1
|
Liang L, Dong Z, Shen Z, Zang Y, Yang W, Wu L, Bao L. Inhibitory effects of umbelliferone on carbon tetrachloride-induced hepatic fibrosis in rats through the TGF‑β1‑Smad signaling pathway. Mol Med Rep 2025; 32:171. [PMID: 40242963 PMCID: PMC12020354 DOI: 10.3892/mmr.2025.13536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Hepatic fibrosis (HF) is a critical marker of advanced‑stage chronic liver disease and involves pivotal contributions from hepatic stellate cells (HSCs). Currently, there are no effective treatments for HF. Umbelliferone (7‑hydroxycoumarin; UMB) is a natural compound with significant anti‑inflammatory, antioxidant and anti‑tumor activities. However, its potential efficacy in treating HF has not been studied. The present study explored the protective effects of UMB against HF, targeting the TGF‑β1‑Smad signaling pathway to explore the underlying mechanisms of UMB. Carbon tetrachloride (CCl4) was injected intraperitoneally to induce HF in rats and primary HSCs were treated in vitro with UMB to investigate the improvement effect of UMB on HF. The levels of fibrosis markers, inflammation, oxidative stress and TGF‑β1‑Smad signaling pathway in the rat liver tissue and HSCs were detected using hematoxylin and eosin staining, enzyme‑linked immunosorbent assay, reverse transcription‑quantitative PCR, Cell Counting Kit‑8 and western blotting. The improvement in liver histopathology, liver function indexes and fibrosis markers demonstrated that UMB markedly inhibited the CCl4‑induced HF and inflammation in the rats. Additionally, UMB prominently reduced the pro‑inflammatory factors and oxidative stress levels. In vitro, UMB markedly inhibited primary HSC activation and decreased alpha‑smooth muscle actin and collagen I expression. The mechanism experiment proved that UMB inhibited the TGF‑β1‑Smad signaling pathway and ameliorated HF. The present study was the first to demonstrate, to the best of the authors' knowledge, that UMB might be a promising natural active compound for treating HF. Its therapeutic effect is associated with its modulation of the TGF‑β1‑Smad signaling pathway.
Collapse
Affiliation(s)
- Lijuan Liang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Zhiheng Dong
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| | - Ziqing Shen
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Yifan Zang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Wenlong Yang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Lan Wu
- Mongolia Medical School, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Lidao Bao
- Department of Pharmacy, Hohhot First Hospital, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| |
Collapse
|
2
|
Puhakka E, Ahmed H, Haikonen R, Leclercq S, Hanhineva K, Maccioni L, Amadieu C, Lehtonen M, Männistö V, Rysä J, Stärkel P, Kärkkäinen O. Serum Metabolite Profile in Progressive Versus Nonprogressive Alcohol-Related Liver Disease: A Cross-Sectional Metabolomics Study. Liver Int 2025; 45:e70128. [PMID: 40358071 PMCID: PMC12070861 DOI: 10.1111/liv.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/22/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND AND AIMS Alcohol-related liver disease (ALD) is a major cause of mortality and disability-adjusted life years. It is not fully understood why a small proportion of patients develop progressive forms of ALD (e.g., fibrosis and cirrhosis). Differences in the metabolic processes could be behind the individual progression of ALD. Our aim was to examine differences in serum metabolome between patients with nonprogressive ALD and patients with an early form of progressive ALD. METHODS The study had three study groups: progressive ALD (alcohol-related steatohepatitis or early-stage fibrosis, n = 50), nonprogressive ALD (simple steatosis, n = 50) and healthy controls (n = 32). Both ALD groups took part in a voluntary alcohol rehabilitation programme. A nontargeted metabolomics analysis and targeted analysis of short-chain fatty acids were done to the serum samples taken on the day of admission. RESULTS We found 111 significantly (p < 0.0005) altered identified metabolites between the study groups. Our main finding was that levels of glycine-conjugated bile acids (Cohen's d = 0.90-0.91), glutamic acid (d = 1.01), 7-methylguanine (d = 0.77) and several phosphatidylcholines (d = 0.61-0.85) were elevated in the progressive ALD group in comparison to the nonprogressive ALD group. Glycine-conjugated bile acids, glutamic acid and 7-methylguanine also positively correlated with increased levels of aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transferase, cell death biomarker M65 and liver stiffness. CONCLUSIONS Our results indicate that the enterohepatic cycle of glycine-conjugated bile acids, as well as lipid and energy metabolism, is altered in early forms of progressive ALD. These metabolic processes could be a target for preventing the progression of ALD.
Collapse
Affiliation(s)
- Eemeli Puhakka
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| | - Hany Ahmed
- Food Sciences Unit, Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Retu Haikonen
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Sophie Leclercq
- Laboratory of Nutritional Psychiatry, Institute of Neuroscience, UCLouvainUniversité Catholique de LouvainBrusselsBelgium
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life TechnologiesUniversity of TurkuTurkuFinland
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Luca Maccioni
- National Institute of Alcohol Abuse and AlcoholismBethesdaMarylandUSA
| | | | - Marko Lehtonen
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| | - Ville Männistö
- Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
- Department of MedicineKuopio University HospitalKuopioFinland
| | - Jaana Rysä
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| | - Peter Stärkel
- Department of Hepato‐Gastro‐EnterologyCliniques Universitaires Saint LucBrusselsBelgium
- Laboratory of Hepato‐Gastroenterology, Institute de Recherche Expérimentale et CliniqueUniversité Catholique de LouvainBrusselsBelgium
| | - Olli Kärkkäinen
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
3
|
Fan S, Zhao K, Lei J, Ge Y. Preoperative total bile acid can be used as a prognostic biomarker in patients with operable biliary tract cancers. Discov Oncol 2025; 16:696. [PMID: 40338467 PMCID: PMC12061807 DOI: 10.1007/s12672-025-02527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/28/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Biliary tract cancers (BTCs) are highly invasive malignancies with poor prognoses. However, reliable biomarkers for survival prediction remain lacking. Notably, abnormal lipid metabolism has elicited increasing interest in digestive tract tumors, with the liver playing an important role in lipid metabolism. OBJECTIVE To explore the relationship between hepatic lipid metabolism-related indicators, assessed through routine clinical biochemical testing and survival prognosis in patients with BTCs. METHODS Overall, 109 patients with a pathological diagnosis of BTC from 2017 to 2023 were included in this study. Univariate and multivariate Cox regression analyses were performed using R Studio software, and survival curves were plotted. RESULTS Univariate analysis revealed that tumor location and preoperative total bile acid (TBA), carcinoembryonic antigen, cancer antigen (CA)125, and CA19-9 levels were correlated with patient survival (P < 0.05). Multivariate Cox regression analysis identified increased TBA level [hazard ratio (HR) = 0.445, P = 0.004] as an independent prognostic factor for longer survival. Conversely, tumor location [intrahepatic cholangiocarcinoma (iCCA) and/or extrahepatic cholangiocarcinoma (eCCA)] (HR = 2.463, P = 0.036) and increased CA125 and CA19-9 levels (HR = 2.549, P = 0.008 and HR = 2.100, P = 0.019) were independent prognostic factors for shorter survival. Additionally, Kaplan‒Meier survival curves revealed significantly longer survival in patients with increased TBA levels than those in the normal group (P = 0.012). Conversely, patients with iCCA and/or eCCA tumor location and increased CA125 and CA19-9 levels had significantly shorter median survival (P = 0.044, P = 0.013, and P = 0.012, respectively). CONCLUSION TBA may be a biomarker for predicting survival in patients with operable BTC, highlighting its clinical significance and application potential.
Collapse
Affiliation(s)
- Shanshan Fan
- Department of Oncology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Kexin Zhao
- The Third Clinical School of Medicine, Capital Medical University, Beijing, China
| | - Jiabao Lei
- The Third Clinical School of Medicine, Capital Medical University, Beijing, China
| | - Yang Ge
- Department of Oncology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| |
Collapse
|
4
|
Ni C, Wang L, Bai Y, Huang F, Shi H, Wu H, Wu X, Huang J. Taurochenodeoxycholic acid activates autophagy and suppresses inflammatory responses in microglia of MPTP-induced Parkinson's disease mice via AMPK/mTOR, AKT/NFκB and Pink1/Parkin signaling pathways mediated by Takeda G protein-coupled receptor 5. Free Radic Biol Med 2025; 235:347-363. [PMID: 40324640 DOI: 10.1016/j.freeradbiomed.2025.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by degeneration and necrosis of dopaminergic neurons in the substantia nigra and decreased dopamine secretion in the striatum. Bile acids are important components of animal bile. In recent years, a variety of hydrophilic bile acids have been reported to have ameliorative effects in neurodegenerative diseases. Taurochenodeoxycholic acid (TCDCA) is one of the components of bile acids. However, whether TCDCA can treat PD and its specific mechanism is unclear. In this study, 1-methyl-4-phenylpyridine (MPTP)-induced PD model mice were established to investigate the effects of TCDCA on PD model mice and the impact of microglia-mediated neuroinflammation. Concurrently, in vitro cell experiments utilized the lipopolysaccharide (LPS)-induced BV-2 microglial inflammation model to further investigate the effect and mechanism of TCDCA in inhibiting neuroinflammation. TCDCA effectively improved dyskinesia, attenuated dopaminergic neuronal damage in the substantia nigra and striatum, and inhibited α-Synuclein (α-Syn) expression in the substantia nigra of PD mice. TCDCA significantly inhibited microglia and astrocyte activation in the substantia nigra of PD mice, and decreased the messenger ribonucleic acid (mRNA) and protein expressions of inflammatory factors. In addition, TCDCA was found to inhibit nitric oxide release and reactive oxygen species production in LPS-stimulated BV2 microglia. Furthermore, TCDCA suppressed the production of inflammatory factors, including interleukin (IL)-1β, IL-6, and tumor necrosis factor α (TNF-α), both in vivo and in vitro. Meanwhile, TCDCA significantly promoted Takeda G protein-coupled receptor 5 (TGR5) protein expression and inhibited the phosphorylation of serine/threonine kinase B (AKT), nuclear factor κB (NFκB) and inhibitor of NFκB (IκBα). TCDCA promoted autophagy in vivo and in vitro by increasing adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation, inhibiting mammalian target of rapamycin (mTOR) phosphorylation, increasing LC3II/LC3I and Beclin1 expression, and decreasing P62 expression. Furthermore, TCDCA demonstrated mitochondrial protection by enhancing the expression of PTEN induced putative kinase 1 (Pink1) and Parkin. However, knockdown of TGR5 expression partially counteracted the inhibitory effect of TCDCA on LPS-treated BV-2 cells. Our results manifested that TCDCA activated autophagy and inhibited microglia-mediated neuroinflammation in experimental PD models probably through regulation of AKT/NFκB, AMPK/mTOR and Pink1/Parkin signaling pathways via activation of TGR5.
Collapse
Affiliation(s)
- Chenyang Ni
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Lupeng Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuyan Bai
- Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jin Huang
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Zhang J, Chen K, Chen F. Exploring the impact of the liver-intestine-brain axis on brain function in non-alcoholic fatty liver disease. J Pharm Anal 2025; 15:101077. [PMID: 40433559 PMCID: PMC12104701 DOI: 10.1016/j.jpha.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 05/29/2025] Open
Abstract
This study investigates the molecular complexities of non-alcoholic fatty liver disease (NAFLD)-induced brain dysfunction, with a focus on the liver-intestine-brain axis and potential therapeutic interventions. The main objectives include understanding critical microbiota shifts in NAFLD, exploring altered metabolites, and identifying key regulatory molecules influencing brain function. The methods employed encompassed 16S ribosomal RNA (rRNA) sequencing to scrutinize stool microbiota in NAFLD patients and healthy individuals, non-targeted metabolomics using LC-MS to uncover elevated levels of deoxycholic acid (DCA) in NAFLD mice, and single-cell RNA sequencing (scRNA-seq) to pinpoint the pivotal gene Hpgd in microglial cells and its downstream Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway. Behavioral changes and brain function were assessed in NAFLD mice with and without Fecal microbiota transplantation (FMT) treatment, utilizing various assays and analyses. The results revealed significant differences in microbiota composition, with increased levels of Bacteroides in NAFLD patients. Additionally, elevated DCA levels were observed in NAFLD mice, and FMT treatment demonstrated efficacy in ameliorating liver function and brain dysfunction. Hpgd inhibition by DCA activated the JAK2/STAT3 pathway in microglial cells, leading to inflammatory activation, inhibition of mitochondrial autophagy, induction of neuronal apoptosis, and reduction in neuronal action potentials. This study elucidates the intricate molecular mechanisms underlying the liver-gut-brain axis in NAFLD, and the identification of increased DCA and the impact of JAK2/STAT3 signaling on microglial cells highlight potential therapeutic targets for addressing NAFLD-induced brain dysfunction.
Collapse
Affiliation(s)
- Jingting Zhang
- College of Management, Liaoning Economy Vocational and Technical College, Shenyang, 110122, China
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Shenyang, 110122, China
| | - Fu Chen
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| |
Collapse
|
6
|
Dong L, Zhang H, Kang Y, Wang F, Bai T, Yang Y. NLRP3 and Gut-Liver Axis: New Possibility for the Treatment of Alcohol-Associated Liver Disease. J Gastroenterol Hepatol 2025; 40:1070-1078. [PMID: 40091479 DOI: 10.1111/jgh.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/04/2025] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
Alcohol-associated liver disease (ALD) is one of the most prevalent chronic diseases worldwide, with persistently high morbidity and mortality rates. Previous studies have identified NLRP3 inflammasome as a class of receptors of intracellular intrinsic immunity. These receptors can be activated by both intrinsic and extracellular danger signals, leading to the release of downstream pro-inflammatory factors, including interleukin IL-1β and IL-18. These vesicles are critical for maintaining host defense. Concurrently, researchers have identified a close relationship between the microbiome, gut-liver axis, and NLRP3 inflammasome with ALD. Consequently, the present study focus on the structure and activation of the NLRP3 inflammasome, the gut-liver axis, and intestinal microecological regulation, as well as the relationship between bile acid metabolism and the gut-liver axis. The objective of this study is to provide a foundation of knowledge and references for the development of targeted therapeutic interventions of ALD that are informed by the dynamic interplay between the NLRP3 inflammasome and the gut-liver axis.
Collapse
Affiliation(s)
- Lu Dong
- Dalian key Laboratory of Chronic Disease Research Center, Dalian University, Dalian, Liaoning Province, China
| | - Haotian Zhang
- Dalian key Laboratory of Chronic Disease Research Center, Dalian University, Dalian, Liaoning Province, China
| | - Yanyu Kang
- Dalian key Laboratory of Chronic Disease Research Center, Dalian University, Dalian, Liaoning Province, China
| | - Fei Wang
- Dalian key Laboratory of Chronic Disease Research Center, Dalian University, Dalian, Liaoning Province, China
| | - Ting Bai
- Dalian key Laboratory of Chronic Disease Research Center, Dalian University, Dalian, Liaoning Province, China
| | - Yong Yang
- Dalian key Laboratory of Chronic Disease Research Center, Dalian University, Dalian, Liaoning Province, China
| |
Collapse
|
7
|
Chen C, Bu X, Deng L, Xia J, Wang X, Chen L, Li W, Huang J, Chen Q, Wang C. Astragaloside IV as a promising therapeutic agent for liver diseases: current landscape and future perspectives. Front Pharmacol 2025; 16:1574154. [PMID: 40337517 PMCID: PMC12055773 DOI: 10.3389/fphar.2025.1574154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025] Open
Abstract
Astragaloside IV (C41H68O14, AS-IV) is a naturally occurring saponin isolated from the root of Astragalus membranaceus, a widely used traditional Chinese botanical drug in medicine. In recent years, AS-IV has attracted considerable attention for its hepatoprotective properties, which are attributed to its low toxicity as well as its anti-inflammatory, antioxidant and antitumour effects. Numerous preclinical studies have demonstrated its potential in the prevention and treatment of various liver diseases, including multifactorial liver injury, metabolic-associated fatty liver disease, liver fibrosis and liver cancer. Given the promising hepatoprotective potential of AS-IV and the growing interest in its research, this review provides a comprehensive summary of the current state of research on the hepatoprotective effects of AS-IV, based on literature available in databases such as CNKI, PubMed, ScienceDirect, Google Scholar and Web of Science. The hepatoprotective mechanisms of AS-IV are multifaceted, encompassing the inhibition of inflammatory responses, reduction of oxidative stress, improvement of insulin and leptin resistance, modulation of the gut microbiota, suppression of hepatocellular carcinoma cell proliferation and induction of tumour cell apoptosis. Notably, key molecular pathways involved in these effects include Nrf2/HO-1, NF-κB, NLRP3/Caspase-1, JNK/c-Jun/AP-1, PPARα/FSP1 and Akt/GSK-3β/β-catenin. Toxicity studies indicate that AS-IV has a high level of safety. In addition, this review discusses the sources, physicochemical properties, and current challenges in the development and clinical application of AS-IV, providing valuable insights into its potential as a hepatoprotective agent in the pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Chunyan Chen
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaolan Bu
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Liping Deng
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jiayan Xia
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xinming Wang
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Li Chen
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wen Li
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jie Huang
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Qixiang Chen
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Cheng Wang
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
8
|
Shu JZ, Huang YH, He XH, Liu FY, Liang QQ, Yong XT, Xie YF. Gut microbiota differences, metabolite changes, and disease intervention during metabolic - dysfunction - related fatty liver progression. World J Hepatol 2025; 17:103854. [PMID: 40177201 PMCID: PMC11959672 DOI: 10.4254/wjh.v17.i3.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 02/12/2025] [Indexed: 03/26/2025] Open
Abstract
In the current era, metabolic dysfunction-associated steatotic liver disease (MASLD) has gradually developed into a major type of chronic liver disease that is widespread globally. Numerous studies have shown that the gut microbiota plays a crucial and indispensable role in the progression of MASLD. Currently, the gut microbiota has become one of the important entry points for the research of this disease. Therefore, the aim of this review is to elaborate on the further associations between the gut microbiota and MASLD, including the changes and differences in the microbiota between the healthy liver and the diseased liver. Meanwhile, considering that metabolic dysfunction-associated fatty liver and metabolic dysfunction-associated steatohepatitis are abnormal pathological states in the development of the disease and that the liver exhibits different degrees of fibrosis (such as mild fibrosis and severe fibrosis) during the disease progression, we also conduct a comparison of the microbiota in these states and use them as markers of disease progression. It reveals the changes in the production and action mechanisms of short-chain fatty acids and bile acids brought about by changes in the gut microbiota, and the impact of lipopolysaccharide from Gram-negative bacteria on the disease. In addition, the regulation of the gut microbiota in disease and the production and inhibition of related disease factors by the use of probiotics (including new-generation probiotics) will be explored, which will help to monitor the disease progression of patients with different gut microbiota compositions in the future and carry out personalized targeted therapies for the gut microbiota. This will achieve important progress in preventing and combating this disease.
Collapse
Affiliation(s)
- Jian-Zhong Shu
- Department of Encephalopathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400015, China
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- College of Integrated Traditional Chinese and Western Medicine, Chongqing University of Traditional Chinese Medicine, Chongqing 402760, China
| | - Yu-Han Huang
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xiao-Hong He
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Feng-Ying Liu
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Qian-Qian Liang
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xue-Tong Yong
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yong-Fang Xie
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| |
Collapse
|
9
|
Berdowska I, Matusiewicz M, Fecka I. A Comprehensive Review of Metabolic Dysfunction-Associated Steatotic Liver Disease: Its Mechanistic Development Focusing on Methylglyoxal and Counterbalancing Treatment Strategies. Int J Mol Sci 2025; 26:2394. [PMID: 40141037 PMCID: PMC11942149 DOI: 10.3390/ijms26062394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a multifactorial disorder characterized by excessive lipid accumulation in the liver which dysregulates the organ's function. The key contributor to MASLD development is insulin resistance (IR) which affects many organs (including adipose tissue, skeletal muscles, and the liver), whereas the molecular background is associated with oxidative, nitrosative, and carbonyl stress. Among molecules responsible for carbonyl stress effects, methylglyoxal (MGO) seems to play a major pathological function. MGO-a by-product of glycolysis, fructolysis, and lipolysis (from glycerol and fatty acids-derived ketone bodies)-is implicated in hyperglycemia, hyperlipidemia, obesity, type 2 diabetes, hypertension, and cardiovascular diseases. Its causative effect in the stimulation of prooxidative and proinflammatory pathways has been well documented. Since metabolic dysregulation leading to these pathologies promotes MASLD, the role of MGO in MASLD is addressed in this review. Potential MGO participation in the mechanism of MASLD development is discussed in regard to its role in different signaling routes leading to pathological events accelerating the disorder. Moreover, treatment strategies including approved and potential therapies in MASLD are overviewed and discussed in this review. Among them, medications aimed at attenuating MGO-induced pathological processes are addressed.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland;
| | - Małgorzata Matusiewicz
- Department of Medical Biochemistry, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland;
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| |
Collapse
|
10
|
Lan Y, Song R, Feng D, He J. Bioinformatic analysis of molecular expression patterns during the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Sci Rep 2025; 15:7294. [PMID: 40025132 PMCID: PMC11873118 DOI: 10.1038/s41598-025-90744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025] Open
Abstract
The global incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise, primarily driven by the escalating obesity epidemic worldwide. MASLD, a spectrum of liver disorders, can progress to more severe conditions, metabolic dysfunction-associated steatohepatitis (MASH), ultimately culminating in hepatocellular carcinoma (HCC). Given the complex nature of MASLD, there is an urgent need to develop robust risk prediction models and design specialized cancer screening initiatives tailored specifically for individuals with MASLD. This study aimed to identify genes exhibiting trending expression patterns that could serve as potential biomarkers or therapeutic targets. Our approach involved analyzing expression patterns across the five stages of MASLD development and progression. Notably, we introduced an innovative two-phase classification-MASLD occurrence and MASLD progression-instead of categorizing differentially expressed genes (DEGs) into multiple types. Leveraging LASSO regression models, we demonstrated their relatively strong capability to predict and distinguish both MASLD occurrence and progression. Furthermore, our analysis identified CYP7A1 and TNFRSF12A as significantly associated with the prognosis of MASLD progressing to HCC. These findings contribute to the understanding of gene expression dynamics in MASLD and may pave the way for the development of effective prognostic tools and targeted therapies in the realm of liver disease.
Collapse
Affiliation(s)
- Yuanfeng Lan
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, People's Republic of China
| | - Ran Song
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, People's Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Duiping Feng
- Department of Interventional Radiology, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.
| | - Junqi He
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, People's Republic of China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
11
|
Wang H, Danoy M, Gong Y, Utami T, Arakawa H, Kato Y, Nishikawa M, Sakai Y, Leclerc E. Palmitic Acid Induced a Dedifferentiation Profile at the Transcriptome Level: A Collagen Synthesis but no Triglyceride Accumulation in Hepatocyte-Like Cells Derived From Human-Induced Pluripotent Stem Cells Cultivated Inside Organ on a Chip. J Appl Toxicol 2025; 45:460-471. [PMID: 39506029 DOI: 10.1002/jat.4714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the main causes of critical liver diseases leading to steatosis, steatohepatitis, fibrosis, and ultimately to liver cirrhosis and hepatic carcinoma. In this study, the effect of palmitic acid (PA), one of the most abundant dietary fatty acids, was investigated using an organ-on-a-chip (OoC) technology on hepatocyte-like cells derived from human-induced pluripotent stem cells (hiPSCs). After 1 week of hepatic maturation, followed by 1 week of exposure, the transcriptomic analysis showed lower liver transcription factor activity. It also revealed that 318 genes were differentially expressed between the control and 0.5-mM PA conditions. The 0.5-mM PA conditions were characterized by the downregulation of hepatic markers (liver transcription factors, phase I and phase II metabolism genes) of lipidic genes (metabolism and transport). In parallel, the 0.5-mM PA treatment upregulated several extracellular matrix genes (such as collagen genes). The physiopathological staining demonstrated no lipid accumulation in our model and confirmed the secretion of collagen in the 0.5-mM PA conditions. However, the production of albumin, the metabolic biotransformation by the cytochrome P450 enzymes, and the biliary acid concentrations were not altered by the PA treatments. Overall, our data illustrated the response to PA characterized by an early stage of dedifferentiation observed at the transcriptomic levels associated with a modification of the collagenic profile but without lipid accumulation. We believe that our model provides new insight of the onset of palmitic lipotoxicity in the early stage of NAFLD.
Collapse
Affiliation(s)
- Hanyuan Wang
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- CNRS/IIS IRL 2820; Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Mathieu Danoy
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ya Gong
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tia Utami
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- CNRS/IIS IRL 2820; Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Eric Leclerc
- CNRS/IIS IRL 2820; Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Reilly-O’Donnell B, Ferraro E, Tikhomirov R, Nunez-Toldra R, Shchendrygina A, Patel L, Wu Y, Mitchell AL, Endo A, Adorini L, Chowdhury RA, Srivastava PK, Ng FS, Terracciano C, Williamson C, Gorelik J. Protective effect of UDCA against IL-11- induced cardiac fibrosis is mediated by TGR5 signalling. Front Cardiovasc Med 2024; 11:1430772. [PMID: 39691494 PMCID: PMC11650366 DOI: 10.3389/fcvm.2024.1430772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/24/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Cardiac fibrosis occurs in a wide range of cardiac diseases and is characterised by the transdifferentiation of cardiac fibroblasts into myofibroblasts these cells produce large quantities of extracellular matrix, resulting in myocardial scar. The profibrotic process is multi-factorial, meaning identification of effective treatments has been limited. The antifibrotic effect of the bile acid ursodeoxycholic acid (UDCA) is established in cases of liver fibrosis however its mechanism and role in cardiac fibrosis is less well understood. Methods In this study, we used cellular models of cardiac fibrosis and living myocardial slices to characterise the macroscopic and cellular responses of the myocardium to UDCA treatment. We complemented this approach by conducting RNA-seq on cardiac fibroblasts isolated from dilated cardiomyopathy patients. This allowed us to gain insights into the mechanism of action and explore whether the IL-11 and TGFβ/WWP2 profibrotic networks are influenced by UDCA. Finally, we used fibroblasts from a TGR5 KO mouse to confirm the mechanism of action. Results and discussion We found that UDCA reduced myofibroblast markers in rat and human fibroblasts and in living myocardial slices, indicating its antifibrotic action. Furthermore, we demonstrated that the treatment of UDCA successfully reversed the profibrotic IL-11 and TGFβ/WWP2 gene networks. We also show that TGR5 is the most highly expressed UDCA receptor in cardiac fibroblasts. Utilising cells isolated from a TGR5 knock-out mouse, we identified that the antifibrotic effect of UDCA is attenuated in the KO fibroblasts. This study combines cellular studies with RNA-seq and state-of-the-art living myocardial slices to offer new perspectives on cardiac fibrosis. Our data confirm that TGR5 agonists, such as UDCA, offer a unique pathway of action for the treatment of cardiac fibrosis. Medicines for cardiac fibrosis have been slow to clinic and have the potential to be used in the treatment of multiple cardiac diseases. UDCA is well tolerated in the treatment of other diseases, indicating it is an excellent candidate for further in-human trials.
Collapse
Affiliation(s)
- B. Reilly-O’Donnell
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - E. Ferraro
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - R. Tikhomirov
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - R. Nunez-Toldra
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - A. Shchendrygina
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - L. Patel
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Y. Wu
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - A. L. Mitchell
- Department of Women and Children’s Health, King’s College London, London, United Kingdom
| | - A. Endo
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - L. Adorini
- Intercept Pharmaceuticals Inc., New York, NY, United States
| | - R. A. Chowdhury
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - P. K. Srivastava
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - F. S. Ng
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - C. Terracciano
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - C. Williamson
- Department of Women and Children’s Health, King’s College London, London, United Kingdom
| | - J. Gorelik
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Antony F, Brough Z, Orangi M, Al-Seragi M, Aoki H, Babu M, Duong van Hoa F. Sensitive Profiling of Mouse Liver Membrane Proteome Dysregulation Following a High-Fat and Alcohol Diet Treatment. Proteomics 2024; 24:e202300599. [PMID: 39313981 DOI: 10.1002/pmic.202300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
Alcohol consumption and high-fat (HF) diets often coincide in Western society, resulting in synergistic negative effects on liver function. Although studies have analyzed the global protein expression in the context of alcoholic liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), none has offered specific insights on liver dysregulation at the membrane proteome level. Membrane-specific profiling of metabolic and compensatory phenomena is usually overshadowed in conventional proteomic workflows. In this study, we use the Peptidisc method to isolate and compare the membrane protein (MP) content of the liver with its unique biological functions. From mice fed with an HF diet and ethanol in drinking water, we annotate over 1500 liver proteins with half predicted to have at least one transmembrane segment. Among them, we identify 106 integral MPs that are dysregulated compared to the untreated sample. Gene Ontology analysis reveals several dysregulated membrane-associated processes like lipid metabolism, cell adhesion, xenobiotic processing, and mitochondrial membrane formation. Pathways related to cholesterol and bile acid transport are also mutually affected, suggesting an adaptive mechanism to counter the upcoming steatosis of the liver model. Taken together, our Peptidisc-based profiling of the diet-dysregulated liver provides specific insights and hypotheses into the role of the transmembrane proteome in disease development, and flags desirable MPs for therapeutic and diagnostic targeting.
Collapse
Affiliation(s)
- Frank Antony
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zora Brough
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mona Orangi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammed Al-Seragi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Mendoza YP, Tsouka S, Semmler G, Seubnooch P, Freiburghaus K, Mandorfer M, Bosch J, Masoodi M, Berzigotti A. Metabolic phenotyping of patients with advanced chronic liver disease for better characterization of cirrhosis regression. J Hepatol 2024; 81:983-994. [PMID: 38944391 DOI: 10.1016/j.jhep.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND & AIMS Regression of cirrhosis has been observed in patients with viral and non-viral etiologies of liver disease in whom the underlying cause of liver injury was effectively suppressed. However, the understanding of the factors contributing to reversibility of fibrosis and cirrhosis is limited. Our aims were to assess clinical factors, perform genotyping of known variants, and comprehensive metabolic phenotyping to characterize the regression of fibrosis in patients with compensated advanced chronic liver disease (cACLD). METHODS In a case-control pilot study of 81 patients with cACLD, we compared individuals exhibiting histological or clinical evidence of cACLD regression ("regressors"; n = 44) with those showing no improvement ("non-regressors"; n = 37) after a minimum of 24 months of successful treatment of the cause of liver disease. Data were validated using an external validation cohort (n = 30). RESULTS Regardless of the cause of cACLD, the presence of obesity (odds ratio [OR] 0.267 95% CI 0.072-0.882; p = 0.049), high liver stiffness (OR 0.960, 95% CI 0.925-0.995; p = 0.032), and carriage of GCKR variant rs1260326 (OR 0.148, 95% CI 0.030-0.773; p = 0.019) are associated with a reduced likelihood of fibrosis regression in a subgroup of 60 patients with ACLD genotyped for known genetic variants. Using liver tissue transcriptomics, we identified metabolic pathways differentiating regressors from non-regressors, with top pathways associated with lipid metabolism - especially fatty acids, bile acids, phospholipids, triacylglycerides (biosynthesis), and the carnitine shuttle. In the entire discovery cohort, we further measured metabolites within the defined pathways, which led to the identification of 33 circulating markers differentiating regressors from non-regressors after etiological therapy. The validation cohort confirmed 14 of the differentially expressed markers. CONCLUSIONS We identified and validated a group of lipid biomarkers associated with regression of fibrosis that could be used as non-invasive biomarkers for detecting regression of fibrosis in cACLD. IMPACT AND IMPLICATIONS Regression of cirrhosis/advanced chronic liver disease (ACLD) after removal of the underlying cause of liver injury has been observed in human cirrhosis. However, detailed characterization of ACLD regression remains an unmet need. In this study, we provide a comprehensive phenotyping of individuals likely to experience ACLD regression. While obesity, carriage of GCKR variant rs1260326 and high liver stiffness were associated with lower likelihood of regression of ACLD, a signature of circulating lipid metabolites enabled differentiation of regressors from non-regressors after effective etiologic therapy. The lipid signature we discovered and externally validated could be used as non-invasive biomarker to detect regression of fibrosis in patients with compensated ACLD.
Collapse
Affiliation(s)
- Yuly P Mendoza
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland; Graduate School for Health Sciences (GHS), University of Bern, Switzerland
| | - Sofia Tsouka
- Institute of Clinical Chemistry, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Patcharamon Seubnooch
- Institute of Clinical Chemistry, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Katrin Freiburghaus
- Institute of Clinical Chemistry, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jaime Bosch
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland.
| |
Collapse
|
15
|
Shi Y, Qu F, Zeng S, Wang X, Liu Y, Zhang Q, Yuan D, Yuan C. Targeting long non-coding RNA H19 as a therapeutic strategy for liver disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:1-9. [PMID: 39357625 DOI: 10.1016/j.pbiomolbio.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
The liver has the function of regulating metabolic equilibrium in the human body, and the majority of liver disorders are chronic conditions that can significantly impair health. Recent research has highlighted the critical role of long noncoding RNAs (lncRNAs) in liver disease pathogenesis. LncRNA H19, an endogenous noncoding single-stranded RNA, exerts its influence through epigenetic modifications and affects various biological processes. This review focuses on elucidating the key molecular mechanisms underlying the regulation of H19 during the progression and advancement of liver diseases, aiming to highlight H19 as a potential therapeutic target and provide profound insights into the molecular underpinnings of liver pathologies.
Collapse
Affiliation(s)
- Yulan Shi
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University Yichang, 443002, China
| | - Fenghua Qu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University Yichang, 443002, China
| | - Shiyun Zeng
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University Yichang, 443002, China
| | - Xinchen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University Yichang, 443002, China
| | - Yuting Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University Yichang, 443002, China
| | - Qirui Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University Yichang, 443002, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University Yichang, 443002, China.
| |
Collapse
|
16
|
Paudel D, Hao F, Goand UK, Tian S, Koehle AM, Nguyen LV, Tian Y, Patterson AD, Singh V. Elevated systemic total bile acids escalate susceptibility to alcohol-associated liver disease. iScience 2024; 27:110940. [PMID: 39398234 PMCID: PMC11467679 DOI: 10.1016/j.isci.2024.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/21/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Excessive alcohol consumption is a major global health problem. Individuals with alcoholic liver disease often exhibit elevated serum total bile acids (TBAs). Nevertheless, the extent to which high TBA contributes to alcohol-associated liver disease (AALD) remains elusive. To investigate this, wild-type mice were categorized into normal (nTBA) and high (hTBA) TBA groups. Both groups underwent chronic-binge ethanol feeding for 4 weeks, followed by additional weekly ethanol doses. Ethanol feeding worsened AALD in both male and female mice with elevated serum TBA, characterized by liver dysfunction and steatosis. Decreased hepatic expression of genes involved in mitochondrial β-oxidation and lipid transport in ethanol-fed hTBA mice suggests that altered fatty acid metabolism contributed to AALD. Our findings, which represent the first to link high serum TBA to increased AALD susceptibility, underscore the importance of proactive serum TBA screening as a valuable tool for identifying individuals at high risk of developing AALD.
Collapse
Affiliation(s)
- Devendra Paudel
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Umesh K. Goand
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Sangshan Tian
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Anthony M. Koehle
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Loi V. Nguyen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
- Center for Molecular Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
17
|
Han YJ, Hu SQ, Zhu JH, Cai X, Lai DM, Chen BH, Zhu K, Tong Q, Zhou XR, Deng JL, Tou JF, Fang Z, Du LZ. Accurate prediction of biliary atresia with an integrated model using MMP-7 levels and bile acids. World J Pediatr 2024; 20:822-833. [PMID: 38141111 PMCID: PMC11402860 DOI: 10.1007/s12519-023-00779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/05/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Biliary atresia (BA) is a rare fatal liver disease in children, and the aim of this study was to develop a method to diagnose BA early. METHODS We determined serum levels of matrix metalloproteinase-7 (MMP-7), the results of 13 liver tests, and the levels of 20 bile acids, and integrated computational models were constructed to diagnose BA. RESULTS Our findings demonstrated that MMP-7 expression levels, as well as the results of four liver tests and levels of ten bile acids, were significantly different between 86 BA and 59 non-BA patients (P < 0.05). The computational prediction model revealed that MMP-7 levels alone had a higher predictive accuracy [area under the receiver operating characteristic curve (AUC) = 0.966, 95% confidence interval (CI): 0.942, 0.989] than liver test results and bile acid levels. The AUC was 0.890 (95% CI 0.837, 0.943) for liver test results and 0.825 (95% CI 0.758, 0.892) for bile acid levels. Furthermore, bile levels had a higher contribution to enhancing the predictive accuracy of MMP-7 levels (AUC = 0.976, 95% CI 0.953, 1.000) than liver test results. The AUC was 0.983 (95% CI 0.962, 1.000) for MMP-7 levels combined with liver test results and bile acid levels. In addition, we found that MMP-7 levels were highly correlated with gamma-glutamyl transferase levels and the liver fibrosis score. CONCLUSION The innovative integrated models based on a large number of indicators provide a noninvasive and cost-effective approach for accurately diagnosing BA in children. Video Abstract (MP4 142103 KB).
Collapse
Affiliation(s)
- Yi-Jiang Han
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shu-Qi Hu
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jin-Hang Zhu
- Department of Data and Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai, China
| | - Xiao Cai
- Department of Data and Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai, China
| | - Deng-Ming Lai
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Bao-Hai Chen
- Department of Information Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kun Zhu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiao Tong
- Department of Data and Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai, China
| | - Xin-Rui Zhou
- Department of Data and Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai, China
| | - Jia-Le Deng
- Department of Data and Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai, China
| | - Jin-Fa Tou
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Zhuo Fang
- Department of Data and Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai, China.
| | - Li-Zhong Du
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
18
|
Zhuang L, Jia N, Zhang L, Zhang Q, Antwi SO, Sartorius K, Wu K, Sun D, Xi D, Lu Y. Gpbar-1/cAMP/PKA signaling mitigates macrophage-mediated acute cholestatic liver injury via antagonizing NLRP3-ASC inflammasome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167266. [PMID: 38806072 DOI: 10.1016/j.bbadis.2024.167266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Acute cholestatic liver injury (ACLI) is a disease associated with bile duct obstruction that causes liver inflammation and apoptosis. Although G protein-coupled bile acid receptor1 (Gpbar-1) has diverse metabolic roles, its involvement in ACLI-associated immune activation remains unclear. Liver tissues and blood samples from 20 patients with ACLI and 20 healthy individuals were analyzed using biochemical tests, H&E staining, western blotting, and immunohistochemistry to verify liver damage and expression of Gpbar-1. The expression of Gpbar-1, cAMP/PKA signaling, and the NLRP3 inflammasome was tested in wild-type (WT) and Gpbar-1 knockdown (si-Gpbar-1) mice with ACLI induced by bile duct ligation (BDL) and in primary Kupffer cells (KCs) with or without Gpbar-1-siRNA. The results showed that total bile acids and Gpbar-1 expressions were elevated in patients with ACLI. Gpbar-1 knockdown significantly worsened BDL-induced acute hepatic damage, inflammation, and liver apoptosis in vivo. Knockdown of Gpbar-1 heightened KC sensitivity to lipopolysaccharide (LPS) stimulation. Gpbar-1 activation inhibited LPS-induced pro-inflammatory responses in normal KCs but not in Gpbar-1-knockdown KCs. Notably, NLRP3-ASC inflammasome expression was effectively enhanced by Gpbar-1 deficiency. Additionally, Gpbar-1 directly increased intracellular cAMP levels and PKA phosphorylation, thus disrupting the NLRP3-ASC inflammasome. The pro-inflammatory characteristic of Gpbar-1 deficiency was almost neutralized by the NLRP3 inhibitor CY-09. In vitro, M1 polarization was accelerated in LPS-stimulated Gpbar-1-knockdown KCs. Therapeutically, Gpbar-1 deficiency exacerbated BDL-induced ACLI, which could be rescued by inhibition of the NLRP3-ASC inflammasome. Our study reveal that Gpbar-1 may act as a novel immune-mediated regulator of ACLI by inhibiting the NLRP3-ASC inflammasome.
Collapse
Affiliation(s)
- Lin Zhuang
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China; Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University and The Wujin clinical college of Xuzhou medical university, Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, Jiangsu 213000, China
| | - Naixin Jia
- Department of Hepatobiliary Surgery, Kunshan First People's Hospital affiliated to Jiangsu University, Kunshan, Jiangsu 215300, China
| | - Li Zhang
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Qi Zhang
- Department of Oncology, Wujin Affiliated Hospital of Jiangsu University and The Wujin clinical college of Xuzhou Medical University, Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, Jiangsu 213000, China
| | - Samuel O Antwi
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA; The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kurt Sartorius
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA; School of Laboratory Medicine and Molecular Sciences, College of Health Sciences, University of Kwazulu-Natal, Durban 4041, South Africa; UKZN Gastrointestinal Cancer Research Unit, University of Kwazulu-Natal, Durban 4041, South Africa
| | - Kejia Wu
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Donglin Sun
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China.
| | - Dong Xi
- Department of Oncology, Wujin Affiliated Hospital of Jiangsu University and The Wujin clinical college of Xuzhou Medical University, Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, Jiangsu 213000, China.
| | - Yunjie Lu
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University and The Wujin clinical college of Xuzhou medical university, Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, Jiangsu 213000, China; The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA; Department of Hepatopancreatobiliary surgery, The First Affiliated Hospital of Soochow University, Suzhou 215100, China.
| |
Collapse
|
19
|
Wang J, Xu H, Liu Z, Cao Y, Chen S, Hou R, Zhou Y, Wang Y. Bile acid-microbiota crosstalk in hepatitis B virus infection. J Gastroenterol Hepatol 2024; 39:1509-1516. [PMID: 38721685 DOI: 10.1111/jgh.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 08/10/2024]
Abstract
Hepatitis B virus (HBV) is a hepatotropic non-cytopathic virus characterized by liver-specific gene expression. HBV infection highjacks bile acid metabolism, notably impairing bile acid uptake via sodium taurocholate cotransporting polypeptide (NTCP), which is a functional receptor for HBV entry. Concurrently, HBV infection induces changes in bile acid synthesis and the size of the bile acid pool. Conversely, bile acid facilitates HBV replication and expression through the signaling molecule farnesoid X receptor (FXR), a nuclear receptor activated by bile acid. However, in HepaRG cells and primary hepatocytes, FXR agonists suppress HBV RNA expression and the synthesis and secretion of DNA. In the gut, the size and composition of the bile acid pool significantly influence the gut microbiota. In turn, the gut microbiota impacts bile acid metabolism and innate immunity, potentially promoting HBV clearance. Thus, the bile acid-gut microbiota axis represents a complex and evolving relationship in the context of HBV infection. This review explores the interplay between bile acid and gut microbiota in HBV infection and discusses the development of HBV entry inhibitors targeting NTCP.
Collapse
Affiliation(s)
- Jiaxin Wang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Huimin Xu
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zixin Liu
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yutong Cao
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Siyu Chen
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ruifang Hou
- Hebi Key Laboratory of Liver Disease, Department of Infectious Diseases, People's Hospital of Hebi, Henan University, Hebi, China
| | - Yun Zhou
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yandong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
20
|
Aurora R, Sanford T. The Microbiome: From the Beginning to the End. MISSOURI MEDICINE 2024; 121:310-316. [PMID: 39575080 PMCID: PMC11578570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
The human microbiota, a community of microorganisms in our bodies, is crucial for our health. This paper explores its development from birth through old age, highlighting some of the unique roles at key life stages-infancy, adulthood, and in the elderly years. Understanding the significant health impacts and consequences of changes in the microbiota offers insights for both the public and clinicians.
Collapse
Affiliation(s)
- Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Thomas Sanford
- Department of Otolaryngology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
21
|
Luo X, Lu LG. Progress in the Management of Patients with Cholestatic Liver Disease: Where Are We and Where Are We Going? J Clin Transl Hepatol 2024; 12:581-588. [PMID: 38974958 PMCID: PMC11224908 DOI: 10.14218/jcth.2023.00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 07/09/2024] Open
Abstract
Cholestatic liver disease is a group of diseases in which bile acid accumulates in the liver for various reasons, resulting in abnormal liver biochemical indicators and histological damage. Cholestasis can be divided into intrahepatic cholestasis and extrahepatic cholestasis, which will contribute to liver damage and progress to liver fibrosis and cirrhosis. Primary biliary cholangitis (PBC) and primary sclerosing cholangitis are the two most typical cholestatic liver diseases. Ursodeoxycholic acid is currently the first-line treatment for PBC, while obeticholic acid, budesonide and fibrates have also shown good potential in the treatment of PBC. There are currently no official drugs approved to treat primary sclerosing cholangitis, and the use of ursodeoxycholic acid may have certain clinical benefits. At present, progress has been made in new treatment directions for cholestatic liver disease, including fibroblast growth factor 19, cholestyramine, S-adenosyl-L-methionine, steroid drugs, farnesoid X receptor agonists, and more. Considerable progress has been made in the management of cholestatic liver disease but there are still many opportunities and challenges. In this review, we summarized the recommended guidelines for the management of cholestatic disease and the progress of new drug research and development, in order to provide an important reference for the clinical practice of cholestatic liver disease.
Collapse
Affiliation(s)
- Xin Luo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lun-Gen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Malin SK, Syeda UA. Exercise Training Independent of Intensity Lowers Plasma Bile Acids in Prediabetes. Med Sci Sports Exerc 2024; 56:1009-1017. [PMID: 38190376 PMCID: PMC11096085 DOI: 10.1249/mss.0000000000003384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
INTRODUCTION People with obesity have high circulating bile acids (BA). Although aerobic fitness favors low circulating BA, the effect of training intensity before clinically meaningful weight loss on BA is unclear. This study aimed to test the hypothesis that 2 wk of interval (INT) versus continuous (CONT) exercise would lower plasma BA in relation to insulin sensitivity. METHODS Twenty-three older adults with prediabetes (ADA criteria) were randomized to 12 work-matched bouts of INT ( n = 11, 60.3 ± 2.4 yr, 32.1 ± 1.2 kg·m -2 ) at 3 min at 50% HR peak and 3 min at 90% HR peak or CONT ( n = 12, 60.8 ± 2.4 yr, 34.0 ± 1.7 kg·m -2 ) at 70% HR peak cycling training for 60 min·d -1 over 2 wk. A 180-min 75-g oral glucose tolerance test (OGTT) was performed to assess glucose tolerance (tAUC), insulin sensitivity (Siis), and metabolic flexibility (RER postprandial -RER fast ; indirect calorimetry). BA ( n = 8 conjugated and 7 unconjugated) were analyzed at 0, 30, and 60 min of the OGTT. Anthropometrics and fitness (V̇O 2peak ) were also assessed. RESULTS INT and CONT comparably reduced body mass index (BMI; P < 0.001) and fasting RER ( P < 0.001) but raised insulin sensitivity ( P = 0.03). INT increased V̇O 2peak as compared with CONT ( P = 0.01). Exercise decreased the unconjugated BA chenodeoxycholic acid iAUC 60min ( P < 0.001), deoxycholic acid iAUC 60min ( P < 0.001), lithocholic acid iAUC 60min ( P < 0.001), and glycodeoxycholic acid (GCDCA) iAUC 60min ( P < 0.001). Comparable reductions were also seen in the conjugated BA hyodeoxycholic acid iAUC 60min ( P = 0.01) and taurolithocholic acid iAUC 60min ( P = 0.007). Increased V̇O 2peak was associated with lowered UDCA 0min ( r = -0.56, P = 0.02) and cholic acid iAUC 60min ( r = -0.60, P = 0.005), whereas reduced BMI was related to higher GDCA 0min ( r = 0.60, P = 0.005) and GCDCA 0min ( r = 0.53, P = 0.01). Improved insulin sensitivity correlated with lower GCDCA iAUC 60min ( r = -0.45, P = 0.03) and GDCA iAUC 60min ( r = -0.48, P = 0.02), whereas increased metabolic flexibility was related to deoxycholic acid iAUC 60min ( r = 0.64, P = 0.004) and GCDCA iAUC 60min ( r = 0.43, P = 0.05). CONCLUSIONS Short-term training lowers some BA in relation to insulin sensitivity independent of intensity.
Collapse
Affiliation(s)
- Steven K. Malin
- Department of Kinesiology & Health, New Brunswick, NJ
- Department of Kinesiology, University of Virginia, Charlottesville, VA
- Division of Endocrinology, Metabolism & Nutrition; Department of Medicine, Rutgers University, New Brunswick, NJ
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ
| | | |
Collapse
|
23
|
Hintermann E, Tondello C, Fuchs S, Bayer M, Pfeilschifter JM, Taubert R, Mollenhauer M, Elferink RPJO, Manns MP, Christen U. Blockade of neutrophil extracellular trap components ameliorates cholestatic liver disease in Mdr2 (Abcb4) knockout mice. J Autoimmun 2024; 146:103229. [PMID: 38653165 DOI: 10.1016/j.jaut.2024.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Primary sclerosing cholangitis (PSC) is an (auto)immune-mediated cholestatic liver disease with a yet unclear etiology. Increasing evidence points to an involvement of neutrophils in chronic liver inflammation and cirrhosis but also liver repair. Here, we investigate the role of the neutrophil extracellular trap (NET) component myeloperoxidase (MPO) and the therapeutic potential of DNase I and of neutrophil elastase (NE) inhibitor GW311616A on disease outcome in the multidrug resistance 2 knockout (Mdr2-/-) mouse, a PSC animal model. Initially, we observed the recruitment of MPO expressing cells and the formation of NETs in liver biopsies of PSC patients and in Mdr2-/- livers. Furthermore, sera of Mdr2-/- mice contained perinuclear anti-neutrophil cytoplasmic antibody (p-ANCA)-like reactivity similar to PSC patient sera. Also, hepatic NE activity was significantly higher in Mdr2-/- mice than in wild type littermates. Flow cytometry analyses revealed that during disease development a highly active neutrophil subpopulation established specifically in the liver of Mdr2-/- mice. However, absence of their MPO activity, as in MPO-deficient Mdr2-/- mice, showed no effect on hepatobiliary disease severity. In contrast, clearance of extracellular DNA by DNase I reduced the frequency of liver-resident neutrophils, plasmacytoid dendritic cells (pDCs) and CD103+ conventional DCs and decreased cholangiocyte injury. Combination of DNase I with a pDC-depleting antibody was additionally hepatocyte-protective. Most importantly, GW311616A, an orally bioavailable inhibitor of human NE, attenuated hepatobiliary injury in a TNFα-dependent manner and damped hyperproliferation of biliary epithelial cells. Further, hepatic immigration and activity of CD11b+ DCs as well as the secretion of IFNγ by hepatic CD4 and CD8 T cells were reduced. Our findings delineate neutrophils as important participants in the immune cell crosstalk that drives cholestatic liver disease and identify NET components as potential therapeutic targets.
Collapse
Affiliation(s)
- Edith Hintermann
- Pharmazentrum Frankfurt / ZAFES, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Camilla Tondello
- Pharmazentrum Frankfurt / ZAFES, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sina Fuchs
- Pharmazentrum Frankfurt / ZAFES, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Monika Bayer
- Pharmazentrum Frankfurt / ZAFES, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Josef M Pfeilschifter
- Pharmazentrum Frankfurt / ZAFES, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Martin Mollenhauer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roland P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Urs Christen
- Pharmazentrum Frankfurt / ZAFES, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
24
|
Jin Z, Yin R, Yuan Y, Zheng C, Zhang P, Wang Y, Weng H. Dapagliflozin ameliorates hepatic steatosis via suppressing LXRα-mediated synthesis of lipids and bile acids. Biochem Pharmacol 2024; 223:116167. [PMID: 38527558 DOI: 10.1016/j.bcp.2024.116167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) prevalence is rising globally with no pharmacotherapies approved. Hepatic steatosis is closely associated with progression and prognosis of NAFLD. Dapagliflozin, kind of sodium-glucose cotransporter 2 (SGLT2) inhibitor, was found to improve NAFLD in clinical trials, while the underlying mechanism remains poorly elucidated. Here, we reported that dapagliflozin effectively mitigated liver injury and relieved lipid metabolism disorders in vivo. Further investigation showed that dapagliflozin markedly suppressed Liver X Receptor α (LXRα)-mediated synthesis of de novo lipids and bile acids (BAs). In AML12 cells, our results proved dapagliflozin decreased lipid contents via inhibiting the expression of LXRα and downstream liposynthesis genes. Proteosome inhibitor MG132 eliminated the effect of dapagliflozin on LXRα-mediated signaling pathway, which suggested that dapagliflozin downregulated LXRα expression through increasing LXRα degradation. Knockdown of LXRα with siRNA abolished the reduction of lipogenesis from dapagliflozin treatment, indicating that LXRα might be the pivotal target for dapagliflozin to exhibit the aforementioned benefits. Furthermore, the data showed that dapagliflozin reversed gut dysbiosis induced by BAs disruption and altered gut microbiota profile to reduce intestinal lipids absorption. Together, our study deciphered a novel mechanism by which dapagliflozin relieved hepatic steatosis and highlighted the potential benefit of dapagliflozin in treating NAFLD.
Collapse
Affiliation(s)
- Zijie Jin
- Fudan University School of Pharmacy, Shanghai 201203, China.
| | - Ruotong Yin
- Fudan University School of Pharmacy, Shanghai 201203, China
| | - Yan Yuan
- Fudan University School of Pharmacy, Shanghai 201203, China
| | - Chen Zheng
- Fudan University School of Pharmacy, Shanghai 201203, China
| | - Peng Zhang
- Fudan University School of Pharmacy, Shanghai 201203, China
| | - Yalin Wang
- Fudan University School of Pharmacy, Shanghai 201203, China
| | - Hongbo Weng
- Fudan University School of Pharmacy, Shanghai 201203, China.
| |
Collapse
|
25
|
Zhang W, Wu H, Luo S, Lu X, Tan X, Wen L, Ma X, Efferth T. Molecular insights into experimental models and therapeutics for cholestasis. Biomed Pharmacother 2024; 174:116594. [PMID: 38615607 DOI: 10.1016/j.biopha.2024.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Cholestatic liver disease (CLD) is a range of conditions caused by the accumulation of bile acids (BAs) or disruptions in bile flow, which can harm the liver and bile ducts. To investigate its pathogenesis and treatment, it is essential to establish and assess experimental models of cholestasis, which have significant clinical value. However, owing to the complex pathogenesis of cholestasis, a single modelling method can merely reflect one or a few pathological mechanisms, and each method has its adaptability and limitations. We summarize the existing experimental models of cholestasis, including animal models, gene-knockout models, cell models, and organoid models. We also describe the main types of cholestatic disease simulated clinically. This review provides an overview of targeted therapy used for treating cholestasis based on the current research status of cholestasis models. In addition, we discuss the respective advantages and disadvantages of different models of cholestasis to help establish experimental models that resemble clinical disease conditions. In sum, this review not only outlines the current research with cholestasis models but also projects prospects for clinical treatment, thereby bridging basic research and practical therapeutic applications.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiman Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
26
|
Scoditti E, Sabatini S, Carli F, Gastaldelli A. Hepatic glucose metabolism in the steatotic liver. Nat Rev Gastroenterol Hepatol 2024; 21:319-334. [PMID: 38308003 DOI: 10.1038/s41575-023-00888-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
The liver is central in regulating glucose homeostasis, being the major contributor to endogenous glucose production and the greatest reserve of glucose as glycogen. It is both a target and regulator of the action of glucoregulatory hormones. Hepatic metabolic functions are altered in and contribute to the highly prevalent steatotic liver disease (SLD), including metabolic dysfunction-associated SLD (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). In this Review, we describe the dysregulation of hepatic glucose metabolism in MASLD and MASH and associated metabolic comorbidities, and how advances in techniques and models for the assessment of hepatic glucose fluxes in vivo have led to the identification of the mechanisms related to the alterations in glucose metabolism in MASLD and comorbidities. These fluxes can ultimately increase hepatic glucose production concomitantly with fat accumulation and alterations in the secretion and action of glucoregulatory hormones. No pharmacological treatment has yet been approved for MASLD or MASH, but some antihyperglycaemic drugs approved for treating type 2 diabetes have shown positive effects on hepatic glucose metabolism and hepatosteatosis. A deep understanding of how MASLD affects glucose metabolic fluxes and glucoregulatory hormones might assist in the early identification of at-risk individuals and the use or development of targeted therapies.
Collapse
Affiliation(s)
- Egeria Scoditti
- Institute of Clinical Physiology, National Research Council, Lecce, Italy
| | - Silvia Sabatini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| |
Collapse
|
27
|
Rajak S. Dynamics of cellular plasticity in non-alcoholic steatohepatitis (NASH). Biochim Biophys Acta Mol Basis Dis 2024; 1870:167102. [PMID: 38422712 DOI: 10.1016/j.bbadis.2024.167102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Non-alcoholic steatohepatitis (NASH) is a pathogenic stage of the broader non-alcoholic fatty liver disease (NAFLD). Histological presentation of NASH includes hepatocyte ballooning, macrophage polarization, ductular reaction, and hepatic stellate cell (HSCs) activation. At a cellular level, a heterogenous population of cells such as hepatocytes, macrophages, cholangiocytes, and HSCs undergo dramatic intra-cellular changes in response to extracellular triggers, which are termed "cellular plasticity. This dynamic switch in the cellular structure and function of hepatic parenchymal and non-parenchymal cells and their crosstalk culminates in the perpetuation of inflammation and fibrosis in NASH. This review presents an overview of our current understanding of cellular plasticity in NASH and its molecular mechanisms, along with possible targeting to develop cell-specific NASH therapies.
Collapse
Affiliation(s)
- Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
| |
Collapse
|
28
|
Zhou X, Luo J, Liang X, Li P, Ren K, Shi D, Xin J, Jiang J, Chen J, He L, Yang H, Ma S, Li B, Li J. Plasma thrombomodulin as a candidate biomarker for the diagnosis and prognosis of HBV-related acute-on-chronic liver failure. Infect Drug Resist 2024; 17:1185-1198. [PMID: 38560706 PMCID: PMC10981872 DOI: 10.2147/idr.s437926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Background and Aim Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is a complicated syndrome with high short-term mortality. Effective biomarkers are required for its early diagnosis and prognosis. This study aimed to determine the diagnostic and prognostic value of thrombomodulin (TM) in patients with HBV-ACLF. Methods The expression of TM during disease progression was evaluated through transcriptomics analysis. The plasma TM concentrations of 393 subjects with HBV-ACLF (n=213), acute-on-chronic hepatic dysfunction (ACHD, n=50), liver cirrhosis (LC, n=50) or chronic hepatitis B (CHB, n=50), and normal controls (NC, n=30) from a prospective multicenter cohort, were measured to verify the diagnostic and prognostic significance of plasma TM for HBV-ACLF patients by enzyme-linked immunosorbent assay (ELISA). Results TM mRNA was highly expressed in the HBV-ACLF group compared with the ACHD group (AUROC=0.710). High expression of TM predicted poor prognosis for HBV-ACLF patients at 28/90 days (AUROCs=0.823/0.788). Functional analysis showed that TM was significantly associated with complement activation and the inflammatory signaling pathway. External validation confirmed its high diagnostic accuracy for HBV-ACLF patients (AUROC=0.796). Plasma TM concentrations were correlated with organ failure, including coagulation and kidney failure. Plasma TM concentrations showed a potential prognostic value for 28-day mortality rates (AUROC=0.702). Risk stratification specifically identified HBV-ACLF patients with a high risk of death as having a plasma TM concentration of ≥8.4 ng/mL. Conclusion This study reveals that the plasma TM can be a candidate biomarker for early diagnosis and prognosis of HBV-ACLF, and might play a vital role in coagulation and inflammation.
Collapse
Affiliation(s)
- Xingping Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Jinjin Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Xi Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, People’s Republic of China
| | - Peng Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Keke Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Dongyan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, People’s Republic of China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, People’s Republic of China
| | - Jing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, People’s Republic of China
| | - Jiaxian Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Lulu He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Hui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Shiwen Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Bingqi Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, People’s Republic of China
| |
Collapse
|
29
|
Fitzinger J, Rodriguez-Blanco G, Herrmann M, Borenich A, Stauber R, Aigner E, Mangge H. Gender-Specific Bile Acid Profiles in Non-Alcoholic Fatty Liver Disease. Nutrients 2024; 16:250. [PMID: 38257143 PMCID: PMC10821077 DOI: 10.3390/nu16020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is increasing worldwide. A main cause is the obesogenic, so-called Western lifestyle. NAFLD follows a long, unperceived course, and ends potentially fatally. Early diagnosis of aggressive subtypes saves lives. So far, non-invasive means of detection are limited. A better understanding of the pathogenic interplay among insulin resistance, immune inflammation, microbiome, and genetic background is important. Metabolomics may give insight into these interlaced processes. METHODS In this study, we measured bile acids (BA) in the plasma of adult NAFLD and alcohol-associated liver disease (ALD) patients and healthy controls with targeted mass spectrometry. We focused on gender-related bile acid production pathology in NAFLD and ALD. RESULTS Compared to healthy controls, women with NAFLD had significantly higher concentrations of total BA, total primary BA, total cholic (CA), total chenodeoxycholic (CDCA), total glycine-conjugated, and total non-12-a-OH BA. Concerning subtypes, glycocholic (GCA) and glycochenodeoxycholic (GCDCA), BA were elevated in women with NAFLD. In contrast, men with NAFLD had no significantly altered total BA fractions. However, the subtypes GCA, glycodeoxycholic (GDCA), glycolithocholic (GLCA), lithocholic (LCA), taurolithocholic (TLCA), and tauroursodeoxycholic acid (TUDCA) were elevated, while CA was significantly decreased. In NAFLD, except ursodeoxycholic acid (UDC), all total BA correlated significantly positively in both sexes with the ELF score, while in ALD, only males showed significant correlations exceptive for total UDC BA. In NAFLD, total BA, total primary BA, total secondary BA, total free secondary BA, total CA, total CDCA, total taurine conjugated, total glycine conjugated, total 12-a-OH, and total non-12-a-OH were significantly higher in cases of a high enhanced liver fibrosis (ELF) score above 9.8. In ALD, total UDC was additionally elevated. Between NAFLD with and without NASH, we found no significant differences. CONCLUSION Our data show gender-specific bile acid profiles in NAFLD and markedly different BA patterns in ALD. Women with NAFLD had more severe cholestasis. Men may better compensate fat storage-driven bile acid dynamics, indicated by higher levels of taurine-conjugated BA, which associate with beneficial metabolic functions.
Collapse
Affiliation(s)
- Julia Fitzinger
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.H.)
| | - Giovanny Rodriguez-Blanco
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.H.)
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.H.)
| | - Andrea Borenich
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria;
| | - Rudolf Stauber
- Division of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria;
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria;
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.H.)
| |
Collapse
|
30
|
Rives C, Martin CMP, Evariste L, Polizzi A, Huillet M, Lasserre F, Alquier-Bacquie V, Perrier P, Gomez J, Lippi Y, Naylies C, Levade T, Sabourdy F, Remignon H, Fafournoux P, Chassaing B, Loiseau N, Guillou H, Ellero-Simatos S, Gamet-Payrastre L, Fougerat A. Dietary Amino Acid Source Elicits Sex-Specific Metabolic Response to Diet-Induced NAFLD in Mice. Mol Nutr Food Res 2024; 68:e2300491. [PMID: 37888831 DOI: 10.1002/mnfr.202300491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/21/2023] [Indexed: 10/28/2023]
Abstract
SCOPE Non-alcoholic fatty liver disease (NAFLD) is a sexually dimorphic disease influenced by dietary factors. Here, the metabolic and hepatic effects of dietary amino acid (AA) source is assessed in Western diet (WD)-induced NAFLD in male and female mice. METHODS AND RESULTS The AA source is either casein or a free AA mixture mimicking the composition of casein. As expected, males fed a casein-based WD display glucose intolerance, fasting hyperglycemia, and insulin-resistance and develop NAFLD associated with changes in hepatic gene expression and microbiota dysbiosis. In contrast, males fed the AA-based WD show no steatosis, a similar gene expression profile as males fed a control diet, and a distinct microbiota composition compared to males fed a casein-based WD. Females are protected against WD-induced liver damage, hepatic gene expression, and gut microbiota changes regardless of the AA source. CONCLUSIONS Free dietary AA intake prevents the unhealthy metabolic outcomes of a WD preferentially in male mice.
Collapse
Affiliation(s)
- Clémence Rives
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Céline Marie Pauline Martin
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Lauris Evariste
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Marine Huillet
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Frédéric Lasserre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Valérie Alquier-Bacquie
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Prunelle Perrier
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Jelskey Gomez
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Thierry Levade
- INSERM U1037, CRCT, Paul Sabatier University, Toulouse, 31059, France
- Biochemistry Laboratory, CHU Toulouse, Toulouse, 31300, France
| | - Frédérique Sabourdy
- INSERM U1037, CRCT, Paul Sabatier University, Toulouse, 31059, France
- Biochemistry Laboratory, CHU Toulouse, Toulouse, 31300, France
| | - Hervé Remignon
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
- INP-ENSAT, Toulouse University, Castanet-Tolosan, 31320, France
| | - Pierre Fafournoux
- INRAE center, Proteostasis Tim, Saint Genes Champanelle, 63122, France
| | - Benoit Chassaing
- INSERM U1016, Team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR10 8104, Paris Cité University, Paris, 75014, France
| | - Nicolas Loiseau
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Anne Fougerat
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| |
Collapse
|
31
|
Huo Y, Ma F, Li L, Li Y, Zhong G, Liao J, Han Q, Li Y, Pan J, Hu L, Zhang H, Guo J, Tang Z. Effect of Copper Exposure on the Cholesterol Metabolism in Broiler Liver. Biol Trace Elem Res 2023; 201:5747-5755. [PMID: 36929115 DOI: 10.1007/s12011-023-03609-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Copper (Cu) is a kind of widely used dietary supplement in poultry production, and a common environmental pollutant at the same time. Excess Cu exposure has been reported to accumulate in the liver and induce cytotoxicity, but the effect of Cu toxicity on hepatic cholesterol metabolism is still uncertain. Herein, we aimed to reveal the effect of excess Cu on the liver and primary hepatocytes of broilers at various concentrations. We found that 110 mg/kg Cu supplement remarkably increased blood cholesterol levels by detecting serum TC, LDL-C, and HDL-C in the broilers, while there was no significant difference in 220 and 330 mg/kg Cu supplements. In addition, high Cu exposure resulted in severe hepatic steatosis and hepatic cord derangement in the broilers. Oil red O staining of primary hepatocytes showed that Cu treatment caused intracellular neutral lipid accumulation. However, the hepatic TC content indicated a downward trend in both liver tissues and hepatocytes after Cu exposure. Furthermore, the expression of cholesterol metabolism-related indicators (SREBP2, HMGCR, LDLR, and CYP7A1) was notably decreased in the Cu-treated groups. While the expression of the key enzyme of cholesterol esterification (ACAT2) did not change significantly. Taken together, our findings preliminarily revealed excess Cu-induced hepatic cholesterol metabolism dysfunction, providing a deeper understanding of the molecular mechanisms of Cu-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yihui Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Lei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Yuanxu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
32
|
Ma L, Lv J, Zhang A. Depletion of S-adenosylmethionine induced by arsenic exposure is involved in liver injury of rat through perturbing histone H3K36 trimethylation dependent bile acid metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122228. [PMID: 37481032 DOI: 10.1016/j.envpol.2023.122228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Long-term exposure to arsenic, a common environmental pollutant, can induce various types of liver injury, but the mechanism and treatment measures remain unclear. This study constructed a rat model of arsenic-induced liver injury, with methyl group donor S-adenosylmethionine (SAM) supplementation and Rosa roxburghii Tratt juice intervention, to explore the epigenetic mechanism and intervention method of arsenic-induced liver injury from the perspective of hepatic bile acid metabolism. The results showed that arsenic exposure induced the accumulation of total bile acids (TBA) in the liver and serum of rats, and the abnormalities in liver function and liver histopathology. Arsenic reduced histone H3K36 trimethylation (H3K36me3) in the liver via consuming methyl group donor SAM. The reduction of H3K36me3 was involved in arsenic-induced bile acid accumulation by inhibiting the transcription of negative feedback regulators Fxr and Fgfr4 for hepatic bile acid synthesis. SAM supplementation reversed arsenic-induced bile acid accumulation and liver injury by reactivating H3k36me3-dependent transcription of Fxr and Fgfr4. Moreover, this study found that Rosa roxburghii Tratt juice could rescue arsenic-induced SAM consumption, recover H3K36me3-dependent negative feedback regulation of hepatic bile acid synthesis, and alleviate arsenic-induced bile acid accumulation and liver injury. In conclusion, arsenic exposure perturbed H3K36me3-dependent hepatic bile acid metabolism via depleting SAM, thereby inducing hepatic bile acid accumulation and liver injury, which was ameliorated by the supporting effect of Rosa roxburghii Tratt juice on SAM. This study contributes to understanding the mechanism of arsenic-induced liver injury from the perspective of SAM-dependent epigenetics, providing new insight into its prevention and treatment.
Collapse
Affiliation(s)
- Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| | - Jiaxin Lv
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| |
Collapse
|
33
|
Garbuzenko DV. Therapeutic possibilities of gut microbiota modulation in acute decompensation of liver cirrhosis. World J Hepatol 2023; 15:525-537. [PMID: 37206649 PMCID: PMC10190690 DOI: 10.4254/wjh.v15.i4.525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
The formation of liver cirrhosis (LC) is an unfavorable event in the natural history of chronic liver diseases and with the development of portal hypertension and/or impaired liver function can cause a fatal outcome. Decompensation of LC is considered the most important stratification variable for the risk of death. It is currently postulated that decompensation of LC occurs through an acute (including acute-on-chronic liver failure) and non-acute pathway. Acute decompensation of LC is accompanied by the development of life-threatening complications, characterized by an unfavorable prognosis and high mortality. Progress in understanding the underlying molecular mechanisms has led to the search for new interventions, drugs, and biological substances that can affect key links in the pathogenesis of acute decompensation in LC, for example the impaired gut-liver axis and associated systemic inflammation. Given that particular alterations in the composition and function of gut microbiota play a crucial role here, the study of the therapeutic possibilities of its modulation has emerged as one of the top concerns in modern hepatology. This review summarized the investigations that describe the theoretical foundations and therapeutic potential of gut microbiota modulation in acute decompensation of LC. Despite the encouraging preliminary data, the majority of the suggested strategies have only been tested in animal models or in preliminary clinical trials; additional multicenter randomized controlled trials must demonstrate their efficacy in larger patient populations.
Collapse
|
34
|
Liu AN, Xu CF, Liu YR, Sun DQ, Jiang L, Tang LJ, Zhu PW, Chen SD, Liu WY, Wang XD, Targher G, Byrne CD, Wong VWS, Fu J, Su MM, Loomba R, Zheng MH, Ni Y. Secondary bile acids improve risk prediction for non-invasive identification of mild liver fibrosis in nonalcoholic fatty liver disease. Aliment Pharmacol Ther 2023; 57:872-885. [PMID: 36670060 PMCID: PMC10792530 DOI: 10.1111/apt.17362] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/03/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND Dysregulated bile acid (BA) metabolism has been linked to steatosis, inflammation, and fibrosis in nonalcoholic fatty liver disease (NAFLD). AIM To determine whether circulating BA levels accurately stage liver fibrosis in NAFLD. METHODS We recruited 550 Chinese adults with biopsy-proven NAFLD and varying levels of fibrosis. Ultra-performance liquid chromatography coupled with tandem mass spectrometry was performed to quantify 38 serum BAs. RESULTS Compared to those without fibrosis, patients with mild fibrosis (stage F1) had significantly higher levels of secondary BAs, and increased diastolic blood pressure (DBP), alanine aminotransferase (ALT), body mass index, and waist circumstance (WC). The combination of serum BAs with WC, DBP, ALT, or Homeostatic Model Assessment for Insulin Resistance performed well in identifying mild fibrosis, in men and women, and in those with/without obesity, with AUROCs 0.80, 0.88, 0.75 and 0.78 in the training set (n = 385), and 0.69, 0.80, 0.61 and 0.69 in the testing set (n = 165), respectively. In comparison, the combination of BAs and clinical/biochemical biomarkers performed less well in identifying significant fibrosis (F2-4). In women and in non-obese subjects, AUROCs were 0.75 and 0.71 in the training set, 0.65 and 0.66 in the validation set, respectively. However, these AUROCs were higher than those observed for the fibrosis-4 index, NAFLD fibrosis score, and Hepamet fibrosis score. CONCLUSIONS Secondary BA levels were significantly increased in NAFLD, especially in those with mild fibrosis. The combination of serum BAs and clinical/biochemical biomarkers for identifying mild fibrosis merits further assessment.
Collapse
Affiliation(s)
- A-Na Liu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cui-Fang Xu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya-Ru Liu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan-Qin Sun
- Department of Nephrology, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Ling Jiang
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pei-Wu Zhu
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sui-Dan Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen-Yue Liu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Dong Wang
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, Verona, Italy
| | - Christopher D. Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton & University of Southampton, Southampton General Hospital, Southampton, UK
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Junfen Fu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming-Ming Su
- Clinical Mass Spectrometry Innovation Center, Shanghai Keyi Biotechnology Co., Ltd., Shanghai, China
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| | - Yan Ni
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
35
|
Pan Y, Xia H, He Y, Zeng S, Shen Z, Huang W. The progress of molecules and strategies for the treatment of HBV infection. Front Cell Infect Microbiol 2023; 13:1128807. [PMID: 37009498 PMCID: PMC10053227 DOI: 10.3389/fcimb.2023.1128807] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023] Open
Abstract
Hepatitis B virus infections have always been associated with high levels of mortality. In 2019, hepatitis B virus (HBV)-related diseases resulted in approximately 555,000 deaths globally. In view of its high lethality, the treatment of HBV infections has always presented a huge challenge. The World Health Organization (WHO) came up with ambitious targets for the elimination of hepatitis B as a major public health threat by 2030. To accomplish this goal, one of the WHO's strategies is to develop curative treatments for HBV infections. Current treatments in a clinical setting included 1 year of pegylated interferon alpha (PEG-IFNα) and long-term nucleoside analogues (NAs). Although both treatments have demonstrated outstanding antiviral effects, it has been difficult to develop a cure for HBV. The reason for this is that covalently closed circular DNA (cccDNA), integrated HBV DNA, the high viral burden, and the impaired host immune responses all hinder the development of a cure for HBV. To overcome these problems, there are clinical trials on a number of antiviral molecules being carried out, all -showing promising results so far. In this review, we summarize the functions and mechanisms of action of various synthetic molecules, natural products, traditional Chinese herbal medicines, as clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR/Cas)-based systems, zinc finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), all of which could destroy the stability of the HBV life cycle. In addition, we discuss the functions of immune modulators, which can enhance or activate the host immune system, as well some representative natural products with anti-HBV effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
36
|
Li Y, Wang Q, Jin J, Tan B, Ren J, Song G, Zou B, Weng F, Yan D, Qiu F. 15,16-dihydrotanshinone I in Danshen ethanol extract aggravated cholestasis by inhibiting Cyp3a11 mediated bile acids hydroxylation. Toxicol Lett 2023; 377:62-70. [PMID: 36804361 DOI: 10.1016/j.toxlet.2023.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Our previous study found that high-dose Tanshinones Capsule (TC) aggravated cholestasis in mice. To explore its underlying mechanism, main tanshinones components (15,16-dihydrotanshinone I (DTI), cryptotanshinone (CTS) and tanshinone IIA (TSA)) form TC were studied separately. Bile acids (BAs) that were primarily metabolized by hydroxylation were identified, and then the inhibitory effect of each tanshinones on their hydroxylation were evaluated. The anti-cholestasis effect of each tanshinones were studied in mice, the hepatic concentrations of BAs and tanshinones were measured and analyzed as well. The effect of tanshinones on Cyp3a11 protein expression was investigated. DTI exhibited inhibitory effect on the hydroxylation of lithocholic acid (LCA), taurolithocholic acid (TLCA) and taurochenodeoxycholic acid (TCDCA), their IC50 values were 0.81, 0.36 and 1.29 μM, respectively. The hydroxylation of LCA, TLCA and TCDCA were mediated by Cyp3a11. Low-dose DTI, CTS and TSA ameliorated cholestatic liver injury in mice, while high-dose DTI didn't exhibit anti-cholestatic effect. The hepatic BAs profiles indicated that hydroxylation of BAs was inhibited in high-dose DTI group. DTI and TSA up-regulated the protein expression of Cyp3a11. As the hepatic concentration of DTI increased, the inhibitory effect at enzymatic activity level overwhelmed its up-regulation effect at protein level, thus resulted in worsening of cholestasis.
Collapse
Affiliation(s)
- Yue Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Wang
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Experiment center for science and technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingyi Jin
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Tan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ren
- AI Lab, Tencent, Shenzhen, China
| | - Guochao Song
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Zou
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengyi Weng
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongming Yan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Furong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
37
|
Gut microbiota alters host bile acid metabolism to contribute to intrahepatic cholestasis of pregnancy. Nat Commun 2023; 14:1305. [PMID: 36894566 PMCID: PMC9998625 DOI: 10.1038/s41467-023-36981-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a female pregnancy-specific disorder that is characterized by increased serum bile acid and adverse fetal outcomes. The aetiology and mechanism of ICP are poorly understood; thus, existing therapies have been largely empiric. Here we show that the gut microbiome differed significantly between individuals with ICP and healthy pregnant women, and that colonization with gut microbiome from ICP patients was sufficient to induce cholestasis in mice. The gut microbiomes of ICP patients were primarily characterized by Bacteroides fragilis (B. fragilis), and B. fragilis was able to promote ICP by inhibiting FXR signaling via its BSH activity to modulate bile acid metabolism. B. fragilis-mediated FXR signaling inhibition was responsible for excessive bile acid synthesis and interrupted hepatic bile excretion to ultimately promote the initiation of ICP. We propose that modulation of the gut microbiota-bile acid-FXR axis may be of value for ICP treatment.
Collapse
|
38
|
He Y, Wu F, Tan Z, Zhang M, Li T, Zhang A, Miao J, Ou M, Long L, Sun H, Wang X. Quality Markers’ Discovery and Quality Evaluation of Jigucao Capsule Using UPLC-MS/MS Method. Molecules 2023; 28:molecules28062494. [PMID: 36985466 PMCID: PMC10058756 DOI: 10.3390/molecules28062494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Jigucao capsules (JGCC) have the effects of soothing the liver and gallbladder and clearing heat and detoxification. It is a good medicine for treating acute and chronic hepatitis cholecystitis with damp heat of the liver and gallbladder. However, the existing quality standard of JGCC does not have content determination items, which is not conducive to quality control. In this study, serum pharmacochemistry technology and UNIFI data processing software were used to identify the blood prototype components and metabolites under the condition of the obvious drug effects of JGCC, and the referenced literature reports and the results from in vitro analysis of JGCC in the early stage revealed a total of 43 prototype blood components and 33 metabolites in JGCC. Quality markers (Q-markers) were discovered, such as abrine, trigonelline, hypaphorine and isoschaftoside. In addition, ultra-high-performance liquid chromatography–triple quadrupole mass spectrometry (UPLC-QQQ-MS) was used to determine the active ingredients in JGCC. The components of quantitative analysis have good correlation in the linear range with R2 ≥ 0.9993. The recovery rate is 93.15%~108.92% and the relative standard deviation (RSD) is less than 9.48%. The established UPLC-MS/MS quantitative analysis method has high sensitivity and accuracy, and can be used for the quality evaluation of JGCC.
Collapse
Affiliation(s)
- Yanmei He
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150036, China
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Zhien Tan
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Mengli Zhang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Taiping Li
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Jianhua Miao
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Min Ou
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Lihuo Long
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150036, China
- Correspondence: (H.S.); (X.W.); Tel./Fax: +86-451-8211-0818 (X.W.)
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150036, China
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
- Correspondence: (H.S.); (X.W.); Tel./Fax: +86-451-8211-0818 (X.W.)
| |
Collapse
|
39
|
Aseem SO, Hylemon PB, Zhou H. Bile Acids and Biliary Fibrosis. Cells 2023; 12:cells12050792. [PMID: 36899928 PMCID: PMC10001305 DOI: 10.3390/cells12050792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Biliary fibrosis is the driving pathological process in cholangiopathies such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Cholangiopathies are also associated with cholestasis, which is the retention of biliary components, including bile acids, in the liver and blood. Cholestasis may worsen with biliary fibrosis. Furthermore, bile acid levels, composition and homeostasis are dysregulated in PBC and PSC. In fact, mounting data from animal models and human cholangiopathies suggest that bile acids play a crucial role in the pathogenesis and progression of biliary fibrosis. The identification of bile acid receptors has advanced our understanding of various signaling pathways involved in regulating cholangiocyte functions and the potential impact on biliary fibrosis. We will also briefly review recent findings linking these receptors with epigenetic regulatory mechanisms. Further detailed understanding of bile acid signaling in the pathogenesis of biliary fibrosis will uncover additional therapeutic avenues for cholangiopathies.
Collapse
Affiliation(s)
- Sayed Obaidullah Aseem
- Stravitz-Sanyal Institute for Liver Disease & Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence:
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Central Virginia Veterans Healthcare System, Richmond, VA 23249, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Central Virginia Veterans Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
40
|
Gu S, Hu S, Wang S, Qi C, Shi C, Fan G. Bidirectional association between NAFLD and gallstone disease: a systematic review and meta-analysis of observational studies. Expert Rev Gastroenterol Hepatol 2023; 17:283-293. [PMID: 36726224 DOI: 10.1080/17474124.2023.2175671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Growing evidence indicates an association between NAFLD and gallstone disease (GD), while some does not support this. The aim of this meta-analysis was to evaluate the bidirectional association between NAFLD and GD. RESEARCH DESIGN AND METHODS Five electronic databases were searched from inception to May 2022. The association was analyzed based on the odds ratio (OR) and 95% confidence interval (CI) with Reviewer Manager 5.3. RESULTS Ten studies involving 284,512 participants met the criteria for GD predicting the onset of NAFLD. GD patients had a higher incidence of NAFLD (OR:1.48, CI:1.32-1.65, p < 0.00001), especially the incidence of moderate-to-severe NAFLD (OR:1.63; CI:1.40-1.79), with females at a higher risk (OR: 1.84; CI: 1.48-2.29). The inverse association was explored in eight studies involving 326,922 participants. The GD incidence in NAFLD patients was higher (OR:1.71, CI:1.63-1.79, p < 0.00001) and may increase due to female sex (OR: 4.18; CI: 1.21-14.37) and high BMI (OR: 1.80; CI: 1.36-2.56), compared with the non-NAFLD group. Besides, this bidirectional association was also confirmed in the Chinese population. CONCLUSIONS The findings supported positive concurrent and bidirectional relationships between NAFLD and GD. Therefore, clinicians may alert the possibility of NAFLD in patients with GD and vice versa.
Collapse
Affiliation(s)
- Shengying Gu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Shanshan Hu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Shuowen Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Chendong Qi
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Chenyang Shi
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| |
Collapse
|
41
|
Pan Y, Guo J, Hu N, Xun Y, Zhang B, Feng Q, Chen S, Li X, Liu Q, Hu Y, Zhao Y. Distinct common signatures of gut microbiota associated with damp-heat syndrome in patients with different chronic liver diseases. Front Pharmacol 2022; 13:1027628. [PMID: 36467028 PMCID: PMC9712756 DOI: 10.3389/fphar.2022.1027628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/07/2022] [Indexed: 07/21/2023] Open
Abstract
Background: Chronic hepatitis B (CHB) and non-alcoholic fatty liver disease (NAFLD) are prevalent in China. According to traditional Chinese medicine (TCM) theory, damp-heat (DH) syndrome is common in chronic liver disease. However, the biological characteristics related to quantitative diagnosis remain to be determined. This study aimed to identify the consistent alterations in the gut microbiota associated with DH syndrome in patients with CHB or NAFLD. Methods: A total of 405 individuals were recruited, of which 146 were participants who met the consistent TCM diagnosis by three senior TCM physicians and were typical syndromes. All participants were required to provide fresh stool and serum samples. The gut microbiota was assessed by fecal 16S rRNA gene sequencing, and the serum metabolite profiles of participants were quantified by an ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) system. DH syndrome-related bacteria taxa were identified based on the 146 individuals with typical syndromes and validated in all 405 volunteers. Results: The results showed that CHB and NAFLD patients with typical TCM DH syndrome had consistently elevated serum total bile acid (TBA) levels. Significant alterations in microbial community were observed according to TCM syndromes identification. A total of 870 microbial operational taxonomic units and 21 serum metabolites showed the same variation trends in both the CHB and NAFLD DH syndrome groups. The functional analysis predicts consistent dysregulation of bile acid metabolism. Five genera (Agathobacter, Dorea, Lachnospiraceae_NC2004_group, Subdoligranulum, and unclassified_c__Clostridia) significantly decreased in abundance in patients with DH syndrome. We utilize these five genera combined with TBA to construct a random forest classifier model to predict TCM diagnosis. The diagnostic receiver-operator characteristic (ROC) areas for DH syndrome were 0.818 and 0.791 in internal tenfold cross-validation and the test set based on all 405 individuals, respectively. Conclusion: There are common signatures of gut microbiota associated with DH syndrome in patients with different chronic liver diseases. Serum TBA combined with DH-related genera provides a good diagnostic potential for DH syndrome in chronic liver disease.
Collapse
Affiliation(s)
- Yuqing Pan
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianchun Guo
- Department of Integrative Medicine, Hangzhou Xixi Hospital, Hangzhou, China
| | - Na Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunhao Xun
- Department of Integrative Medicine, Hangzhou Xixi Hospital, Hangzhou, China
| | - Binbin Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Feng
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiaohong Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Hu
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
42
|
Chen R, Tang R, Ma X, Gershwin ME. Immunologic Responses and the Pathophysiology of Primary Biliary Cholangitis. Clin Liver Dis 2022; 26:583-611. [PMID: 36270718 DOI: 10.1016/j.cld.2022.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease with a female predisposition and selective destruction of intrahepatic small bile ducts leading to nonsuppurative destructive cholangitis. It is characterized by seropositivity of antimitochondrial antibodies or PBC-specific antinuclear antibodies, progressive cholestasis, and typical liver histologic manifestations. Destruction of the protective bicarbonate-rich umbrella is attributed to the decreased expression of membrane transporters in biliary epithelial cells (BECs), leading to the accumulation of hydrophobic bile acids and sensitizing BECs to apoptosis. A recent X-wide association study reveals a novel risk locus on the X chromosome, which reiterates the importance of Treg cells.
Collapse
Affiliation(s)
- Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - M Eric Gershwin
- Division of Rheumatology-Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA.
| |
Collapse
|
43
|
Min YW, Rezaie A, Pimentel M. Bile Acid and Gut Microbiota in Irritable Bowel Syndrome. J Neurogastroenterol Motil 2022; 28:549-561. [PMID: 36250362 PMCID: PMC9577585 DOI: 10.5056/jnm22129] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 01/18/2023] Open
Abstract
Gut microbiota and their metabolites like bile acid (BA) have been investigated as causes of irritable bowel syndrome (IBS) symptoms. Primary BAs are synthesized and conjugated in the liver and released into the duodenum. BA biotransformation by gut microbiota begins in the intestine and results in production of a broad range of secondary BAs. Deconjugation is considered the gateway reaction for further modification and is mediated by bile salt hydrolase, which is widely expressed by the gut microbiota. However, gut bacteria that convert primary BAs to secondary BAs belong to a limited number of species, mainly Clostridiales. Like gut microbiota modify BA profile, BAs can shape gut microbiota via direct and indirect actions. BAs have prosecretory effects and regulates gut motility. BAs can also affect gut sensitivity. Because of the vital role of the gut microbiota and BAs in gut function, their bidirectional relationship may contribute to the pathophysiology of IBS. Individuals with IBS have been reported to have altered microbial profiles and modified BA profiles. A significant increase in fecal primary BA and a corresponding decrease in secondary BA have been observed in IBS with predominant diarrhea. In addition, primary BA was positively correlated with IBS symptoms. In IBS with predominant diarrhea, bacteria with reduced abundance mainly belonged to the genera in Ruminococcaceae and exhibited a negative correlation with primary BAs. Integrating the analysis of the gut microbiota and BAs could better understanding of IBS pathophysiology. The gap in this field needs to be further filled in the future.
Collapse
Affiliation(s)
- Yang Won Min
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA.,Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA.,Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA.,Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| |
Collapse
|
44
|
Wei C, Qiu J, Wu Y, Chen Z, Yu Z, Huang Z, Yang K, Hu H, Liu F. Promising traditional Chinese medicine for the treatment of cholestatic liver disease process (cholestasis, hepatitis, liver fibrosis, liver cirrhosis). JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115550. [PMID: 35863612 DOI: 10.1016/j.jep.2022.115550] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestatic liver disease (CLD) is mainly characterized by cholestasis. If not treated, it will deteriorate to cholestatic hepatitis, liver fibrosis, liver cirrhosis, and even liver failure. CLD has a high clinical incidence, and limited treatment with single therapy. In the long-term clinical exploration, traditional Chinese medicine (TCM) has been corroborated with unique therapeutic effects on the CLD process. AIM OF THIS REVIEW This paper summarizes the effective single and compound TCMs for the treatment of CLD. According to 4 important clinical stages of CLD: cholestasis, hepatitis, liver fibrosis, liver cirrhosis, pharmacological effects and mechanisms of 5 typical TCM examples are reviewed, aims to provide basis for clinical drug selection in different processes of CLD. MATERIALS AND METHODS Relevant scientific articles regarding therapeutic effects of TCM for the CLD were collected from different databases. We collated three single herbs including Artemisia scoparia Waldst. et Kit. or Artemisia capillaris Thunb. (Artemisiae Scopariae Herba, Yin Chen in Chinese), Paeonia lactiflora Pall. or Paeonia veitchii Lynch. (Paeoniae radix rubra, Chi Shao in Chinese), Poria cocos (Schw.) Wolf (Poria, Fu Ling in Chinese), and two compound herbs of Huang Qi Decoction (HQD) and Yin Chen Hao Decoction (YCHD) to studied and analyzed. RESULTS We proposed five promising TCMs treatments for the important developmental stages of CLD. Among them, Yin Chen is an essential medicine for protecting liver and gallbladder, and its TCM prescription is also a promising strategy for cholestasis. Based on clinical evidence, high-dose application of Chi Shao is a clinical special treatment of cholestasis hepatitis. Fu Ling can regulate immune cells and increase antibody levels in serum, which is expected to be an emerging therapy to prevent cholestatic liver fibrosis to cirrhosis. HQD can be used as routine clinical medicine for liver fibrosis. In addition, YCHD can exert better comprehensive advantages with multiple components, can treat the whole course of CLD and prevent it from developing to the end-stage. CONCLUSION Yin Chen, Chi Shao, Fu Ling, HQD and YCHD have shown good clinical efficacy in controlling the development of CLD. Clinically, it is easier to curb the development of CLD by adopting graded diagnosis and treatment measures. We suggest that CLD should be risk stratified in clinical treatment to ensure personalized treatment for patients, so as to slow down the development of the disease.
Collapse
Affiliation(s)
- Chunlei Wei
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Jing Qiu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Yuyi Wu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Ziqiang Chen
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Ziwei Yu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Zecheng Huang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Ke Yang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Huiling Hu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Fang Liu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| |
Collapse
|
45
|
Ren ZL, Li CX, Ma CY, Chen D, Chen JH, Xu WX, Chen CA, Cheng FF, Wang XQ. Linking Nonalcoholic Fatty Liver Disease and Brain Disease: Focusing on Bile Acid Signaling. Int J Mol Sci 2022; 23:13045. [PMID: 36361829 PMCID: PMC9654021 DOI: 10.3390/ijms232113045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/01/2023] Open
Abstract
A metabolic illness known as non-alcoholic fatty liver disease (NAFLD), affects more than one-quarter of the world's population. Bile acids (BAs), as detergents involved in lipid digestion, show an abnormal metabolism in patients with NAFLD. However, BAs can affect other organs as well, such as the brain, where it has a neuroprotective effect. According to a series of studies, brain disorders may be extrahepatic manifestations of NAFLD, such as depression, changes to the cerebrovascular system, and worsening cognitive ability. Consequently, we propose that NAFLD affects the development of brain disease, through the bile acid signaling pathway. Through direct or indirect channels, BAs can send messages to the brain. Some BAs may operate directly on the central Farnesoid X receptor (FXR) and the G protein bile acid-activated receptor 1 (GPBAR1) by overcoming the blood-brain barrier (BBB). Furthermore, glucagon-like peptide-1 (GLP-1) and the fibroblast growth factor (FGF) 19 are released from the intestine FXR and GPBAR1 receptors, upon activation, both of which send signals to the brain. Inflammatory, systemic metabolic disorders in the liver and brain are regulated by the bile acid-activated receptors FXR and GPBAR1, which are potential therapeutic targets. From a bile acid viewpoint, we examine the bile acid signaling changes in NAFLD and brain disease. We also recommend the development of dual GPBAR1/FXR ligands to reduce side effects and manage NAFLD and brain disease efficiently.
Collapse
Affiliation(s)
- Zi-Lin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chang-Xiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chong-Yang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Dan Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jia-Hui Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Wen-Xiu Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong-Ai Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue-Qian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
46
|
Liu Y, Wu Z, Zhang Y, Chen B, Yu S, Li W, Ren J. Alcohol-dependent downregulation of apolipoprotein H exacerbates fatty liver and gut microbiota dysbiosis in mice. Lipids Health Dis 2022; 21:89. [PMID: 36123743 PMCID: PMC9487114 DOI: 10.1186/s12944-022-01699-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Alcohol-related liver disease (ALD) is a major chronic liver ailment caused by alcohol overconsumption and abuse. Apolipoprotein H (APOH) participates in lipid metabolism and might have a potential regulatory role in ALD. Therefore, this study aimed to explore the effects of ApoH on alcohol-induced liver injury and gut microbiota dysbiosis. Methods ApoH−/− mice were generated and the synergic alcoholic steatohepatitis mouse model was constructed, which were used to assess liver function and pathological changes. Results ApoH−/− mice clearly exhibited spontaneous steatohepatitis. Severe hepatic steatosis was observed in alcohol-fed WT and ApoH−/− mice, in which ApoH expression was reduced post alcohol consumption. Moreover, RNA-seq and KEGG pathway analyses indicated that differential expression genes enriched in lipid metabolism and oxidation–reduction process between in alcohol-fed ApoH−/− mice and pair-fed control mice. Finally, gut microbiota diversity and composition were assessed by 16S rRNA Illumina next-generation sequencing. Alpha diversity of enterobacteria was lower in ApoH−/− mice with ethanol feeding than in ethanol-fed WT mice and all control-fed mice (P < 0.05). Moreover, KEGG enrichment analysis, using PICRUSt software, revealed that metabolic functions were activated in the gut microorganisms of ApoH−/− mice with ethanol feeding (P < 0.05). Conclusions Alcohol-downregulated ApoH expression, leading to the progress of fatty liver disease and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yaming Liu
- Department of Gastroenterology and Hepatology, Xiamen University Zhongshan Hospital, Xiamen, 361001, Fujian Province, China.,Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, 361001, Fujian Province, China
| | - Zhe Wu
- Digestive Department, Peking University People's Hospital, Beijing, 100001, China
| | - Yong Zhang
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, 361001, Fujian Province, China.,School of Life Sciences, Xiamen University, Xiamen, 361001, Fujian Province, China
| | - Binbin Chen
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, 361001, Fujian Province, China.,School of Medicine, Xiamen University, Xiamen, 361001, Fujian Province, China
| | - Shuqi Yu
- Department of Pathology, Xiamen University Zhongshan Hospital, Xiamen, 361001, Fujian Province, China
| | - Wanyun Li
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, 361001, Fujian Province, China.,School of Medicine, Xiamen University, Xiamen, 361001, Fujian Province, China
| | - Jianlin Ren
- Department of Gastroenterology and Hepatology, Xiamen University Zhongshan Hospital, Xiamen, 361001, Fujian Province, China. .,Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, 361001, Fujian Province, China.
| |
Collapse
|
47
|
Mori H, Svegliati Baroni G, Marzioni M, Di Nicola F, Santori P, Maroni L, Abenavoli L, Scarpellini E. Farnesoid X Receptor, Bile Acid Metabolism, and Gut Microbiota. Metabolites 2022; 12:647. [PMID: 35888771 PMCID: PMC9320384 DOI: 10.3390/metabo12070647] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD) are characterized by the concepts of lipo- and glucotoxicity. NAFLD is characterized by the accumulation of different lipidic species within the hepatocytes. Bile acids (BA), derived from cholesterol, and conjugated and stored in the gallbladder, help the absorption/processing of lipids, and modulate host inflammatory responses and gut microbiota (GM) composition. The latter is the new "actor" that links the GI tract and liver in NAFLD pathogenesis. In fact, the discovery and mechanistic characterization of hepatic and intestinal farnesoid X receptor (FXR) shed new light on the gut-liver axis. We conducted a search on the main medical databases for original articles, reviews, meta-analyses of randomized clinical trials, and case series using the following keywords, their acronyms, and their associations: farnesoid X receptor, bile acids metabolism, gut microbiota, dysbiosis, and liver steatosis. Findings on the synthesis, metabolism, and conjugation processes of BAs, and their action on FXR, change the understanding of NAFLD physiopathology. In detail, BAs act as ligands to several FXRs with GM modulation. On the other hand, the BAs pool is modulated by GM, thus, regulating FXRs functioning in the frame of liver fat deposition and fibrosis development. In conclusion, BAs passed from their role of simple lipid absorption and metabolism agents to messengers between the gut and liver, modulated by GM.
Collapse
Affiliation(s)
- Hideki Mori
- T.A.R.G.I.D., Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | | | - Marco Marzioni
- Gastroenterology Clinic; Università Politecnica delle Marche, 60121 Ancona, Italy; (M.M.); (L.M.)
| | - Francesca Di Nicola
- Hepatology Outpatient Clinic and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy; (F.D.N.); (P.S.)
| | - Pierangelo Santori
- Hepatology Outpatient Clinic and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy; (F.D.N.); (P.S.)
| | - Luca Maroni
- Gastroenterology Clinic; Università Politecnica delle Marche, 60121 Ancona, Italy; (M.M.); (L.M.)
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Emidio Scarpellini
- T.A.R.G.I.D., Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Hepatology Outpatient Clinic and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy; (F.D.N.); (P.S.)
| |
Collapse
|
48
|
Geng S, Zhang Y, Cao A, Liu Y, Di Y, Li J, Lou Q, Zhang L. Effects of Fat Type and Exogenous Bile Acids on Growth Performance, Nutrient Digestibility, Lipid Metabolism and Breast Muscle Fatty Acid Composition in Broiler Chickens. Animals (Basel) 2022; 12:ani12101258. [PMID: 35625104 PMCID: PMC9137457 DOI: 10.3390/ani12101258] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 01/14/2023] Open
Abstract
The current study aimed to explore the effects of fat type and exogenous bile acids (BAs) on growth performance, nutrient digestibility, lipid metabolism, and breast muscle fatty acids composition in broiler chickens. A total of 432 one-day-old Arbor Acres male broilers were stochastically distributed to a 2 × 2 factorial design comprised of two fat types (soybean oil and lard) and two levels of BAs (0 and 80 mg/kg) included in diets, totaling 4 treatments of 6 replicate pens with 18 chicks per replicate pen. Compared with treatments with soybean oil, dietary inclusion of lard increased the digestibility of ether extract (EE) in diets and the percentage of breast muscle on d 42, and increased the level of serum triglycerides and decreased serum alanine aminotransferase (ALT) activity on d 21 (p < 0.05). The level of saturated fatty acids, monounsaturated fatty acids (MUFAs), and the n-6 to n-3 polyunsaturated fatty acids ratio in breast muscle were also increased (p < 0.05) when feeding lard versus soybean oil. Dietary supplementation with BAs elevated average daily gain and reduced the ratio of feed to gain at d 0−21 and 0−42, significantly (p < 0.05). The digestibility of EE in diets and the percentage of breast muscle on d 42 were also increased by BAs (p < 0.05). Serum total cholesterol content as well as the percentage of abdominal fat on d 42, and ALT activity on d 21 were decreased when BAs were fed (p < 0.05). The concentration of total fatty acids, saturated fatty acids, and MUFAs of breast muscle were decreased by BAs. These results indicate that BAs can increase growth performance and nutrient digestibility, elevate carcass characteristics, and improve lipid metabolism, and their effects on nutrient digestibility and carcass characteristics were more pronounced in broiler chickens fed diets with lard.
Collapse
|
49
|
Garbuzenko D. Gut microbiota modulation in acute decompensation of liver cirrhosis: theory and therapeutic potential. DOKAZATEL'NAYA GASTROENTEROLOGIYA 2022; 11:65. [DOI: 10.17116/dokgastro20221104165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
|