1
|
Pedersen CET, Hoang TT, Jin J, Starnawska A, Granell R, Elliott HR, Huels A, Zar HJ, Stein DJ, Zhang Y, Dekker HTD, Duijts L, Felix JF, Sangüesa J, Bustamante M, Casas M, Vrijheid M, Kadalayil L, Rezwan FI, Arshad H, Holloway JW, Röder S, Zenclussen AC, Herberth G, Staunstrup NH, Horsdal HT, Mill J, Hannon E, Annesi-Maesano I, Pesce G, Baïz N, Heude B, Hosseinian-Mohazzab S, Breton CV, Harlid S, Harbs J, Domellof M, West C, Yeung E, Zeng X, Nystad W, Håberg SE, Magnus MC, Schendel D, London SJ, Bønnelykke K. Maternal asthma and newborn DNA methylation. Clin Epigenetics 2025; 17:79. [PMID: 40349045 PMCID: PMC12065361 DOI: 10.1186/s13148-025-01858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/11/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Prenatal exposure to maternal asthma may influence DNA methylation patterns in offspring, potentially affecting their susceptibility to later diseases including asthma. OBJECTIVE To investigate the relationship between parental asthma and newborn blood DNA methylation. METHODS Epigenome-wide association analyses were conducted in 13 cohorts on 7433 newborns with blood methylation data from the Illumina450K or EPIC array. We used fixed effects meta-analyses to identify differentially methylated CpGs (DMCs) and comb-p to identify differentially methylated regions (DMRs) associated with maternal asthma during pregnancy and maternal asthma ever. Paternal asthma was analyzed for comparison. Models were adjusted for covariates and cell-type composition. We examined whether implicated sites related to gene expression analyses in publicly available data for childhood blood and adult lung. RESULTS We identified 27 CpGs associated with maternal asthma during pregnancy at False Discovery Rate < 0.05 but none for maternal asthma ever. Two distinct CpGs were associated with paternal asthma. We observed 5 DMRs associated with maternal asthma during pregnancy 3 associated with maternal asthma ever and 13 DMRs associated with paternal asthma. Gene expression analysis using data in blood from 832 children and lung from 424 adults showed associations between identified DMCs using maternal asthma and expression of several genes, including HLA genes and HOXA5, previously implicated in asthma or lung function. CONCLUSION Parental asthma, especially maternal asthma during pregnancy, may be associated with alterations in newborn DNA methylation. These findings might shed light on underlying mechanisms for asthma susceptibility.
Collapse
Affiliation(s)
- Casper-Emil Tingskov Pedersen
- Copenhagen Prospective Studies On Asthma in Childhood, Herlev and Gentofte Hospital, COPSAC, University of Copenhagen, Ledreborg Alle 34 Gentofte, 2820, Copenhagen, Denmark
| | - Thanh T Hoang
- Division of Intramural Research, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), MD A3-05, PO 12233, Research Triangle Park, NC, 27709, USA
- Department of Pediatrics, Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| | - Jianping Jin
- Division of Intramural Research, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), MD A3-05, PO 12233, Research Triangle Park, NC, 27709, USA
| | - Anna Starnawska
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Raquel Granell
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, BS8 2BN, UK
| | - Hannah R Elliott
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, BS8 2BN, UK
| | - Anke Huels
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Ganagarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Heather J Zar
- SAMRC Unit On Child & Adolescent Health, Dept of Paediatrics, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- SAMRC Unit On Child & Adolescent Health, Dept of Paediatrics, University of Cape Town, Cape Town, South Africa
| | - Yining Zhang
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Herman T den Dekker
- The Generation R Study Group and Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- The Generation R Study Group and Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Neonatal and Pedicatric Intensive Care, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janine F Felix
- The Generation R Study Group and Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Latha Kadalayil
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Faisal I Rezwan
- Department of Computer Science, Aberystwyth University, University, Aberystwyth, SY23 3DB, UK
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
| | - Hasan Arshad
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, UK
| | - John W Holloway
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, UK
| | - Stefan Röder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Nicklas Heine Staunstrup
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Henriette Thisted Horsdal
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Jonathan Mill
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Giancarlo Pesce
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Nour Baïz
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Barbara Heude
- Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Université Paris Cité and Université Sorbonne Paris Nord, 75004, Paris, France
| | - Sahra Hosseinian-Mohazzab
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Carrie V Breton
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sophia Harlid
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Justin Harbs
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Magnus Domellof
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Christina West
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Edwina Yeung
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20817, USA
| | - Xuehuo Zeng
- Glotech Inc., 1801 Research Blvd #605, Rockville, MD, 20850, USA
| | - Wenche Nystad
- Department of Chronic Diseases, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Skøyen, P.O. Box 222, 0213, Oslo, Norway
| | - Maria C Magnus
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Centre for Fertility and Health, Norwegian Institute of Public Health, Skøyen, P.O. Box 222, 0213, Oslo, Norway
- MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Diana Schendel
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- AJ Drexel Autism Institute, Drexel University, Philadelphia, USA
| | - Stephanie J London
- Division of Intramural Research, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), MD A3-05, PO 12233, Research Triangle Park, NC, 27709, USA.
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies On Asthma in Childhood, Herlev and Gentofte Hospital, COPSAC, University of Copenhagen, Ledreborg Alle 34 Gentofte, 2820, Copenhagen, Denmark.
| |
Collapse
|
2
|
Li Y, Zhu Z, Camargo CA, Espinola JA, Hasegawa K, Liang L. Epigenomic and proteomic analyses provide insights into early-life immune regulation and asthma development in infants. Nat Commun 2025; 16:3556. [PMID: 40229234 PMCID: PMC11997043 DOI: 10.1038/s41467-025-57288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/17/2025] [Indexed: 04/16/2025] Open
Abstract
Infants with severe bronchiolitis (i.e., bronchiolitis requiring hospitalization) face increased risks of respiratory diseases in childhood. We conduct epigenome-wide association studies in a multi-ethnic cohort of these infants. We identify 61 differentially methylated regions in infant blood (<1 year of age) associated with recurrent wheezing by age 3 (170 cases, 318 non-cases) and/or asthma by age 6 (112 cases, 394 non-cases). These differentially methylated regions are enriched in the enhancers of peripheral blood neutrophils. Several differentially methylated regions exhibit interaction with rhinovirus infection and/or specific blood cell types. In the same blood samples, circulating levels of 104 proteins correlate with the differentially methylated regions, and many proteins show phenotypic association with asthma. Through Mendelian randomization, we find causal evidence supporting a protective role of higher plasma ST2 (also known as IL1RL1) protein against asthma. DNA methylation is also associated with ST2 protein level in infant blood. Taken together, our findings suggest the contribution of DNA methylation to asthma development through regulating early-life systemic immune responses.
Collapse
Affiliation(s)
- Yijun Li
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Janice A Espinola
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
3
|
Neumann A, Sammallahti S, Cosin-Tomas M, Reese SE, Suderman M, Alemany S, Almqvist C, Andrusaityte S, Arshad SH, Bakermans-Kranenburg MJ, Beilin L, Breton C, Bustamante M, Czamara D, Dabelea D, Eng C, Eskenazi B, Fuemmeler BF, Gilliland FD, Grazuleviciene R, Håberg SE, Herberth G, Holland N, Hough A, Hu D, Huen K, Hüls A, Jarvelin MR, Jin J, Julvez J, Koletzko BV, Koppelman GH, Kull I, Lu X, Maitre L, Mason D, Melén E, Merid SK, Molloy PL, Mori TA, Mulder RH, Page CM, Richmond RC, Röder S, Ross JP, Schellhas L, Sebert S, Sheppard D, Snieder H, Starling AP, Stein DJ, Tindula G, van IJzendoorn MH, Vonk J, Walton E, Witonsky J, Xu CJ, Yang IV, Yousefi PD, Zar HJ, Zenclussen AC, Zhang H, Tiemeier H, London SJ, Felix JF, Cecil C. Epigenetic timing effects on child developmental outcomes: a longitudinal meta-regression of findings from the Pregnancy And Childhood Epigenetics Consortium. Genome Med 2025; 17:39. [PMID: 40229801 PMCID: PMC11995515 DOI: 10.1186/s13073-025-01451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND DNA methylation (DNAm) is a developmentally dynamic epigenetic process; yet, most epigenome-wide association studies (EWAS) have examined DNAm at only one timepoint or without systematic comparisons between timepoints. Thus, it is unclear whether DNAm alterations during certain developmental periods are more informative than others for health outcomes, how persistent epigenetic signals are across time, and whether epigenetic timing effects differ by outcome. METHODS We applied longitudinal meta-regression models to published meta-analyses from the PACE consortium that examined DNAm at two timepoints-prospectively at birth and cross-sectionally in childhood-in relation to the same child outcome (ADHD symptoms, general psychopathology, sleep duration, BMI, asthma). These models allowed systematic comparisons of effect sizes and statistical significance between timepoints. Furthermore, we tested correlations between DNAm regression coefficients to assess the consistency of epigenetic signals across time and outcomes. Finally, we performed robustness checks, estimated between-study heterogeneity, and tested pathway enrichment. RESULTS Our findings reveal three new insights: (i) across outcomes, DNAm effect sizes are consistently larger in childhood cross-sectional analyses compared to prospective analyses at birth; (ii) higher effect sizes do not necessarily translate into more significant findings, as associations also become noisier in childhood for most outcomes (showing larger standard errors in cross-sectional vs prospective analyses); and (iii) DNAm signals are highly time-specific, while also showing evidence of shared associations across health outcomes (ADHD symptoms, general psychopathology, and asthma). Notably, these observations could not be explained by sample size differences and only partly to differential study-heterogeneity. DNAm sites changing associations were enriched for neural pathways. CONCLUSIONS Our results highlight developmentally-specific associations between DNAm and child health outcomes, when assessing DNAm at birth vs childhood. This implies that EWAS results from one timepoint are unlikely to generalize to another. Longitudinal studies with repeated epigenetic assessments are direly needed to shed light on the dynamic relationship between DNAm, development and health, as well as to enable the creation of more reliable and generalizable epigenetic biomarkers. More broadly, this study underscores the importance of considering the time-varying nature of DNAm in epigenetic research and supports the potential existence of epigenetic "timing effects" on child health.
Collapse
Affiliation(s)
- Alexander Neumann
- Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.
| | - Sara Sammallahti
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Helsinki, Finland
| | - Marta Cosin-Tomas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Sarah E Reese
- Clinical Research Practice, Westat, Rockville, MD, USA
| | - Matthew Suderman
- Bristol Medical School, Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Syed H Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Lawrence Beilin
- Medical School, Royal Perth Hospital Unit, the University of Western Australia, Perth, Australia
| | - Carrie Breton
- Population and Public Health Sciences, Environmental Health, University of Southern California, Los Angeles, USA
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Darina Czamara
- Department Genes and Environment, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Celeste Eng
- Department of Medicine, Pulmonary, Critical Care, Allergy and Sleep, University of California, San Francisco, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, USA
| | - Bernard F Fuemmeler
- Family Medicine and Population Health, School of Medicine, Virginia Commonwealth University, Richmond, USA
| | - Frank D Gilliland
- Depatment of Population and Public Health Sciences, Keck Schools of Medicine, University of Southern California, Los Angeles, USA
| | | | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Nina Holland
- Division of Environmental Health Sciences, School of Public Health, Children'S Environmental Health Laboratory, University of California, Berkeley, USA
| | - Amy Hough
- Born in Bradford, Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Donglei Hu
- Department of Medicine, Division of General Internal Medicine, University of California, San Francisco, USA
| | - Karen Huen
- Division of Environmental Health Sciences, School of Public Health, Children'S Environmental Health Laboratory, University of California, Berkeley, USA
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Marjo-Riitta Jarvelin
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Jianping Jin
- Public Health Practice, WESTAT, Research Triangle Park, Raleigh, NC, USA
| | - Jordi Julvez
- Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Berthold V Koletzko
- Department of Paediatrics, Division of Metabolic and Nutritional Medicine, Hauner Children's Hospital, LMU - Ludwig Maximilians Universitaet Muenchen, Munich, Germany
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children'S Hospital and GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Inger Kull
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Xueling Lu
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Léa Maitre
- Environment and Health over the Lifecourse Program, Isglobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Dan Mason
- Born in Bradford, Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Erik Melén
- Department for Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Simon K Merid
- Department for Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | | | - Trevor A Mori
- Medical School, Royal Perth Hospital Unit, the University of Western Australia, Perth, Australia
| | - Rosa H Mulder
- Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christian M Page
- Department of Physical Health and Ageing, Division for Physical and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Rebecca C Richmond
- Bristol Medical School, Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Stefan Röder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jason P Ross
- Human Health, Health and Biosecurity, CSIRO, Canberra, Australia
| | - Laura Schellhas
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Sylvain Sebert
- Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Dean Sheppard
- Department of Medicine, Critical Care, Allergy and Sleep, University of California, PulmonarySan Francisco, San Francisco, CA, USA
| | - Harold Snieder
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anne P Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Gwen Tindula
- Epidemiology and Population Health, Stanford School of Medicine, Stanford University, Stanford, USA
| | - Marinus H van IJzendoorn
- Research Department of Clinical, Education and Health Psychology, Faculty of Brain Sciences, UCL, London, UK
- Faculty of Medicine, Nursing and Health, Psychiatry Monash Health, Monash University, Melbourne, Australia
- Faculty of Psychology and Humanities, Universidad San Sebastián, Valdivia, Chile
| | - Judith Vonk
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Jonathan Witonsky
- Department of Pediatrics, Allergy, Immunology and BMT, University of California, San Francisco, San Francisco, CA, USA
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (Ciim), Helmholtz Centre for Infection Research (HZI), Hannover Medical School (MHH), Hanover, Germany
- Helmholtz Centre for Infection Research (HZI), TWINCORE, Hannover Medical School (MHH), Hanover, Germany
| | - Ivana V Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Paul D Yousefi
- Bristol Medical School, Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Heather J Zar
- SAMRC Unit on Child Health, Dept of Paediatrics, University of Cape Town, Cape Town, South Africa
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hongmei Zhang
- Epidemiology, Biostatistics, School of Public Health, And Environmental Health, University of Memphis, Memphis, USA
| | - Henning Tiemeier
- Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Social and Behavioral Science, Harvard T. H. Chan School of Public Health, Boston, USA
| | - Stephanie J London
- Immunity Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, USA
| | - Janine F Felix
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Charlotte Cecil
- Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
4
|
Mani S, Lalani SR, Pammi M. Genomics and multiomics in the age of precision medicine. Pediatr Res 2025:10.1038/s41390-025-04021-0. [PMID: 40185865 DOI: 10.1038/s41390-025-04021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/07/2025]
Abstract
Precision medicine is a transformative healthcare model that utilizes an understanding of a person's genome, environment, lifestyle, and interplay to deliver customized healthcare. Precision medicine has the potential to improve the health and productivity of the population, enhance patient trust and satisfaction in healthcare, and accrue health cost-benefits both at an individual and population level. Through faster and cost-effective genomics data, next-generation sequencing has provided us the impetus to understand the nuances of complex interactions between genes, diet, and lifestyle that are heterogeneous across the population. The emergence of multiomics technologies, including transcriptomics, proteomics, epigenomics, metabolomics, and microbiomics, has enhanced the knowledge necessary for maximizing the applicability of genomics data for better health outcomes. Integrative multiomics, the combination of multiple 'omics' data layered over each other, including the interconnections and interactions between them, helps us understand human health and disease better than any of them separately. Integration of these multiomics data is possible today with the phenomenal advancements in bioinformatics, data sciences, and artificial intelligence. Our review presents a broad perspective on the utility and feasibility of a genomics-first approach layered with other omics data, offering a practical model for adopting an integrated multiomics approach in pediatric health care and research. IMPACT: Precision medicine provides a paradigm shift from a conventional, reactive disease control approach to proactive disease prevention and health preservation. Phenomenal advancements in bioinformatics, data sciences, and artificial intelligence have made integrative multiomics feasible and help us understand human health and disease better than any of them separately. The genotype-first approach or reverse phenotyping has the potential to overcome the limitations of the phenotype-first approach by identifying new genotype-phenotype associations, enhancing the subclassification of diseases by widening the phenotypic spectrum of genetic variants, and understanding functional mechanisms of genetic variations.
Collapse
Affiliation(s)
- Srinivasan Mani
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA.
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mohan Pammi
- Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
5
|
Brown AP, Parameswaran S, Cai L, Elston S, Pham C, Barski A, Weirauch MT, Ji H. Silencing TET1 expression alters the epigenomic landscape and amplifies transcriptomic responses to allergen in airway epithelial cells. ENVIRONMENTAL EPIGENETICS 2025; 11:dvaf007. [PMID: 40401166 PMCID: PMC12094077 DOI: 10.1093/eep/dvaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/18/2025] [Accepted: 03/19/2025] [Indexed: 05/23/2025]
Abstract
Previous studies have demonstrated that ten-eleven translocation methylcytosine dioxygenase 1 (TET1) plays a protective role against house dust mite (HDM)-induced allergic airway inflammation. TET1 transcriptionally responded to HDM extract and regulated the expression of genes involved in asthma in human bronchial epithelial cells (HBECs). How TET1 regulates the expression of these genes, however, is unknown. To this end, we measured mRNA expression, DNA methylation, chromatin accessibility, and histone modifications in control and TET1 knockdown HBECs treated or untreated with HDM extract. Throughout our analyses of multiomics data, we detected significant similarities between the effects of TET1 knockdown alone and the effects of HDM treatment alone, all enriched for asthma-related genes and pathways. One especially striking pattern was that both TET1 knockdown and HDM treatment generally led to decreased chromatin accessibility at many of the same genomic loci. Transcription factor enrichment analyses indicated that altered chromatin accessibility following the loss of TET1 may affect, or be affected by, CCCTC-binding factor and CCAAT-enhancer-binding protein binding. Analysis of H3K27ac levels and comparison with existing datasets suggested a potential impact of TET1 on enhancer activity. TET1 loss also led to changes in DNA methylation, but these changes were generally in regions where accessibility was not changing. Lastly, more significant transcriptomic changes were observed in HBEC cells with TET1 knockdown compared to control cells following HDM challenges. Collectively, our data suggest that TET1 regulates gene expression through distinct mechanisms across various genomic regions in airway epithelial cells, restricting transcriptomic responses to allergen and potentially protecting against the development of asthma.
Collapse
Affiliation(s)
- Anthony P Brown
- California National Primate Research Center, University of California Davis, Davis, CA 95616, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Lucy Cai
- California National Primate Research Center, University of California Davis, Davis, CA 95616, United States
| | - Sweeney Elston
- California National Primate Research Center, University of California Davis, Davis, CA 95616, United States
| | - Chi Pham
- California National Primate Research Center, University of California Davis, Davis, CA 95616, United States
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Hong Ji
- California National Primate Research Center, University of California Davis, Davis, CA 95616, United States
- Department of Anatomy, Physiology and Cell biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
6
|
Garcia FM, de Sousa VP, Silva-Dos-Santos PPE, Fernandes IS, Serpa FS, de Paula F, Mill JG, Bueno MRP, Errera FIV. Copy Number Variation in Asthma: An Integrative Review. Clin Rev Allergy Immunol 2025; 68:4. [PMID: 39755867 DOI: 10.1007/s12016-024-09015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 01/06/2025]
Abstract
Asthma is a complex disease with varied clinical manifestations resulting from the interaction between environmental and genetic factors. While chronic airway inflammation and hyperresponsiveness are central features, the etiology of asthma is multifaceted, leading to a diversity of phenotypes and endotypes. Although most research into the genetics of asthma focused on the analysis of single nucleotide polymorphisms (SNPs), studies highlight the importance of structural variations, such as copy number variations (CNVs), in the inheritance of complex characteristics, but their role has not yet been fully elucidated in asthma. In this context, an integrative review was conducted to identify the genes and pathways involved, the location, size, and classes of CNVs, as well as their contribution to asthma risk, severity, control, and response to treatment. As a result of the review, 16 articles were analyzed, from different types of observational studies, such as case-control, cohort studies and genotyped-proband or trios design, that have been carried out in populations from different countries, ethnicities, and ages. Chromosomes 12 and 17 were the most studied in three publications each. CNVs located on 12 chromosomes were associated with asthma, the majority being found on chromosome 6p and 17q, of the deletion type, encompassing 30 different coding-protein genes and one pseudogene region. Six genes with CNVs were identified as significant expression quantitative locus (eQTLs) with mean expression in asthma-related tissues, such as the lung and whole blood. The phenotypic variability of asthma may hinder the clinical application of these findings, but the research shows the importance of investigating these genetic variations as possible biomarkers in asthma patients.
Collapse
Affiliation(s)
- Fernanda Mariano Garcia
- Postgraduate Program in Biochemistry, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil.
| | - Valdemir Pereira de Sousa
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Priscila Pinto E Silva-Dos-Santos
- Department of Medicine, School of Sciences of Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória, Espírito Santo, Brazil
- Hospital Santa Casa de Misericórdia de Vitória (HSCMV), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Biotechnology, Northeast Network of Biotechnology (RENORBIO), Nucleator: Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Izadora Silveira Fernandes
- Postgraduate Program in Biochemistry, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Faradiba Sarquis Serpa
- Department of Medicine, School of Sciences of Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória, Espírito Santo, Brazil
- Hospital Santa Casa de Misericórdia de Vitória (HSCMV), Vitória, Espírito Santo, Brazil
| | - Flávia de Paula
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Biotechnology, Northeast Network of Biotechnology (RENORBIO), Nucleator: Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - José Geraldo Mill
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Maria Rita Passos Bueno
- Department of Genetics and Evolutionary Biology, University of São Paulo (USP), São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Flávia Imbroisi Valle Errera
- Postgraduate Program in Biochemistry, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Biotechnology, Northeast Network of Biotechnology (RENORBIO), Nucleator: Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| |
Collapse
|
7
|
Ahmadi H, Bognar Z, Csabai-Tanics T, Obodo BN, Szekeres-Bartho J. Allergic Disposition of IVF-Conceived Mice. Int J Mol Sci 2024; 25:12993. [PMID: 39684703 DOI: 10.3390/ijms252312993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
With the increased utilization of assisted reproductive technology (ART), concerns about the potential health risks for ART-conceived babies have also been raised. Increased prevalences of allergic and metabolic diseases have been reported among ART offspring. This study aimed to evaluate the impact of IVF on the tendency to develop allergic responses following ovalbumin (OVA) sensitization in IVF-conceived mice. Mice were divided into four groups (non-OVA naturally conceived, OVA naturally conceived, non-OVA IVF-conceived, and OVA IVF-conceived). In the OVA groups, the mice were subjected to intraperitoneal and intranasal immunization with OVA. Two days after the final immunization, blood samples were taken, and the serum levels of IgE and IL-4 were detected by ELISA. The mice were sacrificed by cervical dislocation, their spleens and lungs were removed, and their weights were measured and recorded. Sensitization with OVA resulted in significantly increased concentrations of IL-4 and total IgE, as well as increased lung and spleen weights, among offspring from both natural and IVF conception. The concentrations of IgE and IL-4 and the lung and spleen weights in IVF-conceived mice were significantly higher compared to those in naturally conceived mice before and after sensitization with OVA. It is concluded that compared to naturally conceived mice, IVF-conceived mice exhibit a greater tendency to develop allergic responses against OVA.
Collapse
Affiliation(s)
- Hamid Ahmadi
- Department of Medical Biology, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Zoltan Bognar
- Department of Medical Biology, Medical School, University of Pecs, 7624 Pecs, Hungary
- National Laboratory on Human Reproduction, University of Pecs, 7624 Pecs, Hungary
- HUN-REN-PTE Human Reproduction Research Group, Hungarian Academy of Sciences, 1245 Budapest, Hungary
| | - Timea Csabai-Tanics
- Department of Medical Biology, Medical School, University of Pecs, 7624 Pecs, Hungary
- National Laboratory on Human Reproduction, University of Pecs, 7624 Pecs, Hungary
- HUN-REN-PTE Human Reproduction Research Group, Hungarian Academy of Sciences, 1245 Budapest, Hungary
| | - Basil Nnaemeka Obodo
- Department of Medical Biology, Medical School, University of Pecs, 7624 Pecs, Hungary
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Julia Szekeres-Bartho
- Department of Medical Biology, Medical School, University of Pecs, 7624 Pecs, Hungary
- National Laboratory on Human Reproduction, University of Pecs, 7624 Pecs, Hungary
- HUN-REN-PTE Human Reproduction Research Group, Hungarian Academy of Sciences, 1245 Budapest, Hungary
| |
Collapse
|
8
|
Jurkowska RZ. Role of epigenetic mechanisms in the pathogenesis of chronic respiratory diseases and response to inhaled exposures: From basic concepts to clinical applications. Pharmacol Ther 2024; 264:108732. [PMID: 39426605 DOI: 10.1016/j.pharmthera.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Epigenetic modifications are chemical groups in our DNA (and chromatin) that determine which genes are active and which are shut off. Importantly, they integrate environmental signals to direct cellular function. Upon chronic environmental exposures, the epigenetic signature of lung cells gets altered, triggering aberrant gene expression programs that can lead to the development of chronic lung diseases. In addition to driving disease, epigenetic marks can serve as attractive lung disease biomarkers, due to early onset, disease specificity, and stability, warranting the need for more epigenetic research in the lung field. Despite substantial progress in mapping epigenetic alterations (mostly DNA methylation) in chronic lung diseases, the molecular mechanisms leading to their establishment are largely unknown. This review is meant as a guide for clinicians and lung researchers interested in epigenetic regulation with a focus on DNA methylation. It provides a short introduction to the main epigenetic mechanisms (DNA methylation, histone modifications and non-coding RNA) and the machinery responsible for their establishment and removal. It presents examples of epigenetic dysregulation across a spectrum of chronic lung diseases and discusses the current state of epigenetic therapies. Finally, it introduces the concept of epigenetic editing, an exciting novel approach to dissecting the functional role of epigenetic modifications. The promise of this emerging technology for the functional study of epigenetic mechanisms in cells and its potential future use in the clinic is further discussed.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- Division of Biomedicine, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
9
|
Zhang W, Zhang Y, Li L, Chen R, Shi F. Unraveling heterogeneity and treatment of asthma through integrating multi-omics data. FRONTIERS IN ALLERGY 2024; 5:1496392. [PMID: 39563781 PMCID: PMC11573763 DOI: 10.3389/falgy.2024.1496392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Asthma has become one of the most serious chronic respiratory diseases threatening people's lives worldwide. The pathogenesis of asthma is complex and driven by numerous cells and their interactions, which contribute to its genetic and phenotypic heterogeneity. The clinical characteristic is insufficient for the precision of patient classification and therapies; thus, a combination of the functional or pathophysiological mechanism and clinical phenotype proposes a new concept called "asthma endophenotype" representing various patient subtypes defined by distinct pathophysiological mechanisms. High-throughput omics approaches including genomics, epigenomics, transcriptomics, proteomics, metabolomics and microbiome enable us to investigate the pathogenetic heterogeneity of diverse endophenotypes and the underlying mechanisms from different angles. In this review, we provide a comprehensive overview of the roles of diverse cell types in the pathophysiology and heterogeneity of asthma and present a current perspective on their contribution into the bidirectional interaction between airway inflammation and airway remodeling. We next discussed how integrated analysis of multi-omics data via machine learning can systematically characterize the molecular and biological profiles of genetic heterogeneity of asthma phenotype. The current application of multi-omics approaches on patient stratification and therapies will be described. Integrating multi-omics and clinical data will provide more insights into the key pathogenic mechanism in asthma heterogeneity and reshape the strategies for asthma management and treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Infectious Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Zhang
- Department of Infectious Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Lifei Li
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Fei Shi
- Department of Infectious Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Infectious Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| |
Collapse
|
10
|
Knol EF, van Neerven RJJ. IgE versus IgG and IgA: Differential roles of allergen-specific antibodies in sensitization, tolerization, and treatment of allergies. Immunol Rev 2024; 328:314-333. [PMID: 39285523 PMCID: PMC11659938 DOI: 10.1111/imr.13386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The prevalence of asthma, rhinitis, and food allergies has increased dramatically over the last few decades. This increase originally started in western countries, but is now also evident in many other regions of the world. Given the fact that the increase is so quick, the noted increase cannot be linked to a genetic effect, and many environmental factors have been identified that are associated with increased or reduced prevalence of allergies, like changing dietary habits, increased urbanization, pollution, exposure to microorganisms and LPS, and the farming environment and raw milk consumption. Although the key role of allergen-specific IgE in allergies is well known, the role of allergen-specific IgG and IgA antibodies is less well defined. This review will provide an overview of the functions of allergen-specific IgE in allergy, the role of allergen-specific antibodies (IgG (4) and IgA) in allergen immunotherapy (AIT), the possibility to use allergen-specific antibodies for treatment of ongoing allergies, and the potential role of allergen-specific antibodies in tolerance induction to allergens in a preventive setting. In the last, more speculative, section we will present novel hypotheses on the potential role of allergen-specific non-IgE antibodies in allergies by directing antigen presentation, Th2 development, and innate immune training.
Collapse
Affiliation(s)
- E. F. Knol
- Department of Dermatology/AllergologyUMC UtrechtUtrechtthe Netherlands
| | - R. J. J. van Neerven
- Cell Biology and ImmunologyWageningen University & ResearchWageningenthe Netherlands
| |
Collapse
|
11
|
Litt JS, Belfort MB, Everson TM, Haneuse S, Tiemeier H. Neonatal multimorbidity and the phenotype of premature aging in preterm infants. Pediatr Res 2024:10.1038/s41390-024-03617-2. [PMID: 39455859 DOI: 10.1038/s41390-024-03617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Multimorbidity is the co-occurrence of multiple chronic health problems, associated with aging, frailty, and poor functioning. Children born preterm experience more multimorbid conditions in early life compared to term-born peers. Though neonatal multimorbidity is linked to poor health-related quality of life, functional outcomes, and peer group participation, gaps in our theoretical understanding and conceptualization remain. Drawing from life course epidemiology and the Developmental Origins of Heath and Disease models, we offer a framework that neonatal multimorbidity reflects maturational vulnerability posed by preterm birth. The impact of such vulnerability on health and development may be further amplified by adverse exposures and interventions within the environment of the neonatal intensive care unit. This can be exacerbated by disadvantaged home or community contexts after discharge. Uncovering the physiologic and social antecedents of multiple morbid conditions in the neonatal period and their biological underpinnings will allow for more accurate risk-prediction, counseling, and care planning for preterm infants and their families. According to this framework, the maturational vulnerability to multimorbidity imparted by preterm birth and its negative effects on health and development are not predetermined or static. Elucidating pathways of early biologic and physical aging will lead to improvements in care and outcomes. IMPACT: Multimorbidity is associated with significant frailty and dysfunction among older adults and is indicative of early physiologic aging. Preterm infants commonly experience multimorbidities in the newborn period, an underrecognized threat to long-term health and development. We offer a novel framework incorporating multimorbidity, early cellular aging, and life course health development to innovate risk-prediction, care-planning, and therapeutics.
Collapse
Affiliation(s)
- Jonathan S Litt
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, USA.
- Department of Pediatrics, Harvard Medical School, Boston, USA.
- Department of Social and Behavioral Sciences, Harvard TH Chan School of Public Health, Boston, USA.
| | - Mandy Brown Belfort
- Department of Pediatrics, Harvard Medical School, Boston, USA
- Department of Pediatrics, Brigham and Women's Hospital, Boston, USA
| | - Todd M Everson
- Department of Environmental Health, Emory University, Atlanta, USA
| | - Sebastien Haneuse
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, USA
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard TH Chan School of Public Health, Boston, USA
| |
Collapse
|
12
|
Liao Y, Cavalcante RG, Waller JB, Deng F, Scruggs AM, Huang YJ, Atasoy U, Chen Y, Huang SK. Differences in the DNA methylome of T cells in adults with asthma of varying severity. Clin Epigenetics 2024; 16:139. [PMID: 39380119 PMCID: PMC11459694 DOI: 10.1186/s13148-024-01750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND DNA methylation plays a critical role in asthma development, but differences in DNA methylation among adults with varying asthma severity are less well-defined. OBJECTIVE To examine how DNA methylomic patterns differ among adults with asthma based on asthma severity and airway inflammation. METHODS Peripheral blood T cells from 35 adults with asthma in Beijing, China, were serially collected over time (130 samples total) and analyzed for global DNA methylation using the Illumina MethylationEPIC Array. Differential methylation was compared among subjects with varying airway inflammation and severity, as measured by fraction of exhaled nitric oxide, forced expiratory volume in one second (FEV1), and Asthma Control Test (ACT) scores. RESULTS Significant differences in DNA methylation were noted among subjects with different degrees of airway inflammation and asthma severity. These differences in DNA methylation were annotated to genes that were enriched in pathways related to asthma or T cell function and included gene ontology categories related to MHC class II assembly, T cell activation, interleukin (IL)-1, and IL-12. Genes related to P450 drug metabolism, glutathione metabolism, and developmental pathways were also differentially methylated in comparisons between subjects with high vs low FEV1 and ACT. Notable genes that were differentially methylated based on asthma severity included RUNX3, several members of the HLA family, AGT, PTPRC, PTPRJ, and several genes downstream of the JAK2 and TNF signaling pathway. CONCLUSION These findings demonstrate how adults with asthma of varying severity possess differences in peripheral blood T cell DNA methylation that contribute to differences in clinical indices of asthma.
Collapse
Affiliation(s)
- Yixuan Liao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, No.49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Raymond G Cavalcante
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan B Waller
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Anne M Scruggs
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Ulus Atasoy
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, No.49, Huayuan North Road, Haidian District, Beijing, 100191, China.
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
13
|
Santoro M, Costabile F, Gualtieri M, Rinaldi M, Paglione M, Busetto M, Di Iulio G, Di Liberto L, Gherardi M, Pelliccioni A, Monti P, Barbara B, Grollino MG. Associations between fine particulate matter, gene expression, and promoter methylation in human bronchial epithelial cells exposed within a classroom under air-liquid interface. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124471. [PMID: 38950846 DOI: 10.1016/j.envpol.2024.124471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Associations between indoor air pollution from fine particulate matter (PM with aerodynamic diameter dp < 2.5 μm) and human health are poorly understood. Here, we analyse the concentration-response curves for fine and ultrafine PM, the gene expression, and the methylation patterns in human bronchial epithelial cells (BEAS-2B) exposed at the air-liquid interface (ALI) within a classroom in downtown Rome. Our results document the upregulation of aryl hydrocarbon receptor (AhR) and genes associated with xenobiotic metabolism (CYP1A1 and CYP1B1) in response to single exposure of cells to fresh urban aerosols at low fine PM mass concentrations within the classroom. This is evidenced by concentrations of ultrafine particles (UFPs, dp < 0.1 μm), polycyclic aromatic hydrocarbons (PAH), and ratios of black carbon (BC) to organic aerosol (OA). Additionally, an interleukin 18 (IL-18) down-regulation was found during periods of high human occupancy. Despite the observed gene expression dysregulation, no changes were detected in the methylation levels of the promoter regions of these genes, indicating that the altered gene expression is not linked to changes in DNA methylation and suggesting the involvement of another epigenetic mechanism in the gene regulation. Gene expression changes at low exposure doses have been previously reported. Here, we add the possibility that lung epithelial cells, when singly exposed to real environmental concentrations of fine PM that translate into ultra-low doses of treatment, may undergo epigenetic alteration in the expression of genes related to xenobiotic metabolism. Our findings provide a perspective for future indoor air quality regulations. We underscore the potential role of indoor UFPs as carriers of toxic molecules with low-pressure weather conditions, when rainfall and strong winds may favour low levels of fine PM.
Collapse
Affiliation(s)
- Massimo Santoro
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123, Rome, Italy
| | - Francesca Costabile
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133, Rome, Italy; NBFC - National Biodiversity Future Center, NBFC, 90133, Palermo, Italy.
| | - Maurizio Gualtieri
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Matteo Rinaldi
- NBFC - National Biodiversity Future Center, NBFC, 90133, Palermo, Italy; Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129, Bologna, Italy
| | - Marco Paglione
- NBFC - National Biodiversity Future Center, NBFC, 90133, Palermo, Italy; Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129, Bologna, Italy
| | - Maurizio Busetto
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129, Bologna, Italy
| | - Gianluca Di Iulio
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133, Rome, Italy; Department of Public Health and Infectious Disease - University of Rome "La Sapienza", via Eudossiana 18, 00184, Rome, Italy
| | - Luca Di Liberto
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133, Rome, Italy
| | - Monica Gherardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Monte Porzio Catone, 00078, Rome, Italy
| | - Armando Pelliccioni
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Monte Porzio Catone, 00078, Rome, Italy
| | - Paolo Monti
- Department of Civil, Building and Environmental Engineering - University of Rome "La Sapienza", via Eudossiana 18, 00184, Rome, Italy
| | - Benassi Barbara
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123, Rome, Italy
| | - Maria Giuseppa Grollino
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123, Rome, Italy
| |
Collapse
|
14
|
Ioachimescu OC. State of the art: Alternative overlap syndrome-asthma and obstructive sleep apnea. J Investig Med 2024; 72:589-619. [PMID: 38715213 DOI: 10.1177/10815589241249993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
In the general population, Bronchial Asthma (BA) and Obstructive Sleep Apnea (OSA) are among the most prevalent chronic respiratory disorders. Significant epidemiologic connections and complex pathogenetic pathways link these disorders via complex interactions at genetic, epigenetic, and environmental levels. The coexistence of BA and OSA in an individual likely represents a distinct syndrome, that is, a collection of clinical manifestations attributable to several mechanisms and pathobiological signatures. To avoid terminological confusion, this association has been named alternative overlap syndrome (vs overlap syndrome represented by the chronic obstructive pulmonary disease-OSA association). This comprehensive review summarizes the complex, often bidirectional links between the constituents of the alternative overlap syndrome. Cross-sectional, population, or clinic-based studies are unlikely to elucidate causality or directionality in these relationships. Even longitudinal epidemiological evaluations in BA cohorts developing over time OSA, or OSA cohorts developing BA during follow-up cannot exclude time factors or causal influence of other known or unknown mediators. As such, a lot of pathophysiological interactions described here have suggestive evidence, biological plausibility, potential or actual directionality. By showcasing existing evidence and current knowledge gaps, the hope is that deliberate, focused, and collaborative efforts in the near-future will be geared toward opportunities to shine light on the unknowns and accelerate discovery in this field of health, clinical care, education, research, and scholarly endeavors.
Collapse
|
15
|
Meng M, Ma Y, Xu J, Chen G, Mahato RK. DNA methylation-mediated FGFR1 silencing enhances NF-κB signaling: implications for asthma pathogenesis. Front Mol Biosci 2024; 11:1433557. [PMID: 39377013 PMCID: PMC11456769 DOI: 10.3389/fmolb.2024.1433557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
Background Fibroblast growth factor receptor 1 (FGFR1) is known to play a crucial role in the pathogenesis of asthma, although the precise mechanism remains unclear. This study aims to investigate how DNA methylation-mediated silencing of FGFR1 contributes to the enhancement of NF-κB signaling, thereby influencing the progression of asthma. Methods RT-qPCR was utilized to assess FGFR1 mRNA levels in the serum of asthma patients and BEAS-2B, HBEpiC, and PCS-301-011 cells. CCK8 assays were conducted to evaluate the impact of FGFR1 overexpression on the proliferation of BEAS-2B, PCS-301-011, and HBEpiC cells. Dual-luciferase and DNA methylation inhibition assays were performed to elucidate the underlying mechanism of FGFR1 gene in asthma. The MassARRAY technique was employed to measure the methylation levels of the FGFR1 DNA. Results Elevated FGFR1 mRNA levels were observed in the serum of asthma patients compared to healthy controls. Overexpression of FGFR1 in BEAS-2B cells significantly enhanced cell proliferation and stimulated NF-ĸB transcriptional activity in HERK-293T cells. Furthermore, treatment with 5-Aza-CdR, a DNA demethylating agent, markedly increased the expression of FGFR1 mRNA in BEAS-2B, PCS-301-011, and HBEpiC cells. Luciferase activity analysis confirmed heightened NF-ĸB transcriptional activity in FGFR1-overexpressing BEAS-2B cells and BEAS-2B cells treated with 5-Aza-CdR. Additionally, a decrease in methylation levels in the FGFR1 DNA promoter was detected in the serum of asthma patients using the MassARRAY technique. Conclusion Our findings reveal a potential mechanism involving FGFR1 in the progression of asthma. DNA methylation of FGFR1 inactivates the NF-ĸB signaling pathway, suggesting a promising avenue for developing effective therapeutic strategies for asthma.
Collapse
Affiliation(s)
- Minglu Meng
- School of Public Health, Youjiang Medical University for Nationalities, Baise, China
- Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Yingjiao Ma
- School of Public Health, Youjiang Medical University for Nationalities, Baise, China
| | - Jianguo Xu
- Department of Respiratory Medicine, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, China
| | - Gao Chen
- Department of Laboratory Medicine, The People’s Hospital of Hechi, Hechi, China
| | | |
Collapse
|
16
|
Hari Gopal S, Alenghat T, Pammi M. Early life epigenetics and childhood outcomes: a scoping review. Pediatr Res 2024:10.1038/s41390-024-03585-7. [PMID: 39289593 DOI: 10.1038/s41390-024-03585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Epigenetics is the study of changes in gene expression, without a change in the DNA sequence that are potentially heritable. Epigenetic mechanisms such as DNA methylation, histone modifications, and small non-coding RNA (sncRNA) changes have been studied in various childhood disorders. Causal links to maternal health and toxin exposures can introduce epigenetic modifications to the fetal DNA, which can be detected in the cord blood. Cord blood epigenetic modifications provide evidence of in-utero stressors and immediate postnatal changes, which can impact both short and long-term outcomes in children. The mechanisms of these epigenetic changes can be leveraged for prevention, early detection, and intervention, and to discover novel therapeutic modalities in childhood diseases. We report a scoping review of early life epigenetics, the influence of maternal health, maternal toxin, and drug exposures on the fetus, and its impact on perinatal, neonatal, and childhood outcomes. IMPACT STATEMENT: Epigenetic changes such as DNA methylation, histone modification, and non-coding RNA have been implicated in the pathophysiology of various disease processes. The fundamental changes to an offspring's epigenome can begin in utero, impacting the immediate postnatal period, childhood, adolescence, and adulthood. This scoping review summarizes current literature on the impact of early life epigenetics, especially DNA methylation on childhood health outcomes.
Collapse
Affiliation(s)
- Srirupa Hari Gopal
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA.
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mohan Pammi
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
17
|
Melén E, Zar HJ, Siroux V, Shaw D, Saglani S, Koppelman GH, Hartert T, Gern JE, Gaston B, Bush A, Zein J. Asthma Inception: Epidemiologic Risk Factors and Natural History Across the Life Course. Am J Respir Crit Care Med 2024; 210:737-754. [PMID: 38981012 PMCID: PMC11418887 DOI: 10.1164/rccm.202312-2249so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/09/2024] [Indexed: 07/11/2024] Open
Abstract
Asthma is a descriptive label for an obstructive inflammatory disease in the lower airways manifesting with symptoms including breathlessness, cough, difficulty in breathing, and wheezing. From a clinician's point of view, asthma symptoms can commence at any age, although most patients with asthma-regardless of their age of onset-seem to have had some form of airway problems during childhood. Asthma inception and related pathophysiologic processes are therefore very likely to occur early in life, further evidenced by recent lung physiologic and mechanistic research. Herein, we present state-of-the-art updates on the role of genetics and epigenetics, early viral and bacterial infections, immune response, and pathophysiology, as well as lifestyle and environmental exposures, in asthma across the life course. We conclude that early environmental insults in genetically vulnerable individuals inducing abnormal, pre-asthmatic airway responses are key events in asthma inception, and we highlight disease heterogeneity across ages and the potential shortsightedness of treating all patients with asthma using the same treatments. Although there are no interventions that, at present, can modify long-term outcomes, a precision-medicine approach should be implemented to optimize treatment and tailor follow-up for all patients with asthma.
Collapse
Affiliation(s)
- Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Heather J. Zar
- Department of Paediatrics and Child Health and South African Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Valerie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Dominic Shaw
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Sejal Saglani
- National Heart and Lung Institute, Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Groningen, the Netherlands
| | - Tina Hartert
- Department of Medicine and Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin
| | | | - Andrew Bush
- National Heart and Lung Institute, Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | | |
Collapse
|
18
|
Mirzakhani H. From womb to wellness: early environmental exposures, cord blood DNA methylation and disease origins. Epigenomics 2024; 16:1175-1183. [PMID: 39263926 PMCID: PMC11457657 DOI: 10.1080/17501911.2024.2390823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Fetal exposures can induce epigenetic modifications, particularly DNA methylation, potentially predisposing individuals to later health issues. Cord blood (CB) DNA methylation provides a unique window into the fetal epigenome, reflecting the intrauterine environment's impact. Maternal factors, including nutrition, smoking and toxin exposure, can alter CB DNA methylation patterns, associated with conditions from obesity to neurodevelopmental disorders. These epigenetic changes underscore prenatal exposures' enduring effects on health trajectories. Technical challenges include tissue specificity issues, limited coverage of current methylation arrays and confounding factors like cell composition variability. Emerging technologies, such as single-cell sequencing, promise to overcome some of these limitations. Longitudinal studies are crucial to elucidate exposure-epigenome interactions and develop prevention strategies. Future research should address these challenges, advance public health initiatives to reduce teratogen exposure and consider ethical implications of epigenetic profiling. Progress in CB epigenetics research promises personalized medicine approaches, potentially transforming our understanding of developmental programming and offering novel interventions to promote lifelong health from the earliest stages of life.
Collapse
Affiliation(s)
- Hooman Mirzakhani
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Lukyanchuk A, Muraki N, Kawai T, Sato T, Hata K, Ito T, Tajima A. Long-term exposure to diesel exhaust particles induces concordant changes in DNA methylation and transcriptome in human adenocarcinoma alveolar basal epithelial cells. Epigenetics Chromatin 2024; 17:24. [PMID: 39103936 DOI: 10.1186/s13072-024-00549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Diesel exhaust particles (DEP), which contain hazardous compounds, are emitted during the combustion of diesel. As approximately one-third of the vehicles worldwide use diesel, there are growing concerns about the risks posed by DEP to human health. Long-term exposure to DEP is associated with airway hyperresponsiveness, pulmonary fibrosis, and inflammation; however, the molecular mechanisms behind the effects of DEP on the respiratory tract are poorly understood. Such mechanisms can be addressed by examining transcriptional and DNA methylation changes. Although several studies have focused on the effects of short-term DEP exposure on gene expression, research on the transcriptional effects and genome-wide DNA methylation changes caused by long-term DEP exposure is lacking. Hence, in this study, we investigated transcriptional and DNA methylation changes in human adenocarcinoma alveolar basal epithelial A549 cells caused by prolonged exposure to DEP and determined whether these changes are concordant. RESULTS DNA methylation analysis using the Illumina Infinium MethylationEPIC BeadChips showed that the methylation levels of DEP-affected CpG sites in A549 cells changed in a dose-dependent manner; the extent of change increased with increasing dose reaching the statistical significance only in samples exposed to 30 µg/ml DEP. Four-week exposure to 30 µg/ml of DEP significantly induced DNA hypomethylation at 24,464 CpG sites, which were significantly enriched for DNase hypersensitive sites, genomic regions marked by H3K4me1 and H3K27ac, and several transcription factor binding sites. In contrast, 9,436 CpG sites with increased DNA methylation levels were significantly overrepresented in genomic regions marked by H3K27me3 as well as H3K4me1 and H3K27ac. In parallel, gene expression profiling by RNA sequencing demonstrated that long-term exposure to DEP altered the expression levels of 2,410 genes, enriching 16 gene sets including Xenobiotic metabolism, Inflammatory response, and Senescence. In silico analysis revealed that the expression levels of 854 genes correlated with the methylation levels of the DEP-affected cis-CpG sites. CONCLUSIONS To our knowledge, this is the first report of genome-wide transcriptional and DNA methylation changes and their associations in A549 cells following long-term exposure to DEP.
Collapse
Affiliation(s)
- Alexandra Lukyanchuk
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- Krasnoyarsk State Medical University Named After Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Naomi Muraki
- Health Effects Research Group, Environment Research Division, Japan Automobile Research Institute, Tsukuba, Japan
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takehiro Sato
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Human Molecular Genetics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tsuyoshi Ito
- Health Effects Research Group, Environment Research Division, Japan Automobile Research Institute, Tsukuba, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.
| |
Collapse
|
20
|
López DA, Griffin A, Aguilar LM, Deering-Rice C, Myers EJ, Warren KJ, Welner RS, Beaudin AE. Prenatal inflammation remodels lung immunity and function by programming ILC2 hyperactivation. Cell Rep 2024; 43:114365. [PMID: 38909363 DOI: 10.1016/j.celrep.2024.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Here, we examine how prenatal inflammation shapes tissue function and immunity in the lung by reprogramming tissue-resident immune cells from early development. Maternal, but not fetal, type I interferon-mediated inflammation provokes expansion and hyperactivation of group 2 innate lymphoid cells (ILC2s) seeding the developing lung. Hyperactivated ILC2s produce increased IL-5 and IL-13 and are associated with acute Th2 bias, decreased Tregs, and persistent lung eosinophilia into adulthood. ILC2 hyperactivation is recapitulated by adoptive transfer of fetal liver precursors following prenatal inflammation, indicative of developmental programming at the fetal progenitor level. Reprogrammed ILC2 hyperactivation and subsequent lung immune remodeling, including persistent eosinophilia, is concomitant with worsened histopathology and increased airway dysfunction equivalent to papain exposure, indicating increased asthma susceptibility in offspring. Our data elucidate a mechanism by which early-life inflammation results in increased asthma susceptibility in the presence of hyperactivated ILC2s that drive persistent changes to lung immunity during perinatal development.
Collapse
Affiliation(s)
- Diego A López
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Aleah Griffin
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Lorena Moreno Aguilar
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Elizabeth J Myers
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Kristi J Warren
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Robert S Welner
- Department of Medicine, University of Alabama, Birmingham, AL, USA
| | - Anna E Beaudin
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
21
|
Chen Y, Wang G, Chen J, Wang C, Dong X, Chang HM, Yuan S, Zhao Y, Mu L. Genetic and Epigenetic Landscape for Drug Development in Polycystic Ovary Syndrome. Endocr Rev 2024; 45:437-459. [PMID: 38298137 DOI: 10.1210/endrev/bnae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
The treatment of polycystic ovary syndrome (PCOS) faces challenges as all known treatments are merely symptomatic. The US Food and Drug Administration has not approved any drug specifically for treating PCOS. As the significance of genetics and epigenetics rises in drug development, their pivotal insights have greatly enhanced the efficacy and success of drug target discovery and validation, offering promise for guiding the advancement of PCOS treatments. In this context, we outline the genetic and epigenetic advancement in PCOS, which provide novel insights into the pathogenesis of this complex disease. We also delve into the prospective method for harnessing genetic and epigenetic strategies to identify potential drug targets and ensure target safety. Additionally, we shed light on the preliminary evidence and distinctive challenges associated with gene and epigenetic therapies in the context of PCOS.
Collapse
Affiliation(s)
- Yi Chen
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Guiquan Wang
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, China
- Xiamen Key Laboratory of Reproduction and Genetics, Xiamen University, Xiamen 361023, China
| | - Jingqiao Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Congying Wang
- The Department of Cardiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 322000, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40400, Taiwan
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm 171 65, Sweden
| | - Yue Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100007, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing 100191, China
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Liao Y, Cavalcante R, Waller J, Deng F, Scruggs A, Huang Y, Atasoy U, Chen Y, Huang S. Differences in the DNA Methylome of T cells in Adults With Asthma of Varying Severity. RESEARCH SQUARE 2024:rs.3.rs-4476948. [PMID: 38946998 PMCID: PMC11213176 DOI: 10.21203/rs.3.rs-4476948/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background DNA methylation plays a critical role in asthma development, but differences in DNA methylation among adults with varying asthma severity or asthma endotypes are less well-defined. Objective To examine how DNA methylomic patterns differ among adults with asthma based on asthma severity and airway inflammation. Methods Peripheral blood T cells from 35 adults with asthma in Beijing, China were serially collected over time (130 samples total) and analyzed for global DNA methylation using the Illumina MethylationEPIC Array. Differential methylation was compared among subjects with varying airway inflammation and severity, as measured by fraction of exhaled nitric oxide, forced expiratory volume in one second (FEV1), and Asthma Control Test (ACT) scores. Results Significant differences in DNA methylation were noted among subjects with different degrees of airway inflammation and asthma severity. These differences in DNA methylation were annotated to genes that were enriched in pathways related to asthma or T cell function and included gene ontology categories related to MHC class II assembly, T cell activation, interleukin (IL)-1, and IL-12. Genes related to P450 drug metabolism, glutathione metabolism, and developmental pathways were also differentially methylated in comparisons between subjects with high vs low FEV1 and ACT. Notable genes that were differentially methylated based on asthma severity included RUNX3, several members of the HLA family, AGT, PTPRC, PTPRJ, and several genes downstream of the JAK2 and TNF signaling pathway. Conclusion These findings demonstrate how adults with asthma of varying severity possess differences in peripheral blood T cell DNA methylation that contribute to the phenotype and severity of their overall disease.
Collapse
|
23
|
Grijincu M, Buzan MR, Zbîrcea LE, Păunescu V, Panaitescu C. Prenatal Factors in the Development of Allergic Diseases. Int J Mol Sci 2024; 25:6359. [PMID: 38928067 PMCID: PMC11204337 DOI: 10.3390/ijms25126359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Allergic diseases are showing increasing prevalence in Western societies. They are characterized by a heightened reactivity towards otherwise harmless environmental stimuli. Allergic diseases showing a wide range of severity of symptoms have a significant impact on the quality of life of affected individuals. This study aims to highlight the mechanisms that induce these reactions, how they progress, and which prenatal factors influence their development. Most frequently, the reaction is mediated by immunoglobulin E (IgE) produced by B cells, which binds to the surface of mast cells and basophils and triggers an inflammatory response. The antibody response is triggered by a shift in T-cell immune response. The symptoms often start in early childhood with eczema or atopic dermatitis and progress to allergic asthma in adolescence. An important determinant of allergic diseases seems to be parental, especially maternal history of allergy. Around 30% of children of allergic mothers develop allergic sensitization in childhood. Genes involved in the regulation of the epithelial barrier function and the T-cell response were found to affect the predisposition to developing allergic disorders. Cord blood IgE was found to be a promising predictor of allergic disease development. Fetal B cells produce IgE starting at the 20th gestation week. These fetal B cells could be sensitized together with mast cells by maternal IgE and IgE-allergen complexes crossing the placental barrier via the low-affinity IgE receptor. Various factors were found to facilitate these sensitizations, including pesticides, drugs, exposure to cigarette smoke and maternal uncontrolled asthma. Prenatal exposure to microbial infections and maternal IgG appeared to play a role in the regulation of T-cell response, indicating a protective effect against allergy development. Additional preventive factors were dietary intake of vitamin D and omega 3 fatty acids as well as decreased maternal IgE levels. The effect of exposure to food allergens during pregnancy was inconclusive, with studies having found both sensitizing and protective effects. In conclusion, prenatal factors including genetics, epigenetics and fetal environmental factors have an important role in the development of allergic disorders in later life. Children with a genetic predisposition are at risk when exposed to cigarette smoke as well as increased maternal IgE in the prenatal period. Maternal diet during pregnancy and immunization against certain allergens could help in the prevention of allergy in predisposed children.
Collapse
Affiliation(s)
- Manuela Grijincu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Maria-Roxana Buzan
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Lauriana-Eunice Zbîrcea
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Virgil Păunescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Carmen Panaitescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| |
Collapse
|
24
|
Böck A, Urner K, Eckert JK, Salvermoser M, Laubhahn K, Kunze S, Kumbrink J, Hoeppner MP, Kalkbrenner K, Kreimeier S, Beyer K, Hamelmann E, Kabesch M, Depner M, Hansen G, Riedler J, Roponen M, Schmausser-Hechfellner E, Barnig C, Divaret-Chauveau A, Karvonen AM, Pekkanen J, Frei R, Roduit C, Lauener R, Schaub B. An integrated molecular risk score early in life for subsequent childhood asthma risk. Clin Exp Allergy 2024; 54:314-328. [PMID: 38556721 DOI: 10.1111/cea.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Numerous children present with early wheeze symptoms, yet solely a subgroup develops childhood asthma. Early identification of children at risk is key for clinical monitoring, timely patient-tailored treatment, and preventing chronic, severe sequelae. For early prediction of childhood asthma, we aimed to define an integrated risk score combining established risk factors with genome-wide molecular markers at birth, complemented by subsequent clinical symptoms/diagnoses (wheezing, atopic dermatitis, food allergy). METHODS Three longitudinal birth cohorts (PAULINA/PAULCHEN, n = 190 + 93 = 283, PASTURE, n = 1133) were used to predict childhood asthma (age 5-11) including epidemiological characteristics and molecular markers: genotype, DNA methylation and mRNA expression (RNASeq/NanoString). Apparent (ap) and optimism-corrected (oc) performance (AUC/R2) was assessed leveraging evidence from independent studies (Naïve-Bayes approach) combined with high-dimensional logistic regression models (LASSO). RESULTS Asthma prediction with epidemiological characteristics at birth (maternal asthma, sex, farm environment) yielded an ocAUC = 0.65. Inclusion of molecular markers as predictors resulted in an improvement in apparent prediction performance, however, for optimism-corrected performance only a moderate increase was observed (upto ocAUC = 0.68). The greatest discriminate power was reached by adding the first symptoms/diagnosis (up to ocAUC = 0.76; increase of 0.08, p = .002). Longitudinal analysis of selected mRNA expression in PASTURE (cord blood, 1, 4.5, 6 years) showed that expression at age six had the strongest association with asthma and correlation of genes getting larger over time (r = .59, p < .001, 4.5-6 years). CONCLUSION Applying epidemiological predictors alone showed moderate predictive abilities. Molecular markers from birth modestly improved prediction. Allergic symptoms/diagnoses enhanced the power of prediction, which is important for clinical practice and for the design of future studies with molecular markers.
Collapse
Affiliation(s)
- Andreas Böck
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
| | - Kathrin Urner
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
| | - Jana Kristin Eckert
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
| | - Michael Salvermoser
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
| | - Kristina Laubhahn
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center - Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Sonja Kunze
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jörg Kumbrink
- Institute of Pathology, Medical Faculty, LMU Munich, Munich, Germany
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Kathrin Kalkbrenner
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
| | - Simone Kreimeier
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- Department of Health Economics and Health Care Management, School of Public Health, Bielefeld University, Bielefeld, Germany
| | - Kirsten Beyer
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Eckard Hamelmann
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- Department for Pediatrics, Children's Center Bethel, University Hospital OWL, Bielefeld University, Bielefeld, Germany
| | - Michael Kabesch
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- University Children's Hospital Regensburg (KUNO), St. Hedwig's Hospital of the Order of St. John and the University of Regensburg, Regensburg, Germany
| | - Martin Depner
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Gesine Hansen
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Excellence Cluster Resolving Infection Susceptibility RESIST (EXC 2155), Deutsche Forschungsgemeinschaft, Hannover Medical School, Hannover, Germany
| | | | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elisabeth Schmausser-Hechfellner
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Cindy Barnig
- Department of Respiratory Disease, University Hospital, Besanҫon, France
- INSERM, EFS BFC, LabEx LipSTIC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Amandine Divaret-Chauveau
- Pediatric Allergy Department, Children's Hospital, University Hospital of Nancy, Vandoeuvre les Nancy, France
- EA3450 Development, Adaptation and Handicap (devah), Pediatric Allergy Department, University of Lorraine, Nancy, France
- UMR/CNRS 6249 Chrono-environment, University of Franche Comté, Besançon, France
| | - Anne M Karvonen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Juha Pekkanen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Remo Frei
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Division of Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Caroline Roduit
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Division of Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Children's Hospital, University of Zürich, Zürich, Switzerland
| | - Roger Lauener
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Bianca Schaub
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- Comprehensive Pneumology Center - Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
25
|
Ochoa‐Avilés C, Ochoa‐Avilés A, Rivas‐Párraga R, Escandón S, Santos‐Jesus TD, Silva MDJ, Leão V, Salinas M, Vicuña Y, Baldeón L, Molina‐Cando MJ, Morillo D, Machuca M, Rodas C, Figueiredo C, Neira VA. Mother's smoking habits affects IL10 methylation but not asthma in Ecuadorian children. Mol Genet Genomic Med 2024; 12:e2438. [PMID: 38666495 PMCID: PMC11046467 DOI: 10.1002/mgg3.2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
There is no evidence evaluating the IL10 epigenetic upregulation among mestizo children in a high-altitude Andean city in Latin America. OBJECTIVE To identify polymorphisms and methylation profiles in the IL10 gene associated with asthma in children aged 5 to 11. METHODS A case-control study was conducted with asthmatic and non-asthmatic children aged 5 to 11 years in Cuenca-Ecuador. Data on allergic diseases and risk factors were collected through a questionnaire for parents. Atopy was measured by skin prick test (SPT) to relevant aeroallergens. Three IL10 single nucleotide polymorphisms were evaluated in all participants, and methylation analysis was performed in 54 participants. Association between risk factors, allergic diseases and genetic factors were estimated using multivariate logistic regression. RESULTS The results of polymorphisms showed no differences between cases and controls when comparing the SNPs rs3024495, rs3024496, rs1800896 allelic and genotypic frequencies. In the methylation analysis, no differences in the IL10 methylation profile were found between cases and controls; however, the multivariate analysis showed an association between the mother's smoking habits and the IL10 methylation profile. CONCLUSION Smoking habit could be essential as an environmental exposure factor in regulating gene expression in children with asthma.
Collapse
Affiliation(s)
- Cristina Ochoa‐Avilés
- Departamento de BiocienciasUniversidad de CuencaCuencaAzuayEcuador
- Departamento de Biorregulação, Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBahiaBrazil
| | | | - Roque Rivas‐Párraga
- Departamento de BiocienciasUniversidad de CuencaCuencaAzuayEcuador
- Biomass to Resources GroupUniversidad Regional Amazónica IkiamTenaNapoEcuador
| | - Samuel Escandón
- Departamento de BiocienciasUniversidad de CuencaCuencaAzuayEcuador
| | - Talita Dos Santos‐Jesus
- Departamento de Biorregulação, Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBahiaBrazil
| | - Milca de J. Silva
- Departamento de Biorregulação, Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBahiaBrazil
| | - Valderiene Leão
- Departamento de Biorregulação, Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBahiaBrazil
| | - Marco Salinas
- Biomass to Resources GroupUniversidad Regional Amazónica IkiamTenaNapoEcuador
| | - Yosselin Vicuña
- Instituto de Investigación en Biomedicina Facultad de Ciencias MédicasUniversidad Central del EcuadorQuitoPichinchaEcuador
| | - Lucy Baldeón
- Instituto de Investigación en Biomedicina Facultad de Ciencias MédicasUniversidad Central del EcuadorQuitoPichinchaEcuador
| | - María José Molina‐Cando
- Departamento de BiocienciasUniversidad de CuencaCuencaAzuayEcuador
- Facultad de MedicinaUniversidad Internacional del EcuadorQuitoPichinchaEcuador
| | - Diana Morillo
- Departamento de BiocienciasUniversidad de CuencaCuencaAzuayEcuador
- Facultad de MedicinaUniversidad Internacional del EcuadorQuitoPichinchaEcuador
| | - Marcos Machuca
- Facultad de MedicinaUniversidad del AzuayCuencaAzuayEcuador
| | - Claudia Rodas
- Facultad de MedicinaUniversidad del AzuayCuencaAzuayEcuador
| | - Camila Figueiredo
- Departamento de Biorregulação, Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBahiaBrazil
| | - Vivian Alejandra Neira
- Departamento de BiocienciasUniversidad de CuencaCuencaAzuayEcuador
- Facultad de MedicinaUniversidad del AzuayCuencaAzuayEcuador
| |
Collapse
|
26
|
Makrinioti H, Zhu Z, Saglani S, Camargo CA, Hasegawa K. Infant Bronchiolitis Endotypes and the Risk of Developing Childhood Asthma: Lessons From Cohort Studies. Arch Bronconeumol 2024; 60:215-225. [PMID: 38569771 DOI: 10.1016/j.arbres.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
Severe bronchiolitis (i.e., bronchiolitis requiring hospitalization) during infancy is a heterogeneous condition associated with a high risk of developing childhood asthma. Yet, the exact mechanisms underlying the bronchiolitis-asthma link remain uncertain. Birth cohort studies have reported this association at the population level, including only small groups of patients with a history of bronchiolitis, and have attempted to identify the underlying biological mechanisms. Although this evidence has provided valuable insights, there are still unanswered questions regarding severe bronchiolitis-asthma pathogenesis. Recently, a few bronchiolitis cohort studies have attempted to answer these questions by applying unbiased analytical approaches to biological data. These cohort studies have identified novel bronchiolitis subtypes (i.e., endotypes) at high risk for asthma development, representing essential and enlightening evidence. For example, one distinct severe respiratory syncytial virus (RSV) bronchiolitis endotype is characterized by the presence of Moraxella catarrhalis and Streptococcus pneumoniae, higher levels of type I/II IFN expression, and changes in carbohydrate metabolism in nasal airway samples, and is associated with a high risk for childhood asthma development. Although these findings hold significance for the design of future studies that focus on childhood asthma prevention, they require validation. However, this scoping review puts the above findings into clinical context and emphasizes the significance of future research in this area aiming to offer new bronchiolitis treatments and contribute to asthma prevention.
Collapse
Affiliation(s)
- Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Abrar MNF, Jiang Y, Zhang H, Li L, Arshad H. Epigenetic Features in Newborns Associated with Preadolescence Lung Function and Asthma Acquisition during Adolescence. EPIGENOMES 2024; 8:12. [PMID: 38525738 PMCID: PMC10961756 DOI: 10.3390/epigenomes8020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
The association between newborn DNA methylation (DNAm) and asthma acquisition (AA) during adolescence has been suggested. Lung function (LF) has been shown to be associated with asthma risk and its severity. However, the role of LF in the associations between DNAm and AA is unclear, and it is also unknown whether the association between DNAm and AA is consistent with that between DNAm and LF. We address this question through assessing newborn epigenetic features of preadolescence LF and of AA during adolescence, along with their biological pathways and processes. Our study's primary medical significance lies in advancing the understanding of asthma's early life origins. By investigating epigenetic markers in newborns and their association with lung function in preadolescence, we aim to uncover potential early biomarkers of asthma risk. This could facilitate earlier detection and intervention strategies. Additionally, exploring biological pathways linking early lung function to later asthma development can offer insights into the disease's pathogenesis, potentially leading to novel therapeutic targets. METHODS The study was based on the Isle of Wight Birth cohort (IOWBC). Female subjects with DNAm data at birth and with no asthma at age 10 years were included (n = 249). The R package ttScreening was applied to identify CpGs potentially associated with AA from 10 to 18 years and with LF at age 10 (FEV1, FVC, and FEV1/FVC), respectively. Agreement in identified CpGs between AA and LF was examined, along with their biological pathways and processes via the R function gometh. We tested the findings in an independent cohort, the Avon Longitudinal Study of Parents and Children (ALSPAC), to examine overall replicability. RESULTS In IOWBC, 292 CpGs were detected with DNAm associated with AA and 1517 unique CpGs for LF (514 for FEV1, 436 for FVC, 408 for FEV1/FVC), with one overlapping CpG, cg23642632 (NCKAP1) between AA and LF. Among the IOWBC-identified CpGs, we further tested in ALSPAC and observed the highest agreement between the two cohorts in FVC with respect to the direction of association and statistical significance. Epigenetic enrichment analyses indicated non-specific connections in the biological pathways and processes between AA and LF. CONCLUSIONS The present study suggests that FEV1, FVC, and FEV1/FVC (as objective measures of LF) and AA (incidence of asthma) are likely to have their own specific epigenetic features and biological pathways at birth. More replications are desirable to fully understand the complexity between DNAm, lung function, and asthma acquisition.
Collapse
Affiliation(s)
- Mohammad Nahian Ferdous Abrar
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA; (M.N.F.A.); (Y.J.); (L.L.)
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA; (M.N.F.A.); (Y.J.); (L.L.)
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA; (M.N.F.A.); (Y.J.); (L.L.)
| | - Liang Li
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA; (M.N.F.A.); (Y.J.); (L.L.)
| | - Hasan Arshad
- David Hide Asthma and Allergy Research Centre, Isle of Wight P030 5TG, UK;
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton S017 1BJ, UK
| |
Collapse
|
28
|
Bowman WS, Schmidt RJ, Sanghar GK, Thompson GR, Ji H, Zeki AA, Haczku A. "Air That Once Was Breath" Part 1: Wildfire-Smoke-Induced Mechanisms of Airway Inflammation - "Climate Change, Allergy and Immunology" Special IAAI Article Collection: Collegium Internationale Allergologicum Update 2023. Int Arch Allergy Immunol 2024; 185:600-616. [PMID: 38452750 PMCID: PMC11487202 DOI: 10.1159/000536578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Wildfires are a global concern due to their wide-ranging environmental, economic, and public health impacts. Climate change contributes to an increase in the frequency and intensity of wildfires making smoke exposure a more significant and recurring health concern for individuals with airway diseases. Some of the most prominent effects of wildfire smoke exposure are asthma exacerbations and allergic airway sensitization. Likely due to the delayed recognition of its health impacts in comparison with cigarette smoke and industrial or traffic-related air pollution, research on the composition, the mechanisms of toxicity, and the cellular/molecular pathways involved is poor or non-existent. SUMMARY This review discusses potential underlying pathological mechanisms of wildfire-smoke-related allergic airway disease and asthma. We focused on major gaps in understanding the role of wildfire smoke composition in the development of airway disease and the known and potential mechanisms involving cellular and molecular players of oxidative injury at the epithelial barrier in airway inflammation. We examine how PM2.5, VOCs, O3, endotoxin, microbes, and toxic gases may affect oxidative stress and inflammation in the respiratory mucosal barrier. We discuss the role of AhR in mediating smoke's effects in alarmin release and IL-17A production and how glucocorticoid responsiveness may be impaired by IL-17A-induced signaling and epigenetic changes leading to steroid-resistant severe airway inflammation. KEY MESSAGE Effective mitigation of wildfire-smoke-related respiratory health effects would require comprehensive research efforts aimed at a better understanding of the immune regulatory effects of wildfire smoke in respiratory health and disease.
Collapse
Affiliation(s)
- Willis S. Bowman
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, Sacramento, CA, USA
| | - Gursharan K. Sanghar
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - George R. Thompson
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Hong Ji
- UC Davis Lung Center, University of California, Davis, CA, USA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, Davis, CA, USA
| | - Amir A. Zeki
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Angela Haczku
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
29
|
Yue M, Tao S, Gaietto K, Chen W. Omics approaches in asthma research: Challenges and opportunities. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:1-9. [PMID: 39170962 PMCID: PMC11332849 DOI: 10.1016/j.pccm.2024.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 08/23/2024]
Abstract
Asthma, a chronic respiratory disease with a global prevalence of approximately 300 million individuals, presents a significant societal and economic burden. This multifaceted syndrome exhibits diverse clinical phenotypes and pathogenic endotypes influenced by various factors. The advent of omics technologies has revolutionized asthma research by delving into the molecular foundation of the disease to unravel its underlying mechanisms. Omics technologies are employed to systematically screen for potential biomarkers, encompassing genes, transcripts, methylation sites, proteins, and even the microbiome components. This review provides an insightful overview of omics applications in asthma research, with a special emphasis on genetics, transcriptomics, epigenomics, and the microbiome. We explore the cutting-edge methods, discoveries, challenges, and potential future directions in the realm of asthma omics research. By integrating multi-omics and non-omics data through advanced statistical techniques, we aspire to advance precision medicine in asthma, guiding diagnosis, risk assessment, and personalized treatment strategies for this heterogeneous condition.
Collapse
Affiliation(s)
- Molin Yue
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Shiyue Tao
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Kristina Gaietto
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Wei Chen
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
30
|
Skinner MK. Epigenetic biomarkers for disease susceptibility and preventative medicine. Cell Metab 2024; 36:263-277. [PMID: 38176413 DOI: 10.1016/j.cmet.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
The development of molecular biomarkers for disease makes it possible for preventative medicine approaches to be considered. Therefore, therapeutics, treatments, or clinical management can be used to delay or prevent disease development. The problem with genetic mutations as biomarkers is the low frequency with genome-wide association studies (GWASs), generally at best a 1% association of the patients with the disease. In contrast, epigenetic alterations have a high-frequency association of greater than 90%-95% of individuals with pathology in epigenome-wide association studies (EWASs). A wide variety of human diseases have been shown to have epigenetic biomarkers that are disease specific and that detect pathology susceptibility. This review is focused on the epigenetic biomarkers for disease susceptibility, and it distinct from the large literature on epigenetics of disease etiology or progression. The development of efficient epigenetic biomarkers for disease susceptibility will facilitate a paradigm shift from reactionary medicine to preventative medicine.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| |
Collapse
|
31
|
Brown AP, Parameswaran S, Cai L, Elston S, Pham C, Barski A, Weirauch MT, Ji H. TET1 regulates responses to house dust mite by altering chromatin accessibility, DNA methylation, and gene expression in airway epithelial cells. RESEARCH SQUARE 2023:rs.3.rs-3726852. [PMID: 38168374 PMCID: PMC10760239 DOI: 10.21203/rs.3.rs-3726852/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background Previous studies have identified TET1 as a potential key regulator of genes linked to asthma. TET1 has been shown to transcriptionally respond to house dust mite extract, an allergen known to directly cause allergic asthma development, and regulate the expression of genes involved in asthma. How TET1 regulates expression of these genes, however, is unknown. TET1 is a DNA demethylase; therefore, most prior research on TET1-based gene regulation has focused on how TET1 affects methylation. However, TET1 can also interact directly with transcription factors and histone modifiers to regulate gene expression. Understanding how TET1 regulates expression to contribute to allergic responses and asthma development thus requires a comprehensive approach. To this end, we measured mRNA expression, DNA methylation, chromatin accessibility and histone modifications in control and TET1 knockdown human bronchial epithelial cells treated or untreated with house dust mite extract. Results Throughout our analyses, we detected strong similarities between the effects of TET1 knockdown alone and the effects of HDM treatment alone. One especially striking pattern was that both TET1 knockdown and HDM treatment generally led to decreased chromatin accessibility at largely the same genomic loci. Transcription factor enrichment analyses indicated that altered chromatin accessibility following the loss of TET1 may affect, or be affected by, CTCF and CEBP binding. TET1 loss also led to changes in DNA methylation, but these changes were generally in regions where accessibility was not changing. Conclusions TET1 regulates gene expression through different mechanisms (DNA methylation and chromatin accessibility) in different parts of the genome in the airway epithelial cells, which mediates inflammatory responses to allergen. Collectively, our data suggest novel molecular mechanisms through which TET1 regulates critical pathways following allergen challenges and contributes to the development of asthma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong Ji
- University of California Davis
| |
Collapse
|
32
|
Lebold KM, Cook M, Pincus AB, Nevonen KA, Davis BA, Carbone L, Calco GN, Pierce AB, Proskocil BJ, Fryer AD, Jacoby DB, Drake MG. Grandmaternal allergen sensitization reprograms epigenetic and airway responses to allergen in second-generation offspring. Am J Physiol Lung Cell Mol Physiol 2023; 325:L776-L787. [PMID: 37814791 PMCID: PMC11068409 DOI: 10.1152/ajplung.00103.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
Asthma susceptibility is influenced by environmental, genetic, and epigenetic factors. DNA methylation is one form of epigenetic modification that regulates gene expression and is both inherited and modified by environmental exposures throughout life. Prenatal development is a particularly vulnerable time period during which exposure to maternal asthma increases asthma risk in offspring. How maternal asthma affects DNA methylation in offspring and what the consequences of differential methylation are in subsequent generations are not fully known. In this study, we tested the effects of grandmaternal house dust mite (HDM) allergen sensitization during pregnancy on airway physiology and inflammation in HDM-sensitized and challenged second-generation mice. We also tested the effects of grandmaternal HDM sensitization on tissue-specific DNA methylation in allergen-naïve and -sensitized second-generation mice. Descendants of both allergen- and vehicle-exposed grandmaternal founders exhibited airway hyperreactivity after HDM sensitization. However, grandmaternal allergen sensitization significantly potentiated airway hyperreactivity and altered the epigenomic trajectory in second-generation offspring after HDM sensitization compared with HDM-sensitized offspring from vehicle-exposed founders. As a result, biological processes and signaling pathways associated with epigenetic modifications were distinct between lineages. A targeted analysis of pathway-associated gene expression found that Smad3 was significantly dysregulated as a result of grandmaternal allergen sensitization. These data show that grandmaternal allergen exposure during pregnancy establishes a unique epigenetic trajectory that reprograms allergen responses in second-generation offspring and may contribute to asthma risk.NEW & NOTEWORTHY Asthma susceptibility is influenced by environmental, genetic, and epigenetic factors. This study shows that maternal allergen exposure during pregnancy promotes unique epigenetic trajectories in second-generation offspring at baseline and in response to allergen sensitization, which is associated with the potentiation of airway hyperreactivity. These effects are one mechanism by which maternal asthma may influence the inheritance of asthma risk.
Collapse
Affiliation(s)
- Katie M Lebold
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, United States
| | - Madeline Cook
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Alexandra B Pincus
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Kimberly A Nevonen
- Knight Cardiovascular Institute Epigenetics Consortium, Oregon Health and Science University, Portland, Oregon, United States
| | - Brett A Davis
- Knight Cardiovascular Institute Epigenetics Consortium, Oregon Health and Science University, Portland, Oregon, United States
| | - Lucia Carbone
- Knight Cardiovascular Institute Epigenetics Consortium, Oregon Health and Science University, Portland, Oregon, United States
- Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, United States
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon, United States
| | - Gina N Calco
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Aubrey B Pierce
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Becky J Proskocil
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Allison D Fryer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - David B Jacoby
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Matthew G Drake
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
33
|
Kotsakis Ruehlmann A, Sammallahti S, Cortés Hidalgo AP, Bakulski KM, Binder EB, Campbell ML, Caramaschi D, Cecil CAM, Colicino E, Cruceanu C, Czamara D, Dieckmann L, Dou J, Felix JF, Frank J, Håberg SE, Herberth G, Hoang TT, Houtepen LC, Hüls A, Koen N, London SJ, Magnus MC, Mancano G, Mulder RH, Page CM, Räikkönen K, Röder S, Schmidt RJ, Send TS, Sharp G, Stein DJ, Streit F, Tuhkanen J, Witt SH, Zar HJ, Zenclussen AC, Zhang Y, Zillich L, Wright R, Lahti J, Brunst KJ. Epigenome-wide meta-analysis of prenatal maternal stressful life events and newborn DNA methylation. Mol Psychiatry 2023; 28:5090-5100. [PMID: 36899042 DOI: 10.1038/s41380-023-02010-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023]
Abstract
Prenatal maternal stressful life events are associated with adverse neurodevelopmental outcomes in offspring. Biological mechanisms underlying these associations are largely unknown, but DNA methylation likely plays a role. This meta-analysis included twelve non-overlapping cohorts from ten independent longitudinal studies (N = 5,496) within the international Pregnancy and Childhood Epigenetics consortium to examine maternal stressful life events during pregnancy and DNA methylation in cord blood. Children whose mothers reported higher levels of cumulative maternal stressful life events during pregnancy exhibited differential methylation of cg26579032 in ALKBH3. Stressor-specific domains of conflict with family/friends, abuse (physical, sexual, and emotional), and death of a close friend/relative were also associated with differential methylation of CpGs in APTX, MyD88, and both UHRF1 and SDCCAG8, respectively; these genes are implicated in neurodegeneration, immune and cellular functions, regulation of global methylation levels, metabolism, and schizophrenia risk. Thus, differences in DNA methylation at these loci may provide novel insights into potential mechanisms of neurodevelopment in offspring.
Collapse
Affiliation(s)
- Anna Kotsakis Ruehlmann
- University of Cincinnati College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA
| | - Sara Sammallahti
- Erasmus MC, University Medical Center Rotterdam, Department of Adolescent and Child Psychiatry and Psychology, Rotterdam, Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Andrea P Cortés Hidalgo
- Erasmus MC, University Medical Center Rotterdam, Department of Adolescent and Child Psychiatry and Psychology, Rotterdam, Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Kelly M Bakulski
- University of Michigan, School of Public Health, Department of Epidemiology, Ann Arbor, MI, USA
| | - Elisabeth B Binder
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Megan Loraine Campbell
- University of Cape Town, Department of Psychiatry and Mental Health, Cape Town, South Africa
| | - Doretta Caramaschi
- School of Psychology, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Charlotte A M Cecil
- Erasmus MC, University Medical Center Rotterdam, Department of Adolescent and Child Psychiatry and Psychology, Rotterdam, Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cristiana Cruceanu
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Darina Czamara
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Linda Dieckmann
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - John Dou
- University of Michigan, School of Public Health, Department of Epidemiology, Ann Arbor, MI, USA
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gunda Herberth
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - Thanh T Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709, NC, USA
| | - Lotte C Houtepen
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Nastassja Koen
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa; and UCT Neuroscience Institute, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709, NC, USA
| | - Maria C Magnus
- Norwegian Institute of Public Health, Centre for Fertility and Health, Oslo, Norway
| | - Giulia Mancano
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Rosa H Mulder
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Katri Räikkönen
- University of Helsinki, Faculty of Medicine, Department of Psychology and Logopedics, Helsinki, Finland
| | - Stefan Röder
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - Rebecca J Schmidt
- University of California-Davis, School of Medicine, Department of Public Health Sciences, Davis, CA, USA
| | - Tabea S Send
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gemma Sharp
- School of Psychology, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa; and UCT Neuroscience Institute, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johanna Tuhkanen
- University of Helsinki, Faculty of Medicine, Department of Psychology and Logopedics, Helsinki, Finland
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Heather J Zar
- Department of Paediatrics & Child Health & SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Ana C Zenclussen
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - Yining Zhang
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rosalind Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jari Lahti
- University of Helsinki, Faculty of Medicine, Department of Psychology and Logopedics, Helsinki, Finland
| | - Kelly J Brunst
- University of Cincinnati College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA.
| |
Collapse
|
34
|
López DA, Griffin A, Aguilar LM, Rice CD, Myers EJ, Warren KJ, Welner R, Beaudin AE. Prenatal inflammation reprograms hyperactive ILC2s that promote allergic lung inflammation and airway dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567899. [PMID: 38045298 PMCID: PMC10690173 DOI: 10.1101/2023.11.20.567899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Allergic asthma is a chronic respiratory disease that initiates in early life, but causal mechanisms are poorly understood. Here we examined how prenatal inflammation shapes allergic asthma susceptibility by reprogramming lung immunity from early development. Induction of Type I interferon-mediated inflammation during development provoked expansion and hyperactivation of group 2 innate lymphoid cells (ILC2s) seeding the developing lung. Hyperactivated ILC2s produced increased IL-5 and IL-13, and were associated with acute Th2 bias, eosinophilia, and decreased Tregs in the lung. The hyperactive ILC2 phenotype was recapitulated by adoptive transfer of a fetal liver precursor following exposure to prenatal inflammation, indicative of developmental programming. Programming of ILC2 function and subsequent lung immune remodeling by prenatal inflammation led to airway dysfunction at baseline and in response to papain, indicating increased asthma susceptibility. Our data provide a link by which developmental programming of progenitors by early-life inflammation drives lung immune remodeling and asthma susceptibility through hyperactivation of lung-resident ILC2s. One Sentence Summary Prenatal inflammation programs asthma susceptibility by inducing the production of hyperactivated ILC2s in the developing lung.
Collapse
|
35
|
Kim DJ, Lim JE, Jung HU, Chung JY, Baek EJ, Jung H, Kwon SY, Kim HK, Kang JO, Park K, Won S, Kim TB, Oh B. Identification of asthma-related genes using asthmatic blood eQTLs of Korean patients. BMC Med Genomics 2023; 16:259. [PMID: 37875944 PMCID: PMC10599017 DOI: 10.1186/s12920-023-01677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND More than 200 asthma-associated genetic variants have been identified in genome-wide association studies (GWASs). Expression quantitative trait loci (eQTL) data resources can help identify causal genes of the GWAS signals, but it can be difficult to find an eQTL that reflects the disease state because most eQTL data are obtained from normal healthy subjects. METHODS We performed a blood eQTL analysis using transcriptomic and genotypic data from 433 Korean asthma patients. To identify asthma-related genes, we carried out colocalization, Summary-based Mendelian Randomization (SMR) analysis, and Transcriptome-Wide Association Study (TWAS) using the results of asthma GWASs and eQTL data. In addition, we compared the results of disease eQTL data and asthma-related genes with two normal blood eQTL data from Genotype-Tissue Expression (GTEx) project and a Japanese study. RESULTS We identified 340,274 cis-eQTL and 2,875 eGenes from asthmatic eQTL analysis. We compared the disease eQTL results with GTEx and a Japanese study and found that 64.1% of the 2,875 eGenes overlapped with the GTEx eGenes and 39.0% with the Japanese eGenes. Following the integrated analysis of the asthmatic eQTL data with asthma GWASs, using colocalization and SMR methods, we identified 15 asthma-related genes specific to the Korean asthmatic eQTL data. CONCLUSIONS We provided Korean asthmatic cis-eQTL data and identified asthma-related genes by integrating them with GWAS data. In addition, we suggested these asthma-related genes as therapeutic targets for asthma. We envisage that our findings will contribute to understanding the etiological mechanisms of asthma and provide novel therapeutic targets.
Collapse
Affiliation(s)
- Dong Jun Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Eun Lim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hae-Un Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Ju Yeon Chung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | | | - Hyein Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Shin Young Kwon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Han Kyul Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-One Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kyungtaek Park
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Sungho Won
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, Republic of Korea
- Department of Public Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Bermseok Oh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea.
- Mendel Inc, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Kim S, Xu Z, Forno E, Qin Y, Park HJ, Yue M, Yan Q, Manni ML, Acosta-Pérez E, Canino G, Chen W, Celedón JC. Cis- and trans-eQTM analysis reveals novel epigenetic and transcriptomic immune markers of atopic asthma in airway epithelium. J Allergy Clin Immunol 2023; 152:887-898. [PMID: 37271320 PMCID: PMC10592527 DOI: 10.1016/j.jaci.2023.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Expression quantitative trait methylation (eQTM) analyses uncover associations between DNA methylation markers and gene expression. Most eQTM analyses of complex diseases have focused on cis-eQTM pairs (within 1 megabase). OBJECTIVES This study sought to identify cis- and trans-methylation markers associated with gene expression in airway epithelium from youth with and without atopic asthma. METHODS In this study, the investigators conducted both cis- and trans-eQTM analyses in nasal (airway) epithelial samples from 158 Puerto Rican youth with atopic asthma and 100 control subjects without atopy or asthma. The investigators then attempted to replicate their findings in nasal epithelial samples from 2 studies of children, while also examining whether their results in nasal epithelium overlap with those from an eQTM analysis in white blood cells from the Puerto Rican subjects. RESULTS This study identified 9,108 cis-eQTM pairs and 2,131,500 trans-eQTM pairs. Trans-associations were significantly enriched for transcription factor and microRNA target genes. Furthermore, significant cytosine-phosphate-guanine sites (CpGs) were differentially methylated in atopic asthma and significant genes were enriched for genes differentially expressed in atopic asthma. In this study, 50.7% to 62.6% of cis- and trans-eQTM pairs identified in Puerto Rican youth were replicated in 2 smaller cohorts at false discovery rate-adjusted P < .1. Replicated genes in the trans-eQTM analysis included biologically plausible asthma-susceptibility genes (eg, HDC, NLRP3, ITGAE, CDH26, and CST1) and are enriched in immune pathways. CONCLUSIONS Studying both cis- and trans-epigenetic regulation of airway epithelial gene expression can identify potential causal and regulatory pathways or networks for childhood asthma. Trans-eQTM CpGs may regulate gene expression in airway epithelium through effects on transcription factor and microRNA target genes.
Collapse
Affiliation(s)
- Soyeon Kim
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Zhongli Xu
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; School of Medicine, Tsinghua University, Beijing, China
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Yidi Qin
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, Pa
| | - Hyun Jung Park
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, Pa
| | - Molin Yue
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pa
| | - Qi Yan
- Department of Obstetrics and Gynecology, Columbia University, New York, NY
| | - Michelle L Manni
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh
| | - Edna Acosta-Pérez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Wei Chen
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; School of Medicine, Tsinghua University, Beijing, China
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
37
|
Gupta MK, Peng H, Li Y, Xu CJ. The role of DNA methylation in personalized medicine for immune-related diseases. Pharmacol Ther 2023; 250:108508. [PMID: 37567513 DOI: 10.1016/j.pharmthera.2023.108508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Epigenetics functions as a bridge between host genetic & environmental factors, aiding in human health and diseases. Many immune-related diseases, including infectious and allergic diseases, have been linked to epigenetic mechanisms, particularly DNA methylation. In this review, we summarized an updated overview of DNA methylation and its importance in personalized medicine, and demonstrated that DNA methylation has excellent potential for disease prevention, diagnosis, and treatment in a personalized manner. The future implications and limitations of the DNA methylation study have also been well-discussed.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - He Peng
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
38
|
Kadalayil L, Alam MZ, White CH, Ghantous A, Walton E, Gruzieva O, Merid SK, Kumar A, Roy RP, Solomon O, Huen K, Eskenazi B, Rzehak P, Grote V, Langhendries JP, Verduci E, Ferre N, Gruszfeld D, Gao L, Guan W, Zeng X, Schisterman EF, Dou JF, Bakulski KM, Feinberg JI, Soomro MH, Pesce G, Baiz N, Isaevska E, Plusquin M, Vafeiadi M, Roumeliotaki T, Langie SAS, Standaert A, Allard C, Perron P, Bouchard L, van Meel ER, Felix JF, Jaddoe VWV, Yousefi PD, Ramlau-Hansen CH, Relton CL, Tobi EW, Starling AP, Yang IV, Llambrich M, Santorelli G, Lepeule J, Salas LA, Bustamante M, Ewart SL, Zhang H, Karmaus W, Röder S, Zenclussen AC, Jin J, Nystad W, Page CM, Magnus M, Jima DD, Hoyo C, Maguire RL, Kvist T, Czamara D, Räikkönen K, Gong T, Ullemar V, Rifas-Shiman SL, Oken E, Almqvist C, Karlsson R, Lahti J, Murphy SK, Håberg SE, London S, Herberth G, Arshad H, Sunyer J, Grazuleviciene R, Dabelea D, Steegers-Theunissen RPM, Nohr EA, Sørensen TIA, Duijts L, Hivert MF, Nelen V, Popovic M, Kogevinas M, Nawrot TS, Herceg Z, Annesi-Maesano I, Fallin MD, Yeung E, Breton CV, Koletzko B, Holland N, Wiemels JL, Melén E, Sharp GC, et alKadalayil L, Alam MZ, White CH, Ghantous A, Walton E, Gruzieva O, Merid SK, Kumar A, Roy RP, Solomon O, Huen K, Eskenazi B, Rzehak P, Grote V, Langhendries JP, Verduci E, Ferre N, Gruszfeld D, Gao L, Guan W, Zeng X, Schisterman EF, Dou JF, Bakulski KM, Feinberg JI, Soomro MH, Pesce G, Baiz N, Isaevska E, Plusquin M, Vafeiadi M, Roumeliotaki T, Langie SAS, Standaert A, Allard C, Perron P, Bouchard L, van Meel ER, Felix JF, Jaddoe VWV, Yousefi PD, Ramlau-Hansen CH, Relton CL, Tobi EW, Starling AP, Yang IV, Llambrich M, Santorelli G, Lepeule J, Salas LA, Bustamante M, Ewart SL, Zhang H, Karmaus W, Röder S, Zenclussen AC, Jin J, Nystad W, Page CM, Magnus M, Jima DD, Hoyo C, Maguire RL, Kvist T, Czamara D, Räikkönen K, Gong T, Ullemar V, Rifas-Shiman SL, Oken E, Almqvist C, Karlsson R, Lahti J, Murphy SK, Håberg SE, London S, Herberth G, Arshad H, Sunyer J, Grazuleviciene R, Dabelea D, Steegers-Theunissen RPM, Nohr EA, Sørensen TIA, Duijts L, Hivert MF, Nelen V, Popovic M, Kogevinas M, Nawrot TS, Herceg Z, Annesi-Maesano I, Fallin MD, Yeung E, Breton CV, Koletzko B, Holland N, Wiemels JL, Melén E, Sharp GC, Silver MJ, Rezwan FI, Holloway JW. Analysis of DNA methylation at birth and in childhood reveals changes associated with season of birth and latitude. Clin Epigenetics 2023; 15:148. [PMID: 37697338 PMCID: PMC10496224 DOI: 10.1186/s13148-023-01542-5] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/27/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Seasonal variations in environmental exposures at birth or during gestation are associated with numerous adult traits and health outcomes later in life. Whether DNA methylation (DNAm) plays a role in the molecular mechanisms underlying the associations between birth season and lifelong phenotypes remains unclear. METHODS We carried out epigenome-wide meta-analyses within the Pregnancy And Childhood Epigenetic Consortium to identify associations of DNAm with birth season, both at differentially methylated probes (DMPs) and regions (DMRs). Associations were examined at two time points: at birth (21 cohorts, N = 9358) and in children aged 1-11 years (12 cohorts, N = 3610). We conducted meta-analyses to assess the impact of latitude on birth season-specific associations at both time points. RESULTS We identified associations between birth season and DNAm (False Discovery Rate-adjusted p values < 0.05) at two CpGs at birth (winter-born) and four in the childhood (summer-born) analyses when compared to children born in autumn. Furthermore, we identified twenty-six differentially methylated regions (DMR) at birth (winter-born: 8, spring-born: 15, summer-born: 3) and thirty-two in childhood (winter-born: 12, spring and summer: 10 each) meta-analyses with few overlapping DMRs between the birth seasons or the two time points. The DMRs were associated with genes of known functions in tumorigenesis, psychiatric/neurological disorders, inflammation, or immunity, amongst others. Latitude-stratified meta-analyses [higher (≥ 50°N), lower (< 50°N, northern hemisphere only)] revealed differences in associations between birth season and DNAm by birth latitude. DMR analysis implicated genes with previously reported links to schizophrenia (LAX1), skin disorders (PSORS1C, LTB4R), and airway inflammation including asthma (LTB4R), present only at birth in the higher latitudes (≥ 50°N). CONCLUSIONS In this large epigenome-wide meta-analysis study, we provide evidence for (i) associations between DNAm and season of birth that are unique for the seasons of the year (temporal effect) and (ii) latitude-dependent variations in the seasonal associations (spatial effect). DNAm could play a role in the molecular mechanisms underlying the effect of birth season on adult health outcomes.
Collapse
Affiliation(s)
- Latha Kadalayil
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Md Zahangir Alam
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Cory Haley White
- Merck Exploratory Science Center in Cambridge MA, Merck Research Laboratories, Cambridge, MA, 02141, USA
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Sweden
| | - Simon Kebede Merid
- Centre for Occupational and Environmental Medicine, Region Stockholm, Sweden
| | - Ashish Kumar
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Ritu P Roy
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, CA, 94143, USA
- Computational Biology and Informatics Core, University of California, San Francisco, CA, 94143, USA
| | - Olivia Solomon
- Children's Environmental Health Laboratory, University of California, Berkeley, CA, USA
| | - Karen Huen
- Children's Environmental Health Laboratory, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Children's Environmental Health Laboratory, University of California, Berkeley, CA, USA
| | - Peter Rzehak
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Veit Grote
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | | | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children Hospital, University of Milan, Milan, Italy
| | - Natalia Ferre
- Pediatric Nutrition and Human Development Research Unit, Universitat Rovira i Virgili, IISPV, Reus, Spain
| | - Darek Gruszfeld
- Neonatal Department, Children's Memorial Health Institute, Warsaw, Poland
| | - Lu Gao
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, A460 Mayo Building, MMC 303, 420 Delaware St. SE, Minneapolis, MN, 55455, USA
| | | | - Enrique F Schisterman
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities Johns Hopkins University, Baltimore, MD, USA
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Munawar Hussain Soomro
- Sorbonne Université and INSERM, Epidemiology of Allergic and Respiratory Diseases Department, Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, Paris Cedex 12, France
- Department of Community Medicine and Public Health, SMBB Medical University, Larkana, Pakistan
| | - Giancarlo Pesce
- Sorbonne Université and INSERM, Epidemiology of Allergic and Respiratory Diseases Department, Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, Paris Cedex 12, France
| | - Nour Baiz
- Institut Desbrest de Santé Publique (IDESP), INSERM and Montpellier University, Montpellier, France
| | - Elena Isaevska
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, CPO Piemonte, Italy
| | - Michelle Plusquin
- Center for Environmental Sciences, University of Hasselt, 3590, Diepenbeek, Belgium
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Sabine A S Langie
- Unit Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Faculty of Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Limburg, The Netherlands
| | - Arnout Standaert
- Unit Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Catherine Allard
- Centre de Recherche du Centre Hospitalier de l'Universite de Sherbrooke, Sherbrooke, Canada
| | - Patrice Perron
- Department of Medicine, Universite de Sherbrooke, Sherbrooke, Canada
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Universite de Sherbrooke, Sherbrooke, Canada
- Clinical Department of Laboratory Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Chicoutimi, Canada
| | - Evelien R van Meel
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Paul D Yousefi
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Elmar W Tobi
- Periconceptional Epidemiology, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Anne P Starling
- Life Course Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Maria Llambrich
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Johanna Lepeule
- Institute for Advanced Biosciences, University Grenoble-Alpes, INSERM, CNRS, Grenoble, France
| | - Lucas A Salas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Center for Molecular Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Lebanon, NH, USA
| | - Mariona Bustamante
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Susan L Ewart
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, USA
| | - Stefan Röder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jianping Jin
- 2530 Meridian Pkwy, Suite 200, Durham, NC 27713, USA
| | - Wenche Nystad
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Section for Statistics and Data Science, Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Maria Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Rachel L Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Obstetrics and Gynaecology, Duke University Medical Center, Durham, NC, USA
| | - Tuomas Kvist
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, 80804, Munich, Germany
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Tong Gong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, USA
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Susan K Murphy
- Department of Obstetrics and Gynaecology, Duke University Medical Center, Durham, NC, USA
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie London
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, RTP, NC, 27709, USA
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
- NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, UK
| | - Jordi Sunyer
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Dana Dabelea
- Life Course Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Régine P M Steegers-Theunissen
- Periconceptional Epidemiology, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Ellen A Nohr
- Department of Clinical Research, Odense Universitetshospital, Odense, Denmark
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Vera Nelen
- Provincial Institute for Hygiene, Antwerp, Belgium
| | - Maja Popovic
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, CPO Piemonte, Italy
| | | | - Tim S Nawrot
- Center for Environmental Sciences, University of Hasselt, 3590, Diepenbeek, Belgium
- Department of Public Health and Primary Care, Leuven University, Louvain, Belgium
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Isabella Annesi-Maesano
- Institut Desbrest de Santé Publique (IDESP), INSERM and Montpellier University, Montpellier, France
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities Johns Hopkins University, Baltimore, MD, USA
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Edwina Yeung
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, USA
| | - Carrie V Breton
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Nina Holland
- Children's Environmental Health Laboratory, CERCH, Berkeley Public Health, University of California, 2121 Berkeley Way #5216, Berkeley, CA, 94720, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Gemma C Sharp
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Psychology, University of Exeter, Exeter, UK
| | - Matt J Silver
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
- Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK.
- NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, UK.
| |
Collapse
|
39
|
Zhu Z, Li Y, Freishtat RJ, Celedón JC, Espinola JA, Harmon B, Hahn A, Camargo CA, Liang L, Hasegawa K. Epigenome-wide association analysis of infant bronchiolitis severity: a multicenter prospective cohort study. Nat Commun 2023; 14:5495. [PMID: 37679381 PMCID: PMC10485022 DOI: 10.1038/s41467-023-41300-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Bronchiolitis is the most common lower respiratory infection in infants, yet its pathobiology remains unclear. Here we present blood DNA methylation data from 625 infants hospitalized with bronchiolitis in a 17-center prospective study, and associate them with disease severity. We investigate differentially methylated CpGs (DMCs) for disease severity. We characterize the DMCs based on their association with cell and tissues types, biological pathways, and gene expression. Lastly, we also examine the relationships of severity-related DMCs with respiratory and immune traits in independent cohorts. We identify 33 DMCs associated with severity. These DMCs are differentially methylated in blood immune cells. These DMCs are also significantly enriched in multiple tissues (e.g., lung) and cells (e.g., small airway epithelial cells), and biological pathways (e.g., interleukin-1-mediated signaling). Additionally, these DMCs are associated with respiratory and immune traits (e.g., asthma, lung function, IgE levels). Our study suggests the role of DNA methylation in bronchiolitis severity.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yijun Li
- Department of Epidemiology, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Juan C Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janice A Espinola
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Andrea Hahn
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Division of Infectious Diseases, Children's National Hospital, Washington, DC, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H.Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Cardenas A, Fadadu RP, Koppelman GH. Epigenome-wide association studies of allergic disease and the environment. J Allergy Clin Immunol 2023; 152:582-590. [PMID: 37295475 PMCID: PMC10564109 DOI: 10.1016/j.jaci.2023.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
The epigenome is at the intersection of the environment, genotype, and cellular response. DNA methylation of cytosine nucleotides, the most studied epigenetic modification, has been systematically evaluated in human studies by using untargeted epigenome-wide association studies (EWASs) and shown to be both sensitive to environmental exposures and associated with allergic diseases. In this narrative review, we summarize findings from key EWASs previously conducted on this topic; interpret results from recent studies; and discuss the strengths, challenges, and opportunities regarding epigenetics research on the environment-allergy relationship. The majority of these EWASs have systematically investigated select environmental exposures during the prenatal and early childhood periods and allergy-associated epigenetic changes in leukocyte-isolated DNA and more recently in nasal cells. Overall, many studies have found consistent DNA methylation associations across cohorts for certain exposures, such as smoking (eg, aryl hydrocarbon receptor repressor gene [AHRR] gene), and allergic diseases (eg, EPX gene). We recommend the integration of both environmental exposures and allergy or asthma within long-term prospective designs to strengthen causality as well as biomarker development. Future studies should collect paired target tissues to examine compartment-specific epigenetic responses, incorporate genetic influences in DNA methylation (methylation quantitative trait locus), replicate findings across diverse populations, and carefully interpret epigenetic signatures from bulk, target tissue or isolated cells.
Collapse
Affiliation(s)
- Andres Cardenas
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford University, Stanford, Calif
| | - Raj P Fadadu
- School of Medicine, University of California, San Francisco, Calif
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen, The Netherlands; Groningen Research Institute of Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
41
|
Ahmadi H, Aghebati-Maleki L, Rashidiani S, Csabai T, Nnaemeka OB, Szekeres-Bartho J. Long-Term Effects of ART on the Health of the Offspring. Int J Mol Sci 2023; 24:13564. [PMID: 37686370 PMCID: PMC10487905 DOI: 10.3390/ijms241713564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Assisted reproductive technologies (ART) significantly increase the chance of successful pregnancy and live birth in infertile couples. The different procedures for ART, including in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), intrauterine insemination (IUI), and gamete intrafallopian tube transfer (GIFT), are widely used to overcome infertility-related problems. In spite of its inarguable usefulness, concerns about the health consequences of ART-conceived babies have been raised. There are reports about the association of ART with birth defects and health complications, e.g., malignancies, high blood pressure, generalized vascular functional disorders, asthma and metabolic disorders in later life. It has been suggested that hormonal treatment of the mother, and the artificial environment during the manipulation of gametes and embryos may cause genomic and epigenetic alterations and subsequent complications in the health status of ART-conceived babies. In the current study, we aimed to review the possible long-term consequences of different ART procedures on the subsequent health status of ART-conceived offspring, considering the confounding factors that might account for/contribute to the long-term consequences.
Collapse
Affiliation(s)
- Hamid Ahmadi
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, 7624 Pécs, Hungary; (H.A.); (T.C.)
| | - Leili Aghebati-Maleki
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Shima Rashidiani
- Department of Medical Biochemistry, Medical School, Pécs University, 7624 Pécs, Hungary;
| | - Timea Csabai
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, 7624 Pécs, Hungary; (H.A.); (T.C.)
- János Szentágothai Research Centre, Pécs University, 7624 Pécs, Hungary
- Endocrine Studies, Centre of Excellence, Pécs University, 7624 Pécs, Hungary
- National Laboratory of Human Reproduction, 7624 Pécs, Hungary
| | - Obodo Basil Nnaemeka
- Department of Laboratory Diagnostics, Faculty of Health Sciences, Pécs University, 7621 Pécs, Hungary;
| | - Julia Szekeres-Bartho
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, 7624 Pécs, Hungary; (H.A.); (T.C.)
- János Szentágothai Research Centre, Pécs University, 7624 Pécs, Hungary
- Endocrine Studies, Centre of Excellence, Pécs University, 7624 Pécs, Hungary
- National Laboratory of Human Reproduction, 7624 Pécs, Hungary
- MTA—PTE Human Reproduction Research Group, 7624 Pecs, Hungary
| |
Collapse
|
42
|
Romero-Tapia SDJ, Guzmán Priego CG, Del-Río-Navarro BE, Sánchez-Solis M. Advances in the Relationship between Respiratory Viruses and Asthma. J Clin Med 2023; 12:5501. [PMID: 37685567 PMCID: PMC10488270 DOI: 10.3390/jcm12175501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Several studies have reported that viral infection is closely associated with the onset, progression, and exacerbation of asthma. The purpose of this review is to summarize the role that viral infections have in the pathogenesis of asthma onset and exacerbations, as well as discuss interrelated protective and risk factors of asthma and current treatment options. Furthermore, we present current knowledge of the innate immunological pathways driving host defense, including changes in the epithelial barrier. In addition, we highlight the importance of the genetics and epigenetics of asthma and virus susceptibility. Moreover, the involvement of virus etiology from bronchiolitis and childhood wheezing to asthma is described. The characterization and mechanisms of action of the respiratory viruses most frequently related to asthma are mentioned.
Collapse
Affiliation(s)
- Sergio de Jesús Romero-Tapia
- Health Sciences Academic Division (DACS), Juarez Autonomous University of Tabasco (UJAT), Villahermosa 86040, Tabasco, Mexico
| | - Crystell Guadalupe Guzmán Priego
- Cardiometabolism Laboratory, Research Center, Health Sciences Academic Division (DACS), Juarez Autonomous University of Tabasco (UJAT), Villahermosa 86040, Tabasco, Mexico;
| | | | - Manuel Sánchez-Solis
- Paediatric Pulmonology Unit, Virgen de la Arrixaca University Children’s Hospital, University of Murcia, 30120 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| |
Collapse
|
43
|
What Have Mechanistic Studies Taught Us About Childhood Asthma? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:684-692. [PMID: 36649800 DOI: 10.1016/j.jaip.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Childhood asthma is a chronic heterogeneous syndrome consisting of different disease entities or phenotypes. The immunologic and cellular processes that occur during asthma development are still not fully understood but represent distinct endotypes. Mechanistic studies have examined the role of gene expression, protein levels, and cell types in early life development and the manifestation of asthma, many under the influence of environmental stimuli, which can be both protective and risk factors for asthma. Genetic variants can regulate gene expression, controlled partly by different epigenetic mechanisms. In addition, environmental factors, such as living space, nutrition, and smoking, can contribute to these mechanisms. All of these factors produce modifications in gene expression that can alter the development and function of immune and epithelial cells and subsequently different trajectories of childhood asthma. These early changes in a partially immature immune system can have dramatic effects (e.g., causing dysregulation), which in turn contribute to different disease endotypes and may help to explain differential responsiveness to asthma treatment. In this review, we summarize published studies that have aimed to uncover distinct mechanisms in childhood asthma, considering genetics, epigenetics, and environment. Moreover, a discussion of new, powerful tools for single-cell immunologic assays for phenotypic and functional analysis is included, which promise new mechanistic insights into childhood asthma development and therapeutic and preventive strategies.
Collapse
|
44
|
Stikker BS, Hendriks RW, Stadhouders R. Decoding the genetic and epigenetic basis of asthma. Allergy 2023; 78:940-956. [PMID: 36727912 DOI: 10.1111/all.15666] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023]
Abstract
Asthma is a complex and heterogeneous chronic inflammatory disease of the airways. Alongside environmental factors, asthma susceptibility is strongly influenced by genetics. Given its high prevalence and our incomplete understanding of the mechanisms underlying disease susceptibility, asthma is frequently studied in genome-wide association studies (GWAS), which have identified thousands of genetic variants associated with asthma development. Virtually all these genetic variants reside in non-coding genomic regions, which has obscured the functional impact of asthma-associated variants and their translation into disease-relevant mechanisms. Recent advances in genomics technology and epigenetics now offer methods to link genetic variants to gene regulatory elements embedded within non-coding regions, which have started to unravel the molecular mechanisms underlying the complex (epi)genetics of asthma. Here, we provide an integrated overview of (epi)genetic variants associated with asthma, focusing on efforts to link these disease associations to biological insight into asthma pathophysiology using state-of-the-art genomics methodology. Finally, we provide a perspective as to how decoding the genetic and epigenetic basis of asthma has the potential to transform clinical management of asthma and to predict the risk of asthma development.
Collapse
Affiliation(s)
- Bernard S Stikker
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
45
|
Wu Y, Xu R, Li S, Ming Wong E, Southey MC, Hopper JL, Abramson MJ, Li S, Guo Y. Epigenome-wide association study of short-term temperature fluctuations based on within-sibship analyses in Australian females. ENVIRONMENT INTERNATIONAL 2023; 171:107655. [PMID: 36476687 DOI: 10.1016/j.envint.2022.107655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/26/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Temperature fluctuations can affect human health independent of the effect of mean temperature. However, no study has evaluated whether short-term temperature fluctuations could affect DNA methylation. METHODS Peripheral blood DNA methylation for 479 female siblings of 130 families were analysed. Gridded daily temperatures data were obtained, linked to each participant's home address, and used to calculate nine different metrics of short-term temperature fluctuations: temperature variabilities (TVs) within the day of blood draw and preceding one to seven days (TV 0-1 to TV 0-7), diurnal temperature range (DTR), and temperature change between neighbouring days (TCN). Within-sibship design was used to perform epigenome-wide association analyses, adjusting for daily mean temperatures, and other important covariates (e.g., smoking, alcohol use, cell-type proportions). Differentially methylated regions (DMRs) were further identified. Multiple-testing comparisons with a significant threshold of 0.01 for cytosine-guanine dinucleotides (CpGs) and 0.05 for DMRs were applied. RESULTS Among 479 participants (mean age ± SD, 56.4 ± 7.9 years), we identified significant changes in methylation levels in 14 CpGs and 70 DMRs associated with temperature fluctuations. Almost all identified CpGs were associated with exposure to temperature fluctuations within three days. Differentially methylated signals were mapped to 68 genes that were linked to human diseases such as cancer (e.g., colorectal carcinoma, breast carcinoma, and metastatic neoplasms) and mental disorder (e.g., schizophrenia, mental depression, and bipolar disorder). The top three most significantly enriched gene ontology terms were Response to bacterium (TV 0-3), followed by Hydrolase activity, acting on ester bonds (TCN), and Oxidoreductase activity (TV 0-3). CONCLUSIONS Short-term temperature fluctuations were associated with differentially methylated signals across the human genome, which provides evidence on the potential biological mechanisms underlying the health impact of temperature fluctuations. Future studies are needed to further clarify the roles of DNA methylation in diseases associated with temperature fluctuations.
Collapse
Affiliation(s)
- Yao Wu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3010, Australia; Cancer Epidemiology Division, Cancer Council Victoria, VIC 3004, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shuai Li
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
46
|
Schedel M, Leach SM, Strand MJ, Danhorn T, MacBeth M, Faino AV, Lynch AM, Winn VD, Munoz LL, Forsberg SM, Schwartz DA, Gelfand EW, Hauk PJ. Molecular networks in atopic mothers impact the risk of infant atopy. Allergy 2023; 78:244-257. [PMID: 35993851 DOI: 10.1111/all.15490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The prevalence of atopic diseases has increased with atopic dermatitis (AD) as the earliest manifestation. We assessed if molecular risk factors in atopic mothers influence their infants' susceptibility to an atopic disease. METHODS Pregnant women and their infants with (n = 174, high-risk) or without (n = 126, low-risk) parental atopy were enrolled in a prospective birth cohort. Global differentially methylated regions (DMRs) were determined in atopic (n = 92) and non-atopic (n = 82) mothers. Principal component analysis was used to predict atopy risk in children dependent on maternal atopy. Genome-wide transcriptomic analyses were performed in paired atopic (n = 20) and non-atopic (n = 15) mothers and cord blood. Integrative genomic analyses were conducted to define methylation-gene expression relationships. RESULTS Atopic dermatitis was more prevalent in high-risk compared to low-risk children by age 2. Differential methylation analyses identified 165 DMRs distinguishing atopic from non-atopic mothers. Inclusion of DMRs in addition to maternal atopy significantly increased the odds ratio to develop AD in children from 2.56 to 4.26. In atopic compared to non-atopic mothers, 139 differentially expressed genes (DEGs) were identified significantly enriched of genes within the interferon signaling pathway. Expression quantitative trait methylation analyses dependent on maternal atopy identified 29 DEGs controlled by 136 trans-acting methylation marks, some located near transcription factors. Differential expression for the same nine genes, including MX1 and IFI6 within the interferon pathway, was identified in atopic and non-atopic mothers and high-risk and low-risk children. CONCLUSION These data suggest that in utero epigenetic and transcriptomic mechanisms predominantly involving the interferon pathway may impact and predict the development of infant atopy.
Collapse
Affiliation(s)
- Michaela Schedel
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pulmonary Medicine, University Medicine Essen-Ruhrlandklinik, Essen, Germany.,Department of Pulmonary Medicine, University Medicine Essen, University Hospital, Essen, Germany
| | - Sonia M Leach
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA.,Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Matthew J Strand
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA
| | - Thomas Danhorn
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA.,Department of Pharmacology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Morgan MacBeth
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Medical Oncology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Anna V Faino
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA.,Biostatistics, Epidemiology and Research Core, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Anne M Lynch
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Obstetrics and Gynecology, Stanford University, Stanford, California, USA
| | - Lindsay L Munoz
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Shannon M Forsberg
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Thoracic Oncology, University of Colorado Cancer Center, University of Colorado, Aurora, Colorado, USA
| | - David A Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Erwin W Gelfand
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Pia J Hauk
- Divisions of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Section Allergy/Immunology, Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
47
|
A comparison of the genes and genesets identified by GWAS and EWAS of fifteen complex traits. Nat Commun 2022; 13:7816. [PMID: 36535946 PMCID: PMC9763500 DOI: 10.1038/s41467-022-35037-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Identifying genomic regions pertinent to complex traits is a common goal of genome-wide and epigenome-wide association studies (GWAS and EWAS). GWAS identify causal genetic variants, directly or via linkage disequilibrium, and EWAS identify variation in DNA methylation associated with a trait. While GWAS in principle will only detect variants due to causal genes, EWAS can also identify genes via confounding, or reverse causation. We systematically compare GWAS (N > 50,000) and EWAS (N > 4500) results of 15 complex traits. We evaluate if the genes or gene ontology terms flagged by GWAS and EWAS overlap, and find substantial overlap for diastolic blood pressure, (gene overlap P = 5.2 × 10-6; term overlap P = 0.001). We superimpose our empirical findings against simulated models of varying genetic and epigenetic architectures and observe that in most cases GWAS and EWAS are likely capturing distinct genesets. Our results indicate that GWAS and EWAS are capturing different aspects of the biology of complex traits.
Collapse
|
48
|
Wang Y, Tzeng JY, Huang Y, Maguire R, Hoyo C, Allen TK. Duration of exposure to epidural anesthesia at delivery, DNA methylation in umbilical cord blood and their association with offspring asthma in Non-Hispanic Black women. ENVIRONMENTAL EPIGENETICS 2022; 9:dvac026. [PMID: 36694712 PMCID: PMC9854336 DOI: 10.1093/eep/dvac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Epidural anesthesia is an effective pain relief modality, widely used for labor analgesia. Childhood asthma is one of the commonest chronic medical illnesses in the USA which places a significant burden on the health-care system. We recently demonstrated a negative association between the duration of epidural anesthesia and the development of childhood asthma; however, the underlying molecular mechanisms still remain unclear. In this study of 127 mother-child pairs comprised of 75 Non-Hispanic Black (NHB) and 52 Non-Hispanic White (NHW) from the Newborn Epigenetic Study, we tested the hypothesis that umbilical cord blood DNA methylation mediates the association between the duration of exposure to epidural anesthesia at delivery and the development of childhood asthma and whether this differed by race/ethnicity. In the mother-child pairs of NHB ancestry, the duration of exposure to epidural anesthesia was associated with a marginally lower risk of asthma (odds ratio = 0.88, 95% confidence interval = 0.76-1.01) for each 1-h increase in exposure to epidural anesthesia. Of the 20 CpGs in the NHB population showing the strongest mediation effect, 50% demonstrated an average mediation proportion of 52%, with directional consistency of direct and indirect effects. These top 20 CpGs mapped to 21 genes enriched for pathways engaged in antigen processing, antigen presentation, protein ubiquitination and regulatory networks related to the Major Histocompatibility Complex (MHC) class I complex and Nuclear Factor Kappa-B (NFkB) complex. Our findings suggest that DNA methylation in immune-related pathways contributes to the effects of the duration of exposure to epidural anesthesia on childhood asthma risk in NHB offspring.
Collapse
Affiliation(s)
- Yaxu Wang
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| | - Jung-Ying Tzeng
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695-7633, USA
- Department of Statistics, North Carolina State University, Raleigh, NC 27607, USA
| | - Yueyang Huang
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| | - Rachel Maguire
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695-7633, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Terrence K Allen
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
49
|
Nasal DNA methylation at three CpG sites predicts childhood allergic disease. Nat Commun 2022; 13:7415. [PMID: 36456559 PMCID: PMC9715628 DOI: 10.1038/s41467-022-35088-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Childhood allergic diseases, including asthma, rhinitis and eczema, are prevalent conditions that share strong genetic and environmental components. Diagnosis relies on clinical history and measurements of allergen-specific IgE. We hypothesize that a multi-omics model could accurately diagnose childhood allergic disease. We show that nasal DNA methylation has the strongest predictive power to diagnose childhood allergy, surpassing blood DNA methylation, genetic risk scores, and environmental factors. DNA methylation at only three nasal CpG sites classifies allergic disease in Dutch children aged 16 years well, with an area under the curve (AUC) of 0.86. This is replicated in Puerto Rican children aged 9-20 years (AUC 0.82). DNA methylation at these CpGs additionally detects allergic multimorbidity and symptomatic IgE sensitization. Using nasal single-cell RNA-sequencing data, these three CpGs associate with influx of T cells and macrophages that contribute to allergic inflammation. Our study suggests the potential of methylation-based allergy diagnosis.
Collapse
|
50
|
Kilanowski A, Merid SK, Abrishamcar S, Feil D, Thiering E, Waldenberger M, Melén E, Peters A, Standl M, Hüls A. DNA methylation and aeroallergen sensitization: The chicken or the egg? Clin Epigenetics 2022; 14:114. [PMID: 36114581 PMCID: PMC9482323 DOI: 10.1186/s13148-022-01332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Background DNA methylation (DNAm) is considered a plausible pathway through which genetic and environmental factors may influence the development of allergies. However, causality has yet to be determined as it is unknown whether DNAm is rather a cause or consequence of allergic sensitization. Here, we investigated the direction of the observed associations between well-known environmental and genetic determinants of allergy, DNAm, and aeroallergen sensitization using a combination of high-dimensional and causal mediation analyses.
Methods Using prospectively collected data from the German LISA birth cohort from two time windows (6–10 years: N = 234; 10–15 years: N = 167), we tested whether DNAm is a cause or a consequence of aeroallergen sensitization (specific immunoglobulin E > 0.35kU/l) by conducting mediation analyses for both effect directions using maternal smoking during pregnancy, family history of allergies, and a polygenic risk score (PRS) for any allergic disease as exposure variables. We evaluated individual CpG sites (EPIC BeadChip) and allergy-related methylation risk scores (MRS) as potential mediators in the mediation analyses. We applied three high-dimensional mediation approaches (HIMA, DACT, gHMA) and validated results using causal mediation analyses. A replication of results was attempted in the Swedish BAMSE cohort.
Results Using high-dimensional methods, we identified five CpGs as mediators of prenatal exposures to sensitization with significant (adjusted p < 0.05) indirect effects in the causal mediation analysis (maternal smoking: two CpGs, family history: one, PRS: two). None of these CpGs could be replicated in BAMSE. The effect of family history on allergy-related MRS was significantly mediated by aeroallergen sensitization (proportions mediated: 33.7–49.6%), suggesting changes in DNAm occurred post-sensitization. Conclusion The results indicate that DNAm may be a cause or consequence of aeroallergen sensitization depending on genomic location. Allergy-related MRS, identified as a potential cause of sensitization, can be considered as a cross-sectional biomarker of disease. Differential DNAm in individual CpGs, identified as mediators of the development of sensitization, could be used as clinical predictors of disease development. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01332-5.
Collapse
|