1
|
Martín I, López C, García-González J, Mateo S. Eco-friendly solvent-based liquid-liquid extraction of phenolic acids from winery wastewater streams. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121969. [PMID: 39098073 DOI: 10.1016/j.jenvman.2024.121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
This study proposes liquid-liquid extraction (LLE) for the recovery of phenolic acids from winery wastewater replacing common volatile organic compounds (VOCs) with environmentally friendly solvents. On one hand, terpenes (α-pinene and p-cymene) and terpenoids (eucalyptol and linalool) were selected as green solvents and compared to common VOCs (ethyl acetate or 1-butanol). On the other hand, gallic acid (GA), vanillic acid (VA), syringic acid (SA) and caffeic acid (CA) were selected as phenolic acids to be recovered. The extraction performance was evaluated under different operation conditions: solvent-to-feed ratio, initial concentration of phenolic acids and temperature. This work also evaluated the back-extraction whole process global recovery and solvent regeneration, by means of aqueous NaOH solution. Eucalyptol has shown the highest overall global extraction performance (21.07 % for GA, 93.21 % for VA, 78.79 % for SA, and 80.57 % for CA) and lower water solubility compared to the best performing VOC solvent (1-butanol). Therefore, eucalyptol can be a potential eco-friendly solvent to replace VOCs for sustainable phenolic acid recovery from winery wastewater. Finally, to ensure a clean water stream after the LLE, the traces of solvent were completely removed by electrooxidation with boron-doped diamond anode at a current density of 422.54 A/m2.
Collapse
Affiliation(s)
- Ismael Martín
- Department of Chemical and Materials Engineering, Complutense University of Madrid, Av. Complutense S/N, 28040, Madrid, Spain
| | - Claudia López
- Department of Chemical and Materials Engineering, Complutense University of Madrid, Av. Complutense S/N, 28040, Madrid, Spain
| | - Julián García-González
- Department of Chemical and Materials Engineering, Complutense University of Madrid, Av. Complutense S/N, 28040, Madrid, Spain
| | - Sara Mateo
- Department of Chemical and Materials Engineering, Complutense University of Madrid, Av. Complutense S/N, 28040, Madrid, Spain.
| |
Collapse
|
2
|
Paturu P, Varadarajan S. Assessing environmental sustainability by combining product service systems and life cycle perspective: A case study of hydroponic urban farming models in India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172232. [PMID: 38582112 DOI: 10.1016/j.scitotenv.2024.172232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Hydroponics technology offers an environmentally sustainable alternative to conventional farming for urban food needs. It attracts technologists, non-farmers, retailers, restaurants, and consumers. However, the environmental impact of hydroponics-based urban farming models is yet to be quantified. This study assesses the environmental impact of hydroponics-based urban farming models and makes suggestions to improve their adoption. The methodology involves the use of the Product-Service Systems perspective to categorise the hydroponics-based urban farming models and the Life Cycle Assessment (LCA) method to quantify their environmental impact from a cradle-to-gate perspective. The analysis focuses on the lettuce crop in the state of Tamil Nadu, India. The results from the study suggest that that greenhouse farming (BM1) is more environmentally sustainable than indoor farming (BM2), Cabinet selling and remote monitoring (BM3), and conventional farming. It outperforms other models in terms of GHG emissions, Human Toxicity, and fossil fuels per unit of product, with BM3 having high environmental impacts.
Collapse
Affiliation(s)
- Pallavi Paturu
- Department of Mechanical Engineering, Indian Institute of Information Technology Design and Manufacturing Kancheepuram, Chennai 600 127, India
| | - Sudhir Varadarajan
- School of Interdisciplinary Design and Innovation, Indian Institute of Information Technology Design and Manufacturing Kancheepuram, Chennai 600 127, India.
| |
Collapse
|
3
|
Castaldo L, Lombardi S, Izzo L, Ritieni A. Exploring the Chemical Composition of Female Zucchini Flowers for Their Possible Use as Nutraceutical Ingredient. Antioxidants (Basel) 2023; 12:2108. [PMID: 38136227 PMCID: PMC10740746 DOI: 10.3390/antiox12122108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The zucchini (Cucurbita pepo L.) plant is well known for its fruits; however, its edible flowers appear to contain several active molecules, including polyphenols, which display poor bioaccessibility after gastrointestinal digestion (GiD). This study explores the bioaccessibility of polyphenols and antioxidant capacity within zucchini flower extracts during simulated GiD. Two nutraceutical formulations, non-acid-resistant (NAcR) and acid-resistant (AcR) capsules containing an aqueous extract of zucchini flowers, were employed in this investigation. Additionally, high-resolution mass spectrometry (Q-Orbitrap HRMS) was utilized for a comprehensive analysis of their polyphenolic constituents. Predominantly, rutin and isorhamnetin-3-rutinoside were the most prevalent compounds detected in the samples (514.62 and 318.59 mg/kg, respectively). Following in vitro GiD, the extract encapsulated in AcR capsules exhibited enhanced bioaccessibility during both the duodenal (189.2 and 162.5 mg GAE/100 g, respectively) and colonic stages (477.4 and 344.7 mg GAE/100 g, respectively) when compared with the extract encapsulated in NAcR capsules. This suggests that gastric acidity adversely impacted the release of polyphenols from NAcR capsules. In conclusion, the aqueous zucchini flower extract emerges as a promising and readily accessible source of dietary polyphenols. Moreover, the utilization of AcR capsules presents a potential nutraceutical formulation strategy to improve polyphenol bioaccessibility, enhancing its applicability in promoting health and well-being.
Collapse
Affiliation(s)
| | | | - Luana Izzo
- Food Laboratory, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (S.L.); (A.R.)
| | | |
Collapse
|
4
|
Pyrka I, Koutra C, Siderakis V, Stathopoulos P, Skaltsounis AL, Nenadis N. Exploring the Bioactive Content of Liquid Waste and Byproducts Produced by Two-Phase Olive Mills in Laconia (Greece): Is There a Prospect for Added-Value Applications? Foods 2023; 12:4421. [PMID: 38137225 PMCID: PMC10742542 DOI: 10.3390/foods12244421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The use of a two-phase decanter (TwPD) for olive-oil extraction produces wastes and byproducts (a small volume of water from oil washing, olive leaves from the defoliator, and a high moisture pomace which can be destoned) that contain valuable bioactive compounds, such as phenolics and/or triterpenic acids. So far, there is no (water) or limited information (leaves and the destoned pomace fraction) on their content of bioactives, especially triterpenic acids. To contribute to the characterization of such streams from cultivars of international interest, in the present study, samples obtained from five mills from the region of Laconia (from one or two harvests) in Greece, where Koroneiki cv dominates, were screened for phenols and/or triterpenic acids. The leaves and pomace were dried at two temperatures (70 °C and/or 140 °C), and the pomace was also destoned before analysis. The liquid wastes contained low amounts of total (TPC) phenols (<140 mg gallic acid/L), hydroxytyrosol (<44 mg/L), and tyrosol (<33 mg/L). The olive leaves varied widely in TPC (12.8-57.4 mg gallic acid/g dry leaf) and oleuropein (0.4-56.8 mg/g dry leaf) but contained an appreciable amount of triterpenic acids, mainly oleanolic acid (~12.5-31 mg/g dry leaf, respectively). A higher drying temperature (140 vs. 70 °C) affected rather positively the TPC/oleuropein content, whereas triterpenic acids were unaffected. The destoned pomace TPC was 15.5-22.0 mg gallic acid/g dw, hydroxytyrosol 3.9-5.6 mg/g dw, and maslinic 5.5-19.3 mg/g dw. Drying at 140 °C preserved better its bioactive phenols, whereas triterpenic acids were not influenced. The present findings indicate that TwPD streams may have a prospect as a source of bioactives for added-value applications. Material handling, including drying conditions, may be critical but only for phenols.
Collapse
Affiliation(s)
- Ioanna Pyrka
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Christina Koutra
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (C.K.); (V.S.); (A.-L.S.)
| | - Vasileios Siderakis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (C.K.); (V.S.); (A.-L.S.)
| | - Panagiotis Stathopoulos
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (C.K.); (V.S.); (A.-L.S.)
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (C.K.); (V.S.); (A.-L.S.)
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
5
|
Grace Pavithra K, Sundar Rajan P, Arun J, Brindhadevi K, Hoang Le Q, Pugazhendhi A. A review on recent advancements in extraction, removal and recovery of phenols from phenolic wastewater: Challenges and future outlook. ENVIRONMENTAL RESEARCH 2023; 237:117005. [PMID: 37669733 DOI: 10.1016/j.envres.2023.117005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
Water pollution is the major problem seen in today's scenario and even pollutants at low concentration harms our environment. In industrial sector usage of phenol is seen even at low concentrations. The interaction of phenol in the environment provides adverse effects to living beings. This review focuses on the toxicity of phenol and its impact towards environment and human health. The treatment techniques such as distillation, extraction, wet air oxidation, membrane process, electrochemical oxidation, biological treatment and finally adsorption techniques were discussed. Among many treatment techniques so far utilized in the treatment of phenol, adsorption was considered as one of the best technique due to its advantages such as reusability, ease in operation, large availability etc., This review also highlights the adsorption technique for the cleaner removal of phenol from aqueous solution with novel as well as low-cost adsorbents in the removal of phenolic compounds. This review also discusses about the drawbacks and issues related with adsorption of phenolic compounds.
Collapse
Affiliation(s)
| | - Panneerselvam Sundar Rajan
- Department of Chemical Engineering, Saveetha Engineering College, Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Jayaseelan Arun
- Centre for Waste Management - 'International Research Centre', Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai - 600119, Tamil Nadu, India
| | - Kathirvel Brindhadevi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali-140103, India
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
6
|
Mikucka W, Zielinska M, Bulkowska K, Witonska I. Subcritical water extraction of bioactive phenolic compounds from distillery stillage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115548. [PMID: 35753130 DOI: 10.1016/j.jenvman.2022.115548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Distilleries generate huge amounts of by-products that have a negative impact on the environment, so the management of wastes generated by this sector should be improved. Because distillery by-products are a source of bioactive compounds, the recovery of these compounds not only reduces issues with environmental protection but also provides the basis for a waste-to-profit solution. Following the latest trends in the search for so-called green extraction techniques for recovering valuable products, this study investigated the effect of subcritical water extraction (SWE) conditions (temperature (25-260 °C), time (5-90 min), and solid-to-solvent ratio (1:5-1:50, w:v)) on the efficiency of recovery of bioactive compounds, i.e., polyphenols from distillery stillage, and on the antioxidant activity of the extracts. The highest extraction yield was obtained with 30-min SWE with a solid-to-solvent ratio of 1:15 at either 140 °C (for total polyphenol content and phenolic acid content) or 200 °C (for total flavonoid content), as indicated by the Response Surface Methodology analysis. Phenolic acids in the extracts were present mainly in free forms (up to 88% of the total content). The antioxidant activity, which was measured using several assays, correlated positively with the content of phenolic acids, which confirmed their significant contribution to the bioactive properties of the extracts. The antioxidant effects of the extracts were mostly due to hydroxycinnamic acids (especially ferulic and p-coumaric acids). Principal component analysis showed that the temperature and time of SWE were the factors that can explain the greatest amount of variation in the extraction yield, composition, and bioactive properties of the polyphenols. These results will influence the design of further processes, such as purification and concentration, which are necessary before using the extracted compounds as substrates that are applicable in various industries. Based on the analysis of the elemental composition, the biomass remaining after SWE was evaluated to consider the possibilities of its further utilization.
Collapse
Affiliation(s)
- Wioleta Mikucka
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Sloneczna St. 45G, 10-709, Olsztyn, Poland.
| | - Magdalena Zielinska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Sloneczna St. 45G, 10-709, Olsztyn, Poland
| | - Katarzyna Bulkowska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Sloneczna St. 45G, 10-709, Olsztyn, Poland
| | - Izabela Witonska
- Lodz University of Technology, Faculty of Chemistry, Institute of General and Ecological Chemistry, Zeromskiego St. 116, 90-924, Lodz, Poland
| |
Collapse
|
7
|
Cascading Crypthecodinium cohnii Biorefinery: Global Warming Potential and Techno-Economic Assessment. ENERGIES 2022. [DOI: 10.3390/en15103784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prior to the commissioning of a new industrial biorefinery it is deemed necessary to evaluate if the new project will be beneficial or detrimental to climate change, one of the main drivers for the sustainable development goals (SDG) of the United Nations. In particular, how SDG 7, Clean and Efficient Energy, SDG 3, Good Health and Well Being, SDG 9, Industry Innovation and Infrastructure, and SDG 12, Responsible Production and Consumption, would engage in a new biorefinery design, beneficial to climate change, i.e., fostering SDG 13, Climate Action. This study uses life cycle assessment methodology (LCA) to delve in detail into the Global Warming Impact category, project scenario GHG savings, using a conventional and a dynamic emission flux approach until 2060 (30-year lifetime). Water, heat and electricity circularity are in place by using a water recirculation process and a combined heat and power unit (CHP). A new historical approach to derive low and higher-end commodity prices (chemicals, electricity, heat, jet/maritime fuel, DHA, N-fertilizer) is used for the calculation of the economic indicators: Return of investment (ROI) and inflation-adjusted return (IAR), based upon the consumer price index (CPI). Main conclusions are: supercritical fluid extraction is the hotspot of energy consumption; C. cohnii bio-oil without DHA has higher sulfur concentration than crude oil based jet fuel requiring desulfurization, however the sulfur levels are compatible with maritime fuels; starting its operation in 2030, by 2100 an overall GHG savings of 73% (conventional LCA approach) or 85% (dynamic LCA approach) is projected; economic feasibility for oil productivity and content of 0.14 g/L/h and 27% (w/w) oil content, respectively (of which 31% is DHA), occurs for DHA-cost 100 times higher than reference fish oil based DHA; however future genetic engineering achieving 0.4 g/L/h and 70% (w/w) oil content (of which 31% is DHA), reduces the threshold to 20 times higher cost than reference fish oil based DHA; N-fertilizer, district heating and jet fuel may have similar values then their fossil counterparts.
Collapse
|
8
|
Bibliometric Mapping of Research on Life Cycle Assessment of Olive Oil Supply Chain. SUSTAINABILITY 2022. [DOI: 10.3390/su14073747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The olive oil supply chain and even its individual stages have been extensively investigated through life cycle assessment (LCA) in recent decades. Most practices of the olive oil supply chain have been associated with negative environmental effects, such as soil degradation, carbon dioxide emissions, air and ground pollution, and depletion of groundwater. The current work aimed to perform a bibliometric analysis, through a science mapping approach, coupled with a review on the life cycle assessment (LCA) studies of the olive oil sector, with relevance to the environmental impacts of agricultural and industrial practices of this food sector. A total of 110 documents published in 2008–2021 were analyzed and discussed. More than 78% of documents were released from 2015. The main Scopus categories relating to the topic analyzed were environmental sciences (25%), energy (18%), and engineering (17%). The most productive countries were Italy, Spain, and Greece. The cluster analysis identified three main research topics related to the “agricultural phase”, “oil extraction”, and “waste management and by-product valorization”. Most of the recent publications focused on the application of LCA to evaluate the environmental impact of innovative agricultural practices, sustainable control of parasites and weeds, wastes, and by-products valorization within a circular economy.
Collapse
|
9
|
Tapia-Quirós P, Montenegro-Landívar MF, Reig M, Vecino X, Cortina JL, Saurina J, Granados M. Recovery of Polyphenols from Agri-Food By-Products: The Olive Oil and Winery Industries Cases. Foods 2022; 11:362. [PMID: 35159513 PMCID: PMC8834469 DOI: 10.3390/foods11030362] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The production of olive oil and wine are two of the main agri-food economic activities in Southern Europe. They generate large amounts of solid and liquid wastes (e.g., olive pomace, olive mill wastewater, grape pomace, grape stems, wine lees, and wine processing wastewater) that represent a major environmental problem. Consequently, the management of these residues has become a big challenge for these industries, since they are harmful to the environment but rich in bioactive compounds, such as polyphenols. In recent years, the recovery of phenolic compounds has been proposed as a smart strategy for the valorization of these by-products, from a circular economy perspective. This review aims to provide a comprehensive description of the state of the art of techniques available for the analysis, extraction, and purification of polyphenols from the olive mill and winery residues. Thus, the integration and implementation of these techniques could provide a sustainable solution to the olive oil and winery sectors.
Collapse
Affiliation(s)
- Paulina Tapia-Quirós
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - María Fernanda Montenegro-Landívar
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Mònica Reig
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Chemical Engineering Department, Research Center in Technologies, Energy and Industrial Processes—CINTECX, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain
| | - José Luis Cortina
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Water Technology Center—CETAQUA, Carretera d’Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
| |
Collapse
|
10
|
Peeters K, Miklavčič Višnjevec A, Esakkimuthu ES, Schwarzkopf M, Tavzes Č. The Valorisation of Olive Mill Wastewater from Slovenian Istria by Fe 3O 4 Particles to Recover Polyphenolic Compounds for the Chemical Specialties Sector. Molecules 2021; 26:6946. [PMID: 34834035 PMCID: PMC8622678 DOI: 10.3390/molecules26226946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Olive oil production using three-phase decanter systems creates olive oil and two by-products: olive mill wastewater (OMWW) and pomace. These by-products contain the highest share of polyphenolic compounds that are known to be associated with beneficial effects on human health. Therefore, they are an attractive source of phenolic compounds for further industrial use in the cosmetic, pharmaceutical and food industries. The use of these phenolics is limited due to difficulties in recovery, high reactivity, complexity of the OMWW matrix and different physiochemical properties of phenolic compounds. This research, focused on OMWW, was performed in two phases. First, different polyphenol extraction methods were compared to obtain the method that yields the highest polyphenol concentration. Twenty-five phenolic compounds and their isomers were determined. Acidifying OMWW, followed by five minutes of ultrasonication, resulted in the highest measured polyphenol content of 27 mg/L. Second, the collection of polyphenolic compounds from OMWW via adsorption on unmodified iron (II, III) oxide particles was investigated. Although low yields were obtained for removed polyphenolic compounds in one removal cycle, the process has a high capability to be repeated.
Collapse
Affiliation(s)
- Kelly Peeters
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; (E.S.E.); (M.S.); (Č.T.)
- Andrej Marušič Institute, University of Primorska, Muzejski trg 2, 6000 Koper, Slovenia
| | - Ana Miklavčič Višnjevec
- Faculty of Mathematics, University of Primorska, Natural Sciences and Information Technologies, Glagoljaška 8, 6000 Koper, Slovenia;
| | | | - Matthew Schwarzkopf
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; (E.S.E.); (M.S.); (Č.T.)
- Andrej Marušič Institute, University of Primorska, Muzejski trg 2, 6000 Koper, Slovenia
| | - Črtomir Tavzes
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; (E.S.E.); (M.S.); (Č.T.)
- Andrej Marušič Institute, University of Primorska, Muzejski trg 2, 6000 Koper, Slovenia
| |
Collapse
|
11
|
Colella M, Ripa M, Cocozza A, Panfilo C, Ulgiati S. Challenges and opportunities for more efficient water use and circular wastewater management. The case of Campania Region, Italy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113171. [PMID: 34274766 DOI: 10.1016/j.jenvman.2021.113171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/12/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
By 2050, global demand for water is expected to increase by some 55% due to population growth and urbanization. The utilization of large amounts of freshwater in the world, generate huge volumes of wastewater of which, globally, more than 80% is discharged without treatment, thus causing impacts on aquatic ecosystems, human health and economic productivity. More sustainable practices of wastewater management are expected as a way towards circular bioeconomy (CBE) processes, whose goal is to implement closed systems promoting the systematic use of recycling, reuse and recovery of bioproducts and by-products and the reduction of waste generation. This approach, if adopted in the water and wastewater sector, can ensure environmental, economic and social benefits. The reuse of wastewater, on the one hand, reduces the volume of wastewater and the pressure on water bodies; on the other hand, the recovery of nutrients (P or N) and/or other high value bioproducts (biogas, cellulose, biopolymers) from wastewater offers numerous advantages in terms of supplying new raw bio-based materials that can be refed back to supply chains (thus substituting fossil resources) and, at the same time, producing cleaner water to be reused. Nevertheless, while in Europe many industries have demonstrated the ability to recycle and reuse water, in many regions of Italy the sustainable management of water and wastewater is not yet consolidated. In this study we explore the available technological, economic and environmental options concerning water use and wastewater treatment and we apply them to design appropriate scenarios for improved use efficiency and circular management. A comprehensive literature review of the most promising wastewater treatment processes for resources and energy valorization was conducted. The recovery of PHAs, struvite, nitrogen and algal biomass, as potential substitutes for conventional PET, phosphate and nitrogen chemical fertilizers and electricity, respectively, in addition to reusable treated water, were hypothesized and carefully discussed. Resulting scenarios are tested against the present situation of Campania Region (situated in Southern Italy) based on population and demand statistics, in order to develop strategies and policies potentially applicable locally and elsewhere.
Collapse
Affiliation(s)
- M Colella
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy
| | - M Ripa
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy.
| | - A Cocozza
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy
| | - C Panfilo
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy
| | - S Ulgiati
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy; School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
12
|
Nunes A, Marto J, Gonçalves L, Martins AM, Fraga C, Ribeiro HM. Potential therapeutic of olive oil industry by‐products in skin health: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andreia Nunes
- Faculty of Pharmacy Research Institute for Medicine (iMed.ULisboa) Universidade de Lisboa Lisboa Portugal
| | - Joana Marto
- Faculty of Pharmacy Research Institute for Medicine (iMed.ULisboa) Universidade de Lisboa Lisboa Portugal
| | - Lídia Gonçalves
- Faculty of Pharmacy Research Institute for Medicine (iMed.ULisboa) Universidade de Lisboa Lisboa Portugal
| | - Ana Margarida Martins
- Faculty of Pharmacy Research Institute for Medicine (iMed.ULisboa) Universidade de Lisboa Lisboa Portugal
| | - Carmo Fraga
- Sovena Portugal – Consumer Goods S.A., com sede em Rua Dr. António Borges no 2 Edifício Arquiparque 2 – 3° andar Algés 1495‐131 Portugal
| | - Helena Margarida Ribeiro
- Faculty of Pharmacy Research Institute for Medicine (iMed.ULisboa) Universidade de Lisboa Lisboa Portugal
| |
Collapse
|
13
|
Abstract
Hydroxytyrosol (HT) is the main bioactive compound in olive leaves. However, olive leaves contain a lower level of HT and the extraction process of HT was rarely optimized. In this study, compared with two extraction methods, ultrasound was found to have a positive effect on improving the yield of HT. Therefore, ultrasound was used to assist hydrolysis of hydrochloric acid to extract HT from olive leaves. Response surface method and macroporous resins were applied to optimize the extraction process as well as enrichment of HT. The results showed that ultrasonic extraction time had a significant effect on the yield and the optimal extraction conditions were obtained: ultrasonic time was 120 min, hydrochloric acid concentration was 1.60 mol/L and the liquid-to-material ratio was 60.00 mL/g. Under the optimal extraction condition, the yield of HT was 14.11 ± 0.12 mg/g. NKA-Ⅱ macroporous resin was proved to be a suitable resin to enrich HT from extraction solution. The optimal condition for enriching HY was 250 mL of loading solution at the flow rate of 1.5 mL/min with 40 mL volume of 75% ethanol–eluent at a flow rate of 1.0 mL/min. The concentration of HT changed from 2.27% to 9.25% after enrichment by macroporous resin.
Collapse
|
14
|
Allaoui S, Bennani MN, Ziyat H, Qabaqous O, Tijani N, Ittobane N, Hodaifa G. Valorization of crude olive stone in the removing of polyphenols from crude olive mill wastewater: kinetic, isotherm and mechanism study. Heliyon 2021; 7:e07525. [PMID: 34355077 PMCID: PMC8321948 DOI: 10.1016/j.heliyon.2021.e07525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/01/2021] [Accepted: 07/06/2021] [Indexed: 11/27/2022] Open
Abstract
Removal of polyphenols from crude olive mill wastewaters (COMWW) is vital to the development of olive industries. In addition, the exploitation of the residue of the olive oil industry such as crude olive stone (COS) constitutes a valorization of this substance and makes a contribution to the fight against environmental pollution. For this purpose, this study concerns the utilization of COS as an adsorbent of polyphenols from COMWW. The characterization of COS was realized by FTIR, XRD, SEM, PZN, BET and TGA-DTA. The adsorption kinetics and isotherms of polyphenols was analyzed by pseudo-first-order (PFO), pseudo-second-order (PSO), intraparticle diffusion models (MW) and nonlinear models of isotherms Langmuir (LM) and Freundlich (FM) respectively. This study goal at understanding the adsorption mechanism of polyphenols on COS by FTIR and XRD study. The results of adsorption kinetics demonstred that the adsorption capacity of polyphenols ‘PP’ onto COS is decreased from 381 mg g−1 to 235 mg g−1, with the increasing of the temperature, from 25 °C to 45 °C, indicating an exothermic process, which is confirmed by the negative values of enthalpy ΔH°. Moreover, the negative values of free energy ΔG° and entropy ΔS° indicate the spontaneous and ordered adsorption phenomenon. Kinetic and isotherms studies showed that polyphenols adsorption onto crude olive stone followed PSO kinetic, the FM and LM models were the best fitted. Consequently, this study indicates that crude olive stone could be used as a cheap adsorbent for removing of polyphenols from crude COMWW.
Collapse
Affiliation(s)
- Safae Allaoui
- Laboratory of Chemistry-Biology Applied to the Environment, Research Team "Applied Materials and Catalysis", Chemistry Department, Faculty of Sciences, Moulay-Ismaïl University, BP. 11201, Zitoune, Meknes 50000, Morocco
| | - Mohammed Naciri Bennani
- Laboratory of Chemistry-Biology Applied to the Environment, Research Team "Applied Materials and Catalysis", Chemistry Department, Faculty of Sciences, Moulay-Ismaïl University, BP. 11201, Zitoune, Meknes 50000, Morocco
| | - Hamid Ziyat
- Laboratory of Chemistry-Biology Applied to the Environment, Research Team "Applied Materials and Catalysis", Chemistry Department, Faculty of Sciences, Moulay-Ismaïl University, BP. 11201, Zitoune, Meknes 50000, Morocco
| | - Omar Qabaqous
- Laboratory of Chemistry-Biology Applied to the Environment, Research Team "Applied Materials and Catalysis", Chemistry Department, Faculty of Sciences, Moulay-Ismaïl University, BP. 11201, Zitoune, Meknes 50000, Morocco
| | - Najib Tijani
- Research Team "Membrane Materials and Separation Processes", Chemistry Department, Faculty of Science, Moulay-Ismaïl University, BP. 11201, Zitoune, Meknes, 50000, Morocco
| | - Najim Ittobane
- Research Team "Molecular Chemistry and Organic Materials", Chemistry Department, Faculty of Science, Moulay-Ismaïl University, BP. 11201, Zitoune, Meknes, 50000, Morocco
| | - Gassan Hodaifa
- Molecular Biology and Biochemical Engineering Department, Chemical Engineering Area, University of Pablo de Olavide, ES-41013 Seville, Spain
| |
Collapse
|
15
|
Martins D, Martins RC, Braga MEM. Biocompounds recovery from olive mill wastewater by liquid-liquid extraction and integration with Fenton's process for water reuse. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29521-29534. [PMID: 33559081 DOI: 10.1007/s11356-021-12679-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
The olive mill wastewaters obtained from two different processes, press extraction olive mill wastewater (POMW) from Portugal and two-phase system olive mill wastewater (2POMW) from Spain, were treated to recover phenolic compounds and water sequentially, by the integration of liquid-liquid extraction with Fenton's processes. From the recovered fractions, squalene, oleic acid, tyrosol, syringic acid, and p-coumaric acid were identified, and oleic acid appears in a higher concentration for 2POMW wastewater for all used solvents compared to POMW samples. Recovered fractions presented higher antioxidant activity, but remained antioxidants were found in the residual water. The wastewaters coming from a two-phase extraction method (2POMW) present higher phytotoxicity according to germination index, but the application of Fenton's process was able to improve the water quality to be re-used since an increase on the water biodegradability (BOD5/COD) and toxicity reduction were achieved.
Collapse
Affiliation(s)
- Daniela Martins
- Department of Chemical Engineering, CIEPQPF, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal De Marrocos, 3030-790, Coimbra, Portugal
| | - Rui C Martins
- Department of Chemical Engineering, CIEPQPF, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal De Marrocos, 3030-790, Coimbra, Portugal.
| | - Mara E M Braga
- Department of Chemical Engineering, CIEPQPF, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal De Marrocos, 3030-790, Coimbra, Portugal.
| |
Collapse
|
16
|
Çelik G, Saygın Ö, Akmehmet Balcıoğlu I. Multistage recovery process of phenolic antioxidants with a focus on hydroxytyrosol from olive mill wastewater concentrates. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Antioxidant and Antimicrobial Activity of Polyphenols Extracted after Adsorption onto Natural Clay “Ghassoul”. J CHEM-NY 2020. [DOI: 10.1155/2020/8736721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural polyphenols contained in olive mill wastewaters (OMW) have been usually associated with great bioactive properties as “antioxidants”. In this work, we recovered the polyphenols after adsorption onto natural clay “ghassoul” by different solvents: water, ethyl acetate, and methanol (PPW, PPA, and PPM, respectively) to avoid environmental pollution. Also, we tested the antioxidant activity of the extracted polyphenols by two methods: 1,1-diphenyl-2-picrylhydrazyl (DPPH) and total antioxidant capacity (TAC). Then, we analyzed antimicrobial activity by the microdilution technique to determine at the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The OMW of the Fez-Meknes region has a very acidic pH, considerable amounts of mineral matter, and a high concentration of polyphenols and organic content. The results of the test from DPPH showed good antiradical potential for polyphenols extracted with water, but the TAC showed an important capacity for all extracts unless PPA. The antibacterial activity is not the same on the four bacteria studied (Escherichia coli, Salmonella sp, Staphylococcus aureus, and Enterococcus faecalis), and all extracts inhibit most tested germs that do not have the same MIC and the same sensitivity. Only the PPW showed the minimum bactericidal concentration (MBC) that is equal to 0.290 mg/mL for Salmonella sp and Staphylococcus aureus, which confirms that the extraction by water of the adsorbed polyphenols is an original solution to recover the polyphenols and also to obtain a natural phenolic antioxidant which can be used in the pharmaceutical, nourishment, and cosmetic industry.
Collapse
|
18
|
Zeng B, Lai Y, Liu L, Cheng J, Zhang Y, Yuan J. Engineering Escherichia coli for High-Yielding Hydroxytyrosol Synthesis from Biobased l-Tyrosine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7691-7696. [PMID: 32578426 DOI: 10.1021/acs.jafc.0c03065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydroxytyrosol (HT) is a natural antioxidant with many associated health benefits. In this study, we established efficient enzymatic cascades for the synthesis of HT from biobased l-tyrosine. First, a dopamine-mediated route for HT production was investigated. The combination of native hydroxylase (HpaBC) from Escherichia coli and l-DOPA decarboxylase (DODC) from Pseudomonas putida could efficiently convert 5 mM l-tyrosine into dopamine with conversion above 90%. However, further incorporation of monoamine oxidase (MAO) from Micrococcus luteus and phenylacetaldehyde reductase (PAR) from Solanum lycopersicum only resulted in 3.47 mM HT with 69.4% conversion. Therefore, a second enzyme cascade that comprises HpaBC from E. coli, l-amino acid deaminase (LAAD) from Proteus mirabilis, α-keto acid decarboxylase (ARO10) from Saccharomyces cerevisiae, and PAR from S. lycopersicum was designed. This enzymatic route showed higher catalytic activity and efficiently synthesized HT. The 24.27 mM HT was obtained from 25 mM l-tyrosine with a high conversion of 97.1%, and 32.35 mM HT was produced using 50 mM l-tyrosine, which represents the highest HT titer using l-tyrosine as a substrate reported to date. In summary, we have developed a green and sustainable platform for efficient HT enzymatic synthesis.
Collapse
Affiliation(s)
- Baiyun Zeng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Yumeng Lai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Lijun Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Jie Cheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian 361102, P. R. China
| | - Yang Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| |
Collapse
|
19
|
Olive Mill Wastewater Polyphenol-Enriched Fractions by Integrated Membrane Process: A Promising Source of Antioxidant, Hypolipidemic and Hypoglycaemic Compounds. Antioxidants (Basel) 2020; 9:antiox9070602. [PMID: 32664218 PMCID: PMC7402138 DOI: 10.3390/antiox9070602] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022] Open
Abstract
The valorisation of food wastes is a challenging opportunity for the green, sustainable, and competitive development of industry. The recovery of phenols contributes to the sustainability of olive waste sector, reducing its environmental impact and promoting the development of innovative formulations of interest for pharmaceutical, nutraceutical, and cosmeceutical applications. In this work, olive mill wastewater was treated through a combination of microfiltration (MF), nanofiltration (NF), and reverse osmosis (RO) in a sequential design to produce polyphenol-enriched fractions that have been investigated for their chemical profile using ultra-high-performance liquid chromatography (UHPLC), and their potential antioxidant, hypolipidemic, and hypoglycaemic activities. RO retentate exhibited the highest content of hydroxytyrosol, tyrosol, oleuropein, verbascoside, vanillic acid, and luteolin. In particular, a content of hydroxytyrosol of 1522.2 mg/L, about five times higher than the MF feed, was found. RO retentate was the most active extract in all in vitro tests. Interestingly, this fraction showed a 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS) radicals scavenging activity with an IC50 value of 6.9 μg/mL and a potential inhibition of lipid peroxidation evaluated by the β-carotene bleaching test with IC50 values of 25.1 μg/mL after 30 min of incubation. Moreover, RO retentate inhibited α-amylase and α-glucosidase with IC50 values of 65.3 and 66.2 μg/mL, respectively.
Collapse
|
20
|
Valorization of palm oil mill sterilization condensate via synergistic green reactive extraction of bioactive compounds. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Towards the Implementation of Circular Economy in the Wastewater Sector: Challenges and Opportunities. WATER 2020. [DOI: 10.3390/w12051431] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The advancement of science has facilitated increase in the human lifespan, reflected in economic and population growth, which unfortunately leads to increased exploitation of resources. This situation entails not only depletion of resources, but also increases environmental pollution, mainly due to atmospheric emissions, wastewater effluents, and solid wastes. In this scenario, it is compulsory to adopt a paradigm change, as far as the consumption of resources by the population is concerned, to achieve a circular economy. The recovery and reuse of resources are key points, leading to a decrease in the consumption of raw materials, waste reduction, and improvement of energy efficiency. This is the reason why the concept of the circular economy can be applied in any industrial activity, including the wastewater treatment sector. With this in view, this review manuscript focuses on demonstrating the challenges and opportunities in applying a circular economy in the water sector. For example, reclamation and reuse of wastewater to increase water resources, by paying particular attention to the risks for human health, recovery of nutrients, or highly added-value products (e.g., metals and biomolecules among others), valorisation of sewage sludge, and/or recovery of energy. Being aware of this situation, in the European, Union 18 out of 27 countries are already reusing reclaimed wastewater at some level. Moreover, many wastewater treatment plants have reached energy self-sufficiency, producing up to 150% of their energy requirements. Unfortunately, many of the opportunities presented in this work are far from becoming a reality. Still, the first step is always to become aware of the problem and work on optimizing the solution to make it possible.
Collapse
|
22
|
Mota IF, Pinto PR, Loureiro JM, Rodrigues AE. Purification of syringaldehyde and vanillin from an oxidized industrial kraft liquor by chromatographic processes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Genethliou C, Kornaros M, Dailianis S. Biodegradation of olive mill wastewater phenolic compounds in a thermophilic anaerobic upflow packed bed reactor and assessment of their toxicity in digester effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109882. [PMID: 31783209 DOI: 10.1016/j.jenvman.2019.109882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/03/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
The extent of phenolic compounds' biodegradation was assessed utilizing un-treated olive mill wastewater (OMWW) fed to a high-rate thermophilic (55 οC) anaerobic upflow packed bed reactor (UPBR) and digester effluents (DEs) collected in different hydraulic retention times (HRTs) under steady-state operating conditions. In parallel, the toxicity of each sample was evaluated by performing the microbiotest Thamnotoxkit F™. The outcomes indicate complete biodegradation of 6 phenolic compounds-vanillic acid (VA), caffeic acid (CA), syringic acid (SA), o-coumaric acid (o-CA), oleuropein (OLEU), 4-ethylphenol (4-EP)-and notable removals of hydroxytyrosol (HT) and tyrosol (TYR), reaching up to 94.87 ± 0.04% and 93.92 ± 0.33%, respectively. 4-hydroxybenzoic acid (PHBA), p-coumaric acid (p-CA) and 3,4-dihydroxybenzoic acid (DBA) were recognized as the most recalcitrant and persistent compounds in the anaerobic effluents, being capable of modulating the toxic potential of DEs.
Collapse
Affiliation(s)
- C Genethliou
- Department of Chemistry, University of Patras, GR 26504, Rion, Patras, Greece
| | - M Kornaros
- Department of Chemical Engineering, University of Patras, GR 26504, Rion, Patras, Greece.
| | - S Dailianis
- Department of Biology, University of Patras, GR 26500, Rion, Patras, Greece
| |
Collapse
|
24
|
Bertelli M, Kiani AK, Paolacci S, Manara E, Dautaj A, Beccari T, Michelini S. Molecular pathways involved in lymphedema: Hydroxytyrosol as a candidate natural compound for treating the effects of lymph accumulation. J Biotechnol 2020; 308:82-86. [PMID: 31794783 DOI: 10.1016/j.jbiotec.2019.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
Abstract
Lymphedema is a chronic accumulation of interstitial fluid due to inefficient lymph drainage. Major causes of lymphedema are malformations of lymphatic vessels, trauma, toxic damage and surgery. The swelling typically affects the limbs. Lymphedema may be primary, caused by genetic mutations and relatively rare, or secondary (acquired), due to external causes such as infections or surgery. Fluid accumulation induces pathological changes: activation of the inflammatory cascade, immune cell infiltration, tissue fibrosis, adipose accumulation. We focused on the inflammatory phenotype mediated by leukotriene B4, a lipid mediator of the inflammatory pathway, and the potential therapeutic effect of hydroxytyrosol. We conducted an electronic search in PubMed using "lymphedema", "lymphedema pathway", "hydroxytyrosol" as keywords. We found that lymphedema deregulates at least six molecular pathways and that hydroxytyrosol, a compound with antioxidant activity, can improve endothelial dysfunction, hemostatic and lipid profiles, and decrease oxidative stress and inflammation through inhibition of leukotriene B4 activity. This review is the first to highlight the possibility of using hydroxytyrosol to treat the secondary effects of lymphedema, especially inflammation. The possible effects of hydroxytyrosol on lymphedema should be tested in vitro and in vivo to find the best way to treat patients with lymphedema in order to improve their health status.
Collapse
Affiliation(s)
- Matteo Bertelli
- EBTNA-Lab, Via Delle Maioliche, 57/G, 38068, Rovereto, TN, Italy.
| | - Aysha Karim Kiani
- Allama Iqbal Open University, Sector H-8, 44000, Islamabad, Pakistan.
| | - Stefano Paolacci
- MAGI's Lab, Via Delle Maioliche, 57/D, 38068, Rovereto, TN, Italy.
| | - Elena Manara
- MAGI Euregio, Via Maso della Pieve, 60/A, 39100, Bolzano, Italy.
| | - Astrit Dautaj
- MAGI Balkans, Rruga Andon Zako Cajupi, 1019, Tirana, Albania.
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Via Ariodante Fabretti, 48, 06123, Perugia, Italy.
| | - Sandro Michelini
- Department of Vascular Rehabilitation, San Giovanni Battista Hospital, Via Luigi Ercole Morselli, 13, 00148, Rome, Italy.
| |
Collapse
|
25
|
Antioxidant Activity of Polyphenolic Plant Extracts. Antioxidants (Basel) 2019; 9:antiox9010019. [PMID: 31878236 PMCID: PMC7022939 DOI: 10.3390/antiox9010019] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/15/2023] Open
|
26
|
Conidi C, Egea-Corbacho A, Cassano A. A Combination of Aqueous Extraction and Polymeric Membranes as a Sustainable Process for the Recovery of Polyphenols from Olive Mill Solid Wastes. Polymers (Basel) 2019; 11:polym11111868. [PMID: 31726794 PMCID: PMC6918165 DOI: 10.3390/polym11111868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 11/21/2022] Open
Abstract
Polyamide commercial membranes in flat-sheet configuration and with molecular weight cut-off (MWCO) in the range of ultrafiltration (UF) to nanofiltration (NF) were tested for the recovery of phenolic compounds from clarified olive mill solid waste (OMSW) aqueous extracts. The performance of selected membranes was evaluated in terms of productivity (permeate flux) and selectivity towards biologically active compounds (such as phenolic compounds, flavanols, and hydroxycinnamic acids derivatives) and total antioxidant activity (TAA) as a function of transmembrane pressure (TMP). NF membranes produced higher permeate fluxes and a lower fouling index in comparison with UF membranes. Retention of bioactive compounds was also significantly higher for NF membranes than for UF membranes. In particular, membranes with MWCO in the range 150–500 Da showed rejection towards flavanols and hydroxycinnamic acid derivatives of about 100%. On the other hand, the rejection towards TAA and total polyphenols was of about 90% and 72%, respectively. Therefore, NF retentate fractions appear of practical interest for the production of food additives and food supplements due to their high antioxidant activity.
Collapse
Affiliation(s)
- Carmela Conidi
- Institute on Membrane Technology, ITM-CNR, University of Calabria, via P. Bucci, 17/C, I-87030 Rende, Cosenza, Italy;
| | - Agata Egea-Corbacho
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cádiz, Spain;
| | - Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, University of Calabria, via P. Bucci, 17/C, I-87030 Rende, Cosenza, Italy;
- Correspondence: ; Tel.: +39-0984-492067
| |
Collapse
|
27
|
Obtaining an Extract Rich in Phenolic Compounds from Olive Pomace by Pressurized Liquid Extraction. Molecules 2019; 24:molecules24173108. [PMID: 31461900 PMCID: PMC6749438 DOI: 10.3390/molecules24173108] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 01/05/2023] Open
Abstract
The olive oil industry produces large volumes of wastes, which are also potential sources of bioactive compounds by developing healthy and/or functional foods. Extraction of phenolic compounds from the residues of the olive oil is mainly carried out with solvents. However, there is currently a growing public awareness about the use of organic solvents in food processing, which has pointed out the need for the application of clean technologies such as pressurized liquid extraction (PLE). Therefore, the aim of this research was to optimize the phenolic compound extraction from olive pomace by PLE, establishing the qualitative and quantitative phenolic profile by HPLC-ESI-TOF/MS. The extraction design to recover phenolics from olive pomace demonstrates a great compositional variability of PLE extracts obtained under different experimental conditions. Indeed, quantitative results have pointed out the selectivity of PLE extraction when this technique is applied to the treatment of olive pomace. PLE-optimized conditions showed higher total phenolic compound content than conventional extraction (1659 mg/kg d.w. and 281.7 mg/kg d.w., respectively). Among these phenolics, the quantity of secoiridoids and flavonoids in the optimized PLE extract was three and four times higher than in conventional extracts. Furthermore, optimal PLE conditions allowed to obtain an enriched hydroxytyrosol extract which was not detected in the conventional one.
Collapse
|
28
|
Davididou K, Chatzisymeon E, Perez-Estrada L, Oller I, Malato S. Photo-Fenton treatment of saccharin in a solar pilot compound parabolic collector: Use of olive mill wastewater as iron chelating agent, preliminary results. JOURNAL OF HAZARDOUS MATERIALS 2019; 372:137-144. [PMID: 29567303 DOI: 10.1016/j.jhazmat.2018.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
The aim of this work was to investigate the treatment of the artificial sweetener saccharin (SAC) in a solar compound parabolic collector pilot plant by means of the photo-Fenton process at pH 2.8. Olive mill wastewater (OMW) was used as iron chelating agent to avoid acidification of water at pH 2.8. For comparative purposes, Ethylenediamine-N, N-disuccinic acid (EDDS), a well-studied iron chelator, was also employed at circumneutral pH. Degradation products formed along treatment were identified by LC-QTOF-MS analysis. Their degradation was associated with toxicity removal, evaluated by monitoring changes in the bioluminescence of Vibrio fischeri bacteria. Results showed that conventional photo-Fenton at pH 2.8 could easily degrade SAC and its intermediates yielding k, apparent reaction rate constant, in the range of 0.64-0.82 L kJ-1, as well as, eliminate effluent's chronic toxicity. Both OMW and EDDS formed iron-complexes able to catalyse H2O2 decomposition and generate HO. OMW yielded lower SAC oxidation rates (k = 0.05-0.1 L kJ-1) than EDDS (k = 2.21-7.88 L kJ-1) possibly due to its higher TOC contribution. However, the degradation rates were improved (k = 0.13 L kJ-1) by increasing OMW dilution in the reactant mixture. All in all, encouraging results were obtained by using OMW as iron chelating agent, thus rendering this approach promising towards the increase of process sustainability.
Collapse
Affiliation(s)
- K Davididou
- School of Engineering, Institute for Infrastructure and Environment, The University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| | - E Chatzisymeon
- School of Engineering, Institute for Infrastructure and Environment, The University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| | - L Perez-Estrada
- Plataforma Solar de Almeria - CIEMAT, Carretera de Senés, km 4, 04200 Tabernas, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | - I Oller
- Plataforma Solar de Almeria - CIEMAT, Carretera de Senés, km 4, 04200 Tabernas, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | - S Malato
- Plataforma Solar de Almeria - CIEMAT, Carretera de Senés, km 4, 04200 Tabernas, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain.
| |
Collapse
|
29
|
Production of lignin-modifying enzymes by Trametes ochracea on high-molecular weight fraction of olive mill wastewater, a byproduct of olive oil biorefinery. N Biotechnol 2019; 50:44-51. [DOI: 10.1016/j.nbt.2019.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 11/19/2022]
|
30
|
Julio R, Zambra C, Merlet G, Cabezas R, Correa G, Salinas G, González J, Veliz F, Lemus-Mondaca R. Liquid–liquid extraction of hydroxytyrosol, tyrosol, and oleuropein using ionic liquids. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1555171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Romero Julio
- Laboratory of Membrane Separation Process (LabProSeM), Department of Chemical Engineering, University of Santiago de Chile, Santiago, Chile
| | - Carlos Zambra
- Department of Mechanical Engineering, University of Talca, Curicó, Chile
| | - Gastón Merlet
- Laboratory of Membrane Separation Process (LabProSeM), Department of Chemical Engineering, University of Santiago de Chile, Santiago, Chile
| | - Rene Cabezas
- Laboratory of Membrane Separation Process (LabProSeM), Department of Chemical Engineering, University of Santiago de Chile, Santiago, Chile
| | - Gonzalo Correa
- Laboratory of Membrane Separation Process (LabProSeM), Department of Chemical Engineering, University of Santiago de Chile, Santiago, Chile
| | - Gonzalo Salinas
- Department of Mechanical Engineering, University of Talca, Curicó, Chile
| | - Johan González
- Department of Mechanical Engineering, University of Talca, Curicó, Chile
| | - Felipe Veliz
- Department of Mechanical Engineering, University of Talca, Curicó, Chile
| | - Roberto Lemus-Mondaca
- Departamento de Ciencia de los Alimentos y Tecnología Química, Universidad de Chile, Santiago, Chile
| |
Collapse
|
31
|
Makri S, Kafantaris I, Savva S, Ntanou P, Stagos D, Argyroulis I, Kotsampasi B, Christodoulou V, Gerasopoulos K, Petrotos K, Komiotis D, Kouretas D. Novel Feed Including Olive Oil Mill Wastewater Bioactive Compounds Enhanced the Redox Status of Lambs. ACTA ACUST UNITED AC 2018; 32:291-302. [PMID: 29475912 DOI: 10.21873/invivo.11237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM The aim of the present study was to investigate the antioxidant effects of a feed supplemented with polyphenolic additives from olive mill wastewater (OMW) on lambs. MATERIALS AND METHODS Lambs received breast milk until the postnatal period, and then they were divided into two groups and received control and OMW feed for 55 days. Redox biomarkers were measured in blood and tissues at days 15, 42 and 70 after feeding. RESULTS Feed supplemented with OMW reduced thiobarbituric acid reactive species and protein carbonyls and increased total antioxidant capacity, glutathione and catalase activity in both blood and tissues. CONCLUSION The administration of OMW-containing feed reinforced the antioxidant defense of lambs, which may improve their wellbeing and productivity. Additionally, this exploitation of OMW may solve problems of environmental pollution in areas with olive oil industries.
Collapse
Affiliation(s)
- Sotiria Makri
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Ioannis Kafantaris
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Salomi Savva
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Polyxeni Ntanou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.,Department of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Ioannis Argyroulis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Basiliki Kotsampasi
- Research Institute of Animal Science/Hellenic Agricultural Organization Demeter, Giannitsa, Greece
| | - Vladimiros Christodoulou
- Research Institute of Animal Science/Hellenic Agricultural Organization Demeter, Giannitsa, Greece
| | - Konstantinos Gerasopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.,Department of Biosystem Engineering, Technical Education Institute of Thessaly, Larissa, Greece
| | - Konstantinos Petrotos
- Department of Biosystem Engineering, Technical Education Institute of Thessaly, Larissa, Greece
| | - Dimitrios Komiotis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
32
|
Li X, Chen Z, Wu Y, Yan Y, Sun X, Yuan Q. Establishing an Artificial Pathway for Efficient Biosynthesis of Hydroxytyrosol. ACS Synth Biol 2018; 7:647-654. [PMID: 29281883 DOI: 10.1021/acssynbio.7b00385] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hydroxytyrosol (HT) is a valuable natural phenolic compound with strong antioxidant activity and various physiological and pharmaceutical functions. In this study, we established an artificial pathway for HT biosynthesis. First, efficient enzymes were selected to construct a tyrosol biosynthetic pathway. Aro10 from Saccharomyces cerevisiae was shown to be a better ketoacid decarboxylase than Kivd from Lactococcus lactis for tyrosol production. While knockout of feaB significantly decreased accumulation of the byproduct 4-hydroxyphenylacetic acid, overexpression of alcohol dehydrogenase ADH6 further improved tyrosol production. The titers of tyrosol reached 1469 ± 56 mg/L from tyrosine and 620 ± 23 mg/L from simple carbon sources, respectively. The pathway was further extended for HT production by overexpressing Escherichia coli native hydroxylase HpaBC. To enhance transamination of tyrosine to 4-hydroxyphenylpyruvate, NH4Cl was removed from the culture media. To decrease oxidation of HT, ascorbic acid was added to the cell culture. To reduce the toxicity of HT, 1-dodecanol was selected as the extractant for in situ removal of HT. These efforts led to an additive increase in HT titer to 1243 ± 165 mg/L in the feeding experiment. Assembly of the full pathway resulted in 647 ± 35 mg/L of HT from simple carbon sources. This work provides a promising alternative for sustainable production of HT, which shows scale-up potential.
Collapse
Affiliation(s)
- Xianglai Li
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenya Chen
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yifei Wu
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yajun Yan
- College
of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Xinxiao Sun
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qipeng Yuan
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
33
|
Enrichment of Phenolic Compounds from Olive Mill Wastewater and In Vitro Evaluation of Their Antimicrobial Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3706915. [PMID: 29445410 PMCID: PMC5763065 DOI: 10.1155/2017/3706915] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/16/2017] [Accepted: 11/27/2017] [Indexed: 11/21/2022]
Abstract
The production of olive oil generates massive quantities of by-product called olive mill wastewater (OMWW). The uncontrolled disposal of OMWW poses serious environmental problems. The OMWW effluent is rich in several polyphenolic compounds. Liquid-liquid extraction of OMWW using ethyl acetate solvent was used to enrich phenolic compounds under investigation. Total phenolic and flavonoid content and antioxidant activity of the extract were determined. HPLC coupled to photodiode array (PDA) detector was used to analyze the main three phenolic compounds of OMWW, namely, hydroxytyrosol, tyrosol, and oleuropein. The antimicrobial activity of the extract was also investigated. Additionally, the OMWW extract was used as natural preservative and antioxidants for olive oil. Results showed that OMWW is very rich in phenolic compounds and has strong antioxidant activity. HPLC analysis showed that the extract contains mainly hydroxytyrosol and tyrosol but no oleuropein. The OMWW extract showed also positive activities as antibacterial (gram positive and gram negative) and antifungal as well as activities against yeast. The addition of OMWW extract to olive oil samples has an effect on the stability of olive oil as reflected by its acid value, peroxide value, K232 and K270, and total phenolic content.
Collapse
|
34
|
Ultrasound-assisted enzyme catalyzed hydrolysis of olive waste and recovery of antioxidant phenolic compounds. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
|
36
|
Caporaso N, Formisano D, Genovese A. Use of phenolic compounds from olive mill wastewater as valuable ingredients for functional foods. Crit Rev Food Sci Nutr 2017; 58:2829-2841. [PMID: 28662342 DOI: 10.1080/10408398.2017.1343797] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Olive mill wastewater (OMW) is a pollutant by-product from the virgin olive oil production. Its high content in phenolic compounds makes them play an important role for their use in foods, for their high antioxidant significance. The present paper gives an overview on the techniques for OMW valuable ingredient separation, focusing on the most effective ones for their use in food products as functional ingredients. We report on effective methods to recover OMW phenolics, and give several examples on the use these extracts in foods. When added into vegetable oils, their effect on retarding lipid oxidation improves the oxidative status of the product, whilst several challenges need to be faced. OMW phenolic extracts were also used in food emulsions, milk products or other model systems, showing promising results and little or no negative impact on the sensory characteristics or other properties. Their possible use as antimicrobial agents is also another promising approach, as positive results were obtained when applied in meat products. Other examples of using natural phenolic extracts from other sources are suggested also for OMW extracts, to expand their use and thus to improve the nutritional and technological quality of foods.
Collapse
Affiliation(s)
- Nicola Caporaso
- a Department of Agricultural Sciences , University of Naples Federico II , Portici ( NA ), Italy.,b Division of Food Science , University of Nottingham , Sutton Bonington , UK
| | - Diego Formisano
- a Department of Agricultural Sciences , University of Naples Federico II , Portici ( NA ), Italy
| | - Alessandro Genovese
- a Department of Agricultural Sciences , University of Naples Federico II , Portici ( NA ), Italy
| |
Collapse
|
37
|
Banias G, Achillas C, Vlachokostas C, Moussiopoulos N, Stefanou M. Environmental impacts in the life cycle of olive oil: a literature review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1686-1697. [PMID: 27859279 DOI: 10.1002/jsfa.8143] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 05/08/2023]
Abstract
The production of olive oil is considered to be one of the largest agricultural business sectors in the Mediterranean area. Apart from its significant impact on the economies of countries in Southern Europe, Northern Africa and Middle East, olive oil production also involves considerable social and environmental considerations. However, despite such importance, the environmental effects of olive oil production have not been studied as much other agricultural productions and farming systems, which are more characteristic of central and northern Europe. We present a thorough and systematic literature review of scientific publications with respect to the use of environmental tools in the life cycle of olive oil. The analysis takes into consideration the farming of olive trees, the manufacture of olive oil, packaging, transportation and reverse logistics. To that end, journal publications up to 2015 in this specific field are recorded and, at the same time, the most important environmental impacts are revealed and a gap analysis is carried out. The analysis conducted reveals that farming of olive trees (with pesticide use and waste/by-product production being the 'hottest' topics) and the manufacturing of olive oil (concentrating mostly on waste/by-product production and management) are the phases with the highest environmental focus from the scientific community. Moreover, gaps in the literature are detected mostly with respect to fuel consumption and the use and promotion of renewable energy sources in olive oil production. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Georgios Banias
- School of Economics, Business Administration & Legal Studies, International Hellenic University, 14th km Thessaloniki - N, Moudania, 57001 Thermi, Greece
| | - Charisios Achillas
- School of Economics, Business Administration & Legal Studies, International Hellenic University, 14th km Thessaloniki - N, Moudania, 57001 Thermi, Greece
- Institute for Research and Technology Thessaly, Centre for Research and Technology-Hellas, 38333 Volos, Greece
| | - Christos Vlachokostas
- Laboratory of Heat Transfer and Environmental Engineering, Aristotle University Thessaloniki, Box 483, 54124 Thessaloniki, Greece
| | - Nicolas Moussiopoulos
- Laboratory of Heat Transfer and Environmental Engineering, Aristotle University Thessaloniki, Box 483, 54124 Thessaloniki, Greece
| | - Maria Stefanou
- Laboratory of Heat Transfer and Environmental Engineering, Aristotle University Thessaloniki, Box 483, 54124 Thessaloniki, Greece
| |
Collapse
|
38
|
Sanches S, Fraga MC, Silva NA, Nunes P, Crespo JG, Pereira VJ. Pilot scale nanofiltration treatment of olive mill wastewater: a technical and economical evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3506-3518. [PMID: 27878484 DOI: 10.1007/s11356-016-8083-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
The treatment of large volumes of olive mill wastewater is presently a challenge. This study reports the technical and economical feasibility of a sequential treatment of olive mill wastewater comprising a dissolved air flotation pre-treatment and nanofiltration. Different pilot nanofiltration assays were conducted in a concentration mode up to different volume reduction factors (29, 45, 58, and 81). Data attained demonstrated that nanofiltration can be operated at considerably high volume reduction factors and still be effective towards the removal of several components. A flux decline of approximately 50% was observed at the highest volume reduction factor, mainly due to increase of the osmotic pressure. Considerably high rejections were obtained across all experiments for total suspended solids (83 to >99%), total organic carbon (64 to 99%), chemical oxygen demand (53 to 77%), and oil and grease (67 to >82%). Treated water was in compliance with European legal limits for discharge regarding total suspended solids and oil and grease. The potential recovery of phenolic compounds was evaluated and found not relevant. It was demonstrated that nanofiltration is economically feasible, involving operation costs of approximately 2.56-3.08 €/m3, depending on the working plan schedule and volume reduction factor, and requiring a footprint of approximately 52 m2 to treat 1000 m3 of olive mill wastewater.
Collapse
Affiliation(s)
- S Sanches
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - M C Fraga
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- REQUIMTE/Chemistry Department, Faculdade de Ciências e Tecnologia, UNL, Caparica, Portugal
| | - N A Silva
- Adventech - Centro Empresarial e Tecnológico, Rua de Fundões, 151, 3700-121, São João da Madeira, Portugal
| | - P Nunes
- Adventech - Centro Empresarial e Tecnológico, Rua de Fundões, 151, 3700-121, São João da Madeira, Portugal
| | - J G Crespo
- REQUIMTE/Chemistry Department, Faculdade de Ciências e Tecnologia, UNL, Caparica, Portugal
| | - V J Pereira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal.
| |
Collapse
|
39
|
Bevilacqua A, Cibelli F, Raimondo ML, Carlucci A, Lops F, Sinigaglia M, Corbo MR. Fungal bioremediation of olive mill wastewater: using a multi-step approach to model inhibition or stimulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:461-468. [PMID: 27060454 DOI: 10.1002/jsfa.7747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/19/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Olive mill wastewaters (OMWWs) possess a strong environmental impact; the use of fungi as tools for bioremediation could be a promising method. RESULTS Twenty-nine fungi were grown on minimal media supplemented with five different kinds of OMWWs (5-15%). Radial growth was assessed for 21 days and the data were modelled through the Dantigny-logistic like function to estimate τ, i.e. the time to attain half of the maximum diameter. Growth on potato dextrose agar and water agar (WA, minimal medium without supplementation) was used as reference. The differences in τ between PDA/WA and minimal media with OMWWs were modelled through a multi-factorial ANOVA, using the concentration of OMWW, the kind of wastes and fungi as categorical predictors. Finally, a principal component analysis was run to group and divide resistant and sensitive fungi. Some fungi experienced a positive Δτ, thus suggesting an inhibition by OMWW, whereas other isolates were enhanced. CONCLUSIONS Some isolates (for example Aspergillus ochraceus) showed a promising trend and could be possible candidates for a validation on a real scale. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Italy
| | - Francesca Cibelli
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Italy
| | - Maria Luisa Raimondo
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Italy
| | - Antonia Carlucci
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Italy
| | - Francesco Lops
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Italy
| | - Maria Rosaria Corbo
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Italy
| |
Collapse
|
40
|
|
41
|
|
42
|
Cutinase from Fusarium oxysporum catalyzes the acylation of tyrosol in an aqueous medium: Optimization and thermodynamic study of the reaction. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Larriba M, Omar S, Navarro P, García J, Rodríguez F, Gonzalez-Miquel M. Recovery of tyrosol from aqueous streams using hydrophobic ionic liquids: a first step towards developing sustainable processes for olive mill wastewater (OMW) management. RSC Adv 2016. [DOI: 10.1039/c5ra26510j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydrophobic ILs have been proposed as VOCs replacements for tyrosol recovery from aqueous solutions, revealing promising extraction efficiency and regeneration capacity. This will help developing sustainable processes for olive mill waste management.
Collapse
Affiliation(s)
- Marcos Larriba
- Department of Chemical Engineering
- Complutense University of Madrid
- E-28040 Madrid
- Spain
- School of Chemical Engineering and Analytical Science
| | - Salama Omar
- Sección de Ingeniería Química
- Universidad Autónoma de Madrid
- Madrid
- Spain
| | - Pablo Navarro
- Department of Chemical Engineering
- Complutense University of Madrid
- E-28040 Madrid
- Spain
| | - Julián García
- Department of Chemical Engineering
- Complutense University of Madrid
- E-28040 Madrid
- Spain
| | - Francisco Rodríguez
- Department of Chemical Engineering
- Complutense University of Madrid
- E-28040 Madrid
- Spain
| | - Maria Gonzalez-Miquel
- School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester
- UK
| |
Collapse
|
44
|
Batch and Continuous Flow Adsorption of Phenolic Compounds from Olive Mill Wastewater: A Comparison between Nonionic and Ion Exchange Resins. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2016. [DOI: 10.1155/2016/9349627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The goals of this work were (i) to compare two anion ion exchange resins (IRA958 Cl and IRA67) and a nonionic resin (XAD16) in terms of phenolic compounds adsorption capacity from olive mill wastewater and (ii) to compare the adsorption capacity of the best resin on columns of different length. The ion exchange resins performed worse than nonionic XAD16 in terms of resin utilization efficiency (20% versus 43%) and phenolic compounds/COD enrichment factor (1.0 versus 2.5). The addition of volatile fatty acids did not hinder phenolic compounds adsorption on either resin, suggesting a noncompetitive adsorption mechanism. A pH increase from 4.9 to 7.2 did not affect the result of this comparison. For the best performing resin (XAD16), an increase in column length from 0.5 to 1.8 m determined an increase in resin utilization efficiency (from 12% to 43%), resin productivity (from 3.4 to 7.6 gsorbed phenolics/kgresin), and phenolics/COD enrichment factor (from 1.2 to 2.5). An axial dispersion model with nonequilibrium adsorption accurately interpreted the phenolic compounds and COD experimental curves.
Collapse
|
45
|
Isolation and identification of minor secoiridoids and phenolic components from thermally treated olive oil by-products. Food Chem 2015; 187:166-73. [PMID: 25977012 DOI: 10.1016/j.foodchem.2015.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/10/2015] [Accepted: 04/09/2015] [Indexed: 11/21/2022]
Abstract
The application of an industrial process based on the hydrothermal treatment of 160 °C/60 min of alperujo, a by-product of olive oil extraction, allows the formation of a liquid phase containing a high concentration of phenolic and secoiridoid compounds. Ethyl acetate was used to extract these phenolic compounds from the aqueous matrix. In this study, the isolation with polyamide and XAD resin allowed detection of the presence of phenolic compounds in minor concentrations. These minor phenols were several oleuropein derivatives that had not been identified in these phenolic extracts previously. The polar compounds, acteosides, secoiridoids, and flavonoids, that remain in the aqueous fraction after extraction with ethyl acetate were identified. We report the presence of known compounds and also detected a novel molecule in alperujo with a molecular weight of 408 whose structure was characterized for first time. This new secoiridoid glucoside was identified as 1-β-D-glucopyranosyl acyclodihydroelenolic acid.
Collapse
|
46
|
Achmon Y, Fishman A. The antioxidant hydroxytyrosol: biotechnological production challenges and opportunities. Appl Microbiol Biotechnol 2014; 99:1119-30. [PMID: 25547836 DOI: 10.1007/s00253-014-6310-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Hydroxytyrosol (HT) is a highly potent antioxidant originating in nature as a second metabolite of plants, most abundantly in olives (Olea europaea). In the last decade, numerous research studies showed the health benefits of antioxidants in general and those of HT in particular. As olive oil is a prime constituent of the health-promoting Mediterranean diet, HT has obtained recognition for its attributes, supported by a recent health claim of the European Food Safety Authority. HT is already used as a food supplement and in cosmetic products, but it has the potential to be used as a food additive and drug, based on its anticarcinogenic, anti-inflammatory, antiapoptotic and neuroprotective activity. Nevertheless, there is a large gap between the potential of HT and its current availability in the market due to its high price tag. In this review, the challenges of producing HT using biotechnological methods are described with an emphasis on the substrate source, the biocatalyst and the process parameters, in order to narrow the gap towards an efficient bio-based industrial process.
Collapse
Affiliation(s)
- Yigal Achmon
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | | |
Collapse
|
47
|
Daâssi D, Lozano-Sánchez J, Borrás-Linares I, Belbahri L, Woodward S, Zouari-Mechichi H, Mechichi T, Nasri M, Segura-Carretero A. Olive oil mill wastewaters: phenolic content characterization during degradation by Coriolopsis gallica. CHEMOSPHERE 2014; 113:62-70. [PMID: 25065791 DOI: 10.1016/j.chemosphere.2014.04.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
Olive mill wastewaters (OMW) pose a serious environmental concern owing to high polyphenol content. Decolorization and degradation of phenolic compounds (PC) by Coriolopsis gallica was demonstrated in our laboratory as a potential biotreatment of OMW in solid and liquid media. High performance liquid chromatography coupled to electrospray time-of-flight mass spectrometry was used to analyze the evolution of the main phenolic compounds during the C. gallica biodegradation process. Amongst total the compounds characterized in methanolic extracts of OMW, 12 were unknown, 15 were from different polyphenolic families, and 27 were other non-phenolic compounds. The evolution of PC content during the degradation process indicated that, despite the complexity of the OMW phenolic fraction, C. gallica was able to grow on OMW-based media using PC as sources of carbon and energy, particularly acids, alcohols, lignans and flavones. Complete dephenolization of OMW was obtained.
Collapse
Affiliation(s)
- Dalel Daâssi
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Route de Soukra Km 4,5, BP 1173, 3038 Sfax, Tunisia
| | - Jesus Lozano-Sánchez
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Italy; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain; Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain; Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, Rue Emile Argand 11, CH-2009 Neuchatel, Switzerland
| | - Steve Woodward
- University of Aberdeen, Institute of Biological and Environmental Science, Department of Plant and Soil Science, Cruickshank Building, Aberdeen AB24 3UU, Scotland, UK
| | - Héla Zouari-Mechichi
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Route de Soukra Km 4,5, BP 1173, 3038 Sfax, Tunisia
| | - Tahar Mechichi
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Route de Soukra Km 4,5, BP 1173, 3038 Sfax, Tunisia.
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Route de Soukra Km 4,5, BP 1173, 3038 Sfax, Tunisia
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain; Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain
| |
Collapse
|