1
|
Maj M, Hernik K, Tyszkiewicz K, Owe-Larsson M, Sztokfisz-Ignasiak A, Malejczyk J, Janiuk I. A complex role of chromogranin A and its peptides in inflammation, autoimmunity, and infections. Front Immunol 2025; 16:1567874. [PMID: 40370467 PMCID: PMC12074958 DOI: 10.3389/fimmu.2025.1567874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025] Open
Abstract
Chromogranin A (CgA), mostly known as a nonspecific neuroendocrine tumor marker, was the first glycoprotein from the granin family characterized as a prohormone for various bioactive peptides including vasostatin I/II (VS-I, VS-II), catestatin (CST), chromofungin (CHR), pancreastatin (PST), WE-14, and others. CgA and its derivatives present various functions, often antagonistic, in maintaining body homeostasis and influencing the immune system. This review aims to summarize the not fully understood role of CgA and its derivatives in inflammation, autoimmunity, and infections. CgA seems to be involved in the complex pathophysiology of cardiovascular disorders, neurodegenerative diseases, and other conditions where immune system dysfunction plays a role in the onset and development of the disease (e.g. systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), or rheumatoid arthritis (RA)). However, the direct immunomodulatory role of CgA is difficult to assess since many of its activities may be linked with its peptides. CST and VS-I are considered anti-inflammatory molecules, due to M2 macrophage polarization stimulation and downregulation of certain proinflammatory cytokines. Conversely, PST is reported to stimulate proinflammatory M1 macrophage polarization and Th1 lymphocyte response. Thus, the final effects of CgA in inflammation may depend on its cleavage pattern. Additionally, peptides like CST, VS-I, or CHR exert direct antimicrobial/antifungal activities. CgA, WE-14, and other less-known CgA-derived peptides have also been reported to trigger autoimmune responses, highly studied in type 1 diabetes mellitus. Overall, CgA and its derivatives have an interesting but complex role in immunity, however, their specific roles require further research.
Collapse
Affiliation(s)
- Maciej Maj
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Karolina Hernik
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Kaja Tyszkiewicz
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Maja Owe-Larsson
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Alicja Sztokfisz-Ignasiak
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Jacek Malejczyk
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
- Institute of Health Sciences, Faculty of Medical and Health Sciences, University of Siedlce, Siedlce, Poland
| | - Izabela Janiuk
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Wang SH, Serr I, Digigow R, Metzler B, Surnov A, Gottwick C, Alsamman M, Krzikalla D, Heine M, Zahlten M, Widera A, Mungalpara D, Şeleci M, Fanzutti M, Marques Mesquita LM, Vocaturo AL, Herkel J, Carambia A, Schröter C, Sarko D, Pohlner J, Daniel C, de Min C, Fleischer S. Nanoparticle platform preferentially targeting liver sinusoidal endothelial cells induces tolerance in CD4+ T cell-mediated disease models. Front Immunol 2025; 16:1542380. [PMID: 40165970 PMCID: PMC11955608 DOI: 10.3389/fimmu.2025.1542380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Treating autoimmune diseases without nonspecific immunosuppression remains challenging. To prevent or treat these conditions through targeted immunotherapy, we developed a clinical-stage nanoparticle platform that leverages the tolerogenic capacity of liver sinusoidal endothelial cells (LSECs) to restore antigen-specific immune tolerance. Methods In vivo efficacy was evaluated in various CD4+ T cell-mediated disease models, including preventive and therapeutic models of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE), ovalbumin-sensitized delayed-type hypersensitivity (DTH), and the spontaneous type 1 diabetes model. Nanoparticle-induced antigen-specific immune responses were also analyzed through adoptive transfers of 2D2 transgenic T cells into wild-type mice, followed by nanoparticle administration. Results The peptide-conjugated nanoparticles displayed a uniform size distribution (25-30 nm). Their coupling efficiency for peptides with unfavorable physicochemical properties was significantly enhanced by a proprietary linker technology. Preferential LSEC targeting of nanoparticles coupled with fluorescently labeled peptides was confirmed via intravital microscopy and flow cytometry. Intravenous nanoparticle administration significantly reduced disease severity and demyelination in EAE, independent of prednisone at maintenance doses, and suppressed target tissue inflammation in the DTH model. Furthermore, prophylactic administration of a mixture of nanoparticles coupled with five autoantigenic peptides significantly lowered the hyperglycemia incidence of the non-obese diabetic mice. Mechanistically, the tolerizing effects were associated with the induction of antigen-specific regulatory T cells and T cell anergy, which counteract proinflammatory T cells in the target tissue. Conclusion Our findings demonstrate that peptide-loaded nanoparticles preferentially deliver disease-relevant peptides to LSECs, thereby inducing antigen-specific immune tolerance. This versatile clinical-stage nanoparticle platform holds promise for clinical application across multiple autoimmune diseases.
Collapse
MESH Headings
- Animals
- Immune Tolerance
- Mice
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- CD4-Positive T-Lymphocytes/immunology
- Liver/immunology
- Disease Models, Animal
- Mice, Inbred C57BL
- Female
- Ovalbumin/immunology
- Hypersensitivity, Delayed/immunology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/therapy
- Peptides
- Mice, Transgenic
Collapse
Affiliation(s)
- Shu-Hung Wang
- Department of Clinical Development, Topas Therapeutics GmbH, Hamburg, Germany
| | - Isabelle Serr
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Reinaldo Digigow
- Department of Chemistry, Manufacturing & Controls, Topas Therapeutics GmbH, Hamburg, Germany
| | - Barbara Metzler
- Department of Preclinical Development, Topas Therapeutics GmbH, Hamburg, Germany
| | - Alexey Surnov
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cornelia Gottwick
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Muhammad Alsamman
- Department of Preclinical Development, Topas Therapeutics GmbH, Hamburg, Germany
| | - Daria Krzikalla
- Department of Preclinical Development, Topas Therapeutics GmbH, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology (N30), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Zahlten
- Department of Preclinical Development, Topas Therapeutics GmbH, Hamburg, Germany
| | - Agata Widera
- Department of Preclinical Development, Topas Therapeutics GmbH, Hamburg, Germany
| | - Disha Mungalpara
- Department of Chemistry, Manufacturing & Controls, Topas Therapeutics GmbH, Hamburg, Germany
| | - Muharrem Şeleci
- Department of Chemistry, Manufacturing & Controls, Topas Therapeutics GmbH, Hamburg, Germany
| | - Marco Fanzutti
- Department of Chemistry, Manufacturing & Controls, Topas Therapeutics GmbH, Hamburg, Germany
| | | | - Anna-Lisa Vocaturo
- Department of Chemistry, Manufacturing & Controls, Topas Therapeutics GmbH, Hamburg, Germany
| | - Johannes Herkel
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Centre for Translational Immunology (HCTI), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Antonella Carambia
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Schröter
- Department of Chemistry, Manufacturing & Controls, Topas Therapeutics GmbH, Hamburg, Germany
| | - Dikran Sarko
- Department of Chemistry, Manufacturing & Controls, Topas Therapeutics GmbH, Hamburg, Germany
| | - Johannes Pohlner
- Department of Chemistry, Manufacturing & Controls, Topas Therapeutics GmbH, Hamburg, Germany
| | - Carolin Daniel
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig Maximilian University of Munich, Munich, Germany
| | - Cristina de Min
- Department of Clinical Development, Topas Therapeutics GmbH, Hamburg, Germany
| | - Sabine Fleischer
- Department of Clinical Development, Topas Therapeutics GmbH, Hamburg, Germany
| |
Collapse
|
3
|
Yue M, He X, Min X, Yang H, Xu H, Wu W, Zhong J, Mei A, Chen J. The role of islet autoantigen-specific T cells in the onset and treatment of type 1 diabetes mellitus. Front Immunol 2024; 15:1462384. [PMID: 39380988 PMCID: PMC11458421 DOI: 10.3389/fimmu.2024.1462384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM), a complex chronic disease with an intricate etiology and pathogenesis, involves the recognition of self-antigens by pancreatic islet autoantigen-specific T cells and plays crucial roles in both early- and late-stage destruction of beta cells, thus impacting disease progression. Antigen-specific T cells regulate and execute immune responses by recognizing particular antigens, playing broad roles in the treatment of various diseases. Immunotherapy targeting antigen-specific T cells holds promising potential as a targeted treatment approach. This review outlines the pathogenesis of diabetes, emphasizing the pivotal role of pancreatic islet autoantigen-specific T cells in the progression and treatment of T1DM. Exploring this avenue in research holds promise for identifying novel therapeutic targets for effectively managing diabetes.
Collapse
Affiliation(s)
- Mengmeng Yue
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xianzhen He
- Children’s Medical Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Hao Xu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wenwen Wu
- School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
4
|
Dwyer AJ, Shaheen ZR, Fife BT. Antigen-specific T cell responses in autoimmune diabetes. Front Immunol 2024; 15:1440045. [PMID: 39211046 PMCID: PMC11358097 DOI: 10.3389/fimmu.2024.1440045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Autoimmune diabetes is a disease characterized by the selective destruction of insulin-secreting β-cells of the endocrine pancreas by islet-reactive T cells. Autoimmune disease requires a complex interplay between host genetic factors and environmental triggers that promote the activation of such antigen-specific T lymphocyte responses. Given the critical involvement of self-reactive T lymphocyte in diabetes pathogenesis, understanding how these T lymphocyte populations contribute to disease is essential to develop targeted therapeutics. To this end, several key antigenic T lymphocyte epitopes have been identified and studied to understand their contributions to disease with the aim of developing effective treatment approaches for translation to the clinical setting. In this review, we discuss the role of pathogenic islet-specific T lymphocyte responses in autoimmune diabetes, the mechanisms and cell types governing autoantigen presentation, and therapeutic strategies targeting such T lymphocyte responses for the amelioration of disease.
Collapse
Affiliation(s)
- Alexander J. Dwyer
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Zachary R. Shaheen
- Center for Immunology, Department of Pediatrics, Pediatric Rheumatology, Allergy, & Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
5
|
Groegler J, Callebaut A, James EA, Delong T. The insulin secretory granule is a hotspot for autoantigen formation in type 1 diabetes. Diabetologia 2024; 67:1507-1516. [PMID: 38811417 DOI: 10.1007/s00125-024-06164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/11/2024] [Indexed: 05/31/2024]
Abstract
In type 1 diabetes, the insulin-producing beta cells of the pancreas are destroyed through the activity of autoreactive T cells. In addition to strong and well-documented HLA class II risk haplotypes, type 1 diabetes is associated with noncoding polymorphisms within the insulin gene locus. Furthermore, autoantibody prevalence data and murine studies implicate insulin as a crucial autoantigen for the disease. Studies identify secretory granules, where proinsulin is processed into mature insulin, stored and released in response to glucose stimulation, as a source of antigenic epitopes and neoepitopes. In this review, we integrate established concepts, including the role that susceptible HLA and thymic selection of the T cell repertoire play in setting the stage for autoimmunity, with emerging insights about beta cell and insulin secretory granule biology. In particular, the acidic, peptide-rich environment of secretory granules combined with its array of enzymes generates a distinct proteome that is unique to functional beta cells. These factors converge to generate non-templated peptide sequences that are recognised by autoreactive T cells. Although unanswered questions remain, formation and presentation of these epitopes and the resulting immune responses appear to be key aspects of disease initiation. In addition, these pathways may represent important opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jason Groegler
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aïsha Callebaut
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Thomas Delong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
6
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
7
|
Siddiqui K, Nawaz SS. Exploration of Immune Targets for Type 1 Diabetes and Latent Autoimmune Disease Immunotherapy. Immunotargets Ther 2023; 12:91-103. [PMID: 37795196 PMCID: PMC10546931 DOI: 10.2147/itt.s417917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/09/2023] [Indexed: 10/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that destroys pancreatic beta cells, which produce insulin in the islets of Langerhans. The risk of developing T1D is influenced by environmental factors, genetics, and autoantibodies. Latent autoimmune diabetes in adults (LADA) is a type of T1D that is genetically and phenotypically distinct from classic T1D. This review summarizes the accumulated information on the risk factors for T1D and LADA, and immunotherapy trials that offer insights into potential future combined therapeutic interventions for both T1D and LADA to slow the rate of islet cell loss and preserve beta cell function. Future research should also focus on improving intervention doses, conducting more thorough examinations of intervention responders, and/or combining minimally effective single-target immunotherapies to slow the rate of islet cell loss and preserve beta cell function.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Shaik Sarfaraz Nawaz
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Heath KE, Feduska JM, Taylor JP, Houp JA, Botta D, Lund FE, Mick GJ, McGwin G, McCormick KL, Tse HM. GABA and Combined GABA with GAD65-Alum Treatment Alters Th1 Cytokine Responses of PBMCs from Children with Recent-Onset Type 1 Diabetes. Biomedicines 2023; 11:1948. [PMID: 37509587 PMCID: PMC10377053 DOI: 10.3390/biomedicines11071948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease culminating in the destruction of insulin-producing pancreatic cells. There is a need for the development of novel antigen-specific strategies to delay cell destruction, including combinatorial strategies that do not elicit systemic immunosuppression. Gamma-aminobutyric acid (GABA) is expressed by immune cells, β-cells, and gut bacteria and is immunomodulatory. Glutamic-acid decarboxylase 65 (GAD65), which catalyzes GABA from glutamate, is a T1D autoantigen. To test the efficacy of combinatorial GABA treatment with or without GAD65-immunization to dampen autoimmune responses, we enrolled recent-onset children with T1D in a one-year clinical trial (ClinicalTrials.gov NCT02002130) and examined T cell responses. We isolated peripheral blood mononuclear cells and evaluated cytokine responses following polyclonal activation and GAD65 rechallenge. Both GABA alone and GABA/GAD65-alum treatment inhibited Th1 cytokine responses over the 12-month study with both polyclonal and GAD65 restimulation. We also investigated whether patients with HLA-DR3-DQ2 and HLA-DR4-DQ8, the two highest-risk human leukocyte antigen (HLA) haplotypes in T1D, exhibited differences in response to GABA alone and GABA/GAD65-alum. HLA-DR4-DQ8 patients possessed a Th1-skewed response compared to HLA-DR3-DQ2 patients. We show that GABA and GABA/GAD65-alum present an attractive immunomodulatory treatment for children with T1D and that HLA haplotypes should be considered.
Collapse
Affiliation(s)
- Katie E. Heath
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA (J.M.F.); (J.P.T.); (D.B.); (F.E.L.)
| | - Joseph M. Feduska
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA (J.M.F.); (J.P.T.); (D.B.); (F.E.L.)
| | - Jared P. Taylor
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA (J.M.F.); (J.P.T.); (D.B.); (F.E.L.)
| | - Julie A. Houp
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Davide Botta
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA (J.M.F.); (J.P.T.); (D.B.); (F.E.L.)
| | - Frances E. Lund
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA (J.M.F.); (J.P.T.); (D.B.); (F.E.L.)
| | - Gail J. Mick
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.J.M.); (K.L.M.)
| | - Gerald McGwin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Kenneth L. McCormick
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.J.M.); (K.L.M.)
| | - Hubert M. Tse
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Mail Stop 3029, 1012 Wahl Hall West, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
9
|
Ochocińska A, Wysocka-Mincewicz M, Świderska J, Cukrowska B. Selected Serum Markers Associated with Pathogenesis and Clinical Course of Type 1 Diabetes in Pediatric Patients-The Effect of Disease Duration. J Clin Med 2023; 12:2151. [PMID: 36983153 PMCID: PMC10051659 DOI: 10.3390/jcm12062151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Biochemical abnormalities in the course of type 1 diabetes (T1D) may cause the production/activation of various proteins and peptides influencing treatment and causing a risk of complications. The aim of this study was to assess concentrations of selected serum substances involved in the pathogenesis and course of T1D and to correlate their concentrations with the duration of T1D. The study included patients with T1D (n = 156) at the age of 3-17, who were divided according to the duration of the disease into those newly diagnosed (n = 30), diagnosed after 3-5 (n = 77), 6-7 (n = 25), and over 7 (n = 24) years from the onset of T1D, and age-matched healthy controls (n = 30). Concentrations of amylin (IAPP), proamylin (proIAPP), catestatin (CST), chromogranin A (ChgA), nerve growth factor (NFG), platelet-activating factor (PAF), uromodulin (UMOD), and intestinal fatty acid binding protein (I-FABP) were measured in sera using immunoenzymatic tests. There were significant differences in concentrations of all the substances except UMOD and NGF between T1D patients and healthy children. The duration of the disease affected concentrations of CST, ChgA, PAF, and NGF, i.e., proteins/peptides which could have an impact on the course of T1D and the development of complications. In long-term patients, a decrease in concentrations of CST and ChgA, and an increase in PAF concentrations were found. In the case of NGF, a decrease was observed after the initial high values, followed by an increase over 7 years after T1D diagnosis. Concluding, the results show that concentrations of selected serum indicators may change in the course of T1D. Further studies are needed to establish whether these indicators could be used in the context of predicting long-term complications.
Collapse
Affiliation(s)
- Agnieszka Ochocińska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Marta Wysocka-Mincewicz
- Clinic of Endocrinology and Diabetology, The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Jolanta Świderska
- Clinic of Endocrinology and Diabetology, The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Bożena Cukrowska
- Department of Pathomorphology, The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland
| |
Collapse
|
10
|
Lichti CF, Wan X. Using mass spectrometry to identify neoantigens in autoimmune diseases: The type 1 diabetes example. Semin Immunol 2023; 66:101730. [PMID: 36827760 PMCID: PMC10324092 DOI: 10.1016/j.smim.2023.101730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
In autoimmune diseases, recognition of self-antigens presented by major histocompatibility complex (MHC) molecules elicits unexpected attack of tissue by autoantibodies and/or autoreactive T cells. Post-translational modification (PTM) may alter the MHC-binding motif or TCR contact residues in a peptide antigen, transforming the tolerance to self to autoreactivity. Mass spectrometry-based immunopeptidomics provides a valuable mechanism for identifying MHC ligands that contain PTMs and can thus provide valuable insights into pathogenesis and therapeutics of autoimmune diseases. A plethora of PTMs have been implicated in this process, and this review highlights their formation and identification.
Collapse
Affiliation(s)
- Cheryl F Lichti
- Department of Pathology and Immunology, Division of Immunobiology, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, St. Louis, MO 63110, USA.
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Division of Immunobiology, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Hu A, Zou H, Chen B, Zhong J. Posttranslational modifications in diabetes: Mechanisms and functions. Rev Endocr Metab Disord 2022; 23:1011-1033. [PMID: 35697961 DOI: 10.1007/s11154-022-09740-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 12/15/2022]
Abstract
As one of the most widespread chronic diseases, diabetes and its accompanying complications affect approximately one tenth of individuals worldwide and represent a growing cause of morbidity and mortality. Accumulating evidence has proven that the process of diabetes is complex and interactive, involving various cellular responses and signaling cascades by posttranslational modifications (PTMs). Therefore, understanding the mechanisms and functions of PTMs in regulatory networks has fundamental importance for understanding the prediction, onset, diagnosis, progression, and treatment of diabetes. In this review, we offer a holistic summary and illustration of the crosstalk between PTMs and diabetes, including both types 1 and 2. Meanwhile, we discuss the potential use of PTMs in diabetes treatment and provide a prospective direction for deeply understanding the metabolic diseases.
Collapse
Affiliation(s)
- Ang Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Haohong Zou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Bin Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
12
|
Xu G, Grimes TD, Grayson TB, Chen J, Thielen LA, Tse HM, Li P, Kanke M, Lin TT, Schepmoes AA, Swensen AC, Petyuk VA, Ovalle F, Sethupathy P, Qian WJ, Shalev A. Exploratory study reveals far reaching systemic and cellular effects of verapamil treatment in subjects with type 1 diabetes. Nat Commun 2022; 13:1159. [PMID: 35241690 PMCID: PMC8894430 DOI: 10.1038/s41467-022-28826-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, no oral medications are available for type 1 diabetes (T1D). While our recent randomized placebo-controlled T1D trial revealed that oral verapamil had short-term beneficial effects, their duration and underlying mechanisms remained elusive. Now, our global T1D serum proteomics analysis identified chromogranin A (CHGA), a T1D-autoantigen, as the top protein altered by verapamil and as a potential therapeutic marker and revealed that verapamil normalizes serum CHGA levels and reverses T1D-induced elevations in circulating proinflammatory T-follicular-helper cell markers. RNA-sequencing further confirmed that verapamil regulates the thioredoxin system and promotes an anti-oxidative, anti-apoptotic and immunomodulatory gene expression profile in human islets. Moreover, continuous use of oral verapamil delayed T1D progression, promoted endogenous beta-cell function and lowered insulin requirements and serum CHGA levels for at least 2 years and these benefits were lost upon discontinuation. Thus, the current studies provide crucial mechanistic and clinical insight into the beneficial effects of verapamil in T1D.
Collapse
Affiliation(s)
- Guanlan Xu
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Tiffany D Grimes
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Truman B Grayson
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Junqin Chen
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lance A Thielen
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hubert M Tse
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Peng Li
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,School of Nursing, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Fernando Ovalle
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Anath Shalev
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
13
|
Passeri L, Marta F, Bassi V, Gregori S. Tolerogenic Dendritic Cell-Based Approaches in Autoimmunity. Int J Mol Sci 2021; 22:8415. [PMID: 34445143 PMCID: PMC8395087 DOI: 10.3390/ijms22168415] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) dictate the outcomes of tissue-specific immune responses. In the context of autoimmune diseases, DCs instruct T cells to respond to antigens (Ags), including self-Ags, leading to organ damage, or to becoming regulatory T cells (Tregs) promoting and perpetuating immune tolerance. DCs can acquire tolerogenic properties in vitro and in vivo in response to several stimuli, a feature that opens the possibility to generate or to target DCs to restore tolerance in autoimmune settings. We present an overview of the different subsets of human DCs and of the regulatory mechanisms associated with tolerogenic (tol)DC functions. We review the role of DCs in the induction of tissue-specific autoimmunity and the current approaches exploiting tolDC-based therapies or targeting DCs in vivo for the treatment of autoimmune diseases. Finally, we discuss limitations and propose future investigations for improving the knowledge on tolDCs for future clinical assessment to revert and prevent autoimmunity. The continuous expansion of tolDC research areas will lead to improving the understanding of the role that DCs play in the development and treatment of autoimmunity.
Collapse
Affiliation(s)
- Laura Passeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
- San Raffaele Scientific Institute IRCCS, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Fortunato Marta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
| | - Virginia Bassi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
- San Raffaele Scientific Institute IRCCS, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
| |
Collapse
|
14
|
Herold Z, Doleschall M, Somogyi A. Role and function of granin proteins in diabetes mellitus. World J Diabetes 2021; 12:1081-1092. [PMID: 34326956 PMCID: PMC8311481 DOI: 10.4239/wjd.v12.i7.1081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The granin glycoprotein family consists of nine acidic proteins; chromogranin A (CgA), chromogranin B (CgB), and secretogranin II-VIII. They are produced by a wide range of neuronal, neuroendocrine, and endocrine cells throughout the human body. Their major intracellular function is to sort peptides and proteins into secretory granules, but their cleavage products also take part in the extracellular regulation of diverse biological processes. The contribution of granins to carbohydrate metabolism and diabetes mellitus is a recent research area. CgA is associated with glucose homeostasis and the progression of type 1 diabetes. WE-14, CgA10-19, and CgA43-52 are peptide derivates of CgA, and act as CD4+ or CD8+ autoantigens in type 1 diabetes, whereas pancreastatin (PST) and catestatin have regulatory effects in carbohydrate metabolism. Furthermore, PST is related to gestational and type 2 diabetes. CgB has a crucial role in physiological insulin secretion. Secretogranins II and III have angiogenic activity in diabetic retinopathy (DR), and are novel targets in recent DR studies. Ongoing studies are beginning to investigate the potential use of granin derivatives as drugs to treat diabetes based on the divergent relationships between granins and different types of diabetes.
Collapse
Affiliation(s)
- Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest 1083, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest 1088, Hungary
| | - Marton Doleschall
- Molecular Medicine Research Group, Eotvos Lorand Research Network and Semmelweis University, Budapest 1089, Hungary
| | - Aniko Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest 1088, Hungary
| |
Collapse
|
15
|
Tang W, Liang H, Cheng Y, Yuan J, Huang G, Zhou Z, Yang L. Diagnostic value of combined islet antigen-reactive T cells and autoantibodies assays for type 1 diabetes mellitus. J Diabetes Investig 2021; 12:963-969. [PMID: 33064907 PMCID: PMC8169367 DOI: 10.1111/jdi.13440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/16/2020] [Accepted: 10/12/2020] [Indexed: 01/11/2023] Open
Abstract
AIMS/INTRODUCTION Type 1 diabetes mellitus is a T cell-mediated autoimmune disease. However, the determination of the autoimmune status of type 1 diabetes mellitus relies on islet autoantibodies (Abs), as T-cell assay is not routinely carried out. This study aimed to investigate the diagnostic value of combined assay of islet antigen-specific T cells and Abs in type 1 diabetes mellitus patients. MATERIALS AND METHODS A total of 54 patients with type 1 diabetes mellitus and 56 healthy controls were enrolled. Abs against glutamic acid decarboxylase (GAD), islet antigen-2 and zinc transporter 8 were detected by radioligand assay. Interferon-γ-secreting T cells responding to glutamic acid decarboxylase 65 and C-peptide (CP) were measured by enzyme-linked immunospot. RESULTS The positive rate for T-cell responses was significantly higher in patients with type 1 diabetes mellitus than that in controls (P < 0.001). The combined positive rate of Abs and T-cell assay was significantly higher than that of Abs assay alone (85.2% vs 64.8%, P = 0.015). A significant difference in fasting CP level was found between the T+ and T- groups (0.07 ± 0.05 vs 0.11 ± 0.09 nmol/L, P = 0.033). Furthermore, levels of fasting CP and postprandial CP were both lower in the Ab- T+ group than the Ab- T- group (fasting CP 0.06 ± 0.05 vs 0.16 ± 0.12 nmol/L, P = 0.041; postprandial CP 0.12 ± 0.13 vs 0.27 ± 0.12 nmol/L, P = 0.024). CONCLUSIONS Enzyme-linked immunospot assays in combination with Abs detection could improve the diagnostic sensitivity of autoimmune diabetes.
Collapse
Affiliation(s)
- Wei Tang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of Metabolism and EndocrinologyThe First People’s Hospital of HuaihuaHuaihuaHunanChina
| | - Huiying Liang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital)DongguanGuangdongChina
| | - Ying Cheng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jiao Yuan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
16
|
Rodriguez-Calvo T, Johnson JD, Overbergh L, Dunne JL. Neoepitopes in Type 1 Diabetes: Etiological Insights, Biomarkers and Therapeutic Targets. Front Immunol 2021; 12:667989. [PMID: 33953728 PMCID: PMC8089389 DOI: 10.3389/fimmu.2021.667989] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying type 1 diabetes (T1D) pathogenesis remain largely unknown. While autoantibodies to pancreatic beta-cell antigens are often the first biological response and thereby a useful biomarker for identifying individuals in early stages of T1D, their role in T1D pathogenesis is not well understood. Recognition of these antigenic targets by autoreactive T-cells plays a pathological role in T1D development. Recently, several beta-cell neoantigens have been described, indicating that both neoantigens and known T1D antigens escape central or peripheral tolerance. Several questions regarding the mechanisms by which tolerance is broken in T1D remain unanswered. Further delineating the timing and nature of antigenic responses could allow their use as biomarkers to improve staging, as targets for therapeutic intervention, and lead to a better understanding of the mechanisms leading to loss of tolerance. Multiple factors that contribute to cellular stress may result in the generation of beta-cell derived neoepitopes and contribute to autoimmunity. Understanding the cellular mechanisms that induce beta-cells to produce neoantigens has direct implications on development of therapies to intercept T1D disease progression. In this perspective, we will discuss evidence for the role of neoantigens in the pathogenesis of T1D, including antigenic responses and cellular mechanisms. We will additionally discuss the pathways leading to neoepitope formation and the cross talk between the immune system and the beta-cells in this regard. Ultimately, delineating the timing of neoepitope generation in T1D pathogenesis will determine their role as biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Munich, Germany
| | - James D. Johnson
- Diabetes Research Group, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Lut Overbergh
- Laboratory Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Jessica L. Dunne
- Janssen Research and Development, LLC, Raritan, NJ, United States
| |
Collapse
|
17
|
Matsumoto Y, Kishida K, Matsumoto M, Matsuoka S, Kohyama M, Suenaga T, Arase H. A TCR-like antibody against a proinsulin-containing fusion peptide ameliorates type 1 diabetes in NOD mice. Biochem Biophys Res Commun 2020; 534:680-686. [PMID: 33208230 DOI: 10.1016/j.bbrc.2020.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by destruction of insulin-producing β cells. The response of autoreactive T cells to β cell antigens plays a central role in the development of T1D. Recently, fusion peptides composed by insulin C-peptide fragments and other proteins were reported as β cell target antigens for diabetogenic CD4+ T cells in non-obese diabetic (NOD) mice. In this study, we generated a T cell-receptor (TCR)-like monoclonal antibody (mAb) against a fusion peptide bound to major histocompatibility complex (MHC) class II component to elucidate the function of the fusion peptides in T1D. In addition, we developed a novel NFAT-GFP TCR reporter system to evaluate the TCR-like mAb. The NFAT-GFP reporter T cells expressing the diabetogenic TCR were specifically activated by the fusion peptide presented on the MHC class II molecules. By using the NFAT-GFP reporter T cells, we showed that the TCR-like mAb blocks the diabetogenic T cell response against the fusion peptide presented on the MHC class II molecules. Furthermore, the development of T1D was ameliorated when pre-diabetic NOD mice were treated with this mAb. These findings suggest that NFAT-GFP reporter T cells are useful to assess the function of specific TCR and the recognition of fusion peptides by T cells is crucial for the pathogenesis of T1D.
Collapse
Affiliation(s)
- Yushi Matsumoto
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuki Kishida
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Maki Matsumoto
- Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sumiko Matsuoka
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masako Kohyama
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tadahiro Suenaga
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
18
|
Ebert A, König J, Frommer L, Schuppan D, Kahaly GJ. Chromogranin Serves as Novel Biomarker of Endocrine and Gastric Autoimmunity. J Clin Endocrinol Metab 2020; 105:5841628. [PMID: 32436949 DOI: 10.1210/clinem/dgaa288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT The glycoprotein chromogranin A (CgA) is expressed by endocrine and neuroendocrine cells. High levels of serum CgA serve as markers of neuroendocrine tumors (NET), but its role in autoimmunity has not been assessed. OBJECTIVE To investigate CgA utility as a marker of endocrine autoimmunity. METHODS CgA serum levels were evaluated in 807 consecutive unselected participants (cross-sectional study) with the time-resolved amplified cryptate emission technology. RESULTS Serum CgA concentrations were increased in 66%, 39%, 38%, and 24% of patients with NET, type 1 diabetes (T1D), autoimmune gastritis (AG) and autoimmune polyendocrinopathy (AP), respectively. Compared with healthy participant controls (C), the odds of positive CgA measurement were up to 28 times higher in the disease groups. In detail, the odds ratios (ORs) for positive CgA levels were 27.98, 15.22, 7.32 (all P < 0.0001) and 3.89 (P = 0.0073) in patients with NET, T1D, AG, and AP, respectively. In AG, CgA and serum gastrin correlated positively (r = 0.55; P < 0.0001). The area under the receiver operating characteristic curve to predict AG was higher for parietal cell antibody (PCA) positivity than for CgA (0.84 vs 0.67; P < 0.0001). However, in combination with PCA and intrinsic factor autoantibodies, CgA independently improved prediction of AG (OR 6.5; P = 0.031). An impact of age on CgA positivity and on CgA value was detected (P < 0.0001) while current smoking significantly increased CgA serum levels by 25% (P = 0.0080). CONCLUSION CgA qualifies as a novel biomarker for T1D, AP, and AG.
Collapse
Affiliation(s)
- Antonia Ebert
- Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
| | - Jochem König
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Lara Frommer
- Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
| | - Detlef Schuppan
- Institute for Translational Immunology and Research Center for Immunotherapy (FZI), Johannes Gutenberg University Medical Center, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George J Kahaly
- Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
| |
Collapse
|
19
|
Herold Z, Herold M, Nagy P, Patocs A, Doleschall M, Somogyi A. Serum chromogranin A level continuously rises with the progression of type 1 diabetes, and indicates the presence of both enterochromaffin-like cell hyperplasia and autoimmune gastritis. J Diabetes Investig 2020; 11:865-873. [PMID: 31883432 PMCID: PMC7378417 DOI: 10.1111/jdi.13203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 02/05/2023] Open
Abstract
AIMS/INTRODUCTION The relationship of chromogranin A (CgA) levels above the normal range with various outcomes, such as glycated hemoglobin levels, enterochromaffin-like cell hyperplasia and autoimmune gastritis, was investigated in type 1 diabetes patients with special regard to the progression of comorbidities. MATERIALS AND METHODS A cohort study on 153 type 1 diabetes patients was carried out with a prospective branch on clinical and laboratory data, and a retrospective branch on histological data obtained by gastroscopy. RESULTS Patients with CgA levels above the upper limit of the normal range (n = 28) had significantly higher glycated hemoglobin levels (P = 0.0160) than those with CgA in the normal range (n = 125). The correlation between CgA and glycated hemoglobin was significant (P < 0.0001), but weak (R = +0.32). A slight, but steady elevation (P = 0.0410) in CgA level was observed to co-vary with the duration of type 1 diabetes. Enterochromaffin-like cell hyperplasia and autoimmune gastritis was significantly more frequent (P = 0.0087 for both) in the high CgA group. Detailed analyses on gastric tissue samples confirmed a progression of enterochromaffin-like cell hyperplasia (P = 0.0192) accompanied by CgA elevation (P = 0.0316). CONCLUSIONS The early detection and follow up of the later progression of enterochromaffin-like cell hyperplasia and autoimmune gastritis into gastric neuroendocrine tumors, which have ~100-fold greater incidence in type 1 diabetes patients, can be achieved by assessment of CgA levels. Therefore, the use of CgA could be considered as a novel auxiliary biomarker in the care of these type 1 diabetes complications.
Collapse
Affiliation(s)
- Zoltan Herold
- 2nd Department of Internal MedicineSemmelweis UniversityBudapestHungary
| | - Magdolna Herold
- 2nd Department of Internal MedicineSemmelweis UniversityBudapestHungary
| | - Peter Nagy
- 1st Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Attila Patocs
- Department of Laboratory MedicineSemmelweis UniversityBudapestHungary
- Hereditary Tumors Research GroupEotvos Lorand Research Network and Semmelweis UniversityBudapestHungary
| | - Marton Doleschall
- Molecular Medicine Research GroupEotvos Lorand Research Network and Semmelweis UniversityBudapestHungary
| | - Aniko Somogyi
- 2nd Department of Internal MedicineSemmelweis UniversityBudapestHungary
| |
Collapse
|
20
|
Balakrishnan S, Kumar P, Prabhakar BS. Post-translational modifications contribute to neoepitopes in Type-1 diabetes: Challenges for inducing antigen-specific tolerance. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140478. [PMID: 32599298 DOI: 10.1016/j.bbapap.2020.140478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/20/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
Type-1 Diabetes (T1D) is the major autoimmune disease affecting the juvenile population in which insulin-producing pancreatic β-cells are destroyed by self-reactive T-cells and B-cells. Emerging studies have identified the presence of autoantibodies and altered T-cell reactivity against several autoantigens in individuals who are at risk of developing T1D even before the clinical onset of diabetes. Whilst these findings could lead to the development of predictive biomarkers for early diagnosis, growing evidence on the generation of neoepitopes, epitope spreading and diverse antigen repertoire in T1D poses a major challenge for developing approaches to induce antigen-specific tolerance. Mechanisms of neoepitope generation include post-translational modifications of existing epitopes, aberrant translational products, peptide fusion, and differences in MHC binding registers. Here, we focus our discussion on how post-translational modifications can give rise to immunogenic neoepitopes in T1D and present our perspective on how it could affect the development of therapeutic approaches to induce antigen-specific tolerance.
Collapse
Affiliation(s)
- Sivasangari Balakrishnan
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, United States of America.
| | - Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, United States of America.
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, United States of America.
| |
Collapse
|
21
|
Bergot AS, Buckle I, Cikaluru S, Naranjo JL, Wright CM, Zheng G, Talekar M, Hamilton-Williams EE, Thomas R. Regulatory T Cells Induced by Single-Peptide Liposome Immunotherapy Suppress Islet-Specific T Cell Responses to Multiple Antigens and Protect from Autoimmune Diabetes. THE JOURNAL OF IMMUNOLOGY 2020; 204:1787-1797. [PMID: 32111734 DOI: 10.4049/jimmunol.1901128] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Ag-specific tolerizing immunotherapy is considered the optimal strategy to control type 1 diabetes, a childhood disease involving autoimmunity toward multiple islet antigenic peptides. To understand whether tolerizing immunotherapy with a single peptide could control diabetes driven by multiple Ags, we coencapsulated the high-affinity CD4+ mimotope (BDC2.5mim) of islet autoantigen chromogranin A (ChgA) with or without calcitriol (1α,25-dihydroxyvitamin D3) into liposomes. After liposome administration, we followed the endogenous ChgA-specific immune response with specific tetramers. Liposome administration s.c., but not i.v., induced ChgA-specific Foxp3+ and Foxp3- PD1+ CD73+ ICOS+ IL-10+ peripheral regulatory T cells in prediabetic mice, and liposome administration at the onset of hyperglycemia significantly delayed diabetes progression. After BDC2.5mim/calcitriol liposome administration, adoptive transfer of CD4+ T cells suppressed the development of diabetes in NOD severe combined immunodeficiency mice receiving diabetogenic splenocytes. After BDC2.5mim/calcitriol liposome treatment and expansion of ChgA-specific peripheral regulatory T cells. IFN-γ production and expansion of islet-specific glucose-6-phosphatase catalytic subunit-related protein-specific CD8+ T cells were also suppressed in pancreatic draining lymph node, demonstrating bystander tolerance at the site of Ag presentation. Thus, liposomes encapsulating the single CD4+ peptide, BDC2.5mim, and calcitriol induce ChgA-specific CD4+ T cells that regulate CD4+ and CD8+ self-antigen specificities and autoimmune diabetes in NOD mice.
Collapse
Affiliation(s)
- Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Irina Buckle
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Sumana Cikaluru
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Jennifer Loaiza Naranjo
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Casey Maree Wright
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Guoliang Zheng
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Meghna Talekar
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
22
|
Ludvigsson J. Autoantigen Treatment in Type 1 Diabetes: Unsolved Questions on How to Select Autoantigen and Administration Route. Int J Mol Sci 2020; 21:E1598. [PMID: 32111075 PMCID: PMC7084272 DOI: 10.3390/ijms21051598] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Autoantigen treatment has been tried for the prevention of type 1 diabetes (T1D) and to preserve residual beta-cell function in patients with a recent onset of the disease. In experimental animal models, efficacy was good, but was insufficient in human subjects. Besides the possible minor efficacy of peroral insulin in high-risk individuals to prevent T1D, autoantigen prevention trials have failed. Other studies on autoantigen prevention and intervention at diagnosis are ongoing. One problem is to select autoantigen/s; others are dose and route. Oral administration may be improved by using different vehicles. Proinsulin peptide therapy in patients with T1D has shown possible minor efficacy. In patients with newly diagnosed T1D, subcutaneous injection of glutamic acid decarboxylase (GAD) bound to alum hydroxide (GAD-alum) can likely preserve beta-cell function, but the therapeutic effect needs to be improved. Intra-lymphatic administration may be a better alternative than subcutaneous administration, and combination therapy might improve efficacy. This review elucidates some actual problems of autoantigen therapy in the prevention and/or early intervention of type 1 diabetes.
Collapse
Affiliation(s)
- Johnny Ludvigsson
- Crown Princess Victoria Children´s Hospital and Div of Pediatrics, Dept of Biomedical and Clinical Sciences, Lnköping university, SE 58185 Linköping, Sweden
| |
Collapse
|
23
|
Baker RL, Rihanek M, Hohenstein AC, Nakayama M, Michels A, Gottlieb PA, Haskins K, Delong T. Hybrid Insulin Peptides Are Autoantigens in Type 1 Diabetes. Diabetes 2019; 68:1830-1840. [PMID: 31175101 PMCID: PMC6702640 DOI: 10.2337/db19-0128] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022]
Abstract
We recently established that hybrid insulin peptides (HIPs) are present in human islets and that T cells reactive to HIPs are found in the residual islets of organ donors with type 1 diabetes (T1D). Here, we investigate whether HIP-reactive T cells are indicative of ongoing autoimmunity in patients with T1D. We used interferon-γ enzyme-linked immune absorbent spot analyses on peripheral blood mononuclear cells (PBMCs) to determine whether patients with new-onset T1D or control subjects displayed T-cell reactivity to a panel of 16 HIPs. We observed that nearly one-half of the patients responded to one or more HIPs. Responses to four HIPs were significantly elevated in patients with T1D but not in control subjects. To characterize the T cells reactive to HIPs, we used a carboxyfluorescein succinimidyl ester-based assay to clone T cells from PBMCs. We isolated six nonredundant, antigen-specific T-cell clones, most of which reacting to their target HIPs in the low nanomolar range. One T-cell clone was isolated from the same patient on two different blood draws, indicating persistence of this T-cell clone in the peripheral blood. This work suggests that HIPs are important target antigens in human subjects with T1D and may play a critical role in disease.
Collapse
Affiliation(s)
- Rocky L Baker
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Marynette Rihanek
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Anita C Hohenstein
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Aaron Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Thomas Delong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO
| |
Collapse
|
24
|
Purcell AW, Sechi S, DiLorenzo TP. The Evolving Landscape of Autoantigen Discovery and Characterization in Type 1 Diabetes. Diabetes 2019; 68:879-886. [PMID: 31010879 PMCID: PMC6477901 DOI: 10.2337/dbi18-0066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/29/2019] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that is caused, in part, by T cell-mediated destruction of insulin-producing β-cells. High risk for disease, in those with genetic susceptibility, is predicted by the presence of two or more autoantibodies against insulin, the 65-kDa form of glutamic acid decarboxylase (GAD65), insulinoma-associated protein 2 (IA-2), and zinc transporter 8 (ZnT8). Despite this knowledge, we still do not know what leads to the breakdown of tolerance to these autoantigens, and we have an incomplete understanding of T1D etiology and pathophysiology. Several new autoantibodies have recently been discovered using innovative technologies, but neither their potential utility in monitoring disease development and treatment nor their role in the pathophysiology and etiology of T1D has been explored. Moreover, neoantigen generation (through posttranslational modification, the formation of hybrid peptides containing two distinct regions of an antigen or antigens, alternative open reading frame usage, and translation of RNA splicing variants) has been reported, and autoreactive T cells that target these neoantigens have been identified. Collectively, these new studies provide a conceptual framework to understand the breakdown of self-tolerance, if such modifications occur in a tissue- or disease-specific context. A recent workshop sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases brought together investigators who are using new methods and technologies to identify autoantigens and characterize immune responses toward these proteins. Researchers with diverse expertise shared ideas and identified resources to accelerate antigen discovery and the detection of autoimmune responses in T1D. The application of this knowledge will direct strategies for the identification of improved biomarkers for disease progression and treatment response monitoring and, ultimately, will form the foundation for novel antigen-specific therapeutics. This Perspective highlights the key issues that were addressed at the workshop and identifies areas for future investigation.
Collapse
Affiliation(s)
- Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Salvatore Sechi
- Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW To discuss advances in our understanding of beta-cell heterogeneity and the ramifications of this for type 1 diabetes (T1D) and its therapy. RECENT FINDINGS A number of studies have challenged the long-standing dogma that the majority of beta cells are eliminated in T1D. As many as 80% are present in some T1D subjects. Why don't these cells function properly to release insulin in response to high glucose? Other findings deploying single-cell "omics" to study both healthy and diseased cells-from patients with both T1D and type 2 diabetes (T2D)-have revealed cell subpopulations and heterogeneity at the transcriptomic/protein level between individual cells. Finally, our own and others' findings have demonstrated the importance of functional beta-cell subpopulations for insulin secretion. Heterogeneity may endow beta cells with molecular features that predispose them to failure/death during T1D.
Collapse
Affiliation(s)
- Richard K. P. Benninger
- 0000 0001 0703 675Xgrid.430503.1Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
- 0000 0001 0703 675Xgrid.430503.1Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Craig Dorrell
- 0000 0000 9758 5690grid.5288.7Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
| | - David J. Hodson
- 0000 0004 1936 7486grid.6572.6Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, B15 2TT UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH UK
- COMPARE, University of Birmingham and University of Nottingham Midlands, Nottingham, UK
| | - Guy A. Rutter
- 0000 0001 2113 8111grid.7445.2Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN UK
| |
Collapse
|
26
|
Baker RL, Jamison BL, Wiles TA, Lindsay RS, Barbour G, Bradley B, Delong T, Friedman RS, Nakayama M, Haskins K. CD4 T Cells Reactive to Hybrid Insulin Peptides Are Indicators of Disease Activity in the NOD Mouse. Diabetes 2018; 67:1836-1846. [PMID: 29976617 PMCID: PMC6110316 DOI: 10.2337/db18-0200] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022]
Abstract
We recently established that hybrid insulin peptides (HIPs), formed in islet β-cells by fusion of insulin C-peptide fragments to peptides of chromogranin A or islet amyloid polypeptide, are ligands for diabetogenic CD4 T-cell clones. The goal of this study was to investigate whether HIP-reactive T cells were indicative of ongoing autoimmunity. MHC class II tetramers were used to investigate the presence, phenotype, and function of HIP-reactive and insulin-reactive T cells in NOD mice. Insulin-reactive T cells encounter their antigen early in disease, but they express FoxP3 and therefore may contribute to immune regulation. In contrast, HIP-reactive T cells are proinflammatory and highly diabetogenic in an adoptive transfer model. Because the frequency of antigen-experienced HIP-reactive T cells increases over progression of disease, they may serve as biomarkers of autoimmune diabetes.
Collapse
MESH Headings
- Animals
- Autoantigens/chemistry
- Autoantigens/genetics
- Autoantigens/metabolism
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/pathology
- Autoimmune Diseases/physiopathology
- Autoimmunity
- Biomarkers/blood
- C-Peptide/chemistry
- C-Peptide/genetics
- C-Peptide/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- Cells, Cultured
- Chromogranin A/chemistry
- Chromogranin A/genetics
- Chromogranin A/metabolism
- Clone Cells
- Crosses, Genetic
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/physiopathology
- Disease Progression
- Female
- Islet Amyloid Polypeptide/chemistry
- Islet Amyloid Polypeptide/genetics
- Islet Amyloid Polypeptide/metabolism
- Lymphocyte Activation
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Recombination, Genetic
- Specific Pathogen-Free Organisms
Collapse
Affiliation(s)
- Rocky L Baker
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Braxton L Jamison
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Timothy A Wiles
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Robin S Lindsay
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Gene Barbour
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Brenda Bradley
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Thomas Delong
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Rachel S Friedman
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| |
Collapse
|
27
|
Izquierdo C, Ortiz AZ, Presa M, Malo S, Montoya A, Garabatos N, Mora C, Verdaguer J, Stratmann T. Treatment of T1D via optimized expansion of antigen-specific Tregs induced by IL-2/anti-IL-2 monoclonal antibody complexes and peptide/MHC tetramers. Sci Rep 2018; 8:8106. [PMID: 29802270 PMCID: PMC5970271 DOI: 10.1038/s41598-018-26161-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/09/2018] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes can be overcome by regulatory T cells (Treg) in NOD mice yet an efficient method to generate and maintain antigen-specific Treg is difficult to come by. Here, we devised a combination therapy of peptide/MHC tetramers and IL-2/anti-IL-2 monoclonal antibody complexes to generate antigen-specific Treg and maintain them over extended time periods. We first optimized treatment protocols conceived to obtain an improved islet-specific Treg/effector T cell ratio that led to the in vivo expansion and activation of these Treg as well as to an improved suppressor function. Optimized protocols were applied to treatment for testing diabetes prevention in NOD mice as well as in an accelerated T cell transfer model of T1D. The combined treatment led to robust protection against diabetes, and in the NOD model, to a close to complete prevention of insulitis. Treatment was accompanied with increased secretion of IL-10, detectable in total splenocytes and in Foxp3− CD4 T cells. Our data suggest that a dual protection mechanism takes place by the collaboration of Foxp3+ and Foxp3− regulatory cells. We conclude that antigen-specific Treg are an important target to improve current clinical interventions against this disease.
Collapse
Affiliation(s)
- Cristina Izquierdo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Angela Zarama Ortiz
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Otsuka Pharmaceutical, S.A, Barcelona, Spain
| | - Maximiliano Presa
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,The Jackson Laboratory, Bar Harbor, USA
| | - Sara Malo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Anna Montoya
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Danone Nutricia, Madrid, Spain
| | - Nahir Garabatos
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Benaroya Research Institute, Seattle, USA
| | - Conchi Mora
- Immunology Unit, Department of Experimental Medicine, School of Medicine, University of Lleida and IRB Lleida, 25008, Lleida, Spain
| | - Joan Verdaguer
- Immunology Unit, Department of Experimental Medicine, School of Medicine, University of Lleida and IRB Lleida, 25008, Lleida, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Thomas Stratmann
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
28
|
Prasad S, Neef T, Xu D, Podojil JR, Getts DR, Shea LD, Miller SD. Tolerogenic Ag-PLG nanoparticles induce tregs to suppress activated diabetogenic CD4 and CD8 T cells. J Autoimmun 2018; 89:112-124. [PMID: 29258717 PMCID: PMC5902637 DOI: 10.1016/j.jaut.2017.12.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/22/2023]
Abstract
Type 1 diabetes (T1D) is mediated by destruction of pancreatic β cells by autoantigen-specific CD4+ and CD8+ T cells, thus the ideal solution for T1D is the restoration of immune tolerance to β cell antigens. We demonstrate the ability of carboxylated 500 nm biodegradable poly(lactide-co-glycolide) (PLG) nanoparticles PLG nanoparticles (either surface coupled with or encapsulating the cognate diabetogenic peptides) to rapidly and efficiently restore tolerance in NOD.SCID recipients of both activated diabetogenic CD4+ BDC2.5 chromagranin A-specific and CD8+ NY8.3 islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific TCR transgenic T cells in an antigen-specific manner. Further, initiation and maintenance of Ag-PLG tolerance operates via several overlapping, but independent, pathways including regulation via negative-co-stimulatory molecules (CTLA-4 and PD-1) and the systemic induction of peptide-specific Tregs which were critical for long-term maintenance of tolerance by controlling both trafficking of effector T cells to, and their release of pro-inflammatory cytokines within the pancreas, concomitant with selective retention of effector cells in the spleens of recipient mice.
Collapse
Affiliation(s)
- Suchitra Prasad
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tobias Neef
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Dan Xu
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph R Podojil
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daniel R Getts
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109, USA.
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
29
|
Eissa N, Hussein H, Kermarrec L, Ali AY, Marshall A, Metz-Boutigue MH, Hendy GN, Bernstein CN, Ghia JE. Chromogranin-A Regulates Macrophage Function and the Apoptotic Pathway in Murine DSS colitis. J Mol Med (Berl) 2017; 96:183-198. [PMID: 29274006 DOI: 10.1007/s00109-017-1613-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/24/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022]
Abstract
Chromogranin-A (CHGA) is elevated in inflammatory bowel disease (IBD), but little is known about its role in colonic inflammation. IBD is associated with impaired functions of macrophages and increased apoptosis of intestinal epithelial cells. We investigated CHGA expression in human subjects with active ulcerative colitis (UC) and the underlying mechanisms in Chga -/- mice. In UC, CHGA, classically activated macrophage (M1) markers, caspase-3, p53, and its associated genes were increased, while alternatively activated macrophage (M2) markers were decreased without changes in the extrinsic apoptotic pathway. CHGA correlated positively with M1 and the apoptotic pathway and negatively with M2. In the murine dextran sulfate sodium (DSS)-induced colitis, Chga deletion reduced the disease severity and onset, pro-inflammatory mediators, M1, and p53/caspase-3 activation, while it upregulated anti-inflammatory cytokines and M2 markers with no changes in the extrinsic apoptotic markers. Compared to Chga +/+ , M1 and p53/caspase-3 activation in Chga -/- macrophages were decreased in vitro, while M2 markers were increased. CHGA plays a critical role during colitis through the modulation of macrophage functions via the caspase-3/p53 pathway. Strategies targeting CHGA to regulate macrophage activation and apoptosis might be developed to treat UC patients. KEY MESSAGES • Chromogranin-A (CHGA) is pro-hormone and is secreted in the gut. CHGA is elevated in colitis and is associated with the disease severity. The lack of GHGA has beneficial immunomodulatory properties during the development of intestinal inflammation. The lack of CHGA regulates the plasticity of macrophages and p53/caspase activation in colitis. Functional analysis of CHGA may lead to a novel therapy for IBD.
Collapse
Affiliation(s)
- Nour Eissa
- Immunology Department, College of Medicine, University of Manitoba, 431 Apotex Centre, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Hayam Hussein
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Ohio State University, Columbus, OH, USA
| | - Laëtitia Kermarrec
- Immunology Department, College of Medicine, University of Manitoba, 431 Apotex Centre, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada
| | - Ahmed Y Ali
- Immunology Department, College of Medicine, University of Manitoba, 431 Apotex Centre, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Aaron Marshall
- Immunology Department, College of Medicine, University of Manitoba, 431 Apotex Centre, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Marie-Helene Metz-Boutigue
- Inserm UMR112, Biomatériaux et ingéniérie tissulaire, Institut Leriche 2éme étage, Hôpital Civil, Porte de l'Hôpital, BP 426, 67091, Strasbourg, France
| | - Geoffrey N Hendy
- Metabolic Disorders and Complications, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University, Montreal, QC, Canada
| | - Charles N Bernstein
- Internal Medicine Section of Gastroenterology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Jean-Eric Ghia
- Immunology Department, College of Medicine, University of Manitoba, 431 Apotex Centre, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada.
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
- Internal Medicine Section of Gastroenterology, University of Manitoba, Winnipeg, MB, Canada.
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
30
|
Sun H, Han X, Yan X, Xu J, Huang Q, Meng F, Zhang H, Li S. A novel mimovirus encoding ChgA 10-19 peptide with PD-L1 induces T cell tolerance and ameliorates the severity of diabetes. Cell Immunol 2017; 320:56-61. [PMID: 28916112 DOI: 10.1016/j.cellimm.2017.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/23/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022]
Abstract
Related studies demonstrate that type 1 diabetes (T1D) is caused by β-cell antigen specific autoreactive CD8+ T cells. ChgA has recently been identified as the autoantigen in NOD mice and T1D patients. Therefore, attenuating the activation of ChgA specific CD8+ T cells might be a promising target for T1D therapy. The negative co-stimulatory PD-L1 inhibits T cell mediated alloimmunity and induces tolerance. In this experiment, a novel mimovirus encoding ChgA10-19 peptide with PD-L1 was constructed. The NOD.β2m null HHD mice were administrated with mimovirus transduced DCs. After immunization, the activation and proliferation of CD8+ T cells were detected, diabetes incidence and pancreatic tissue destruction were also analyzed. The results demonstrated that transduced DCs attenuated CD8+ T cell activation and proliferation. In addition, transduced DCs inhibited CD8+ T response to ChgA stimulation, and ameliorated the severity of diabetes. These data suggested that mimovirus transduced DCs might provide novel clues for T1D therapy.
Collapse
Affiliation(s)
- Hong Sun
- Department of Outpatient, The Third People's Hospital of Linyi, Linyi, Shangdong 276000, China
| | - Xiaoguang Han
- Department of Endocrinology and Metabolism, The Third People's Hospital of Linyi, Linyi, Shangdong 276000, China
| | - Xiuhui Yan
- Department of Obstetrics and Gynecology, The Third People's Hospital of Linyi, Linyi, Shangdong 276000, China
| | - Jingli Xu
- Department of Endocrinology and Metabolism, The Third People's Hospital of Linyi, Linyi, Shangdong 276000, China
| | - Qiujing Huang
- Department of Endocrinology and Metabolism, The Third People's Hospital of Linyi, Linyi, Shangdong 276000, China
| | - Fanqing Meng
- Department of Endocrinology and Metabolism, The Third People's Hospital of Linyi, Linyi, Shangdong 276000, China
| | - Hongjin Zhang
- Department of Endocrinology and Metabolism, The Third People's Hospital of Linyi, Linyi, Shangdong 276000, China
| | - Shufa Li
- Department of Endocrinology and Metabolism, The Third People's Hospital of Linyi, Linyi, Shangdong 276000, China.
| |
Collapse
|
31
|
Harbige J, Eichmann M, Peakman M. New insights into non-conventional epitopes as T cell targets: The missing link for breaking immune tolerance in autoimmune disease? J Autoimmun 2017; 84:12-20. [PMID: 28803690 DOI: 10.1016/j.jaut.2017.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022]
Abstract
The mechanism by which immune tolerance is breached in autoimmune disease is poorly understood. One possibility is that post-translational modification of self-antigens leads to peripheral recognition of neo-epitopes against which central and peripheral tolerance is inadequate. Accumulating evidence points to multiple mechanisms through which non-germline encoded sequences can give rise to these non-conventional epitopes which in turn engage the immune system as T cell targets. In particular, where these modifications alter the rules of epitope engagement with MHC molecules, such non-conventional epitopes offer a persuasive explanation for associations between specific HLA alleles and autoimmune diseases. In this review article, we discuss current understanding of mechanisms through which non-conventional epitopes may be generated, focusing on several recently described pathways that can transpose germline-encoded sequences. We contextualise these discoveries around type 1 diabetes, the prototypic organ-specific autoimmune disease in which specific HLA-DQ molecules confer high risk. Non-conventional epitopes have the potential to act as tolerance breakers or disease drivers in type 1 diabetes, prompting a timely re-evaluation of models of a etiopathogenesis. Future studies are required to elucidate the disease-relevance of a range of potential non-germline epitopes and their relationship to the natural peptide repertoire.
Collapse
Affiliation(s)
- James Harbige
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, UK.
| | - Martin Eichmann
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, UK
| | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, UK; Division of Diabetes and Nutritional Sciences, King's College London, UK; Institute of Diabetes, Endocrinology and Obesity, King's Health Partners, London, UK.
| |
Collapse
|
32
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that causes severe loss of pancreatic β cells. Autoreactive T cells are key mediators of β cell destruction. Studies of organ donors with T1D that have examined T cells in pancreas, the diabetogenic insulitis lesion, and lymphoid tissues have revealed a broad repertoire of target antigens and T cell receptor (TCR) usage, with initial evidence of public TCR sequences that are shared by individuals with T1D. Neoepitopes derived from post-translational modifications of native antigens are emerging as novel targets that are more likely to evade self-tolerance. Further studies will determine whether T cell responses to neoepitopes are major disease drivers that could impact prediction, prevention, and therapy. This Review provides an overview of recent progress in our knowledge of autoreactive T cells that has emerged from experimental and clinical research as well as pathology investigations.
Collapse
|
33
|
Crèvecoeur I, Vig S, Mathieu C, Overbergh L. Understanding type 1 diabetes through proteomics. Expert Rev Proteomics 2017. [DOI: 10.1080/14789450.2017.1345633] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Inne Crèvecoeur
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Saurabh Vig
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW By necessity, the vast majority of information we have on autoreactive T cells in human type 1 diabetes (T1D) has come from the study of peripheral blood of donors with T1D. It is not clear how representative the peripheral autoreactive T-cell repertoire is of the autoreactive T cells infiltrating the islets in T1D. We will summarize and discuss what is known of the immunohistopathology of insulitis, the T-cell receptor repertoire expressed by islet-infiltrating T cells, and the autoreactivity and function of islet-infiltrating T cells in T1D. RECENT FINDINGS Recovery and analysis of live, islet-infiltrating T cells from the islets of cadaveric donors with T1D revealed a broad repertoire and proinflammatory phenotype of CD4 T-cell autoreactivity to peptide targets from islet proteins, including proinsulin, as well as CD4 T-cell reactivity to a number of post-translationally modified peptides, including peptides with citrullinations and hybrid insulin peptide fusions. Islet-infiltrating CD8 T cells were also derived and required further isolation and characterization. SUMMARY The recovery of live, islet-infiltrating T cells from donors with T1D, reactive with a broad range of known targets and post-translationally modified peptides, allows for the specific functional analysis of islet-infiltrating T cells for the development of antigen-specific immunotherapies.
Collapse
Affiliation(s)
- Sally C Kent
- Division of Diabetes, Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
35
|
Michels AW, Landry LG, McDaniel KA, Yu L, Campbell-Thompson M, Kwok WW, Jones KL, Gottlieb PA, Kappler JW, Tang Q, Roep BO, Atkinson MA, Mathews CE, Nakayama M. Islet-Derived CD4 T Cells Targeting Proinsulin in Human Autoimmune Diabetes. Diabetes 2017; 66:722-734. [PMID: 27920090 PMCID: PMC5319719 DOI: 10.2337/db16-1025] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/01/2016] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes results from chronic autoimmune destruction of insulin-producing β-cells within pancreatic islets. Although insulin is a critical self-antigen in animal models of autoimmune diabetes, due to extremely limited access to pancreas samples, little is known about human antigenic targets for islet-infiltrating T cells. Here we show that proinsulin peptides are targeted by islet-infiltrating T cells from patients with type 1 diabetes. We identified hundreds of T cells from inflamed pancreatic islets of three young organ donors with type 1 diabetes with a short disease duration with high-risk HLA genes using a direct T-cell receptor (TCR) sequencing approach without long-term cell culture. Among 85 selected CD4 TCRs tested for reactivity to preproinsulin peptides presented by diabetes-susceptible HLA-DQ and HLA-DR molecules, one T cell recognized C-peptide amino acids 19-35, and two clones from separate donors responded to insulin B-chain amino acids 9-23 (B:9-23), which are known to be a critical self-antigen-driving disease progress in animal models of autoimmune diabetes. These B:9-23-specific T cells from islets responded to whole proinsulin and islets, whereas previously identified B:9-23 responsive clones from peripheral blood did not, highlighting the importance of proinsulin-specific T cells in the islet microenvironment.
Collapse
Affiliation(s)
- Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Laurie G Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Kristen A McDaniel
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado School of Medicine, Aurora, CO
| | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - John W Kappler
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
- Howard Hughes Medical Institute, Denver, CO
- Department of Biomedical Research, National Jewish Health, Denver, CO
- Program in Structural Biology and Biochemistry, University of Colorado School of Medicine, Aurora, CO
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Bart O Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
36
|
Bettini ML, Bettini M. Understanding Autoimmune Diabetes through the Prism of the Tri-Molecular Complex. Front Endocrinol (Lausanne) 2017; 8:351. [PMID: 29312143 PMCID: PMC5735072 DOI: 10.3389/fendo.2017.00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
The strongest susceptibility allele for Type 1 Diabetes (T1D) is human leukocyte antigen (HLA), which supports a central role for T cells as the drivers of autoimmunity. However, the precise mechanisms that allow thymic escape and peripheral activation of beta cell antigen-specific T cells are still largely unknown. Studies performed with the non-obese diabetic (NOD) mouse have challenged several immunological dogmas, and have made the NOD mouse a key experimental system to study the steps of immunodysregulation that lead to autoimmune diabetes. The structural similarities between the NOD I-Ag7 and HLA-DQ8 have revealed the stability of the T cell receptor (TCR)/HLA/peptide tri-molecular complex as an important parameter in the development of autoimmune T cells, as well as afforded insights into the key antigens targeted in T1D. In this review, we will provide a summary of the current understanding with regard to autoimmune T cell development, the significance of the antigens targeted in T1D, and the relationship between TCR affinity and immune regulation.
Collapse
Affiliation(s)
- Matthew L. Bettini
- Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, McNair Medical Institute, Houston, TX, United States
- *Correspondence: Matthew L. Bettini, ; Maria Bettini,
| | - Maria Bettini
- Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, McNair Medical Institute, Houston, TX, United States
- *Correspondence: Matthew L. Bettini, ; Maria Bettini,
| |
Collapse
|
37
|
Marré ML, Piganelli JD. Environmental Factors Contribute to β Cell Endoplasmic Reticulum Stress and Neo-Antigen Formation in Type 1 Diabetes. Front Endocrinol (Lausanne) 2017; 8:262. [PMID: 29033899 PMCID: PMC5626851 DOI: 10.3389/fendo.2017.00262] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which immune-mediated targeting and destruction of insulin-producing pancreatic islet β cells leads to chronic hyperglycemia. There are many β cell proteins that are targeted by autoreactive T cells in their native state. However, recent studies have demonstrated that many β cell proteins are recognized as neo-antigens following posttranslational modification (PTM). Although modified neo-antigens are well-established targets of pathology in other autoimmune diseases, the effects of neo-antigens in T1D progression and the mechanisms by which they are generated are not well understood. We have demonstrated that PTM occurs during endoplasmic reticulum (ER) stress, a process to which β cells are uniquely susceptible due to the high rate of insulin production in response to dynamic glucose sensing. In the context of genetic susceptibility to autoimmunity, presentation of these modified neo-antigens may activate autoreactive T cells and cause pathology. However, inherent β cell ER stress and protein PTM do not cause T1D in every genetically susceptible individual, suggesting the contribution of additional factors. Indeed, many environmental factors, such as viral infection, chemicals, or inflammatory cytokines, are associated with T1D onset, but the mechanisms by which these factors lead to disease onset remain unknown. Since these environmental factors also cause ER stress, exposure to these factors may enhance production of neo-antigens, therefore boosting β cell recognition by autoreactive T cells and exacerbating T1D pathogenesis. Therefore, the combined effects of physiological ER stress and the stress that is induced by environmental factors may lead to breaks in peripheral tolerance, contribute to antigen spread, and hasten disease onset. This Hypothesis and Theory article summarizes what is currently known about ER stress and protein PTM in autoimmune diseases including T1D and proposes a role for environmental factors in breaking immune tolerance to β cell antigens through neo-antigen formation.
Collapse
Affiliation(s)
- Meghan L Marré
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jon D Piganelli
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
38
|
Burrack AL, Martinov T, Fife BT. T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes. Front Endocrinol (Lausanne) 2017; 8:343. [PMID: 29259578 PMCID: PMC5723426 DOI: 10.3389/fendo.2017.00343] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) results from destruction of pancreatic beta cells by T cells of the immune system. Despite improvements in insulin analogs and continuous blood glucose level monitoring, there is no cure for T1D, and some individuals develop life-threatening complications. Pancreas and islet transplantation have been attractive therapeutic approaches; however, transplants containing insulin-producing cells are vulnerable to both recurrent autoimmunity and conventional allograft rejection. Current immune suppression treatments subdue the immune system, but not without complications. Ideally a successful approach would target only the destructive immune cells and leave the remaining immune system intact to fight foreign pathogens. This review discusses the autoimmune diabetes disease process, diabetic complications that warrant a transplant, and alloimmunity. First, we describe the current understanding of autoimmune destruction of beta cells including the roles of CD4 and CD8 T cells and several possibilities for antigen-specific tolerance induction. Second, we outline diabetic complications necessitating beta cell replacement. Third, we discuss transplant recognition, potential sources for beta cell replacement, and tolerance-promoting therapies under development. We hypothesize that a better understanding of autoreactive T cell targets during disease pathogenesis and alloimmunity following transplant destruction could enhance attempts to re-establish tolerance to beta cells.
Collapse
Affiliation(s)
- Adam L. Burrack
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- *Correspondence: Brian T. Fife,
| |
Collapse
|
39
|
Bandyopadhyay GK, Mahata SK. Chromogranin A Regulation of Obesity and Peripheral Insulin Sensitivity. Front Endocrinol (Lausanne) 2017; 8:20. [PMID: 28228748 PMCID: PMC5296320 DOI: 10.3389/fendo.2017.00020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/23/2017] [Indexed: 01/15/2023] Open
Abstract
Chromogranin A (CgA) is a prohormone and granulogenic factor in endocrine and neuroendocrine tissues, as well as in neurons, and has a regulated secretory pathway. The intracellular functions of CgA include the initiation and regulation of dense-core granule biogenesis and sequestration of hormones in neuroendocrine cells. This protein is co-stored and co-released with secreted hormones. The extracellular functions of CgA include the generation of bioactive peptides, such as pancreastatin (PST), vasostatin, WE14, catestatin (CST), and serpinin. CgA knockout mice (Chga-KO) display: (i) hypertension with increased plasma catecholamines, (ii) obesity, (iii) improved hepatic insulin sensitivity, and (iv) muscle insulin resistance. These findings suggest that individual CgA-derived peptides may regulate different physiological functions. Indeed, additional studies have revealed that the pro-inflammatory PST influences insulin sensitivity and glucose tolerance, whereas CST alleviates adiposity and hypertension. This review will focus on the different metabolic roles of PST and CST peptides in insulin-sensitive and insulin-resistant models, and their potential use as therapeutic targets.
Collapse
Affiliation(s)
| | - Sushil K. Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Metabolic Physiology and Ultrastructural Biology Laboratory, VA San Diego Healthcare System, San Diego, CA, USA
- *Correspondence: Sushil K. Mahata,
| |
Collapse
|
40
|
Abstract
Chromogranin A (CgA) is an established plasma marker of neuroendocrine tumors and has been suggested to also have a role as biomarker in other diseases. Whether CgA has any role as biomarker in diabetes is, however, unresolved, but its widespread distribution in the secretory granules in endocrine tissues including β cells and α cells in pancreas, and the metabolic effects of its peptide fragments suggest that CgA may play a pathophysiological role in diabetes, and thus also be a potential diabetes biomarker. In this review, we summarize the available information on CgA and some of its functional post-translational cleavage products in diabetes, followed by a discussion of its potential as a plasma marker in diabetes and the methodological concerns involved.
Collapse
Affiliation(s)
- Kasper Broedbaek
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Linda Hilsted
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| |
Collapse
|
41
|
Nikoopour E, Krougly O, Lee-Chan E, Haeryfar SM, Singh B. Detection of vasostatin-1-specific CD8(+) T cells in non-obese diabetic mice that contribute to diabetes pathogenesis. Clin Exp Immunol 2016; 185:292-300. [PMID: 27185276 DOI: 10.1111/cei.12811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/04/2016] [Accepted: 05/12/2016] [Indexed: 11/29/2022] Open
Abstract
Chromogranin A (ChgA) is an antigenic target of pathogenic CD4(+) T cells in a non-obese diabetic (NOD) mouse model of type 1 diabetes (T1D). Vasostatin-1 is a naturally processed fragment of ChgA. We have now identified a novel H2-K(d) -restricted epitope of vasostatin-1, ChgA 36-44, which elicits CD8(+) T cell responses in NOD mice. By using ChgA 36-44/K(d) tetramers we have determined the frequency of vasostatin-1-specific CD8(+) T cells in pancreatic islets and draining lymph nodes of NOD mice. We also demonstrate that vasostatin-1-specific CD4(+) and CD8(+) T cells constitute a significant fraction of islet-infiltrating T cells in diabetic NOD mice. Adoptive transfer of T cells from ChgA 36-44 peptide-primed NOD mice into NOD/severe combined immunodeficiency (SCID) mice led to T1D development. These findings indicate that vasostatin-1-specific CD8(+) T cells contribute to the pathogenesis of type 1 diabetes in NOD mice.
Collapse
Affiliation(s)
- E Nikoopour
- Department of Microbiology and Immunology, Centre for Human Immunology
| | - O Krougly
- Department of Microbiology and Immunology, Centre for Human Immunology
| | - E Lee-Chan
- Department of Microbiology and Immunology, Centre for Human Immunology
| | - S M Haeryfar
- Department of Microbiology and Immunology, Centre for Human Immunology
| | - B Singh
- Department of Microbiology and Immunology, Centre for Human Immunology.,Robarts Research Institute, University of Western Ontario, London, ON, Canada
| |
Collapse
|
42
|
McLaughlin RJ, Spindler MP, van Lummel M, Roep BO. Where, How, and When: Positioning Posttranslational Modification Within Type 1 Diabetes Pathogenesis. Curr Diab Rep 2016; 16:63. [PMID: 27168063 PMCID: PMC4863913 DOI: 10.1007/s11892-016-0752-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autoreactive T cells specific for islet autoantigens develop in type 1 diabetes (T1D) by escaping central as well as peripheral tolerance. The current paradigm for development of islet autoimmunity is just beginning to include the contribution of posttranslationally modified (PTM) islet autoantigens, for which the immune system may be ignorant rather than tolerant. As a result, PTM is the latest promising lead in the quest to understand how the break in peripheral tolerance occurs in T1D. However, it is not completely clear how, where, or when these modifications take place. Currently, only a few PTM antigens have been well-thought-out or identified in T1D, and methods for identifying and characterizing new PTM antigens are rapidly improving. This review will address both reported and potential new sources of modified islet autoantigens and discuss how islet neo-autoantigen generation may contribute to the development and progression of T1D.
Collapse
Affiliation(s)
- Rene J McLaughlin
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, E3-Q, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Matthew P Spindler
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, E3-Q, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Menno van Lummel
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, E3-Q, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Bart O Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, E3-Q, PO Box 9600, 2300 RC, Leiden, The Netherlands.
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Danish Diabetes Academy, Søndre Blvd. 29, 5000, Odense, Denmark.
| |
Collapse
|
43
|
Abstract
The incidence of type 1 diabetes has risen considerably in the past 30 years due to changes in the environment that have been only partially identified. In this Series paper, we critically discuss candidate triggers of islet autoimmunity and factors thought to promote progression from autoimmunity to overt type 1 diabetes. We revisit previously proposed hypotheses to explain the growth in the incidence of type 1 diabetes in light of current data. Finally, we suggest a unified model in which immune tolerance to β cells can be broken by several environmental exposures that induce generation of hybrid peptides acting as neoautoantigens.
Collapse
Affiliation(s)
- Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University and Linköping University Hospital, Linköping, Sweden.
| |
Collapse
|
44
|
Marré ML, Profozich JL, Coneybeer JT, Geng X, Bertera S, Ford MJ, Trucco M, Piganelli JD. Inherent ER stress in pancreatic islet β cells causes self-recognition by autoreactive T cells in type 1 diabetes. J Autoimmun 2016; 72:33-46. [PMID: 27173406 DOI: 10.1016/j.jaut.2016.04.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/25/2016] [Accepted: 04/30/2016] [Indexed: 01/10/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by pancreatic β cell destruction induced by islet reactive T cells that have escaped central tolerance. Many physiological and environmental triggers associated with T1D result in β cell endoplasmic reticulum (ER) stress and dysfunction, increasing the potential for abnormal post-translational modification (PTM) of proteins. We hypothesized that β cell ER stress induced by environmental and physiological conditions generates abnormally-modified proteins for the T1D autoimmune response. To test this hypothesis we exposed the murine CD4(+) diabetogenic BDC2.5 T cell clone to murine islets in which ER stress had been induced chemically (Thapsigargin). The BDC2.5 T cell IFNγ response to these cells was significantly increased compared to non-treated islets. This β cell ER stress increased activity of the calcium (Ca(2+))-dependent PTM enzyme tissue transglutaminase 2 (Tgase2), which was necessary for full stress-dependent immunogenicity. Indeed, BDC2.5 T cells responded more strongly to their antigen after its modification by Tgase2. Finally, exposure of non-antigenic murine insulinomas to chemical ER stress in vitro or physiological ER stress in vivo caused increased ER stress and Tgase2 activity, culminating in higher BDC2.5 responses. Thus, β cell ER stress induced by chemical and physiological triggers leads to β cell immunogenicity through Ca(2+)-dependent PTM. These findings elucidate a mechanism of how β cell proteins are modified and become immunogenic, and reveal a novel opportunity for preventing β cell recognition by autoreactive T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autoantigens/genetics
- Autoantigens/immunology
- Autoimmunity/genetics
- Autoimmunity/immunology
- Blotting, Western
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Calcium/immunology
- Calcium/metabolism
- Cell Line
- Cells, Cultured
- Chromogranin A/genetics
- Chromogranin A/immunology
- Chromogranin A/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Endoplasmic Reticulum Stress/genetics
- Endoplasmic Reticulum Stress/immunology
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/immunology
- GTP-Binding Proteins/metabolism
- Humans
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Models, Immunological
- Protein Glutamine gamma Glutamyltransferase 2
- Protein Processing, Post-Translational/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Tandem Mass Spectrometry
- Transglutaminases/genetics
- Transglutaminases/immunology
- Transglutaminases/metabolism
Collapse
Affiliation(s)
- Meghan L Marré
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Jennifer L Profozich
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Jorge T Coneybeer
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Xuehui Geng
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Suzanne Bertera
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Michael J Ford
- MS Bioworks, LLC, 3950 Varsity Drive, Ann Arbor, MI 48108, USA
| | - Massimo Trucco
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Jon D Piganelli
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
45
|
Krishnamurthy B, Selck C, Chee J, Jhala G, Kay TWH. Analysis of antigen specific T cells in diabetes - Lessons from pre-clinical studies and early clinical trials. J Autoimmun 2016; 71:35-43. [PMID: 27083395 DOI: 10.1016/j.jaut.2016.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/06/2023]
Abstract
Antigen-specific immune tolerance promises to provide safe and effective therapies to prevent type 1 diabetes (T1D). Antigen-specific therapy requires two components: well-defined, clinically relevant autoantigens; and safe approaches to inducing tolerance in T cells specific for these antigens. Proinsulin is a critical autoantigen in both NOD mice, based on knockout mouse studies and induction of immune tolerance to proinsulin preventing disease whereas most antigens cannot, and also in human T1D based on proinsulin-specific T cells being found in the islets of affected individuals and the early appearance of insulin autoantibodies. Effective antigen-specific therapies that prevent T1D in humans have not yet been developed although doubt remains about the best molecular form of the antigen, the dose and the route of administration. Preclinical studies suggest that antigen specific therapy is most useful when administered before onset of autoimmunity but this time-window has not been tested in humans until the recent "pre-point" study. There may be a 'window of opportunity' during the neonatal period when 'vaccine' like administration of proinsulin for a short period may be sufficient to prevent diabetes. After the onset of autoimmunity, naive antigen-specific T cells have differentiated into antigen-experienced memory cells and the immune responses have spread to multiple antigens. Induction of tolerance at this stage becomes more difficult although recent studies have suggested generation of antigen-specific TR1 cells can inhibit memory T cells. Preclinical studies are required to identify additional 'help' that is required to induce tolerance to memory T cells and develop protocols for effective therapy in individuals with established autoimmunity.
Collapse
Affiliation(s)
- Balasubramanian Krishnamurthy
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia
| | - Claudia Selck
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia
| | - Jonathan Chee
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia
| | - Guarang Jhala
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia
| | - Thomas W H Kay
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia.
| |
Collapse
|
46
|
Delong T, Wiles TA, Baker RL, Bradley B, Barbour G, Reisdorph R, Armstrong M, Powell RL, Reisdorph N, Kumar N, Elso CM, DeNicola M, Bottino R, Powers AC, Harlan DM, Kent SC, Mannering SI, Haskins K. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 2016; 351:711-4. [PMID: 26912858 DOI: 10.1126/science.aad2791] [Citation(s) in RCA: 389] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
T cell-mediated destruction of insulin-producing β cells in the pancreas causes type 1 diabetes (T1D). CD4 T cell responses play a central role in β cell destruction, but the identity of the epitopes recognized by pathogenic CD4 T cells remains unknown. We found that diabetes-inducing CD4 T cell clones isolated from nonobese diabetic mice recognize epitopes formed by covalent cross-linking of proinsulin peptides to other peptides present in β cell secretory granules. These hybrid insulin peptides (HIPs) are antigenic for CD4 T cells and can be detected by mass spectrometry in β cells. CD4 T cells from the residual pancreatic islets of two organ donors who had T1D also recognize HIPs. Autoreactive T cells targeting hybrid peptides may explain how immune tolerance is broken in T1D.
Collapse
Affiliation(s)
- Thomas Delong
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Timothy A Wiles
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rocky L Baker
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brenda Bradley
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gene Barbour
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Reisdorph
- Pharmaceutical Sciences, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael Armstrong
- Pharmaceutical Sciences, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Roger L Powell
- Pharmaceutical Sciences, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nichole Reisdorph
- Pharmaceutical Sciences, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nitesh Kumar
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Colleen M Elso
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Megan DeNicola
- Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA. VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - David M Harlan
- Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sally C Kent
- Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia. University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
47
|
Buckner JH, Nepom GT. Obstacles and opportunities for targeting the effector T cell response in type 1 diabetes. J Autoimmun 2016; 71:44-50. [PMID: 26948997 DOI: 10.1016/j.jaut.2016.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 01/06/2023]
Abstract
Autoreactive lymphocytes display a programmed set of characteristic effector functions and phenotypic markers that, in combination with antigen-specific profiling, provide a detailed picture of the adaptive immune response in Type 1 diabetes (T1D). The CD4+ T cell effector compartment (referred to as "Teff" in this article) has been extensively analyzed, particularly because the HLA genes most strongly associated with T1D are MHC class II alleles that form restriction elements for CD4+ T cell recognition. This "guilt by association" can now be revisited in terms of specific immune mechanisms and specific forms of T cell recognition that are displayed by Teff found in subjects with T1D. In this review, we describe properties of Teff that correlate with T1D, and discuss several characteristics that advance our understanding of disease persistence and progression. Focusing on functional disease-associated immunological pathways within these Teff suggests a rationale for next-generation clinical trials with targeted interventions. Indeed, immune modulation therapies in T1D that do not address these properties of Teff are unlikely to achieve durable clinical response.
Collapse
Affiliation(s)
- Jane H Buckner
- Benaroya Research Institute at Virginia Mason, The University of Washington School of Medicine, Seattle, WA, USA.
| | - Gerald T Nepom
- Benaroya Research Institute at Virginia Mason, The University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
48
|
Zhao X, Birchall JC, Coulman SA, Tatovic D, Singh RK, Wen L, Wong FS, Dayan CM, Hanna SJ. Microneedle delivery of autoantigen for immunotherapy in type 1 diabetes. J Control Release 2016; 223:178-187. [DOI: 10.1016/j.jconrel.2015.12.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 11/24/2022]
|
49
|
Gomez-Tourino I, Arif S, Eichmann M, Peakman M. T cells in type 1 diabetes: Instructors, regulators and effectors: A comprehensive review. J Autoimmun 2016; 66:7-16. [DOI: 10.1016/j.jaut.2015.08.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022]
|
50
|
Abstract
Type 1 diabetes is a chronic autoimmune disease resulting from T cell-mediated destruction of insulin-producing beta cells within pancreatic islets. Disease incidence has increased significantly in the last two decades, especially in young children. Type 1 diabetes is now predictable in humans with the measurement of serum islet autoantibodies directed against insulin and beta cell proteins. Knowledge regarding the presentation of insulin and islet antigens to T cells has increased dramatically over the last several years. Here, we review the trimolecular complex in diabetes, which consists of a major histocompatibility molecule,self-peptide, and T cell receptor, with a focus on insulin peptide presentation to T cells. With this increased understanding of how antigens are presented to T cells comes the hope for improved therapies for type 1 diabetes prevention.
Collapse
Affiliation(s)
- Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kimberly M Simmons
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|