1
|
Kim I, Medina SH. Ultrasonic disruption of circulating amyloid β aggregates via phase-change peptide nanoemulsions. Biomaterials 2025; 318:123146. [PMID: 39892015 PMCID: PMC11875895 DOI: 10.1016/j.biomaterials.2025.123146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/03/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Amyloid β (Aβ) assemblies exist not only in the central nervous system, but can circulate within the bloodstream to trigger and exacerbate peripheral, cerebrovascular, and neurodegenerative disorders. Eliminating excess peripheral Aβ fibrils, therefore, holds promise to improve the management of amyloid-related diseases. Here, we present nanoemulsion-mediated ultrasonic ablation of circulating Aβ fibrils to both destroy established plaques and prevent the re-growth of ablated fragments back into toxic species. This approach is made possible using a de novo designed peptide emulsifier that contains the self-associating sequence from the amyloid precursor protein. Emulsification of the peptide surfactant with fluorous nanodroplets produces contrast agents that rapidly adsorb Aβ assemblies and allows their ultrasound-controlled destruction via acoustic cavitation. Vessel-mimetic flow experiments demonstrate that nanoemulsion-assisted Aβ disruption can be achieved in circulation using clinical diagnostic ultrasound transducers. Additional cell-based assays confirm the ablated fragments are less toxic to neuronal and glial cells compared to mature fibrils, and can be rapidly phagocytosed by both peripheral and brain macrophages. These results highlight the potential of nanoemulsion contrast agents to deliver new imaging enabled strategies for non-invasive management of Aβ-related diseases using traditional diagnostic ultrasound modalities.
Collapse
Affiliation(s)
- Inhye Kim
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Scott H Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802-4400, USA.
| |
Collapse
|
2
|
Zhou J, Sun X, Wang K, Shen M, Yu J, Yao Q, Hong H, Tang C, Wang Q. What Information do Systemic Pathological Changes Bring to the Diagnosis and Treatment of Alzheimer's Disease? Neurosci Bull 2025:10.1007/s12264-025-01399-z. [PMID: 40257662 DOI: 10.1007/s12264-025-01399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/21/2025] [Indexed: 04/22/2025] Open
Abstract
Alzheimer's disease (AD) is regarded as a neurodegenerative disease, and it has been proposed that AD may be a systemic disease. Studies have reported associations between non-neurological diseases and AD. The correlations between AD pathology and systemic (non-neurological) pathological changes are intricate, and the mechanisms underlying these correlations and their causality are unclear. In this article, we review the association between AD and disorders of other systems. In addition, we summarize the possible mechanisms associated with AD and disorders of other systems, mainly from the perspective of AD pathology. Regarding the relationship between AD and systemic pathological changes, we aim to provide a new outlook on the early warning signs and treatment of AD, such as establishing a diagnostic and screening system based on more accessible peripheral samples.
Collapse
Affiliation(s)
- Jinyue Zhou
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China
| | - Xiaoli Sun
- Department of Chemistry, Lishui University, Lishui, 32300, China
| | - Keren Wang
- Health Science Center, School of Public Health, Ningbo University, Ningbo, 315211, China
| | - Min Shen
- Reference Laboratory, Medical System Biotechnology Co., Ltd, Ningbo, 315104, China
| | - Jingbo Yu
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China
| | - Qi Yao
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China
| | - Hang Hong
- Health Science Center, School of Public Health, Ningbo University, Ningbo, 315211, China.
| | - Chunlan Tang
- Health Science Center, School of Public Health, Ningbo University, Ningbo, 315211, China.
| | - Qinwen Wang
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China.
| |
Collapse
|
3
|
Butler HM, Keller E, McCrorey M, Keceli G, Combs CK, Kayed R, Namakkal-S R, Paolocci N, Jacobs Wolf B, Wold LE, Del Monte F. Particulate matter and co-occurring genetic risk induce oxidative stress and cardiac and brain Alzheimer's pathology. Commun Biol 2025; 8:603. [PMID: 40221628 PMCID: PMC11993720 DOI: 10.1038/s42003-025-07701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/07/2025] [Indexed: 04/14/2025] Open
Abstract
Amyloid-beta (Aβ) aggregates, an Alzheimer's disease (AD) pathological hallmark, extend beyond the brain to the heart of heart failure (HF) and AD patients. Being diseases of the elderly, increased prevalence is expected as the population ages. However, changes in the incidence and prevalence of dementia over the past decades, and the independent association of exposure to air particulate matter (PM) with poor cognitive function, adverse cardiovascular effects, and oxidative stress hint to the contribution of other factors beyond senescence. Therefore we evaluate whether, and by which mechanism(s), PM exposure affects heart and brain proteinopathy with/without genetic predisposition.AD-prone and control mice are exposed for three months to filtered air (FA) or concentrated ambient PM < 2.5μm in diameter (PM2.5), and evaluated for Aβ pathology, cognitive and cardiac function, and markers of oxidative stress. Aβ pathology become noticeable in AD hearts and worsens with PM2.5 in AD brains. Functionally, PM2.5 lead to anxiety and memory deficits and worsens diastolic function. Redox homeostasis is negatively impacted by genotype and PM2.5. This study identifies environmental pollution as a potential key contributor to early progression of heart and brain proteinopathy, delineating a crucial timepoint for early interventions to limit multiorgan damage in vulnerable patients.
Collapse
Affiliation(s)
- Helen M Butler
- College of Graduate Studies, Medical University of South Carolina, Charleston, SC, USA
| | - Everette Keller
- College of Medicine, Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Marice McCrorey
- College of Graduate Studies, Medical University of South Carolina, Charleston, SC, USA
| | - Gizem Keceli
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Colin K Combs
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Rakez Kayed
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rajasekaran Namakkal-S
- Department of Pathology/Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nazareno Paolocci
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Bethany Jacobs Wolf
- College of Medicine, Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Loren E Wold
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Federica Del Monte
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Medicine and Surgery, University of Bologna Alma Mater, Bologna, Italy.
| |
Collapse
|
4
|
Norris C, Garimella HT, Carr W, Boutté AM, Gupta RK, Przekwas AJ. Modeling biomarker kinetics of Aβ levels in serum following blast. Front Neurol 2025; 16:1548589. [PMID: 40255887 PMCID: PMC12006977 DOI: 10.3389/fneur.2025.1548589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/19/2025] [Indexed: 04/22/2025] Open
Abstract
Elucidating the unique neuropathological response to blast exposure remains a barrier towards the development of diagnostic approaches for those with blast-induced traumatic brain injury (bTBI). Quantification of biomarker concentrations in the blood post-injury is typically used to inform brain injury severity. However, injury progression and associated changes in biomarker concentrations are sensitive to parameters such as the blast overpressure (BOP) magnitude and frequency of blast exposure. Through this work, a blast-dose biomarker kinetics (BxK) platform was developed and validated for Aβ42 as a promising predictor of injury post-blast. Blast-dose responses accounting for BOP magnitude and frequency were integrated into a mathematical model accounting for whole-body Aβ peptide kinetics. Validation of the developed model was performed through comparison with acute monomer levels in the blood serum of 15 service members exposed to repeated low-level blast while undergoing three-day weapons training. Amyloid precursor protein (APP) synthesis was assumed to be proportional to blast magnitude and additive effects within a window of recovery were applied to account for cumulative exposure. Aβ42 concentrations in the blood serum were predicted within 6.5 ± 5.2% on average, demonstrating model feasibility and biomarker sensitivity to blast. Outcomes discuss how modulation of patient-specific factors (age, weight, genetic factors, years of exposure, sleep) and pathophysiological factors (BBB permeability, amyloidogenic pathology, neuroinflammation) can reveal potential sources of variability in experimental data and be incorporated into the blast-dose BxK platform in future iterations. Advancements in model complexity accounting for sex-specific factors, weapon system, stress levels, risk of symptom onset, and pharmacological treatment strategies are anticipated to improve model calibration. Utilization of this blast-dose BxK model to identify drivers of pathophysiological mechanisms and predict chronic outcomes has the potential to transform bTBI diagnostic, prognostic, and therapeutic strategies.
Collapse
Affiliation(s)
- Carly Norris
- Biomedical, Energy, and Materials Division, CFD Research Corporation, Huntsville, AL, United States
| | - Harsha T. Garimella
- Biomedical, Energy, and Materials Division, CFD Research Corporation, Huntsville, AL, United States
| | - Walter Carr
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Angela M. Boutté
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Raj K. Gupta
- US Army Medical Research and Development Command, DoD Blast Injury Research Coordinating Office (BIRCO), Fort Detrick, MD, United States
| | - Andrzej J. Przekwas
- Biomedical, Energy, and Materials Division, CFD Research Corporation, Huntsville, AL, United States
| |
Collapse
|
5
|
Asimakidou E, Saipuljumri EN, Lo CH, Zeng J. Role of metabolic dysfunction and inflammation along the liver-brain axis in animal models with obesity-induced neurodegeneration. Neural Regen Res 2025; 20:1069-1076. [PMID: 38989938 PMCID: PMC11438328 DOI: 10.4103/nrr.nrr-d-23-01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/26/2024] [Indexed: 07/12/2024] Open
Abstract
The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Obesity-related conditions like type 2 diabetes and non-alcoholic fatty liver disease exacerbate this relationship. Peripheral lipid accumulation, particularly in the liver, initiates a cascade of inflammatory processes that extend to the brain, influencing critical metabolic regulatory regions. Ceramide and palmitate, key lipid components, along with lipid transporters lipocalin-2 and apolipoprotein E, contribute to neuroinflammation by disrupting blood-brain barrier integrity and promoting gliosis. Peripheral insulin resistance further exacerbates brain insulin resistance and neuroinflammation. Preclinical interventions targeting peripheral lipid metabolism and insulin signaling pathways have shown promise in reducing neuroinflammation in animal models. However, translating these findings to clinical practice requires further investigation into human subjects. In conclusion, metabolic dysfunction, peripheral inflammation, and insulin resistance are integral to neuroinflammation and neurodegeneration. Understanding these complex mechanisms holds potential for identifying novel therapeutic targets and improving outcomes for neurodegenerative diseases.
Collapse
Affiliation(s)
- Evridiki Asimakidou
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Eka Norfaishanty Saipuljumri
- School of Applied Science, Republic Polytechnic, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
6
|
Grande G, Valletta M, Rizzuto D, Xia X, Qiu C, Orsini N, Dale M, Andersson S, Fredolini C, Winblad B, Laukka EJ, Fratiglioni L, Vetrano DL. Blood-based biomarkers of Alzheimer's disease and incident dementia in the community. Nat Med 2025:10.1038/s41591-025-03605-x. [PMID: 40140622 DOI: 10.1038/s41591-025-03605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025]
Abstract
Evidence regarding the clinical validity of blood biomarkers of Alzheimer's disease (AD) in the general population is limited. We estimated the hazard and predictive performance of six AD blood biomarkers for incident all-cause and AD dementia-the ratio of amyloid-β 42 to amyloid-β 40 and levels of tau phosphorylated at T217 (p-tau217), tau phosphorylated at T181 (p-tau181), total tau, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP)-in a cohort of 2,148 dementia-free older adults from Sweden, who were followed for up to 16 years. In multi-adjusted Cox regression models, elevated baseline levels of p-tau181, p-tau217, NfL, and GFAP were associated with a significantly increased hazard for all-cause and AD dementia, displaying a non-linear dose-response relationship. Elevated concentrations of p-tau181, p-tau217, NfL, and GFAP demonstrated strong predictive performance (area under the curve ranging from 70.9% to 82.6%) for 10-year all-cause and AD dementia, with negative predictive values exceeding 90% but low positive predictive values (PPVs). Combining p-tau217 with NfL or GFAP further improved prediction, with PPVs reaching 43%. Our findings suggest that these biomarkers have the potential to rule out impending dementia in community settings, but they might need to be combined with other biological or clinical markers to be used as screening tools.
Collapse
Affiliation(s)
- Giulia Grande
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
- Stockholm Gerontology Research Center, Stockholm, Sweden.
| | - Martina Valletta
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Debora Rizzuto
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Xin Xia
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Chengxuan Qiu
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Nicola Orsini
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Matilda Dale
- Affinity Proteomics Stockholm, Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Royal Institute of Technology (KTH), Solna, Sweden
| | - Sarah Andersson
- Affinity Proteomics Stockholm, Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Royal Institute of Technology (KTH), Solna, Sweden
| | - Claudia Fredolini
- Affinity Proteomics Stockholm, Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Royal Institute of Technology (KTH), Solna, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Erika J Laukka
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Laura Fratiglioni
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Davide L Vetrano
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| |
Collapse
|
7
|
Thal DR, Poesen K, Vandenberghe R, De Meyer S. Alzheimer's disease neuropathology and its estimation with fluid and imaging biomarkers. Mol Neurodegener 2025; 20:33. [PMID: 40087672 PMCID: PMC11907863 DOI: 10.1186/s13024-025-00819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Alzheimer's disease (AD) is neuropathologically characterized by the extracellular deposition of the amyloid-β peptide (Aβ) and the intraneuronal accumulation of abnormal phosphorylated tau (τ)-protein (p-τ). Most frequently, these hallmark lesions are accompanied by other co-pathologies in the brain that may contribute to cognitive impairment, such as vascular lesions, intraneuronal accumulation of phosphorylated transactive-response DNA-binding protein 43 (TDP-43), and/or α-synuclein (αSyn) aggregates. To estimate the extent of these AD and co-pathologies in patients, several biomarkers have been developed. Specific tracers target and visualize Aβ plaques, p-τ and αSyn pathology or inflammation by positron emission tomography. In addition to these imaging biomarkers, cerebrospinal fluid, and blood-based biomarker assays reflecting AD-specific or non-specific processes are either already in clinical use or in development. In this review, we will introduce the pathological lesions of the AD brain, the related biomarkers, and discuss to what extent the respective biomarkers estimate the pathology determined at post-mortem histopathological analysis. It became evident that initial stages of Aβ plaque and p-τ pathology are not detected with the currently available biomarkers. Interestingly, p-τ pathology precedes Aβ deposition, especially in the beginning of the disease when biomarkers are unable to detect it. Later, Aβ takes the lead and accelerates p-τ pathology, fitting well with the known evolution of biomarker measures over time. Some co-pathologies still lack clinically established biomarkers today, such as TDP-43 pathology or cortical microinfarcts. In summary, specific biomarkers for AD-related pathologies allow accurate clinical diagnosis of AD based on pathobiological parameters. Although current biomarkers are excellent measures for the respective pathologies, they fail to detect initial stages of the disease for which post-mortem analysis of the brain is still required. Accordingly, neuropathological studies remain essential to understand disease development especially in early stages. Moreover, there is an urgent need for biomarkers reflecting co-pathologies, such as limbic predominant, age-related TDP-43 encephalopathy-related pathology, which is known to modify the disease by interacting with p-τ. Novel biomarker approaches such as extracellular vesicle-based assays and cryptic RNA/peptides may help to better detect these co-pathologies in the future.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Department of Imaging and Pathology, Laboratory for Neuropathology, Leuven Brain Institute, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Koen Poesen
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Steffi De Meyer
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Wu B, Liu Y, Li H, Zhu L, Zeng L, Zhang Z, Peng W. Liver as a new target organ in Alzheimer's disease: insight from cholesterol metabolism and its role in amyloid-beta clearance. Neural Regen Res 2025; 20:695-714. [PMID: 38886936 PMCID: PMC11433892 DOI: 10.4103/1673-5374.391305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease, the primary cause of dementia, is characterized by neuropathologies, such as amyloid plaques, synaptic and neuronal degeneration, and neurofibrillary tangles. Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs, targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment. Metabolic abnormalities are commonly observed in patients with Alzheimer's disease. The liver is the primary peripheral organ involved in amyloid-beta metabolism, playing a crucial role in the pathophysiology of Alzheimer's disease. Notably, impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease. In this review, we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism. Furthermore, we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Lingfeng Zeng
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Zhen Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
- Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd, Qinhuangdao, Hebei Province, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Mental Disorder, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
9
|
Hicks AJ, Plourde J, Selmanovic E, de Souza NL, Blennow K, Zetterberg H, Dams-O'Connor K. Trajectories of blood-based protein biomarkers in chronic traumatic brain injury. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.16.25322303. [PMID: 40034765 PMCID: PMC11875239 DOI: 10.1101/2025.02.16.25322303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Blood-based protein biomarkers may provide important insights into the long-term neuropathology of traumatic brain injury (TBI). This is urgently required to identify mechanistic processes underlying post-traumatic neurodegeneration (PTND); a progressive post-recovery clinical decline experienced by a portion of TBI survivors. The aim of this study was to examine change over time in protein levels in a chronic TBI cohort. We selected six markers (Aβ 42 /Aβ 40 , GFAP, NfL, BD-tau, p-tau231, and p-tau181) with known importance in acute TBI and/or other neurodegenerative conditions. We used a longitudinal design with two time points approximately 3.5 years apart on average (SD 1.34). Proteins were measured in plasma using the ultrasensitive Single molecule array technology for 63 participants with mild to severe chronic TBI (sustained ≥ 1 year ago; M 28 years; SD 16.3 since their first blow to the head) from the Late Effects of TBI study (48% female; current age M 52 years; SD 13.4). Multivariate linear mixed effect models with adjustments for multiple comparisons were performed to examine trajectories in proteins over time with age and age squared as covariates. A series of sensitivity analyses were conducted to account for outliers and to explore effects of key covariates: sex, APOE ε4 carrier status, medical comorbidities, age at first blow to the head, time since first blow to the head, and injury severity. Over an average of 3.5 years, there were significant reductions in plasma Aβ 42 /Aβ 40 (β = -0.004, SE = 0.001, t = -3.75, q = .001) and significant increases in plasma GFAP (β = 12.96, SE = 4.41, t = 2.94, q = .01). There were no significant changes in NFL, BD-tau, p-tau231, or p-tau181. Both plasma Aβ 42 /Aβ 40 and GFAP have been associated with brain amyloidosis, suggesting a role for Aβ mis-metabolism and aggregation in the long-term neuropathological consequences of TBI. These findings are hypothesis generating for future studies exploring the diverse biological mechanisms of PTND.
Collapse
|
10
|
Liberale L, Tual-Chalot S, Sedej S, Ministrini S, Georgiopoulos G, Grunewald M, Bäck M, Bochaton-Piallat ML, Boon RA, Ramos GC, de Winther MPJ, Drosatos K, Evans PC, Ferguson JF, Forslund-Startceva SK, Goettsch C, Giacca M, Haendeler J, Kallikourdis M, Ketelhuth DFJ, Koenen RR, Lacolley P, Lutgens E, Maffia P, Miwa S, Monaco C, Montecucco F, Norata GD, Osto E, Richardson GD, Riksen NP, Soehnlein O, Spyridopoulos I, Van Linthout S, Vilahur G, Wentzel JJ, Andrés V, Badimon L, Benetos A, Binder CJ, Brandes RP, Crea F, Furman D, Gorbunova V, Guzik TJ, Hill JA, Lüscher TF, Mittelbrunn M, Nencioni A, Netea MG, Passos JF, Stamatelopoulos KS, Tavernarakis N, Ungvari Z, Wu JC, Kirkland JL, Camici GG, Dimmeler S, Kroemer G, Abdellatif M, Stellos K. Roadmap for alleviating the manifestations of ageing in the cardiovascular system. Nat Rev Cardiol 2025:10.1038/s41569-025-01130-5. [PMID: 39972009 DOI: 10.1038/s41569-025-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/21/2025]
Abstract
Ageing of the cardiovascular system is associated with frailty and various life-threatening diseases. As global populations grow older, age-related conditions increasingly determine healthspan and lifespan. The circulatory system not only supplies nutrients and oxygen to all tissues of the human body and removes by-products but also builds the largest interorgan communication network, thereby serving as a gatekeeper for healthy ageing. Therefore, elucidating organ-specific and cell-specific ageing mechanisms that compromise circulatory system functions could have the potential to prevent or ameliorate age-related cardiovascular diseases. In support of this concept, emerging evidence suggests that targeting the circulatory system might restore organ function. In this Roadmap, we delve into the organ-specific and cell-specific mechanisms that underlie ageing-related changes in the cardiovascular system. We raise unanswered questions regarding the optimal design of clinical trials, in which markers of biological ageing in humans could be assessed. We provide guidance for the development of gerotherapeutics, which will rely on the technological progress of the diagnostic toolbox to measure residual risk in elderly individuals. A major challenge in the quest to discover interventions that delay age-related conditions in humans is to identify molecular switches that can delay the onset of ageing changes. To overcome this roadblock, future clinical trials need to provide evidence that gerotherapeutics directly affect one or several hallmarks of ageing in such a manner as to delay, prevent, alleviate or treat age-associated dysfunction and diseases.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Myriam Grunewald
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magnus Bäck
- Translational Cardiology, Centre for Molecular Medicine, Department of Medicine Solna, and Department of Cardiology, Heart and Vascular Centre, Karolinska Institutet, Stockholm, Sweden
- Inserm, DCAC, Université de Lorraine, Nancy, France
| | | | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - Gustavo Campos Ramos
- Department of Internal Medicine I/Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences: Atherosclerosis and Ischaemic Syndromes; Amsterdam Infection and Immunity: Inflammatory Diseases, Amsterdam UMC location AMC, Amsterdam, Netherlands
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Cardiovascular Center, Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul C Evans
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane F Ferguson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Goettsch
- Department of Internal Medicine I, Division of Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mauro Giacca
- British Heart foundation Centre of Reseach Excellence, King's College London, London, UK
| | - Judith Haendeler
- Cardiovascular Degeneration, Medical Faculty, University Hospital and Heinrich-Heine University, Düsseldorf, Germany
| | - Marinos Kallikourdis
- Adaptive Immunity Lab, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Daniel F J Ketelhuth
- Cardiovascular and Renal Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rory R Koenen
- CARIM-School for Cardiovascular Diseases, Department of Biochemistry, Maastricht University, Maastricht, Netherlands
| | | | - Esther Lutgens
- Department of Cardiovascular Medicine & Immunology, Mayo Clinic, Rochester, MN, USA
| | - Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Satomi Miwa
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Claudia Monaco
- Kennedy Institute, NDORMS, University of Oxford, Oxford, UK
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Osto
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Gavin D Richardson
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Oliver Soehnlein
- Institute of Experimental Pathology, University of Münster, Münster, Germany
| | - Ioakim Spyridopoulos
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Sophie Van Linthout
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätmedizin Berlin, Berlin, Germany
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu y Sant Pau l, IIB-Sant Pau, Barcelona, Spain
| | - Jolanda J Wentzel
- Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), CIBERCV, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Health and Innovation Research Foundation (FICSI) and Cardiovascular Health and Network Medicine Department, University of Vic (UVIC-UCC), Barcelona, Spain
| | - Athanase Benetos
- Department of Geriatrics, University Hospital of Nancy and Inserm DCAC, Université de Lorraine, Nancy, France
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Filippo Crea
- Centre of Excellence of Cardiovascular Sciences, Ospedale Isola Tiberina - Gemelli Isola, Roma, Italy
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Joseph A Hill
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas F Lüscher
- Heart Division, Royal Brompton and Harefield Hospital and National Heart and Lung Institute, Imperial College, London, UK
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alessio Nencioni
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
- Dipartimento di Medicina Interna e Specialità Mediche-DIMI, Università degli Studi di Genova, Genova, Italy
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Kimon S Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nektarios Tavernarakis
- Medical School, University of Crete, and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Zoltan Ungvari
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - James L Kirkland
- Center for Advanced Gerotherapeutics, Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm, Institut Universitaire de France, Paris, France
| | | | - Konstantinos Stellos
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
11
|
Al-Kuraishy HM, Sulaiman GM, Mohammed HA, Mohammed SG, Al-Gareeb AI, Albuhadily AK, Dawood RA, Al Ali A, Abu-Alghayth MH. Amyloid-β and heart failure in Alzheimer's disease: the new vistas. Front Med (Lausanne) 2025; 12:1494101. [PMID: 39967593 PMCID: PMC11832649 DOI: 10.3389/fmed.2025.1494101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and represents 75% of all dementia types. AD neuropathology is due to the progressive deposition of extracellular amyloid-beta (Aβ) peptide and intracellular hyperphosphorylated tau protein. The accumulated Aβ forms amyloid plaques, while the hyperphosphorylated tau protein forms neurofibrillary tangles (NFTs). Both amyloid plaques and NFTs are hallmarks of AD neuropathology. The fundamental mechanism involved in the pathogenesis of AD is still elusive, although Aβ is the more conceivable theory. Aβ-induced neurodegeneration and associated neuroinflammation, oxidative stress, endoplasmic reticulum stress (ER), and mitochondrial dysfunction contribute to the development of cognitive impairment and dementia. Of note, Aβ is not only originated from the brain but also produced peripherally and, via the blood-brain barrier (BBB), can accumulate in the brain and result in the development of AD. It has been shown that cardiometabolic conditions such as obesity, type 2 diabetes (T2D), and heart failure (HF) are regarded as possible risk factors for the development of AD and other types of dementia, such as vascular dementia. HF-induced chronic cerebral hypoperfusion, oxidative stress, and inflammation can induce the development and progression of AD. Interestingly, AD is regarded as a systemic disease that causes systemic inflammation and oxidative stress, which in turn affects peripheral organs, including the heart. Aβ through deranged BBB can be transported into the systemic circulation from the brain and accumulated in the heart, leading to the development of HF. These findings suggest a close relationship between AD and HF. However, the exact mechanism of AD-induced HF is not fully elucidated. Therefore, this review aims to discuss the link between AD and the risk of HF regarding the potential role of Aβ in the pathogenesis of HF.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | | | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Sohaib G. Mohammed
- Department of Pathological Analysis, College of Applied Science, Samarra University, Saladin, Iraq
| | | | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Retaj A. Dawood
- Department of Biology, College of Science, Al-Mustaqbal University, Hilla, Iraq
| | - Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Mohammed H. Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
12
|
Cleary JA, Kumar A, Craft S, Deep G. Neuron-derived extracellular vesicles as a liquid biopsy for brain insulin dysregulation in Alzheimer's disease and related disorders. Alzheimers Dement 2025; 21:e14497. [PMID: 39822132 PMCID: PMC11848159 DOI: 10.1002/alz.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 01/19/2025]
Abstract
Extracellular vesicles (EVs) have emerged as novel blood-based biomarkers for various pathologies. The development of methods to enrich cell-specific EVs from biofluids has enabled us to monitor difficult-to-access organs, such as the brain, in real time without disrupting their function, thus serving as liquid biopsy. Burgeoning evidence indicates that the contents of neuron-derived EVs (NDEs) in blood reveal dynamic alterations that occur during neurodegenerative pathogenesis, including Alzheimer's disease (AD), reflecting a disease-specific molecular signature. Among these AD-specific molecular changes is brain insulin-signaling dysregulation, which cannot be assessed clinically in a living patient and remains an unexplained co-occurrence during AD pathogenesis. This review is focused on delineating how NDEs in the blood may begin to close the gap between identifying molecular changes associated with brain insulin dysregulation reliably in living patients and its connection to AD. This approach could lead to the identification of novel early and less-invasive diagnostic molecular biomarkers for AD. HIGHLIGHTS: Neuron-derived extracellular vesicles (NDEs) could be isolated from peripheral blood. NDEs in blood reflect the molecular signature of Alzheimer's disease (AD). Brain insulin-signaling dysregulation plays a critical role in AD. NDEs in blood could predict brain insulin-signaling dysregulation. NDEs offer novel early and less-invasive diagnostic biomarkers for AD.
Collapse
Affiliation(s)
- Jacob Alexander Cleary
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Ashish Kumar
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Suzanne Craft
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Gagan Deep
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Atrium Health Wake Forest Baptist Comprehensive Cancer CenterWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
13
|
Xu B, Lei X, Yang Y, Yu J, Chen J, Xu Z, Ye K, Zhang J. Peripheral proteinopathy in neurodegenerative diseases. Transl Neurodegener 2025; 14:2. [PMID: 39819742 PMCID: PMC11737199 DOI: 10.1186/s40035-024-00461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025] Open
Abstract
Proteinopathies in neurology typically refer to pathological changes in proteins associated with neurological diseases, such as the aggregation of amyloid β and Tau in Alzheimer's disease, α-synuclein in Parkinson's disease and multiple system atrophy, and TAR DNA-binding protein 43 in amyotrophic lateral sclerosis and frontotemporal dementia. Interestingly, these proteins are also commonly found in peripheral tissues, raising important questions about their roles in neurological disorders. Multiple studies have shown that peripherally derived pathological proteins not only travel to the brain through various routes, aggravating brain pathology, but also contribute significantly to peripheral dysfunction, highlighting their crucial impact on neurological diseases. Investigating how these peripherally derived proteins influence the progression of neurological disorders could open new horizons for achieving early diagnosis and treatment. This review summarizes the distribution, transportation pathways, and pathogenic mechanisms of several neurodegenerative disease-related pathological proteins in the periphery, proposing that targeting these peripheral pathological proteins could be a promising strategy for preventing and managing neurological diseases.
Collapse
Affiliation(s)
- Bin Xu
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Xia Lei
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Ying Yang
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Jiayi Yu
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310002, China
| | - Jun Chen
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Zhi Xu
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310002, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, 518055, China
| | - Jing Zhang
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China.
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
14
|
Aivalioti E, Georgiopoulos G, Tual-Chalot S, Bampatsias D, Delialis D, Sopova K, Drakos SG, Stellos K, Stamatelopoulos K. Amyloid-beta metabolism in age-related neurocardiovascular diseases. Eur Heart J 2025; 46:250-272. [PMID: 39527015 PMCID: PMC11735085 DOI: 10.1093/eurheartj/ehae655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 09/15/2024] [Indexed: 11/16/2024] Open
Abstract
Epidemiological evidence suggests the presence of common risk factors for the development and prognosis of both cardio- and cerebrovascular diseases, including stroke, Alzheimer's disease, vascular dementia, heart, and peripheral vascular diseases. Accumulation of harmful blood signals may induce organotypic endothelial dysfunction affecting blood-brain barrier function and vascular health in age-related diseases. Genetic-, age-, lifestyle- or cardiovascular therapy-associated imbalance of amyloid-beta (Aβ) peptide metabolism in the brain and periphery may be the missing link between age-related neurocardiovascular diseases. Genetic polymorphisms of genes related to Aβ metabolism, lifestyle modifications, drugs used in clinical practice, and Aβ-specific treatments may modulate Aβ levels, affecting brain, vascular, and cardiac diseases. This narrative review elaborates on the effects of interventions on Aβ metabolism in the brain, cerebrospinal fluid, blood, and peripheral heart or vascular tissues. Implications for clinical applicability, gaps in knowledge, and future perspectives of Aβ as the link among age-related neurocardiovascular diseases are also discussed.
Collapse
Affiliation(s)
- Evmorfia Aivalioti
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
- Department of Physiology, School of Medicine, University of Patras, Patra, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Dimitrios Bampatsias
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
- Division of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Kateryna Sopova
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, UT, USA
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
| |
Collapse
|
15
|
Ravichandran S, Snyder PJ, Alber J, Murchison CF, Chaby LE, Jeromin A, Arthur E. Association and multimodal model of retinal and blood-based biomarkers for detection of preclinical Alzheimer's disease. Alzheimers Res Ther 2025; 17:19. [PMID: 39794837 PMCID: PMC11720872 DOI: 10.1186/s13195-024-01668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND The potential diagnostic value of plasma amyloidogenic beta residue 42/40 ratio (Aβ42/Aβ40 ratio), neurofilament light (NfL), tau phosphorylated at threonine-181 (p-tau181), and threonine-217 (p-tau217) has been extensively discussed in the literature. We have also previously described the association between retinal biomarkers and preclinical Alzheimer's disease (AD). The goal of this study was to evaluate the association, and a multimodal model of, retinal and plasma biomarkers for detection of preclinical AD. METHODS We included 82 cognitively unimpaired (CU) participants (141 eyes; mean age: 67 years; range: 56-80) from the Atlas of Retinal Imaging in Alzheimer's Study (ARIAS). Blood samples were assessed for concentrations of Aβ42/Aβ40 ratio, NfL, p-tau181, and p-tau217 (ALZpath, Inc.) using Single molecule array (SIMOA) technology. The Spectralis II system (Heidelberg Engineering) was used to acquire macular centered Spectral Domain Optical Coherence Tomography (SD-OCT) images for evaluation of putative retinal gliosis surface area and macular retinal nerve fiber layer (mRNFL) thickness. For all participants, correlations (adjusted for age and correlation between eyes) were assessed between retinal and blood-based biomarkers. A subgroup cohort of 57 eyes from 32 participants with recent Aβ positron emission tomography (PET) results, comprising 18 preclinical patients (Aβ PET + ve, 32 eyes) and 14 controls (Aβ PET -ve, 25 eyes) with a mean age of 69 vs. 66, p = 0.06, was included for the assessment of a multimodal model to distinguish between the two groups. For this subgroup cohort, receiver operating characteristic (ROC) analysis was performed to compare the multimodal model of retinal and plasma biomarkers vs. each biomarker alone to distinguish between the two groups. RESULTS Significant correlation was found between putative retinal gliosis and p-tau217 in the univariate mixed model (β = 0.48, p = 0.007) but not for the other plasma biomarkers (p > 0.05). This positive correlation was also retained in the multivariate mixed model (β = 0.43, p = 0.022). The multimodal ROC model based on retinal (gliosis area, inner inferior RNFL thickness, inner superior RNFL thickness, and inner nasal RNFL thickness) and plasma biomarkers (p-tau217 and Aβ42/Aβ40 ratio) had an excellent AUC of 0.97 (95% CI = 0.93-1.01; p < 0.001) compared to unimodal models of retinal and plasma biomarkers. CONCLUSIONS Our analyses show the potential of integrating retinal and blood-based biomarkers for improved detection and screening of preclinical AD.
Collapse
Affiliation(s)
- Swetha Ravichandran
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, US
| | - Peter J Snyder
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI, US
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, US
| | - Jessica Alber
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, US
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, US
- Butler Hospital Memory & Aging Program, Providence, RI, US
| | - Charles F Murchison
- Alzheimer's Disease Research Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, US
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, US
| | | | | | - Edmund Arthur
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, US.
| |
Collapse
|
16
|
Kim JW, Byun MS, Yi D, Jung JH, Kong N, Chang YY, Jung G, Ahn H, Lee JY, Kang KM, Sohn CH, Lee YS, Kim YK, Lee DY. Liver function and Alzheimer's brain pathologies: A longitudinal study: Liver and Alzheimer's pathologies. J Prev Alzheimers Dis 2025; 12:100012. [PMID: 39800466 DOI: 10.1016/j.tjpad.2024.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
IMPORTANCE The neuropathological links underlying the association between changes in liver function and AD have not yet been clearly elucidated. OBJECTIVE We aimed to examine the relationship between liver function markers and longitudinal changes in Alzheimer's disease (AD) core pathologies. DESIGN Data from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease, a longitudinal cohort study initiated in 2014, were utilized. SETTING Community and memory clinic setting. PARTICIPANTS Three hundred forty-seven older adults. MAIN OUTCOME AND MEASURES Participants underwent baseline and 2-year follow-up evaluations, including liver function assessments and various brain imaging techniques, such as amyloid and tau PET, FDG-PET, and MRI). Liver function indicators [alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin] were examined as exposure variables. RESULTS Higher baseline ALT levels were associated with a greater increase in beta-amyloid deposition over 2 years [β = 0.166, Bonferroni-corrected P (PB) = 0.012], while lower total bilirubin levels were associated with a greater increase in tau deposition over the same period (β = -0.570, PB < 0.001). In contrast, AST alone showed no significant association with changes of AD pathologies. CONCLUSIONS AND RELEVANCE The findings suggest a possible link between lower liver function and the accumulation of core AD pathologies in the brain. These results also support the possibility that the liver-brain axis could be a potential target for therapeutic or preventive strategies against AD.
Collapse
Affiliation(s)
- Jee Wook Kim
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, 7 Keunjaebong-gil, Hwaseong, Gyeonggi, 18450, Republic of Korea; Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Gangwon, 24252, Republic of Korea.
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, 03080, Republic of Korea.
| | - Joon Hyung Jung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, 28644, Republic of Korea.
| | - Nayeong Kong
- Department of Psychiatry, Keimyung University Dongsan Hospital, Daegu, 42601, Republic of Korea.
| | - Yoon Young Chang
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, 01757, Republic of Korea.
| | - Gijung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, 08826, Republic of Korea.
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea.
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea.
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, 03080, Republic of Korea; Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, 08826, Republic of Korea.
| |
Collapse
|
17
|
Rustichelli S, Lanni C, Zarà M, Guidetti GF, Torti M, Canobbio I. Curcumin Modulates Platelet Activation and ROS Production Induced by Amyloid Peptides: New Perspectives in Attenuating Prothrombotic Risk in Alzheimer's Disease Patients. Nutrients 2024; 16:4419. [PMID: 39771040 PMCID: PMC11678805 DOI: 10.3390/nu16244419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Amyloid peptides, whose accumulation in the brain as senile plaques is associated with the onset of Alzheimer's disease, are also found in cerebral vessels and in circulation. In the bloodstream, amyloid peptides promote platelet adhesion, activation, oxidative stress, and thrombosis, contributing to the cardiovascular complications observed in Alzheimer's disease patients. Natural compounds, such as curcumin, are known to modulate platelet activation induced by the hemostatic stimuli thrombin and convulxin. In this study, we investigated the ability of curcumin to modulate platelet activation triggered by amyloid peptides, and we compared its effects with those displayed on platelet activation induced by physiological agonists. METHODS Commercial ultrapure curcumin was used, and platelet aggregation, granule secretion, phosphorylation of selected signaling proteins, and reactive oxygen species production were analyzed on isolated human platelets. RESULTS Our results demonstrate that curcumin effectively suppressed platelet aggregation induced by fibrillar amyloid peptides. This effect was associated with the reduction in intracellular signaling pathways involving PKC, PI3K, and MAPK. By contrast, platelet aggregation and activation induced by thrombin and convulxin were only partially reduced by preincubation with curcumin. Moreover, curcumin completely suppressed granule secretion only when platelets were stimulated with hemostatic agonists, but it had no effects upon stimulation with amyloid peptides. Additionally, curcumin reduced the production of reactive oxygen species induced by amyloid peptides with a stronger efficiency compared to platelets stimulated with thrombin. CONCLUSIONS These results indicate that curcumin displays selective and potent inhibitory activity on platelet responses to pathological stimuli, such as fibrillar amyloid peptides.
Collapse
Affiliation(s)
- Serena Rustichelli
- University School for Advanced Studies (IUSS), 27100 Pavia, Italy;
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.Z.); (G.F.G.); (M.T.)
| | - Cristina Lanni
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Marta Zarà
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.Z.); (G.F.G.); (M.T.)
| | - Gianni Francesco Guidetti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.Z.); (G.F.G.); (M.T.)
| | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.Z.); (G.F.G.); (M.T.)
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.Z.); (G.F.G.); (M.T.)
| |
Collapse
|
18
|
Li H, Zheng C, Zheng Y, Wen K, Zhang Y. Distinct functional diversity of branched oligosaccharides as chaperones and inhibitory-binding partners of amyloid beta-protein and its aggregates. Neuropharmacology 2024; 261:110141. [PMID: 39251087 DOI: 10.1016/j.neuropharm.2024.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/14/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
Aggregation and deposition of amyloid beta-protein 1-42 (Aβ42) in the brain, primarily owing to hydrophobic interactions between Aβ42 chains, is a common pathology in all forms of Alzheimer's disease (AD). Hydrophilic oligosaccharides are widely present in the extracellular matrix and on the cytoplasmic membrane. To determine if oligosaccharides bind to Aβ42 or its aggregates and consequently affect their aggregation and cellular function, this study examined the interaction of typical functional oligosaccharides with Aβ42 or its aggregates. Isomaltooligosaccharides (IMOs), particularly isomaltotriose, panose, and isomaltotetraose, functioned as molecular chaperones for Aβ42 by binding directly to Aβ42, preserving Aβ42's active conformation and cytotrophic activity. Oral IMOs reduced total plasma Aβ level and indirectly caused a slight reduction in the load of Aβ42 spots/plaques in the brain of AD model mice (male). Another branched oligosaccharide, bianntennary core pentasaccharide (BCP), had a relatively high binding specificity for Aβ42 oligomers (Aβ42O) and acted as an antagonistic binding partner for Aβ42O. Free BCP effectively blocked/prevented further assembly of Aβ42O and their toxicity to neural and vascular endothelial cell lines. Since BCP is also a signaling component of membrane targets (glycolipids, glycoproteins or receptors), it seemed that BCP had two opposing effects on the binding of Aβ42O to target cells. This study's findings suggest that these branched oligosaccharides may be potential candidates for blocking or preventing Aβ42 aggregation and Aβ42O cytotoxicity/neurotoxicity, respectively, and that IMO-like or free BCP-like oligosaccharide deficiencies in the brain may be one of the underlying mechanisms for Aβ42 aggregation and Aβ42O cytotoxicity.
Collapse
MESH Headings
- Amyloid beta-Peptides/blood
- Amyloid beta-Peptides/chemistry
- Amyloid beta-Peptides/genetics
- Amyloid beta-Peptides/metabolism
- Protein Aggregates/drug effects
- Molecular Chaperones/chemistry
- Molecular Chaperones/metabolism
- Molecular Chaperones/pharmacology
- Molecular Chaperones/therapeutic use
- Oligosaccharides, Branched-Chain/chemistry
- Oligosaccharides, Branched-Chain/metabolism
- Oligosaccharides, Branched-Chain/pharmacology
- Oligosaccharides, Branched-Chain/therapeutic use
- Alzheimer Disease/blood
- Alzheimer Disease/drug therapy
- Alzheimer Disease/pathology
- Alzheimer Disease/prevention & control
- Hydrophobic and Hydrophilic Interactions
- Cell Line
- Humans
- Animals
- Mice
- Protein Aggregation, Pathological/blood
- Protein Aggregation, Pathological/drug therapy
- Protein Aggregation, Pathological/pathology
- Protein Aggregation, Pathological/prevention & control
- Molecular Docking Simulation
- Mice, Transgenic
- Disease Models, Animal
- Brain/drug effects
- Brain/pathology
- Mice, Inbred C57BL
- Male
Collapse
Affiliation(s)
- He Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Changxin Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yanru Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Kai Wen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
19
|
Waigi EW, Pernomian L, Crockett AM, Costa TJ, Townsend P, Webb RC, McQuail JA, McCarthy CG, Hollis F, Wenceslau CF. Vascular dysfunction occurs prior to the onset of amyloid pathology and Aβ plaque deposits colocalize with endothelial cells in the hippocampus of female APPswe/PSEN1dE9 mice. GeroScience 2024; 46:5517-5536. [PMID: 38862757 PMCID: PMC11493946 DOI: 10.1007/s11357-024-01213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024] Open
Abstract
Increasing evidence shows that cardiovascular diseases (CVDs) are associated with an increased risk of cognitive impairment and Alzheimer's diseases (AD). It is unknown whether systemic vascular dysfunction occurs prior to the development of AD, if this occurs in a sex-dependent manner, and whether endothelial cells play a role in the deposition of amyloid beta (Aβ) peptides. We hypothesized that vascular dysfunction occurs prior to the onset of amyloid pathology, thus escalating its progression. Furthermore, endothelial cells from female mice will present with an exacerbated formation of Aβ peptides due to an exacerbated pressure pulsatility. To test this hypothesis, we used a double transgenic mouse model of early-onset AD (APPswe/PSEN1dE9). We evaluated hippocampus-dependent recognition memory and the cardiovascular function by echocardiography and direct measurements of blood pressure through carotid artery catheterization. Vascular function was evaluated in resistance arteries, morphometric parameters in the aortas, and immunofluorescence in the hippocampus and aortas. We observed that endothelial dysfunction occurred prior to the onset of amyloid pathology irrespective of sex. However, during the onset of amyloid pathology, only female APP/PS1 mice had vascular stiffness in the aorta. There was elevated Aβ deposition which colocalized with endothelial cells in the hippocampus from female APP/PS1 mice. Overall, these data showed that vascular abnormalities may be an early marker, and potential mediator of AD, but exacerbated aortic stiffness and pressure pulsatility after the onset of amyloid pathology may be associated with a greater burden of Aβ formation in hippocampal endothelial cells from female but not male APP/PS1 mice.
Collapse
Affiliation(s)
- Emily W Waigi
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Laena Pernomian
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Alexia M Crockett
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Tiago J Costa
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Paul Townsend
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - R Clinton Webb
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA
| | - Joseph A McQuail
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Cameron G McCarthy
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA
| | - Fiona Hollis
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Camilla F Wenceslau
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
20
|
Duranti E, Villa C. From Brain to Muscle: The Role of Muscle Tissue in Neurodegenerative Disorders. BIOLOGY 2024; 13:719. [PMID: 39336146 PMCID: PMC11428675 DOI: 10.3390/biology13090719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Neurodegenerative diseases (NDs), like amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and Parkinson's disease (PD), primarily affect the central nervous system, leading to progressive neuronal loss and motor and cognitive dysfunction. However, recent studies have revealed that muscle tissue also plays a significant role in these diseases. ALS is characterized by severe muscle wasting as a result of motor neuron degeneration, as well as alterations in gene expression, protein aggregation, and oxidative stress. Muscle atrophy and mitochondrial dysfunction are also observed in AD, which may exacerbate cognitive decline due to systemic metabolic dysregulation. PD patients exhibit muscle fiber atrophy, altered muscle composition, and α-synuclein aggregation within muscle cells, contributing to motor symptoms and disease progression. Systemic inflammation and impaired protein degradation pathways are common among these disorders, highlighting muscle tissue as a key player in disease progression. Understanding these muscle-related changes offers potential therapeutic avenues, such as targeting mitochondrial function, reducing inflammation, and promoting muscle regeneration with exercise and pharmacological interventions. This review emphasizes the importance of considering an integrative approach to neurodegenerative disease research, considering both central and peripheral pathological mechanisms, in order to develop more effective treatments and improve patient outcomes.
Collapse
Affiliation(s)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
21
|
Acun AD, Kantar D. Modulation of oxidative stress and apoptosis by alteration of bioactive lipids in the pancreas, and effect of zinc chelation in a rat model of Alzheimer's disease. J Trace Elem Med Biol 2024; 85:127480. [PMID: 38875759 DOI: 10.1016/j.jtemb.2024.127480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Increasing epidemiological evidence highlights the association between systemic insulin resistance and Alzheimer's disease (AD). It is known that peripheral insulin resistance in the early stages of AD precedes and is a precursor to amyloid-β (Aβ) deposition. Although it is known that improving the CNS insulin sensitivity of AD patients is an important therapeutic goal and that the majority of insulin in the brain comes from the periphery, there has been little attention to the changes that occur in the pancreatic tissue of AD patients. Therefore, it is crucial to elucidate the mechanisms affecting insulin resistance in pancreatic tissue in AD. It is known that zinc (Zn2+) chelation is effective in reducing peripheral insulin resistance, cell apoptosis, cell death, and oxidative stress. OBJECTIVE It was aimed to determine the changes in bioactive lipids, amylin (AIPP), oxidative stress and apoptosis in pancreatic cells in the early stages of Alzheimer's disease. The main aim is to reveal the therapeutic effect of the Cyclo-Z agent on these changes seen in the pancreas due to AD disease. METHODS AD and ADC rats were intracerebroventricular (i.c.v.) Aβ1-42 oligomers. Cyclo-Z gavage was applied to ADC and SHC rats for 21 days. First of all, the effects of AIPP, bioactive ceramides, apoptosis and oxidative stress on the pancreatic tissue of AD group rats were evaluated. Then, the effect of Cyclo-Z treatment on these was examined. ELISA kit was used in biochemical analyses. RESULTS AIPP and ceramide (CER) levels and CER/ sphingosine-1 phosphate (S1P) ratio were increased in the pancreatic tissue of AD rats. It also increased the level of CER kinase (CERK), which is known to increase the concentration of CER 1-phosphate (C1P), which is known to be toxic to cells in the presence of excessive CER concentration. Due to the increase in CER level, it was observed that apoptosis and oxidative stress increased in the pancreatic cells of AD group rats. CONCLUSION Cyclo-Z, which has Zn2+ chelating properties, reduced AD model rats' AIPP level and oxidative stress and could prevent pancreatic apoptosis. Similar therapeutic effects were not observed in the pancreatic tissue of Cyclo-Z administered to the SH group. For this reason, it is thought that Cyclo-Z agent may have a therapeutic effect on the peripheral hyperinsulinemia observed in the early stages of AD disease and the resulting low amount of insulin transported to the brain, by protecting pancreatic cells from apoptosis and oxidative stress by regulating their bioactive metabolites.
Collapse
Affiliation(s)
- Alev Duygu Acun
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, Antalya 07070, Turkey.
| | - Deniz Kantar
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, Antalya 07070, Turkey
| |
Collapse
|
22
|
Hey JA, Abushakra S, Blennow K, Reiman EM, Hort J, Prins ND, Sheardova K, Kesslak P, Shen L, Zhu X, Albayrak A, Paul J, Schaefer JF, Power A, Tolar M. Effects of Oral ALZ-801/Valiltramiprosate on Plasma Biomarkers, Brain Hippocampal Volume, and Cognition: Results of 2-Year Single-Arm, Open-Label, Phase 2 Trial in APOE4 Carriers with Early Alzheimer's Disease. Drugs 2024; 84:811-823. [PMID: 38902571 PMCID: PMC11289173 DOI: 10.1007/s40265-024-02067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION ALZ-801/valiltramiprosate is a small-molecule oral inhibitor of beta amyloid (Aβ) aggregation and oligomer formation being studied in a phase 2 trial in APOE4 carriers with early Alzheimer's disease (AD) to evaluate treatment effects on fluid and imaging biomarkers and cognitive assessments. METHODS The single-arm, open-label phase 2 trial was designed to evaluate the effects of the ALZ-801 265 mg tablet taken twice daily (after 2 weeks once daily) on plasma fluid AD biomarkers, hippocampal volume (HV), and cognition over 104 weeks in APOE4 carriers. The study enrolled subjects aged 50-80 years, with early AD [Mini-Mental State Examination (MMSE) ≥ 22, Clinical Dementia Rating-Global (CDR-G) 0.5 or 1], apolipoprotein E4 (APOE4) genotypes including APOE4/4 and APOE3/4 genotypes, and positive cerebrospinal fluid (CSF) AD biomarkers or prior amyloid scans. The primary outcome was plasma p-tau181, HV evaluated by magnetic resonance imaging (MRI) was the key secondary outcome, and plasma Aβ42 and Aβ40 were the secondary biomarker outcomes. The cognitive outcomes were the Rey Auditory Verbal Learning Test and the Digit Symbol Substitution Test. Safety and tolerability evaluations included treatment-emergent adverse events and amyloid-related imaging abnormalities (ARIA). The study was designed and powered to detect 15% reduction from baseline in plasma p-tau181 at the 104-week endpoint. A sample size of 80 subjects provided adequate power to detect this difference at a significance level of 0.05 using a two-sided paired t-test. RESULTS The enrolled population of 84 subjects (31 homozygotes and 53 heterozygotes) was 52% females, mean age 69 years, MMSE 25.7 [70% mild cognitive impairment (MCI), 30% mild AD] with 55% on cholinesterase inhibitors. Plasma p-tau181 reduction from baseline was significant (31%, p = 0.045) at 104 weeks and all prior visits; HV atrophy was significantly reduced (p = 0.0014) compared with matched external controls from an observational Early AD study. Memory scores showed minimal decline from baseline over 104 weeks and correlated significantly with decreased HV atrophy (Spearman's 0.44, p = 0.002). Common adverse events were COVID infection and mild nausea, and no drug-related serious adverse events were reported. Of 14 early terminations, 6 were due to nonserious treatment-emergent adverse events and 1 death due to COVID. There was no vasogenic brain edema observed on MRI over 104 weeks. CONCLUSIONS The effect of ALZ-801 on reducing plasma p-tau181 over 2 years demonstrates target engagement and supports its anti-Aβ oligomer action that leads to a robust decrease in amyloid-induced brain neurodegeneration. The significant correlation between reduced HV atrophy and cognitive stability over 2 years suggests a disease-modifying effect of ALZ-801 treatment in patients with early AD. Together with the favorable safety profile with no events of vasogenic brain edema, these results support further evaluation of ALZ-801 in a broader population of APOE4 carriers, who represent two-thirds of patients with AD. TRIAL REGISTRATION https://clinicaltrials.gov/study/NCT04693520 .
Collapse
Affiliation(s)
- John A Hey
- Alzheon, Inc., 111 Speen St., Suite 306, Framingham, MA, USA.
| | - Susan Abushakra
- Alzheon, Inc., 111 Speen St., Suite 306, Framingham, MA, USA
| | - Kaj Blennow
- Neurochemical Pathology and Diagnostics Research Group, Department of Neuroscience and Physiology, University of Gothenburg, Molndal, Sweden
| | - Eric M Reiman
- Banner Alzheimer's Institute and University of Arizona, Phoenix, AZ, USA
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Second Faculty of Medicine and Motol University Hospital, Charles University, Praha, Czech Republic
| | | | - Katerina Sheardova
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Patrick Kesslak
- Alzheon, Inc., 111 Speen St., Suite 306, Framingham, MA, USA
| | - Larry Shen
- Pharmapace Biometrics Solutions, a Unit of Wuxi AppTec, San Diego, CA, USA
| | - Xinyi Zhu
- Pharmapace Biometrics Solutions, a Unit of Wuxi AppTec, San Diego, CA, USA
| | - Adem Albayrak
- Alzheon, Inc., 111 Speen St., Suite 306, Framingham, MA, USA
| | - Jijo Paul
- Alzheon, Inc., 111 Speen St., Suite 306, Framingham, MA, USA
| | - Jean F Schaefer
- Alzheon, Inc., 111 Speen St., Suite 306, Framingham, MA, USA
| | - Aidan Power
- Alzheon, Inc., 111 Speen St., Suite 306, Framingham, MA, USA
| | - Martin Tolar
- Alzheon, Inc., 111 Speen St., Suite 306, Framingham, MA, USA
| |
Collapse
|
23
|
Delialis D, Georgiopoulos G, Tual-Chalot S, Angelidakis L, Aivalioti E, Mavraganis G, Sopova K, Argyris A, Kostakou P, Konstantaki C, Papaioannou M, Tsilimigras D, Chatoupis K, Zacharoulis AA, Galyfos G, Sigala F, Stellos K, Stamatelopoulos K. Amyloid beta is associated with carotid wall echolucency and atherosclerotic plaque composition. Sci Rep 2024; 14:14944. [PMID: 38942831 PMCID: PMC11213915 DOI: 10.1038/s41598-024-64906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
Circulating amyloid-beta 1-40 (Αb40) has pro-atherogenic properties and could serve as a biomarker in atherosclerotic cardiovascular disease (ASCVD). However, the association of Ab40 levels with morphological characteristics reflecting atherosclerotic plaque echolucency and composition is not available. Carotid atherosclerosis was assessed in consecutively recruited individuals without ASCVD (n = 342) by ultrasonography. The primary endpoint was grey scale median (GSM) of intima-media complex (IMC) and plaques, analysed using dedicated software. Vascular markers were assessed at two time-points (median follow-up 35.5 months). In n = 56 patients undergoing carotid endarterectomy, histological plaque features were analysed. Plasma Αb40 levels were measured at baseline. Ab40 was associated with lower IMC GSM and plaque GSM and higher plaque area at baseline after multivariable adjustment. Increased Ab40 levels were also longitudinally associated with decreasing or persistently low IMC and plaque GSM after multivariable adjustment (p < 0.05). In the histological analysis, Ab40 levels were associated with lower incidence of calcified plaques and plaques without high-risk features. Ab40 levels are associated with ultrasonographic and histological markers of carotid wall composition both in the non-stenotic arterial wall and in severely stenotic plaques. These findings support experimental evidence linking Ab40 with plaque vulnerability, possibly mediating its established association with major adverse cardiovascular events.
Collapse
Affiliation(s)
- Dimitrios Delialis
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Lasthenis Angelidakis
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Evmorfia Aivalioti
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Georgios Mavraganis
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Kateryna Sopova
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Ludolf-Krehl-Straße 13-17, D-68167, Mannheim, Germany
- Department of Cardiology, University Hospital Mannheim, Mannheim, Germany
| | - Antonios Argyris
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Peggy Kostakou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Christina Konstantaki
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Maria Papaioannou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Diamantis Tsilimigras
- First Department of Propaedeutic Surgery, Hippocrateion Hospital, Medical School, University of Athens, Athens, Greece
| | - Konstantinos Chatoupis
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | | | - George Galyfos
- First Department of Propaedeutic Surgery, Hippocrateion Hospital, Medical School, University of Athens, Athens, Greece
| | - Fragiska Sigala
- First Department of Propaedeutic Surgery, Hippocrateion Hospital, Medical School, University of Athens, Athens, Greece
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Ludolf-Krehl-Straße 13-17, D-68167, Mannheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany.
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece.
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
24
|
Mantellatto Grigoli M, Pelegrini LNC, Whelan R, Cominetti MR. Present and Future of Blood-Based Biomarkers of Alzheimer's Disease: Beyond the Classics. Brain Res 2024; 1830:148812. [PMID: 38369085 DOI: 10.1016/j.brainres.2024.148812] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The field of blood-based biomarkers for Alzheimer's disease (AD) has advanced at an incredible pace, especially after the development of sensitive analytic platforms that can facilitate large-scale screening. Such screening will be important when more sophisticated diagnostic methods are scarce and expensive. Thus, blood-based biomarkers can potentially reduce diagnosis inequities among populations from different socioeconomic contexts. This large-scale screening can be performed so that older adults at risk of cognitive decline assessed using these methods can then undergo more complete assessments with classic biomarkers, increasing diagnosis efficiency and reducing costs to the health systems. Blood-based biomarkers can also aid in assessing the effect of new disease-modifying treatments. This paper reviews recent advances in the area, focusing on the following leading candidates for blood-based biomarkers: amyloid-beta (Aβ), phosphorylated tau isoforms (p-tau), neurofilament light (NfL), and glial fibrillary acidic (GFAP) proteins, as well as on new candidates, Neuron-Derived Exosomes contents (NDEs) and Transactive response DNA-binding protein-43 (TDP-43), based on data from longitudinal observational cohort studies. The underlying challenges of validating and incorporating these biomarkers into routine clinical practice and primary care settings are also discussed. Importantly, challenges related to the underrepresentation of ethnic minorities and socioeconomically disadvantaged persons must be considered. If these challenges are overcome, a new time of cost-effective blood-based biomarkers for AD could represent the future of clinical procedures in the field and, together with continued prevention strategies, the beginning of an era with a lower incidence of dementia worldwide.
Collapse
Affiliation(s)
| | | | - Robert Whelan
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of São Carlos, Brazil; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
25
|
Pucci IM, Aguiar AF, Pucci RM, Casonatto J, Borghi SM. Systematic review and meta-analysis of randomized controlled trials on the effects of exercise interventions on amyloid beta levels in humans. Exp Brain Res 2024; 242:1011-1024. [PMID: 38551691 DOI: 10.1007/s00221-024-06821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/13/2024] [Indexed: 06/05/2024]
Abstract
Alzheimer's disease (AD) represents the most common type of dementia. A crucial mechanism attributed to its development is amyloid beta (Aβ) dynamics dysregulation. The extent to which exercise can modulate this phenomenon is uncertain. The aim of this study was to summarize the existing literature evaluating this issue. A comprehensive systematic search was performed in Pubmed, Scopus, Embase, Web of Science, and SciELO databases and completed in August 2023, aiming to identify randomized controlled trials investigating the effect of exercise upon Aβ-related pathology. The keywords "exercise" and "amyloid beta", as well as all their equivalents and similar terms, were used. For the analysis, the negative or positive dementia status of the subjects was initially considered and then the soluble amyloid precursor protein (sAPP) components and Aβ fragments separately. A meta-analysis was performed and involved eight studies (moderate-to-high quality) and 644 assessments, which were 297 for control and 347 for exercise. No overall effect favoring exercise interventions was observed for both negative (SMD95%=0,286 [-0,131; 0,704]; p = 0,179) or positive AD dementia status (SMD95%=0,110 [-0,155; 0,375]; p = 0,416). The absence of an overall effect favoring exercise interventions was also found for Aβ peptides (SMD95%=0,226 [-0,028; 0,480]; p = 0,081) and for sAPP components (SMD95%=-0,038 50 [-0,472; 0,396]; p = 0,863) levels. Our findings suggest that exercise interventions do not improve Aβ-related pathology in both healthy individuals and individuals with dementia (SMD95%=0,157 [-0,059; 0,373]; p = 0,155), indicating that the beneficial effects of exercise for AD reported in previous studies are related to other mechanistic effects rather than direct amyloid effects (PROSPERO registration number: CRD42023426912).
Collapse
Affiliation(s)
- Isabela Mayer Pucci
- Center for Research in Health Sciences, Universidade Norte do Paraná (Unopar), Paraná, Londrina, 86041-140, Brazil
| | - Andreo F Aguiar
- Center for Research in Health Sciences, Universidade Norte do Paraná (Unopar), Paraná, Londrina, 86041-140, Brazil
| | - Rodrigo M Pucci
- Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Cuiabá, 79070-900, Brazil
| | - Juliano Casonatto
- Center for Research in Health Sciences, Universidade Norte do Paraná (Unopar), Paraná, Londrina, 86041-140, Brazil
| | - Sergio Marques Borghi
- Center for Research in Health Sciences, Universidade Norte do Paraná (Unopar), Paraná, Londrina, 86041-140, Brazil.
- Department of Pathology, Biological Sciences Center, Universidade Estadual de Londrina (UEL), Paraná State, Londrina, 86057-970, Brazil.
| |
Collapse
|
26
|
Shimanouchi T, Iwamura M, Sano Y, Hayashi K, Noda M, Kimura Y. Classification of binding property of amyloid β to lipid membranes: Membranomic research using quartz crystal microbalance combined with the immobilization of lipid planar membranes. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140987. [PMID: 38128808 DOI: 10.1016/j.bbapap.2023.140987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
A biomembrane-related fibrillogenesis of Amyloid β from Alzheimer' disease (Aβ) is closely related to its accumulation behavior. A binding property of Aβ peptides from Alzheimer' disease to lipid membranes was then classified by a quartz crystal microbalance (QCM) method combined with an immobilization technique using thiol self-assembled membrane. The accumulated amounts of Aβ, Δfmax, was determined from the measurement of the maximal frequency reduction using QCM. The plots of Δfmax to Aβ concentration gave the slope and saturated value of Δfmax, (Δfmax)sat that are the parameters for binding property of Aβ to lipid membranes. Therefore, the Aβ-binding property on lipid membranes was classified by the slope and (Δfmax)sat. The plural lipid system was described as X + Y where X = L1, L1/L2, and L1/L2/L3. The slope and (Δfmax)sat values plotted as a function of mixing ratio of Y to X was classified on a basis of the lever principle (LP). The LP violation observed in both parameters resulted from the formation of the crevice or pothole, as Aβ-specific binding site, generated at the boundary between ld and lo phases. The LP violation observed only in the slope resulted from glycolipid-rich domain acting as Aβ-specific binding site. Furthermore, lipid planar membranes indicating strong LP violation favored strong fibrillogenesis. Especially, lipid planar membranes indicating the LP violation only in the slope induced lateral aggregated and spherulitic fibrillar aggregates. Thus, the classification of Aβ binding property on lipid membranes appeared to be related to the fibrillogenesis with a certain morphology.
Collapse
Affiliation(s)
- Toshinori Shimanouchi
- Graduate School of Environment and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-ku, Okayama 700-8530, Japan.
| | - Miki Iwamura
- Graduate School of Environment and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-ku, Okayama 700-8530, Japan
| | - Yasuhiro Sano
- Graduate School of Environment and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-ku, Okayama 700-8530, Japan
| | - Keita Hayashi
- National Institute of Technology, Nara College, 22 Yada-cho, Yamatokoriyama, Nara, Japan
| | - Minoru Noda
- Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | - Yukitaka Kimura
- Graduate School of Environment and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
27
|
Grasset L, Bouteloup V, Cacciamani F, Pellegrin I, Planche V, Chêne G, Dufouil C. Associations Between Blood-Based Biomarkers and Cognitive and Functional Trajectories Among Participants of the MEMENTO Cohort. Neurology 2024; 102:e209307. [PMID: 38626384 PMCID: PMC11175638 DOI: 10.1212/wnl.0000000000209307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/05/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Elevated levels of Alzheimer disease (AD) blood-based biomarkers are associated with accelerated cognitive decline. However, their distinct relationships with specific cognitive and functional domains require further investigation. We aimed at estimating the associations between AD blood-based biomarkers and the trajectories of distinct cognitive and functional domains over a 5-year follow-up period. METHODS We conducted a clinic-based prospective study using data from the MEMENTO study, a nationwide French cohort. We selected dementia-free individuals at baseline aged 60 years or older. Baseline measurements of β-amyloid (Aβ) 40 and 42, phosphorylated tau (p-tau181), and neurofilament light chain (NfL) concentrations were obtained using the Simoa HD-X analyzer. Mini-Mental State Examination (MMSE), Free and Cued Selective Reminding Test (FCSRT), animal fluency, Trail Making Tests A and B, Short Physical Performance Battery (SPPB), and Instrumental Activities of Daily Living were administered annually for up to 5 years. We used linear mixed models, adjusted for potential confounders, to model AD biomarkers' relation with cognitive and functional decline. RESULTS A total of 1,938 participants were included in this study, with a mean (SD) baseline age of 72.8 (6.6) years, and 62% were women. Higher baseline p-tau181 and NfL were associated with significantly faster decline in most cognitive, physical, and functional outcomes (+1 SD p-tau181: βMMSE = -0.055, 95% CI -0.067 to -0.043, βFCSRT = -0.034, 95% CI -0.043 to -0.025, βfluency = -0.029, 95% CI -0.038 to -0.020, βSPPB = -0.040, 95% CI -0.057 to -0.022, and β4IADL = -0.115, 95% CI 0.091-0.140. +1 SD NfL: βMMSE = -0.039, 95% CI -0.053 to -0.025, βFCSRT = -0.022, 95% CI -0.032 to -0.012, βfluency = -0.014, 95% CI -0.024 to -0.004, and β4IADL = 0.077, 95% CI 0.048-0.105). A multiplicative association of p-tau181 and NfL with worsening cognitive and functional trajectories was evidenced. Lower Aβ42/40 ratio was only associated with slightly faster cognitive decline in FCSRT and semantic fluency (+1 SD: β = 0.011, 95% CI 0.002-0.020, and β = 0.011, 95% CI 0.003-0.020, respectively). These associations were not modified by APOE ε4, sex, nor education level. DISCUSSION In a memory clinic sample, p-tau181 and NfL, both independently and jointly, are linked to more pronounced cognitive, physical and functional declines. Blood-based biomarker measurement in AD research may provide useful insights regarding biological processes underlying cognitive, physical, and functional declines in at-risk individuals.
Collapse
Affiliation(s)
- Leslie Grasset
- From the UMR 1219 (L.G., V.B., F.C., G.C., C.D.), Bordeaux Population Health Center, University of Bordeaux, Inserm; CIC 1401-EC (L.G., V.B., F.C., G.C., C.D.), Inserm, University of Bordeaux, CHU de Bordeaux; Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), Pole de sante publique; ARAMISLab (F.C.), Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière; Qairnel SAS (F.C.), Paris; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164; and Univ. Bordeaux (V.P.), CNRS UMR 5293, Institut des Maladies Neurodégénératives, Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, France
| | - Vincent Bouteloup
- From the UMR 1219 (L.G., V.B., F.C., G.C., C.D.), Bordeaux Population Health Center, University of Bordeaux, Inserm; CIC 1401-EC (L.G., V.B., F.C., G.C., C.D.), Inserm, University of Bordeaux, CHU de Bordeaux; Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), Pole de sante publique; ARAMISLab (F.C.), Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière; Qairnel SAS (F.C.), Paris; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164; and Univ. Bordeaux (V.P.), CNRS UMR 5293, Institut des Maladies Neurodégénératives, Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, France
| | - Federica Cacciamani
- From the UMR 1219 (L.G., V.B., F.C., G.C., C.D.), Bordeaux Population Health Center, University of Bordeaux, Inserm; CIC 1401-EC (L.G., V.B., F.C., G.C., C.D.), Inserm, University of Bordeaux, CHU de Bordeaux; Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), Pole de sante publique; ARAMISLab (F.C.), Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière; Qairnel SAS (F.C.), Paris; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164; and Univ. Bordeaux (V.P.), CNRS UMR 5293, Institut des Maladies Neurodégénératives, Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, France
| | - Isabelle Pellegrin
- From the UMR 1219 (L.G., V.B., F.C., G.C., C.D.), Bordeaux Population Health Center, University of Bordeaux, Inserm; CIC 1401-EC (L.G., V.B., F.C., G.C., C.D.), Inserm, University of Bordeaux, CHU de Bordeaux; Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), Pole de sante publique; ARAMISLab (F.C.), Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière; Qairnel SAS (F.C.), Paris; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164; and Univ. Bordeaux (V.P.), CNRS UMR 5293, Institut des Maladies Neurodégénératives, Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, France
| | - Vincent Planche
- From the UMR 1219 (L.G., V.B., F.C., G.C., C.D.), Bordeaux Population Health Center, University of Bordeaux, Inserm; CIC 1401-EC (L.G., V.B., F.C., G.C., C.D.), Inserm, University of Bordeaux, CHU de Bordeaux; Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), Pole de sante publique; ARAMISLab (F.C.), Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière; Qairnel SAS (F.C.), Paris; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164; and Univ. Bordeaux (V.P.), CNRS UMR 5293, Institut des Maladies Neurodégénératives, Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, France
| | - Geneviève Chêne
- From the UMR 1219 (L.G., V.B., F.C., G.C., C.D.), Bordeaux Population Health Center, University of Bordeaux, Inserm; CIC 1401-EC (L.G., V.B., F.C., G.C., C.D.), Inserm, University of Bordeaux, CHU de Bordeaux; Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), Pole de sante publique; ARAMISLab (F.C.), Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière; Qairnel SAS (F.C.), Paris; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164; and Univ. Bordeaux (V.P.), CNRS UMR 5293, Institut des Maladies Neurodégénératives, Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, France
| | - Carole Dufouil
- From the UMR 1219 (L.G., V.B., F.C., G.C., C.D.), Bordeaux Population Health Center, University of Bordeaux, Inserm; CIC 1401-EC (L.G., V.B., F.C., G.C., C.D.), Inserm, University of Bordeaux, CHU de Bordeaux; Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), Pole de sante publique; ARAMISLab (F.C.), Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière; Qairnel SAS (F.C.), Paris; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164; and Univ. Bordeaux (V.P.), CNRS UMR 5293, Institut des Maladies Neurodégénératives, Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, France
| |
Collapse
|
28
|
Lee C, Friedman A. Generating PET scan patterns in Alzheimer's by a mathematical model. PLoS One 2024; 19:e0299637. [PMID: 38625863 PMCID: PMC11020767 DOI: 10.1371/journal.pone.0299637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/13/2024] [Indexed: 04/18/2024] Open
Abstract
Alzheimer disease (AD) is the most common form of dementia. The cause of the disease is unknown, and it has no cure. Symptoms include cognitive decline, memory loss, and impairment of daily functioning. The pathological hallmarks of the disease are aggregation of plaques of amyloid-β (Aβ) and neurofibrillary tangles of tau proteins (τ), which can be detected in PET scans of the brain. The disease can remain asymptomatic for decades, while the densities of Aβ and τ continue to grow. Inflammation is considered an early event that drives the disease. In this paper, we develop a mathematical model that can produce simulated patterns of (Aβ,τ) seen in PET scans of AD patients. The model is based on the assumption that early inflammations, R and [Formula: see text], drive the growth of Aβ and τ, respectively. Recently approved drugs can slow the progression of AD in patients, provided treatment begins early, before significant damage to the brain has occurred. In line with current longitudinal studies, we used the model to demonstrate how to assess the efficacy of such drugs when given years before the disease becomes symptomatic.
Collapse
Affiliation(s)
- Chaeyoung Lee
- Department of Mathematics, Kyonggi University, Suwon, Republic of Korea
| | - Avner Friedman
- Department of Mathematics, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
29
|
Pang KS, Peng HB, Li BP, Wen B, Noh K, Xia R, Toscan A, Serson S, Fraser PE, Tirona RG, de Lannoy IAM. Aging and brain free cholesterol concentration on amyloid-β peptide accumulation in guinea pigs. Biopharm Drug Dispos 2024; 45:93-106. [PMID: 38488691 DOI: 10.1002/bdd.2386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/21/2024] [Accepted: 02/08/2024] [Indexed: 04/19/2024]
Abstract
Alzheimer's disease is a complex multifactorial neurodegenerative disorder wherein age is a major risk factor. The appropriateness of the Hartley guinea pig (GP), which displays high sequence homologies of its amyloid-β (Aβ40 and Aβ42) peptides, Mdr1 and APP (amyloid precursor protein) and similarity in lipid handling to humans, was appraised among 9-40 weeks old guinea pigs. Protein expression levels of P-gp (Abcb1) and Cyp46a1 (24(S)-hydroxylase) for Aβ40, and Aβ42 efflux and cholesterol metabolism, respectively, were decreased with age, whereas those for Lrp1 (low-density lipoprotein receptor related protein 1), Rage (receptor for advanced glycation endproducts) for Aβ efflux and influx, respectively, and Abca1 (the ATP binding cassette subfamily A member 1) for cholesterol efflux, were unchanged among the ages examined. There was a strong, negative correlation of the brain Aβ peptide concentrations and Abca1 protein expression levels with free cholesterol. The correlation of Aβ peptide concentrations with Cyp46a1 was, however, not significant, and concentrations of the 24(S)-hydroxycholesterol metabolite revealed a decreasing trend from 20 weeks old toward 40 weeks old guinea pigs. The composite data suggest a role for free cholesterol on brain Aβ accumulation. The decreases in P-gp and Lrp1 protein levels should further exacerbate the accumulation of Aβ peptides in guinea pig brain.
Collapse
Affiliation(s)
- K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - H Benson Peng
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Betty P Li
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Binyu Wen
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Keumhan Noh
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Runyu Xia
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anja Toscan
- Transpharmation Canada, Mississauga, Ontario, Canada
| | - Sylvia Serson
- Transpharmation Canada, Mississauga, Ontario, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Rommel G Tirona
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
30
|
Ip BYM, Ko H, Lam BYK, Au LWC, Lau AYL, Huang J, Kwok AJ, Leng X, Cai Y, Leung TWH, Mok VCT. Current and Future Treatments of Vascular Cognitive Impairment. Stroke 2024; 55:822-839. [PMID: 38527144 DOI: 10.1161/strokeaha.123.044174] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Affiliation(s)
- Bonaventure Yiu Ming Ip
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
- Kwok Tak Seng Centre for Stroke Research and Intervention, Hong Kong SAR, China (B.Y.M.I., X.L., T.W.H.L.)
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| | - Bonnie Yin Ka Lam
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| | - Lisa Wing Chi Au
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| | - Alexander Yuk Lun Lau
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
| | - Junzhe Huang
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| | - Andrew John Kwok
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| | - Xinyi Leng
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Kwok Tak Seng Centre for Stroke Research and Intervention, Hong Kong SAR, China (B.Y.M.I., X.L., T.W.H.L.)
| | - Yuan Cai
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| | - Thomas Wai Hong Leung
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Kwok Tak Seng Centre for Stroke Research and Intervention, Hong Kong SAR, China (B.Y.M.I., X.L., T.W.H.L.)
| | - Vincent Chung Tong Mok
- Division of Neurology, Department of Medicine and Therapeutics (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., X.L., C.Y., T.W.H.L., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Lau Tat-Chuen Research Centre of Brain Degenerative Diseases in Chinese (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., A.Y.L.L., J.H., A.J.K., C.Y., V.C.T.M.), Faculty of Medicine, The Chinese University of Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong (B.Y.M.I., H.K., B.Y.K.L., L.W.C.A., J.H., A.J.K., C.Y., V.C.T.M.)
| |
Collapse
|
31
|
Chamberland É, Moravveji S, Doyon N, Duchesne S. A computational model of Alzheimer's disease at the nano, micro, and macroscales. Front Neuroinform 2024; 18:1348113. [PMID: 38586183 PMCID: PMC10995318 DOI: 10.3389/fninf.2024.1348113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Mathematical models play a crucial role in investigating complex biological systems, enabling a comprehensive understanding of interactions among various components and facilitating in silico testing of intervention strategies. Alzheimer's disease (AD) is characterized by multifactorial causes and intricate interactions among biological entities, necessitating a personalized approach due to the lack of effective treatments. Therefore, mathematical models offer promise as indispensable tools in combating AD. However, existing models in this emerging field often suffer from limitations such as inadequate validation or a narrow focus on single proteins or pathways. Methods In this paper, we present a multiscale mathematical model that describes the progression of AD through a system of 19 ordinary differential equations. The equations describe the evolution of proteins (nanoscale), cell populations (microscale), and organ-level structures (macroscale) over a 50-year lifespan, as they relate to amyloid and tau accumulation, inflammation, and neuronal death. Results Distinguishing our model is a robust foundation in biological principles, ensuring improved justification for the included equations, and rigorous parameter justification derived from published experimental literature. Conclusion This model represents an essential initial step toward constructing a predictive framework, which holds significant potential for identifying effective therapeutic targets in the fight against AD.
Collapse
Affiliation(s)
- Éléonore Chamberland
- Centre de Recherche CERVO, Institut Universitaire de Santé Mentale de Québec, Québec, QC, Canada
- Département de Mathématiques et de Statistique, Québec, QC, Canada
| | - Seyedadel Moravveji
- Centre de Recherche CERVO, Institut Universitaire de Santé Mentale de Québec, Québec, QC, Canada
- Département de Mathématiques et de Statistique, Québec, QC, Canada
| | - Nicolas Doyon
- Centre de Recherche CERVO, Institut Universitaire de Santé Mentale de Québec, Québec, QC, Canada
- Département de Mathématiques et de Statistique, Québec, QC, Canada
| | - Simon Duchesne
- Centre de Recherche CERVO, Institut Universitaire de Santé Mentale de Québec, Québec, QC, Canada
- Département de Radiologie et Médecine Nucléaire, Université Laval, Québec, QC, Canada
- Centre de Recherche de l'Institut Universitaire en Cardiologie et Pneumologie de Québec, Québec, QC, Canada
| |
Collapse
|
32
|
Varshavskaya KB, Petrushanko IY, Mitkevich VA, Barykin EP, Makarov AA. Post-translational modifications of beta-amyloid alter its transport in the blood-brain barrier in vitro model. Front Mol Neurosci 2024; 17:1362581. [PMID: 38516041 PMCID: PMC10954796 DOI: 10.3389/fnmol.2024.1362581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
One of the hallmarks of Alzheimer's disease (AD) is the accumulation of beta-amyloid peptide (Aβ) leading to formation of soluble neurotoxic Aβ oligomers and insoluble amyloid plaques in various parts of the brain. Aβ undergoes post-translational modifications that alter its pathogenic properties. Aβ is produced not only in brain, but also in the peripheral tissues. Such Aβ, including its post-translationally modified forms, can enter the brain from circulation by binding to RAGE and contribute to the pathology of AD. However, the transport of modified forms of Aβ across the blood-brain barrier (BBB) has not been investigated. Here, we used a transwell BBB model as a controlled environment for permeability studies. We found that Aβ42 containing isomerized Asp7 residue (iso-Aβ42) and Aβ42 containing phosphorylated Ser8 residue (pS8-Aβ42) crossed the BBB better than unmodified Aβ42, which correlated with different contribution of endocytosis mechanisms to the transport of these isoforms. Using microscale thermophoresis, we observed that RAGE binds to iso-Aβ42 an order of magnitude weaker than to Aβ42. Thus, post-translational modifications of Aβ increase the rate of its transport across the BBB and modify the mechanisms of the transport, which may be important for AD pathology and treatment.
Collapse
|
33
|
Li K, Zhou X, Liu Y, Li D, Li Y, Zhang T, Fu C, Li L, Hu Y, Jiang L. Serum amyloid beta 42 levels correlated with metabolic syndrome and its components. Front Endocrinol (Lausanne) 2024; 15:1278477. [PMID: 38405149 PMCID: PMC10893966 DOI: 10.3389/fendo.2024.1278477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Beta-amyloid accumulation in the brain appears to be a key initiating event in Alzheimer's disease (AD), and factors associated with increased deposition of beta-amyloid are of great interest. Enhanced deposition of amyloid-β peptides is due to an imbalance between their production and elimination. Previous studies show that diminished levels of CSF amyloid beta 42 (Aβ42) is a biomarker in AD; however, the role of serum Aβ42 in AD is contradictory. BMI and obesity have been reported to be related to increased serum Aβ42 levels. Therefore, we aimed to investigate the relation between metabolic syndrome (MetS), its clinical measures (abdominal obesity, high glucose, high triglyceride, low high-density lipoprotein cholesterol level, and hypertension), and serum Aβ42 levels. Methods A total of 1261 subjects, aged 18-89 years in Chengdu, China, were enrolled from January 2020 to January 2021 to explore the correlation of serum Aβ42 levels with body mass index (BMI), blood lipids, and blood pressure. Furthermore, as the risk of MetS is closely related to age, 1,212 participants (N = 49 with age ≥ 80 years old were excluded) were analyzed for the correlation of serum Aβ42 level and MetS clinical measures. Results The results showed that log-transformed serum Aβ42 level was positively correlated with BMI (R = 0.29; p < 0.001), log-transformed triglyceride (R = 0.14; p < 0.001), and diastolic blood pressure (DBP) (R = 0.12; p < 0.001) and negatively correlated with high-density lipoprotein (HDL-c) (R = -0.18; p < 0.001). After adjusting for age, sex, and other covariates, elevated serum Aβ42 level was correlated with higher values of BMI (βmodel1 = 2.694, βmodel2 = 2.703) and DBP (βmodel1 = 0.541, βmodel2 = 0.546) but a lower level of HDL-c (βmodel2 = -1.741). Furthermore, serum Aβ42 level was positively correlated with MetS and its clinical measures, including BMI and DBP, and negatively correlated with HDL-c level in the Han Chinese population. However, the level of serum Aβ42 did not show a significant correlation with high glucose or high triglyceride. Discussion These observations indicate that MetS and its components are associated with higher levels of serum Aβ42 and hence limit the potential of serum Aβ42 as a suitable diagnostic biomarker for AD. As such, we recommend serum Aβ42 serve as a direct risk biomarker for MetS rather than for AD.
Collapse
Affiliation(s)
- Kecheng Li
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaoli Zhou
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Youren Liu
- Department of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongyu Li
- Department of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yinyin Li
- Department of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Zhang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chunyan Fu
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lin Li
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yang Hu
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Li Jiang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Yuan S, Wang Y, Yang J, Tang Y, Wu W, Meng X, Jian Y, Lei Y, Liu Y, Tang C, Zhao Z, Zhao F, Liu W. Treadmill exercise can regulate the redox balance in the livers of APP/PS1 mice and reduce LPS accumulation in their brains through the gut-liver-kupffer cell axis. Aging (Albany NY) 2024; 16:1374-1389. [PMID: 38295303 PMCID: PMC10866404 DOI: 10.18632/aging.205432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 02/02/2024]
Abstract
A growing body of clinical data has shown that patients with Alzheimer's disease (AD) have symptoms such as liver dysfunction and microbial-gut-brain axis dysfunction in addition to brain pathology, presenting a systemic multisystemic pathogenesis. Considering the systemic benefits of exercise, here, we first observed the effects of long-term treadmill exercise on liver injuries in APP/PS1 transgenic AD mice and explored the potential mechanisms of the gut-liver-brain axis's role in mediating exercise's ability to reduce bacterial lipopolysaccharide (LPS) pathology in the brain. The results showed that the livers of the AD mice were in states of oxidative stress, while the mice after long-term treadmill exercise showed alleviation of their oxidative stress, their intestinal barriers were protected, and the ability of their Kupffer cells to hydrolyze LPS was improved, in addition to the accumulation of LPS in their brains being reduced. Notably, the livers of the AD mice were in immunosuppressed states, with lower pro-oxidative and antioxidative levels than the livers of the wild-type mice, while exercise increased both their oxidative and antioxidative levels. These results suggest that long-term exercise modulates hepatic redox homeostasis in AD mice, attenuates oxidative damage, and reduces the accumulation of LPS in the brain through the combined action of the intestine-liver-Kupffer cells.
Collapse
Affiliation(s)
- Shunling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yirong Wang
- Hunan Sports Vocational College, Changsha 410019, China
| | - Jialun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Ye Jian
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yong Lei
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yang Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Changfa Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zhe Zhao
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Fei Zhao
- Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha 410199, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| |
Collapse
|
35
|
Klafki HW, Wirths O, Jahn O, Morgado B, Esselmann H, Wiltfang J. Blood plasma biomarkers for Alzheimer's disease: Aβ1-42/1-40 vs. AβX-42/X-40. Clin Chem Lab Med 2024; 62:e56-e57. [PMID: 37775501 DOI: 10.1515/cclm-2023-0990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Affiliation(s)
- Hans-Wolfgang Klafki
- Department of Psychiatry and Psychotherapy, University Medical Center, Goettingen, Georg-August-University, Goettingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center, Goettingen, Georg-August-University, Goettingen, Germany
| | - Olaf Jahn
- Department of Psychiatry and Psychotherapy, University Medical Center, Goettingen, Georg-August-University, Goettingen, Germany
| | - Barbara Morgado
- Department of Psychiatry and Psychotherapy, University Medical Center, Goettingen, Georg-August-University, Goettingen, Germany
| | - Hermann Esselmann
- Department of Psychiatry and Psychotherapy, University Medical Center, Goettingen, Georg-August-University, Goettingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center, Goettingen, Georg-August-University, Goettingen, Germany
| |
Collapse
|
36
|
Hall LG, Czeczor JK, Connor T, Botella J, De Jong KA, Renton MC, Genders AJ, Venardos K, Martin SD, Bond ST, Aston-Mourney K, Howlett KF, Campbell JA, Collier GR, Walder KR, McKenzie M, Ziemann M, McGee SL. Amyloid beta 42 alters cardiac metabolism and impairs cardiac function in male mice with obesity. Nat Commun 2024; 15:258. [PMID: 38225272 PMCID: PMC10789867 DOI: 10.1038/s41467-023-44520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
There are epidemiological associations between obesity and type 2 diabetes, cardiovascular disease and Alzheimer's disease. The role of amyloid beta 42 (Aβ42) in these diverse chronic diseases is obscure. Here we show that adipose tissue releases Aβ42, which is increased from adipose tissue of male mice with obesity and is associated with higher plasma Aβ42. Increasing circulating Aβ42 levels in male mice without obesity has no effect on systemic glucose homeostasis but has obesity-like effects on the heart, including reduced cardiac glucose clearance and impaired cardiac function. The closely related Aβ40 isoform does not have these same effects on the heart. Administration of an Aβ-neutralising antibody prevents obesity-induced cardiac dysfunction and hypertrophy. Furthermore, Aβ-neutralising antibody administration in established obesity prevents further deterioration of cardiac function. Multi-contrast transcriptomic analyses reveal that Aβ42 impacts pathways of mitochondrial metabolism and exposure of cardiomyocytes to Aβ42 inhibits mitochondrial complex I. These data reveal a role for systemic Aβ42 in the development of cardiac disease in obesity and suggest that therapeutics designed for Alzheimer's disease could be effective in combating obesity-induced heart failure.
Collapse
Affiliation(s)
- Liam G Hall
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Juliane K Czeczor
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Becton Dickinson GmbH, Medical Affairs, 69126, Heidelberg, Germany
| | - Timothy Connor
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Javier Botella
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Kirstie A De Jong
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Mark C Renton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Amanda J Genders
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences and Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Kylie Venardos
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Sheree D Martin
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Simon T Bond
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Kathryn Aston-Mourney
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | | | | | - Ken R Walder
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Matthew McKenzie
- School of Life and Environmental Science, Deakin University, Geelong, Australia
| | - Mark Ziemann
- School of Life and Environmental Science, Deakin University, Geelong, Australia
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia.
- Ambetex Pty Ltd, Geelong, Australia.
| |
Collapse
|
37
|
Gao PY, Ou YN, Wang HF, Wang ZB, Fu Y, He XY, Ma YH, Feng JF, Cheng W, Tan L, Yu JT. Associations of liver dysfunction with incident dementia, cognition, and brain structure: A prospective cohort study of 431 699 adults. J Neurochem 2024; 168:26-38. [PMID: 37830502 DOI: 10.1111/jnc.15988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
The relationship between liver dysfunction and dementia has been researched extensively but remains poorly understood. In this study, we investigate the longitudinal and cross-sectional associations between liver function and liver diseases and risk of incident dementia, impaired cognition, and brain structure abnormalities using Cox proportion hazard model and linear regression model. 431 699 participants with a mean of 8.65 (standard deviation [SD] 2.61) years of follow-up were included from the UK Biobank; 5542 all-cause dementia (ACD), 2427 Alzheimer's disease (AD), and 1282 vascular dementia (VaD) cases were documented. We observed that per SD decreases in alanine transaminase (ALT; hazard ratio [HR], 0.917; PFDR <0.001) and per SD increases in aspartate aminotransferase (AST; HR, 1.048; PFDR = 0.010), AST to ALT ratio (HR, 1.195; PFDR <0.001), gamma-glutamyl transpeptidase (GGT; HR, 1.066; PFDR <0.001), alcoholic liver disease (ALD; HR, 2.872; PFDR <0.001), and fibrosis and cirrhosis of liver (HR, 2.285; PFDR = 0.002), being significantly associated with a higher risk of incident ACD. Restricted cubic spline models identified a strong U-shaped association between Alb and AST and incident ACD (Pnonlinear <0.05). Worse cognition was positively correlated with AST, AST to ALT ratio, direct bilirubin (DBil), and GGT; negatively correlated with ALT, Alb, and total bilirubin (TBil); and ALD and fibrosis and cirrhosis of liver (PFDR <0.05). Moreover, changes in ALT, GGT, AST to ALT ratio, and ALD were significantly associated with altered cortical and subcortical regions, including hippocampus, amygdala, thalamus, pallidum, and fusiform (PFDR <0.05). In sensitivity analysis, metabolic dysfunction-associated steatotic liver disease (MASLD) was associated with the risk of ACD and brain subcortical changes. Our findings provide substantial evidence that liver dysfunction may be an important factor for incident dementia. Early intervention in the unhealthy liver may help prevent cognitive impairment and dementia incidence.
Collapse
Affiliation(s)
- Pei-Yang Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Zhi-Bo Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Rolandsson O, Tornevi A, Steneberg P, Edlund H, Olsson T, Andreasson U, Zetterberg H, Blennow K. Acute Hyperglycemia Induced by Hyperglycemic Clamp Affects Plasma Amyloid-β in Type 2 Diabetes. J Alzheimers Dis 2024; 99:1033-1046. [PMID: 38728183 DOI: 10.3233/jad-230628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Background Individuals with type 2 diabetes (T2D) have an increased risk of cognitive symptoms and Alzheimer's disease (AD). Mis-metabolism with aggregation of amyloid-β peptides (Aβ) play a key role in AD pathophysiology. Therefore, human studies on Aβ metabolism and T2D are warranted. Objective The objective of this study was to examine whether acute hyperglycemia affects plasma Aβ1-40 and Aβ1-42 concentrations in individuals with T2D and matched controls. Methods Ten participants with T2D and 11 controls (median age, 69 years; range, 66-72 years) underwent hyperglycemic clamp and placebo clamp (saline infusion) in a randomized order, each lasting 4 hours. Aβ1-40, Aβ1-42, and insulin-degrading enzyme (IDE) plasma concentrations were measured in blood samples taken at 0 and 4 hours of each clamp. Linear mixed-effect regression models were used to evaluate the 4-hour changes in Aβ1-40 and Aβ1-42 concentrations, adjusting for body mass index, estimated glomerular filtration rate, and 4-hour change in insulin concentration. Results At baseline, Aβ1-40 and Aβ1-42 concentrations did not differ between the two groups. During the hyperglycemic clamp, Aβ decreased in the control group, compared to the placebo clamp (Aβ1-40: p = 0.034, Aβ1-42: p = 0.020), IDE increased (p = 0.016) during the hyperglycemic clamp, whereas no significant changes in either Aβ or IDE was noted in the T2D group. Conclusions Clamp-induced hyperglycemia was associated with increased IDE levels and enhanced Aβ40 and Aβ42 clearance in controls, but not in individuals with T2D. We hypothesize that insulin-degrading enzyme was inhibited during hyperglycemic conditions in people with T2D.
Collapse
Affiliation(s)
- Olov Rolandsson
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | - Andreas Tornevi
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | - Pär Steneberg
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Helena Edlund
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Tommy Olsson
- Public Health and Clinical Medicine, Internal Medicine, Umeå University, Umeå, Sweden
| | - Ulf Andreasson
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpetriere Hospital, Sorbonne University, Paris, France
- Department of Neurology, Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, China
| |
Collapse
|
39
|
Hanafy AS, Lamprecht A, Dietrich D. Local perfusion of capillaries reveals disrupted beta-amyloid homeostasis at the blood-brain barrier in Tg2576 murine Alzheimer's model. Fluids Barriers CNS 2023; 20:85. [PMID: 37993886 PMCID: PMC10666337 DOI: 10.1186/s12987-023-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Parenchymal accumulation of beta-amyloid (Aβ) characterizes Alzheimer's disease (AD). Aβ homeostasis is maintained by two ATP-binding cassette (ABC) transporters (ABCC1 and ABCB1) mediating efflux, and the receptor for advanced glycation end products (RAGE) mediating influx across the blood-brain barrier (BBB). Altered transporter levels and disruption of tight junctions (TJ) were linked to AD. However, Aβ transport and the activity of ABCC1, ABCB1 and RAGE as well as the functionality of TJ in AD are unclear. METHODS ISMICAP, a BBB model involving microperfusion of capillaries, was used to assess BBB properties in acute cortical brain slices from Tg2576 mice compared to wild-type (WT) controls using two-photon microscopy. TJ integrity was tested by vascularly perfusing biocytin-tetramethylrhodamine (TMR) and quantifying its extravascular diffusion as well as the diffusion of FM1-43 from luminal to abluminal membranes of endothelial cells (ECs). To assess ABCC1 and ABCB1 activity, calcein-AM was perfused, which is converted to fluorescent calcein in ECs and gets actively extruded by both transporters. To probe which transporter is involved, probenecid or Elacridar were applied, individually or combined, to block ABCC1 and ABCB1, respectively. To assess RAGE activity, the binding of 5-FAM-tagged Aβ by ECs was quantified with or without applying FPS-ZM1, a RAGE antagonist. RESULTS In Tg2576 mouse brain, extravascular TMR was 1.8-fold that in WT mice, indicating increased paracellular leakage. FM1-43 staining of abluminal membranes in Tg2576 capillaries was 1.7-fold that in WT mice, indicating reduced TJ integrity in AD. While calcein was undetectable in WT mice, its accumulation was significant in Tg2576 mice, suggesting lower calcein extrusion in AD. Incubation with probenecid or Elacridar in WT mice resulted in a marked calcein accumulation, yet probenecid alone had no effect in Tg2576 mice, implying the absence of probenecid-sensitive ABC transporters. In WT mice, Aβ accumulated along the luminal membranes, which was undetectable after applying FPS-ZM1. In contrast, marginal Aβ fluorescence was observed in Tg2576 vessels, and FPS-ZM1 was without effect, suggesting reduced RAGE binding activity. CONCLUSIONS Disrupted TJ integrity, reduced ABCC1 functionality and decreased RAGE binding were identified as BBB alterations in Tg2576 mice, with the latter finding challenging the current concepts. Our results suggest to manage AD by including modulation of TJ proteins and Aβ-RAGE binding.
Collapse
Affiliation(s)
- Amira Sayed Hanafy
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany.
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
40
|
Liu G, Yu Q, Zhu H, Tan B, Yu H, Li X, Lu Y, Li H. Amyloid-β mediates intestinal dysfunction and enteric neurons loss in Alzheimer's disease transgenic mouse. Cell Mol Life Sci 2023; 80:351. [PMID: 37930455 PMCID: PMC11072809 DOI: 10.1007/s00018-023-04948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/02/2023] [Accepted: 06/21/2023] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is traditionally considered as a brain disorder featured by amyloid-β (Aβ) deposition. The current study on whether pathological changes of AD extend to the enteric nervous system (ENS) is still in its infancy. In this study, we found enteric Aβ deposition, intestinal dysfunction, and colonic inflammation in the young APP/PS1 mice. Moreover, these mice exhibited cholinergic and nitrergic signaling pathways damages and enteric neuronal loss. Our data show that Aβ42 treatment remarkably affected the gene expression of cultured myenteric neurons and the spontaneous contraction of intestinal smooth muscles. The intra-colon administration of Aβ42 induced ENS dysfunction, brain gliosis, and β-amyloidosis-like changes in the wild-type mice. Our results suggest that ENS mirrors the neuropathology observed in AD brains, and intestinal pathological changes may represent the prodromal events, which contribute to brain pathology in AD. In summary, our findings provide new opportunities for AD early diagnosis and prevention.
Collapse
Affiliation(s)
- Guoqiang Liu
- Medical College, Hubei University for Nationalities, Enshi, 445000, Hubei, China
| | - Quntao Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Houze Zhu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Tan
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongyan Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyan Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hao Li
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
41
|
Arthur E, Ravichandran S, Snyder PJ, Alber J, Strenger J, Bittner AK, Khankan R, Adams SL, Putnam NM, Lypka KR, Piantino JA, Sinoff S. Retinal mid-peripheral capillary free zones are enlarged in cognitively unimpaired older adults at high risk for Alzheimer's disease. Alzheimers Res Ther 2023; 15:172. [PMID: 37828548 PMCID: PMC10568786 DOI: 10.1186/s13195-023-01312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Compared to standard neuro-diagnostic techniques, retinal biomarkers provide a probable low-cost and non-invasive alternative for early Alzheimer's disease (AD) risk screening. We have previously quantified the periarteriole and perivenule capillary free zones (mid-peripheral CFZs) in cognitively unimpaired (CU) young and older adults as novel metrics of retinal tissue oxygenation. There is a breakdown of the inner retinal blood barrier, pericyte loss, and capillary non-perfusion or dropout in AD leading to potential enlargement of the mid-peripheral CFZs. We hypothesized the mid-peripheral CFZs will be enlarged in CU older adults at high risk for AD compared to low-risk individuals. METHODS 20 × 20° optical coherence tomography angiography images consisting of 512 b-scans, 512 A-scans per b-scan, 12-µm spacing between b-scans, and 5 frames averaged per each b-scan location of the central fovea and of paired major arterioles and venules with their surrounding capillaries inferior to the fovea of 57 eyes of 37 CU low-risk (mean age: 66 years) and 50 eyes of 38 CU high-risk older adults (mean age: 64 years; p = 0.24) were involved in this study. High-risk participants were defined as having at least one APOE e4 allele and a positive first-degree family history of AD while low-risk participants had neither of the two criteria. All participants had Montreal Cognitive Assessment scores ≥ 26. The mid-peripheral CFZs were computed in MATLAB and compared between the two groups. RESULTS The periarteriole CFZ of the high-risk group (75.8 ± 9.19 µm) was significantly larger than that of the low-risk group (71.3 ± 7.07 µm), p = 0.005, Cohen's d = 0.55. The perivenule CFZ of the high-risk group (60.4 ± 8.55 µm) was also significantly larger than that of the low-risk group (57.3 ± 6.40 µm), p = 0.034, Cohen's d = 0.42. There were no significant differences in foveal avascular zone (FAZ) size, FAZ effective diameter, and vessel density between the two groups, all p > 0.05. CONCLUSIONS Our results show larger mid-peripheral CFZs in CU older adults at high risk for AD, with the potential for the periarteriole CFZ to serve as a novel retinal vascular biomarker for early AD risk detection.
Collapse
Affiliation(s)
- Edmund Arthur
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Swetha Ravichandran
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peter J Snyder
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Jessica Alber
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Butler Hospital Memory & Aging Program, Providence, RI, USA
| | - Jennifer Strenger
- Butler Hospital Memory & Aging Program, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Ava K Bittner
- Department of Ophthalmology, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Rima Khankan
- Southern California College of Optometry, Marshall B. Ketchum University, Fullerton, CA, USA
| | | | - Nicole M Putnam
- State University of New York College of Optometry, New York, NY, USA
| | - Karin R Lypka
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Juan A Piantino
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
42
|
Yang H, Qin Q, Wang M, Yin Y, Li R, Tang Y. Crosstalk between peripheral immunity and central nervous system in Alzheimer's disease. Cell Immunol 2023; 391-392:104743. [PMID: 37451918 DOI: 10.1016/j.cellimm.2023.104743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
The significance of peripheral immunity in the pathogenesis and progression of Alzheimer's diseases (AD) has been recognized. Brain-infiltrated peripheral immune components transporting across the blood-brain barrier (BBB) may reshape the central immune environment. However, mechanisms of how these components open the BBB for AD occurrence and development and correlations between peripheral and central immunity have not been fully explored. Herein, we formulate a hypothesis whereby peripheral immunity as a critical factor allows AD to progress. Peripheral central immune cell crosstalk is associated with early AD pathology and related risk factors. The damaged BBB permits peripheral immune cells to enter the central immune system to deprive its immune privilege promoting the progression toward developing AD. This review summarizes the influences of risk factors on peripheral immunity, alongside their functions, highlighting the concept of peripheral and central immunity as an integrated system in AD pathogenesis, which has received scant attention before.
Collapse
Affiliation(s)
- Hanchen Yang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Meng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yunsi Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ruiyang Li
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.
| |
Collapse
|
43
|
Bellaver B, Puig-Pijoan A, Ferrari-Souza JP, Leffa DT, Lussier FZ, Ferreira PCL, Tissot C, Povala G, Therriault J, Benedet AL, Ashton NJ, Servaes S, Chamoun M, Stevenson J, Rahmouni N, Vermeiren M, Macedo AC, Fernández-Lebrero A, García-Escobar G, Navalpotro-Gómez I, Lopez O, Tudorascu DL, Cohen A, Villemagne VL, Klunk WE, Gauthier S, Zimmer ER, Karikari TK, Blennow K, Zetterberg H, Suárez-Calvet M, Rosa-Neto P, Pascoal TA. Blood-brain barrier integrity impacts the use of plasma amyloid-β as a proxy of brain amyloid-β pathology. Alzheimers Dement 2023; 19:3815-3825. [PMID: 36919582 PMCID: PMC10502181 DOI: 10.1002/alz.13014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/08/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Amyloid-β (Aβ) and tau can be quantified in blood. However, biological factors can influence the levels of brain-derived proteins in the blood. The blood-brain barrier (BBB) regulates protein transport between cerebrospinal fluid (CSF) and blood. BBB altered permeability might affect the relationship between brain and blood biomarkers. METHODS We assessed 224 participants in research (TRIAD, n = 96) and clinical (BIODEGMAR, n = 128) cohorts with plasma and CSF/positron emission tomography Aβ, p-tau, and albumin measures. RESULTS Plasma Aβ42/40 better identified CSF Aβ42/40 and Aβ-PET positivity in individuals with high BBB permeability. An interaction between plasma Aβ42/40 and BBB permeability on CSF Aβ42/40 was observed. Voxel-wise models estimated that the association of positron emission tomography (PET), with plasma Aβ was most affected by BBB permeability in AD-related brain regions. BBB permeability did not significantly impact the relationship between brain and plasma p-tau levels. DISCUSSION These findings suggest that BBB integrity may influence the performance of plasma Aβ, but not p-tau, biomarkers in research and clinical settings. HIGHLIGHTS BBB permeability affects the association between brain and plasma Aβ levels. BBB integrity does not affect the association between brain and plasma p-tau levels. Plasma Aβ was most affected by BBB permeability in AD-related brain regions. BBB permeability increases with age but not according to cognitive status.
Collapse
Affiliation(s)
- Bruna Bellaver
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Albert Puig-Pijoan
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - João Pedro Ferrari-Souza
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Douglas T Leffa
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Firoza Z Lussier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pamela C L Ferreira
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Guilherme Povala
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Marie Vermeiren
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Arthur C Macedo
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Aida Fernández-Lebrero
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | | | - Irene Navalpotro-Gómez
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Oscar Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ann Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Marc Suárez-Calvet
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
44
|
Cozachenco D, Zimmer ER, Lourenco MV. Emerging concepts towards a translational framework in Alzheimer's disease. Neurosci Biobehav Rev 2023; 152:105246. [PMID: 37236385 DOI: 10.1016/j.neubiorev.2023.105246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Over the past decades, significant efforts have been made to understand the precise mechanisms underlying the pathogenesis of Alzheimer's disease (AD), the most common cause of dementia. However, clinical trials targeting AD pathological hallmarks have consistently failed. Refinement of AD conceptualization, modeling, and assessment is key to developing successful therapies. Here, we review critical findings and discuss emerging ideas to integrate molecular mechanisms and clinical approaches in AD. We further propose a refined workflow for animal studies incorporating multimodal biomarkers used in clinical studies - delineating critical paths for drug discovery and translation. Addressing unresolved questions with the proposed conceptual and experimental framework may accelerate the development of effective disease-modifying strategies for AD.
Collapse
Affiliation(s)
- Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo R Zimmer
- Department of Pharmacology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Biochemistry (PPGBioq), UFRGS, Porto Alegre, RS, Brazil; Pharmacology and Therapeutics (PPGFT), UFRGS, Porto Alegre, RS, Brazil; McGill Centre for Studies in Aging, McGill University, Montreal, Canada; Brain Institute of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
45
|
Makibatake R, Oda S, Yagi Y, Tatsumi H. Amyloid-β slows cilia movement along the ventricle, impairs fluid flow, and exacerbates its neurotoxicity in explant culture. Sci Rep 2023; 13:13586. [PMID: 37605005 PMCID: PMC10442439 DOI: 10.1038/s41598-023-40742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by extensive and selective death of neurons and deterioration of synapses and circuits in the brain. The Aβ1-42 concentration is higher in an AD brain than in cognitively normal elderly individuals, and Aβ1-42 exhibits neurotoxicity. Brain-derived Aβ is transported into the cerebrospinal fluid (CSF), and CSF flow is driven in part by the beating of cilia and CSF secretion into ventricles. Ventricles are lined with ependyma whose apical surface is covered with motile cilia. Herein, we constructed an experimental system to measure the movement of ependymal cilia and examined the effects of Aβ1-42 to the beating of cilia and neurons. The circadian rhythm of the beating frequency of ependymal cilia was detected using brain wall explant-cultures containing ependymal cilia and neurons; the beating frequency was high at midday and low at midnight. Aβ1-42 decreased the peak frequency of ciliary beating at midday and slightly increased it at midnight. Aβ1-42 exhibited neurotoxicity to neurons on the non-ciliated side of the explant culture, while the neurotoxicity was less evident in neurons on the ciliated side. The neurotoxic effect of Aβ1-42 was diminished when 1 mPa of shear stress was generated using a flow chamber system that mimicked the flow by cilia. These results indicate that Aβ1-42 affects the circadian rhythm of ciliary beating, decreases the medium flow by the cilia-beating, and enhances the neurotoxic action of Aβ1-42 in the brain explant culture.
Collapse
Affiliation(s)
- Ryota Makibatake
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan-shi, Ishikawa, 924-0838, Japan
| | - Sora Oda
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan-shi, Ishikawa, 924-0838, Japan
| | - Yoshiki Yagi
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan-shi, Ishikawa, 924-0838, Japan
| | - Hitoshi Tatsumi
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan-shi, Ishikawa, 924-0838, Japan.
| |
Collapse
|
46
|
Kapoor A, Gaubert A, Yew B, Jang JY, Dutt S, Li Y, Alitin JPM, Nguyen A, Ho JK, Blanken AE, Sible IJ, Marshall A, Shenasa F, Rodgers KE, Martini AC, Head E, Nation DA. Enlarged perivascular spaces and plasma Aβ42/Aβ40 ratio in older adults without dementia. Neurobiol Aging 2023; 128:43-48. [PMID: 37156179 PMCID: PMC10852216 DOI: 10.1016/j.neurobiolaging.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
Dilation of perivascular spaces (PVS) in the brain may indicate poor fluid drainage due to the accumulation of perivascular cell debris, waste, and proteins, including amyloid-beta (Aβ). No prior study has assessed whether plasma Aβ levels are related to PVS in older adults without dementia. Independently living older adults (N = 56, mean age = 68.2 years; Standard deviation (SD) = 6.5; 30.4% male) free of dementia or clinical stroke were recruited from the community and underwent brain MRI and venipuncture. PVS were qualitatively scored and dichotomized to low PVS burden (scores 0-1,) or high PVS burden (score>1). Plasma was assayed using a Quanterix Simoa Kit to quantify Aβ42 and Aβ40 levels. A significant difference was observed in plasma Aβ42/Aβ40 ratio between low and high PVS burden, controlling for age (F[1, 53] = 5.59, p = 0.022, η2 = 0.10), with lower Aβ42/Aβ40 ratio in the high PVS burden group. Dilation of PVS is associated with a lower plasma Aβ42/Aβ40 ratio, which may indicate higher cortical amyloid deposition. Future longitudinal studies examining PVS changes, and the pathogenesis of AD are warranted.
Collapse
Affiliation(s)
- Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Aimée Gaubert
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Belinda Yew
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - John Paul M Alitin
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Amy Nguyen
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Jean K Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Anna E Blanken
- San Francisco Veterans Affairs Health Care System & Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Isabel J Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Anisa Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Fatemah Shenasa
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Kathleen E Rodgers
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Alessandra C Martini
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Daniel A Nation
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
47
|
Cai W, Li L, Sang S, Pan X, Zhong C. Physiological Roles of β-amyloid in Regulating Synaptic Function: Implications for AD Pathophysiology. Neurosci Bull 2023; 39:1289-1308. [PMID: 36443453 PMCID: PMC10387033 DOI: 10.1007/s12264-022-00985-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The physiological functions of endogenous amyloid-β (Aβ), which plays important role in the pathology of Alzheimer's disease (AD), have not been paid enough attention. Here, we review the multiple physiological effects of Aβ, particularly in regulating synaptic transmission, and the possible mechanisms, in order to decipher the real characters of Aβ under both physiological and pathological conditions. Some worthy studies have shown that the deprivation of endogenous Aβ gives rise to synaptic dysfunction and cognitive deficiency, while the moderate elevation of this peptide enhances long term potentiation and leads to neuronal hyperexcitability. In this review, we provide a new view for understanding the role of Aβ in AD pathophysiology from the perspective of physiological meaning.
Collapse
Affiliation(s)
- Wenwen Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linxi Li
- Basic Medical College, Nanchang University, Nanchang, 330031, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoli Pan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
48
|
Sultana MA, Hia RA, Akinsiku O, Hegde V. Peripheral Mitochondrial Dysfunction: A Potential Contributor to the Development of Metabolic Disorders and Alzheimer's Disease. BIOLOGY 2023; 12:1019. [PMID: 37508448 PMCID: PMC10376519 DOI: 10.3390/biology12071019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by loss of function and eventual death of neurons in the brain. Multiple studies have highlighted the involvement of mitochondria in the initiation and advancement of neurodegenerative diseases. Mitochondria are essential for ATP generation, bioenergetics processes, the regulation of calcium homeostasis and free radical scavenging. Disrupting any of these processes has been acknowledged as a major contributor to the pathogenesis of common neurodegenerative diseases, especially AD. Several longitudinal studies have demonstrated type 2 diabetes (T2D) as a risk factor for the origin of dementia leading towards AD. Even though emerging research indicates that anti-diabetic intervention is a promising option for AD prevention and therapy, results from clinical trials with anti-diabetic agents have not been effective in AD. Interestingly, defective mitochondrial function has also been reported to contribute towards the onset of metabolic disorders including obesity and T2D. The most prevalent consequences of mitochondrial dysfunction include the generation of inflammatory molecules and reactive oxygen species (ROS), which promote the onset and development of metabolic impairment and neurodegenerative diseases. Current evidence indicates an association of impaired peripheral mitochondrial function with primary AD pathology; however, the mechanisms are still unknown. Therefore, in this review, we discuss if mitochondrial dysfunction-mediated metabolic disorders have a potential connection with AD development, then would addressing peripheral mitochondrial dysfunction have better therapeutic outcomes in preventing metabolic disorder-associated AD pathologies.
Collapse
Affiliation(s)
| | | | | | - Vijay Hegde
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.A.S.); (R.A.H.); (O.A.)
| |
Collapse
|
49
|
Xu Z, Chen J, Wang P, Li L, Hu S, Liu H, Huang Y, Mo X, Yan H, Shan Z, Wang D, Xu J, Liu L, Peng X. The role of peripheral β-amyloid in insulin resistance, insulin secretion, and prediabetes: in vitro and population-based studies. Front Endocrinol (Lausanne) 2023; 14:1195658. [PMID: 37538787 PMCID: PMC10394827 DOI: 10.3389/fendo.2023.1195658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Background Previous experimental studies have shown that mice overexpressing amyloid precursor protein, in which β-amyloid (Aβ) is overproduced, exhibit peripheral insulin resistance, pancreatic impairment, and hyperglycemia. We aimed to explore the effects of Aβ on insulin action and insulin secretion in vitro and the association of plasma Aβ with prediabetes in human. Methods We examined the effects of Aβ40 and Aβ42 on insulin-inhibited glucose production in HepG2 cells, insulin-promoted glucose uptake in C2C12 myotubes, and insulin secretion in INS-1 cells. Furthermore, we conducted a case-control study (N = 1142) and a nested case-control study (N = 300) within the prospective Tongji-Ezhou cohort. Odds ratios (ORs) and 95% confidence intervals (CIs) for prediabetes were estimated by using conditional logistic regression analyses. Results In the in vitro studies, Aβ40 and Aβ42 dose-dependently attenuated insulin-inhibited glucose production in HepG2 cells, insulin-promoted glucose uptake in C2C12 myotubes, and basal and glucose-stimulated insulin secretion in INS-1 cells. In the case-control study, plasma Aβ40 (adjusted OR: 2.00; 95% CI: 1.34, 3.01) and Aβ42 (adjusted OR: 1.94; 95% CI: 1.33, 2.83) were positively associated with prediabetes risk when comparing the extreme quartiles. In the nested case-control study, compared to the lowest quartile, the highest quartile of plasma Aβ40 and Aβ42 were associated with 3.51-fold (95% CI: 1.61, 7.62) and 2.75-fold (95% CI: 1.21, 6.22) greater odds of prediabetes, respectively. Conclusion Elevated plasma Aβ40 and Aβ42 levels were associated with increased risk of prediabetes in human subjects, which may be through impairing insulin sensitivity in hepatocytes and myotubes and insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Zihui Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Juan Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Pei Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Linyan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shan Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hongjie Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaoxing Mo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hong Yan
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Di Wang
- Xiangyang Key Laboratory of Public Health and Epidemic Prevention Materials Research, Xiangyang Public Inspection and Testing Center, Xiangyang, China
| | - Jian Xu
- Department of Elderly Health Management, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaobo Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
50
|
De Sio S, Waegele J, Bhatia T, Voigt B, Lilie H, Ott M. Inherent Adaptivity of Alzheimer Peptides to Crowded Environments. Macromol Biosci 2023; 23:e2200527. [PMID: 37066978 DOI: 10.1002/mabi.202200527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Amyloid β (Aβ) is the major constituent in senile plaques of Alzheimer's disease in which peptides initially undergo structural conversions to form elongated fibrils. The impact of crowding on the fibrillation pathways of Aβ40 and Aβ42 , the most common peptide isoforms are studied. PEG and Ficoll are used as model crowders to mimic a macromolecular enriched surrounding. The fibrillar growth is monitored with the help of ThT-fluorescence assays in order to extract two rates describing primary and secondary processes of nucleation and growth. Techniques as fluorescence correlation spectroscopy and analytical ultracentrifugation are used to discuss oligomeric states; fibril morphologies are investigated using negative-staining transmission electron microscopy. While excluded volume effects imposed by macromolecular crowding are expected to always increase rates of intermolecular interactions and structural conversion, a vast variety of effects are found depending on the peptide, the crowder, or ionic strength of the solution. While investigations of the obtained rates with respect to a reactant-occluded model are capable to display specific surface interactions with the crowder, the employment of crystallization-like models reveal the crowder-induced entropic gain withΔ Δ G fib crow = - 116 ± 21 k $\Delta \Delta G_{\text{fib}}^{\text{crow}}=-116\pm 21\; k$ J mol-1 per volume fraction of the crowder.
Collapse
Affiliation(s)
- Silvia De Sio
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| | - Jana Waegele
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| | - Twinkle Bhatia
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| | - Bruno Voigt
- Department of Physics, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Strasse 7, Halle, 06120, Saxony-Anhalt, Germany
| | - Hauke Lilie
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| | - Maria Ott
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| |
Collapse
|