1
|
Jammigumpula H, Arukula R, Agrahari AK, Ding F, Ghnaim AO, Gangarapu K. Electrochemical interpretations for the study of molnupiravir binding interactions with bovine serum albumin and DNA and molecular dynamics studies. Biochem Biophys Res Commun 2025; 769:151988. [PMID: 40359762 DOI: 10.1016/j.bbrc.2025.151988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/07/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
Molnupiravir (MPV), an antiviral drug targeting SARS-CoV-2, exerts its effects by inducing lethal mutagenesis in viral RNA. This study investigates MPV's electrochemical behavior and binding interactions with key biomolecules-BSA and ctDNA-via cyclic voltammetry (CV) and molecular dynamics (MD) simulations. The electrochemical behavior of the MPV was studied by using GCE in an across pH levels 4.0, 7.0, and 9.2 phosphate buffer solutions. An irreversible anodic peak was observed at a peak potential of +0.860 V on the GCE at pH 7.0. The electrochemical properties of MPV at the electrode surface, along with the influences of anodic peak potential, peak current, scan rate, and pH, were thoroughly analyzed and discussed. A good linearity in the concentration range of 35 μM-200 μM was shown for MPV. An electro-oxidation mechanism involving a two-electron, two-proton transfer was proposed, supporting an analytical approach for MPV quantification in real samples. In vitro binding studies with ctDNA and BSA by using CV indicates a reduction in peak current and positive potential shift, suggestive of an intercalative or groove-binding interaction mode, corroborated by molecular modeling results that revealed a stable MPV-DNA and MPV-BSA complexes. MD simulations confirmed the stability MPV-DNA and MPV-BSA complexes, stabilized mainly by van der Waals forces with additional contributions from hydrogen bonding and electrostatic interactions. MMGBSA analysis revealed that MPV's affinity for BSA could enhance its pharmacokinetic profile through binding and transport within serum proteins, while DNA interaction, supporting antiviral efficacy, highlights the need for genotoxicity assessment. This integrative study elucidates the electrochemical behavior of MPV and its binding affinity with ctDNA and BSA, correlating these findings with MD simulation results. The results demonstrate a higher binding affinity of MPV with ctDNA and BSA.
Collapse
Affiliation(s)
- Harish Jammigumpula
- School of Pharmacy, Anurag University, Venkatapur, Ghatkesar, Medchal Malkajgiri District, Hyderabad, Telangana - 500088, India
| | - Ravi Arukula
- Department of Chemistry, School of Engineering, Anurag University, Venkatapur, Ghatkesar, Medchal Malkajgiri District, Hyderabad, Telangana - 500088, India
| | - Ashish Kumar Agrahari
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, United States
| | - Abdallah Othman Ghnaim
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, P. O. Box 19117, Salt, Jordan
| | - Kiran Gangarapu
- School of Pharmacy, Anurag University, Venkatapur, Ghatkesar, Medchal Malkajgiri District, Hyderabad, Telangana - 500088, India.
| |
Collapse
|
2
|
Jain A, Mishra AK, Hurkat P, Shilpi S, Mody N, Jain SK. Navigating liver cancer: Precision targeting for enhanced treatment outcomes. Drug Deliv Transl Res 2025; 15:1935-1961. [PMID: 39847205 DOI: 10.1007/s13346-024-01780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Cancer treatments such as surgery and chemotherapy have several limitations, including ineffectiveness against large or persistent tumors, high relapse rates, drug toxicity, and non-specificity of therapy. Researchers are exploring advanced strategies for treating this life-threatening disease to address these challenges. One promising approach is targeted drug delivery using prodrugs or surface modification with receptor-specific moieties for active or passive targeting. While various drug delivery systems have shown potential for reaching hepatic cells, nano-carriers offer significant size, distribution, and targetability advantages. Engineered nanocarriers can be customized to achieve effective and safe targeting of tumors by manipulating physical characteristics such as particle size or attaching receptor-specific ligands. This method is particularly advantageous in treating liver cancer by targeting specific hepatocyte receptors and enzymatic pathways for both passive and active therapeutic strategies. It highlights the epidemiology of liver cancer and provides an in-depth analysis of the various targeting approaches, including prodrugs, liposomes, magneto-liposomes, micelles, glycol-dendrimers, magnetic nanoparticles, chylomicron-based emulsion, and quantum dots surface modification with receptor-specific moieties. The insights from this review can be immensely significant for preclinical and clinical researchers working towards developing effective treatments for liver cancer. By utilizing these novel strategies, we can overcome the limitations of conventional therapies and offer better outcomes for liver cancer patients.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India.
| | - Ashwini Kumar Mishra
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Pooja Hurkat
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | - Satish Shilpi
- School of Pharmaceuticals and Population Health Informatics, FOP, DIT University, Dehradun, Uttarakahnad, India
| | - Nishi Mody
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | | |
Collapse
|
3
|
Yan C, Zhu X, Ren Y, Guan S, He S, Qiu F, Huang M, Qu X, Liu H. Protein-based nano delivery systems focusing on protein materials, fabrication strategies and applications in ischemic stroke intervention: A review. Int J Biol Macromol 2025; 311:143645. [PMID: 40311959 DOI: 10.1016/j.ijbiomac.2025.143645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/21/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Ischemic stroke (IS), characterized by acute cerebral vascular occlusion and narrow therapeutic windows, poses formidable clinical challenges due to the blood-brain barrier (BBB) restriction, reperfusion injury risks, and limited efficacy of conventional thrombolytic therapies. These hurdles necessitate advanced delivery systems capable of precise BBB penetration, remodeled circulation, and neuroprotection. Proteins and peptides emerge as universal biomaterials for constructing nano-delivery platforms, leveraging their biocompatibility, biodegradability, low toxicity, and receptor-specific targeting. This review systematically explores protein-based nanomaterials in stroke intervention, emphasizing material selection, fabrication strategies, and therapeutic applications. Various structural proteins are analyzed for their unique advantages in carrier design, while peptide modifications are highlighted for enhancing targeted delivery. Critical fabrication techniques are discussed to balance stability and functionality. Furthermore, the applications of protein-based nanomaterials in IS therapy are summarized. Advanced preparation and application of protein-based nanomaterials, from delivery vehicles to ligand modification, potentially prolong the therapeutic window for IS and provide effective neuroprotection.
Collapse
Affiliation(s)
- Chao Yan
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Haidian 100080, China
| | - XuChun Zhu
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Haidian 100080, China
| | - Yingying Ren
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shan He
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Haidian 100080, China
| | - Feng Qiu
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing 100036, China
| | | | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongzhi Liu
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Haidian 100080, China; Guizhou Institute of Technology, Guizhou 550000, China.
| |
Collapse
|
4
|
Xu Z, Zhao T, Huo F, Yue Y, Yin C. Fluoroalbumin, an engineered vehicle for drug analysis. J Mater Chem B 2025; 13:5802-5807. [PMID: 40289751 DOI: 10.1039/d5tb00476d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Traditional fluorescent proteins, based on genetic encoding and expression, have introduced biocompatible fluorescent labeling analysis methods at the cellular and organismal levels, becoming an essential research tool in life sciences. In contrast, organic small-molecule fluorescent dyes offer greater flexibility in modification and tunability of wavelengths. The integration of the advantages of fluorescent proteins and organic dyes is a key focus for further enriching fluorescence analysis technologies in the understanding of life. In this work, we utilized the spontaneous and covalent modification of fluorescent dyes with human serum albumin to construct a series of complexes with different fluorescent activities, which we named fluoroalbumin (FLA). FLAs exhibit high fluorescence brightness, excellent photostability, and biocompatibility. Interestingly, the natural drug-binding sites of albumin are preserved, and through allosteric effects, they regulate the fluorescence signals of FLAs, thereby enabling the fluorescence analysis of clinical drugs such as ibuprofen.
Collapse
Affiliation(s)
- Zhou Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Tingting Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
5
|
Sun Y, Song H, Li S, Zhang H, Sun Y, Gao Z. Albumin-based nanoparticles: a potential and emerging oral drug delivery system. Drug Dev Ind Pharm 2025:1-12. [PMID: 40340573 DOI: 10.1080/03639045.2025.2504440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/09/2025] [Accepted: 05/06/2025] [Indexed: 05/10/2025]
Abstract
OBJECTIVE The purpose of this review is to elaborate current development and challenges of oral albumin nanoparticles, and realize their clinical application. SIGNIFICANCE Albumin is an emerging protein nanocarrier with a high degree of versatility, safety, stability, modifiability. These characteristics endow albumin nanoparticles with considerable attention and unique roles in drug delivery. However, most albumin nanoparticles are administered intravenously instead of orally, although oral administration is the most popular and common drug delivery route. Oral administration of albumin nanoparticles is their inevitable tendency, but researches referred to this area are still in infancy. METHODS AND RESULTS Given that, firstly, the basic properties of albumin nanoparticles, like preparation methods, drug loading strategies, targeted drug delivery, and clinical application were simply discussed to provide design guide for their oral administration. Subsequently, the functions and challenges of albumin nanoparticles in oral drug delivery, and strategies to overcome the barriers were highlighted. Finally, aiming to realize their clinical potentials, the possible future trends of orally administrated albumin nanoparticles were also elaborated. CONCLUSIONS In this review, albumin nanoparticles were comprehensively introduced, especially their functions and challenges in oral drug delivery, aiming to guide their design and development.
Collapse
Affiliation(s)
- Yanping Sun
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huijia Song
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Shuo Li
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huimin Zhang
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yongjun Sun
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Zibin Gao
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
6
|
Colazo JM, Keech MC, Shah V, Hoogenboezem EN, Lo JH, Francini N, Cassidy NT, Yu F, Sorets AG, McCune JT, DeJulius CR, Cho H, Michell DL, Maerz T, Vickers KC, Gibson-Corley KN, Hasty KA, Crofford LJ, Cook RS, Duvall CL. siRNA conjugate with high albumin affinity and degradation resistance for delivery and treatment of arthritis in mice and guinea pigs. Nat Biomed Eng 2025:10.1038/s41551-025-01376-x. [PMID: 40379798 DOI: 10.1038/s41551-025-01376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/07/2025] [Indexed: 05/19/2025]
Abstract
Osteoarthritis and rheumatoid arthritis are debilitating joint diseases marked by pain, inflammation and cartilage destruction. Current osteoarthritis treatments only relieve symptoms, while rheumatoid arthritis therapies can cause immune suppression and provide variable efficacy. Here we developed an optimized small interfering RNA targeting matrix metalloproteinase 13 for preferential delivery to arthritic joints. Chemical modifications in a stabilizing 'zipper' pattern improved RNA resistance to degradation, and two independent linkers with 18 ethylene glycol repeats connecting to tandem C18 lipids enhanced albumin binding and targeted delivery to inflamed joints following intravenous administration. In preclinical models of post-traumatic osteoarthritis and rheumatoid arthritis, a single intravenous injection of the albumin-binding small interfering RNA achieved long-term joint retention, sustained gene silencing and reduced matrix metalloproteinase 13 activity over 30 days, resulting in decreased cartilage erosion and improved clinical outcomes, including reduced joint swelling and pressure sensitivity. This approach demonstrated superior efficacy over corticosteroids and small-molecule MMP inhibitors, highlighting the therapeutic promise of albumin 'hitchhiking' for targeted, systemic delivery of gene-silencing therapeutics to treat osteoarthritis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Juan M Colazo
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Orthopaedic Surgery, Washington University in St Louis, St Louis, MO, USA
| | - Megan C Keech
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Veeraj Shah
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ella N Hoogenboezem
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Justin H Lo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nora Francini
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Nina T Cassidy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alexander G Sorets
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joshua T McCune
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Hongsik Cho
- Department of Orthopaedic Surgery and Biomedical Engineering, UTHSC, Memphis VA Medical Center, Memphis, TN, USA
| | - Danielle L Michell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kacey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, Microbiology, and Immunology, Division of Comparative Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karen A Hasty
- Department of Orthopaedic Surgery and Biomedical Engineering, UTHSC, Memphis VA Medical Center, Memphis, TN, USA
| | - Leslie J Crofford
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca S Cook
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
7
|
Li M, Cao Y, Chan HK. Optimizing Performance of Inhalable Bacteriophage Powders using Human Serum Albumin (HSA). Int J Pharm 2025; 678:125709. [PMID: 40350001 DOI: 10.1016/j.ijpharm.2025.125709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
In response to the growing threat of antibiotic resistance in pulmonary infections, bacteriophage therapy is emerging as a promising alternative to traditional antibiotics. We aimed to develop novel dry powder formulations for the pulmonary delivery of bacteriophages, using the Pseudomonas aeruginosa-specific phage PEV2 as a model. Our formulations combined human serum albumin (HSA) and lactose to enhance both phage stability and aerosol performance. A Box-Behnken experimental design was conducted to investigate the effects of HSA/lactose ratio, solute concentration of feed solution, and spray-drying inlet temperature. Our results demonstrated that incorporating 60% w/w HSA significantly improved aerosol performance by achieving a fine particle fraction above 50% and effectively delayed lactose recrystallization by maintaining an amorphous state at relative humidity levels of 80% or higher. Importantly, the optimized formulation (60% HSA/40% lactose) preserved phage viability with less than a 0.8 log10 reduction. Possible mechanisms contributing to stabilizing the phage powder formulations in HSA-lactose were discussed. These findings underscore the potential of a balanced HSA-lactose system as a robust powder formulation platform for pulmonary phage therapy.
Collapse
Affiliation(s)
- Mengyu Li
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yue Cao
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
8
|
Jaiswal N, Mahata N, Chanda N. Nanogold-albumin conjugates: transformative approaches for next-generation cancer therapy and diagnostics. NANOSCALE 2025; 17:11191-11220. [PMID: 40237258 DOI: 10.1039/d4nr05279j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Nanogold-albumin conjugates have garnered significant attention as a highly adaptable theranostic platform, capable of delivering a wide range of therapeutics, from small-molecule drugs to larger biomolecules, while offering promising applications for monitoring and managing cancer. The remarkable theranostic capabilities of these conjugates stem from the combined strengths of gold and albumin, which provide low toxicity, a large surface area, customizable surface chemistry, and unique optical properties, all contributing to their potential in cancer therapy. This review delves into the design and development of two primary types of nanogold-albumin conjugate: supramolecular albumin-coated gold nanoparticles (GNP-BSA/HSA) and albumin-templated ultra-small gold nanoclusters (GNC-BSA/HSA). Each strategy offers distinct advantages, enabling the fine-tuning of conjugate properties to optimize therapeutic delivery and facilitate cancer-specific bio-sensing. The integration of gold and albumin further improves biocompatibility, extends circulation time, and enhances tumor targeting, making these conjugates an attractive option for cancer treatment. The review also focuses on the refinement of surface chemistry to achieve precise targeting of cancer cells, as well as the challenges and future prospects for advancing nanogold-albumin systems in clinical applications.
Collapse
Affiliation(s)
- Namita Jaiswal
- Human Centered Robotics and Cybernetics Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, India.
- Department of Biotechnology, National Institute of Technology (NIT), Durgapur, India
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology (NIT), Durgapur, India
| | - Nripen Chanda
- Human Centered Robotics and Cybernetics Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, India.
| |
Collapse
|
9
|
Wang X, Tian L, Li Y, Yao W, Zhu J, Zhou H, Chen G, Chen T, Liu Z, Tan W, Yang Y. Universal Albumin Drugs-Cored Spherical Nucleic Acid (ad-SNA) Platform for Targeted Drug Delivery. Angew Chem Int Ed Engl 2025; 64:e202421949. [PMID: 40019314 DOI: 10.1002/anie.202421949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/31/2025] [Accepted: 02/26/2025] [Indexed: 03/01/2025]
Abstract
Albumin-based drug delivery system, exemplified by FDA-approved treatments like Abraxane, have demonstrated significant potential in cancer therapy. However, albumin carriers still suffer from poor tumor-targeting capability, leading to low efficacy and systemic side effects on healthy cells in applications. Here, we report a general method for modification of albumin drugs by aptamer coating shell that are hydrophobically inserted into the albumin surface, for constructing albumin drugs-cored spherical nucleic acid (adSNA). This adSNA platform allows for the versatile loading of various therapeutic agents, including chemotherapy drugs, polyphenols, cuproptosis inducers, and near-infrared (NIR) photosensitizers, enabling targeted tumor delivery. Compared with covalent method, the hydrophobic insertion method has been proven to be of greater simplicity, higher aptamer-grafting efficiency, superior tumor-targeting capabilities, and comparable stability under physiological conditions. In a proof-of-concept study, we delivered NIR-II photothermal agents and heat shock protein inhibitors for tumor-specific mild photothermal therapy. Compared to traditional photothermal therapy (PTT), this approach utilizes NIR-II PTT agents to achieve greater tissue penetration while downregulating heat shock proteins in tumor cells, resulting in precise thermal ablation at lower temperatures. In addition, the adSNAs are straightforward to synthesize and scalable for large-scale production, offering significant potential to advance the development of clinical targeted drugs.
Collapse
Affiliation(s)
- Xuan Wang
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Linxin Tian
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuqing Li
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Wei Yao
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiawei Zhu
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huayuan Zhou
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ganghui Chen
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
10
|
Sun Z, Fu H, Zhang R, Wang H, Shen S, Zhao C, Li X, Sun Y, Li Y, Li Y. Advances in chemically modified HSA as a multifunctional carrier for transforming cancer therapy regimens. Int J Biol Macromol 2025; 305:141373. [PMID: 39988174 DOI: 10.1016/j.ijbiomac.2025.141373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Human serum albumin (HSA) is a versatile, biodegradable, biocompatible, non-toxic, and non-immunogenic protein nanocarrier, making it an ideal platform for developing advanced drug delivery systems. These properties have garnered significant attention in utilizing HSA nanoparticles for the safe and efficient delivery of chemotherapeutic agents. HSA-based nanoparticles can be surface-modified with various ligands to enable tumor-targeted drug delivery, enhancing therapeutic specificity and efficacy. Furthermore, the multifunctionality of HSA nanoparticles offers promising strategies to overcome challenges in cancer therapy, including poor bioavailability, off-target toxicity, and drug resistance. This review highlights the structural features of HSA, explores its diverse modifications to improve drug-binding affinity and targeting ability, and discusses its potential as a multifunctional carrier in oncology. By summarizing the latest advances in HSA modification techniques and applications, this review provides a comprehensive perspective on the future of protein-based drug delivery systems in tumor therapy.
Collapse
Affiliation(s)
- Zheng Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Fu
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruixuan Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shiyang Shen
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiuyan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yujiao Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yunfei Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yingpeng Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
11
|
Gautam S, Joshi S, Jindal P, Patel P, Pal RR, Kumar M, Gupta GD, Kurmi BD. Recent doxorubicin-conjugates in cancer drug delivery: Exploring conjugation strategies for enhanced efficacy and reduced toxicity. Int J Pharm 2025; 675:125556. [PMID: 40187698 DOI: 10.1016/j.ijpharm.2025.125556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Doxorubicin is a first-line treatment of cancer that works on the mechanism of DNA intercalation and topoisomerase II poisoning. Since the 20th century, Doxorubicin has been used as a promising drug to treat several types of cancer, both solid or metastatic, including breast, thyroid, bladder, ovarian, or gastric cancer, etc. Even though it shows promising effects on cancer cells, it also shows its effects on healthy cells with cancerous cells, which leads to several severe side effects, such as cardiomyopathy, phlebitis, congestive heart failure (CHF), etc., which limits its usage in chemotherapy. Several research has focused on the targeted delivery of doxorubicin to cancerous cells to reduce side effects and improve efficacy. To optimize its anticancer potential, scientists have recently been developing nano-formulations and investigating various conjugations. The structure of doxorubicin consists of two primary functional groups that can be employed for conjugation with a variety of biomolecules, The first is the primary amine group in a sugar moiety, and the other one is the primary hydroxyl group in the aliphatic chain ring. In this paper, we have mentioned several conjugations of doxorubicin such as antibodies, nanoparticles, polymers, and phytochemical conjugations. Different studies regarding these conjugations are also mentioned, which represent promising strategies to optimize cancer treatment by minimizing side effects.
Collapse
Affiliation(s)
- Shreastha Gautam
- Department of Pharmaceutical Quality Assurance, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Sachin Joshi
- Department of Pharmaceutical Quality Assurance, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Priya Jindal
- Department of Pharmaceutical Quality Assurance, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road Moga-142001, Punjab, India.
| | - Ravi Raj Pal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Manish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India.
| |
Collapse
|
12
|
Lu Y, Jiang X, Yang B, Ding M, Shen Y, Jin J, Yu J, Lu W, Chen Y, Zhu S. Comparative Study on Covalent and Noncovalent Endogenous Albumin-Binding β-Glucuronidase-Activated SN38 Prodrugs for Antitumor Efficacy. J Med Chem 2025; 68:8361-8376. [PMID: 40189819 DOI: 10.1021/acs.jmedchem.4c03096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Albumin-binding prodrugs have been explored to overcome the limitations of small-molecule anticancer chemotherapy agents, such as inadequate physiological and pharmaceutical compatibility, as well as rapid renal clearance. Herein, we investigated two endogenous albumin-binding prodrugs, M-g-SN38 and S-g-SN38, forming macromolecular conjugates. Both prodrugs exhibited robust stability in murine and human plasma, crucial for their therapeutic potential. Selective activation by β-glucuronidase ensures minimal toxicity in their inactive state. Notably, M-g-SN38 exhibited higher cellular uptake, a longer circulation half-life, and enhanced tumor accumulation compared to S-g-SN38, suggesting its greater potential for improved antitumor efficacy. In vivo, M-g-SN38 exhibited significant antitumor activity, leading to profound tumor reduction and, in many cases, marked depletion and complete eradication in all treated mice in the HCT116 xenograft model. Furthermore, M-g-SN38 also demonstrated pronounced antitumor efficacy in the BxPC-3 xenograft model. Together, these findings provide new insights for the development of albumin-binding prodrugs.
Collapse
Affiliation(s)
- Yingxin Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Xing Jiang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Biyu Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Mengyuan Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Yanyan Shen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Jiyu Jin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Yi Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, PR China
| | - Shulei Zhu
- Innovation Center for AI and Drug Discovery, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
- ATLATL Innovation Center, 1077 Zhangheng Road, Shanghai 201203, PR China
| |
Collapse
|
13
|
Bogadi S, Bhaskaran M, Ravichandran V, Nesamony J, Chelliah S, Kuppusamy G, Prakash GM, Karri VVSR, Mallick S, Farahim F, Ali T, Babu DR, Subramaniyan V. Functionalized Nanoparticles: A Promising Approach for Effective Management of Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04917-2. [PMID: 40234291 DOI: 10.1007/s12035-025-04917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
The severe neurodegenerative disease known as Alzheimer's disease (AD) is typified by a progressive loss of memory and cognitive function. The prevalence of AD is rising due to an aging global population, calling for novel treatment strategies. A potential treatment option for AD that shows promise is the use of functionalized nanoparticles (NPs). Recent developments in the synthesis, design, and use of functionalized NPs in AD therapy are examined in this review. An outline of the pathophysiological mechanisms underlying AD is given in the first section, focusing on the roles played by tau protein aggregates and amyloid-beta plaques in the development of the illness. We then explore the many approaches used to functionalize NPs, such as surface alterations and bioconjugation methods, which enable accurate drug administration, targeted delivery, and enhanced biocompatibility. The review also emphasizes the therapeutic potential of functionalized NPs, highlighting their capacity to improve neuroprotection, lower amyloid-beta aggregation, and improve blood-brain barrier penetration. The potential of NPs as a tool for disease modification and symptom relief is highlighted by recent pre-clinical and clinical research. Concerns about toxicity and safety are also covered, underscoring the significance of thorough testing and the field's future directions. Functionalized NPs have great promise as a multimodal strategy to treat AD, offering patients hope for better quality of life, early diagnosis, and efficient disease treatment. This study highlights the growing role of nanotechnology in the search for novel and potent therapies for AD.
Collapse
Affiliation(s)
- Subhasri Bogadi
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, OotyNilgiris, Tamil Nadu, India
| | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| | - Vishnuvardh Ravichandran
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Jerry Nesamony
- College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Selvam Chelliah
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX- 77004, USA
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, OotyNilgiris, Tamil Nadu, India
| | - Gowrav Mysore Prakash
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, OotyNilgiris, Tamil Nadu, India
| | | | - Samir Mallick
- Tennessee State University, Chemistry department, 3500 John A Merritt Blvd, Nashville, TN, 37209, USA
| | - Farha Farahim
- Department of Nursing, King Khalid University, Abha, 61413, Kingdom of Saudi Arabia
| | - Talat Ali
- Department of Basic Medical Sciences, King Khalid University, Abha, 61413, Kingdom of Saudi Arabia
| | | | - Vetriselvan Subramaniyan
- Department of Pharmacology, Jeffrey Cheah School of Medicine and Health Sciences MONASH University, Subang Jaya, Malaysia
| |
Collapse
|
14
|
Hu H, Li C, Song Y, Xie J, Li Q, Ke F, Wen B, Wang S, Gao W, Sun D. Albumin nanocomplex of BCL-2/xL inhibitor reduced platelet toxicity and improved anticancer efficacy in myeloproliferative neoplasm and lymphoma. Biomaterials 2025; 322:123347. [PMID: 40306157 DOI: 10.1016/j.biomaterials.2025.123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025]
Abstract
The clinical application of BCL-2/xL inhibitors for cancer treatment is limited by the on-target thrombocytopenia. Although APG-1252 was designed to mitigate this issue, platelet toxicity at higher doses in clinical trials restricts dose escalation for greater efficacy. We have developed albumin nanocomplexes of APG-1252 (Nano-1252) to reduce platelet toxicity while improving drug efficacy through enhancing drug delivery to lymphoid organs. Nano-1252 forms stable nanoparticles due to the strong binding affinity between APG-1252 and albumin, reducing the platelet toxicity threshold by fourfold by limiting premature drug release and conversion to its active forms in circulation. Furthermore, Nano-1252 exhibited preferential accumulation in lymphoid organs, leading to enhanced anticancer efficacy in Mantle Cell Lymphoma (MCL) and Myeloproliferative Neoplasms (MPNs) mouse models. Our study not only develops a potential formulation to overcome the current translational barrier of APG-1252 but also reveals novel properties of the well-established albumin nanoformulation, thereby expanding its clinical applications.
Collapse
Affiliation(s)
- Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chengyi Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yudong Song
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jizhao Xie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Qiuxia Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Fang Ke
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shaomeng Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Pharmacology and Pharmaceutical Science, College of Pharmacy, The University of Houston, TX, 77204, USA.
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
15
|
Zhang T, Liu S, He S, Shi L, Ma R. Strategies to Enhance the Therapeutic Efficacy of GLP-1 Receptor Agonists through Structural Modification and Carrier Delivery. Chembiochem 2025; 26:e202400962. [PMID: 39744852 DOI: 10.1002/cbic.202400962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Diabetes is a metabolic disorder characterized by insufficient endogenous insulin production or impaired sensitivity to insulin. In recent years, a class of incretin-based hypoglycemic drugs, glucagon-like peptide-1 receptor agonists (GLP-1RAs), have attracted great attention in the management of type 2 diabetes mellitus (T2DM) due to their benefits, including stable glycemic control ability, a low risk of hypoglycemia, and weight reduction for patients. However, like other peptide drugs, GLP-1RAs face challenges such as instability, susceptibility to enzymatic degradation, and immunogenicity, which severely limit their clinical application. In recent years, various strategies have been developed to improve the bioavailability and therapeutic efficacy of GLP-1RAs, including structural modification and carrier-mediated delivery. This article briefly introduces the research and application status of several common GLP-1RAs and their limitations. Taking exendin-4 as an example, we focus on the research progress of improving bioavailability and therapeutic efficacy based on structural modification and carrier delivery strategies, aiming to provide reference for the development of new GLP-1RAs treatment systems.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Sainan Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Suning He
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Rujiang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
16
|
Dijkstra M, Gutmann M, Gradl M, Federa A, Jaunecker C, Breitenstein JV, Vician P, Pirker C, Valcanover D, Heffeter P, Keppler BK, Berger W, Kowol CR. Albumin-targeted oxaliplatin(iv) prodrugs bearing STING agonists. Inorg Chem Front 2025:d5qi00433k. [PMID: 40191696 PMCID: PMC11969438 DOI: 10.1039/d5qi00433k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
The anticancer platinum complex oxaliplatin exerts its activity through DNA damage and immune-stimulatory mechanisms, but is associated with adverse treatment side effects. Platinum(iv) complexes represent a promising prodrug strategy to improve tolerability and to enhance antitumor efficacy via attachment of additional bioactive ligands or tumor-targeting moieties. In the present study, oxaliplatin(iv) complexes containing immune-stimulatory STING agonists SR-717 or MSA-2 were synthesized and their biological properties were studied. Whereas the Pt-SR-717 compound was fast reduced, Pt-MSA-2 complexes displayed significantly higher reductive stability reflected by low in vitro cytotoxicity. Although the platinum(iv) complexes activated interferon regulatory factor (IRF) and NF-κB signaling pathways less effectively compared to the free STING agonists, reducing conditions elevated cytotoxicity and STING downstream signaling, particularly for MSA-2-containing prodrugs. Rapid albumin binding of a maleimide-containing Pt-MSA-2 derivative resulted in elevated plasma levels, prolonged blood circulation, and enhanced tumor accumulation of platinum in CT-26 tumor-bearing mice. The Pt-MSA-2 complexes triggered immune activation and cytokine secretion without hematotoxicity usually associated with free oxaliplatin. The albumin-targeted Pt-MSA-2 drug significantly inhibited tumor growth after intravenous application, while the non-maleimide complex was effective only when applied peritumorally. However, the effects were not enhanced compared to mono-treatment with oxaliplatin or MSA-2, indicating a lack of synergism between the two simultaneously released agents. Our results demonstrate that oxaliplatin(iv) complexes represent a valuable strategy for enhanced tumor-targeting and adverse effect reduction, but question the simultaneous release of STING agonists and free oxaliplatin as a potent strategy towards synergistic antineoplastic activity.
Collapse
Affiliation(s)
- Martijn Dijkstra
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem) Waehringer Str. 42 1090 Vienna Austria
| | - Michael Gutmann
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Mathias Gradl
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Anja Federa
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem) Waehringer Str. 42 1090 Vienna Austria
| | - Carola Jaunecker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - John Vasco Breitenstein
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Petra Vician
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Daniel Valcanover
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Bernhard K Keppler
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Christian R Kowol
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| |
Collapse
|
17
|
Lu K, Liao Z, Li J, Wang Y, Zhang Y, Cai L, Lu WW, Yang F, Pan H, Chen D. MSAB limits osteoarthritis development and progression through inhibition of β-catenin-DDR2 signaling. Bioact Mater 2025; 46:259-272. [PMID: 39811464 PMCID: PMC11732246 DOI: 10.1016/j.bioactmat.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 01/16/2025] Open
Abstract
The aberrant activation of the canonical Wnt/β-catenin signaling has been identified as a significant contributor to the pathogenesis of osteoarthritis (OA), exacerbating OA symptoms and driving OA progression. Despite its potential as a therapeutic target, clinical translation is impeded by the lack of a targeting delivery system and effective drug candidate that can modulate steady-state protein levels of β-catenin at post-translational level. Our study addresses these challenges by offering a new approach for OA treatment. To overcome these challenges, we introduced a novel delivery system using human serum albumin (HSA) to deliver a small molecule β-catenin inhibitor, Methyl-Sulfonyl AB (MSAB). This system is designed to enhance the bioavailability of MSAB, ensuring its accumulation inside the joint space, and facilitating the degradation of β-catenin protein. We have demonstrated that MSAB, when delivered via HSA, not only effectively inhibits cartilage damage but also ameliorates OA-related pain in an OA mouse model. We then performed proteomic analysis and biochemical studies to determine the molecular mechanisms underlying the therapeutic effects of MSAB. We identified that discoidin domain receptor 2 (DDR2), a critical mediator in OA pathology, is a downstream molecule of β-catenin signaling and β-catenin/TCF7 directly controls DDR2 gene transcription. MSAB suppressed the DDR2 expression in chondrocytes. MSAB ameliorated OA progression and OA-associated pain through inhibition of β-catenin-DDR2 signaling. This study underscores the efficacy of MSAB/HSA in OA treatment, providing new insights into its molecular mechanism of OA. It suggests that targeted therapies with MSAB/HSA could be a new OA management strategy.
Collapse
Affiliation(s)
- Ke Lu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
- Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Zhidong Liao
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
| | - Jingwen Li
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Biomedical Engineering, Southern University of Science and Technoloay, Shenzhen, 518055, China
| | - Yuhan Wang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuting Zhang
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lintao Cai
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - William W. Lu
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
| | - Fan Yang
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
| |
Collapse
|
18
|
Pongprayoon P, Kuntip N, Suwanasopee T, Jattawa D, Niramitranon J, Japrung D, Koonawootrittriron S. Comparative studies of structure and dynamics of caprine, leporine, ovine, and equine serum albumins. J Biomol Struct Dyn 2025; 43:2772-2780. [PMID: 38116752 DOI: 10.1080/07391102.2023.2294378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Serum albumin (SA) is the most prevalent protein found in blood. Human albumin was used as an albumin substitute in hypoalbuminemia pets due to high sequence similarity. SAs from furry animals were also reported to be the major indoor allergens. Sensitizing to one of SAs coupled with high sequence identity can lead to cross-reactive antibodies in allergic individuals. Thus, understanding the structural and dynamic characters of SAs is crucial for not only albumin substitution but also allergen therapy. Herein, Molecular dynamics (MD) simulations were performed to elucidate the structural and dynamic dissimilarity and similarity of economic animals [equine (ESA), caprine (CASA), ovine (OSA), and leporine (LSA)] to albumins from human (HSA), bovine (BSA), porcine (PSA), and pets [cat (FSA) and dog (CSA)]. The aim is to explore the feasibility of HSA substitution and understand how albumins cause the cross-reactivity. Generally, all albumins studied here show the scissoring motion like other mammalian albumins. The uniqueness of each albumin is defined by different sequence identity of domain I. Also, the drug binding affinity of studied albumins differs from HSA, CSA, FSA, BSA, and PSA. Especially, LSA displays the most deviated behavior from the group. So, such albumin may not be suitable for albumin therapy for pets and humans. CASA, OSA, and ESA share similar characteristics, therefore it is possible to use them to monitor the osmotic pressure among their species, but the allergenic response must be seriously considered. An insight obtained here can be useful to develop albumin therapy and understand clinical allergy.
Collapse
Affiliation(s)
- Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Nattapon Kuntip
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Thanathip Suwanasopee
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Danai Jattawa
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Jitti Niramitranon
- Department of Computer Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Deanpen Japrung
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, Thailand
| | | |
Collapse
|
19
|
Peixoto D, Ravasco JM, Blanco-Fernandez B, Veiga F, Concheiro A, Conde J, Paiva-Santos AC, Alvarez-Lorenzo C. Enzyme-responsive vitamin D-based micelles for paclitaxel-controlled delivery and synergistic pancreatic cancer therapy. Mater Today Bio 2025; 31:101555. [PMID: 40026626 PMCID: PMC11869029 DOI: 10.1016/j.mtbio.2025.101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/20/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most feared diseases worldwide owing to its poor prognosis, negligible therapeutic advances, and high mortality. Herein, multifunctional enzyme-responsive micelles for the controlled delivery of paclitaxel (PTX) were prepared to circumvent its current clinical challenges. Accordingly, two enzyme-responsive structural units composed of Vitamin D3 (VD3) conjugated with polyethylene glycol of different molecular weights (600 Da and 2000 Da) were synthesized and characterized using different analytical methods. By applying the solvent evaporation method, these bioactive structural units self-assembled into sub-100 nm VD3 micelles with minimal batch-to-batch variation, monomodal particle size distribution, and high encapsulation efficiency. The enzyme-triggered disassembly of PTX-loaded VD3 micelles was demonstrated by release studies in the presence of a high esterase content typically featured by PDAC cells. PTX-loaded VD3 micelles also exhibited prominent cell internalization and induced a considerable cytotoxic synergistic effect against human PDAC cells (BxPC-3 cells) in 2D and 3D cell culture models compared with free PTX. The PTX-loaded VD3 micelles were hemocompatible and stable after long-term storage in the presence of biorelevant media, and showed higher efficiency to inhibit the tumor growth compared to the approved clinical nanoformulation (Abraxane®) in an in ovo tumor model. The findings reported here indicate that VD3S-PEG micelles may have a promising role in PDAC therapy, since VD3 could act not only as a hydrophobic core of the micelles but also as a therapeutic agent that provides synergetic therapeutic effects with the encapsulated PTX.
Collapse
Affiliation(s)
- Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782, Santiago, Spain
| | - João M. Ravasco
- Comprehensive Health Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169, Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649, Lisbon, Portugal
| | - Barbara Blanco-Fernandez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782, Santiago, Spain
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782, Santiago, Spain
| | - João Conde
- Comprehensive Health Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169, Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649, Lisbon, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782, Santiago, Spain
| |
Collapse
|
20
|
Bartusik-Aebisher D, Przygórzewska A, Woźnicki P, Aebisher D. Nanoparticles for Photodynamic Therapy of Breast Cancer: A Review of Recent Studies. Molecules 2025; 30:1571. [PMID: 40286175 PMCID: PMC11990253 DOI: 10.3390/molecules30071571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
Photodynamic therapy (PDT) is a therapeutic method based on the interaction between light and a photosensitizer. Supported by nanoparticles, this method represents a promising interdisciplinary approach for the treatment of many diseases. This article reviews the latest 2024 developments in the design and applications of nanoparticles dedicated to stand-alone PDT of breast cancer. Strategies to improve therapeutic efficacy by enhancing reactive oxygen species (ROS) production, precise delivery of photosensitizers and their stabilization in the systemic circulation are discussed, among others. Results from preclinical studies indicate significant improvements in therapeutic efficacy, including inhibition of tumor growth, reduction in metastasis and improvement of the immune microenvironment. The potential of these technologies to expand PDT applications in medicine and the need for further clinical trials to confirm their safety and efficacy are highlighted.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Faculty of Medicine, Collegium Medicum, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Agnieszka Przygórzewska
- English Division Science Club, Faculty of Medicine, Collegium Medicum, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Paweł Woźnicki
- Doctoral School, Faculty of Medicine, Collegium Medicum, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Faculty of Medicine, Collegium Medicum, University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
21
|
Khurshid S, Rasheed S, Falke S, Ahmad MS. Unraveling binding interactions between methasterone and bovine serum albumin (BSA): A spectroscopic and computational study. Steroids 2025; 215:109573. [PMID: 39983858 DOI: 10.1016/j.steroids.2025.109573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
In this study, binding interactions between methasterone and bovine serum albumin (BSA) were analyzed using spectroscopic techniques and molecular docking. UV absorption spectroscopy showed the formation of a ground-state complex between methasterone and bovine serum albumin (BSA). Thermodynamic parameters from fluorometric analysis indicated that the hydrogen bonding and van der Waal forces were the main interacting forces between the complex and the reaction was found to be spontaneous. Molecular docking further validated it. Nano differential scanning fluorimetry showed the protein was found to be more thermally stable in the presence of methasterone. Circular dichroism spectroscopy revealed slight reduction in the helicity after binding with methasterone suggesting conformational changes to promote binding. As no prior information exists on the binding interactions between methasterone and BSA, this study provides insights into methasterone-BSA interactions, which can serve as a foundation for future investigations into its pharmacological properties.
Collapse
Affiliation(s)
- Sahar Khurshid
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Saima Rasheed
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Sven Falke
- Deutsches Elektronen-Synchrotron, Center for Free-Electron Laser Science (CFEL), Notkestraße 85, 22607 Hamburg, Germany
| | - Malik Shoaib Ahmad
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
22
|
Dijkstra M, Schueffl H, Federa A, Kast C, Unterlercher A, Keppler BK, Heffeter P, Kowol CR. Novel Maleimide Linkers Based on a Piperazine Motif for Strongly Increased Aqueous Solubility. ACS OMEGA 2025; 10:5047-5063. [PMID: 39959040 PMCID: PMC11822723 DOI: 10.1021/acsomega.4c10825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025]
Abstract
Maleimides remain very popular conjugation moieties in the fields of bio(in)organic chemistry and biotechnology. They are particularly interesting for endogenous albumin binding in the bloodstream to exploit the enhanced permeability and retention (EPR) effect and to increase tumor accumulation of anticancer drugs. However, during drug development, insufficient aqueous solubility is frequently a limiting factor. In the present study, four new maleimide linkers were synthesized containing a water-soluble piperazine scaffold. Respective maleimide-platinum(IV)-acetato complexes demonstrated similar hydrolytic stability, albumin-binding kinetics, in vivo serum pharmacokinetics and tissue distribution compared to a reference platinum(IV)-PEG4-maleimide complex. To test the aqueous solubility, platinum(IV)-maleimide complexes containing the highly lipophilic drug ibuprofen were synthesized. Indeed, the compounds containing the new piperazine linkers displayed increased solubility (up to 370 mM) in different aqueous media, whereas the PEG4-maleimide reference was only marginally soluble. Finally, the synthetic toolbox of the new piperazine maleimides was also expanded to pure organic derivatives by conjugation to valine-citrulline-para-aminobenzyl-OH derivatives via peptide and thiourea bonds.
Collapse
Affiliation(s)
- Martijn Dijkstra
- University
of Vienna, Faculty of Chemistry,
Institute of Inorganic Chemistry, Waehringer Str. 42, 1090 Vienna, Austria
- University
of Vienna, Vienna Doctoral School in Chemistry
(DoSChem), Waehringer
Str. 42, 1090 Vienna, Austria
| | - Hemma Schueffl
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Anja Federa
- University
of Vienna, Faculty of Chemistry,
Institute of Inorganic Chemistry, Waehringer Str. 42, 1090 Vienna, Austria
- University
of Vienna, Vienna Doctoral School in Chemistry
(DoSChem), Waehringer
Str. 42, 1090 Vienna, Austria
| | - Caroline Kast
- University
of Vienna, Faculty of Chemistry,
Institute of Inorganic Chemistry, Waehringer Str. 42, 1090 Vienna, Austria
| | - Alexander Unterlercher
- University
of Vienna, Faculty of Chemistry,
Institute of Inorganic Chemistry, Waehringer Str. 42, 1090 Vienna, Austria
| | - Bernhard K. Keppler
- University
of Vienna, Faculty of Chemistry,
Institute of Inorganic Chemistry, Waehringer Str. 42, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Petra Heffeter
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Christian R. Kowol
- University
of Vienna, Faculty of Chemistry,
Institute of Inorganic Chemistry, Waehringer Str. 42, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| |
Collapse
|
23
|
Zhuo SH, Chen X, Zhao L, Wang TY, Su JY, Yang T, Yang L, Dong F, Zhao YF, Li YM. AlbiCDN: albumin-binding amphiphilic STING agonists augment the immune activity for cancer immunotherapy. RSC Med Chem 2025:d4md00475b. [PMID: 40008189 PMCID: PMC11848399 DOI: 10.1039/d4md00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The stimulator of interferon genes (STING) has been an attractive target in cancer immunotherapy. However, natural ligand cyclic dinucleotides (CDNs) and CDN derivatives have demonstrated limited efficacy in clinical trials. This limitation stems from the inherent structure of CDNs, which leads to enzymatic degradation, poor cell internalisation, rapid clearance from the tumour microenvironment, and dose-limiting toxicity. In this study, we developed an amphipathic STING agonist, termed albumin-binding CDNs (AlbiCDNs), to enhance the efficacy of c-di-GMP (CDG) via a lipid-conjugated strategy. The lipid provided a platform for albumin hitchhiking, which facilitated the cytoplasmic delivery of CDG without the use of any exogenous components. In addition, incorporating a stimuli-responsive lipid motif further enhanced the cellular release of CDG. Our results indicated that CDG-1C14, an AlbiCDN, efficiently stimulated the maturation and activation of antigen-presenting cells through STING activation. Furthermore, CDG-1C14 exhibited a significant inhibitory effect on the tumour therapeutic model. Therefore, AlbiCDN is a potent platform for cancer immunotherapy that can expedite clinical translation.
Collapse
Affiliation(s)
- Shao-Hua Zhuo
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Xi Chen
- Zhili College, Tsinghua University Beijing 100084 P. R. China
| | - Lang Zhao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Tian-Yang Wang
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Jing-Yun Su
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Tao Yang
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Key Laboratory of Digestive Disease & Organ Transplantation in Shanxi Province, The First Hospital of Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education Taiyuan 030001 Shanxi P. R. China
| | - Lijun Yang
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Department of Pharmacology, Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
| | - Fei Dong
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital Beijing 100191 P R China
| | - Yu-Fen Zhao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
- Institute of Drug Discovery Technology, Ningbo University Ningbo 315221 Zhejiang P. R. China
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
- Beijing Institute for Brain Disorders Beijing 100069 P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
24
|
Dijkstra M, Schueffl H, Adamova B, Baumfried O, Kastner A, Berger W, Keppler BK, Heffeter P, Kowol CR. Exploring the Structure-Activity Relationships of Albumin-Targeted Picoplatin-Based Platinum(IV) Prodrugs. Inorg Chem 2025; 64:2554-2566. [PMID: 39878587 PMCID: PMC11815855 DOI: 10.1021/acs.inorgchem.4c05269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Platinum(II) complexes prevail as first-line treatment for many cancers but are associated with serious side effects and resistance development. Picoplatin emerged as a promising alternative to circumvent GSH-induced tumor resistance by introducing a bulky 2-picoline ligand. Although clinical studies were encouraging, picoplatin did not receive approval. Interestingly, the anticancer potential of prodrugs based on picoplatin is widely underexplored, and even less so the respective tumor-targeting approaches. We synthesized two new "hybrid" picoplatin(II) derivatives with an oxalate or cyclobutane dicarboxylate leaving group and their corresponding platinum(IV) prodrugs with an albumin-targeting maleimide moiety or a succinimide as reference. Picoplatin(II) and its derivatives indeed reacted much slower with GSH compared to the respective analogs cisplatin, carboplatin, or oxaliplatin. While PicoCarbo(IV) and PicoOxali(IV) were reduced slowly in the presence of ascorbic acid, picoplatin(IV) was extremely unstable. All three prodrugs were widely inactive in the MTT assays. The platinum(IV)-maleimide complexes rapidly bound to albumin with stable conjugates for >25 h. Albumin-binding resulted in elevated platinum plasma levels, prolonged blood circulation, and enhanced tumor accumulation of the prodrugs in mice bearing CT26 tumors. However, only maleimide-functionalized PicoCarbo(IV) and picoplatin(II) significantly inhibited tumor growth. One possible explanation is that for albumin-binding platinum(IV) prodrugs, the bulky 2-picoline moiety prevents sufficient activation/reduction to unlock their full anticancer potential.
Collapse
Affiliation(s)
- Martijn Dijkstra
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Hemma Schueffl
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Barbora Adamova
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Oliver Baumfried
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Alexander Kastner
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Walter Berger
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Bernhard K. Keppler
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Petra Heffeter
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Christian R. Kowol
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| |
Collapse
|
25
|
Sun J, Wang D, Wei Y, Wang D, Ji Z, Sun W, Wang X, Wang P, Basmadji NP, Larrarte E, Pedraz JL, Ramalingam M, Xie S, Wang R. Capsaicin-induced Ca 2+ overload and ablation of TRPV1-expressing axonal terminals for comfortable tumor immunotherapy. NANOSCALE 2025; 17:3288-3305. [PMID: 39688368 DOI: 10.1039/d4nr04454a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
As a common malignancy symptom, cancer pain significantly affects patients' quality of life. Approximately 60%-90% of patients with advanced cancer experience debilitating pain. Therefore, a comprehensive treatment system that combines cancer pain suppression and tumor treatment could provide significant benefits for these patients. Here, we designed a manganese oxide (MnO2)/Bovine serum albumin (BSA)/polydopamine (PDA) composite nanoplatform internally loaded with capsaicin for cancer pain suppression and immunotherapy. MBD&C nanoparticles (NPs) can ablate tumor-innervated sensory nerve fibers via Transient receptor potential vanilloid 1 (TRPV1) channels, thereby reducing the pain caused by various inflammatory mediators. The ablation of TRPV1+ nerve terminals can also decrease the secretion of calcitonin gene-related peptide (CGRP) and substance P (SP) in sensory nerve fibers, thus reducing the tumor pain and inhibit tumor progression. MBD&C can promote calcium influx by activating overexpressed TRPV1 channels on the tumor membrane surface, thereby achieving cancer immunotherapy induced by endogenous Ca2+ overloading. In addition, MnO2 NPs can alleviate tumor hypoxia and mitigate the immunosuppressive tumor microenvironment (TME). Ultimately, this treatment system with dual capabilities of inhibiting tumor growth and relieving cancer pain makes comfortable tumor therapy feasible and paves the way for the development of patient-centered approaches to cancer treatment in the future.
Collapse
Affiliation(s)
- Jian Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China.
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Deqiang Wang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Yiying Wei
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
| | - Danyang Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
| | - Zhengkun Ji
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Wanru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
| | - Xin Wang
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Nicola Paccione Basmadji
- TECNALIA, Basque Research & Technology Alliance (BRTA) Miñano, Spain
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
| | - Eider Larrarte
- TECNALIA, Basque Research & Technology Alliance (BRTA) Miñano, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma, Development, A Joint Venture of TECNALIA and University of the Basque Country (UPV/EHU), Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Murugan Ramalingam
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma, Development, A Joint Venture of TECNALIA and University of the Basque Country (UPV/EHU), Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Shuyang Xie
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China.
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
26
|
Chang CH, Yang SJ, Young TH, Yao WC. Effect of co-loaded vitamin D3 on intravenous injectable raloxifene delivery system. Colloids Surf B Biointerfaces 2025; 246:114379. [PMID: 39566355 DOI: 10.1016/j.colsurfb.2024.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Owing to its promising advantages, including improved drug bioavailability and therapeutic efficiency at low doses and frequency, increased patient convenience and compliance, and prolonged storage life, nanomedicine has received heightened attention over conventional pharmaceuticals. Human serum albumin (HSA)-based nanoparticles have been used as drug carriers in injectable formulations, with great success and versatility. In this study, raloxifene and vitamin D3 were co-encapsulated in HSA-based nanoparticles (Ral/VitaD/HSA/PSS NPs) as an intravenously injected pharmaceutical formulation in order to enhance their availability in the body. The lyophilization-hydration method was utilized to develop the Ral/VitaD/HSA/PSS NPs. In addition, the characteristics and stability of the NP and the effect of the co-loading of vitamin D3 on raloxifene release in vitro and in vivo were discussed. The raloxifene and vitamin D3 molecules were successfully encapsulated and well dispersed in an amorphous state within Ral/VitaD/HSA/PSS NPs. The prepared Ral/VitaD/HSA/PSS NPs were lyophilized for long-term storage and were both biocompatible and hemocompatible, enhancing alkaline phosphtase activity in osteoblasts. Delivered via intravenous injection, Ral/VitaD/HSA/PSS NPs addressed the low bioavailability of raloxifene and vitamin D3 caused by oral administration, and improved their compatibility and residence time in the body. Overall, the established raloxifene-vitamin D3-co-loaded NPs may be a potential nanomedicine contender for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Department of Orthopedics, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan.
| | - Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan.
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Wei-Cheng Yao
- Department of Anesthesiology and Pain Medicine, Min-Sheng General Hospital, No. 168, Jingguo Road, Taoyuan Dis., Taoyuan City 330, Taiwan
| |
Collapse
|
27
|
Ge S, Dang M, Pires Dias AC, Zhang X. Engineered IgG Fc-conjugation prolongs the half-life of florfenicol and alleviates pneumonia in mice. Biochimie 2025; 229:105-113. [PMID: 39427834 DOI: 10.1016/j.biochi.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Small molecule drugs often exhibit short half-lives, requiring frequent administrations to maintain therapeutic concentrations over an extended period. To address this issue, the fragment crystallizable (Fc) region of IgG, known to prolong the half-life of antibodies via its interaction with the Fc neonatal receptor, was harnessed as a carrier protein to extend the half-life of a small molecule drug, florfenicol. Florfenicol, was chemically coupled to a recombinant Fc protein expressed using the eukaryotic expression system in HEK293 cells. The Fc-florfenicol conjugate exhibited a substantially prolonged half-life of from 3.8 to 9.1 h compared to unconjugated florfenicol and demonstrated excellent therapeutic properties in treating pneumonia in a mouse model. Our results, combined with the literature analysis on Fc-small molecule conjugates, show that Fc can substantially enhance the drug's half-life and suggest the potential for its use as a carrier in novel delivery systems.
Collapse
Affiliation(s)
- Shikun Ge
- China and Portugal Joint Research Center, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Mei Dang
- China and Portugal Joint Research Center, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Keng Ridge Crescent, 119260, Singapore
| | - Alberto Carlos Pires Dias
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Xiaoying Zhang
- China and Portugal Joint Research Center, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, Ontario, Canada.
| |
Collapse
|
28
|
Tang Y, Zhang Q, Chen H, Chen G, Li Z, Chen G, Lin L, Yu Z, Su M, Zhang B. A Integrated Molecule Based on Ferritin Nanoplatforms for Inducing Tumor Ferroptosis with the Synergistic Photo/Chemodynamic Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5909-5920. [PMID: 39818706 DOI: 10.1021/acsami.4c18072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Ferroptosis combined with photodynamic therapy (PDT) has emerged as a powerful approach to induce cancer cell death by producing and accumulating lethal reactive oxygen species (ROS) in the tumor microenvironment (TME). Despite its efficacy and safety, challenges persist in delivering multiple drugs to the tumor site for enhanced antitumor efficacy and improved tissue targeting. Hence, we designed a method of inducing ferroptosis through laser-mediated and human homologation-specific efficient activation, which is also a ferroptosis therapy with higher safety through ROS-mediated. In this study, we present a multifunctional nanoplatform, Zn-A4@FRT, featuring a integrated molecule Zn-A4, utilizing tumor-actively targeted ferritin delivery platforms to modulate the TME. In this system, Zn-A4, synthesized from zinc porphyrin (ZPP) and benzaldehyde nitrogen mustellin (BNM), serves dual roles in photo/chemodynamic therapy. Under 660 nm near-infrared laser irradiation, Zn-A4@FRT activates ZPP photosensitizers to produce toxic ROS by depleting dissolved oxygen in cancer cells, while a Fenton-like reaction enhances ROS generation. This system also induces ferroptosis through lipid peroxide accumulation, glutathione depletion, and glutathione peroxidase 4 downregulation, thereby improving the efficacy of chemodynamic therapy (CDT) and PDT in breast cancer treatment. This multifaceted strategy highlights the potential of Zn-A4@FRT as an effective approach for comprehensive cancer treatment.
Collapse
Affiliation(s)
- Yan Tang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiaoling Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huiyang Chen
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guimei Chen
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zibo Li
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Gui Chen
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ling Lin
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Min Su
- Department of Oncology, Guangzhou Development District Hospital, Guangzhou, Guangdong 510730, China
| | - Bingchen Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China
| |
Collapse
|
29
|
Song R, Tan J, Cen J, Li Z, Zhang Y, Hou M, Li R, Tang L, Hu J, Liu S. Optimizing Surface Maleimide/cRGD Ratios Enhances Targeting Efficiency of cRGD-Functionalized Nanomedicines. J Am Chem Soc 2025; 147:2889-2901. [PMID: 39780364 DOI: 10.1021/jacs.4c17178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Thiol-maleimide (MI) chemistry is a cornerstone of bioconjugation strategies, particularly in the development of drug delivery systems. The cyclic arginine-glycine-aspartic acid (cRGD) peptide, recognized for its ability to target the integrin αvβ3, is commonly employed to functionalize maleimide-bearing nanoparticles (NPs) for fabricating cRGD-functionalized nanomedicines. However, the impact of cRGD density on tumor targeting efficiency remains poorly understood. In this study, we investigate how varying MI/cRGD ratios affect the biological fate of cRGD-functionalized nanomedicines. Using a model system of nanomedicines self-assembled from phthalocyanine derivatives and PEG-PLA block copolymers, we demonstrate that an optimized cRGD/MI ratio can markedly alter the protein corona composition, leading to increased albumin adsorption, while MI-free cRGD-functionalized nanomedicines attract immunoglobulins and complement proteins. Our findings reveal that higher cRGD densities, contrary to expectations, do not enhance tumor targeting but instead promote sequestration in the liver and spleen. However, the presence of MI moieties can significantly mitigate this sequestration of cRGD-functionalized nanomedicines by promoting the formation of an albumin-rich protein corona on nanomedicines. These insights highlight the capacity of MI moieties in improving the targeting and therapeutic effects of cRGD-functionalized nanomedicines, providing refined strategies to maximize the efficacy of nanomedicines while minimizing off-target effects.
Collapse
Affiliation(s)
- Rundi Song
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Jiajia Tan
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Jie Cen
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Ziwei Li
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Yuben Zhang
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Mingxuan Hou
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Runjie Li
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Liqin Tang
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| |
Collapse
|
30
|
Rafique MG, Laurent Q, Dore MD, Fakih HH, Trinh T, Rizzuto FJ, Sleiman HF. Sequence-Defined DNA Polymers: New Tools for DNA Nanotechnology and Nucleic Acid Therapy. Acc Chem Res 2025; 58:177-188. [PMID: 39772484 DOI: 10.1021/acs.accounts.4c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Structural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures. Here we describe our research group's work to integrate these orthogonal interactions into DNA and its supramolecular assemblies. Using automated solid phase techniques, we synthesized sequence-defined DNA polymers (SDPs) featuring a wide range of functional groups, achieving high yields in the process. These SDPs can assemble into not only isotropic spherical morphologies─such as spherical nucleic acids (SNAs)─but also into anisotropic nanostructures such as 1D nanofibers and 2D nanosheets. Our structural and molecular modeling studies revealed new insights into intermolecular chain packing and intramolecular chain folding, influenced by phosphodiester positioning and SDP sequence. Using these new self-assembly paradigms, we created hierarchical, anisotropic assemblies and developed systems exhibiting polymorphism and chiroptical behavior dependent on the SDP sequence. We could also precisely control the size of our nanofiber assemblies via nucleation-growth supramolecular polymerization and create compartmentalized nanostructures capable of precise surface functionalization.The exquisite control over sequence, composition, and length allowed us to combine our SDPs with nanostructures including DNA wireframe assemblies such as prisms, nanotubes, and cubes to create hybrid, stimuli-responsive assemblies exhibiting emergent structural and functional modes. The spatial control of our assemblies enabled their use as nanoreactors for chemical transformations in several ways: via hybridization chain reaction within SNA coronas, through chemical conjugation within SNA cores, and through a molecular "printing" approach within wireframe assemblies for nanoscale information transfer and the creation of anisotropic "DNA-printed" polymer particles.We have also employed our SDP nanostructures toward biological and therapeutic applications. We demonstrated that our SNAs could serve as both extrinsic and intrinsic therapeutic platforms, with improved cellular internalization and biodistribution profiles, and excellent gene silencing activities. Using SDPs incorporating hydrophobic dendrons, high-affinity and highly specific oligonucleotide binding to human serum albumin was demonstrated. These structures showed an increased stability to nuclease degradation, reduced nonspecific cellular uptake, no toxicity even at high concentrations, and excellent biodistribution beyond the liver, resulting in unprecedented gene silencing activity in various tissues.Control over the sequence has thus presented us with a unique polymeric building block in the form of the SDP, which combines the chemical and structural diversity of polymers with the programmability of DNA. By linking these orthogonal assembly languages, we have discovered new self-assembly rules, created DNA-minimal nanostructures, and demonstrated their utility through a range of applications. Developing this work further will open new avenues in the fields of DNA nanomaterials, nucleic acid therapeutics, as well as block copolymer self-assembly.
Collapse
Affiliation(s)
- Muhammad Ghufran Rafique
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Quentin Laurent
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- University Grenoble Alpes, CNRS, DCM UMR 5250, 38058 Grenoble Cedex 9, France
| | - Michael D Dore
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, Illinois 60611, United States
| | - Hassan H Fakih
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Tuan Trinh
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Radiology, Stanford University, Stanford, California 94304, United States
| | - Felix J Rizzuto
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
31
|
Aalhate M, Mahajan S, Dhuri A, Singh PK. Biohybrid nano-platforms manifesting effective cancer therapy: Fabrication, characterization, challenges and clinical perspective. Adv Colloid Interface Sci 2025; 335:103331. [PMID: 39522420 DOI: 10.1016/j.cis.2024.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Nanotechnology-based delivery systems have brought a paradigm shift in the management of cancer. However, the main obstacles to nanocarrier-based delivery are their limited circulation duration, excessive immune clearance, inefficiency in interacting effectively in a biological context and overcoming biological barriers. This demands effective engineering of nanocarriers to achieve maximum efficacy. Nanocarriers can be maneuvered with biological components to acquire biological identity for further regulating their biodistribution and cell-to-cell cross-talk. Thus, the integration of synthetic and biological components to deliver therapeutic cargo is called a biohybrid delivery system. These delivery systems possess the advantage of synthetic nanocarriers, such as high drug loading, engineerable surface, reproducibility, adequate communication and immune evasion ability of biological constituents. The biohybrid delivery vectors offer an excellent opportunity to harness the synergistic properties of the best entities of the two worlds for improved therapeutic outputs. The major spotlights of this review are different biological components, synthetic counterparts of biohybrid nanocarriers, recent advances in hybridization techniques, and the design of biohybrid delivery systems for cancer therapy. Moreover, this review provides an overview of biohybrid systems with therapeutic and diagnostic applications. In a nutshell, this article summarizes the advantages and limitations of various biohybrid nano-platforms, their clinical potential and future directions for successful translation in cancer management.
Collapse
Affiliation(s)
- Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Anish Dhuri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India.
| |
Collapse
|
32
|
Binder U, Skerra A. Strategies for extending the half-life of biotherapeutics: successes and complications. Expert Opin Biol Ther 2025; 25:93-118. [PMID: 39663567 DOI: 10.1080/14712598.2024.2436094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Engineering of the drug half-life in vivo has become an integral part of modern biopharmaceutical development due to the fact that many proteins/peptides with therapeutic potential are quickly cleared by kidney filtration after injection and, thus, circulate only a few hours in humans (or just minutes in mice). AREAS COVERED Looking at the growing list of clinically approved biologics that have been modified for prolonged activity, and also the plethora of such drugs under preclinical and clinical development, it is evident that not one solution fits all needs, owing to the vastly different structural features and functional properties of the pharmacologically active entities. This article provides an overview of established half-life extension strategies, as well as of emerging novel concepts for extending the in vivo stability of biologicals, and their pros and cons. EXPERT OPINION Beyond the classical and still dominating technologies for improving drug pharmacokinetics and bioavailability, Fc fusion and PEGylation, various innovative approaches that offer advantages in different respects have entered the clinical stage. While the Fc fusion partner may be gradually superseded by engineered albumin-binding domains, chemical PEGylation may be replaced by biodegradable recombinant amino-acid polymers like PASylation, thus also offering a purely biotechnological manufacturing route.
Collapse
Affiliation(s)
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Freising, Germany
| |
Collapse
|
33
|
Tsukigawa K. [Development of Tumor-targeting Drug Delivery Systems Based on an Understanding of Polymer Characteristics and the Tumor-specific Environment]. YAKUGAKU ZASSHI 2025; 145:85-92. [PMID: 39894485 DOI: 10.1248/yakushi.24-00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Tumor-specific active drug release from macromolecular antitumor drugs after tumor delivery is critical to achieve efficient cellular uptake of the active drug, thereby ensuring therapeutic efficacy. Upon reaching the tumor tissue, protease-facilitated depegylation of pegylated zinc protoporphyrin with ester bonds between PEG and ZnPP (esPEG-ZnPP) occurs, leading to a faster cellular uptake and superior antitumor efficacy compared to PEG-ZnPP with ether bonds (etPEG-ZnPP). This finding provides a viable strategy for achieving efficient tumor-specific drug release by utilizing an ester linkage between PEG and antitumor drugs. Another strategy involves using styrene-maleic acid copolymer (SMA), an amphiphilic polymer. Drug-encapsulating SMA aggregates disintegrate upon interaction with cell membrane components, releasing the encapsulated active drug. The author has demonstrated an improvement in the tumor accumulation of SMA-based macromolecular drugs by conjugating pirarubicin (THP), an anthracycline antitumor drug, with SMA. Furthermore, by conjugating various molecular weights of N-(2-hydroxypropyl)methacrylamide (HPMA) to THP via a hydrazone bond (P-THP, DP-THP, and SP-THP), the author has established a positive correlation between HPMA molecular weight and therapeutic efficacy as well as toxicity. Notably, P-THPs release THP under acidic conditions within tumor tissue; however, this release occurs solely outside tumor cells due to HPMA-mediated inhibition of cellular uptake. The author is currently developing macromolecular anticancer drugs using albumin for the tumor-targeted release of anticancer agents both intra- and extracellularly. The strategic development of tumor-targeting macromolecular antitumor drugs based on a comprehensive understanding of polymer characteristics and the tumor-specific environment is imperative for effective cancer therapy.
Collapse
Affiliation(s)
- Kenji Tsukigawa
- Faculty of Pharmaceutical Sciences, Sojo University
- DDS Research Institute, Sojo University
- School of Pharmaceutical Sciences, Kyushu University of Medical Science
| |
Collapse
|
34
|
Anwar S, Lin PCP, Pacheco L, Imai K, Tan Z, Song Z, Wakamatsu Y, Minamiya Y, Cheng J, Ko C, Inoue M. Decreased lymph node estrogen levels cause nonremitting progressive experimental autoimmune encephalomyelitis disease. PNAS NEXUS 2025; 4:pgaf010. [PMID: 39871825 PMCID: PMC11770340 DOI: 10.1093/pnasnexus/pgaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/19/2024] [Indexed: 01/29/2025]
Abstract
Estrogen, a steroid hormone synthesized by both gonadal and nongonadal tissues, plays a pivotal role in modulating immune responses, including reducing relapse rates in relapsing-remitting multiple sclerosis (MS). This study explored the expression of aromatase, the enzyme responsible for estrogen synthesis, in lymph nodes (LNs) and its potential role in the pathogenesis of MS using a mouse model. We utilized Cyp19-RFP mice where cells that express or have previously expressed the Cyp19 gene (encoding aromatase) are marked by red fluorescent protein (RFP). RFP was detected in the high endothelial venules of all morphologically identifiable LNs, indicating aromatase activity within these tissues. We discovered that LNs actively synthesize 17β-estradiol, but this activity declines with age. Targeted delivery of an aromatase inhibitor specifically to LNs induced an interferon-β-resistant experimental autoimmune encephalomyelitis (EAE) phenotype. This phenotype was accompanied by significant gray matter atrophy in the spinal cord. These findings underscore LNs as crucial sites of de novo 17β-estradiol production, potentially contributing to nonremitting EAE phenotypes. The observed decline in 17β-estradiol likely exacerbates MS pathogenesis in aging mice. Importantly, aromatase expression in human cervical LNs suggests that these sites may similarly contribute to estrogen synthesis in humans, potentially opening new avenues for understanding and treating MS.
Collapse
Affiliation(s)
- Shehata Anwar
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
- Faculty of Veterinary Medicine, Department of Pathology, Beni-Suef University (BSU), Beni-Suef 62511, Egypt
| | - Po-Ching Patrick Lin
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | - Lazaro Pacheco
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | - Kazuhiro Imai
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Zhengzhong Tan
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | - Ziyuan Song
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | - Yuki Wakamatsu
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yoshihiro Minamiya
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Jianjun Cheng
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
- School of Engineering, Westlake University, Hangzhou 310030, China
| | - CheMyong Ko
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | - Makoto Inoue
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| |
Collapse
|
35
|
Khaliq NU, Amin L, Khaliq SU, Amin A, Omer S, Khaliq IU, Kim Y, Kim J, Kim T, Seo D, Sung D, Kim H. Peptide-Based Prodrug Approaches for Cancer Nanomedicine. ACS APPLIED BIO MATERIALS 2024; 7:8163-8176. [PMID: 39601471 DOI: 10.1021/acsabm.4c01364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Peptide-based prodrugs, such as peptide-drug conjugates (PDCs), are currently being developed for cancer therapy. PDCs are considered single-component nanomedicines with various functionalities. The peptide moieties provide stability to the PDCs, which self-assemble into nanostructures in an aqueous medium. Several PDCs based on peptide moieties have been developed for targeted cancer therapy, prevention of multidrug resistance (MDR), and theranostic applications. Based on this information, next-level strategies have been developed to deliver therapeutics and diagnostics to tumor tissues. The induction of apoptosis-targeted therapy is a conceptual approach that has evolved. In this context, smart PDCs have been designed and explored to overcome tumor heterogeneity. This review highlights strategies for the targeted delivery of small molecules and theranostic applications. Moreover, a conceptual approach to induce apoptosis-targeted therapy was exploited through the delivery of smart PDC nanomedicines and their composites.
Collapse
Affiliation(s)
- Nisar Ul Khaliq
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Gyeongbuk Korea
| | - Laraib Amin
- Northwest General Hospital and Research Center, Peshawar 25100, Pakistan
| | - Saad Ul Khaliq
- Northwest General Hospital and Research Center, Peshawar 25100, Pakistan
| | - Anam Amin
- Northwest General Hospital and Research Center, Peshawar 25100, Pakistan
| | - Samreen Omer
- Riphah International University, Islamabad 44000, Pakistan
| | | | - Yejin Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Gyeongbuk Korea
| | - Joohyeon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Gyeongbuk Korea
| | - Taeho Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Gyeongbuk Korea
| | - Dongseong Seo
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic 5 Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic 5 Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Gyeongbuk Korea
| |
Collapse
|
36
|
Peng H, Zhao M, Liu X, Tong T, Zhang W, Gong C, Chowdhury R, Wang Q. Biomimetic Materials to Fabricate Artificial Cells. Chem Rev 2024; 124:13178-13215. [PMID: 39591535 PMCID: PMC11671219 DOI: 10.1021/acs.chemrev.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
As the foundation of life, a cell is generally considered an advanced microreactor with a complicated structure and function. Undeniably, this fascinating complexity motivates scientists to try to extricate themselves from natural living matter and work toward rebuilding artificial cells in vitro. Driven by synthetic biology and bionic technology, the research of artificial cells has gradually become a subclass. It is not only held import in many disciplines but also of great interest in its synthesis. Therefore, in this review, we have reviewed the development of cell and bionic strategies and focused on the efforts of bottom-up strategies in artificial cell construction. Different from starting with existing living organisms, we have also discussed the construction of artificial cells based on biomimetic materials, from simple cell scaffolds to multiple compartment systems, from the construction of functional modules to the simulation of crucial metabolism behaviors, or even to the biomimetic of communication networks. All of them could represent an exciting advance in the field. In addition, we will make a rough analysis of the bottlenecks in this field. Meanwhile, the future development of this field has been prospecting. This review may bridge the gap between materials engineering and life sciences, forming a theoretical basis for developing various life-inspired assembly materials.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College of Shaoxing University, 508 Huancheng Western Road, Shaoxing 312099, China
| | - Man Zhao
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Wenyuan Zhang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Chen Gong
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
37
|
Fernández-Sainz J, Herrera-Ochoa D, Pacheco-Liñán PJ, Darder M, Albaladejo J, Bravo I, Garzón-Ruiz A. Spectroscopic study on volasertib: Highly stable complexes with albumin and encapsulation into alginate/montmorillonite bionanocomposites. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124823. [PMID: 39033609 DOI: 10.1016/j.saa.2024.124823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
In the present work, we study different physicochemical properties related to LADME processes of volasertib, a Polo-like kinase 1 inhibitor in advanced clinical trials. Firstly, the protonation equilibria, the extent of ionization at the physiological pH and pKa values of this drug are studied combining spectroscopic techniques and computational calculations. Secondly, the binding process of volasertib to the human serum albumin (HSA) protein is analyzed by fluorescence spectroscopy. We report a high binding constant to HSA (Ka = 4.10 × 106 M-1) and their pharmacokinetic implications are discussed accordingly. The negative enthalpy and entropy (ΔH0 = -54.49 kJ/mol; ΔS0 = -58.90 J K-1 mol-1) determined for the binding process suggests the implication of hydrogen bonds and van der Waals interactions in the formation of the HSA-volasertib complex. Additionally, volasertib is encapsulated in an alginate/montmorillonite bionanocomposite as a proof of concept for an oral delivery nanocarrier. The physical properties of that nanocomposite as well as volasertib delivery kinetics are analyzed.
Collapse
Affiliation(s)
- Jesús Fernández-Sainz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| | - Diego Herrera-Ochoa
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| | - Pedro J Pacheco-Liñán
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| | - Margarita Darder
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain
| | - José Albaladejo
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| | - Andrés Garzón-Ruiz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.
| |
Collapse
|
38
|
Hacker RM, Grimard DM, Morgan KA, Saleh E, Wrublik MM, Meiss CJ, Kant CC, Jones MA, Brennessel WW, Webb MI. Ru(II)-arene azole complexes as anti-amyloid-β agents. Dalton Trans 2024; 53:18845-18855. [PMID: 39093049 DOI: 10.1039/d4dt01740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
With the recent clinical success of anti-amyloid-β (Aβ) monoclonal antibodies, there is a renewed interest in agents which target the Aβ peptide of Alzheimer's disease (AD). Metal complexes are particularly well-suited for this development, given their structural versatility and ability to form stabile interactions with soluble Aβ. In this report, a small series of ruthenium-arene complexes were evaluated for their respective ability to modulate both the aggregation and cytotoxicity of Aβ. First, the stability of the complexes was evaluated in a variety of aqueous media where the complexes demonstrated exceptional stability. Next, the ability to coordinate and modulate the Aβ peptide was evaluated using several spectroscopic methods, including thioflavin T (ThT) fluorescence, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Overall, the complex RuBO consistently gave the greatest inhibitory action towards Aβ aggregation, which correlated with its ability to coordinate to Aβ in solution. Furthermore, RuBO also had the lowest affinity for serum albumin, which is a key consideration for a neurotherapeutic, as this protein does not cross the blood brain barrier. Lastly, RuBO also displayed promising neuroprotective properties, as it had the greatest inhibition of Aβ-inducted cytotoxicity.
Collapse
Affiliation(s)
- Ryan M Hacker
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| | - Daniela M Grimard
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| | - Katie A Morgan
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| | - Eaman Saleh
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Morgan M Wrublik
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Cade J Meiss
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Caitlyn C Kant
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | | | - Michael I Webb
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| |
Collapse
|
39
|
Maiorova LA, Gromova OA, Torshin IY, Bukreeva TV, Pallaeva TN, Nabatov BV, Dereven'kov IA, Bobrov YA, Bykov AA, Demidov VI, Kalacheva AG, Bogacheva TE, Grishina TR, Nikolskaya ED, Yabbarov NG. Nanoparticles of nucleotide-free analogue of vitamin B 12 formed in protein nanocarriers and their neuroprotective activity in vivo. Colloids Surf B Biointerfaces 2024; 244:114165. [PMID: 39217725 DOI: 10.1016/j.colsurfb.2024.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Recently, we have described the first supermolecular nanoentities of vitamin B12 derivative, viz. monocyano form of heptabutyl cobyrinate, unique nanoparticles with strong noncovalent intermolecular interactions, emerging optical and catalytic properties. Their nearest analogue, heptamethyl cobyrinate (ACCby), exhibits bioactivity. Here, we demonstrate the first example of the formation of nanoparticles of this nucleotide-free analogue of vitamin B12 in protein nanocarriers and neuroprotective activity in vivo of the own nanoform of the drug. The preparation and characterization of nanocarriers based on bovine serum albumin (BSA) loaded with vitamin B12 (viz. cyano- and aquacobalamins) and ACCby were performed. Nucleotide-free analogue of vitamin B12 is tightly retained by the protein structure and exists in an incorporated state in the form of nanoparticles. The effect of encapsulated drugs on the character and severity of primary generalized seizures in rats induced by the pharmacotoxicant thiosemicarbazide was studied. Cyanocobalamin and ACCby exhibited a neuroprotective effect. The best influence of the encapsulation on the effectiveness of the drugs was achieved in the case of AСCby, whose bioavailability as a neuroprotector did not change upon introduction in BSA particles, i.e., 33 % of surviving animals were observed upon ACCby administration in free form and in encapsulated state. No surviving rats were observed without the administration of drugs. Thus, BSA nanocarriers loaded by nanoparticles of nucleotide-free analogues of vitamin B12, including hydrophobic ones, can be recommended for neuroprotection and targeted delivery.
Collapse
Affiliation(s)
- Larissa A Maiorova
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo, Russia; Federal Research Center Computer Science and Control of Russian Academy of Sciences, Moscow, Russia.
| | - Olga A Gromova
- Federal Research Center Computer Science and Control of Russian Academy of Sciences, Moscow, Russia
| | - Ivan Yu Torshin
- Federal Research Center Computer Science and Control of Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V Bukreeva
- Kurchatov Complex Crystallography and Photonics, National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Tatiana N Pallaeva
- Kurchatov Complex Crystallography and Photonics, National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Boris V Nabatov
- Kurchatov Complex Crystallography and Photonics, National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Ilia A Dereven'kov
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo, Russia
| | | | | | - Vadim I Demidov
- Ivanovo State Medical University, Ministry of Health of Russia, Ivanovo, Russia
| | - Alla G Kalacheva
- Ivanovo State Medical University, Ministry of Health of Russia, Ivanovo, Russia
| | - Tatiana E Bogacheva
- Ivanovo State Medical University, Ministry of Health of Russia, Ivanovo, Russia
| | - Tatiana R Grishina
- Ivanovo State Medical University, Ministry of Health of Russia, Ivanovo, Russia
| | - Elena D Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4 Kosygina Street, Moscow, Russia
| | - Nikita G Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4 Kosygina Street, Moscow, Russia
| |
Collapse
|
40
|
Tripathi D, Sakthivel N, Mohanty AK, Kumar MS, Kumar U, Manimaran B. Cytotoxic potential of novel selenolato-bridged manganese(I)-based CORM and its molecular interaction with human serum albumin and DNA through spectroscopic and in silico docking studies. Int J Biol Macromol 2024; 282:137191. [PMID: 39489249 DOI: 10.1016/j.ijbiomac.2024.137191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The prevalence of cancer is increasing steadily over the past few decades due to social and environmental factors. Several drugs and medications have also been reported, but with inevitable side effects. Herein comes the urgent need for the development of precision medicine, which increases the efficiency of the drug on the target tissue and minimizes systemic toxicity and non-specificity. One of the several approaches developed includes the formulation of smart or trigger-specific drugs for spatiotemporal delivery. In this view, an arena of carbon monoxide-releasing molecules (CORMs) that could be rendered trigger-specific using labile ligands has been developed. In the present investigation, one such novel, manganese based CORM (Mn-CORM) was synthesized and analysed for its selective cytotoxic potential. The Mn-CORM exerted a broad-spectrum cytotoxicity against cancer cells such as PAN C1 (pancreatic cancer), PC 3 (prostate cancer) and HT 29 (colon cancer). Present study further investigated the binding potential of Mn-CORM for human serum albumin (HSA), the major transporter of anticancer drugs and DNA using a multi-spectroscopic (UV-VIS absorption, quenching analysis, time resolved fluorescence spectroscopy, circular dichroism spectroscopy) and molecular docking techniques. The analysis of thermodynamic parameters ΔS0and ΔH0 showed that the binding of Mn-CORM to HSA was spontaneous and dominated by Van der Waals forces and hydrogen bonding. The binding potential of Mn-CORM for CT DNA was also investigated using spectroscopic studies, dye displacement assay, circular dichroism spectroscopy, thermal denaturation and DNA cleavage studies. Results demonstrated a good binding potential of Mn-CORM for CT DNA. The probable mode of binding of Mn-CORM and CT DNA was concluded to be a partial intercalation. All these experimental and computational results confirmed that the novel Mn-CORM used in the present study can be a promising anticancer agent.
Collapse
Affiliation(s)
- Diksha Tripathi
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India.
| | - Natarajan Sakthivel
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India.
| | - Amaresh Kumar Mohanty
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Muthuvel Suresh Kumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Udit Kumar
- Department of Chemistry, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Bala Manimaran
- Department of Chemistry, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| |
Collapse
|
41
|
Zhou Z, Ou M, Shen W, Jin W, Yang G, Huang W, Guo C. Caffeine weakens the astringency of epigallocatechin gallate by inhibiting its interaction with salivary proteins. Food Chem 2024; 460:140753. [PMID: 39116773 DOI: 10.1016/j.foodchem.2024.140753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The astringency of green tea is an integrated result of the synergic and antagonistic effects of individual tea components, whose mechanism is highly complex and not completely understood. Herein, we used an epigallocatechin gallate (EGCG)/caffeine (CAF)/saliva model to simulate the oral conditions during tea drinking. The effect of CAF on the interaction between EGCG and salivary proteins was first investigated using molecular docking and isothermal titration calorimetry (ITC). Then, the rheological properties and the micro-network structure of saliva were studied to relate the molecular interactions and perceived astringency. The results revealed that CAF partially occupied the binding sites of EGCG to salivary proteins, inhibiting their interaction and causing changes in the elastic network structure of the salivary film, thereby reducing astringency.
Collapse
Affiliation(s)
- Zhenyu Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Miaoling Ou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Wangyang Shen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Guoyan Yang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Wenjing Huang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Cheng Guo
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
42
|
Hani U, Choudhary VT, Ghazwani M, Alghazwani Y, Osmani RAM, Kulkarni GS, Shivakumar HG, Wani SUD, Paranthaman S. Nanocarriers for Delivery of Anticancer Drugs: Current Developments, Challenges, and Perspectives. Pharmaceutics 2024; 16:1527. [PMID: 39771506 PMCID: PMC11679327 DOI: 10.3390/pharmaceutics16121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer, the most common condition worldwide, ranks second in terms of the number of human deaths, surpassing cardiovascular diseases. Uncontrolled cell multiplication and resistance to cell death are the traditional features of cancer. The myriad of treatment options include surgery, chemotherapy, radiotherapy, and immunotherapy to treat this disease. Conventional chemotherapy drug delivery suffers from issues such as the risk of damage to benign cells, which can cause toxicity, and a few tumor cells withstand apoptosis, thereby increasing the likelihood of developing tolerance. The side effects of cancer chemotherapy are often more pronounced than its benefits. Regarding drugs used in cancer chemotherapy, their bioavailability and stability in the tumor microenvironment are the most important issues that need immediate addressing. Hence, an effective and reliable drug delivery system through which both rapid and precise targeting of treatment can be achieved is urgently needed. In this work, we discuss the development of various nanobased carriers in the advancement of cancer therapy-their properties, the potential of polymers for drug delivery, and recent advances in formulations. Additionally, we discuss the use of tumor metabolism-rewriting nanomedicines in strengthening antitumor immune responses and mRNA-based nanotherapeutics in inhibiting tumor progression. We also examine several issues, such as nanotoxicological studies, including their distribution, pharmacokinetics, and toxicology. Although significant attention is being given to nanotechnology, equal attention is needed in laboratories that produce nanomedicines so that they can record themselves in clinical trials. Furthermore, these medicines in clinical trials display overwhelming results with reduced side effects, as well as their ability to modify the dose of the drug.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (M.G.)
| | - Vikram T. Choudhary
- Department of Pharmaceutics, The Oxford College of Pharmacy, Hongsandra, Bengaluru 560068, India;
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (M.G.)
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India; (R.A.M.O.); (H.G.S.)
| | - Gururaj S. Kulkarni
- Department of Pharmaceutics, The Oxford College of Pharmacy, Hongsandra, Bengaluru 560068, India;
| | - Hosakote G. Shivakumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India; (R.A.M.O.); (H.G.S.)
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar 190006, India;
| | - Sathishbabu Paranthaman
- Department of Cell Biology and Molecular Genetics, Sri Devraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research, Kolar 563103, India;
| |
Collapse
|
43
|
Shen S, Qiu X, Yang C, Li J, Peng Y, Wen Z, Luo H, Xiang B. Prognostic importance of the Scottish inflammatory prognostic score in patients with hepatocellular carcinoma after hepatectomy: a retrospective cohort study. BMC Cancer 2024; 24:1393. [PMID: 39533231 PMCID: PMC11559137 DOI: 10.1186/s12885-024-13174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The Scottish Inflammatory Prognostic Score (SIPS), an innovative scoring system, has emerged as a promising biomarker for predicting patient outcomes following cancer therapy. This study aimed to evaluate the value of SIPS as a prognostic indicator following hepatectomy in patients with hepatocellular carcinoma (HCC). METHODS This retrospective study included 693 HCC patients who underwent hepatectomy. Survival outcomes were compared between propensity score-matched groups. Independent prognostic factors were identified through Cox regression analysis. Additionally, both traditional Cox proportional hazards models and machine learning models based on the SIPS were developed and validated. RESULTS A total of 693 HCC patients who underwent hepatectomy were included, with 102 in the high SIPS group and 591 in the low SIPS group. Following propensity score matching (1:3 ratio), both groups achieved balance, with 82 patients in the high SIPS group and 240 patients in the low SIPS group. The low SIPS group demonstrated significantly superior recurrence-free survival (RFS) (25 months vs. 21 months; P < 0.001) and overall survival (OS) (69 months vs. 58 months; P < 0.001) compared to the high SIPS group. Multivariable analysis identified SIPS as an independent adverse factor affecting both RFS and OS. The calibration curve for overall patient survival diagnosis displayed excellent predictive accuracy. Traditional COX prognostic models and machine learning models incorporating SIPS demonstrated excellent performance both the training and validation set. CONCLUSION This study confirms the prognostic significance of SIPS in post-hepatectomy HCC patients, providing a practical tool for risk stratification and clinical decision-making. Further research and validation are needed to consolidate its role in prognostic assessment.
Collapse
Affiliation(s)
- Shuang Shen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, China
| | - Xin Qiu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Chenglei Yang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Jindu Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Yi Peng
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Zhaochan Wen
- Oncology School, Guangxi Medical University, Nanning, 530021, China
| | - Huili Luo
- College of Basic Medicine, Guangxi Medical University, Nanning, 530199, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, China.
| |
Collapse
|
44
|
Zhao L, Liu Y, Jin F, Hu K, Lv M, Zhou Y, Zhao W, Hu Y, Wu J, Yang Y, Wang W. Multifunctional nanoparticles potentiate in-situ tumor vaccines via reversing insufficient Photothermal therapy by disrupting tumor vasculature. J Control Release 2024; 376:842-860. [PMID: 39401677 DOI: 10.1016/j.jconrel.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024]
Abstract
Photothermal therapy can trigger immunogenic cell death and release personalized in-situ tumor vaccine, activating immune responses to eliminate systemic tumors beyond the irradiated zone. However, the immune response of the in-situ tumor vaccines is often undermined by the residual tumor cells and their induced immunosuppressive tumor microenvironment (TME), which is attributed to insufficient photothermal effects stemming from the limited accumulation of photosensitizers. To overcome these limitations, we developed multi-functional nanoparticles (VI@Gd-NPs) that integrate a tumor vasculature-specific disrupting agent (Vadimezan, Phase III clinical drug), a photosensitizer (Indocyanine Green, ICG), and a magnetic resonance imaging contrast agent (Gadolinium, Gd) through chemical self-assembly. By selectively disrupting the tumor vasculature, these nanoparticles enhance the intratumoral delivery of photosensitizers (ICG and blood cells), and Gd. With the guidance of Gd-enhanced MRI, the improved delivery facilitates comprehensive photothermal ablation and regulates the TME, further initiating the in-situ tumor vaccine. Notably, this approach significantly enhances anti-tumor immune responses, improves survival rates, and reduces tumor recurrence and metastasis in various animal models. Moreover, depleting CD8+ T cells reverses these therapeutic benefits, highlighting the critical role of adaptive T cell immunity. Therefore, the VI@Gd-NPs treatment holds great potential for reigniting the in-situ tumor vaccine of photothermal therapy.
Collapse
Affiliation(s)
- Lili Zhao
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Yiran Liu
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Fangfei Jin
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Kaiyuan Hu
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Miao Lv
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Yuehua Zhou
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Weijun Zhao
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yong Yang
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Wenguang Wang
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
45
|
Blagodatskikh IV, Vyshivannaya OV, Tishchenko NA, Bezrodnykh EA, Piskarev VE, Aysin RR, Antonov YA, Orlov VN, Tikhonov VE. Interaction between reacetylated chitosan and albumin in alcalescent media. Carbohydr Res 2024; 545:109277. [PMID: 39299161 DOI: 10.1016/j.carres.2024.109277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Interaction of chitosan and its derivatives with proteins of animal blood at blood pH relevant conditions is of a particular interest for construction of antimicrobial chitosan/protein-based drug delivery systems. In this work, the interaction of a series of N-reacetylated oligochitosans (RA-CHI) having Mw of 10-12 kDa and differing in the degree of acetylation (DA 19, 24, and 40 %) with bovine serum albumin (BSA) in alkalescent media is described in first. It is shown that RA-CHI forms soluble complexes with BSA in solutions with pH 7.4 and a low ionic strength. Light scattering study shows that soluble RA-CHI complexes have spherical form with the radius of about 100 nm. Circular dichroism, fluorescent spectroscopy, and micro-IR spectroscopy studies show that the secondary structure of BSA in soluble complexes remain intact. Isothermal titration calorimetry of RA-CHI with DA 24 % and BSA mixing in the buffers with different ionization heats reveals a significant contribution of electrostatic forces to the binding process and an additional ionization of chitosan due to the proton transfer from the buffer substance. An increase of ionic strength to the blood relevant value 0.15 M suppresses the binding. It is shown that application of RA-CHI with higher DA value leads to a decrease in the affinity of RA-CHI to BSA and an alteration of the interaction mechanism. The finding opens an opportunity to the application of N-reacetylated chitosan derivatives in the complex systems compatible with blood plasma proteins.
Collapse
Affiliation(s)
- Inesa V Blagodatskikh
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia
| | - Oxana V Vyshivannaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia; Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow, 119991, Russia
| | - Nikita A Tishchenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia
| | - Evgeniya A Bezrodnykh
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia
| | - Vladimir E Piskarev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia
| | - Rinat R Aysin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia
| | - Yurij A Antonov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Victor N Orlov
- A.N. Belozersky Research Institute of Physico-Chemical Biology MSU, Leninskie Gory, 1-40, Moscow, 119992, Russia
| | - Vladimir E Tikhonov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia.
| |
Collapse
|
46
|
Cramer S, Reddy A, Minard C, Voss S, Fox E, Liu X, Denic K, Reid J, Weigel B. A Phase 1 Study of ABI-009 (Nab-sirolimus) in Combination With Temozolomide and Irinotecan in Pediatric Patients With Recurrent or Refractory Solid Tumors, Including CNS Tumors-A Children's Oncology Group Pediatric Early Phase Clinical Trial Network Study ADVL1514. Cancer Med 2024; 13:e70376. [PMID: 39487711 PMCID: PMC11533328 DOI: 10.1002/cam4.70376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Nab-sirolimus (ABI-009, nab-rapamycin; Aadi Bioscience Inc. [Aadi]) is a human albumin-bound form of sirolimus nanoparticles, a potent mTOR inhibitor. This phase I trial was conducted to define dose-limiting toxicities (DLT), maximum tolerated or recommended phase II dose (MTD/RP2D), and pharmacokinetics of Nab-sirolimus in combination with temozolomide and irinotecan. METHODS Using a rolling 6 design, Nab-sirolimus was administered intravenously (IV) on days (D) 1 and 8 of cycle (C) 1. In subsequent cycles, Nab-sirolimus was administered D1 and D8 in combination with temozolomide (125 mg/m2/dose, maximum 250 mg/dose) and irinotecan (90 mg/m2/dose) orally, daily on D1-5. Cycle duration was 21 days. Three dose levels (DL) of Nab-sirolimus were investigated (DL1: 35 mg/m2/dose, DL-1: 20 mg/m2/dose, and DL-2: 15 mg/m2/dose). The observation period for estimating the MTD/RP2D was defined by cycles 1 and 2. RESULTS Thirty-three patients were enrolled, 32 were eligible. Dose determination included 17 evaluable patients, median (range) age 12 (2-20) years and six additional patients were enrolled (four evaluable for toxicity) on a pharmacokinetic cohort. C1 or C2 DLTs were primarily thrombocytopenia including 2/5 patients at DL1, 2/6 patients at DL-1, and 1/6 patients at DL-2. One patient (DL1) with Ewing Sarcoma had a partial response and remained on study for 35 cycles. Rapamycin clearance was dose dependent. Irinotecan clearance and its active metabolite SN-38 exposure were not affected by coadministration with Nab-sirolimus. CONCLUSION The MTD for Nab-sirolimus was 15 mg/m2/dose IV on D1 and D8 in combination with temozolomide 125 mg/m2/dose and oral irinotecan 90 mg/m2/dose daily for 5 days during 21D cycles. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT02975882.
Collapse
Affiliation(s)
- Stuart L. Cramer
- Prisma Health‐Midlands Children's Center for Cancer and Blood DisordersColumbiaSouth CarolinaUSA
| | - Alyssa Terry Reddy
- Neurology/Child NeurologyUCSF Medical Center‐Mission BaySan FranciscoCaliforniaUSA
| | - Charles Gene Minard
- Baylor College of Medicine/Dan L Duncan Comprehensive Cancer CenterDan L. Duncan InstituteHoustonTexasUSA
| | - Stephan Voss
- Dana Farber Cancer InstituteChildren's Hospital of BostonBostonMassachusettsUSA
| | - Elizabeth Fox
- Cancer Center, Clinical Trials AdministrationSaint Jude Children's Research HospitalMemphisTennesseeUSA
| | - Xiaowei Liu
- Children's Oncology GroupMonroviaCaliforniaUSA
| | | | | | - Brenda J. Weigel
- Department of Pediatrics, Hem/Onc/BMTUniversity of Minnesota Medical Center‐FairviewMinneapolisMinnesotaUSA
| |
Collapse
|
47
|
de Almeida CC, Baião DDS, da Silva DVT, da Trindade LR, Pereira PR, Conte-Junior CA, Paschoalin VMF. Dairy and nondairy proteins as nano-architecture structures for delivering phenolic compounds: Unraveling their molecular interactions to maximize health benefits. Compr Rev Food Sci Food Saf 2024; 23:e70053. [PMID: 39530635 DOI: 10.1111/1541-4337.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Phenolic compounds are recognized for their benefits against degenerative diseases. Clinical and nutritional applications are limited by their low solubility, stability, and bioavailability, compromising their efficacy. Natural macromolecules, such as lipids, polysaccharides, and proteins, employed as delivery systems can efficiently overcome these limitations. In this sense, proteins are attractive due to their biocompatibility and dynamic structure properties, functional adaptability and self-assembly capabilities, offering stability, efficient encapsulation, and controlled release. This review explores the potential use of dairy proteins, caseins, and whey proteins, and, alternatively, nondairy proteins, gelatin, human serum albumin, maize zein, and soybean proteins, in building wall materials for the delivery of phenolic compounds. To optimize performance, aspects, such as protein-phenolic affinity and complex stability/activity, should be considered when designing particle nano-architecture. Molecular interactions between protein-phenolic compound complexes are, thus, further discussed, as well as the effects of temperature and pH and strategies to stabilize and preserve nano-architecture and retain phenolic compound activity. All proteins harbor one or more putative binding sites, shared or not, depending on the phenolic compound. Preservation techniques are still a case-to-case study, as no behavior patterns among different complexes are noted. Safety aspects necessary for the marketing of nanoproducts, such as characterization, toxicity assessments, and post-market monitoring as defined by the European Food Safety Authority and the Food and Drug Administration, are discussed, evidencing the need for a unified regulation. This review broadens our understanding and opens new opportunities for the development of novel protein-based nanocarriers to obtain more effective and stable products, enhancing phenolic compound delivery and health benefits.
Collapse
Affiliation(s)
- Cristine Couto de Almeida
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Diego Dos Santos Baião
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Davi Vieira Teixeira da Silva
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Lucileno Rodrigues da Trindade
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Patricia Ribeiro Pereira
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis, Technological Development Support Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vania Margaret Flosi Paschoalin
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
48
|
Gonzalez-Posada AH, Mesa M, Sierra L, Lopez B. Interactions of human serum albumin with phosphate and Tris buffers: impact on paclitaxel binding and nanoparticles self-assembly. J Microencapsul 2024; 41:564-575. [PMID: 39268923 DOI: 10.1080/02652048.2024.2389135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024]
Abstract
AIM To investigate the conformational changes in human serum albumin (HSA) caused by chemical (CD) and thermal denaturation (TD) at pH 7.4 and 9.9, crucial for designing controlled drug delivery systems with paclitaxel (PTX). METHODS Experimental and computational methods, including differential scanning calorimetry (DSC), UV-Vis and intrinsic fluorescence spectroscopy, mean diameter, polydispersity index (PDI), ζ-potential, encapsulation efficiency (EE), in vitro release and protein docking studies were conducted to study the HSA denaturation and nanoparticles (NPs) preparation. RESULTS TD at pH 7.4 produced smaller NPs (287.1 ± 12.9 nm) than CD at pH 7.4 with NPs (584.2 ± 47.7 nm). TD at pH 9.9 exhibited high EE (97.3 ± 0.2%w/w) with rapid PTX release (50% within 1h), whereas at pH 7.4 (96.4 ± 2.1%w/w), release only 40%. ζ-potentials were around -30 mV. CONCLUSION Buffer type and pH significantly influence NP properties. TD in PBS at pH 7.4, provided optimal conditions for a stable and efficient drug delivery system.
Collapse
Affiliation(s)
- A H Gonzalez-Posada
- Materials Science Group, Institute of Chemistry, University of Antioquia, Medellín, Colombia
| | - M Mesa
- Materials Science Group, Institute of Chemistry, University of Antioquia, Medellín, Colombia
| | - L Sierra
- Materials Science Group, Institute of Chemistry, University of Antioquia, Medellín, Colombia
| | - B Lopez
- Materials Science Group, Institute of Chemistry, University of Antioquia, Medellín, Colombia
| |
Collapse
|
49
|
Nayak M, Das RP, Kumbhare LB, Singh BG, Iwaoka M, Kunwar A. Diseleno-albumin, a native bio-inspired drug free therapeutic protein induces apoptosis in lung cancer cells through mitochondrial oxidation. Int J Biol Macromol 2024; 279:135141. [PMID: 39208899 DOI: 10.1016/j.ijbiomac.2024.135141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Macromolecular therapeutic is the emerging concept in the fields of drug delivery and drug discovery. The present study reports the design and development of a serum albumin based macromolecular chemotherapeutic by conjugating bovine serum albumin (BSA) with 3,3'-diselenodipropionic acid (DSePA), a pharmacologically active organo-diselenide (R-Se-Se-R). The reaction conditions were optimised to achieve the controlled conjugation of BSA with DSePA without causing any significant alteration in its physico-chemical properties or secondary structure and crosslinking. The chemical characterisation of the reaction product through various spectroscopic techniques viz., FT-IR, Raman, XPS, AAS and MALDI-TOF-MS, established the conjugation of about ∼5 DSePA molecules per BSA molecule. The DSePA conjugated BSA (Se-Se-BSA) showed considerable stability in aqueous and lyophilized forms. The cytotoxicity studies by involving cell lines of cancerous and non-cancerous origins indicated that Se-Se-BSA selectively inhibited the proliferation of cancerous cells. The cellular uptake studies by physically labelling Se-Se-BSA with curcumin and following its intracellular fluorescence confirmed that uptake efficiency of Se-Se-BSA was almost similar to that of native BSA. Finally, studies on the mechanism of action of Se-Se-BSA in the A549 (lung adenocarcinoma) cells revealed that it induced mitochondrial ROS generation followed by mitochondrial dysfunction, activation of caspases and apoptosis. Together, these results demonstrate a bio-inspired approach of exploring diselenide (-Se-Se-) grafted serum albumin as the potential drug free therapeutic for anticancer application.
Collapse
Affiliation(s)
- Minati Nayak
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Ram Pada Das
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Liladhar B Kumbhare
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Beena G Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Michio Iwaoka
- Department of Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
50
|
Linxweiler H, Thiesen J, Krämer I. Physicochemical Stability of Nab-Paclitaxel (Pazenir) Infusion Dispersions in Original Glass Vials and EVA Infusion Bags. Pharmaceutics 2024; 16:1372. [PMID: 39598496 PMCID: PMC11597360 DOI: 10.3390/pharmaceutics16111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES The study objective was to determine the physicochemical stability of nab-paclitaxel (Pazenir) ready-to-use (RTU) dispersion for infusion in original glass vials and ready-to-administer (RTA) infusion dispersion in EVA infusion bags. METHODS Triplicate test dispersions were prepared and stored light protected for a maximum of 28 days either in the original glass vials (RTU) at 2-8 °C or in EVA infusion bags (RTA) at 2-8 °C and at 25 °C. Directly after reconstitution and on days 1, 3, 5, 7, 14, 21, and 28 samples were withdrawn and paclitaxel concentrations assayed by a stability-indicating HPLC method. In parallel, pH and osmolality were measured. In a second series, test dispersions were stored over a 14-day period and inspected daily for visible particles and colour changes. Samples were taken daily for particle size analysis. Integrity and particle size distribution of the nanoparticles were determined by dynamic light scattering (DLS) and albumin monomers, dimers, oligomers, or polymers by size-exclusion-chromatography (SEC). RESULTS Non-redispersible particles were observed in test dispersions on day 5 (RTA 25 °C), day 7 (RTA 2-8 °C), and day 11 (RTU 2-8 °C). DLS analysis revealed out-of-specification results for the polydispersity index from day 7 (RTA 25 °C) and day 12 (RTU, RTA refrigerated). Paclitaxel concentrations remained >95% of the initial concentrations for 7 days (RTU 2-8 °C, RTA 25 °C) and for 14 days (RTA 2-8 °C). All test dispersions met the specifications regarding the oligomeric status of albumin, pH, and osmolality over the investigation periods. CONCLUSIONS Stability of nab-paclitaxel dispersions is limited by the release of water-insoluble paclitaxel from the nanoparticles and subsequent crystallisation and by formation of insoluble albumin aggregates. Based on our overall results, shelf life of refrigerated RTU and RTA nab-paclitaxel dispersions is limited to 7 days. Shelf life of RTA nab-paclitaxel dispersions stored at room temperature is limited to 4 days. Careful visual inspection of nab-paclitaxel dispersions after reconstitution and prior to administration is highly recommended to detect non-redispersible particles.
Collapse
Affiliation(s)
- Helen Linxweiler
- Department of Pharmacy, University Medical Centre of Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (J.T.); (I.K.)
| | | | | |
Collapse
|