1
|
Olean-Oliveira A, Seraphim PM, Portugal ML, Teixeira MFS. A novel GLUT-4 electrochemical immunosensor based on a poly(thionine)-gold nanoparticle nanocomposite: Combining complex capacitance and dissolved oxygen to obtain an analytical signal. Biosens Bioelectron 2025; 275:117219. [PMID: 39919504 DOI: 10.1016/j.bios.2025.117219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Detection of glucose transporter 4 (GLUT4) is essential for understanding various physiological and pathological processes. This work reports the development of a novel electrochemical immunosensor for the direct detection of GLUT4, employing dissolved oxygen as a redox probe. This molecular oxygen-sensitive response is mediated by a redox-conductive polymer based on thionine. The sensor platform was fabricated via a one-step electropolymerization of thionine and gold nanoparticles (AuNPs) onto a platinum screen-printed electrode (Olean-Oliveira et al., 2022a). The immunosensor was then constructed by physical adsorption of a GLUT4 antibody onto the poly(thionine)-AuNP composite surface. This label-free approach eliminates the need for secondary antibodies or enzymes. The immunosensor performance was evaluated using electrochemical impedance spectroscopy (EIS). The sensing mechanism relies on impedance changes; increasing GLUT4 concentrations lead to increased impedance due to enhanced surface blocking upon GLUT4-antibody binding. This interaction impedes oxygen diffusion to the polymer redox sites, resulting in increased electrical resistance. Analysis of the redox capacitance as a function of frequency demonstrates a decrease in the capacitive arc with increasing GLUT4 concentration.
Collapse
Affiliation(s)
- André Olean-Oliveira
- Max-Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Patrícia Monteiro Seraphim
- Department of Physiotherapy, School of Science and Technology, Sao Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Miquéias L Portugal
- Department of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Rua Roberto Simonsen, 305, 19060-900, Presidente Prudente, SP, Brazil
| | - Marcos F S Teixeira
- Department of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Rua Roberto Simonsen, 305, 19060-900, Presidente Prudente, SP, Brazil.
| |
Collapse
|
2
|
Cui M, Xi J, Shi Z, Zhu Y, Ma Z, Li M, Yang Q, Song C, Fan L. Antigen-Dependent Adjuvanticity of Poly(lactic-co-glycolic acid)-polyethylene Glycol 25% Nanoparticles for Enhanced Vaccine Efficacy. Vaccines (Basel) 2025; 13:317. [PMID: 40266212 PMCID: PMC11946064 DOI: 10.3390/vaccines13030317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Background: A key component in modern vaccine development is the adjuvant, which enhances and/or modulates the antigen-specific immune response. In recent years, nanoparticle (NP)-based adjuvants have attracted much research attention owing to their ability to enhance vaccine potency. Nonetheless, how the selection of different antigens influences the overall vaccine efficacy when combined with the same nanoparticle adjuvant is less discussed, which is important for practical applications. Methods: Non-toxic mutants of exotoxin Hla (rHlaH35L) and cell-wall-anchored protein SpA(rSpam) were covalently conjugated to Poly(lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG) 25% NPs (25% NPs) as antigens to prepare nanovaccines. Antibody titers, cytokine secretion levels, and the antibody bacteriolytic capacity were tested to investigate immune activation. To evaluate the protective efficacy of the nanovaccine, immunized mice were challenged with S. aureus ATCC 25923 at three different lethal doses: 1 × LD100, 2 × LD100, and 4 × LD100. Results: We showed that 25% NP-rHlaH35L nanovaccines were associated with more efficient humoral, cellular, and innate immune responses and protection potency compared with 25% NP-rSpam. Moreover, the overall vaccine potency of 25% NP-rHlaH35L was even better than the combination vaccination of both 25% NP-rHlaH35L and 25% NP-rSpam. In comparison to the clinically used aluminum (alum) adjuvant, the 25% NP adjuvants were found to stimulate humoral and cellular immune responses efficiently, irrespective of the antigen type. For antigens, either exotoxins or cell-wall-anchored proteins, the 25% NP-based vaccines show excellent protection for mice from S. aureus infection with survival rates of 100% after lethal challenge, which is significantly superior to the clinically used alum adjuvant. Moreover, due to the superior immune response elicited by 25% NP-rHlaH35L, the animals inoculated with this formulation survived even after two times the lethal dose of S. aureus administration. Conclusions: We demonstrated that the type of antigen plays a key role in determining the overall vaccine efficacy in the immune system when different kinds of antigens are conjugated with a specific nanoparticle adjuvant, paving a new way for vaccine design based on 25% NP adjuvants with enhanced potency and reduced side effects.
Collapse
Affiliation(s)
- Minxuan Cui
- Shaanxi Key Laboratory of Chiral Drug and Vaccine Adjuvants, Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169th Changle West Road, Xi’an 710032, China; (M.C.); (J.X.); (Z.S.); (Z.M.); (M.L.)
| | - Jiayue Xi
- Shaanxi Key Laboratory of Chiral Drug and Vaccine Adjuvants, Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169th Changle West Road, Xi’an 710032, China; (M.C.); (J.X.); (Z.S.); (Z.M.); (M.L.)
| | - Zhuoyue Shi
- Shaanxi Key Laboratory of Chiral Drug and Vaccine Adjuvants, Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169th Changle West Road, Xi’an 710032, China; (M.C.); (J.X.); (Z.S.); (Z.M.); (M.L.)
| | - Yupu Zhu
- Department of Occupational & Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, 169th Changle West Road, Xi’an 710032, China;
| | - Zhengjun Ma
- Shaanxi Key Laboratory of Chiral Drug and Vaccine Adjuvants, Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169th Changle West Road, Xi’an 710032, China; (M.C.); (J.X.); (Z.S.); (Z.M.); (M.L.)
| | - Muqiong Li
- Shaanxi Key Laboratory of Chiral Drug and Vaccine Adjuvants, Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169th Changle West Road, Xi’an 710032, China; (M.C.); (J.X.); (Z.S.); (Z.M.); (M.L.)
| | - Qian Yang
- Department of Chinese Materia Medical and Natural Medicines, School of Pharmacy, Air Force Medical University, 169th Changle West Road, Xi’an 710032, China;
| | - Chaojun Song
- School of Life Science, Northwestern Polytechnical University, 127th Youyi West Road, Xi’an 710072, China
| | - Li Fan
- Shaanxi Key Laboratory of Chiral Drug and Vaccine Adjuvants, Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169th Changle West Road, Xi’an 710032, China; (M.C.); (J.X.); (Z.S.); (Z.M.); (M.L.)
| |
Collapse
|
3
|
Duymaz D, Kebabci AO, Kizilel S. Harnessing the immunomodulatory potential of chitosan and its derivatives for advanced biomedical applications. Int J Biol Macromol 2025; 307:142055. [PMID: 40090654 DOI: 10.1016/j.ijbiomac.2025.142055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
The success of biomaterial applications in medicine, particularly in tissue engineering, relies on achieving a balance between promoting tissue regeneration and controlling the immune response. Due to its natural origin, high biocompatibility, and versatility, chitosan has emerged as a promising biomaterial especially for immunomodulation purposes. Immunomodulation, refers to the deliberate alteration of the immune system's activity to achieve a desired therapeutic effect either by enhancing or suppressing the function of specific immune cells, signaling pathways, or cytokine production. This modulation opens up the unlimited possibilities for the use of biomaterials, especially about the use of natural polymers such as chitosan. Although numerous chitosan-based immunoregulatory strategies have been demonstrated over the past two decades, the lack of in-depth exploration hinders the full potential of strategies that include chitosan and its derivatives in biomedical applications. Thus, in this review, the possible immunomodulatory effects of chitosan, chitosan derivatives and their potential combined with various agents and therapies are investigated in detail. Moreover, this report includes agents for localized immune response control, chitosan-based strategies with complementary immunomodulatory properties to create synergistic effects that will influence the success of cell therapies for enhanced tissue acceptance and regeneration. Finally, the challenges and outlook of chitosan-based therapies as a powerful tool for improving immunomodulatory applications are discussed for paving the way for further studies.
Collapse
Affiliation(s)
- Doğukan Duymaz
- Chemical and Biological Engineering, Koç University, Sariyer, İstanbul, Turkiye
| | - Aybaran O Kebabci
- Chemical and Biological Engineering, Koç University, Sariyer, İstanbul, Turkiye
| | - Seda Kizilel
- Chemical and Biological Engineering, Koç University, Sariyer, İstanbul, Turkiye.
| |
Collapse
|
4
|
Yahyaei S, Abdoli A, Jamali A, Teimoori A, Arefian E, Eftekhari Z, Jamur P. Targeting Respiratory Viruses: The Efficacy of Intranasal mRNA Vaccination in Generating Protective Mucosal and Systemic Immunity Against Influenza A (H1N1). Influenza Other Respir Viruses 2025; 19:e70093. [PMID: 40127967 PMCID: PMC11932742 DOI: 10.1111/irv.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
Four significant influenza outbreaks have occurred over the past 100 years, and the 1918 influenza pandemic is the most severe. Since influenza viruses undergo antigenic evolution, they are the pathogens most likely to trigger a new pandemic shortly. Intranasal vaccination offers a promising strategy for preventing diseases triggered by respiratory viruses by eliciting an immunoglobulin A (IgA) response, limiting virus replication and transmission from the respiratory tract more efficiently than intramuscular vaccines. Combining intranasal administration and mRNA-lipid nanoparticles can be an ideal strategy for limiting the extent of the next flu pandemic. This study explored the immunogenicity of intranasally delivered mRNA encapsulated in mannose-histidine-conjugated chitosan lipid nanoparticles (MHCS-LNPs) as a vaccine against influenza A (H1N1) in BALB/c mice. Intranasal administration of mRNA-MHCS-LNPs resulted in the generation of influenza A (H1N1) hemagglutinin-specific neutralizing antibodies in vaccinated animals. The enzyme-linked immunosorbent assay (ELISA) results indicated a notable increase in the quantity of immunoglobulin G (IgG) and IgA antibodies in serum and the bronchoalveolar lavage fluid (BALF), respectively, and exhibited influenza A-specific IFN-γ secretion in vaccinated mice, as well as a noticeable alteration in IL-5 production. Overall, this study demonstrated an effective immunogenic response against respiratory viral infections through intranasal delivery of an mRNA-MHCS-LNP vaccine.
Collapse
MESH Headings
- Animals
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Administration, Intranasal
- Mice, Inbred BALB C
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Mice
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Female
- Nanoparticles/administration & dosage
- Immunity, Mucosal
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Immunoglobulin A/analysis
- Chitosan/administration & dosage
- Chitosan/chemistry
- Vaccination/methods
- Immunoglobulin G/blood
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- mRNA Vaccines
- Bronchoalveolar Lavage Fluid/immunology
- Liposomes
Collapse
Affiliation(s)
- Sara Yahyaei
- Hepatitis and AIDS DepartmentPasteur Institute of IranTehranIran
- Student Research CommitteePasteur Institute of IranTehranIran
| | - Asghar Abdoli
- Hepatitis and AIDS DepartmentPasteur Institute of IranTehranIran
| | - Abbas Jamali
- Department of Influenza and Other Respiratory VirusesPasteur Institute of IranTehranIran
| | - Ali Teimoori
- Department of Virology, Faculty of MedicineHamadan University of Medical SciencesHamadanIran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | | | - Parisa Jamur
- Hepatitis and AIDS DepartmentPasteur Institute of IranTehranIran
| |
Collapse
|
5
|
Poudel K, Vithiananthan T, Kim JO, Tsao H. Recent progress in cancer vaccines and nanovaccines. Biomaterials 2025; 314:122856. [PMID: 39366184 DOI: 10.1016/j.biomaterials.2024.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Vaccine science, nanotechnology, and immunotherapy are at the forefront of cancer treatment strategies, each offering significant potential for enhancing tumor-specific immunity and establishing long-lasting immune memory to prevent tumor recurrence. Despite the promise of these personalized and precision-based anti-cancer approaches, challenges such as immunosuppression, suboptimal immune activation, and T-cell exhaustion continue to hinder their effectiveness. The limited clinical success of cancer vaccines often stems from difficulties in identifying effective antigens, efficiently targeting immune cells, lymphoid organs, and the tumor microenvironment, overcoming immune evasion, enhancing immunogenicity, and avoiding lysosomal degradation. However, numerous studies have demonstrated that integrating nanotechnology with immunotherapeutic strategies in vaccine development can overcome these challenges, leading to potent antitumor immune responses and significant progress in the field. This review highlights the critical components of cancer vaccine and nanovaccine strategies for immunomodulatory antitumor therapy. It covers general vaccine strategies, types of vaccines, antigen forms, nanovaccine platforms, challenges faced, potential solutions, and key findings from preclinical and clinical studies, along with future perspectives. To fully unlock the potential of cancer vaccines and nanovaccines, precise immunological monitoring during early-phase trials is essential. This approach will help identify and address obstacles, ultimately expanding the available options for patients who are resistant to conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Kishwor Poudel
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tulasi Vithiananthan
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Gao H, Cheng R, Cardoso I, Lobita M, Pacheco-Fernández I, Bártolo R, Rodrigues LR, Hirvonen J, A. Santos H. Engineered Shape-Tunable Copper-Coordinated Nanoparticles for Macrophage Reprogramming. NANO LETTERS 2025; 25:2831-2840. [PMID: 39914892 PMCID: PMC11849021 DOI: 10.1021/acs.nanolett.4c05999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
The immune system safeguards as primary defense by recognizing nanomaterials and maintaining homeostasis, gaining a deeper understanding of these interactions may change the treating paradigm of immunotherapy. Here, we adopted copper as the principal component of nanoparticles (NPs), given its features of coordination with different benezenecarboxylate ligands to form metal-organic frameworks and complexes with distinct morphologies. As a result, four types of shape-tunable copper-coordinated NPs (CuCNPs) are developed: cuboctahedron, needle, octahedron, and plate NPs. Biocompatibility of CuCNPs varies across different cell lines (RAW264.7, THP-1, HEK 293 and HeLa) in a shape-dependent manner, with needle-shaped CuCNPs showing pronounced cytotoxicity (IC50:104.3 μg mL-1 at 24 h). Among different shapes, a notable increase of 8.47% in the CD206+ subpopulations is observed in needle-shaped CuCNPs, followed by 77% enhancement at 48 h. Overall, this study underscores the shape-dependent immune-regulatory effects of CuCNPs and sheds light on the rational design of nanoscale metal complexes for potential immunotherapy.
Collapse
Affiliation(s)
- Han Gao
- Department
of Biomaterials and Biomedical Technology, The Personalized Medicine
Research Institute (PRECISION), University
Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ruoyu Cheng
- Department
of Biomaterials and Biomedical Technology, The Personalized Medicine
Research Institute (PRECISION), University
Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Inês Cardoso
- Department
of Biomaterials and Biomedical Technology, The Personalized Medicine
Research Institute (PRECISION), University
Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- CEB
- Centre of Biological Engineering, Universidade
do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria Lobita
- Department
of Biomaterials and Biomedical Technology, The Personalized Medicine
Research Institute (PRECISION), University
Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Idaira Pacheco-Fernández
- Department
of Biomaterials and Biomedical Technology, The Personalized Medicine
Research Institute (PRECISION), University
Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Raquel Bártolo
- Department
of Biomaterials and Biomedical Technology, The Personalized Medicine
Research Institute (PRECISION), University
Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lígia R. Rodrigues
- CEB
- Centre of Biological Engineering, Universidade
do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jouni Hirvonen
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Hélder A. Santos
- Department
of Biomaterials and Biomedical Technology, The Personalized Medicine
Research Institute (PRECISION), University
Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
7
|
Kim EH, Wahl K, Guelfi E, Lee D. Engineering the physical characteristics of biomaterials for innate immune-mediated cancer immunotherapy. J Control Release 2025; 378:814-830. [PMID: 39719214 DOI: 10.1016/j.jconrel.2024.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
It has recently been recognized that the physical characteristics of biomaterials - such as size, structure, shape, charge, mechanical strength, hydrophobicity, and multivalency - regulate immunological functions in innate immune cells. In immuno-oncology applications, biomaterials are engineered with distinct physical properties to achieve desired innate immune responses. In this review, we discuss how physical characteristics influence effector functions and innate immune signaling pathways in distinct innate immune cell subtypes. We highlight how physical properties of biomaterials impact phagocytosis regulation, biodistribution, and innate immune cell targeting. We outline the recent advances in physical engineering of biomaterials that directly or indirectly induce desired innate immune responses for cancer immunotherapy. Lastly, we discuss the challenges in current biomaterial approaches that need to be addressed to improve clinical applicability.
Collapse
Affiliation(s)
- Eun-Hye Kim
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Katelyn Wahl
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Erica Guelfi
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - DaeYong Lee
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Pham JA, Coronel MM. Unlocking Transplant Tolerance with Biomaterials. Adv Healthc Mater 2025; 14:e2400965. [PMID: 38843866 PMCID: PMC11834385 DOI: 10.1002/adhm.202400965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Indexed: 07/04/2024]
Abstract
For patients suffering from organ failure due to injury or autoimmune disease, allogeneic organ transplantation with chronic immunosuppression is considered the god standard in terms of clinical treatment. However, the true "holy grail" of transplant immunology is operational tolerance, in which the recipient exhibits a sustained lack of alloreactivity toward unencountered antigen presented by the donor graft. This outcome is resultant from critical changes to the phenotype and genotype of the immune repertoire predicated by the activation of specific signaling pathways responsive to soluble and mechanosensitive cues. Biomaterials have emerged as a medium for interfacing with and reprogramming these endogenous pathways toward tolerance in precise, minimally invasive, and spatiotemporally defined manners. By viewing seminal and contemporary breakthroughs in transplant tolerance induction through the lens of biomaterials-mediated immunomodulation strategies-which include intrinsic material immunogenicity, the depot effect, graft coatings, induction and delivery of tolerogenic immune cells, biomimicry of tolerogenic immune cells, and in situ reprogramming-this review emphasizes the stunning diversity of approaches in the field and spotlights exciting future directions for research to come.
Collapse
Affiliation(s)
- John‐Paul A. Pham
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Elizabeth Caswell Diabetes InstituteUniversity of MichiganAnn ArborMI48109USA
| | - María M. Coronel
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Elizabeth Caswell Diabetes InstituteUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
9
|
Jia W, Wu Y, Xie Y, Yu M, Chen Y. Advanced Polymeric Nanoparticles for Cancer Immunotherapy: Materials Engineering, Immunotherapeutic Mechanism and Clinical Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413603. [PMID: 39797474 DOI: 10.1002/adma.202413603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Indexed: 01/13/2025]
Abstract
Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies. PNPs provide an optimal platform to amplify the potency and minimize systematic toxicity in a broad spectrum of immunotherapeutic modalities. In this comprehensive review, the basics of polymer chemistry, and state-of-the-art designs of PNPs from a physicochemical standpoint for cancer immunotherapy, encompassing therapeutic cancer vaccines, in situ vaccination, adoptive T-cell therapies, tumor-infiltrating immune cell-targeted therapies, therapeutic antibodies, and cytokine therapies are delineated. Each immunotherapy necessitates distinctively tailored design strategies in polymeric nanoplatforms. The extensive applications of PNPs, and investigation of their mechanisms of action for enhanced efficacy are particularly focused on. The safety profiles of PNPs and clinical research progress are discussed. Additionally, forthcoming developments and emergent trends of polymeric nano-immunotherapeutics poised to transform cancer treatment paradigms into clinics are explored.
Collapse
Affiliation(s)
- Wencong Jia
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Ye Wu
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Shanghai Institute of Materdicine, Shanghai, 200051, China
| |
Collapse
|
10
|
Chen J, Zhao Z, Alantary D, Huang J. Nanomedicine for pediatric healthcare: A review of the current state and future prospectives. Eur J Pharm Biopharm 2025; 207:114597. [PMID: 39647671 DOI: 10.1016/j.ejpb.2024.114597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Nanomedicine has emerged as a valuable treatment and diagnosis option, due to its ability not only to address formulation challenges associated with new therapeutic moieties, but also to improve the existing drugs efficacy. Nanomedicine provides appealing advantages such as increased drug payload, enhanced stability, tailored drug release profile, improved bioavailability and targeted drug delivery, etc. Tremendous research and regulatory efforts have been made in the past decades to advance nanomedicine from the benchtop to clinic. Numerous nanotechnology-based formulation approaches have been seen succeeding in commercialization. Despite the progress in nanomedicine use in adults, the advancement in pediatric population has been much slower. Clearly the treatment of disease in children cannot be simplified by dose adjustment based on body weight or surface, due to the significant differences in physiology thus the drug absorption, distribution, metabolism, excretion and transport (ADMET), between children and adults. This inherent variable among others poses much more challenges when developing pediatric-specific nanomedicine or translating adult nanodrug to pediatric indication. This review therefore intends to highlight the physiological differences between children and adult, and the common pediatric diseases which are good candidates for nanomedicine. The formulation approaches utilized in the marketed nanomedicine with pediatric indications, including liposomes, nanocrystals, polymeric nanoparticles and lipid nanoemulsions are elaborated. Finally, the challenges and gaps in pediatric nanomedicine development and commercialization, and the future prospectives are discussed.
Collapse
Affiliation(s)
- Jiayi Chen
- Ascendia Pharmaceuticals, Inc., North Brunswick, NJ 08902, United States
| | - Zhifeng Zhao
- Ascendia Pharmaceuticals, Inc., North Brunswick, NJ 08902, United States
| | - Doaa Alantary
- Ascendia Pharmaceuticals, Inc., North Brunswick, NJ 08902, United States
| | - Jingjun Huang
- Ascendia Pharmaceuticals, Inc., North Brunswick, NJ 08902, United States.
| |
Collapse
|
11
|
Liang J, Yao L, Liu Z, Chen Y, Lin Y, Tian T. Nanoparticles in Subunit Vaccines: Immunological Foundations, Categories, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407649. [PMID: 39501996 DOI: 10.1002/smll.202407649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/12/2024] [Indexed: 01/11/2025]
Abstract
Subunit vaccines, significant in next-generation vaccine development, offer precise targeting of immune responses by focusing on specific antigens. However, this precision often comes at the cost of eliciting strong and durable immunity, posing a great challenge to vaccine design. To address this limitation, recent advancements in nanoparticles (NPs) are utilized to enhance antigen delivery efficiency and boost vaccine efficacy. This review examines how the physicochemical properties of NPs influence various stages of the immune response during vaccine delivery and analyzes how different NP types contribute to immune activation and enhance vaccine performance. It then explores the unique characteristics and immune activation mechanisms of these NPs, along with their recent advancements, and highlights their application in subunit vaccines targeting infectious diseases and cancer. Finally, it discusses the challenges in NP-based vaccine development and proposes future directions for innovation in this promising field.
Collapse
Affiliation(s)
- Jiale Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lan Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ye Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Taoran Tian
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
| |
Collapse
|
12
|
Wang X, Xia H, Li T, Zuo Q, Wang Z, Yan K, Xu Z, Xue W, Sun G, Liu Z, Zhang Y. Minimalist Adjuvant-Free Nano-Vaccine Based on Antigen Self-Assembled Amyloid-Like Fibrils to Induce Potent Immune Response. Adv Healthc Mater 2025; 14:e2401625. [PMID: 39491532 DOI: 10.1002/adhm.202401625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/12/2024] [Indexed: 11/05/2024]
Abstract
The development of cancer vaccines is at the forefront of cancer immunotherapy. Most existing strategies to induce an efficient anti-tumor immune response rely on molecular adjuvants and the incorporation of complex synthetic vectors into vaccine formulations. In contrast, this study introduces a one-step engineering technique to assemble the model antigen, Ovalbumin (OVA), into amyloid aggregates, leveraging biomimetic folding and aggregation to create non-fibrillar OVA globular aggregates and OVA amyloid-like fibrils as single-component, adjuvant-free vaccines. Notably, the OVA amyloid-like fibrils induced stronger immune responses compared to the native form, as evidenced by robust humoral immune reactions and the establishment of immune memory. These enhanced responses can be attributed to the self-adjuvant effect of the unique assembled structure, which preserves antigenic epitopes, improves antigen stability, facilitates antigen internalization, prolongs retention at the injection site, enhances antigen trafficking to the lymphoid organs, and promotes increased secretion of antibodies and cytokines. Furthermore, the efficacy of the vaccine was validated in a high OVA-expressing tumor model, demonstrating the potential of OVA amyloid-like fibrils as an effective vaccine for cancer immunoprevention. This minimalist self-adjuvant vaccine strategy holds promising implications for cancer immunotherapy and can inform the design of other protein antigen-based vaccines.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Haiyang Xia
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Tiantian Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Qinhua Zuo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhen Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Kangjian Yan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Zejun Xu
- College of Pharmacy, Jinan University, Guangzhou, 510630, China
- Bai Yun Shan Pharmaceutical General Factory, Guangzhou Bai Yun Shan Pharmaceutical Holdings Co.Ltd., Guangzhou, 510515, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yi Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| |
Collapse
|
13
|
Dash R, Samanta S, Jena BR, Pradhan S. Nanotechnology in Drug Delivery: An Overview of Developing the Blood Brain Barrier. Curr Neurovasc Res 2025; 21:347-358. [PMID: 39411960 DOI: 10.2174/0115672026346307240919112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 02/27/2025]
Abstract
The close connection between the brain microvascular endothelial cells (BMECs) that are enclosed within this barrier is the result of an intracellular junction, which is responsible for the constricted connection. The regulation and control of drug delivery systems both require nanoparticles, which are extremely small particles made up of a variety of materials, including polymers, metals, and other chemicals. Nanoparticles are a crucial component of the regulation and control of drug delivery systems. There is a possibility that nanomaterials composed of inorganic chemicals, such as gold nanoparticles, could be utilized in the treatment of neurodegenerative illnesses like Parkinson's disease. In addition to this, they are used as nano-carriers for the aim of distributing drugs to the region of the brain that is being targeted. There are a number of advantages that are easily apparent when compared to other methods of administering drugs for neurological diseases. The current review demonstrates both the advantages and disadvantages of utilizing a wide variety of nanomaterials for brain delivery, as well as the potential impact that this will have in the future on the safety and effectiveness of patient care.
Collapse
Affiliation(s)
- Rasmita Dash
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Subhankar Samanta
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Bikash Ranjan Jena
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Soumyaranjan Pradhan
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| |
Collapse
|
14
|
Yang M, Lin W, Huang J, Mannucci A, Luo H. Novel immunotherapeutic approaches in gastric cancer. PRECISION CLINICAL MEDICINE 2024; 7:pbae020. [PMID: 39397869 PMCID: PMC11467695 DOI: 10.1093/pcmedi/pbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 10/15/2024] Open
Abstract
Gastric cancer is a malignant tumor that ranks third in cancer-related deaths worldwide. Early-stage gastric cancer can often be effectively managed through surgical resection. However, the majority of cases are diagnosed in advanced stages, where outcomes with conventional radiotherapy and chemotherapy remain unsatisfactory. Immunotherapy offers a novel approach to treating molecularly heterogeneous gastric cancer by modifying the immunosuppressive tumor microenvironment. Immune checkpoint inhibitors and adoptive cell therapy are regarded as promising modalities in cancer immunotherapy. Food and Drug Administration-approved programmed death-receptor inhibitors, such as pembrolizumab, in combination with chemotherapy, have significantly extended overall survival in gastric cancer patients and is recommended as a first-line treatment. Despite challenges in solid tumor applications, adoptive cell therapy has demonstrated efficacy against various targets in gastric cancer treatment. Among these approaches, chimeric antigen receptor-T cell therapy research is the most widely explored and chimeric antigen receptor-T cell therapy targeting claudin18.2 has shown acceptable safety and robust anti-tumor capabilities. However, these advancements primarily remain in preclinical stages and further investigation should be made to promote their clinical application. This review summarizes the latest research on immune checkpoint inhibitors and adoptive cell therapy and their limitations, as well as the role of nanoparticles in enhancing immunotherapy.
Collapse
Affiliation(s)
- Meng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Wuhao Lin
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jiaqian Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Alessandro Mannucci
- Gastroenterology and Gastrointestinal Emndoscopy Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan 20132, Italy
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope; Monrovia, CA 91016, USA
| | - Huiyan Luo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| |
Collapse
|
15
|
Lee JH, Shin SJ, Lee JH, Knowles JC, Lee HH, Kim HW. Adaptive immunity of materials: Implications for tissue healing and regeneration. Bioact Mater 2024; 41:499-522. [PMID: 39206299 PMCID: PMC11350271 DOI: 10.1016/j.bioactmat.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
Recent cumulative findings signify the adaptive immunity of materials as a key agenda in tissue healing that can improve regenerative events and outcomes. Modulating immune responses, mainly the recruitment and functions of T and B cells and their further interplay with innate immune cells (e.g., dendritic cells, macrophages) can be orchestrated by materials. For instance, decellularized matrices have been shown to promote muscle healing by inducing T helper 2 (Th2) cell immunity, while synthetic biopolymers exhibit differential effects on B cell responses and fibrosis compared decellularized matrices. We discuss the recent findings on how implantable materials instruct the adaptive immune events and the subsequent tissue healing process. In particular, we dissect the materials' physicochemical properties (shape, size, topology, degradation, rigidity, and matrix dynamic mechanics) to demonstrate the relations of these parameters with the adaptive immune responses in vitro and the underlying biological mechanisms. Furthermore, we present evidence of recent in vivo phenomena, including tissue healing, cancer progression, and fibrosis, wherein biomaterials potentially shape adaptive immune cell functions and in vivo outcomes. Our discussion will help understand the materials-regulated immunology events more deeply, and offer the design rationale of materials with tunable matrix properties for accelerated tissue repair and regeneration.
Collapse
Affiliation(s)
- Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Seong-Jin Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Jonathan C. Knowles
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
- UCL Eastman Dental Institute, University College London, London NW3 2PX, United Kingdom
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
16
|
Ji P, Wu P, Wang L, Wang Y, Guo X, Gao R, Guo Z, Zhou H, Liu Z, Liang Y, Lu F, Yang G, Ji G. Lysosome-Targeting Bacterial Outer Membrane Vesicles for Tumor Specific Degradation of PD-L1. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400770. [PMID: 38934533 DOI: 10.1002/smll.202400770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Increased expression of immune check point genes, such as PD-L1, is one of the main reasons for immunosuppression, especially for colon cancer. Development of novel therapeutic strategies is of great importance to improve the prognosis. In this study, outer membrane vesicles (OMV) derived from Gram-negative bacteria are engineered to immune checkpoint blockade nanosystem for efficient elicitation of anti-tumor immunity. Briefly, the OMVs are engineered with Lyp1-Traptavidin (S52G, R53D mutant of streptavidin) fusion protein displayed on the surface. The Lyp-1 endows the OMV with the capacity to target tumor tissues, while the Traptavidin ensures easy decoration of biotinylated anti-PD-L1 and biotinylated M6P (mannose 6-phosphate). The simultaneously anchored anti-PD-L1 and M6P (ligand for cation-independent mannose 6-phosphate receptor) on the engineered OMVs coordinately direct the membrane PD-L1 to lysosome for degradation, and thus unleash the anti-tumor immunity. With syngeneic tumor model, the engineered OMVs are confirmed to boost immunity, inhibit cancer growth, and thus prolong survival. Together, A proposed OMV-based modular nanosystem that enables assembly of biotinylated anti-PD-L1 and M6P on the surface for tumor-targeted immune checkpoint blockade.
Collapse
Affiliation(s)
- Panpan Ji
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Pengying Wu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Lantian Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yufei Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Guo
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Ruiqi Gao
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhiyu Guo
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Haikun Zhou
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhaoyou Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yuan Liang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Fan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Guodong Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Military Medical Innovation Center, Fourth Military Medical University, Xi'an, 710032, China
| | - Gang Ji
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
17
|
Gogoi H, Mani R, Bhatnagar R. Re-inventing traditional aluminum-based adjuvants: Insight into a century of advancements. Int Rev Immunol 2024; 44:58-81. [PMID: 39310923 DOI: 10.1080/08830185.2024.2404095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/01/2023] [Accepted: 08/31/2024] [Indexed: 02/22/2025]
Abstract
Aluminum salt-based adjuvants like alum, alhydrogel and Adju-Phos are by far the most favored clinically approved vaccine adjuvants. They have demonstrated excellent safety profile and currently used in vaccines against diphtheria, tetanus, pertussis, hepatitis B, anthrax etc. These vaccinations cause minimal side effects like local inflammation at the injection site. Aluminum salt-based adjuvants primarily stimulate CD4+ T cells and B cell mediated Th2 immune response leading to generate a robust antibody response. In this review article, we have compiled the role of physio-chemical role of the two commonly used aluminum salt-based adjuvants alhydrogel and Adju-Phos, and the effect of surface properties, buffer composition, and adjuvant dosage on the immune response. After being studied for almost a century, researchers have come up with various mechanism by which these aluminum adjuvants activate the immune system. Firstly, we have covered the initial works of Glenny and his "repository effect" which paved the work for his successors to explore the involvement of cytokines, chemokines, recruitment of innate immune cells, enhanced antigen uptake by antigen presenting cells, and formation of NLRP3 inflammasome complex in mediating the immune response. It has been reported that aluminum adjuvants activate multiple immunological pathways which synergistically activates the immune system. We later discuss the recent developments in nanotechnology-based preparations of next generation aluminum based adjuvants which has enabled precise size control and morphology of the traditional aluminum adjuvants thereby manipulating the immune response as per our desire.
Collapse
Affiliation(s)
- Himanshu Gogoi
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, Faridabad, Haryana, India
| | - Rajesh Mani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Microbiology, Immunology and Molecular Genetics, University Kentucky College of Medicine, Lexington, KY, USA
| | - Rakesh Bhatnagar
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
18
|
Sun X, Zhou X, Shi X, Abed OA, An X, Lei YL, Moon JJ. Strategies for the development of metalloimmunotherapies. Nat Biomed Eng 2024; 8:1073-1091. [PMID: 38914800 PMCID: PMC11410547 DOI: 10.1038/s41551-024-01221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/30/2024] [Indexed: 06/26/2024]
Abstract
Metal ions play crucial roles in the regulation of immune pathways. In fact, metallodrugs have a long record of accomplishment as effective treatments for a wide range of diseases. Here we argue that the modulation of interactions of metal ions with molecules and cells involved in the immune system forms the basis of a new class of immunotherapies. By examining how metal ions modulate the innate and adaptive immune systems, as well as host-microbiota interactions, we discuss strategies for the development of such metalloimmunotherapies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Editas Medicine, Cambridge, MA, USA.
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoyue Shi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Omar A Abed
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xinran An
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yu Leo Lei
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Yuan P, Yan X, Zong X, Li X, Yang C, Chen X, Li Y, Wen Y, Zhu T, Xue W, Dai J. Modulating Elasticity of Liposome for Enhanced Cancer Immunotherapy. ACS NANO 2024; 18:23797-23811. [PMID: 39140567 DOI: 10.1021/acsnano.4c09094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Cancer immunotherapy has emerged as a promising approach to cancer treatment in recent years. The physical and chemical properties of nanocarriers are critical factors that regulate the immune activation of antigen-presenting cells (APCs) in the tumor microenvironment (TME). Herein, we extensively investigated the behavior of liposome nanoparticles (Lipo-NPs) with different elasticities, focusing on their interaction with immune cells and their transport mechanisms from tumors to tumor-draining lymph nodes (tdLNs). Successfully preparing Lipo-NPs with distinct elastic properties, their varied behaviors were observed, concerning immune cell interaction. Soft Lipo-NPs exhibited an affinity to cell membranes, while those with medium elasticity facilitated the cargo delivery to macrophages through membrane fusion. Conversely, hard Lipo-NPs enter macrophages via classical cellular uptake pathways. Additionally, it was noted that softer Lipo-NPs displayed superior transport to tdLNs in vivo, attributed to their deformable nature with lower elasticity. As a result, the medium elastic Lipo-NPs with agonists (cGAMP), by activating the STING pathway and enhancing transport to tdLNs, promoted abundant infiltration of tumor-infiltrating lymphocytes (TILs), leading to notable antitumor effects and extended survival in a melanoma mouse model. Furthermore, this study highlighted the potential synergistic effect of medium elasticity Lipo-NPs with immune checkpoint blockade (ICB) therapy in preventing tumor immune evasion. These findings hold promise for guiding immune-targeted delivery systems in cancer immunotherapy, particularly in vaccine design for tdLNs targeting and eradicating metastasis within tdLNs.
Collapse
Affiliation(s)
- Pengfei Yuan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaodie Yan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaoqing Zong
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaodi Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Caiqi Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xinjie Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yuchao Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yaoqi Wen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Tianci Zhu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Jian Dai
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
20
|
Zhuo Y, Zeng H, Su C, Lv Q, Cheng T, Lei L. Tailoring biomaterials for vaccine delivery. J Nanobiotechnology 2024; 22:480. [PMID: 39135073 PMCID: PMC11321069 DOI: 10.1186/s12951-024-02758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Biomaterials are substances that can be injected, implanted, or applied to the surface of tissues in biomedical applications and have the ability to interact with biological systems to initiate therapeutic responses. Biomaterial-based vaccine delivery systems possess robust packaging capabilities, enabling sustained and localized drug release at the target site. Throughout the vaccine delivery process, they can contribute to protecting, stabilizing, and guiding the immunogen while also serving as adjuvants to enhance vaccine efficacy. In this article, we provide a comprehensive review of the contributions of biomaterials to the advancement of vaccine development. We begin by categorizing biomaterial types and properties, detailing their reprocessing strategies, and exploring several common delivery systems, such as polymeric nanoparticles, lipid nanoparticles, hydrogels, and microneedles. Additionally, we investigated how the physicochemical properties and delivery routes of biomaterials influence immune responses. Notably, we delve into the design considerations of biomaterials as vaccine adjuvants, showcasing their application in vaccine development for cancer, acquired immunodeficiency syndrome, influenza, corona virus disease 2019 (COVID-19), tuberculosis, malaria, and hepatitis B. Throughout this review, we highlight successful instances where biomaterials have enhanced vaccine efficacy and discuss the limitations and future directions of biomaterials in vaccine delivery and immunotherapy. This review aims to offer researchers a comprehensive understanding of the application of biomaterials in vaccine development and stimulate further progress in related fields.
Collapse
Affiliation(s)
- Yanling Zhuo
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chunyu Su
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Qizhuang Lv
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China.
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, China.
| | - Tianyin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
21
|
Yang D, Wang X, Yang X, Qi S, Zhao F, Guo D, Li C, Zhu Q, Xing X, Cao Y, Sun D. Construction and immune effect evaluation of the S protein heptad repeat-based nanoparticle vaccine against porcine epidemic diarrhea virus. Virology 2024; 596:110113. [PMID: 38801794 DOI: 10.1016/j.virol.2024.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV), a highly virulent enteropathogenic coronavirus, is a significant threat to the pig industry. High frequency mutations in the PEDV genome have limited the effectiveness of current vaccines in providing immune protection. Developing efficient vaccines that can quickly adapt to mutant strains is a challenging but crucial task. In this study, we chose the pivotal protein heptad repeat (HR) responsible for coronavirus entry into host cells, as the vaccine antigen. HR-Fer nanoparticles prepared using ferritin were evaluated them as PEDV vaccine candidates. Nanoparticle vaccines elicited stronger neutralizing antibody responses in mice compared to monomer vaccines. Additionally, HR protein delivered via nanoparticles increased antigen uptake by antigen-presenting cells in vitro by 2.75-fold. The collective results suggest that HR can be used as antigens for vaccines, and the HR vaccine based on ferritin nanoparticles significantly enhances immunogenicity.
Collapse
Affiliation(s)
- Dan Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xinglin Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Shanshan Qi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Feiyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Yang Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| |
Collapse
|
22
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
23
|
Khatua R, Bhar B, Dey S, Jaiswal C, J V, Mandal BB. Advances in engineered nanosystems: immunomodulatory interactions for therapeutic applications. NANOSCALE 2024; 16:12820-12856. [PMID: 38888201 DOI: 10.1039/d4nr00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Advances in nanotechnology have led to significant progress in the design and fabrication of nanoparticles (NPs) with improved therapeutic properties. NPs have been explored for modulating the immune system, serving as carriers for drug delivery or vaccine adjuvants, or acting as therapeutics themselves against a wide range of deadly diseases. The combination of NPs with immune system-targeting moieties has facilitated the development of improved targeted immune therapies. Targeted delivery of therapeutic agents using NPs specifically to the disease-affected cells, distinguishing them from other host cells, offers the major advantage of concentrating the therapeutic effect and reducing systemic side effects. Furthermore, the properties of NPs, including size, shape, surface charge, and surface modifications, influence their interactions with the targeted biological components. This review aims to provide insights into these diverse emerging and innovative approaches that are being developed and utilized for modulating the immune system using NPs. We reviewed various types of NPs composed of different materials and their specific application for modulating the immune system. Furthermore, we focused on the mechanistic effects of these therapeutic NPs on primary immune components, including T cells, B cells, macrophages, dendritic cells, and complement systems. Additionally, a recent overview of clinically approved immunomodulatory nanomedicines and potential future perspectives, offering new paradigms of this field, is also highlighted.
Collapse
Affiliation(s)
- Rupam Khatua
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Bibrita Bhar
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Chitra Jaiswal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Victoria J
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
24
|
Stellpflug A, Walls J, Hansen C, Joshi A, Wang B. From bone to nanoparticles: development of a novel generation of bone derived nanoparticles for image guided orthopedic regeneration. Biomater Sci 2024; 12:3633-3648. [PMID: 38856671 PMCID: PMC11238765 DOI: 10.1039/d4bm00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Bone related diseases such as osteoporosis, osteoarthritis, metastatic bone cancer, osteogenesis imperfecta, and Paget's disease, are primarily treated with pharmacologic therapies that often exhibit limited efficacy and substantial side effects. Bone injuries or fractures are primarily repaired with biocompatible materials that produce mixed results in sufficiently regenerating healthy and homogenous bone tissue. Each of these bone conditions, both localized and systemic, use different strategies with the same goal of achieving a healthy and homeostatic bone environment. In this study, we developed a new type of bone-based nanoparticle (BPs) using the entire organic extracellular matrix (ECM) of decellularized porcine bone, additionally encapsulating indocyanine green dye (ICG) for an in vivo monitoring capability. Utilizing the regenerative capability of bone ECM and the functionality of nanoparticles, the ICG encapsulated BPs (ICG/BPs) have been demonstrated to be utilized as a therapeutic option for localized and systemic orthopedic conditions. Additionally, ICG enables an in situ monitoring capability in the Short-Wave Infrared (SWIR) spectrum, capturing the degradation or the biodistribution of the ICG/BPs after both local implantation and intravenous administration, respectively. The efficacy and safety of the ICG/BPs shown within this study lay the foundation for future investigations, which will delve into optimization for clinical translation.
Collapse
Affiliation(s)
- Austin Stellpflug
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Jacob Walls
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Christopher Hansen
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Amit Joshi
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Bo Wang
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
25
|
Rajeev A, Kansara K, Bhatia D. Navigating the challenges and exploring the perspectives associated with emerging novel biomaterials. Biomater Sci 2024; 12:3565-3581. [PMID: 38832912 DOI: 10.1039/d4bm00376d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The field of biomaterials is a continuously evolving interdisciplinary field encompassing biological sciences, materials sciences, chemical sciences, and physical sciences with a multitude of applications realized every year. However, different biomaterials developed for different applications have unique challenges in the form of biological barriers, and addressing these challenges simultaneously is also a challenge. Nevertheless, immense progress has been made through the development of novel materials with minimal adverse effects such as DNA nanostructures, specific synthesis strategies based on supramolecular chemistry, and modulating the shortcomings of existing biomaterials through effective functionalization techniques. This review discusses all these aspects of biomaterials, including the challenges at each level of their development and application, proposed countermeasures for these challenges, and some future directions that may have potential benefits.
Collapse
Affiliation(s)
- Ashwin Rajeev
- Department of Biosciences and Bioengineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382355, India.
| | - Krupa Kansara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382355, India.
| | - Dhiraj Bhatia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382355, India.
| |
Collapse
|
26
|
Yamaue R, Torikai M, Terashima M, Mori H. KD-409, a Respiratory Syncytial Virus FG Chimeric Protein without the CX3C Chemokine Motif, Is an Efficient Respiratory Syncytial Virus Vaccine Preparation for Passive and Active Immunization in Mice. Vaccines (Basel) 2024; 12:753. [PMID: 39066391 PMCID: PMC11281633 DOI: 10.3390/vaccines12070753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Although respiratory syncytial virus (RSV) vaccine development initiatives have existed for half a century, no candidate has been approved for application at all ages from neonates to children. Developing an effective and safe RSV vaccine for pediatric use is challenging owing to RSV-associated disease and vaccine-enhanced disease (VED). We aimed to design an RSV vaccine, KD-409, by structurally incorporating the F ectodomain and G protein central conserved domain without the CX3C chemokine motif and test its efficacy and safety. KD-409 formed rosette particles or trimmers. KD-409 immunization of mice mainly induced anti-RSV F protein IgG. The induced anti-F antibodies had a higher IgG2a/IgG1 ratio than pre-fusion F, suggesting that they induced Th1-dominant immunity. Active and passive immunities were assessed by analyzing the viral titers in BALB/c mice intranasally challenged with RSV after intramuscular KD-409 immunization and pups derived from mothers who were intramuscularly vaccinated with KD-409 twice, respectively. KD-409 was more effective than post-fusion F and had a lower minimum effective dose than pre-fusion F. Thus, KD-409 demonstrated great potential as a novel RSV vaccine candidate, outperforming existing RSV F-based candidates. Our findings provide a promising strategy to overcome RSV-associated acute lower respiratory infections without the risk of VED associated with traditional approaches.
Collapse
Affiliation(s)
| | - Masaharu Torikai
- KM Biologics Co., Ltd., Kikuchi Research Center, 1314-1 Kyokushi Kawabe, Kikuchi-shi 869-1298, Japan; (R.Y.); (M.T.)
| | | | | |
Collapse
|
27
|
Tu AB, Krishna G, Smith KR, Lewis JS. Harnessing Immunomodulatory Polymers for Treatment of Autoimmunity, Allergy, and Transplant Rejection. Annu Rev Biomed Eng 2024; 26:415-440. [PMID: 38959388 DOI: 10.1146/annurev-bioeng-110122-014306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Autoimmunity, allergy, and transplant rejection are a collection of chronic diseases that are currently incurable, drastically decrease patient quality of life, and consume considerable health care resources. Underlying each of these diseases is a dysregulated immune system that results in the mounting of an inflammatory response against self or an innocuous antigen. As a consequence, afflicted patients are required to adhere to lifelong regimens of multiple immunomodulatory drugs to control disease and reclaim agency. Unfortunately, current immunomodulatory drugs are associated with a myriad of side effects and adverse events, such as increased risk of cancer and increased risk of serious infection, which negatively impacts patient adherence rates and quality of life. The field of immunoengineering is a new discipline that aims to harness endogenous biological pathways to thwart disease and minimize side effects using novel biomaterial-based strategies. We highlight and discuss polymeric micro/nanoparticles with inherent immunomodulatory properties that are currently under investigation in biomaterial-based therapies for treatment of autoimmunity, allergy, and transplant rejection.
Collapse
Affiliation(s)
- Allen B Tu
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Gaddam Krishna
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| | - Kevin R Smith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| | - Jamal S Lewis
- Department of Biomedical Engineering, University of California, Davis, California, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
28
|
Janes ME, Park KS, Gottlieb AP, Curreri A, Adebowale K, Kim J, Mitragotri S. Dendritic Cell Immune Modulation via Polyphenol Membrane Coatings. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28070-28079. [PMID: 38779939 DOI: 10.1021/acsami.4c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cellular hitchhiking is an emerging strategy for the in vivo control of adoptively transferred immune cells. Hitchhiking approaches are primarily mediated by adhesion of nano and microparticles to the cell membrane, which conveys an ability to modulate transferred cells via local drug delivery. Although T cell therapies employing this strategy have progressed into the clinic, phagocytic cells including dendritic cells (DCs) are much more challenging to engineer. DC vaccines hold great potential for a spectrum of diseases, and the combination drug delivery is an attractive strategy to manipulate their function and overcome in vivo plasticity. However, DCs are not compatible with current hitchhiking approaches due to their broad phagocytic capacity. In this work, we developed and validated META (membrane engineering using tannic acid) to enable DC cellular hitchhiking for the first time. META employs the polyphenol tannic acid (TA) to facilitate supramolecular assembly of protein drug cargoes on the cell membrane, enabling the creation of cell surface-bound formulations for local drug delivery to carrier DCs. We optimized META formulations to incorporate and release protein cargoes with varying physical properties alone and in combination and to preserve DC viability and critical functions such as migration. We further show that META loaded with either a pro- or anti-inflammatory cargo can influence the carrier cell phenotype, thus demonstrating the flexibility of the approach for applications from cancer to autoimmune disease. Overall, this approach illustrates a new platform for the local control of phagocytic immune cells as a next step to advance DC therapies in the clinic.
Collapse
Affiliation(s)
- Morgan E Janes
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, Massachusetts 02139, United States
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| | - Kyung Soo Park
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| | - Alexander P Gottlieb
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| | - Alexander Curreri
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| | - Kolade Adebowale
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| | - Jayoung Kim
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| | - Samir Mitragotri
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| |
Collapse
|
29
|
Wang J, Zhang Z, Liang R, Chen W, Li Q, Xu J, Zhao H, Xing D. Targeting lymph nodes for enhanced cancer vaccination: From nanotechnology to tissue engineering. Mater Today Bio 2024; 26:101068. [PMID: 38711936 PMCID: PMC11070719 DOI: 10.1016/j.mtbio.2024.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Lymph nodes (LNs) occupy a critical position in initiating and augmenting immune responses, both spatially and functionally. In cancer immunotherapy, tumor-specific vaccines are blooming as a powerful tool to suppress the growth of existing tumors, as well as provide preventative efficacy against tumorigenesis. Delivering these vaccines more efficiently to LNs, where antigen-presenting cells (APCs) and T cells abundantly reside, is under extensive exploration. Formulating vaccines into nanomedicines, optimizing their physiochemical properties, and surface modification to specifically bind molecules expressed on LNs or APCs, are common routes and have brought encouraging outcomes. Alternatively, porous scaffolds can be engineered to attract APCs and provide an environment for them to mature, proliferate and migrate to LNs. A relatively new research direction is inducing the formation of LN-like organoids, which have shown positive relevance to tumor prognosis. Cutting-edge advances in these directions and discussions from a future perspective are given here, from which the up-to-date pattern of cancer vaccination will be drawn to hopefully provide basic guidance to future studies.
Collapse
Affiliation(s)
- Jie Wang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Zongying Zhang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Rongxiang Liang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, 266033, China
| | - Wujun Chen
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Qian Li
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Jiazhen Xu
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hongmei Zhao
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Dongming Xing
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
30
|
Sau S, Dey A, Pal P, Das B, Maity KK, Dash SK, Tamili DK, Das B. Immunomodulatory and immune-toxicological role of nanoparticles: Potential therapeutic applications. Int Immunopharmacol 2024; 135:112251. [PMID: 38781608 DOI: 10.1016/j.intimp.2024.112251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Nowadays, Nanoparticle-based immunotherapeutic research has invoked global interest due to their unique properties. The immune system is a shielding structure that defends living things from external threats. Before the use of any materials in drug design, it is essential to study the immunological response to avoid triggering undesirable immune responses in the body. This review tries to summarize the properties, various applications, and immunotherapeutic aspects of NP-induced immunomodulation relating to therapeutic development and toxicity in human health. The role of NPs in the immune system and their modulatory functions, resulting in immunosuppression or immunostimulation, exerts benefits or dangers depending on their compositions, sizes, surface chemistry, and so forth. After NPs enter into the body, they can interact with body fluid exposing, them to different body proteins to form protein corona particles and other bio-molecules (DNA, RNA, sugars, etc.), which may alter their bioactivity. Phagocytes are the first immune cells that can interact with foreign materials including nanoparticles. Immunostimulation and immunosuppression operate in two distinct manners. Overall, functionalized nanocarriers optimized various therapeutic implications by stimulating the host immune system and regulating the tranquility of the host immune system. Among others, toxicity and bio-clearance of nanomaterials are always prime concerns at the preclinical and clinical stages before final approval. The interaction of nanoparticles with immune cells causes direct cell damage via apoptosis and necroses as well as immune signaling pathways also become influenced.
Collapse
Affiliation(s)
- Somnath Sau
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India; Department of Nutrition and Coastal Environmental Studies, Egra S.S.B. College Research Centre, Affiliated from Vidyasagar University, Egra-721429, Purba Medinipur, West Bengal, India
| | - Alo Dey
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India
| | - Pritam Pal
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India
| | - Bishal Das
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India; Department of Physiology, Debra Thana Sahid Kshudiram Smriti Mahavidyalaya, Debra-721124, Paschim Medinipur, West Bengal, India
| | - Kankan Kumar Maity
- Department of Chemistry and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Dipak Kumar Tamili
- Department of Zoology and Coastal Environmental Studies, Egra S.S.B. College Research Centre, Affiliated from Vidyasagar University, Egra-721429, Purba Medinipur, West Bengal, India
| | - Balaram Das
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India.
| |
Collapse
|
31
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
32
|
Li ZZ, Zhong NN, Cao LM, Cai ZM, Xiao Y, Wang GR, Liu B, Xu C, Bu LL. Nanoparticles Targeting Lymph Nodes for Cancer Immunotherapy: Strategies and Influencing Factors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308731. [PMID: 38327169 DOI: 10.1002/smll.202308731] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/07/2024] [Indexed: 02/09/2024]
Abstract
Immunotherapy has emerged as a potent strategy in cancer treatment, with many approved drugs and modalities in the development stages. Despite its promise, immunotherapy is not without its limitations, including side effects and suboptimal efficacy. Using nanoparticles (NPs) as delivery vehicles to target immunotherapy to lymph nodes (LNs) can improve the efficacy of immunotherapy drugs and reduce side effects in patients. In this context, this paper reviews the development of LN-targeted immunotherapeutic NP strategies, the mechanisms of NP transport during LN targeting, and their related biosafety risks. NP targeting of LNs involves either passive targeting, influenced by NP physical properties, or active targeting, facilitated by affinity ligands on NP surfaces, while alternative methods, such as intranodal injection and high endothelial venule (HEV) targeting, have uncertain clinical applicability and require further research and validation. LN targeting of NPs for immunotherapy can reduce side effects and increase biocompatibility, but risks such as toxicity, organ accumulation, and oxidative stress remain, although strategies such as biodegradable biomacromolecules, polyethylene glycol (PEG) coating, and impurity addition can mitigate these risks. Additionally, this work concludes with a future-oriented discussion, offering critical insights into the field.
Collapse
Affiliation(s)
- Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Ze-Min Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, 288 Herston Road, Brisbane, 4066, Australia
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| |
Collapse
|
33
|
Ji Y, Wang Y, Wang X, Lv C, Zhou Q, Jiang G, Yan B, Chen L. Beyond the promise: Exploring the complex interactions of nanoparticles within biological systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133800. [PMID: 38368688 DOI: 10.1016/j.jhazmat.2024.133800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The exploration of nanoparticle applications is filled with promise, but their impact on the environment and human health raises growing concerns. These tiny environmental particles can enter the human body through various routes, such as the respiratory system, digestive tract, skin absorption, intravenous injection, and implantation. Once inside, they can travel to distant organs via the bloodstream and lymphatic system. This journey often results in nanoparticles adhering to cell surfaces and being internalized. Upon entering cells, nanoparticles can provoke significant structural and functional changes. They can potentially disrupt critical cellular processes, including damaging cell membranes and cytoskeletons, impairing mitochondrial function, altering nuclear structures, and inhibiting ion channels. These disruptions can lead to widespread alterations by interfering with complex cellular signaling pathways, potentially causing cellular, organ, and systemic impairments. This article delves into the factors influencing how nanoparticles behave in biological systems. These factors include the nanoparticles' size, shape, charge, and chemical composition, as well as the characteristics of the cells and their surrounding environment. It also provides an overview of the impact of nanoparticles on cells, organs, and physiological systems and discusses possible mechanisms behind these adverse effects. Understanding the toxic effects of nanoparticles on physiological systems is crucial for developing safer, more effective nanoparticle-based technologies.
Collapse
Affiliation(s)
- Yunxia Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
34
|
Hartmeier PR, Ostrowski SM, Busch EE, Empey KM, Meng WS. Lymphatic distribution considerations for subunit vaccine design and development. Vaccine 2024; 42:2519-2529. [PMID: 38494411 DOI: 10.1016/j.vaccine.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Subunit vaccines are an important platform for controlling current and emerging infectious diseases. The lymph nodes are the primary site generating the humoral response and delivery of antigens to these sites is critical to effective immunization. Indeed, the duration of antigen exposure within the lymph node is correlated with the antibody response. While current licensed vaccines are typically given through the intramuscular route, injecting vaccines subcutaneously allows for direct access to lymphatic vessels and therefore can enhance the transfer of antigen to the lymph nodes. However, protein subunit antigen uptake into the lymph nodes is inefficient, and subunit vaccines require adjuvants to stimulate the initial immune response. Therefore, formulation strategies have been developed to enhance the exposure of subunit proteins and adjuvants to the lymph nodes by increasing lymphatic uptake or prolonging the retention at the injection site. Given that lymph node exposure is a crucial consideration in vaccine design, in depth analyses of the pharmacokinetics of antigens and adjuvants should be the focus of future preclinical and clinical studies. This review will provide an overview of formulation strategies for targeting the lymphatics and prolonging antigen exposure and will discuss pharmacokinetic evaluations which can be applied toward vaccine development.
Collapse
Affiliation(s)
- Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Sarah M Ostrowski
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15213, USA
| | - Emelia E Busch
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Kerry M Empey
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, PA 15213, USA; Department of Immunology, School of Medicine University of Pittsburgh, PA 15213, USA
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA 15219, USA.
| |
Collapse
|
35
|
Grigoryan L, Feng Y, Bellusci L, Lai L, Wali B, Ellis M, Yuan M, Arunachalam PS, Hu M, Kowli S, Gupta S, Maysel-Auslender S, Maecker HT, Samaha H, Rouphael N, Wilson IA, Moreno AC, Suthar MS, Khurana S, Pillet S, Charland N, Ward BJ, Pulendran B. AS03 adjuvant enhances the magnitude, persistence, and clonal breadth of memory B cell responses to a plant-based COVID-19 vaccine in humans. Sci Immunol 2024; 9:eadi8039. [PMID: 38579013 PMCID: PMC11732256 DOI: 10.1126/sciimmunol.adi8039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Vaccine adjuvants increase the breadth of serum antibody responses, but whether this is due to the generation of antigen-specific B cell clones with distinct specificities or the maturation of memory B cell clones that produce broadly cross-reactive antibodies is unknown. Here, we longitudinally analyzed immune responses in healthy adults after two-dose vaccination with either a virus-like particle COVID-19 vaccine (CoVLP), CoVLP adjuvanted with AS03 (CoVLP+AS03), or a messenger RNA vaccination (mRNA-1273). CoVLP+AS03 enhanced the magnitude and durability of circulating antibodies and antigen-specific CD4+ T cell and memory B cell responses. Antigen-specific CD4+ T cells in the CoVLP+AS03 group at day 42 correlated with antigen-specific memory B cells at 6 months. CoVLP+AS03 induced memory B cell responses, which accumulated somatic hypermutations over 6 months, resulting in enhanced neutralization breadth of monoclonal antibodies. Furthermore, the fraction of broadly neutralizing antibodies encoded by memory B cells increased between day 42 and 6 months. These results indicate that AS03 enhances the antigenic breadth of B cell memory at the clonal level and induces progressive maturation of the B cell response.
Collapse
Affiliation(s)
- Lilit Grigoryan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | | | - Lilin Lai
- Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory School of Medicine, Atlanta, GA, 30329 USA
| | - Bushra Wali
- Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory School of Medicine, Atlanta, GA, 30329 USA
| | - Madison Ellis
- Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory School of Medicine, Atlanta, GA, 30329 USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Prabhu S. Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sangeeta Kowli
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sheena Gupta
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sofia Maysel-Auslender
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Holden T. Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Hady Samaha
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Hope Clinic of Emory Vaccine Center, Emory University, Decatur, GA, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Alberto C. Moreno
- Department of Medicine, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, 30329 USA
| | - Mehul S. Suthar
- Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory School of Medicine, Atlanta, GA, 30329 USA
| | | | - Stéphane Pillet
- Medicago Inc., Québec, QC, Canada
- Research Institute of the McGill University Health Center, 1001 Decarie St, Montréal, QC, Canada H4A 3J1
| | | | - Brian J. Ward
- Medicago Inc., Québec, QC, Canada
- Research Institute of the McGill University Health Center, 1001 Decarie St, Montréal, QC, Canada H4A 3J1
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
36
|
Hua T, Li S, Han B. Nanomedicines for intranasal delivery: understanding the nano-bio interactions at the nasal mucus-mucosal barrier. Expert Opin Drug Deliv 2024; 21:553-572. [PMID: 38720439 DOI: 10.1080/17425247.2024.2339335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Intranasal administration is an effective drug delivery routes in modern pharmaceutics. However, unlike other in vivo biological barriers, the nasal mucosal barrier is characterized by high turnover and selective permeability, hindering the diffusion of both particulate drug delivery systems and drug molecules. The in vivo fate of administrated nanomedicines is often significantly affected by nano-biointeractions. AREAS COVERED The biological barriers that nanomedicines encounter when administered intranasally are introduced, with a discussion on the factors influencing the interaction between nanomedicines and the mucus layer/mucosal barriers. General design strategies for nanomedicines administered via the nasal route are further proposed. Furthermore, the most common methods to investigate the characteristics and the interactions of nanomedicines when in presence of the mucus layer/mucosal barrier are briefly summarized. EXPERT OPINION Detailed investigation of nanomedicine-mucus/mucosal interactions and exploration of their mechanisms provide solutions for designing better intranasal nanomedicines. Designing and applying nanomedicines with mucus interaction properties or non-mucosal interactions should be customized according to the therapeutic need, considering the target of the drug, i.e. brain, lung or nose. Then how to improve the precise targeting efficiency of nanomedicines becomes a difficult task for further research.
Collapse
Affiliation(s)
- Tangsiyuan Hua
- School of Pharmacy, Changzhou Univesity, Changzhou, PR China
| | - Shuling Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
37
|
Dolce M, Proietti D, Principato S, Giusti F, Adamo GM, Favaron S, Ferri E, Margarit I, Romano MR, Scarselli M, Carboni F. Impact of Protein Nanoparticle Shape on the Immunogenicity of Antimicrobial Glycoconjugate Vaccines. Int J Mol Sci 2024; 25:3736. [PMID: 38612547 PMCID: PMC11011275 DOI: 10.3390/ijms25073736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Protein self-assembling nanoparticles (NPs) can be used as carriers for antigen delivery to increase vaccine immunogenicity. NPs mimic the majority of invading pathogens, inducing a robust adaptive immune response and long-lasting protective immunity. In this context, we investigated the potential of NPs of different sizes and shapes-ring-, rod-like, and spherical particles-as carriers for bacterial oligosaccharides by evaluating in murine models the role of these parameters on the immune response. Oligosaccharides from Neisseria meningitidis type W capsular polysaccharide were conjugated to ring-shape or nanotubes of engineered Pseudomonas aeruginosa Hemolysin-corregulated protein 1 (Hcp1cc) and to spherical Helicobacter pylori ferritin. Glycoconjugated NPs were characterized using advanced technologies such as High-Performance Liquid Chromatography (HPLC), Asymmetric Flow-Field Flow fractionation (AF4), and Transmission electron microscopy (TEM) to verify their correct assembly, dimensions, and glycosylation degrees. Our results showed that spherical ferritin was able to induce the highest immune response in mice against the saccharide antigen compared to the other glycoconjugate NPs, with increased bactericidal activity compared to benchmark MenW-CRM197. We conclude that shape is a key attribute over size to be considered for glycoconjugate vaccine development.
Collapse
Affiliation(s)
- Marta Dolce
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- GSK, 53100 Siena, Italy
| | | | | | | | | | - Sara Favaron
- GSK, 53100 Siena, Italy
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Wang W, Yong J, Marciano P, O’Hare Doig R, Mao G, Clark J. The Translation of Nanomedicines in the Contexts of Spinal Cord Injury and Repair. Cells 2024; 13:569. [PMID: 38607008 PMCID: PMC11011097 DOI: 10.3390/cells13070569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
PURPOSE OF THIS REVIEW Manipulating or re-engineering the damaged human spinal cord to achieve neuro-recovery is one of the foremost challenges of modern science. Addressing the restricted permission of neural cells and topographically organised neural tissue for self-renewal and spontaneous regeneration, respectively, is not straightforward, as exemplified by rare instances of translational success. This review assembles an understanding of advances in nanomedicine for spinal cord injury (SCI) and related clinical indications of relevance to attempts to design, engineer, and target nanotechnologies to multiple molecular networks. RECENT FINDINGS Recent research provides a new understanding of the health benefits and regulatory landscape of nanomedicines based on a background of advances in mRNA-based nanocarrier vaccines and quantum dot-based optical imaging. In relation to spinal cord pathology, the extant literature details promising advances in nanoneuropharmacology and regenerative medicine that inform the present understanding of the nanoparticle (NP) biocompatibility-neurotoxicity relationship. In this review, the conceptual bases of nanotechnology and nanomaterial chemistry covering organic and inorganic particles of sizes generally less than 100 nm in diameter will be addressed. Regarding the centrally active nanotechnologies selected for this review, attention is paid to NP physico-chemistry, functionalisation, delivery, biocompatibility, biodistribution, toxicology, and key molecular targets and biological effects intrinsic to and beyond the spinal cord parenchyma. SUMMARY The advance of nanotechnologies for the treatment of refractory spinal cord pathologies requires an in-depth understanding of neurobiological and topographical principles and a consideration of additional complexities involving the research's translational and regulatory landscapes.
Collapse
Affiliation(s)
- Wenqian Wang
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia; (W.W.); (J.Y.); (G.M.)
| | - Joel Yong
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia; (W.W.); (J.Y.); (G.M.)
| | - Paul Marciano
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (P.M.); (R.O.D.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Ryan O’Hare Doig
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (P.M.); (R.O.D.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia; (W.W.); (J.Y.); (G.M.)
| | - Jillian Clark
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (P.M.); (R.O.D.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
39
|
Badten AJ, Torres AG. Burkholderia pseudomallei Complex Subunit and Glycoconjugate Vaccines and Their Potential to Elicit Cross-Protection to Burkholderia cepacia Complex. Vaccines (Basel) 2024; 12:313. [PMID: 38543947 PMCID: PMC10975474 DOI: 10.3390/vaccines12030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Burkholderia are a group of Gram-negative bacteria that can cause a variety of diseases in at-risk populations. B. pseudomallei and B. mallei, the etiological agents of melioidosis and glanders, respectively, are the two clinically relevant members of the B. pseudomallei complex (Bpc). The development of vaccines against Bpc species has been accelerated in recent years, resulting in numerous promising subunits and glycoconjugate vaccines incorporating a variety of antigens. However, a second group of pathogenic Burkholderia species exists known as the Burkholderia cepacia complex (Bcc), a group of opportunistic bacteria which tend to affect individuals with weakened immunity or cystic fibrosis. To date, there have been few attempts to develop vaccines to Bcc species. Therefore, the primary goal of this review is to provide a broad overview of the various subunit antigens that have been tested in Bpc species, their protective efficacy, study limitations, and known or suspected mechanisms of protection. Then, we assess the reviewed Bpc antigens for their amino acid sequence conservation to homologous proteins found in Bcc species. We propose that protective Bpc antigens with a high degree of Bpc-to-Bcc sequence conservation could serve as components of a pan-Burkholderia vaccine capable of protecting against both disease-causing groups.
Collapse
Affiliation(s)
- Alexander J. Badten
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo G. Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
40
|
Li X, Zhao N, Zhou C, Qiao S, Wang J, Song S, Pan M. Shape-Tunable Hollow Polysiloxane Nanoparticles Based on a Surfactant-Free Soft Templating Method and Their Application as a Drug Carrier. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2672-2682. [PMID: 38175173 DOI: 10.1021/acsami.3c16780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A surfactant-free soft-templating method has been used to prepare polysiloxane hollow nanoparticles with a controllable shape. This method is simple and has the potential for large-scale preparation. For the first time, we successfully obtained hollow polysiloxane nanoparticles with different shapes, including eccentric hollow polysiloxane microspheres (EHPM), apple-like hollow polysiloxane microparticles (AHPM), and bowl-like hollow polysiloxane microparticles (BHPM), by simply changing the solvent. In this method, the hydrolyzed methyltriethoxysilane (MTES) not only stabilizes the system as a surfactant but also acts as a reactant for subsequent reactions, so no additional surfactant is needed. In addition, the formation mechanism of hollow polysiloxane microparticles with different shapes is also proposed: that is, MTES hydrolyzed under acidic conditions to form a surfactant, which changes the system from suspension to a stable oil-in-water emulsion. Then, under alkaline conditions, the hydrolyzed MTES polycondenses and nucleates at the oil-water interface. At the same time, with the process of polycondensation, the hydrolyzed MTES will migrate to the nucleation site driven by surface tension, thus forming an eccentric core/shell (solvent/polysiloxane) structure. Due to the different forces between hydrolyzed MTES and different solvents, the deviation degree of hollow in microspheres is different, thus forming particles with various morphologies. This synthesis method provides a new idea for the preparation of shapeable anisotropic hollow structures. Finally, we use AHPM to study the application of the drug load. The results show that the prepared hollow polysiloxane particles have a good drug loading capacity and release performance. It can be predicted that the shape-tunable hollow polysiloxane particles prepared by this method have broad application prospects in the field of drug delivery.
Collapse
Affiliation(s)
- Xin Li
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Nana Zhao
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Chen Zhou
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Shuqi Qiao
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Jianlong Wang
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Shaofeng Song
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Mingwang Pan
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P.R. China
- Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300401, P.R. China
| |
Collapse
|
41
|
Bowman KA, Kaplonek P, McNamara RP. Understanding Fc function for rational vaccine design against pathogens. mBio 2024; 15:e0303623. [PMID: 38112418 PMCID: PMC10790774 DOI: 10.1128/mbio.03036-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Antibodies represent the primary correlate of immunity following most clinically approved vaccines. However, their mechanisms of action vary from pathogen to pathogen, ranging from neutralization, to opsonophagocytosis, to cytotoxicity. Antibody functions are regulated both by antigen specificity (Fab domain) and by the interaction of their Fc domain with distinct types of Fc receptors (FcRs) present in immune cells. Increasing evidence highlights the critical nature of Fc:FcR interactions in controlling pathogen spread and limiting the disease state. Moreover, variation in Fc-receptor engagement during the course of infection has been demonstrated across a range of pathogens, and this can be further influenced by prior exposure(s)/immunizations, age, pregnancy, and underlying health conditions. Fc:FcR functional variation occurs at the level of antibody isotype and subclass selection as well as post-translational modification of antibodies that shape Fc:FcR-interactions. These factors collectively support a model whereby the immune system actively harnesses and directs Fc:FcR interactions to fight disease. By defining the precise humoral mechanisms that control infections, as well as understanding how these functions can be actively tuned, it may be possible to open new paths for improving existing or novel vaccines.
Collapse
Affiliation(s)
- Kathryn A. Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Paulina Kaplonek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
42
|
Tang X, Lv L, Javanmardi S, Wang Y, Fan J, Verbeek FJ, Xiao G. Image Synthesis and Modified BlendMask Instance Segmentation for Automated Nanoparticle Phenotyping. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3665-3677. [PMID: 37494157 DOI: 10.1109/tmi.2023.3299119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Automated nanoparticle phenotyping is a critical aspect of high-throughput drug research, which requires analyzing nanoparticle size, shape, and surface topography from microscopy images. To automate this process, we present an instance segmentation pipeline that partitions individual nanoparticles on microscopy images. Our pipeline makes two key contributions. Firstly, we synthesize diverse and approximately realistic nanoparticle images to improve robust learning. Secondly, we improve the BlendMask model to segment tiny, overlapping, or sparse particle images. Specifically, we propose a parameterized approach for generating novel pairs of single particles and their masks, encouraging greater diversity in the training data. To synthesize more realistic particle images, we explore three particle placement rules and an image selection criterion. The improved one-stage instance segmentation network extracts distinctive features of nanoparticles and their context at both local and global levels, which addresses the data challenges associated with tiny, overlapping, or sparse nanoparticles. Extensive experiments demonstrate the effectiveness of our pipeline for automating nanoparticle partitioning and phenotyping in drug research using microscopy images.
Collapse
|
43
|
Davis MA, Cho E, Teplensky MH. Harnessing biomaterial architecture to drive anticancer innate immunity. J Mater Chem B 2023; 11:10982-11005. [PMID: 37955201 DOI: 10.1039/d3tb01677c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Immunomodulation is a powerful therapeutic approach that harnesses the body's own immune system and reprograms it to treat diseases, such as cancer. Innate immunity is key in mobilizing the rest of the immune system to respond to disease and is thus an attractive target for immunomodulation. Biomaterials have widely been employed as vehicles to deliver immunomodulatory therapeutic cargo to immune cells and raise robust antitumor immunity. However, it is key to consider the design of biomaterial chemical and physical structure, as it has direct impacts on innate immune activation and antigen presentation to stimulate downstream adaptive immunity. Herein, we highlight the widespread importance of structure-driven biomaterial design for the delivery of immunomodulatory cargo to innate immune cells. The incorporation of precise structural elements can be harnessed to improve delivery kinetics, uptake, and the targeting of biomaterials into innate immune cells, and enhance immune activation against cancer through temporal and spatial processing of cargo to overcome the immunosuppressive tumor microenvironment. Structural design of immunomodulatory biomaterials will profoundly improve the efficacy of current cancer immunotherapies by maximizing the impact of the innate immune system and thus has far-reaching translational potential against other diseases.
Collapse
Affiliation(s)
- Meredith A Davis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Ezra Cho
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Michelle H Teplensky
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
- Department of Materials Science and Engineering, Boston University, Boston, Massachusetts, 02215, USA
| |
Collapse
|
44
|
Pei C, Dong H, Teng Z, Wei S, Zhang Y, Yin S, Tang J, Sun S, Guo H. Self-Assembling Nanovaccine Fused with Flagellin Enhances Protective Effect against Foot-and-Mouth Disease Virus. Vaccines (Basel) 2023; 11:1675. [PMID: 38006007 PMCID: PMC10675102 DOI: 10.3390/vaccines11111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Nanovaccines based on self-assembling nanoparticles (NPs) can show conformational epitopes of antigens and they have high immunogenicity. In addition, flagellin, as a biological immune enhancer, can be fused with an antigen to considerably enhance the immune effect of antigens. In improving the immunogenicity and stability of a foot-and-mouth disease virus (FMDV) antigen, novel FMDV NP antigens were prepared by covalently coupling the VP1 protein and truncated flagellin containing only N-terminus D0 and D1 (N-terminal aa 1-99, nFLiC) with self-assembling NPs (i301). The results showed that the fusion proteins VP1-i301 and VP1-i301-nFLiC can assemble into NPs with high thermal tolerance and stability, obtain high cell uptake efficiency, and upregulate marker molecules and immune-stimulating cytokines in vitro. In addition, compared with monomeric VP1 antigen, high-level cytokines were stimulated with VP1-i301 and VP1-i301-nFLiC nanovaccines in guinea pigs, to provide clinical protection against viral infection comparable to an inactivated vaccine. This study provides new insight for the development of a novel FMD vaccine.
Collapse
Affiliation(s)
- Chenchen Pei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Hu Dong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Zhidong Teng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Sumin Wei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Yun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Shuanghui Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Jianli Tang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- College of Animal Science, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
45
|
Duan QY, Zhu YX, Jia HR, Wang SH, Wu FG. Nanogels: Synthesis, properties, and recent biomedical applications. PROGRESS IN MATERIALS SCIENCE 2023; 139:101167. [DOI: 10.1016/j.pmatsci.2023.101167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
46
|
Harun-Ur-Rashid M, Jahan I, Foyez T, Imran AB. Bio-Inspired Nanomaterials for Micro/Nanodevices: A New Era in Biomedical Applications. MICROMACHINES 2023; 14:1786. [PMID: 37763949 PMCID: PMC10536921 DOI: 10.3390/mi14091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Exploring bio-inspired nanomaterials (BINMs) and incorporating them into micro/nanodevices represent a significant development in biomedical applications. Nanomaterials, engineered to imitate biological structures and processes, exhibit distinctive attributes such as exceptional biocompatibility, multifunctionality, and unparalleled versatility. The utilization of BINMs demonstrates significant potential in diverse domains of biomedical micro/nanodevices, encompassing biosensors, targeted drug delivery systems, and advanced tissue engineering constructs. This article thoroughly examines the development and distinctive attributes of various BINMs, including those originating from proteins, DNA, and biomimetic polymers. Significant attention is directed toward incorporating these entities into micro/nanodevices and the subsequent biomedical ramifications that arise. This review explores biomimicry's structure-function correlations. Synthesis mosaics include bioprocesses, biomolecules, and natural structures. These nanomaterials' interfaces use biomimetic functionalization and geometric adaptations, transforming drug delivery, nanobiosensing, bio-inspired organ-on-chip systems, cancer-on-chip models, wound healing dressing mats, and antimicrobial surfaces. It provides an in-depth analysis of the existing challenges and proposes prospective strategies to improve the efficiency, performance, and reliability of these devices. Furthermore, this study offers a forward-thinking viewpoint highlighting potential avenues for future exploration and advancement. The objective is to effectively utilize and maximize the application of BINMs in the progression of biomedical micro/nanodevices, thereby propelling this rapidly developing field toward its promising future.
Collapse
Affiliation(s)
- Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh;
| | - Israt Jahan
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Tahmina Foyez
- Department of Pharmacy, United International University, Dhaka 1212, Bangladesh;
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
47
|
Dahri M, Beheshtizadeh N, Seyedpour N, Nakhostin-Ansari A, Aghajani F, Seyedpour S, Masjedi M, Farjadian F, Maleki R, Adibkia K. Biomaterial-based delivery platforms for transdermal immunotherapy. Biomed Pharmacother 2023; 165:115048. [PMID: 37385212 DOI: 10.1016/j.biopha.2023.115048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Nowadays, immunotherapy is one of the most essential treatments for various diseases and a broad spectrum of disorders are assumed to be treated by altering the function of the immune system. For this reason, immunotherapy has attracted a great deal of attention and numerous studies on different approaches for immunotherapies have been investigated, using multiple biomaterials and carriers, from nanoparticles (NPs) to microneedles (MNs). In this review, the immunotherapy strategies, biomaterials, devices, and diseases supposed to be treated by immunotherapeutic strategies are reviewed. Several transdermal therapeutic methods, including semisolids, skin patches, chemical, and physical skin penetration enhancers, are discussed. MNs are the most frequent devices implemented in transdermal immunotherapy of cancers (e.g., melanoma, squamous cell carcinoma, cervical, and breast cancer), infectious (e.g., COVID-19), allergic and autoimmune disorders (e.g., Duchenne's muscular dystrophy and Pollinosis). The biomaterials used in transdermal immunotherapy vary in shape, size, and sensitivity to external stimuli (e.g., magnetic field, photo, redox, pH, thermal, and even multi-stimuli-responsive) were reported. Correspondingly, vesicle-based NPs, including niosomes, transferosomes, ethosomes, microemulsions, transfersomes, and exosomes, are also discussed. In addition, transdermal immunotherapy using vaccines has been reviewed for Ebola, Neisseria gonorrhoeae, Hepatitis B virus, Influenza virus, respiratory syncytial virus, Hand-foot-and-mouth disease, and Tetanus.
Collapse
Affiliation(s)
- Mohammad Dahri
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasrin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Nakhostin-Ansari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Aghajani
- Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Masjedi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Sciences and Technology (IROST), P.O. Box 33535111 Tehran, Iran.
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
48
|
Thakur A, Wadhwa A, Lokras A, Müllertz OAO, Christensen D, Franzyk H, Foged C. Method of manufacturing CAF®09 liposomes affects immune responses induced by adjuvanted subunit proteins. Eur J Pharm Biopharm 2023; 189:84-97. [PMID: 37059402 DOI: 10.1016/j.ejpb.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
The ability to induce antigen-specific CD4+ and CD8+T-cell responses is one of the fundamental requirements when developing new efficacious vaccines against challenging infectious diseases and cancer. However, no adjuvants are currently approved for human subunit vaccines that induce T-cell immunity. Here, we incorporated a Toll-like receptor 4 agonist, i.e., the ionizable lipidoid L5N12, in the liposomal cationic adjuvant formulation 09 (CAF®09), and found that modified CAF®09 liposomes possess preserved adjuvant function as compared to unmodified CAF®09. CAF®09 consists of the cationic lipid dimethyldioctadecylammonium (DDA), monomycoloyl glycerol analogue 1 (MMG-1), and polyinosinic:polycytidylic acid [poly(I:C)]. By using the microfluidic mixing technology for liposome preparation, we gradually replaced DDA with L5N12, while keeping the molar ratios of MMG-1 and poly(I:C) constant. We found that this type of modification resulted in colloidally stable liposomes, which were significantly smaller and displayed reduced surface charge as compared to unmodified CAF®09, prepared by using the conventional thin film method. We showed that incorporation of L5N12 decreases the membrane rigidity of CAF®09 liposomes. Furthermore, vaccination with antigen adjuvanted with L5N12-modified CAF®09 or antigen adjuvanted with unmodified CAF®09, respectively, induced comparable antigen-specific serum antibody titers. We found that antigen adjuvanted with L5N12-modified CAF®09 induced antigen-specific effector and memory CD4+ and CD8+T-cell responses in the spleen comparable to those induced when unmodified CAF®09 was used as adjuvant. However, incorporating L5N12 did not have a synergistic immunopotentiating effect on the antibody and T-cell responses induced by CAF®09. Moreover, vaccination with antigen adjuvanted with unmodified CAF®09, which was manufactured by using microfluidic mixing, induced significantly lower antigen-specific CD4+ and CD8+T-cell responses than vaccination with antigen adjuvanted with unmodified CAF®09, which was prepared by using the thin film method. These results show that the method of manufacturing affects CAF®09 liposome adjuvanted antigen-specific immune responses, which should be taken into consideration when evaluating immunogenicity of subunit protein vaccines.
Collapse
Affiliation(s)
- Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| | - Abishek Wadhwa
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Abhijeet Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Olivia Amanda Oest Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen Ø, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
49
|
Sudduth ER, Trautmann-Rodriguez M, Gill N, Bomb K, Fromen CA. Aerosol pulmonary immune engineering. Adv Drug Deliv Rev 2023; 199:114831. [PMID: 37100206 PMCID: PMC10527166 DOI: 10.1016/j.addr.2023.114831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Aerosolization of immunotherapies poses incredible potential for manipulating the local mucosal-specific microenvironment, engaging specialized pulmonary cellular defenders, and accessing mucosal associated lymphoid tissue to redirect systemic adaptive and memory responses. In this review, we breakdown key inhalable immunoengineering strategies for chronic, genetic, and infection-based inflammatory pulmonary disorders, encompassing the historic use of immunomodulatory agents, the transition to biological inspired or derived treatments, and novel approaches of complexing these materials into drug delivery vehicles for enhanced release outcomes. Alongside a brief description of key immune targets, fundamentals of aerosol drug delivery, and preclinical pulmonary models for immune response, we survey recent advances of inhaled immunotherapy platforms, ranging from small molecules and biologics to particulates and cell therapies, as well as prophylactic vaccines. In each section, we address the formulation design constraints for aerosol delivery as well as advantages for each platform in driving desirable immune modifications. Finally, prospects of clinical translation and outlook for inhaled immune engineering are discussed.
Collapse
Affiliation(s)
- Emma R Sudduth
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Nicole Gill
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kartik Bomb
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
50
|
Dong H, Li Q, Zhang Y, Ding M, Teng Z, Mou Y. Biomaterials Facilitating Dendritic Cell-Mediated Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301339. [PMID: 37088780 PMCID: PMC10288267 DOI: 10.1002/advs.202301339] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Dendritic cell (DC)-based cancer immunotherapy has exhibited remarkable clinical prospects because DCs play a central role in initiating and regulating adaptive immune responses. However, the application of traditional DC-mediated immunotherapy is limited due to insufficient antigen delivery, inadequate antigen presentation, and high levels of immunosuppression. To address these challenges, engineered biomaterials have been exploited to enhance DC-mediated immunotherapeutic effects. In this review, vital principal components that can enhance DC-mediated immunotherapeutic effects are first introduced. The parameters considered in the rational design of biomaterials, including targeting modifications, size, shape, surface, and mechanical properties, which can affect biomaterial optimization of DC functions, are further summarized. Moreover, recent applications of various engineered biomaterials in the field of DC-mediated immunotherapy are reviewed, including those serve as immune component delivery platforms, remodel the tumor microenvironment, and synergistically enhance the effects of other antitumor therapies. Overall, the present review comprehensively and systematically summarizes biomaterials related to the promotion of DC functions; and specifically focuses on the recent advances in biomaterial designs for DC activation to eradicate tumors. The challenges and opportunities of treatment strategies designed to amplify DCs via the application of biomaterials are discussed with the aim of inspiring the clinical translation of future DC-mediated cancer immunotherapies.
Collapse
Affiliation(s)
- Heng Dong
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Qiang Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Yu Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Meng Ding
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Yongbin Mou
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| |
Collapse
|