1
|
You XX, Li XG, Zhang XK, Gu W, Chen D, He S, Cao GH. Arsenic Stress Resistance in the Endophytic Fungus Cladosporium cladosporioides: Physiological and Transcriptomic Insights into Heavy Metal Detoxification. J Fungi (Basel) 2025; 11:374. [PMID: 40422708 DOI: 10.3390/jof11050374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
This study aims to evaluate the tolerance of an endophytic fungus isolated from the fibrous roots of Gentiana yunnanensis Franch. to arsenic (As) and elucidate the underlying physiological and molecular mechanisms. The filamentous fungus is identified as Cladosporium cladosporioides based on morphological characteristics and phylogenetic tree analysis, belonging to the family Moniliaceae and Phyla Hyphomycetes. The tolerance of C. cladosporioides to As(V) was assessed by measuring its biomass under varying concentrations of As(V). The fungus exhibited remarkable As(V) tolerance, with an EC50 value of 2051.94 mg/L, and accumulated high concentrations of As in its mycelium. Subcellular distribution analysis revealed that As was predominantly localized in the cell wall fraction, with levels 4.06 times higher than those in the non-cell wall fraction. Notably, the concentrations of total organic As and As(III) in the mycelium were 852.75 μg/g and 24.94 μg/g, respectively, with conversion ratios of 76.64% and 2.24%. The organic As levels significantly surpassed both As(V) and As(III) concentrations in all cellular fractions (cell wall and non-cell wall components), demonstrating particularly efficient As transformation in C. cladosporioides. Under As(V) stress, the membrane antioxidant system, including superoxide dismutase (SOD), metallothionein (MT), glutathione (GSH), and melanin, was activated and significantly enhanced to mitigate oxidative damage. Transcriptomic analysis identified 4771 differentially expressed genes (DEGs; 2527 upregulated), including highly expressed As-responsive genes (CcArsH_1, CcARR_1, CcARR_3, CcGST_1, and CcGST_3). Strong correlations emerged between As speciation (total/organic/As(V)/As(III)), antioxidant levels, and DEG expression patterns. Taken together, these findings demonstrate that C. cladosporioides employs a multi-faceted As detoxification strategy involving subcellular distribution and reductive transformation (As(V) to As(III)/organic As), antioxidant system enhancement, transcriptomic adaptations, and integrated defense strategy. This work highlights C. cladosporioides potential for As bioremediation and elucidates As accumulation mechanisms in G. yunnanensis.
Collapse
Affiliation(s)
- Xiao-Xu You
- School of Chinese Materia Medica and Chinese Pharmaceutical Research International Science and Technology Cooperation Base of Yunnan University of Chinese Medicine, Kunming 650500, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Beijing 100700, China
- Chinese Pharmaceutical Research International Science and Technology Cooperation Base of Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xiao-Gang Li
- School of Chinese Materia Medica and Chinese Pharmaceutical Research International Science and Technology Cooperation Base of Yunnan University of Chinese Medicine, Kunming 650500, China
- Wenshan Institute of Food and Drug Control, Wenshan 663099, China
| | - Xing-Kai Zhang
- School of Chinese Materia Medica and Chinese Pharmaceutical Research International Science and Technology Cooperation Base of Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Wen Gu
- School of Chinese Materia Medica and Chinese Pharmaceutical Research International Science and Technology Cooperation Base of Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Di Chen
- School of Chinese Materia Medica and Chinese Pharmaceutical Research International Science and Technology Cooperation Base of Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Sen He
- School of Chinese Materia Medica and Chinese Pharmaceutical Research International Science and Technology Cooperation Base of Yunnan University of Chinese Medicine, Kunming 650500, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Beijing 100700, China
- Chinese Pharmaceutical Research International Science and Technology Cooperation Base of Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Guan-Hua Cao
- School of Chinese Materia Medica and Chinese Pharmaceutical Research International Science and Technology Cooperation Base of Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
2
|
Dijoux J, Gigante S, Lecellier G, Guentas L, Burtet-Sarramegna V. Plant nickel-exclusion versus hyperaccumulation: a microbial perspective. MICROBIOME 2025; 13:110. [PMID: 40320560 PMCID: PMC12051281 DOI: 10.1186/s40168-025-02098-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/24/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND In New Caledonia, nearly 2000 plant species grow on ultramafic substrates, which contain prominent levels of heavy metals and are deficient in essential plant nutrients. To colonize these habitats, such plants, known as metallophytes, have developed various adaptive behaviors towards metals (exclusion, tolerance, or hyperaccumulation). Ultramafic substrates also host many unique microorganisms, which are adapted to metallic environments and capable of boosting plant growth while assisting plants in acquiring essential micronutrients. Hence, plant-microbiota interactions play a key role in adapting to environmental stress. Here, we hypothesised that microbial associations in the different aboveground and underground compartments of metallophytes could be associated to their metal hyperaccumulation or exclusion phenotypes. This hypothesis was tested using a systematic comparative metabarcoding approach on the different compartments of two New Caledonian metallophytes belonging to the same genus and living in sympatry on ultramafic substrates: Psychotria gabriellae, a nickel-hyperaccumulator (Ni-HA), and Psychotria semperflorens, the related non-accumulator (nA) species. RESULTS The study of the diversity and specificity of fungal amplicon sequence variants (ASVs) reveals a structuring of fungal communities at both the plant phenotype and compartment levels. In contrast, the structure of bacterial communities was primarily shaped by the belowground compartments. Additionally, we observed a lower diversity in the bacterial communities of the aboveground compartments of each species. For each plant species, we highlighted a distinct global microbial signature (biomarkers), as well as compartment-specific microbial associations. CONCLUSION To our knowledge, this study is the first to systematically compare the microbiomes associated with different compartments of New Caledonian metallophyte species growing on the same substrate and under identical environmental conditions but exhibiting different adaptive phenotypes. Our results reveal distinct microbial biomarkers between the Ni-hyperaccumulator and non-accumulator Psychotria species. Most of the highlighted biomarkers are abundant in various plants under metal stress and may contribute to improving the phytoextraction or phytostabilization processes. They are also known to tolerate heavy metals and enhance metal stress tolerance in plants. The present findings highlight that the microbial perspective is essential for better understanding the mechanisms of hyperaccumulation and exclusion at the whole-plant level. Video Abstract.
Collapse
Affiliation(s)
- Julie Dijoux
- Institute of Exact and Applied Sciences, University of New Caledonia, 145 Avenue James Cook, Noumea, New Caledonia, BP R4, 98851.
| | - Sarah Gigante
- Institute of Exact and Applied Sciences, University of New Caledonia, 145 Avenue James Cook, Noumea, New Caledonia, BP R4, 98851
| | - Gael Lecellier
- Institute of Exact and Applied Sciences, University of New Caledonia, 145 Avenue James Cook, Noumea, New Caledonia, BP R4, 98851
| | - Linda Guentas
- Institute of Exact and Applied Sciences, University of New Caledonia, 145 Avenue James Cook, Noumea, New Caledonia, BP R4, 98851
| | - Valérie Burtet-Sarramegna
- Institute of Exact and Applied Sciences, University of New Caledonia, 145 Avenue James Cook, Noumea, New Caledonia, BP R4, 98851.
| |
Collapse
|
3
|
Xia Y, Deng M, Zhang T, Yu J, Lin X. An efficient fungi-biochar-based system for advancing sustainable management of combined pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125649. [PMID: 39761713 DOI: 10.1016/j.envpol.2025.125649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Heavy metal (HM) contamination poses significant global environmental threats, impacting ecosystems, public health, and sustainable development. Fungi, as eco-friendly alternatives to chemical treatments, have the potential to reduce HM bioavailability in contaminated soils while promoting plant growth. However, current fungal remediation methods face limitations in efficiency, long-term effectiveness, and the ability to address combined contamination, particularly with naturally occurring strains. Herein, we developed a Trichoderma reesei-Laccase (LAC)-Biochar coupling system (TLBS), based on the structural and electrostatic analyses of LAC's metal-chelated active site (T1 Cu), for the sustainable remediation of combined pollutants, including HMs. In the TLBS, genetically engineered T. reesei produces a mutated LAC with enhanced binding capability for HMs (Ni and Cd). The TLBS enables high-efficiency remediation through three steps. First, lignin-derived biochar serves as both a supportive carrier and an inducer, initiating LAC expression. Second, natural mediators are released due to the interaction between biochar and T. reesei, and LAC is activated by environmental HMs and natural mediators. Finally, TLBS achieved significant reductions in the available concentrations of Ni (93.63%) and Cd (89.68%) and efficiently remediated multiple organic pollutants (71.41-96.79%), including antibiotics and pesticides. Furthermore, the synergistic interaction among TLBS components ensures long-term remediation effects in environments rich in agricultural biomass, making it ideal for eco-friendly farming practices. This in situ amendment strategy, utilizing only green, biodegradable lignocellulosic wastes and environmentally friendly fungi, offers new pathways for the sustainable management of combined contamination and the improvement of human health.
Collapse
Affiliation(s)
- Ying Xia
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Minghui Deng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Tao Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Junjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Xinda Lin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
4
|
Hamidpour M, Sadeghi R, Abbaszadeh-Dahaji P, Alaei H, Shafigh M, Omidvari M, Kariman K. The effects of EDTA and Trichoderma species on growth and Cu uptake of maize (Zea mays) plants grown in a Cu-contaminated soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:372. [PMID: 39167291 DOI: 10.1007/s10653-024-02159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Metal contamination in soil poses a significant environmental concern worldwide, necessitating effective remediation strategies such as phytoremediation. The present study investigated the effects of EDTA dosage (1.5 and 3 mmol kg-1) and two Trichoderma species (T. harzianum and T. aureoviride) on copper (Cu) content and growth of maize plants grown in a Cu-contaminated soil, as well as Cu fractionation in the soil. In the absence of EDTA, only inoculation with T. harzianum led to a significant increase in shoot biomass. Combining fungal inoculum with EDTA only yielded a significant increase in shoot biomass when using T. aureoviride at a low EDTA rate, highlighting the interplay between fungal species and EDTA rates on plant growth. Results also indicated that EDTA application increased Cu bioavailability, enhancing Cu dissolution and root (not shoot) Cu concentrations. Conversely, inoculation with both Trichoderma species reduced Cu mobility and bioavailability in soil, thereby decreasing the shoot Cu concentrations of plants. When combined with EDTA, only application of T. harzianum resulted in an enhanced shoot Cu concentration, whereas combined application of T. aureoviride and EDTA did not make a significant change compared to the corresponding control (no fungal inoculation, no EDTA), possibly due to a lower compatibility of the T. aureoviride isolate with EDTA. Our results demonstrated that EDTA application, in both non-inoculated and inoculated treatments, increased Cu availability by facilitating its redistribution and transformation from less plant-available fractions (residual, Fe/Mn oxide-bound, and carbonate-bound) to the more readily plant-available forms (water-soluble and exchangeable fractions). In conclusion, although individual Trichoderma application proved beneficial for phytostabilization by reducing Cu content and mitigating Cu toxicity in plants, the combined application of EDTA and a compatible Trichoderma isolate (here, the T. harzianum isolate) holds promise for enhancing the phytoextraction capacity of plants. Although using maize has the advantage of being a food crop, to optimize phytoextraction, plant species with superior metal tolerance and phytoextraction capabilities should be selected, exceeding those of maize.
Collapse
Affiliation(s)
- Mohsen Hamidpour
- Department of Soil Science, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Razieh Sadeghi
- Department of Soil Science, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | | | - Hossein Alaei
- Department of Soil Science, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Mahshid Shafigh
- Department of Soil Science, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Mahtab Omidvari
- School of Agriculture and Environment, UWA, The University of Western Australia, Perth, WA, 6009, Australia
| | - Khalil Kariman
- School of Agriculture and Environment, UWA, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
5
|
Swain AA, Sharma P, Keswani C, Minkina T, Tukkaraja P, Gadhamshetty V, Kumar S, Bauddh K, Kumar N, Shukla SK, Kumar M, Dubey RS, Wong MH. The efficient applications of native flora for phytorestoration of mine tailings: a pan-global survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27653-27678. [PMID: 38598151 DOI: 10.1007/s11356-024-33054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Mine tailings are the discarded materials resulting from mining processes after minerals have been extracted. They consist of leftover mineral fragments, excavated land masses, and disrupted ecosystems. The uncontrolled handling or discharge of tailings from abandoned mine lands (AMLs) poses a threat to the surrounding environment. Numerous untreated mine tailings have been abandoned globally, necessitating immediate reclamation and restoration efforts. The limited feasibility of conventional reclamation methods, such as cost and acceptability, presents challenges in reclaiming tailings around AMLs. This study focuses on phytorestoration as a sustainable method for treating mine tailings. Phytorestoration utilizes existing native plants on the mine sites while applying advanced principles of environmental biotechnology. These approaches can remediate toxic elements and simultaneously improve soil quality. The current study provides a global overview of phytorestoration methods, emphasizing the specifics of mine tailings and the research on native plant species to enhance restoration ecosystem services.
Collapse
Affiliation(s)
- Ankit Abhilash Swain
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Sector-30, Gandhinagar, 382030, Gujarat, India
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090, Russia
| | - Purushotham Tukkaraja
- Department of Mining Engineering and Management, South Dakota Mines, Rapid City, SD, 57701, USA
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering Department, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
- 2D-Materials for Biofilm Engineering, Science and Technology Center, 501 E. St. Joseph Street, Rapid City, SD, USA
| | - Sanjeev Kumar
- Department of Geology, BB Ambedkar University, Lucknow, 226025, India
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India.
- Institute of Environment and Sustainable Development, RGSC, Banaras Hindu University, Barkachha, Mirzapur, 231001, India.
| | - Narendra Kumar
- Department of Environmental Science, BB Ambedkar University, Lucknow, 226025, India
| | - Sushil Kumar Shukla
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India
| | - Manoj Kumar
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar, 382030, Gujarat, India
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
6
|
Hassan A, Hamid FS, Pariatamby A, Ossai IC, Ahmed A, Barasarathi J, Auta HS. Influence of bioaugmented fungi on tolerance, growth and phytoremediation ability of Prosopis juliflora Sw. DC in heavy metal-polluted landfill soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28671-28694. [PMID: 38561536 DOI: 10.1007/s11356-024-33018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
The research aimed to determine the influence of endophytic fungi on tolerance, growth and phytoremediation ability of Prosopis juliflora in heavy metal-polluted landfill soil. A consortium of 13 fungal isolates as well as Prosopis juliflora Sw. DC was used to decontaminate heavy metal-polluted landfill soil. Enhanced plant growth (biomass and root and shoot lengths) and production of carotenoids, chlorophyll and amino acids L-phenylalanine and L-leucine that are known to enhance growth were found in the treated P. juliflora. Better accumulations of heavy metals were observed in fungi-treated P. juliflora over the untreated one. An upregulated activity of peroxidase, catalase and ascorbate peroxidase was recorded in fungi-treated P. juliflora. Additionally, other metabolites, such as glutathione, 3,5,7,2',5'-pentahydroxyflavone, 5,2'-dihydroxyflavone and 5,7,2',3'-tetrahydroxyflavone, and small peptides, which include Lys Gln Ile, Ser Arg Ala, Asp Arg Gly, Arg Ser Ser, His His Arg, Arg Thr Glu, Thr Arg Asp and Ser Pro Arg, were also detected. These provide defence supports to P. juliflora against toxic metals. Inoculating the plant with the fungi improved its growth, metal accumulation as well as tolerance against heavy metal toxicity. Such a combination can be used as an effective strategy for the bioremediation of metal-polluted soil.
Collapse
Affiliation(s)
- Auwalu Hassan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Center for Research in Waste Management, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Biological Sciences, Faculty of Science, Federal University of Kashere, Kashere, Gombe State, Nigeria.
| | - Fauziah Shahul Hamid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Center for Research in Waste Management, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Agamuthu Pariatamby
- Jeffrey Sachs Center On Sustainable Development, Sunway University, Sunway, Malaysia
| | - Innocent Chukwunonso Ossai
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Center for Research in Waste Management, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Aziz Ahmed
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Center for Research in Waste Management, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Jayanthi Barasarathi
- Faculty of Health and Life Sciences (FHLS), INTI International University, Pesiaran Perdana BBN, Nilai, Negeri Sambilan, Malaysia
| | - Helen Shnada Auta
- Department of Microbiology, Federal University of Technology, Minna, Niger State, Nigeria
| |
Collapse
|
7
|
Altaf M, Ilyas T, Shahid M, Shafi Z, Tyagi A, Ali S. Trichoderma Inoculation Alleviates Cd and Pb-Induced Toxicity and Improves Growth and Physiology of Vigna radiata (L.). ACS OMEGA 2024; 9:8557-8573. [PMID: 38405473 PMCID: PMC10882690 DOI: 10.1021/acsomega.3c10470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 02/27/2024]
Abstract
Heavy metals (HMs) pose a serious threat to agricultural productivity. Therefore, there is a need to find sustainable approaches to combat HM stressors in agriculture. In this study, we isolated Trichoderma sp. TF-13 from metal-polluted rhizospheric soil, which has the ability to resist 1600 and 1200 μg mL-1 cadmium (Cd) and lead (Pb), respectively. Owing to its remarkable metal tolerance, this fungal strain was applied for bioremediation of HMs in Vigna radiata (L.). Strain TF-13 produced siderophore, salicylic acid (SA; 43.4 μg mL-1) and 2,3-DHBA (21.0 μg mL-1), indole-3-acetic acid, ammonia, and ACC deaminase under HM stressed conditions. Increasing concentrations of tested HM ions caused severe reduction in overall growth of plants; however, Trichoderma sp. TF-13 inoculation significantly (p ≤ 0.05) increased the growth and physiological traits of HM-treated V. radiata. Interestingly, Trichoderma sp. TF-13 improved germination rate (10%), root length (26%), root biomass (32%), and vigor index (12%) of V. radiata grown under 25 μg Cd kg-1 soil. Additionally, Trichoderma inoculation showed a significant (p ≤ 0.05) increase in total chlorophyll, chl a, chl b, carotenoid content, root nitrogen (N), and root phosphorus (P) of 100 μg Cd kg-1 soil-treated plants over uninoculated treatment. Furthermore, enzymatic and nonenzymatic antioxidant activities of Trichoderma inoculated in metal-treated plants were improved. For instance, strain TF-13 increased proline (37%), lipid peroxidation (56%), catalase (35%), peroxidase (42%), superoxide dismutase (27%), and glutathione reductase (39%) activities in 100 μg Pb kg-1 soil-treated plants. The uptake of Pb and Cd in root/shoot tissues was decreased by 34/39 and 47/38% in fungal-inoculated and 25 μg kg-1 soil-treated plants. Thus, this study demonstrates that stabilizing metal mobility in the rhizosphere through Trichoderma inoculation significantly reduced the detrimental effects of Cd and Pb toxicity in V. radiata and also enhanced development under HM stress conditions.
Collapse
Affiliation(s)
- Mohammad Altaf
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, 11451 Riyadh, Saudi
Arabia
| | - Talat Ilyas
- Department
of Bioengineering, Faculty of Engineering, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Mohammad Shahid
- Department
of Agricultural Microbiology, Faculty of Agricultural Science, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Zaryab Shafi
- Department
of Biosciences, Faculty of Science, Integral
University, Lucknow, Uttar Pradesh 226026, India
| | - Anshika Tyagi
- Department
of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Sajad Ali
- Department
of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
8
|
Liang J, Yan Z, Zhang Y, Xu H, Song W. Proteomics analysis of resistance mechanism of Trichoderma harzianum under U(VI) stress. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107303. [PMID: 37783189 DOI: 10.1016/j.jenvrad.2023.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Trichoderma harzianum has a certain resistance to Hexavalent Uranium (U(VI)), but its resistance mechanism is unknown. Based on proteomics sequencing using DIA mode, differentially expressed proteins (DEPs) of Trichoderma harzianum under U(VI) stress were identified. GO enrichment, KEGG annotation analysis and DEPs annotation were performed. The results showed that 8 DEPs, 8 DEPs and 15 DEPs were obtained in the low-dose, medium-dose and high-dose groups, respectively. The functional classification of GO demonstrated that DEPs were associated with 17 molecular functions, 5 biological processes, and 5 cellular components. Furthermore, DEPs were enriched in transport and catabolism, energy metabolism, translation, and signal transduction. These findings showed that Trichoderma harzianum was significantly changed in protein expression and signaling pathway after U(VI) exposure. Therefore, these results have provided Trichoderma harzianum with a theoretical background that can be applied to environmental cleanup.
Collapse
Affiliation(s)
- Jun Liang
- Jianghuai College of Anhui University, Hefei, 230031, China.
| | - Zhuna Yan
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yan Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Huan Xu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wencheng Song
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, 215123, Suzhou, China.
| |
Collapse
|
9
|
Zhang S, Zhang C, Gao ZF, Qiu CW, Shi SH, Chen ZH, Ali MA, Wang F, Wu F. Integrated physiological and omics analyses reveal the mechanism of beneficial fungal Trichoderma sp. alleviating cadmium toxicity in tobacco (Nicotiana tabacum L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115631. [PMID: 37890251 DOI: 10.1016/j.ecoenv.2023.115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal and readily accumulates in tobacco, which imperils public health via Cd exposure from smoking. Beneficial microbes have a pivotal role in promoting plant growth, especially under environmental stresses such as heavy metal stresses. In this study, we introduced a novel fungal strain Trichoderma nigricans T32781, and investigated its capacity to alleviate Cd-induced stress in tobacco plants through comprehensive physiological and omics analyses. Our findings revealed that T32781 inoculation in soil leads to a substantial reduction in Cd-induced growth inhibition. This was evidenced by increased plant height, enhanced biomass accumulation, and improved photosynthesis, as indicated by higher values of key photosynthetic parameters, including the maximum quantum yield of photosystem Ⅱ (Fv/Fm), stomatal conductance (Gs), photosynthetic rate (Pn) and transpiration rate (Tr). Furthermore, element analysis demonstrated that T. nigricans T32781 inoculation resulted in a remarkable reduction of Cd uptake by 62.2% and a 37.8% decrease in available soil Cd compared to Cd-stressed plants without inoculation. The protective role of T32781 extended to mitigating Cd-induced oxidative stress by improving antioxidant enzyme activities of superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX). Metabolic profiling of tobacco roots identified 43 key metabolites, with notable contributions from compounds like nicotinic acid, succinic acid, and fumaric acid in reducing Cd toxicity in T32781-inoculated plants. Additionally, rhizosphere microbiome analysis highlighted the promotion of beneficial microbes, including Gemmatimonas and Sphingomonas, by T32781 inoculation, which potentially contributed to the restoration of plant growth under Cd exposure. In summary, our study demonstrated that T. nigricans T32781 effectively alleviated Cd stress in tobacco plants by reducing Cd uptake, alleviating Cd-induced oxidative stress, influencing plant metabolite and modulating the microbial composition in the rhizosphere. These findings offer a novel perspective and a promising candidate strain for enhancing Cd tolerance and prohibiting its accumulation in plants to reduce health risks associated with exposure to Cd-contaminated plants.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Chulong Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zi-Feng Gao
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Cheng-Wei Qiu
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Shou-Heng Shi
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Feng Wang
- Guizhou Academy of Tobacco Science, Guiyang 550081, China.
| | - Feibo Wu
- Department of Agronomy, Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Yang S, Yin R, Wang C, Wang J. Improved efficiency of Sedum lineare (Crassulaceae) in remediation of arsenic-contaminated soil by phosphate-dissolving strain P-1 in association with phosphate rock. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8317-8336. [PMID: 37597084 DOI: 10.1007/s10653-023-01727-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
The selection of appropriate plants and growth strategies is a key factor in improving the efficiency and universal applicability of phytoremediation. Sedum lineare grows rapidly and tolerates multiple adversities. The effects of inoculation of Acinetobacter sp. phosphate solubilizing bacteria P-1 and application of phosphate rock (PR) as additives on the remediation efficiency of As-contaminated soil by S. lineare were investigated. Compared with the control, both the single treatment and the combination of inoculation with strain P-1 and application of PR improved the biomass by 30.7-395.5%, chlorophyll content by 48.1-134.8%, total protein content by 12.5-92.4% and total As accumulation by 45.1-177.5%, and reduced the As-induced oxidative damage. Inoculation with strain P-1 increased the activities of superoxide dismutases and catalases of S. lineare under As stress, decreased the accumulation of reactive oxygen species in plant tissues and promoted the accumulation of As in roots. In contrast, simultaneous application of PR decreased As concentration in S. lineare tissues, attenuated As-induced lipid peroxidation and improved As transport to shoots. In addition, the combined application showed the best performance in improving resistance and biomass, which significantly increased root length by 149.1%, shoot length by 33%, fresh weight by 395.5% and total arsenic accumulation by 159.2%, but decreased the malondialdehyde content by 89.1%. Our results indicate that the combined application of strain P-1 and PR with S. lineare is a promising bioremediation strategy to accelerate phytoremediation of As-contaminated soils.
Collapse
Affiliation(s)
- Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Rong Yin
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chen Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
11
|
Khuna S, Kumla J, Srinuanpan S, Lumyong S, Suwannarach N. Multifarious Characterization and Efficacy of Three Phosphate-Solubilizing Aspergillus Species as Biostimulants in Improving Root Induction of Cassava and Sugarcane Stem Cuttings. PLANTS (BASEL, SWITZERLAND) 2023; 12:3630. [PMID: 37896093 PMCID: PMC10610185 DOI: 10.3390/plants12203630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Several soil fungi significantly contribute to the enhancement of plant development by improving nutrient uptake and producing growth-promoting metabolites. In the present study, three strains of phosphate-solubilizing fungi, namely, Aspergillus chiangmaiensis SDBR-CMUI4, A. pseudopiperis SDBR-CMUI1, and A. pseudotubingensis SDBR-CMUO2, were examined for their plant-growth-promoting capabilities. The findings demonstrated that all fungi showed positive siderophore production, but only A. pseudopiperis can produce indole-3-acetic acid. All fungi were able to solubilize insoluble phosphate minerals [Ca3(PO4)2 and FePO4] by producing phosphatase enzymes and organic acids (oxalic, tartaric, and succinic acids). These three fungal species were grown at a water activity ranging from 0.837 to 0.998, pH values ranging from 4 to 9, temperatures between 4 and 40 °C, and 16-17% NaCl in order to evaluate their drought, pH, temperature, and salt tolerances, respectively. Moreover, the results indicated that A. pseudopiperis and A. pseudotubingensis were able to tolerate commercial insecticides (methomyl and propargite) at the recommended dosages for field application. The viability of each fungal strain in the inoculum was higher than 50% at 4 and 20 °C after 3 months of storage. Subsequently, all fungi were characterized as plant-growth-promoting strains by improving the root inductions of cassava (Manihot esculenta Crantz) and sugarcane (Saccharum officinarum L.) stem cuttings in greenhouse experiments. No symptoms of plant disease were observed with any of the treatments involving fungal inoculation and control. The cassava and sugarcane stem cuttings inoculated with fungal strains and supplemented with Ca3(PO4)2 exhibited significantly increased root lengths, shoot and root dry biomasses, chlorophyll concentrations, and cellular inorganic phosphate contents. Therefore, the application of these phosphate-solubilizing fungi is regarded as a new frontier in the induction of roots and the promotion of growth in plants.
Collapse
Affiliation(s)
- Surapong Khuna
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
12
|
Yao S, Zhou B, Duan M, Cao T, Wen Z, Chen X, Wang H, Wang M, Cheng W, Zhu H, Yang Q, Li Y. Combination of Biochar and Trichoderma harzianum Can Improve the Phytoremediation Efficiency of Brassica juncea and the Rhizosphere Micro-Ecology in Cadmium and Arsenic Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:2939. [PMID: 37631151 PMCID: PMC10458205 DOI: 10.3390/plants12162939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Phytoremediation is an environment-friendly method for toxic elements remediation. The aim of this study was to improve the phytoremediation efficiency of Brassica juncea and the rhizosphere soil micro-ecology in cadmium (Cd) and arsenic (As) contaminated soil. A field experiment was conducted with six treatments, including a control treatment (CK), two treatments with two contents of Trichoderma harzianum (T1: 4.5 g m-2; T2: 9 g m-2), one biochar treatment (B: 750 g m-2), and two combined treatments of T1B and T2B. The results showed Trichoderma harzianum promoted the total chlorophyll and translocation factor of Brassica juncea, while biochar promoted plant biomass compared to CK. T2B treatment showed the best results, which significantly increased Cd accumulation by 187.49-308.92%, and As accumulation by 125.74-221.43%. As a result, the soil's total Cd content was reduced by 19.04% to 49.64% and total As contents by 38.76% to 53.77%. The combined amendment increased the contents of soil available potassium, phosphorus, nitrogen, and organic matter. Meanwhile, both the activity of glutathione and peroxidase enzymes in plants, together with urease and sucrase enzymes in soil, were increased. Firmicutes (dominant bacterial phylum) and Ascomycota (dominant fungal phylum) showed positive and close correlation with soil nutrients and plant potentially toxic elements contents. This study demonstrated that phytoremediation assisted by biochar and Trichoderma harzianum is an effective method of soil remediation and provides a new strategy for enhancing plant remediation efficiency.
Collapse
Affiliation(s)
- Shaoxiong Yao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Beibei Zhou
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Manli Duan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Tao Cao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Zhaoquan Wen
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Xiaopeng Chen
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Hui Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Min Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Wen Cheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Hongyan Zhu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Qiang Yang
- PowerChina Northwest Engineering Corporation Limited, Xi’an 710065, China; (Q.Y.); (Y.L.)
| | - Yujin Li
- PowerChina Northwest Engineering Corporation Limited, Xi’an 710065, China; (Q.Y.); (Y.L.)
| |
Collapse
|
13
|
Senabio JA, de Campos Pereira F, Pietro-Souza W, Sousa TF, Silva GF, Soares MA. Enhanced mercury phytoremediation by Pseudomonodictys pantanalensis sp. nov. A73 and Westerdykella aquatica P71. Braz J Microbiol 2023; 54:949-964. [PMID: 36857007 PMCID: PMC10235320 DOI: 10.1007/s42770-023-00924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Mercury is a non-essential and toxic metal that induces toxicity in most organisms, but endophytic fungi can develop survival strategies to tolerate and respond to metal contaminants and other environmental stressors. The present study demonstrated the potential of mercury-resistant endophytic fungi in phytoremediation. We examined the functional traits involved in plant growth promotion, phytotoxicity mitigation, and mercury phytoremediation in seven fungi strains. The endophytic isolates synthesized the phytohormone indole-3-acetic acid, secreted siderophores, and solubilized phosphate in vitro. Inoculation of maize (Zea mays) plants with endophytes increased plant growth attributes by up to 76.25%. The endophytic fungi stimulated mercury uptake from the substrate and promoted its accumulation in plant tissues (t test, p < 0.05), preferentially in the roots, which thereby mitigated the impacts of metal phytotoxicity. Westerdykella aquatica P71 and the newly identified species Pseudomonodictys pantanalensis nov. A73 were the isolates that presented the best phytoremediation potential. Assembling and annotation of P. pantanalensis A73 and W. aquatica P71 genomes resulted in genome sizes of 45.7 and 31.8 Mb that encoded 17,774 and 11,240 protein-coding genes, respectively. Some clusters of genes detected were involved in the synthesis of secondary metabolites such as dimethylcoprogen (NRPS) and melanin (T1PKS), which are metal chelators with antioxidant activity; mercury resistance (merA and merR1); oxidative stress (PRX1 and TRX1); and plant growth promotion (trpS and iscU). Therefore, both fungi species are potential tools for the bioremediation of mercury-contaminated soils due to their ability to reduce phytotoxicity and assist phytoremediation.
Collapse
Affiliation(s)
- Jaqueline Alves Senabio
- Department of Botany and Ecology, Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso 78060-900 Brazil
| | | | - William Pietro-Souza
- Department of Botany and Ecology, Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso 78060-900 Brazil
| | | | | | - Marcos Antônio Soares
- Federal University of Mato Grosso UFMT, Av. Fernando Corrêa da Costa, no 2367 Distrito Boa Esperança, Cuiabá, Mato Grosso CEP 78060-900 Brazil
| |
Collapse
|
14
|
Syed A, Elgorban AM, Bahkali AH, Eswaramoorthy R, Iqbal RK, Danish S. Metal-tolerant and siderophore producing Pseudomonas fluorescence and Trichoderma spp. improved the growth, biochemical features and yield attributes of chickpea by lowering Cd uptake. Sci Rep 2023; 13:4471. [PMID: 36934106 PMCID: PMC10024765 DOI: 10.1038/s41598-023-31330-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/09/2023] [Indexed: 03/20/2023] Open
Abstract
Industrialization and human urbanization have led to an increase in heavy metal (HM) pollution which often cause negative/toxic effect on agricultural crops. The soil-HMs cannot be degraded biologically however, microbe-mediated detoxification of toxic HMs into lesser toxic forms are reported. Considering the potentiality of HMs-tolerant soil microbes in metal detoxification, Pseudomonas fluorescence PGPR-7 and Trichoderma sp. T-4 were recovered from HM-affected areas. Under both normal and cadmium stress, the ability of both microorganisms to produce different plant hormones and biologically active enzymes was examined. Strains PGPR-7 and T-4 tolerated cadmium (Cd) an up-to 1800 and 2000 µg mL-1, respectively, and produced various plant growth regulating substances (IAA, siderophore, ACC deaminase ammonia and HCN) in Cd-stressed condition. The growth promoting and metal detoxifying ability of both strains were evaluated (either singly/combined) by applying them in chickpea (Cicer arietinum L.) plants endogenously contaminated with different Cd levels (0-400 µg kg-1 soils). The higher Cd concentration (400 µg kg-1 soils) negatively influenced the plant parameters which, however, improved following single/combined inoculation of P. fluorescence PGPR-7 and Trichoderma sp. T-4. Both microbial strains increased the growth of Cd-treated chickpeas however, their combined inoculation (PGPR-7 + T-4) caused the most positive effect. For instance, 25 µg Cd Kg-1 + PGPR-7 + T4 treatment caused maximum increase in germination percentage (10%), root dry biomass (71.4%) and vigour index (33%), chl-a (38%), chl-b (41%) and carotenoid content (52%). Furthermore, combined inoculation of P. fluorescence PGPR-7 and Trichoderma sp. T-4 maximally decreased the proline, MDA content, POD and CAT activities by 50%, 43% and 62%, respectively following their application in 25 µg Cd kg-1 soils-treated chickpea. Additionally, microbial strains lowered the plant uptake of Cd. For example, Cd-uptake in root tissues was decreased by 42 and 34% when 25 µg Cd Kg-1- treated chickpea plants were inoculated with P. fluorescence PGPR-7, Trichoderma sp. T-4 and co-inoculation (PGPR-7 + T4) of both strains, respectively. Therefore, from the current observation, it is suggested that dual inoculation of metal tolerant P. fluorescence and Trichoderma sp. may potentially be used in detoxification and reclamation of metal-contaminated soils.
Collapse
Affiliation(s)
- Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Rajalakshmanan Eswaramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077, India.
| | - Rana Khalid Iqbal
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
- Department of Biology, University of Padova, Padua, Italy
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| |
Collapse
|
15
|
Visconti D, Ventorino V, Fagnano M, Woo SL, Pepe O, Adamo P, Caporale AG, Carrino L, Fiorentino N. Compost and microbial biostimulant applications improve plant growth and soil biological fertility of a grass-based phytostabilization system. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:787-807. [PMID: 35318555 PMCID: PMC10014777 DOI: 10.1007/s10653-022-01235-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/16/2022] [Indexed: 05/10/2023]
Abstract
In this work, a grass-based phytoremediation system integrated with an organic amendment and biostimulants was evaluated for remediating contaminated sites. Plant growth and biological fertility were monitored to assess the efficacy of a vegetative cap used as a safety measure to reduce sanitary and environmental risks of industrially contaminated soils and soil-washing sludges. Both matrices were potentially contaminated with Pb and Zn with an ecological risk index from low to moderate. According to potentially toxic elements (PTEs) bioaccessibility tests, the exposure to the released fine particulate matter may cause serious risks to human beings, in particular to children. The grass mixture was well adapted to both the substrates and a low PTEs mobility was detected, thus, reducing the leaching risk to ground water sources. Compost addition augmented significantly nitrogenase reductase (nifH) and ammonia monooxygenase (amoA) gene expression abundance in both substrates. Furthermore, a positive interaction between compost fertilization and a Trichoderma-based biostimulant inoculation was recorded in sludges resulting in a significant stimulation of nitrogen-fixing and ammonia-oxidizing bacteria. The application of compost and biostimulant increased soil fertility and plant growth. Furthermore, there was a slight reduction in PTE bioaccessibility, thus, improving the efficiency of the phytostabilization, limiting the resuspension and dispersion of the health-risk soil particulate.
Collapse
Affiliation(s)
- Donato Visconti
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy.
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Massimo Fagnano
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Sheridan Lois Woo
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055, Portici, Italy
- Institute for Sustainable Plant Protection, National Research Council, 80055, Portici, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Paola Adamo
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | | | - Linda Carrino
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Nunzio Fiorentino
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy.
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055, Portici, Italy.
| |
Collapse
|
16
|
Yan K, Zhou J, Feng C, Wang S, Haegeman B, Zhang W, Chen J, Zhao S, Zhou J, Xu J, Wang H. Abundant fungi dominate the complexity of microbial networks in soil of contaminated site: High-precision community analysis by full-length sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160563. [PMID: 36455747 DOI: 10.1016/j.scitotenv.2022.160563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
During the past decade, the characterization of microbial community in soil of contaminated sites was primarily done by high-throughput short-read amplicon sequencing. However, due to the similarity of 16S rRNA and ITS genes amplicon sequences, the short-read approach often limits the microbial composition analysis at the species level. Here, we simultaneously performed full-length and short-read amplicon sequencing to clarify the community composition and ecological status of different microbial taxa in contaminated soil from a high-resolution perspective. We found that (1) full-length 16S rRNA gene sequencing gave better resolution for bacterial identification at all levels, while there were no significant differences between the two sequencing platforms for fungal identification in some samples. (2) Abundant taxa were vital for microbial co-occurrences network constructed by both full-length and short-read sequencing data, and abundant fungal species such as Mortierella alpine, Fusarium solani, Mrakia frigida, and Chaetomium homopilatum served as the keystone species. (3) Heavy metal correlated with the microbial community significantly, and bacterial community and its abundant taxa were assembled by deterministic process, while the other taxa were dominated by stochastic process. These findings contribute to the understanding of the ecological mechanisms and microbial interactions in site soil ecosystems and demonstrate that full-length sequencing has the potential to provide more details of microbial community.
Collapse
Affiliation(s)
- Kang Yan
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahang Zhou
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong Feng
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Suyuan Wang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bart Haegeman
- Sorbonne Université, UMR7621 Laboratoire d'Océanographie Microbienne, Banyuls-sur-Mer, Centre National de Recherche Scientifique, France
| | - Weirong Zhang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Chen
- Plant Protection, Fertilizer and Rural Energy Agency of Wenling, Wenling 317500, Zhejiang Province, China
| | - Shouqing Zhao
- Plant Protection, Fertilizer and Rural Energy Agency of Wenling, Wenling 317500, Zhejiang Province, China
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Mushtaq S, Bareen FE, Tayyeb A, Nazir A. Autochthonous strains of Trichoderma isolated from tannery solid waste improve phytoextraction potential of heavy metals by sunflower. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1435-1454. [PMID: 36591641 DOI: 10.1080/15226514.2022.2161995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This research work was aimed at isolating and demonstrating the significant potential of autochthonous fungi for phytoextraction of hazardous metals in metal polluted soil using Helianthus annuus. Four multi-metal resistant strains of Trichoderma were selected from a total of 21 strains isolated from tannery polluted soil and tannery solid waste. Autochthonous Trichoderma strains were used singly and in the form of consortium (TC). Sunflower was grown in pots for 90 days having eight different amendments of tannery polluted soil with and without Trichoderma inoculation. Growth and biochemical attributes of the plants were observed along with metal content extract by different plant parts. The results revealed that TC enhanced shoot length, shoot dry weight, and metal uptake as compared to single specie inoculation. Similarly, BCF (72.8-118.23%) and TF were significantly pronounced in shoots of H. annuus grown with TC at 40% amended soil. The biochemical analysis of the plants showed that Trichoderma strains boosted the enzymatic (catalase, peroxidase, and superoxide dismutase) antioxidants in the plants. The use of indigenous fungi with metal accumulating plants like sunflower can help to alleviate metal contamination from industrial sites and can make the soil cultivable for energy crops.
Collapse
Affiliation(s)
- Sobia Mushtaq
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Firdaus E Bareen
- Institute of Botany, University of the Punjab, Lahore, Pakistan
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Asima Tayyeb
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Aisha Nazir
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
18
|
Wang Y, Zeng L, Wu J, Jiang H, Mei L. Diversity and effects of competitive Trichoderma species in Ganoderma lucidum-cultivated soils. Front Microbiol 2022; 13:1067822. [PMID: 36569077 PMCID: PMC9772278 DOI: 10.3389/fmicb.2022.1067822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Ganoderma lucidum (GL) is a well-known medicinal mushroom that has been extensively cultivated. Our previous study has shown that abundant Trichoderma colonies grow on the casing soil surface, posing cultivation obstacles for GL. However, an understanding of species-level characteristics of Trichoderma strains and their adverse effects on GL growth is limited. This study aimed to investigate the diversity and potential effects of Trichoderma from GL-cultivated soils. Over 700 Trichoderma isolates were collected from two trails in Longquan Country, southeast China. Eight Trichoderma species, including T. atrioviride, T. guizhouense, T. hamatum, T. harzianum, T. koningiopsis, T. pleuroticola, T. sp. irale, and T. virens, were identified based on the combination alignment of tef-1α and rpb2 sequences. The number of Trichoderma colonies increased dramatically during GL cultivation, with an increase of 9.2-fold in the Lanju trail. T. virens accounted for the most colonies (33.33 and 32.50% in Lanju and Chengbei, respectively) at the end of GL cultivation. The Trichoderma species growth varied but was satisfactory under different temperature or pH conditions. Moreover, Trichoderma species showed different adverse effects on GL growth. The non-volatile metabolites from T. virens and volatile metabolites from T. atroviride displayed the strongest antagonistic activity. Furthermore, the volatile 6-pentyl-2H-pyran-2-one (6-PP) showed a significant inhibitory effect on GL growth with an 8.79 μl mL-1 headspace of 50% effective concentration. The different Trichoderma spp. produced different amounts of 6-PP. The most efficient 6-PP producer was T. atroviride. To the best of our knowledge, this study is the first to demonstrate the abundance of competitive Trichoderma species associated with GL cultivation. Our results would contribute to.
Collapse
Affiliation(s)
- Yongjun Wang
- Department of Forest Protection, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Linzhou Zeng
- Department of Forest Protection, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jiayi Wu
- Department of Forest Protection, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Hong Jiang
- Department of Forest Protection, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Li Mei
- Department of Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
19
|
Poveda J, Abril-Urías P, Muñoz-Acero J, Nicolás C. A potential role of salicylic acid in the evolutionary behavior of Trichoderma as a plant pathogen: from Marchantia polymorpha to Arabidopsis thaliana. PLANTA 2022; 257:6. [PMID: 36437384 PMCID: PMC9701658 DOI: 10.1007/s00425-022-04036-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Recognition of the interaction of Trichoderma during the evolution of land plants plays a potential key role in the development of the salicylic acid defense pathway and the establishment of a mutualistic relationship. Marchantia polymorpha is a common liverwort considered in recent years as a model plant for evolutionary studies on plant-microorganism interactions. Despite the lack of research, remarkable results have been reported regarding the understanding of metabolic and evolutionary processes of beneficial and/or harmful interactions, owing to a better understanding of the origin and evolution of different plant defense pathways. In this study, we have carried out work on the direct and indirect interactions (exudates and volatiles) of M. polymorpha with different species of the fungal genus Trichoderma. These interactions showed different outcomes, including resistance or even growth promotion and disease. We have analyzed the level of tissue colonization and defense-related gene expression. Furthermore, we have used the pteridophyte Dryopteris affinis and the angiosperm Arabidopsis thaliana, as subsequent steps in plant evolution, together with the plant pathogen Rhizoctonia solani as a control of plant pathogenicity. Trichoderma virens, T. brevicompactum and T. hamatum are pathogens of M. polymorpha, while exudates of T. asperellum are harmful to the plant. The analysis of the expression of several defense genes in M. polymorpha and A. thaliana showed that there is a correlation of the transcriptional activation of SA-related genes with resistance or susceptibility of M. polymorpha to Trichoderma. Moreover, exogenous SA provides resistance to the virulent Trichoderma species. This beneficial fungus may have had an evolutionary period of interaction with plants in which it behaved as a plant pathogen until plants developed a defense system to limit its colonization through a defense response mediated by SA.
Collapse
Affiliation(s)
- Jorge Poveda
- Department of Plant Production and Forest Resources, University Institute for Research in Sustainable Forest Management (iuFOR), University of Valladolid, Palencia, Spain
| | - Patricia Abril-Urías
- Institute of Environmental Sciences, Plant Physiology Area, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Julia Muñoz-Acero
- Department of Botany and Plant Physiology, Institute for Agrobiotechnology Research (CIALE), Universidad de Salamanca, Salamanca, Spain
| | - Carlos Nicolás
- Department of Botany and Plant Physiology, Institute for Agrobiotechnology Research (CIALE), Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
20
|
Feng SW, Lu JL, Liang JL, Wu ZH, Yi X, Wen P, Li FL, Liao B, Jia P, Shu WS, Li JT. Functional Guilds, Community Assembly, and Co-occurrence Patterns of Fungi in Metalliferous Mine Tailings Ponds in Mainland China. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02121-6. [PMID: 36205737 DOI: 10.1007/s00248-022-02121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Metalliferous mine tailings ponds are generally characterized by low levels of nutrient elements, sustained acidic conditions, and high contents of toxic metals. They represent one kind of extreme environments that are believed to resemble the Earth's early environmental conditions. There is increasing evidence that the diversity of fungi inhabiting mine tailings ponds is much higher than previously thought. However, little is known about functional guilds, community assembly, and co-occurrence patterns of fungi in such habitats. As a first attempt to address this critical knowledge gap, we employed high-throughput sequencing to characterize fungal communities in 33 mine tailings ponds distributed across 18 provinces of mainland China. A total of 5842 fungal phylotypes were identified, with saprotrophic fungi being the major functional guild. The predictors of fungal diversity in whole community and sub-communities differed considerably. Community assembly of the whole fungal community and individual functional guilds were primarily governed by stochastic processes. Total soil nitrogen and total phosphorus mediated the balance between stochastic and deterministic processes of the fungal community assembly. Co-occurrence network analysis uncovered a high modularity of the whole fungal community. The observed main modules largely consisted of saprotrophic fungi as well as various phylotypes that could not be assigned to known functional guilds. The richness of core fungal phylotypes, occupying vital positions in co-occurrence network, was positively correlated with edaphic properties such as soil enzyme activity. This indicates the important roles of core fungal phylotypes in soil organic matter decomposition and nutrient cycling. These findings improve our understanding of fungal ecology of extreme environments.
Collapse
Affiliation(s)
- Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Xinzhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Ping Wen
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Feng-Lin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Bin Liao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China.
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| |
Collapse
|
21
|
Hao B, Zhang Z, Bao Z, Hao L, Diao F, Li FY, Guo W. Claroideoglomus etunicatum affects the structural and functional genes of the rhizosphere microbial community to help maize resist Cd and La stresses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119559. [PMID: 35654253 DOI: 10.1016/j.envpol.2022.119559] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) and plant rhizosphere microbes reportedly enhance plant tolerance to abiotic stresses and promote plant growth in contaminated soils. The co-contamination of soil by heavy metals (e.g., Cd) and rare earth elements (e.g., La) represents a severe environmental problem. Although the influence of AMF in the phytoremediation of contaminated soils is well documented, the underlying interactive mechanisms between AMF and rhizosphere microbes are still unclear. We conducted a greenhouse pot experiment to evaluate the effects of AMF (Claroideoglomus etunicatum) on maize growth, nutrient and metal uptake, rhizosphere microbial community, and functional genes in soils with separate and combined applications of Cd and La. The purpose of this experiment was to explore the mechanism of AMF affecting plant growth and metal uptake via interactions with rhizosphere microbes. We found that C. etunicatum (i) significantly enhanced plant nutritional level and biomass and decreased metal concentration in the co-contaminated soil; (ii) significantly altered the structure of maize rhizosphere bacterial and fungal communities; (iii) strongly enriched the abundance of carbohydrate metabolism genes, ammonia and nitrate production genes, IAA (indole-3-acetic acid) and ACC deaminase (1-aminocyclopropane-1-carboxylate) genes, and slightly altered the abundance of P-related functional genes; (iv) regulated the abundance of microbial quorum sensing system and metal membrane transporter genes, thereby improving the stability and adaptability of the rhizosphere microbial community. This study provides evidence of AMF improving plant growth and resistance to Cd and La stresses by regulating plant rhizosphere microbial communities and aids our understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Zhihua Bao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Lijun Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Fengwei Diao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Frank Yonghong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
22
|
Zhang JH, Shen C, Shang TH, Liu JL. Difference responses of soil fungal communities to cattle and chicken manure composting application. J Appl Microbiol 2022; 133:323-339. [PMID: 35338761 DOI: 10.1111/jam.15549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/05/2022] [Accepted: 03/24/2022] [Indexed: 12/01/2022]
Abstract
AIMS Cattle and poultry manure composting are often applied on agricultural lands but the fungal community composition before and after application in soils is still unclear. Describe soil fungal diversity after manure applications contribute to the correct resource use of livestock and poultry manures. METHODS AND RESULTS Fresh manure samples were obtained from 10 beef cow farms and 12 egg-laying poultry farms at five distinct phases of rearing. Surface soil samples were collected from vegetable plots within the farms after manure application at 15, 30 and 45 t hm-2 . Using high-throughput sequencing techniques, the ITS region was utilized to describe soil fungus populations. The fungal OTUs, Chao1 and ACE of cattle manure were relative higher in fattening stage (>12 months), the OTUs and ACE of chicken manure were the highest in the initial laying stage (16-24 weeks). The fungal diversity indices of vegetable soils hadn't linear change after cow or chicken manure application compared with the control. Ascomycota (84.7% of total sequences), Neocallimastigomycota (9.69%), and Basidiomycota (4.6%) were the dominant phyla in cattle manure. Ascomycota (88.9%) also predominated in chicken manure, followed by Basidiomycota (8.9%). Following both cattle and chicken manure application, the abundance of Ascomycota decreased, while Basidiomycota and Chytridiomycota increased in the soils. None of the dominant genus increased or decreased linearly with the increase of cattle and chicken composting application rate. The fungal dominant genera of the soils with and without manure composting application were mostly affected by soil pH and EC than manure. Pearson's correlation analysis revealed that organic matter, Cu and Hg contents were strongly linked to the fungal diversity and the abundance of specific taxa in cattle manure. In chicken manure, OM, TN and Zn were major factors controlling the fungal diversity and community composition. Soil pH, EC, and Cu, Zn, Cd, Hg and As content had pronounced effects on beneficial and pathogenic genus in soil with and without manure composting. Beneficial fungal genus such as Aspergillus, Plectosphaerella, Acremonium, Meyerozyma and fungal pathogenic like Fusarium, Cladosporium, Verticillium were sensitive to properties (EC, pH, OM) and heavy metals (Cu, Zn, Hg) contents of environment, relatively. The study can serve as an applicable contribution helping in farms management (especially to cattle and poultry breeding) and improve their resource use of livestock and poultry manure. CONCLUSIONS Soil heterogeneity rather than manure determines fungal communities in the vegetable fields, but we can encourage the sensible use of cattle and chicken manure in agroecosystems. SIGNIFICANCE AND IMPACT OF THE STUDY This study will help the farmers regulate the dosage of feed components which can increase the number of beneficial fungal genus or reduce the number of pathogenic fungal genus, improve their resource use of livestock and poultry manure, and encourage the sensible use of cattle and chicken manure in agroecosystems.
Collapse
Affiliation(s)
- J H Zhang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China.,School of Ecology and Environment, Ningxia University, Yinchuan 750021, China.,Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Ningxia University, Yinchuan 750021, China
| | - C Shen
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - T H Shang
- School of Geography and Planning, Ningxia University, Yinchuan 750021, China
| | - J L Liu
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, China.,Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
23
|
Fan T, Liu R, Pan D, Liu Y, Ye W, Lu H, Kianpoor Kalkhajeh Y. Accumulation and subcellular distribution of cadmium in rygegrass induced by Aspergillus niger TL-F2 and Aspergillus flavus TL-F3. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:263-270. [PMID: 34101523 DOI: 10.1080/15226514.2021.1932734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although plant growth-promoting fungi can greatly accelerate the ryegrass bioaccumulation of cadmium (Cd), the underlying mechanisms are not yet well documented. Therefore, we performed a 20-days hydroponic experiment to investigate the effects of Aspergillus niger TL-F2 (A. niger TL-F2) and Aspergillus flavus TL-F3 (A. flavus TL-F3) on accumulation/subcellular distribution of Cd by annual ryegrass Dongmu 70 at different Cd concentrations (0, 2.5, and 5 mg L-1). Results indicated that both fungal strains promoted ryegrass biomass/growth by about 60%. Furthermore, we found that ryegrass roots (17.8-37.1 μg pot-1) had a significantly higher capability for Cd uptake than the shoots (1.66-5.45 μg pot-1) (p < 0.05). Of total Cd in ryegrass plants, 44-67% was in soluble form, 24-37% was in cell wall, and 8.5-25.5% was in organelles. Compared with non-fungus ryegrass, cell wall and soluble Cd fractions in fungus-inoculated roots increased and decreased by 13.5-44% and 21.5-26.4%, respectively. Besides, fungus inoculation generally increased the content of cell wall and soluble Cd fractions in ryegrass shoots. Altogether, the study concludes that inoculation of fungus in ryegrass is a promising approach to improve phytoremediation of Cd contaminated environments.Novelty statement Previous study by Han et al. (2018) examined the resistance of ryegrass plant to Cd stress after its inoculation with Aspergillus aculeatus. In this study, using a hydroponic experiment, we examined the effects of co-application of two species of Aspergillus fungi. i.e. A. niger TL-F2 and A. flavus TL-F3 on ryegrass growth/biomass, Cd absorption by ryegrass shoots and roots, and subcellular distribution of Cd in ryegrass roots and shoots.
Collapse
Affiliation(s)
- Ting Fan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Ru Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Dandan Pan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yalou Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Wenling Ye
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Hongjuan Lu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yusef Kianpoor Kalkhajeh
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
24
|
Fu J, Xiao Y, Wang YF, Liu ZH, Yang K. Saline-alkaline stress in growing maize seedlings is alleviated by Trichoderma asperellum through regulation of the soil environment. Sci Rep 2021; 11:11152. [PMID: 34045597 PMCID: PMC8159927 DOI: 10.1038/s41598-021-90675-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
A significant proportion of the land area of Heilongjiang Province, China, is composed of saline-alkaline soil, which severely inhibits maize growth. Although Trichoderma treatment is widely regarded as a promising strategy for improving the soil environment and promoting plant growth, the mechanism through which Trichoderma asperellum enhances maize resistance to saline-alkaline stress is not clear. In this study, we explored the effect of T. asperellum application at different concentrations to soil saline-alkaline environment on the seedlings of two maize cultivars, assessing the biochemical parameters related to oxidation resistance. Increasing spore densities of T. asperellum suspension effectively regulated the soil ion balance in the rhizosphere of maize seedlings, reduced the soil pH by 2.15-5.76% and sodium adsorption ratios by 22.70-54.13%, increased soil nutrient content and enzyme activity, and improved the soil environment for seedling growth. Additionally, T. asperellum treatment increased the maize seedling content of osmo-regulating substances and rate of glutathione:oxidised glutathione (43.86-88.25%) and ascorbate:oxidised ascorbate (25.26-222.32%) by affecting the antioxidant enzyme activity in the roots, increasing reactive oxygen species scavenging, and maintaining the osmotic balance and metabolic homeostasis under saline-alkaline stress. T. asperellum also improved the saline-alkaline tolerance of maize seedlings by improving the root growth characteristics. Moreover, results showed that Trichoderma applied at high concentration had the greatest effect. In conclusion, improvement in the saline-alkaline tolerance of maize seedlings by T. asperellum under saline-alkaline soil conditions may be achieved through diverse effects that vary among maize cultivars.
Collapse
Affiliation(s)
- Jian Fu
- grid.419897.a0000 0004 0369 313XKey Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040 People’s Republic of China ,grid.412064.50000 0004 1808 3449College of Agronomy, Heilongjiang Bayi Agricultural University/Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Daqing, 163319 Heilongjiang Province People’s Republic of China ,grid.412064.50000 0004 1808 3449Postdoctoral Research Station for Crop Science of Heilongjiang, Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Yao Xiao
- grid.412064.50000 0004 1808 3449College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Yu-feng Wang
- grid.412064.50000 0004 1808 3449College of Agronomy, Heilongjiang Bayi Agricultural University/Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Daqing, 163319 Heilongjiang Province People’s Republic of China
| | - Zhi-hua Liu
- grid.412557.00000 0000 9886 8131College of Forestry, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Kejun Yang
- grid.412064.50000 0004 1808 3449College of Agronomy, Heilongjiang Bayi Agricultural University/Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Daqing, 163319 Heilongjiang Province People’s Republic of China
| |
Collapse
|
25
|
Asis A, Shahriar SA, Naher L, Saallah S, Fatihah HNN, Kumar V, Siddiquee S. Identification patterns of Trichoderma strains using morphological characteristics, phylogenetic analyses and lignocellulolytic activities. Mol Biol Rep 2021; 48:3285-3301. [PMID: 33880673 DOI: 10.1007/s11033-021-06321-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/27/2021] [Indexed: 11/29/2022]
Abstract
Trichoderma is a genus of soil-borne fungus with an abundance of reports of its economic importance in the agriculture industry. Thus, the correct identification of Trichoderma species is necessary for its commercial purposes. Globally, Trichoderma species are routinely identified from micro-morphological descriptions which can be tedious and prone to errors. Thus, we emphasize that the accurate identification of Trichoderma strains requires a three-pronged approach i.e. based on its morphological characteristics, multilocus gene sequences of the rDNA [internal transcribed spacer (ITS) 1 and 2 regions], translation elongation factor 1-α (TEF-1α), Calmodulin (CAL) and its lignocellulolytic activities. We used this approach to identify a total of 53 Trichoderma strains which were isolated from a wet paddy field located at Tuaran, Sabah, Malaysia. The 53 strains were positively identified as belonging to three Trichoderma species, namely T. asperellum (43 strains), T. harzianum (9 strains), and T. reesei (one strain) on the basis of its morphological characteristics and multilocus gene sequences. Phylogenetic trees constructed based on the UPGMA method of the ITS 1 and 2 regions of the rDNA, TEF-1α and CAL revealed three distinct groups with the T. asperellum, T. harzianum and T. reesei strains placed under the section of Trichoderma, Pachybasium and Longibrachiatum, respectively. In addition, the lignocellulolytic activities of the isolates were measured based on the diameters of the halo zones produced when degrading cellulose, lignin, and starch, respectively. This diagnostic assay can be used to identify Trichoderma as it produces polyphenol oxidase when Tannic Acid Media is used for the lignin test, endoglucanases when Jensen media is used for cellulose, and it hydrolyzes starch to glucose when the modified Melin-Nokrans media is used for the starch test. Accurate identification of Trichoderma species is needed as these strains can potentially be used as a biocontrol agent to prevent diseases and to increase yield in agriculture crops.
Collapse
Affiliation(s)
- Azriah Asis
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Saleh Ahmed Shahriar
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Laila Naher
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600 Pengkalan Chepa, Jeli Campus, Kelantan Darul Naim, Malaysia
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Hasan Nudin Nur Fatihah
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Kampus Besut, 22200, Besut, Terengganu, Malaysia
| | - Vijay Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
26
|
Pehlivan N, Gedik K, Eltem R, Terzi E. Dynamic interactions of Trichoderma harzianum TS 143 from an old mining site in Turkey for potent metal(oid)s phytoextraction and bioenergy crop farming. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123609. [PMID: 32798794 DOI: 10.1016/j.jhazmat.2020.123609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Despite high pollution risk, the termination of mining practices is not in question in the current era in line with the growing needs of beings. Instead, the rehabilitation by phytoremediation restores the economic and aesthetic values of the damaged locale. Here, potentially toxic elements (PTEs) tolerant 29 Trichoderma isolates from mining sites located foothills of Turkey`s NE Black Sea coast were isolated. The highest tolerant strain (As 1400 mg L-1, Cd 1200 mg L-1, Cu 2000 mg L-1, Pb 2100 mg L-1, Zn 3000 mg L-1) was characterized with translation elongation factor1 alpha (tef-1α) barcode and deposited in the GenBank. The PTEs removal strength of novel Trichoderma harzianum TS143 was highest for Pb (58%) and the lowest for As (8.5%) in the order of Pb > Cd > Cu > Zn > As. While bioleaching capacity was highest in Cd with 30%, the lowest was for As (8%). TS143 was found remarkably effective on all the physicochemical parameters in the shoot and root tissues of maize. The increase in the carbohydrate content (33.50%) proves the potential usage of the contaminated maize plants in bioenergy production. Core sustainable agents with their mesh type robust hyphal structure enfolding PTEs such as TS143 contribute to the phytoremediation technology along with potential plant biomass management for the biodiesel industry.
Collapse
Affiliation(s)
- Necla Pehlivan
- Recep Tayyip Erdogan University, Biology Department, Rize, Turkey.
| | - Kenan Gedik
- Vocational School of Technical Sciences, Recep Tayyip Erdogan University, Rize, Turkey.
| | - Rengin Eltem
- Ege University, Department of Bioengineering, Izmir, Turkey.
| | - Ertugrul Terzi
- Kastamonu University, Faculty of Fisheries, Kastamonu, Turkey.
| |
Collapse
|
27
|
Goh YK, Ting ASY. Microbial Biocontrol Agents for Agricultural Soil Remediation: Prospects and Application. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
|
29
|
Dusengemungu L, Kasali G, Gwanama C, Ouma KO. Recent Advances in Biosorption of Copper and Cobalt by Filamentous Fungi. Front Microbiol 2020; 11:582016. [PMID: 33408701 PMCID: PMC7779407 DOI: 10.3389/fmicb.2020.582016] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/30/2020] [Indexed: 01/31/2023] Open
Abstract
Copper (Cu) and Cobalt (Co) are among the most toxic heavy metals from mining and other industrial activities. Both are known to pose serious environmental concerns, particularly to water resources, if not properly treated. In recent years several filamentous fungal strains have been isolated, identified and assessed for their heavy metal biosorption capacity for potential application in bioremediation of Cu and Co wastes. Despite the growing interest in heavy metal removal by filamentous fungi, their exploitation faces numerous challenges such as finding suitable candidates for biosorption. Based on current findings, various strains of filamentous fungi have high metal uptake capacity, particularly for Cu and Co. Several works indicate that Trichoderma, Penicillium, and Aspergillus species have higher Cu and Co biosorption capacity compared to other fungal species such as Geotrichum, Monilia, and Fusarium. It is believed that far more fungal species with even higher biosorption capability are yet to be isolated. Furthermore, the application of filamentous fungi for bioremediation is considered environmentally friendly, highly effective, reliable, and affordable, due to their low technology pre-requisites. In this review, we highlight the capacity of various identified filamentous fungal isolates for biosorption of copper and cobalt from various environments, as well as their future prospects.
Collapse
Affiliation(s)
- Leonce Dusengemungu
- School of Mathematics and Natural Sciences, The Copperbelt University, Kitwe, Zambia
| | - George Kasali
- School of Mathematics and Natural Sciences, The Copperbelt University, Kitwe, Zambia
| | - Cousins Gwanama
- School of Natural Resources, The Copperbelt University, Kitwe, Zambia
| | | |
Collapse
|
30
|
Gagnon V, Rodrigue-Morin M, Tremblay J, Wasserscheid J, Champagne J, Bellenger JP, Greer CW, Roy S. Vegetation drives the structure of active microbial communities on an acidogenic mine tailings deposit. PeerJ 2020; 8:e10109. [PMID: 33150067 PMCID: PMC7585372 DOI: 10.7717/peerj.10109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/16/2020] [Indexed: 12/30/2022] Open
Abstract
Plant-microbe associations are increasingly recognized as an inextricable part of plant biology and biogeochemistry. Microbes play an essential role in the survival and development of plants, allowing them to thrive in diverse environments. The composition of the rhizosphere soil microbial communities is largely influenced by edaphic conditions and plant species. In order to decipher how environmental conditions on a mine site can influence the dynamics of microbial communities, we characterized the rhizosphere soil microbial communities associated with paper birch, speckled alder, and spruce that had naturally colonized an acidogenic mine tailings deposit containing heavy metals. The study site, which had been largely undisturbed for five decades, had highly variable vegetation density; with some areas remaining almost barren, and others having a few stands or large thickets of mature trees. Using Illumina sequencing and ordination analyses (redundancy analysis and principal coordinate analysis), our study showed that soil bacterial and fungal community structures correlated mainly with vegetation density, and plant species. Tailings without any vegetation were the most different in bacterial community structure, compared to all other areas on the mine site, as well as an adjacent natural forest (comparison plot). The bacterial genera Acidiferrobacter and Leptospirillum were more abundant in tailings without vegetation than in any of the other sites, while Bradyrhizobium sp. were more abundant in areas of the tailings deposit having higher vegetation density. Frankia sp. is equally represented in each of the vegetation densities and Pseudomonas sp. present a greater relative abundance in boreal forest. Furthermore, alder rhizosphere showed a greater relative abundance of Bradyrhizobium sp. (in comparison with birch and spruce) as well as Haliangium sp. (in comparison with birch). In contrast, fungal community structures were similar across the tailings deposit regardless of vegetation density, showing a greater relative abundance of Hypocrea sp. Tailings deposit fungal communities were distinct from those found in boreal forest soils. Alder rhizosphere had greater relative abundances of Hypocrea sp. and Thelephora sp., while birch rhizosphere were more often associated with Mollisia sp. Our results indicate that, with increasing vegetation density on the mine site, the bacterial communities associated with the individual deciduous or coniferous species studied were increasingly similar to the bacterial communities found in the adjacent forest. In order to properly assess and restore disturbed sites, it is important to characterize and understand the plant-microbe associations that occur since they likely improve plant fitness in these harsh environments.
Collapse
Affiliation(s)
- Vanessa Gagnon
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.,National Research Council Canada, Energy, Mining and Environment, Montréal, Québec, Canada
| | - Michaël Rodrigue-Morin
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Julien Tremblay
- National Research Council Canada, Energy, Mining and Environment, Montréal, Québec, Canada
| | - Jessica Wasserscheid
- National Research Council Canada, Energy, Mining and Environment, Montréal, Québec, Canada
| | - Julie Champagne
- National Research Council Canada, Energy, Mining and Environment, Montréal, Québec, Canada
| | - Jean-Philippe Bellenger
- Centre SÈVE, Département de chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment, Montréal, Québec, Canada
| | - Sébastien Roy
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
31
|
Akhtar O, Kehri HK, Zoomi I. Arbuscular mycorrhiza and Aspergillus terreus inoculation along with compost amendment enhance the phytoremediation of Cr-rich technosol by Solanum lycopersicum under field conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110869. [PMID: 32585490 DOI: 10.1016/j.ecoenv.2020.110869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/26/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Chromium (Cr) contamination is a potential threat to the agricultural soil. Arbuscular mycorrhizal (AM) fungi have potential to remediate the heavy metal polluted soils. It was hypothesized that Cr phytoremediation potentiality of AM fungi could be enhanced in combination with saprophytic filamentous fungi and soil amendment. Tomato plants were raised in Cr polluted technosol amended with compost, inoculated with mixed-culture of AM fungi and Aspergillus terreus. It was found that, triple treatment (soil amendment with compost along with AM fungi and A. terreus inoculation) enhanced biomass production (up to 315%), fruit setting (up to 49%), photosynthetic pigments (up to 214%) and carbohydrate content (up to 400%) whereas reduced the proline (up to 76.5%), catalase (up to 34.2%), peroxidase (up to 58.9%) and root membrane permeability (up to 74.2%). The effect of AM fungi with compost amendment was additive, while it was synergistic with A. terreus. AM fungi enhanced the extraction of Cr from the substrate, but retained in the mycorrhizal root, thereby reduced the translocation into shoot and in fruit, Cr translocation was undetectable. At the end of experiment Cr content in the substrate was significantly decreased (up to 37.9%). Soil amendment with compost along with AM fungi and A. terreus inoculation can be used for reclamation of Cr polluted soils at field scale.
Collapse
Affiliation(s)
- Ovaid Akhtar
- Department of Botany, Kamla Nehru Institute of Physical and Social Sciences, Sultanpur, India.
| | - Harbans Kaur Kehri
- Sadasivan Mycopathology Laboratory, Department of Botany, University of Allahabad, India
| | - Ifra Zoomi
- Sadasivan Mycopathology Laboratory, Department of Botany, University of Allahabad, India
| |
Collapse
|
32
|
Functional Annotation of Agriculturally Important Fungi for Crop Protection: Current Research and Future Challenges. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Hamidpour M, Nemati H, Abbaszadeh Dahaji P, Roosta HR. Effects of plant growth-promoting bacteria on EDTA-assisted phytostabilization of heavy metals in a contaminated calcareous soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2535-2545. [PMID: 31583504 DOI: 10.1007/s10653-019-00422-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 09/16/2019] [Indexed: 05/19/2023]
Abstract
The objective of this research was to determine the combined effects of ethylenediaminetetraacetic acid (EDTA) and plant growth-promoting rhizobacteria (PGPR) on the phytostabilization of Cd, Pb, and Zn by corn and chemical fractionation of these elements in soil. Three heavy metal-resistant bacteria (P18, P15, and P19) were selected. All strains, belonging to the fluorescent pseudomonads, exhibited plant growth-promoting properties, including phosphorus solubilization and production of siderophore, indole acetic acid, and 1-aminocyclopropane-1-carboxylic acid deaminase. Applying EDTA individually or in combination with bacterial strains (P18 and P15) significantly increased shoot biomass. The highest dry shoot biomass was recorded in the combined treatment of EDTA and P15-inoculated pots. Application of EDTA in PGPR-inoculated pots increased concentrations of heavy metals in corn shoots and roots compared to the control. The highest concentration of Zn in corn root and shoot was observed in P15 + EDTA treatment, which were 2.0-fold and 1.3-fold higher than those in the untreated soil. Results of chemical speciation showed that the co-application of EDTA and fluorescent pseudomonads strains increased the bioavailability of Zn, Pb, and Cd by their redistribution from less soluble fractions to water-soluble forms. It was concluded that bacterial inoculation could improve the efficiency of EDTA in phytostabilization of heavy metals from multi-metal contaminated soils.
Collapse
Affiliation(s)
- Mohsen Hamidpour
- Department of Soil Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Hamideh Nemati
- Department of Soil Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | | | - Hamid Reza Roosta
- Department of Horticulture Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
34
|
Lin Y, Xiao W, Ye Y, Wu C, Hu Y, Shi H. Adaptation of soil fungi to heavy metal contamination in paddy fields-a case study in eastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27819-27830. [PMID: 32399881 DOI: 10.1007/s11356-020-09049-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Soil fungi have been widely studied, but the effects of heavy metal contamination at various levels as well as the abundance and diversity of heavy metal tolerant fungi in the contaminated paddy soils are still unknown. The purpose of this study is to analyze the adaptability of fungi at different levels of heavy metal contamination to identify species that have strong adaptability to heavy metals. In this research, the technology of high-throughput sequencing was applied to study fungal communities in severe level (SL), moderate level (ML), light level (LL), and clean level (CL) for soil samples polluted by heavy metal, as well as to analyze the relations between environmental variables and fungal communities. The spearman analysis showed that 6 dominant fungal phyla and 18 dominant fungal genera were significantly correlated with these environmental variables. The α-diversity indexes of the soil fungal community from SL, ML, and CL were, mostly, drastically higher than the LL samples (p < 0.05). Meanwhile, Ascomycota, the main fungal phylum, was spotted to yield a strong tolerance towards heavy metals, especially in ML. The most dominant genera of tolerant fungi in this area, which are Aspergillus, Penicillium, and Fusarium, could absorb and transport the heavy metals with the help of nutrients under certain heavy metal contamination levels. Therefore, this study indicated that some fungi, which have strong biodegradability on heavy metals, can reduce toxicity of heavy metals and create a proper soil environment to grow food crops. Graphical abstract.
Collapse
Affiliation(s)
- Yaoben Lin
- Land Academy for National Development (LAND), Zhejiang University, Hangzhou, 310058, China
- Land Ecological Restoration Engineering Technology Research Center of Shandong Province, Binzhou, 256600, China
| | - Wu Xiao
- Land Academy for National Development (LAND), Zhejiang University, Hangzhou, 310058, China
- Land Ecological Restoration Engineering Technology Research Center of Shandong Province, Binzhou, 256600, China
| | - Yanmei Ye
- Land Academy for National Development (LAND), Zhejiang University, Hangzhou, 310058, China.
- Land Ecological Restoration Engineering Technology Research Center of Shandong Province, Binzhou, 256600, China.
| | - Cifang Wu
- Land Academy for National Development (LAND), Zhejiang University, Hangzhou, 310058, China
- Land Ecological Restoration Engineering Technology Research Center of Shandong Province, Binzhou, 256600, China
| | - Yiming Hu
- Land Academy for National Development (LAND), Zhejiang University, Hangzhou, 310058, China
- Land Ecological Restoration Engineering Technology Research Center of Shandong Province, Binzhou, 256600, China
| | - Haokun Shi
- Land Academy for National Development (LAND), Zhejiang University, Hangzhou, 310058, China
- Land Ecological Restoration Engineering Technology Research Center of Shandong Province, Binzhou, 256600, China
| |
Collapse
|
35
|
Ulloa-Muñoz R, Olivera-Gonzales P, Castañeda-Barreto A, Villena GK, Tamariz-Angeles C. Diversity of endophytic plant-growth microorganisms from Gentianella weberbaueri and Valeriana pycnantha, highland Peruvian medicinal plants. Microbiol Res 2020; 233:126413. [PMID: 31981904 DOI: 10.1016/j.micres.2020.126413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
Abstract
Microbial diversity in Peruvian mountain areas is poorly know, specially endophytic microorganisms of medicinal native plants from the Cordillera Blanca. So, nine bacterial and six fungal species were isolated from Gentianella weberbaueri and Valeriana pycnantha. According to 16S rDNA analysis, bacterial strains belong to genera Rahnella, Pseudomonas, Serratia, Rouxiella, and Bacillus; while ITS analysis showed that fungi belong to Pyrenochaeta, Scleroconidioma, Cryptococcus, and Plenodomus genera. Rahnella sp. GT24B and P. trivialis VT20B solubilized tricalcium phosphate and produced siderophores at 10 and 24 °C. Five bacteria strains produced indol-3-acetic acid (IAA) at 10 and 24 °C, where Rahnella sp. VT19B showed more production at 10 °C than 24 °C. Rahnella sp. GT24B, Serratia sp. VT28B, and Rahnella sp. GT25B inhibited Fusarium oxysporum growth up to 100, 78 and 74 %, respectively. R. inusitata VT25B and B. licheniformis GT10B showed high cellulolytic and proteolytic activities. On the other hand, only a few fungi moderately inhibited growth of F. oxysporum, and produced siderophores and cellulases. Most of bacteria inoculated on Medicago sativa "alfalfa" and Triticum aestivum "wheat" seeds got better root development, especially Rahnella sp. GT24B, Rouxiella sp.VT24B, Serratia sp. VT28B, and Rahnella sp. VT34B. Finally, this study is the first report of endophytic microorganisms associated to wild medicinal high-mountain Peruvian plants and it show a valuable microbial diversity and its possible role in promoting growth of crops and wild medicinal plants.
Collapse
Affiliation(s)
- Rocío Ulloa-Muñoz
- Facultad de Ciencias Agrarias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002 Independencia, Ancash Huaraz, Peru
| | - Percy Olivera-Gonzales
- Centro de Investigación de la Biodiversidad y Recursos Genéticos, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002 Independencia, Ancash, Huaraz, Peru
| | - Alberto Castañeda-Barreto
- Centro de Investigación de la Biodiversidad y Recursos Genéticos, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002 Independencia, Ancash, Huaraz, Peru
| | - Gretty K Villena
- Laboratorio de Micología y Biotecnología, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima 12, Peru
| | - Carmen Tamariz-Angeles
- Centro de Investigación de la Biodiversidad y Recursos Genéticos, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002 Independencia, Ancash, Huaraz, Peru.
| |
Collapse
|
36
|
Anam GB, Reddy MS, Ahn YH. Characterization of Trichoderma asperellum RM-28 for its sodic/saline-alkali tolerance and plant growth promoting activities to alleviate toxicity of red mud. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:462-469. [PMID: 30695746 DOI: 10.1016/j.scitotenv.2019.01.279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Red mud (RM) is a highly alkaline, saline and sodic solid by-product released by alumina industries, which pose an economical and environmental problem and establishment of vegetation on these sites is a big challenge. In the present study, a fungus RM-28 exhibiting high tolerance to alkaline (pH 12), saline/sodic (NaCl 4%) was isolated from RM flooded rhizosphere soil of bermudagrass and tested its ability to reduce RM toxicity and promote the growth of sorghum-sudangrass seedlings. This fungus also exhibited high tolerance to heavy metal(loid)s (HMs) and desirable plant growth-promoting traits. This fungus was identified as Trichoderma asperellum based on its internal transcribed spacer (ITS) of rDNA and translation elongation factor-1α (TEF 1α) gene analysis. This fungus was effective in reducing the pH and solubilizing tricalcium phosphate under high alkaline and saline conditions in vitro. Further, RM-28 inoculation significantly lowered the pH and EC of the red mud from 11.8 to 8.2 and 2.23 to 1.42, respectively. Inoculation of RM-28 significantly improved the growth, chlorophyll content and reduced the oxidative stress of sorghum-sudangrass seedlings grown in red mud leachate. These observations suggest that T. asperellum RM-28 serves as potential source for the establishment of vegetation on red mud/red mud contaminated soils.
Collapse
Affiliation(s)
- Giridhar Babu Anam
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - M Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
37
|
Malinich EA, Wang K, Mukherjee PK, Kolomiets M, Kenerley CM. Differential expression analysis of Trichoderma virens RNA reveals a dynamic transcriptome during colonization of Zea mays roots. BMC Genomics 2019; 20:280. [PMID: 30971198 PMCID: PMC6458689 DOI: 10.1186/s12864-019-5651-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
Background Trichoderma spp. are majorly composed of plant-beneficial symbionts widely used in agriculture as bio-control agents. Studying the mechanisms behind Trichoderma-derived plant benefits has yielded tangible bio-industrial products. To better take advantage of this fungal-plant symbiosis it is necessary to obtain detailed knowledge of which genes Trichoderma utilizes during interaction with its plant host. In this study, we explored the transcriptional activity undergone by T. virens during two phases of symbiosis with maize; recognition of roots and after ingress into the root cortex. Results We present a model of T. virens – maize interaction wherein T. virens experiences global repression of transcription upon recognition of maize roots and then induces expression of a broad spectrum of genes during colonization of maize roots. The genes expressed indicate that, during colonization of maize roots, T. virens modulates biosynthesis of phytohormone-like compounds, secretes a plant-environment specific array of cell wall degrading enzymes and secondary metabolites, remodels both actin-based and cell membrane structures, and shifts metabolic activity. We also highlight transcription factors and signal transduction genes important in future research seeking to unravel the molecular mechanisms of T. virens activity in maize roots. Conclusions T. virens displays distinctly different transcriptional profiles between recognizing the presence of maize roots and active colonization of these roots. A though understanding of these processes will allow development of T. virens as a bio-control agent. Further, the publication of these datasets will target future research endeavors specifically to genes of interest when considering T. virens – maize symbiosis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5651-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth A Malinich
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Ken Wang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Prasun K Mukherjee
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Michael Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Charles M Kenerley
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
38
|
Sun X, Han F, Wang H, Song F, Cui X, Lou Y, Zhuge Y. Characterization of three Pb-resistant fungi and their potential Pb 2+ ions adsorption capacities. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:2616-2625. [PMID: 30767926 DOI: 10.2166/wst.2019.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioremediation is preferred in heavy metal remediation, and the high-performance microbe is of prime importance. In the present research, three Pb-resistant microbes were isolated and growth characteristics and adsorption capacities were evaluated. The results showed that R. oryzae SD-1, T. asperellum SD-5, and M. irregularis SD-8 can grow well under 100 mg L-1 Pb2+ ions stress. There is a higher minimum inhibitory concentration (MIC) of Pb but lower MICs of Cd and Zn in T. asperellum SD-5. However, there were similar MICs of Cu among the three microbes. R. oryzae SD-1 exhibited a higher adsorption capacity and removal rate relative to the other two microbes under various Pb2+ ion levels. The Langmuir equation was fitted for the adsorption capacity of T. asperellum SD-5 and M. irregularis SD-8, and their maximum adsorption capacities were approximately 456.62 mg g-1 and 93.62 mg g-1. Moreover, the Elovich equation and the double constant equation can describe the adsorption process of Pb2+ ions in Pb-resistant microbes well. The strongest adsorption capacity under lower Pb2+ ion level was observed in M. irregularis SD-8, while the strongest adsorption capacities under higher Pb2+ ion levels were seen in R. oryzae SD-1 and T. asperellum SD-5. Therefore, three novel Pb-resistant microbes may be used as efficient, easily cultivated materials for Pb-contaminated soil remediation.
Collapse
Affiliation(s)
- Xin Sun
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, Shandong, 271018, China E-mail:
| | - Fei Han
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, Shandong, 271018, China E-mail:
| | - Hui Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, Shandong, 271018, China E-mail:
| | - Fupeng Song
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, Shandong, 271018, China E-mail:
| | - Xiumin Cui
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, Shandong, 271018, China E-mail:
| | - Yanhong Lou
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, Shandong, 271018, China E-mail:
| | - Yuping Zhuge
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, Shandong, 271018, China E-mail:
| |
Collapse
|
39
|
Functions of the C2H2 Transcription Factor Gene thmea1 in Trichoderma harzianum under Copper Stress Based on Transcriptome Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8149682. [PMID: 30105250 PMCID: PMC6076916 DOI: 10.1155/2018/8149682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/28/2018] [Indexed: 11/21/2022]
Abstract
Trichoderma spp. are important biocontrol filamentous fungi and have tremendous potential in soil bioremediation. In our previous studies, a C2H2 type transcription factor coding gene (thmea1) was cloned from a biocontrol agent T. harzianum Th-33; the encoded sequence of thmea1 contained 3 conserved C2H2 domains with Swi5 and Ace2 in Saccharomyces cerevisiae. The thmea1 knockout mutant Δthmea1 showed 12.9% higher copper tolerance than the wild-type Th33. To elucidate the function of thmea1 and its relationship with copper stress response, we conducted transcriptome sequencing and analysis of wild-type Th33 and Δthmea1 under 0.8 mM copper stress. A total of 1061 differentially expressed genes (DEGs) were identified between the two strains, all DEGs were assigned to KEGG pathway database, 383 DEGs were annotated in 191 individual pathways, and the categories of ribosomal protein synthesis and amino acid metabolism were the most highly enriched ones. Analysis of related DEGs showed that the expression levels of intracellular glutathione detoxification enzyme, heat shock proteins, and ribosomal proteins in Δthmea1 were higher than that of the wild-type Th33, and the expression of metallothionein (MT) gene did not change. In addition, the expression levels of genes coding for proteins associated with the Ccc2p-mediated copper chaperone Atx1p transport of copper ions into the Golgi secretory pathway increased, as well as the copper amine oxidase (CuAO). These findings suggest that Thmea1 is a negative regulated factor of copper tolerance ability in T. harzianum. It does not show metallothionein expression activator activities as that of Ace2 in S. cerevisiae. We hypothesize that after T. harzianum has lost its thmea1 gene, the ability of cells to scavenge reactive oxygen species, mainly through the glutathione antioxidant system, is enhanced, whereas protein synthesis and repair and copper secretion increase under copper stress, which increases the ability of the mutant strain to tolerate copper stress.
Collapse
|
40
|
Govarthanan M, Mythili R, Selvankumar T, Kamala-Kannan S, Kim H. Myco-phytoremediation of arsenic- and lead-contaminated soils by Helianthus annuus and wood rot fungi, Trichoderma sp. isolated from decayed wood. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:279-284. [PMID: 29407561 DOI: 10.1016/j.ecoenv.2018.01.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 05/27/2023]
Abstract
In the present study, Helianthus annuus grown in arsenic- (As) and lead- (Pb) contaminated soil were treated with plant-growth promoting fungi Trichoderma sp. MG isolated from decayed wood and assessed for their phytoremediation efficiency. The isolate MG exhibited a high tolerance to As (650mg/L) and Pb (500mg/L), and could remove > 70% of metals in aqueous solution with an initial concentration of 100mg/L each. In addition, the isolate MG was screened for plant-growth-promoting factors such as siderophores, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indole acetic acid (IAA) synthesis, and phosphate solubilisation. Phytoremediation studies indicated that treatment of H. annuus with the isolate MG had the maximum metal-accumulation in shoots (As; 67%, Pb; 59%). Furthermore, a significant increase in the soil extracellular enzyme-activities was observed in myco-phytoremediated soils. The activities of phosphatase (35 U/g dry soil), dehydrogenase (41mg TPF/g soil), cellulase (37.2mg glucose/g/2h), urease (55.4mgN/g soil/2h), amylase (49.3mg glucose/g/2h) and invertase (45.3mg glucose/g/2h) significantly increased by 12%, 14%, 12%, 22%, 19% and 14% in As contaminated soil, respectively. Similarly, the activities of phosphatase (31.4U/g dry soil), dehydrogenase (39.3mg TPF/g soil), cellulase (37.1mg glucose/g/2h), urease (49.8mgN/g soil/2h), amylase (46.3mg glucose/g/2h), and invertase (42.1mg glucose/g/2h) significantly increased by 11%, 15%, 11%, 18%, 20% and 14% in Pb contaminated soil, respectively. Obtained results indicate that the isolate MG could be a potential strain for myco-phytoremediation of As and Pb contaminated soil.
Collapse
Affiliation(s)
- M Govarthanan
- Department of Energy and Environmental System Engineering, University of Seoul, Seoul 02504, Republic of Korea; PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal 637501, Tamil Nadu, India.
| | - R Mythili
- PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal 637501, Tamil Nadu, India
| | - T Selvankumar
- PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal 637501, Tamil Nadu, India
| | - S Kamala-Kannan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570 752, South Korea
| | - H Kim
- Department of Energy and Environmental System Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
41
|
Hoseinzadeh S, Shahabivand S, Aliloo AA. Toxic metals accumulation in Trichoderma asperellum and T. harzianum. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717060066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
Meena SK, Rakshit A, Singh HB, Meena VS. Effect of nitrogen levels and seed bio-priming on root infection, growth and yield attributes of wheat in varied soil type. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
Oladipo OG, Awotoye OO, Olayinka A, Bezuidenhout CC, Maboeta MS. Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Braz J Microbiol 2017; 49:29-37. [PMID: 28844883 PMCID: PMC5790576 DOI: 10.1016/j.bjm.2017.06.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 04/19/2017] [Accepted: 06/05/2017] [Indexed: 01/27/2023] Open
Abstract
Increased environmental pollution has necessitated the need for eco-friendly clean-up strategies. Filamentous fungal species from gold and gemstone mine site soils were isolated, identified and assessed for their tolerance to varied heavy metal concentrations of cadmium (Cd), copper (Cu), lead (Pb), arsenic (As) and iron (Fe). The identities of the fungal strains were determined based on the internal transcribed spacer 1 and 2 (ITS 1 and ITS 2) regions. Mycelia growth of the fungal strains were subjected to a range of (0–100 Cd), (0–1000 Cu), (0–400 Pb), (0–500 As) and (0–800 Fe) concentrations (mgkg−1) incorporated into malt extract agar (MEA) in triplicates. Fungal radial growths were recorded every three days over a 13-days’ incubation period. Fungal strains were identified as Fomitopsis meliae, Trichoderma ghanense and Rhizopus microsporus. All test fungal exhibited tolerance to Cu, Pb, and Fe at all test concentrations (400–1000 mgkg−1), not differing significantly (p > 0.05) from the controls and with tolerance index >1. T. ghanense and R. microsporus demonstrated exceptional capacity for Cd and As concentrations, while showing no significant (p > 0.05) difference compared to the controls and with a tolerance index >1 at 25 mgkg−1 Cd and 125 mgkg−1 As. Remarkably, these fungal strains showed tolerance to metal concentrations exceeding globally permissible limits for contaminated soils. It is envisaged that this metal tolerance trait exhibited by these fungal strains may indicate their potentials as effective agents for bioremediative clean-up of heavy metal polluted environments.
Collapse
Affiliation(s)
| | | | - Akinyemi Olayinka
- Obafemi Awolowo University, Department of Soil and Land Resources Management, Ile-Ife, Nigeria
| | | | - Mark Steve Maboeta
- North-West University, Unit for Environmental Sciences and Management, Potchefstroom, South Africa
| |
Collapse
|
44
|
Pietro-Souza W, Mello IS, Vendruscullo SJ, da Silva GF, da Cunha CN, White JF, Soares MA. Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis are influenced by soil mercury contamination. PLoS One 2017; 12:e0182017. [PMID: 28742846 PMCID: PMC5526616 DOI: 10.1371/journal.pone.0182017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022] Open
Abstract
The endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis were examined with respect to soil mercury (Hg) contamination. Plants were collected in places with and without Hg+2 for isolation and identification of their endophytic root fungi. We evaluated frequency of colonization, number of isolates and richness, indices of diversity and similarity, functional traits (hydrolytic enzymes, siderophores, indoleacetic acid, antibiosis and metal tolerance) and growth promotion of Aeschynomene fluminensis inoculated with endophytic fungi on soil with mercury. The frequency of colonization, structure and community function, as well as the abundant distribution of taxa of endophytic fungi were influenced by mercury contamination, with higher endophytic fungi in hosts in soil with mercury. The presence or absence of mercury in the soil changes the profile of the functional characteristics of the endophytic fungal community. On the other hand, tolerance of lineages to multiple metals is not associated with contamination. A. fluminensis depends on its endophytic fungi, since plants free of endophytic fungi grew less than expected due to mercury toxicity. In contrast plants containing certain endophytic fungi showed good growth in soil containing mercury, even exceeding growth of plants cultivated in soil without mercury. The data obtained confirm the hypothesis that soil contamination by mercury alters community structure of root endophytic fungi in terms of composition, abundance and species richness. The inoculation of A. fluminensis with certain strains of stress tolerant endophytic fungi contribute to colonization and establishment of the host and may be used in processes that aim to improve phytoremediation of soils with toxic concentrations of mercury.
Collapse
Affiliation(s)
- William Pietro-Souza
- Department of Botany and Ecology, Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
- Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Brazil
| | - Ivani Souza Mello
- Department of Botany and Ecology, Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
- Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Brazil
| | | | | | - Cátia Nunes da Cunha
- Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Brazil
| | - James Francis White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States of America
| | - Marcos Antônio Soares
- Department of Botany and Ecology, Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
- Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Brazil
| |
Collapse
|
45
|
Bilal S, Khan AL, Shahzad R, Asaf S, Kang SM, Lee IJ. Endophytic Paecilomyces formosus LHL10 Augments Glycine max L. Adaptation to Ni-Contamination through Affecting Endogenous Phytohormones and Oxidative Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:870. [PMID: 28611799 PMCID: PMC5447229 DOI: 10.3389/fpls.2017.00870] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/10/2017] [Indexed: 05/21/2023]
Abstract
This study investigated the Ni-removal efficiency of phytohormone-producing endophytic fungi Penicillium janthinellum, Paecilomyces formosus, Exophiala sp., and Preussia sp. Among four different endophytes, P. formosus LHL10 was able to tolerate up to 1 mM Ni in contaminated media as compared to copper and cadmium. P. formosus LHL10 was further assessed for its potential to enhance the phytoremediation of Glycine max (soybean) in response to dose-dependent increases in soil Ni (0.5, 1.0, and 5.0 mM). Inoculation with P. formosus LHL10 significantly increased plant biomass and growth attributes as compared to non-inoculated control plants with or without Ni contamination. LHL10 enhanced the translocation of Ni from the root to the shoot as compared to the control. In addition, P. formosus LHL10 modulated the physio-chemical apparatus of soybean plants during Ni-contamination by reducing lipid peroxidation and the accumulation of linolenic acid, glutathione, peroxidase, polyphenol oxidase, catalase, and superoxide dismutase. Stress-responsive phytohormones such as abscisic acid and jasmonic acid were significantly down-regulated in fungal-inoculated soybean plants under Ni stress. LHL10 Ni-remediation potential can be attributed to its phytohormonal synthesis related genetic makeup. RT-PCR analysis showed the expression of indole-3-acetamide hydrolase, aldehyde dehydrogenase for indole-acetic acid and geranylgeranyl-diphosphate synthase, ent-kaurene oxidase (P450-4), C13-oxidase (P450-3) for gibberellins synthesis. In conclusion, the inoculation of P. formosus can significantly improve plant growth in Ni-polluted soils, and assist in improving the phytoremediation abilities of economically important crops.
Collapse
Affiliation(s)
- Saqib Bilal
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Abdul L. Khan
- UoN Chair of Oman’s Medicinal Plants and Marine Natural Products, University of NizwaNizwa, Oman
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Sajjad Asaf
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| |
Collapse
|
46
|
Shi Y, Xie H, Cao L, Zhang R, Xu Z, Wang Z, Deng Z. Effects of Cd- and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:417-426. [PMID: 27726080 DOI: 10.1007/s11356-016-7693-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/12/2016] [Indexed: 05/24/2023]
Abstract
Metal-resistant endophytic fungi from roots improved phytoremediation efficacy of host plants; however, the effects of endophytic fungi from plant aerial parts on host plants are unknown. The aim of this study was to develop a feasible method to screen fungal endophytes from stems and roots of Brassica napus and to investigate effects of the endophytic fungi on growth and phytoremediation efficiency of the plant. Endophytic Fusarium sp. CBRF44, Penicillium sp. CBRF65, and Alternaria sp. CBSF68 with different traits were isolated from roots and stems of rapes grown in a metal-contaminated soil. Fusarium sp. CBRF44 (resistant to 5 mM Cd and 15 mM Pb, isolated from roots) and Alternaria sp. CBSF68 (resistant to 1 mM Cd and 10 mM Pb, isolated from stems) could produce indole-3-acetic acid (IAA) and siderophore; Penicillium sp. CBRF65 (tolerate 2 mM Cd and 20 mM Pb, isolated from roots) could not produce IAA and siderophore but showed the highest phosphate-solubilizing activities. Fusarium sp. CBRF44 and Penicillium sp. CBRF65 significantly increased the rape biomass and promoted the extraction efficacy of Pb and Cd, while Alternaria sp. CBSF68 did not show similar results. Penicillium sp. CBRF65 and Fusarium sp. CBRF44 could be frequently recovered from inoculated rape roots, while Alternaria sp. CBSF68 was scarcely recovered. The results indicate that the colonizing capacity of endophytic fungi in roots is important to improve phytoremediation efficacy of host plants.
Collapse
Affiliation(s)
- Yanan Shi
- School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Huarong Xie
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Lixiang Cao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Renduo Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zaichao Xu
- School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Zhuoya Wang
- School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Zujun Deng
- School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
47
|
Mishra N, Khan SS, Sundari SK. Native isolate of Trichoderma: a biocontrol agent with unique stress tolerance properties. World J Microbiol Biotechnol 2016; 32:130. [DOI: 10.1007/s11274-016-2086-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 05/14/2016] [Indexed: 11/28/2022]
|
48
|
Meena SK, Rakshit A, Meena VS. Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat ( Triticum aestivum L.) under greenhouse conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Xia L, Xu X, Zhu W, Huang Q, Chen W. A Comparative Study on the Biosorption of Cd2+ onto Paecilomyces lilacinus XLA and Mucoromycote sp. XLC. Int J Mol Sci 2015; 16:15670-87. [PMID: 26184169 PMCID: PMC4519919 DOI: 10.3390/ijms160715670] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/18/2015] [Accepted: 05/25/2015] [Indexed: 11/17/2022] Open
Abstract
The filamentous fungi XLA and XLC isolated from Cd-contaminated soil were identified morphologically and phylogenetically as Paecilomyces lilacinus and Mucoromycote sp., respectively. The minimum inhibitory concentrations (MICs) of Cd2+, Co2+, Cu2+, Zn2+, Cr3+ and Cr6+ in minimum mineral (MM) medium agar plates were 29,786, 2945, 9425, 5080, 1785 and 204 mg · L(-1) for XLA and 11,240, 884, 9100, 2540, 3060 and 51 mg · L(-1) for XLC, respectively. Favorable biosorption conditions for adsorption of Cd2+ by the tested fungi were investigated. Efficient performances of the biosorbents were described using Langmuir isotherm model, and the predicted maximum biosorption capacities for Cd2+ were 77.61 mg · g(-1) of XLA and 79.67 mg · g(-1) of XLC. Experiments on desorption potential of biosorbents validated their efficacy at a large scale. Results showed that XLA obtained a desorption rate of 84.7% by 2% EDTA and XLC gained a desorption rate of 78.9% by 0.1 M HCl. Analysis by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and X-ray photoelectron spectroscopy (XPS) suggested that groups of C-N, COO- for XLA and C-N, CH2 and phosphate for XLC were the dominant binding sites for Cd2+ biosorption. Our results indicated that the fungus XLA, rather than XLC, could potentially be used as an inexpensive, eco-friendly and effective bioremediation agent for the removal of Cd2+ from wastewater.
Collapse
Affiliation(s)
- Lu Xia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xingjian Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Wei Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
50
|
Teng Y, Luo Y, Ma W, Zhu L, Ren W, Luo Y, Christie P, Li Z. Trichoderma reesei FS10-C enhances phytoremediation of Cd-contaminated soil by Sedum plumbizincicola and associated soil microbial activities. FRONTIERS IN PLANT SCIENCE 2015; 9:220. [PMID: 26113858 PMCID: PMC4461814 DOI: 10.3389/fpls.2015.00438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/28/2015] [Indexed: 05/25/2023]
Abstract
This study aimed to explore the effects of Trichoderma reesei FS10-C on the phytoremediation of Cd-contaminated soil by the hyperaccumulator Sedum plumbizincicola and on soil fertility. The Cd tolerance of T. reesei FS10-C was characterized and then a pot experiment was conducted to investigate the growth and Cd uptake of S. plumbizincicola with the addition of inoculation agents in the presence and absence of T. reesei FS10-C. The results indicated that FS10-C possessed high Cd resistance (up to 300 mg L(-1)). All inoculation agents investigated enhanced plant shoot biomass by 6-53% of fresh weight and 16-61% of dry weight and Cd uptake by the shoots by 10-53% compared with the control. All inoculation agents also played critical roles in increasing soil microbial biomass and microbial activities (such as biomass C, dehydrogenase activity and fluorescein diacetate hydrolysis activity). Two inoculation agents accompanied by FS10-C were also superior to the inoculation agents, indicating that T. reesei FS10-C was effective in enhancing both Cd phytoremediation by S. plumbizincicola and soil fertility. Furthermore, solid fermentation powder of FS10-C showed the greatest capacity to enhance plant growth, Cd uptake, nutrient release, microbial biomass and activities, as indicated by its superior ability to promote colonization by Trichoderma. The solid fermentation powder of FS10-C might serve as a suitable inoculation agent for T. reesei FS10-C to enhance both the phytoremediation efficiency of Cd-contaminated soil and soil fertility.
Collapse
Affiliation(s)
- Ying Teng
- *Correspondence: Ying Teng, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | | | | | | | | | | | | | | |
Collapse
|