital admissions for wheeze. Recurrent preschool wheezing associates with early loss of lung function and a life-long impact on lung health. AREAS COVERED We reviewed the literature on PubMed from August 2010-2020 focussing on factors associated with wheeze inception and persistence, paying specific attention to mechanistic studies that have investigated the impact of early life exposures in shaping immune responses in children with underlying susceptibility to wheezing. In particular, the role of early allergen sensitization, respiratory infections, and the impact of the environment on shaping the airway microbiome and resulting immune responses are discussed. EXPERT OPINION There is an abundance of associative data showing the role of in utero and postnatal factors influencing wheeze onset and persistence. However, mechanistic and stratified, biomarker-based interventional studies that confirm these associations are now needed if we are to impact the significant healthcare burden resulting from preschool wheezing disorders.
Collapse
Affiliation(s)
- Katie Bonner
- Inflammation, Repair & Development Section, National Heart & Lung Institute, Imperial College London, London, UK.,Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Elizabeth Scotney
- Inflammation, Repair & Development Section, National Heart & Lung Institute, Imperial College London, London, UK.,Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Sejal Saglani
- Inflammation, Repair & Development Section, National Heart & Lung Institute, Imperial College London, London, UK.,Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| |
Collapse
|
9
|
Gui H, Levin AM, Hu D, Sleiman P, Xiao S, Mak ACY, Yang M, Barczak AJ, Huntsman S, Eng C, Hochstadt S, Zhang E, Whitehouse K, Simons S, Cabral W, Takriti S, Abecasis G, Blackwell TW, Kang HM, Nickerson DA, Germer S, Lanfear DE, Gilliland F, Gauderman WJ, Kumar R, Erle DJ, Martinez FD, Hakonarson H, Burchard EG, Williams LK. Mapping the 17q12-21.1 Locus for Variants Associated with Early-Onset Asthma in African Americans. Am J Respir Crit Care Med 2021; 203:424-436. [PMID: 32966749 PMCID: PMC7885840 DOI: 10.1164/rccm.202006-2623oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023] Open
Abstract
Rationale: The 17q12-21.1 locus is one of the most highly replicated genetic associations with asthma. Individuals of African descent have lower linkage disequilibrium in this region, which could facilitate identifying causal variants.Objectives: To identify functional variants at 17q12-21.1 associated with early-onset asthma among African American individuals.Methods: We evaluated African American participants from SAPPHIRE (Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-Ethnicity) (n = 1,940), SAGE II (Study of African Americans, Asthma, Genes and Environment) (n = 885), and GCPD-A (Study of the Genetic Causes of Complex Pediatric Disorders-Asthma) (n = 2,805). Associations with asthma onset at ages under 5 years were meta-analyzed across cohorts. The lead signal was reevaluated considering haplotypes informed by genetic ancestry (i.e., African vs. European). Both an expression-quantitative trait locus analysis and a phenome-wide association study were performed on the lead variant.Measurements and Main Results: The meta-analyzed results from SAPPHIRE, SAGE II, and the GCPD-A identified rs11078928 as the top association for early-onset asthma. A haplotype analysis suggested that the asthma association partitioned most closely with the rs11078928 genotype. Genetic ancestry did not appear to influence the effect of this variant. In the expression-quantitative trait locus analysis, rs11078928 was related to alternative splicing of GSDMB (gasdermin-B) transcripts. The phenome-wide association study of rs11078928 suggested that this variant was predominantly associated with asthma and asthma-associated symptoms.Conclusions: A splice-acceptor polymorphism appears to be a causal variant for asthma at the 17q12-21.1 locus. This variant appears to have the same magnitude of effect in individuals of African and European descent.
Collapse
Affiliation(s)
- Hongsheng Gui
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research and
| | - Albert M. Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | | | - Patrick Sleiman
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shujie Xiao
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research and
| | | | - Mao Yang
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research and
| | | | | | | | - Samantha Hochstadt
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research and
| | - Ellen Zhang
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research and
| | - Kyle Whitehouse
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research and
| | - Samantha Simons
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research and
| | - Whitney Cabral
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research and
| | - Sami Takriti
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research and
| | - Gonçalo Abecasis
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
| | - Thomas W. Blackwell
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
| | - Hyun Min Kang
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
- Northwest Genomics Center, Seattle, Washington
- Brotman Baty Institute, Seattle, Washington
| | | | - David E. Lanfear
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research and
| | - Frank Gilliland
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - W. James Gauderman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Rajesh Kumar
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and
| | - David J. Erle
- Department of Medicine
- Lung Biology Center
- CoLabs, and
| | - Fernando D. Martinez
- Arizona Respiratory Center and
- Department of Pediatrics, University of Arizona, Tucson, Arizona
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Esteban G. Burchard
- Department of Medicine
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California
| | - L. Keoki Williams
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research and
| |
Collapse
|
10
|
Ferreira MAR, Vonk JM, Baurecht H, Marenholz I, Tian C, Hoffman JD, Helmer Q, Tillander A, Ullemar V, Lu Y, Grosche S, Rüschendorf F, Granell R, Brumpton BM, Fritsche LG, Bhatta L, Gabrielsen ME, Nielsen JB, Zhou W, Hveem K, Langhammer A, Holmen OL, Løset M, Abecasis GR, Willer CJ, Emami NC, Cavazos TB, Witte JS, Szwajda A, Hinds DA, Hübner N, Weidinger S, Magnusson PKE, Jorgenson E, Karlsson R, Paternoster L, Boomsma DI, Almqvist C, Lee YA, Koppelman GH. Age-of-onset information helps identify 76 genetic variants associated with allergic disease. PLoS Genet 2020; 16:e1008725. [PMID: 32603359 PMCID: PMC7367489 DOI: 10.1371/journal.pgen.1008725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 07/17/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
Abstract
Risk factors that contribute to inter-individual differences in the age-of-onset of allergic diseases are poorly understood. The aim of this study was to identify genetic risk variants associated with the age at which symptoms of allergic disease first develop, considering information from asthma, hay fever and eczema. Self-reported age-of-onset information was available for 117,130 genotyped individuals of European ancestry from the UK Biobank study. For each individual, we identified the earliest age at which asthma, hay fever and/or eczema was first diagnosed and performed a genome-wide association study (GWAS) of this combined age-of-onset phenotype. We identified 50 variants with a significant independent association (P<3x10-8) with age-of-onset. Forty-five variants had comparable effects on the onset of the three individual diseases and 38 were also associated with allergic disease case-control status in an independent study (n = 222,484). We observed a strong negative genetic correlation between age-of-onset and case-control status of allergic disease (rg = -0.63, P = 4.5x10-61), indicating that cases with early disease onset have a greater burden of allergy risk alleles than those with late disease onset. Subsequently, a multivariate GWAS of age-of-onset and case-control status identified a further 26 associations that were missed by the univariate analyses of age-of-onset or case-control status only. Collectively, of the 76 variants identified, 18 represent novel associations for allergic disease. We identified 81 likely target genes of the 76 associated variants based on information from expression quantitative trait loci (eQTL) and non-synonymous variants, of which we highlight ADAM15, FOSL2, TRIM8, BMPR2, CD200R1, PRKCQ, NOD2, SMAD4, ABCA7 and UBE2L3. Our results support the notion that early and late onset allergic disease have partly distinct genetic architectures, potentially explaining known differences in pathophysiology between individuals.
Collapse
Affiliation(s)
- Manuel A. R. Ferreira
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Judith M. Vonk
- University of Groningen, University Medical Center Groningen, Epidemiology, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - Hansjörg Baurecht
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Ingo Marenholz
- Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center of Charité Universitätsmedizin Berlin and Max Delbrück Center, Berlin, Germany
| | - Chao Tian
- 23andMe, Inc., Mountain View, California, United States of America
| | - Joshua D. Hoffman
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Quinta Helmer
- Department Biological Psychology, Netherlands Twin Register, Vrije University, Amsterdam, The Netherlands
| | - Annika Tillander
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Grosche
- Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center of Charité Universitätsmedizin Berlin and Max Delbrück Center, Berlin, Germany
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Raquel Granell
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Ben M. Brumpton
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Thoracic Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Lars G. Fritsche
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Laxmi Bhatta
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maiken E. Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonas B. Nielsen
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Wei Zhou
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnulf Langhammer
- The HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Oddgeir L. Holmen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mari Løset
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Gonçalo R. Abecasis
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cristen J. Willer
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nima C. Emami
- Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, United States of America
| | - Taylor B. Cavazos
- Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, California, United States of America
| | - John S. Witte
- Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California, United States of America
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, United States of America
| | - Agnieszka Szwajda
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | | | - David A. Hinds
- 23andMe, Inc., Mountain View, California, United States of America
| | - Norbert Hübner
- Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
| | - Stephan Weidinger
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Patrik KE Magnusson
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Dorret I. Boomsma
- Department Biological Psychology, Netherlands Twin Register, Vrije University, Amsterdam, The Netherlands
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Young-Ae Lee
- Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center of Charité Universitätsmedizin Berlin and Max Delbrück Center, Berlin, Germany
| | - Gerard H. Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Pediatric Pulmonology and Pediatric Allergology, and University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| |
Collapse
|
11
|
Portelli MA, Dijk FN, Ketelaar ME, Shrine N, Hankinson J, Bhaker S, Grotenboer NS, Obeidat M, Henry AP, Billington CK, Shaw D, Johnson SR, Pogson ZE, Fogarty A, McKeever TM, Nickle DC, Bossé Y, van den Berge M, Faiz A, Brouwer S, Vonk JM, de Vos P, Brandsma CA, Vermeulen CJ, Singapuri A, Heaney LG, Mansur AH, Chaudhuri R, Thomson NC, Holloway JW, Lockett GA, Howarth PH, Niven R, Simpson A, Blakey JD, Tobin MD, Postma DS, Hall IP, Wain LV, Nawijn MC, Brightling CE, Koppelman GH, Sayers I. Phenotypic and functional translation of IL1RL1 locus polymorphisms in lung tissue and asthmatic airway epithelium. JCI Insight 2020; 5:132446. [PMID: 32324168 PMCID: PMC7205441 DOI: 10.1172/jci.insight.132446] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
The IL1RL1 (ST2) gene locus is robustly associated with asthma; however, the contribution of single nucleotide polymorphisms (SNPs) in this locus to specific asthma subtypes and the functional mechanisms underlying these associations remain to be defined. We tested for association between IL1RL1 region SNPs and characteristics of asthma as defined by clinical and immunological measures and addressed functional effects of these genetic variants in lung tissue and airway epithelium. Utilizing 4 independent cohorts (Lifelines, Dutch Asthma GWAS [DAG], Genetics of Asthma Severity and Phenotypes [GASP], and Manchester Asthma and Allergy Study [MAAS]) and resequencing data, we identified 3 key signals associated with asthma features. Investigations in lung tissue and primary bronchial epithelial cells identified context-dependent relationships between the signals and IL1RL1 mRNA and soluble protein expression. This was also observed for asthma-associated IL1RL1 nonsynonymous coding TIR domain SNPs. Bronchial epithelial cell cultures from asthma patients, exposed to exacerbation-relevant stimulations, revealed modulatory effects for all 4 signals on IL1RL1 mRNA and/or protein expression, suggesting SNP-environment interactions. The IL1RL1 TIR signaling domain haplotype affected IL-33–driven NF-κB signaling, while not interfering with TLR signaling. In summary, we identify that IL1RL1 genetic signals potentially contribute to severe and eosinophilic phenotypes in asthma, as well as provide initial mechanistic insight, including genetic regulation of IL1RL1 isoform expression and receptor signaling.
Collapse
Affiliation(s)
- Michael A Portelli
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - F Nicole Dijk
- Department of Pediatric Pulmonology and Pediatric Allergology, and
| | - Maria E Ketelaar
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,Department of Pediatric Pulmonology and Pediatric Allergology, and.,Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Jenny Hankinson
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Sangita Bhaker
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Néomi S Grotenboer
- Department of Pediatric Pulmonology and Pediatric Allergology, and.,Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Ma'en Obeidat
- The University of British Columbia Center for Heart Lung Innovation, St. Paul's Hospital Vancouver, Vancouver, British Columbia, Canada
| | - Amanda P Henry
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Charlotte K Billington
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Dominick Shaw
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simon R Johnson
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Zara Ek Pogson
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - Andrew Fogarty
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - Tricia M McKeever
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - David C Nickle
- Departments of Genetics and Pharmacogenomics, Merck Research Laboratories, Boston, Massachusetts, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pulmonary Diseases, and
| | - Alen Faiz
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pulmonary Diseases, and
| | - Sharon Brouwer
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Judith M Vonk
- Department of Epidemiology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Cornelis J Vermeulen
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Amisha Singapuri
- Respiratory sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Liam G Heaney
- Centre for Experimental Medicine, Queens University of Belfast, Belfast, United Kingdom
| | - Adel H Mansur
- Department of Respiratory Medicine, Birmingham Heartlands Hospital and University of Birmingham, Birmingham, United Kingdom
| | - Rekha Chaudhuri
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Neil C Thomson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - John W Holloway
- Department of Human Development and.,Department of Health & Clinical and Experimental Sciences, Faculty of Medicine and NIH Research (NIHR), Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Gabrielle A Lockett
- Department of Human Development and.,Department of Health & Clinical and Experimental Sciences, Faculty of Medicine and NIH Research (NIHR), Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Peter H Howarth
- Department of Human Development and.,Department of Health & Clinical and Experimental Sciences, Faculty of Medicine and NIH Research (NIHR), Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Robert Niven
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Angela Simpson
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - John D Blakey
- Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom.,NIHR, Leicester Respiratory Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Dirkje S Postma
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pulmonary Diseases, and
| | - Ian P Hall
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom.,NIHR, Leicester Respiratory Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Martijn C Nawijn
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Christopher E Brightling
- Respiratory sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom.,NIHR, Leicester Respiratory Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | | | - Ian Sayers
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
12
|
Sasaki H, Miyata J, Maki Y, Kimizuka Y, Hayashi N, Fujikura Y, Kawana A. Development of Allergic Bronchopulmonary Aspergillosis in a Patient with Crohn's Disease. Intern Med 2019; 58:2835-2838. [PMID: 31243216 PMCID: PMC6815903 DOI: 10.2169/internalmedicine.2785-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is an eosinophilic inflammatory condition characterized by exaggerated immune responses to the fungal genus Aspergillus. Pulmonary manifestations in patients with Crohn's disease (CD) are frequent comorbidities. A 66-year-old man with CD treated with an anti-tumor necrosis factor-α antibody presented with dyspnea. Laboratory findings of elevated blood eosinophils and total serum IgE and positive aspergillus-specific antibodies as well as imaging findings of central bronchiectasis and mucoid impaction indicated a diagnosis of ABPA. To our knowledge, this is the first report of ABPA arising in a patient with CD. We discuss the pathophysiological mechanism of this rare complication.
Collapse
Affiliation(s)
- Hisashi Sasaki
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Japan
| | - Jun Miyata
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Japan
| | - Yohei Maki
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Japan
| | - Yoshifumi Kimizuka
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Japan
| | - Nobuyoshi Hayashi
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Japan
| | - Yuji Fujikura
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Japan
| | - Akihiko Kawana
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Japan
| |
Collapse
|
13
|
Sugier PE, Sarnowski C, Granell R, Laprise C, Ege MJ, Margaritte-Jeannin P, Dizier MH, Minelli C, Moffatt MF, Lathrop M, Cookson WOCM, Henderson AJ, von Mutius E, Kogevinas M, Demenais F, Bouzigon E. Genome-wide interaction study of early-life smoking exposure on time-to-asthma onset in childhood. Clin Exp Allergy 2019; 49:1342-1351. [PMID: 31379025 DOI: 10.1111/cea.13476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/31/2019] [Accepted: 06/09/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Asthma, a heterogeneous disease with variable age of onset, results from the interplay between genetic and environmental factors. Early-life tobacco smoke (ELTS) exposure is a major asthma risk factor. Only a few genetic loci have been reported to interact with ELTS exposure in asthma. OBJECTIVE Our aim was to identify new loci interacting with ELTS exposure on time-to-asthma onset (TAO) in childhood. METHODS We conducted genome-wide interaction analyses of ELTS exposure on time-to-asthma onset in childhood in five European-ancestry studies (totalling 8273 subjects) using Cox proportional-hazard model. The results of all five genome-wide analyses were meta-analysed. RESULTS The 13q21 locus showed genome-wide significant interaction with ELTS exposure (P = 4.3 × 10-8 for rs7334050 within KLHL1 with consistent results across the five studies). Suggestive interactions (P < 5 × 10-6 ) were found at three other loci: 20p12 (rs13037508 within MACROD2; P = 4.9 × 10-7 ), 14q22 (rs7493885 near NIN; P = 2.9 × 10-6 ) and 2p22 (rs232542 near CYP1B1; P = 4.1 × 10-6 ). Functional annotations and the literature showed that the lead SNPs at these four loci influence DNA methylation in the blood and are located nearby CpG sites reported to be associated with exposure to tobacco smoke components, which strongly support our findings. CONCLUSIONS AND CLINICAL RELEVANCE We identified novel candidate genes interacting with ELTS exposure on time-to-asthma onset in childhood. These genes have plausible biological relevance related to tobacco smoke exposure. Further epigenetic and functional studies are needed to confirm these findings and to shed light on the underlying mechanisms.
Collapse
Affiliation(s)
- Pierre-Emmanuel Sugier
- Genetic Epidemiology and Functional Genomics of Multifactorial Diseases Team, Inserm, UMRS-1124, Université Paris Descartes, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Chloé Sarnowski
- Genetic Epidemiology and Functional Genomics of Multifactorial Diseases Team, Inserm, UMRS-1124, Université Paris Descartes, Paris, France
| | - Raquel Granell
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Markus J Ege
- Dr von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Patricia Margaritte-Jeannin
- Genetic Epidemiology and Functional Genomics of Multifactorial Diseases Team, Inserm, UMRS-1124, Université Paris Descartes, Paris, France
| | - Marie-Hélène Dizier
- Genetic Epidemiology and Functional Genomics of Multifactorial Diseases Team, Inserm, UMRS-1124, Université Paris Descartes, Paris, France
| | - Cosetta Minelli
- Population Health & Occupational Disease, National Heart and Lung Institute, Imperial College, London, UK
| | - Miriam F Moffatt
- Section of Genomic Medicine, National Heart Lung Institute, Imperial College London, London, UK
| | - Mark Lathrop
- McGill University and Génome Québec Innovation Centre, Montréal, QC, Canada
| | - William O C M Cookson
- Section of Genomic Medicine, National Heart Lung Institute, Imperial College London, London, UK
| | - A John Henderson
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Erika von Mutius
- Dr von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
- Institute for Asthma and Allergy Prevention, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Manolis Kogevinas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona, Spain
| | - Florence Demenais
- Genetic Epidemiology and Functional Genomics of Multifactorial Diseases Team, Inserm, UMRS-1124, Université Paris Descartes, Paris, France
| | - Emmanuelle Bouzigon
- Genetic Epidemiology and Functional Genomics of Multifactorial Diseases Team, Inserm, UMRS-1124, Université Paris Descartes, Paris, France
| |
Collapse
|
14
|
Shared and distinct genetic risk factors for childhood-onset and adult-onset asthma: genome-wide and transcriptome-wide studies. THE LANCET RESPIRATORY MEDICINE 2019; 7:509-522. [PMID: 31036433 DOI: 10.1016/s2213-2600(19)30055-4] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Childhood-onset and adult-onset asthma differ with respect to severity and comorbidities. Whether they also differ with respect to genetic risk factors has not been previously investigated in large samples. The goals of this study were to identify shared and distinct genetic risk loci for childhood-onset and adult-onset asthma, and to identify the genes that might mediate the effects of associated variation. METHODS We did genome-wide and transcriptome-wide studies, using data from the UK Biobank, in individuals with asthma, including adults with childhood-onset asthma (onset before 12 years of age), adults with adult-onset asthma (onset between 26 and 65 years of age), and adults without asthma (controls; aged older than 38 years). We did genome-wide association studies (GWAS) for childhood-onset asthma and adult-onset asthma each compared with shared controls, and for age of asthma onset in all asthma cases, with a genome-wide significance threshold of p<5 × 10-8. Enrichment studies determined the tissues in which genes at GWAS loci were most highly expressed, and PrediXcan, a transcriptome-wide gene-based test, was used to identify candidate risk genes. FINDINGS Of 376 358 British white individuals from the UK Biobank, we included 37 846 with self-reports of doctor-diagnosed asthma: 9433 adults with childhood-onset asthma; 21 564 adults with adult-onset asthma; and an additional 6849 young adults with asthma with onset between 12 and 25 years of age. For the first and second GWAS analyses, 318 237 individuals older than 38 years without asthma were used as controls. We detected 61 independent asthma loci: 23 were childhood-onset specific, one was adult-onset specific, and 37 were shared. 19 loci were associated with age of asthma onset. The most significant asthma-associated locus was at 17q12 (odds ratio 1·406, 95% CI 1·365-1·448; p=1·45 × 10-111) in the childhood-onset GWAS. Genes at the childhood onset-specific loci were most highly expressed in skin, blood, and small intestine; genes at the adult onset-specific loci were most highly expressed in lung, blood, small intestine, and spleen. PrediXcan identified 113 unique candidate genes at 22 of the 61 GWAS loci. Single-nucleotide polymorphism-based heritability estimates were more than three times larger for childhood-onset asthma (0·327) than for adult-onset disease (0·098). The onset of disease in childhood was associated with additional genes with relatively large effect sizes, with the largest odds ratio observed at the FLG locus at 1q21.3 (1·970, 95% CI 1·823-2·129). INTERPRETATION Genetic risk factors for adult-onset asthma are largely a subset of the genetic risk for childhood-onset asthma but with overall smaller effects, suggesting a greater role for non-genetic risk factors in adult-onset asthma. Combined with gene expression and tissue enrichment patterns, we suggest that the establishment of disease in children is driven more by dysregulated allergy and epithelial barrier function genes, whereas the cause of adult-onset asthma is more lung-centred and environmentally determined, but with immune-mediated mechanisms driving disease progression in both children and adults. FUNDING US National Institutes of Health.
Collapse
|
15
|
Genetic Architectures of Childhood- and Adult-Onset Asthma Are Partly Distinct. Am J Hum Genet 2019; 104:665-684. [PMID: 30929738 DOI: 10.1016/j.ajhg.2019.02.022] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
The extent to which genetic risk factors are shared between childhood-onset (COA) and adult-onset (AOA) asthma has not been estimated. On the basis of data from the UK Biobank study (n = 447,628), we found that the variance in disease liability explained by common variants is higher for COA (onset at ages between 0 and 19 years; h2g = 25.6%) than for AOA (onset at ages between 20 and 60 years; h2g = 10.6%). The genetic correlation (rg) between COA and AOA was 0.67. Variation in age of onset among COA-affected individuals had a low heritability (h2g = 5%), which we confirmed in independent studies and also among AOA-affected individuals. To identify subtype-specific genetic associations, we performed a genome-wide association study (GWAS) in the UK Biobank for COA (13,962 affected individuals) and a separate GWAS for AOA (26,582 affected individuals) by using a common set of 300,671 controls for both studies. We identified 123 independent associations for COA and 56 for AOA (37 overlapped); of these, 98 and 34, respectively, were reproducible in an independent study (n = 262,767). Collectively, 28 associations were not previously reported. For 96 COA-associated variants, including five variants that represent COA-specific risk factors, the risk allele was more common in COA- than in AOA-affected individuals. Conversely, we identified three variants that are stronger risk factors for AOA. Variants associated with obesity and smoking had a stronger contribution to the risk of AOA than to the risk of COA. Lastly, we identified 109 likely target genes of the associated variants, primarily on the basis of correlated expression quantitative trait loci (up to n = 31,684). GWAS informed by age of onset can identify subtype-specific risk variants, which can help us understand differences in pathophysiology between COA and AOA and so can be informative for drug development.
Collapse
|
16
|
Tse SM, Krajinovic M, Chauhan BF, Zemek R, Gravel J, Chalut D, Poonai N, Quach C, Laberge S, Ducharme FM. Genetic determinants of acute asthma therapy response in children with moderate-to-severe asthma exacerbations. Pediatr Pulmonol 2019; 54:378-385. [PMID: 30644648 DOI: 10.1002/ppul.24247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/13/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND We documented inter-individual variability in the response to acute asthma therapy in children, attributed in part to five clinical factors (oxygen saturation, asthma severity score, virus detection, fever, symptoms between exacerbations; DOORWAY study). The contribution of genetic determinants of failure of acute asthma management have not been elucidated. OBJECTIVE We aim to determine single nucleotide polymorphisms (SNP) associated with emergency department (ED) management failure in children. METHODS A prospective cohort of 591 Caucasian children aged 1-17 years with moderate-to-severe asthma managed with standardized protocol were included. We examined 53 SNPs previously associated with asthma development, phenotypes, or bronchodilator or corticosteroids response. Associations between SNPs and management failure (hospitalization, active asthma management ≥8 h in ED, or a return visit within 72 h for one of two previous criteria) were examined using logistic regression, adjusting for the five clinical predictors of management failure. RESULTS Four-hundred ninety-one subjects had complete clinical data and usable DNA samples. While controlling for clinical determinants, rs295137 in SPATS2L (OR = 1.77, 95%CI: 1.17, 2.68) was significantly associated with increased odds of ED management failure. Two SNPs in IL33 were associated with decreased odds of ED management failure: rs7037276 (OR = 0.55, 95%CI: 0.33, 0.90), and rs1342326 (OR = 0.52, 95%CI: 0.32, 0.86). The addition of these three SNPs to the clinical predictors significantly improved the model's predictive performance (P < 0.0004). CONCLUSION Three SNPs were significantly associated with ED management failure in addition to clinical predictors, contributing to inter-individual variability. None has been previously associated with treatment response to acute asthma management.
Collapse
Affiliation(s)
- Sze Man Tse
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada.,Research Centre, Sainte-Justine University Health Centre, Montreal, Quebec, Canada
| | - Maja Krajinovic
- Research Centre, Sainte-Justine University Health Centre, Montreal, Quebec, Canada
| | - Bhupendrasinh F Chauhan
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, University of Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Jocelyn Gravel
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada.,Research Centre, Sainte-Justine University Health Centre, Montreal, Quebec, Canada
| | - Dominic Chalut
- Montreal Children's Hospital, McGill University Health Center, Montreal, Quebec, Canada
| | - Naveen Poonai
- Children's Hospital, London Health Sciences Center, London, Ontario, Canada
| | - Caroline Quach
- Research Centre, Sainte-Justine University Health Centre, Montreal, Quebec, Canada.,Department of Microbiology, Infectious Diseases, and Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Sophie Laberge
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada.,Research Centre, Sainte-Justine University Health Centre, Montreal, Quebec, Canada
| | - Francine M Ducharme
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada.,Research Centre, Sainte-Justine University Health Centre, Montreal, Quebec, Canada.,Department of Social and Preventive Medicine, University of Montreal, Montreal, Quebec, Canada
| | | |
Collapse
|
17
|
Miller MH, Shehat MG, Alcedo KP, Spinel LP, Soulakova J, Tigno-Aranjuez JT. Frontline Science: RIP2 promotes house dust mite-induced allergic airway inflammation. J Leukoc Biol 2018; 104:447-459. [PMID: 30052281 PMCID: PMC6113092 DOI: 10.1002/jlb.4hi0118-017rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/16/2022] Open
Abstract
House dust mites (HDMs) are one of the most significant environmental allergens in the establishment of the so-called "Atopic March." It is known that the immune response to HDM is Th2 dominant, but the innate mechanisms leading to HDM-induced type 2 responses are still not completely understood. A number of innate immune receptors have been implicated in the response to HDM including toll-like receptors, C-type lectin receptors, and protease activated receptors. NOD2 is a member of the NOD-like receptor family, which has been reported to be involved in the establishment of type 2 immunity and in blocking respiratory tolerance. NOD2 mediates its effects through its downstream effector kinase, receptor interacting protein (RIP2). It has not been shown if RIP2 is involved in the innate response to HDM and in the resulting generation of type 2 immunity. Furthermore, the role of RIP2 in modulating allergic airway inflammation has been controversial. In this study, we show that RIP2 is activated in airway epithelial cells in response to HDM and is important for the production of CCL2. Using a murine HDM asthma model, we demonstrate that lung pathology, local airway inflammation, inflammatory cytokines, HDM-specific IgG1 antibody production, and HDM-specific Th2 responses are all reduced in RIP2 knockout mice compared to WT animals. These data illustrate that RIP2 can be activated by a relevant allergic stimulus and that such activation can contribute to allergic airway inflammation. These findings also suggest that RIP2 inhibitors might have some efficacy in down-regulating the inflammatory response in type 2 dominated diseases.
Collapse
Affiliation(s)
- Madelyn H Miller
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Michael G Shehat
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Karel P Alcedo
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lina P Spinel
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Julia Soulakova
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Justine T Tigno-Aranjuez
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
18
|
Moreno-Moral A, Bagnati M, Koturan S, Ko JH, Fonseca C, Harmston N, Game L, Martin J, Ong V, Abraham DJ, Denton CP, Behmoaras J, Petretto E. Changes in macrophage transcriptome associate with systemic sclerosis and mediate GSDMA contribution to disease risk. Ann Rheum Dis 2018; 77:596-601. [PMID: 29348297 PMCID: PMC5890626 DOI: 10.1136/annrheumdis-2017-212454] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/05/2017] [Accepted: 12/27/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Several common and rare risk variants have been reported for systemic sclerosis (SSc), but the effector cell(s) mediating the function of these genetic variants remains to be elucidated. While innate immune cells have been proposed as the critical targets to interfere with the disease process underlying SSc, no studies have comprehensively established their effector role. Here we investigated the contribution of monocyte-derived macrophages (MDMs) in mediating genetic susceptibility to SSc. METHODS We carried out RNA sequencing and genome-wide genotyping in MDMs from 57 patients with SSc and 15 controls. Our differential expression and expression quantitative trait locus (eQTL) analysis in SSc was further integrated with epigenetic, expression and eQTL data from skin, monocytes, neutrophils and lymphocytes. RESULTS We identified 602 genes upregulated and downregulated in SSc macrophages that were significantly enriched for genes previously implicated in SSc susceptibility (P=5×10-4), and 270 cis-regulated genes in MDMs. Among these, GSDMA was reported to carry an SSc risk variant (rs3894194) regulating expression of neighbouring genes in blood. We show that GSDMA is upregulated in SSc MDMs (P=8.4×10-4) but not in the skin, and is a significant eQTL in SSc macrophages and lipopolysaccharide/interferon gamma (IFNγ)-stimulated monocytes. Furthermore, we identify an SSc macrophage transcriptome signature characterised by upregulation of glycolysis, hypoxia and mTOR signalling and a downregulation of IFNγ response pathways. CONCLUSIONS Our data further establish the link between macrophages and SSc, and suggest that the contribution of the rs3894194 risk variant to SSc susceptibility can be mediated by GSDMA expression in macrophages.
Collapse
Affiliation(s)
- Aida Moreno-Moral
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Marta Bagnati
- Centre for Complement and Inflammation Research, Hammersmith Hospital, Imperial College London, London, UK
| | - Surya Koturan
- Centre for Complement and Inflammation Research, Hammersmith Hospital, Imperial College London, London, UK
| | - Jeong-Hun Ko
- Centre for Complement and Inflammation Research, Hammersmith Hospital, Imperial College London, London, UK
| | - Carmen Fonseca
- Division of Medicine, Department of Inflammation, Centre for Rheumatology and Connective Tissue Diseases, Royal Free and University College Medical School, University College London, London, UK
| | - Nathan Harmston
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Laurence Game
- Genomics Laboratory, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Cientıficas, Granada, Spain
| | - Voon Ong
- Division of Medicine, Department of Inflammation, Centre for Rheumatology and Connective Tissue Diseases, Royal Free and University College Medical School, University College London, London, UK
| | - David J Abraham
- Division of Medicine, Department of Inflammation, Centre for Rheumatology and Connective Tissue Diseases, Royal Free and University College Medical School, University College London, London, UK
| | - Christopher P Denton
- Division of Medicine, Department of Inflammation, Centre for Rheumatology and Connective Tissue Diseases, Royal Free and University College Medical School, University College London, London, UK
| | - Jacques Behmoaras
- Centre for Complement and Inflammation Research, Hammersmith Hospital, Imperial College London, London, UK
| | - Enrico Petretto
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- Faculty of Medicine, Medical Research Council (MRC) London Institute of Medical Sciences, Imperial College London, London, UK
| |
Collapse
|
19
|
Dijk FN, Xu C, Melén E, Carsin AE, Kumar A, Nolte IM, Gruzieva O, Pershagen G, Grotenboer NS, Savenije OEM, Antó JM, Lavi I, Dobaño C, Bousquet J, van der Vlies P, van der Valk RJP, de Jongste JC, Nawijn MC, Guerra S, Postma DS, Koppelman GH. Genetic regulation of IL1RL1 methylation and IL1RL1-a protein levels in asthma. Eur Respir J 2018. [PMID: 29519908 DOI: 10.1183/13993003.01377-2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Interleukin-1 receptor-like 1 (IL1RL1) is an important asthma gene. (Epi)genetic regulation of IL1RL1 protein expression has not been established. We assessed the association between IL1RL1 single nucleotide polymorphisms (SNPs), IL1RL1 methylation and serum IL1RL1-a protein levels, and aimed to identify causal pathways in asthma.Associations of IL1RL1 SNPs with asthma were determined in the Dutch Asthma Genome-wide Association Study cohort and three European birth cohorts, BAMSE (Children/Barn, Allergy, Milieu, Stockholm, an Epidemiological survey), INMA (Infancia y Medio Ambiente) and PIAMA (Prevention and Incidence of Asthma and Mite Allergy), participating in the Mechanisms of the Development of Allergy study. We performed blood DNA IL1RL1 methylation quantitative trait locus (QTL) analysis (n=496) and (epi)genome-wide protein QTL analysis on serum IL1RL1-a levels (n=1462). We investigated the association of IL1RL1 CpG methylation with asthma (n=632) and IL1RL1-a levels (n=548), with subsequent causal inference testing. Finally, we determined the association of IL1RL1-a levels with asthma and its clinical characteristics (n=1101).IL1RL1 asthma-risk SNPs strongly associated with IL1RL1 methylation (rs1420101; p=3.7×10-16) and serum IL1RL1-a levels (p=2.8×10-56). IL1RL1 methylation was not associated with asthma or IL1RL1-a levels. IL1RL1-a levels negatively correlated with blood eosinophil counts, whereas there was no association between IL1RL1-a levels and asthma.In conclusion, asthma-associated IL1RL1 SNPs strongly regulate IL1RL1 methylation and serum IL1RL1-a levels, yet neither these IL1RL1-methylation CpG sites nor IL1RL1-a levels are associated with asthma.
Collapse
Affiliation(s)
- F Nicole Dijk
- Dept of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Chengjian Xu
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Dept of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Dept of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden.,Sachs Children's Hospital, South General Hospital, Stockholm, Sweden
| | - Anne-Elie Carsin
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Asish Kumar
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Dept of Public Health Epidemiology, Unit of Chronic Disease Epidemiology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Ilja M Nolte
- Dept of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Goran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Neomi S Grotenboer
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Laboratory of Allergology and Pulmonary Diseases, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Olga E M Savenije
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Dept of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Josep Maria Antó
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Iris Lavi
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Carlota Dobaño
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jean Bousquet
- University Hospital, Montpellier, France.,MACVIA-LR, Contre les MAladies Chroniques pour un VIeillissement Actif en Languedoc-Roussillon, European Innovation Partnership on Active and Healthy Ageing Reference Site, France.,INSERM, VIMA: Ageing and chronic diseases. Epidemiological and Public Health Approaches, U1168, UVSQ, UMR-S 1168, Université Versailles St-Quentin-en-Yvelines, Paris, France
| | - Pieter van der Vlies
- Dept of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | - Martijn C Nawijn
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Laboratory of Allergology and Pulmonary Diseases, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefano Guerra
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Dirkje S Postma
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Dept of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerard H Koppelman
- Dept of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands .,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Abstract
Asthma is the most common chronic disease in children, imposing a consistent burden on health system. In recent years, prevalence of asthma symptoms became globally increased in children and adolescents, particularly in Low-Middle Income Countries (LMICs). Host (genetics, atopy) and environmental factors (microbial exposure, exposure to passive smoking and air pollution), seemed to contribute to this trend. The increased prevalence observed in metropolitan areas with respect to rural ones and, overall, in industrialized countries, highlighted the role of air pollution in asthma inception. Asthma accounts for 1.1% of the overall global estimate of "Disability-adjusted life years" (DALYs)/100,000 for all causes. Mortality in children is low and it decreased across Europe over recent years. Children from LMICs particularly suffer a disproportionately higher burden in terms of morbidity and mortality. Global asthma-related costs are high and are usually are classified into direct, indirect and intangible costs. Direct costs account for 50-80% of the total costs. Asthma is one of the main causes of hospitalization which are particularly common in children aged < 5 years with a prevalence that has been increased during the last two decades, mostly in LMICs. Indirect costs are usually higher than in older patients, including both school and work-related losses. Intangible costs are unquantifiable, since they are related to impairment of quality of life, limitation of physical activities and study performance. The implementation of strategies aimed at early detect asthma thus providing access to the proper treatment has been shown to effectively reduce the burden of the disease.
Collapse
Affiliation(s)
- Giuliana Ferrante
- Department of Science for Health Promotion and Mother and Child Care, University of Palermo, Palermo, Italy
| | - Stefania La Grutta
- Department of Science for Health Promotion and Mother and Child Care, University of Palermo, Palermo, Italy.,National Research Council of Italy, Institute of Biomedicine and Molecular Immunology, Palermo, Italy
| |
Collapse
|
21
|
Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Genet 2017; 49:1752-1757. [PMID: 29083406 PMCID: PMC5989923 DOI: 10.1038/ng.3985] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022]
Abstract
Asthma, hay fever (or allergic rhinitis) and eczema (or atopic
dermatitis) often coexist in the same individuals1, partly because of a shared genetic origin2–4. To
identify shared risk variants, we performed a genome-wide association study
(GWAS, n=360,838) of a broad allergic disease phenotype that
considers the presence of any one of these three diseases. We identified 136
independent risk variants (P<3x10-8),
including 73 not previously reported, which implicate 132 nearby genes in
allergic disease pathophysiology. Disease-specific effects were detected for
only six variants, confirming that most represent shared risk factors.
Tissue-specific heritability and biological process enrichment analyses suggest
that shared risk variants influence lymphocyte-mediated immunity. Six target
genes provide an opportunity for drug repositioning, while for 36 genes CpG
methylation was found to influence transcription independently of genetic
effects. Asthma, hay fever and eczema partly coexist because they share many
genetic risk variants that dysregulate the expression of immune-related
genes.
Collapse
|
22
|
Sugier PE, Brossard M, Sarnowski C, Vaysse A, Morin A, Pain L, Margaritte-Jeannin P, Dizier MH, Cookson WOCM, Lathrop M, Moffatt MF, Laprise C, Demenais F, Bouzigon E. A novel role for ciliary function in atopy: ADGRV1 and DNAH5 interactions. J Allergy Clin Immunol 2017; 141:1659-1667.e11. [PMID: 28927820 DOI: 10.1016/j.jaci.2017.06.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 05/30/2017] [Accepted: 06/21/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Atopy, an endotype underlying allergic diseases, has a substantial genetic component. OBJECTIVE Our goal was to identify novel genes associated with atopy in asthma-ascertained families. METHODS We implemented a 3-step analysis strategy in 3 data sets: the Epidemiological Study on the Genetics and Environment of Asthma (EGEA) data set (1660 subjects), the Saguenay-Lac-Saint-Jean study data set (1138 subjects), and the Medical Research Council (MRC) data set (446 subjects). This strategy included a single nucleotide polymorphism (SNP) genome-wide association study (GWAS), the selection of related gene pairs based on statistical filtering of GWAS results, and text-mining filtering using Gene Relationships Across Implicated Loci and SNP-SNP interaction analysis of selected gene pairs. RESULTS We identified the 5q14 locus, harboring the adhesion G protein-coupled receptor V1 (ADGRV1) gene, which showed genome-wide significant association with atopy (rs4916831, meta-analysis P value = 6.8 × 10-9). Statistical filtering of GWAS results followed by text-mining filtering revealed relationships between ADGRV1 and 3 genes showing suggestive association with atopy (P ≤ 10-4). SNP-SNP interaction analysis between ADGRV1 and these 3 genes showed significant interaction between ADGRV1 rs17554723 and 2 correlated SNPs (rs2134256 and rs1354187) within the dynein axonemal heavy chain 5 (DNAH5) gene (Pmeta-int = 3.6 × 10-5 and 6.1 × 10-5, which met the multiple-testing corrected threshold of 7.3 × 10-5). Further conditional analysis indicated that rs2134256 alone accounted for the interaction signal with rs17554723. CONCLUSION Because both DNAH5 and ADGRV1 contribute to ciliary function, this study suggests that ciliary dysfunction might represent a novel mechanism underlying atopy. Combining GWAS and epistasis analysis driven by statistical and knowledge-based evidence represents a promising approach for identifying new genes involved in complex traits.
Collapse
Affiliation(s)
- Pierre-Emmanuel Sugier
- Genetic Variation and Human Diseases Unit, INSERM, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Myriam Brossard
- Genetic Variation and Human Diseases Unit, INSERM, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France
| | - Chloé Sarnowski
- Genetic Variation and Human Diseases Unit, INSERM, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France
| | - Amaury Vaysse
- Genetic Variation and Human Diseases Unit, INSERM, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France
| | - Andréanne Morin
- McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada; Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Lucile Pain
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Patricia Margaritte-Jeannin
- Genetic Variation and Human Diseases Unit, INSERM, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France
| | - Marie-Hélène Dizier
- Genetic Variation and Human Diseases Unit, INSERM, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France
| | - William O C M Cookson
- Section of Genomic Medicine, National Heart and Lung Institute, London, United Kingdom
| | - Mark Lathrop
- McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada
| | - Miriam F Moffatt
- Section of Genomic Medicine, National Heart and Lung Institute, London, United Kingdom
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Florence Demenais
- Genetic Variation and Human Diseases Unit, INSERM, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France.
| | - Emmanuelle Bouzigon
- Genetic Variation and Human Diseases Unit, INSERM, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
23
|
Anderson WC, Apter AJ, Dutmer CM, Searing DA, Szefler SJ. Advances in asthma in 2016: Designing individualized approaches to management. J Allergy Clin Immunol 2017; 140:671-680. [PMID: 28709967 DOI: 10.1016/j.jaci.2017.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022]
Abstract
In this year's Advances in Asthma review, we discuss viral infections in asthmatic patients and potential therapeutic agents, the microbiome, novel genetic associations with asthma, air quality and climate effects on asthma, exposures during development and long-term sequelae of childhood asthma, patient-centered outcomes research, and precision medicine. In addition, we discuss application of biomarkers to precision medicine and new information on asthma medications. New evidence indicates that rhinovirus-triggered asthma exacerbations become more severe as the degree of sensitization to dust mite and mouse increase. The 2 biggest drivers of asthma severity are an allergy pathway starting with allergic sensitization and an environmental tobacco smoke pathway. In addition, allergic sensitization and blood eosinophils can be used to select medications for management of early asthma in young children. These current findings, among others covered in this review, represent significant steps toward addressing rapidly advancing areas of knowledge that have implications for asthma management.
Collapse
Affiliation(s)
- William C Anderson
- Allergy & Immunology Section, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| | - Andrea J Apter
- Section of Allergy & Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Cullen M Dutmer
- Allergy & Immunology Section, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| | - Daniel A Searing
- Allergy & Immunology Section, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| | - Stanley J Szefler
- Breathing Institute and Pulmonary Medicine Section, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo.
| |
Collapse
|
24
|
Edwards MR, Saglani S, Schwarze J, Skevaki C, Smith JA, Ainsworth B, Almond M, Andreakos E, Belvisi MG, Chung KF, Cookson W, Cullinan P, Hawrylowicz C, Lommatzsch M, Jackson D, Lutter R, Marsland B, Moffatt M, Thomas M, Virchow JC, Xanthou G, Edwards J, Walker S, Johnston SL. Addressing unmet needs in understanding asthma mechanisms: From the European Asthma Research and Innovation Partnership (EARIP) Work Package (WP)2 collaborators. Eur Respir J 2017; 49:49/5/1602448. [PMID: 28461300 DOI: 10.1183/13993003.02448-2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/13/2017] [Indexed: 12/27/2022]
Abstract
Asthma is a heterogeneous, complex disease with clinical phenotypes that incorporate persistent symptoms and acute exacerbations. It affects many millions of Europeans throughout their education and working lives and puts a heavy cost on European productivity. There is a wide spectrum of disease severity and control. Therapeutic advances have been slow despite greater understanding of basic mechanisms and the lack of satisfactory preventative and disease modifying management for asthma constitutes a significant unmet clinical need. Preventing, treating and ultimately curing asthma requires co-ordinated research and innovation across Europe. The European Asthma Research and Innovation Partnership (EARIP) is an FP7-funded programme which has taken a co-ordinated and integrated approach to analysing the future of asthma research and development. This report aims to identify the mechanistic areas in which investment is required to bring about significant improvements in asthma outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Rene Lutter
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Benjamin Marsland
- University of Lausanne, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | | - Georgina Xanthou
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|