1
|
Mbye M, Ali AH, Kamal-Eldin A, Banat F. The impact of camel milk and its products on diabetes mellitus management: A review of bioactive components and therapeutic potential. NFS JOURNAL 2025; 38:100204. [DOI: 10.1016/j.nfs.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Ghimire N, Welch M, Secunda C, Fink A, Lawan A. Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Promotes Hyperglycemia and Susceptibility to Streptozotocin-Induced Diabetes in Female Mice In Vivo. Cells 2025; 14:261. [PMID: 39996734 PMCID: PMC11853640 DOI: 10.3390/cells14040261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
The development of type 2 diabetes (T2D) is largely dependent on the maintenance of pancreatic islet function and mass. Sexual dimorphism in T2D is evident in many areas, such as pathophysiology, treatment, and prevention. Mitogen-activated protein kinase phosphatase-2 (MKP-2) has a distinct role in the regulation of cell proliferation and the development of metabolic disorders. However, whether there is a causal relationship between MKP-2 and diabetes onset is unclear. The aim of this study was to determine the role of MKP-2 in the regulation of whole-body glucose homeostasis and the impact on pancreatic islet function using streptozotocin-induced pancreatic injury. Here, we show that female mice with whole-body deletion of MKP-2 exhibit hyperglycemia in mouse models treated with multiple low doses of streptozotocin (STZ). In comparison, both male MKP-2 wild-type and knockout mice were hyperglycemic. Consistent with the hyperglycemia, female MKP-2-deficient mice exhibited reduced islet size. Under T2D conditions, MKP-2-deficient mice display enhanced pancreatic JNK and ERK phosphorylation that is associated with the downregulation of genes important for pancreatic islet development and function, Pdx-1 and MafA. Furthermore, we found impaired metabolic flux in adipose tissue that is consistent with hyperglycemia and dysfunctional pancreas. MKP-2 deletion results in reduced Akt activation that is associated with increased adiposity and insulin resistance in female MKP-2 KO mice. These studies demonstrate the critical role of MKP-2 in the development of T2D diabetes in vivo. This suggests that MKP-2 may have a gender-specific role in diabetes development. This discovery raises the possibility that postmenopausal prevention of T2D may benefit from the activation of MKP-2 activity in islet cells.
Collapse
Affiliation(s)
| | | | | | | | - Ahmed Lawan
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (N.G.); (M.W.); (C.S.); (A.F.)
| |
Collapse
|
3
|
Manaer T, Sailike J, Sun X, Yeerjiang B, Nabi X. Therapeutic effects of composite probiotics derived from fermented camel milk on metabolic dysregulation and intestinal barrier integrity in type 2 diabetes rats. Front Pharmacol 2025; 15:1520158. [PMID: 39840100 PMCID: PMC11747018 DOI: 10.3389/fphar.2024.1520158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Background In the Kazakh community of Xinjiang, China, fermented camel milk has been traditionally used to manage diabetes. This study evaluates the effects of composite probiotics derived from fermented camel milk (CPCM) on metabolic disturbances in a rat model of Type 2 diabetes (T2DM). Methods T2DM was induced in Wistar rats using streptozotocin. Experimental groups included a diabetic control, Metformin, and low- and high-dose CPCM. Measurements over 6 weeks included body weight (BW), fasting blood glucose (FBG), oral glucose tolerance test (OGTT), glycated hemoglobin (HbA1c), C-peptide (CP), lipid profiles, inflammatory markers, fecal short-chain fatty acids (SCFAs), and tight junction protein expression in colonic tissues. Results High-dose CPCM significantly increased BW by 22.2% (p < 0.05) and reduced FBG by 6.5 mmol/L (p < 0.001). The OGTT AUC decreased by 40.1% (p < 0.001), and HbA1c levels fell by 22.9% (p < 0.01). CP levels rose by 21.8% (p < 0.05). Lipid profiles improved: TC decreased by 40.0%, TG by 17.1%, and LDL-C by 30.4% (all p < 0.001). Fecal SCFAs, including acetate (75.4%, p < 0.001), methyl acetate (18.9%, p < 0.05), and butyrate (289.9%, p < 0.001), increased, with total SCFAs rising by 89.7% (p < 0.001). Inflammatory markers IL-1β (12.7%, p < 0.01), TNF-α (16.7%, p < 0.05), and IL-6 (17.3%, p < 0.01) were significantly reduced. Tight junction protein expression (ZO-1, occludin, claudin-1) and mucin (MUC2) in colonic tissues increased (p < 0.05). CPCM treatment also reduced serum total bile acids by 24.9%, while hepatic and fecal bile acids increased by 114.0% and 37.8% (all p < 0.001). CPCM lowered serum DAO, D-lactate, and LPS levels (all p < 0.001). mRNA levels of TGR5 and CYP7A1 in the liver, and TGR5 and FXR in the colon, were markedly elevated (all p < 0.001). Histological examinations revealed reduced pancreatic inflammation and hepatic steatosis, with restored colonic structure. Conclusion CPCM treatment significantly improved metabolic dysregulation in the T2DM rat model, reducing blood glucose and lipid levels, enhancing intestinal barrier function, and increasing insulin secretion. These findings highlight the therapeutic potential of CPCM in T2DM management and probiotics' role in metabolic health.
Collapse
Affiliation(s)
- Tabusi Manaer
- School of Pharmacy, Xinjiang Medical University, Urumchi, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumchi, China
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumchi, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumchi, China
| | | | - Xin Sun
- Srational for Drug Control and Medical Device Varification of Xinjiang Military Command, Urumchi, China
| | - Baheban Yeerjiang
- School of Pharmacy, Xinjiang Medical University, Urumchi, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumchi, China
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumchi, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumchi, China
| | - Xinhua Nabi
- School of Pharmacy, Xinjiang Medical University, Urumchi, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumchi, China
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumchi, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumchi, China
| |
Collapse
|
4
|
Yue Z, Xiang W, Duping D, Yuanyuan G, Xuanyi C, Juan L, Xiaojuan H. Integrating 16S rDNA and metabolomics to uncover the therapeutic mechanism of electroacupuncture in type 2 diabetic rats. Front Microbiol 2025; 15:1436911. [PMID: 39834366 PMCID: PMC11743489 DOI: 10.3389/fmicb.2024.1436911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025] Open
Abstract
Objective This study aimed to investigate the impact of electroacupuncture (EA) on blood glucose levels, gut microbiota, short-chain fatty acids (SCFAs), and glucagon-like peptide-1 (GLP-1) in a rat model of type 2 diabetes mellitus (T2DM). Methods Forty Sprague-Dawley (SD) rats were randomly assigned to five groups (n = 8/group) using a random number table: normal control, T2DM model, electroacupuncture (EA), EA + antibiotics (EA + A), and antibiotics (A). The normal rats received a standard diet and saline gavage, while the other groups were fed a high-fat diet and emulsion. The EA + A and A groups received additional antibiotic solution gavage. The normal, model, and A groups were immobilized and restrained for 30 min, six times per week, for 4 weeks. The EA and EA + A groups received EA treatment at specific acupoints for 30 min, six times per week, for 4 weeks. EA parameters were continuous waves at 10 Hz and 1-2 mA. During the intervention, water and food consumption, body weight, fasting blood glucose (FBG), and oral glucose tolerance test (OGTT) were monitored. Pancreatic tissue was examined using hematoxylin and eosin (H&E) staining. Fecal microbial communities were analyzed by 16S rDNA sequencing, and short-chain fatty acids (SCFAs) were measured using gas chromatography-mass spectrometry (GC-MS). Serum levels of fasting insulin (FINS), glycated hemoglobin (HbA1c), and glucagon-like peptide-1 (GLP-1) were determined using enzyme-linked immunosorbent assay (ELISA). Results EA significantly improved daily water intake, food consumption, and body weight in T2DM rats (p < 0.01). EA also reduced FBG, the area under the curve of the OGTT, FINS, and homeostasis model assessment of insulin resistance (HOMA-IR) in T2DM rats (p < 0.05). The ELISA results showed a lower concentration of HbA1c in the EA group (p < 0.05). EA improved the overall morphology and area of pancreatic islets, increased the number of β-cell nuclei, and alleviated β-cell hypertrophy. The abundance of operational taxonomic units (OTUs) in the EA group increased than the model group (p < 0.05), and EA upregulated the Shannon, Chao1, and Ace indices (p < 0.05). EA increased the concentrations of acetic acid, butyric acid, and GLP-1 (p < 0.05). Correlation analysis revealed negative associations between Lactobacillaceae (R = -0.81, p = 0.015) and Lactobacillus (R = -0.759, p = 0.029) with FBG. Peptostreptococcaceae and Romboutsia were negatively correlated with HbA1c (R = -0.81, p = 0.015), while Enterobacteriaceae was positively correlated with OGTT (R = 0.762, p = 0.028). GLP-1 was positively correlated with acetic acid (R = 0.487, p = 0.001), butyric acid (R = 0.586, p = 0.000), isovaleric acid (R = 0.374, p = 0.017), valeric acid (R = 0.535, p = 0.000), and caproic acid (R = 0.371, p = 0.018). Antibiotics disrupted the intestinal microbiota structure and weakened the therapeutic effects of EA. Conclusion EA effectively improved glucose metabolism in T2DM rats. The hypoglycemic effects of EA were associated with the regulation of gut microbiota, SCFAs, and GLP-1.
Collapse
Affiliation(s)
- Zhang Yue
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wang Xiang
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Deng Duping
- Department of Rehabilitation Medicine, Meishan Hospital of Traditional Chinese Medicine, Meishan, China
| | - Gong Yuanyuan
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Xuanyi
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Juan
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Xiaojuan
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Chutia B, Dutta PP, Saikia L, Chowdhury P, Borah M, Barhoi D, Kumar R, Borah SN, Borah D, Manhar AK, Mandal M, Gogoi B. Exploring the antidiabetic activity of potential probiotic bacteria isolated from traditional fermented beverage. World J Microbiol Biotechnol 2024; 41:10. [PMID: 39690349 DOI: 10.1007/s11274-024-04226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Type 2 Diabetes continues to be one of the major public health issues worldwide without any sustainable cure. The modulation of gut microbiota is believed to be caused by probiotic bacteria and several probiotic strains have previously shown antidiabetic activity. The present study aims to isolate potential probiotic bacteria from traditionally used fermented rice beer of Assam, India and to investigate its anti-hyperglycemic effect. Of the 20 isolated bacterial isolates, 5 isolates showed potential probiotic activities, of which, 2 isolates viz. Bacillus sp. FRB_A(A) and Acetobacter sp. FRB_B(S) showed good in vitro anti-oxidant and anti α-glucosidase activities. Based on the in vitro results, isolate Bacillus sp. FRB_A(A) was further used to evaluate the antidiabetic activity in streptozotocin induced diabetic rat model. After 21 days, the blood glucose level in diabetic rats with probiotic administration significantly lowered from 458.00 ± 46.62 mg/dl to 108.20 ± 6.76 mg/dl (p < 0.001), whereas, in diabetic rats without probiotic remained high (576.20 ± 29.48 mg/dl). On analyzing the endogenous antioxidant profile in various tissues of the experimental rats, reduced lipid peroxidation, glutathione level and superoxide dismutase and glutathione peroxidase activity were observed in probiotic administered rats in comparison to the streptozotocin treated diabetic controls. In conclusion, the bacteria Bacillus sp. FRB_A(A) isolated from fermented rice beer possesses probiotic attributes and exhibits significant anti-hyperglycemic activities.
Collapse
Affiliation(s)
- Bishwapriya Chutia
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Partha P Dutta
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati, Assam, 781026, India
| | - Lunasmrita Saikia
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati, Assam, 781026, India
| | - Purvita Chowdhury
- Viral Research and Diagnostic Laboratory, All India Institute of Medical Sciences, Guwahati, Assam, 781101, India
| | - Munmi Borah
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, 784028, India
| | - Dharmeswar Barhoi
- Department of Zoology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Rupesh Kumar
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Siddhartha N Borah
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Debajit Borah
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Ajay Kumar Manhar
- Indira Gandhi Govt. PG College, Vaishali Nagar, Bhilai-23, Chhattisgarh, 490023, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, 784028, India
| | - Bhaskarjyoti Gogoi
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India.
| |
Collapse
|
6
|
Seyiti S, Kelimu A, Yusufu G. Bactrian Camel Milk: Chemical Composition, Bioactivities, Processing Techniques, and Economic Potential in China. Molecules 2024; 29:4680. [PMID: 39407609 PMCID: PMC11478162 DOI: 10.3390/molecules29194680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Bactrian camel (BC) milk has gained increasing attention due to its unique nutritional profile and potential bioactivities. This comprehensive review explores the chemical composition, bioactivities, processing techniques, and economic potential of BC milk in China. The distinctive chemical composition of BC milk, including protein, lipid, carbohydrate, vitamin, and mineral content, is discussed, emphasizing its differences from other mammalian milk. The review highlights the various bioactivities of BC milk, such as anti-inflammatory, antidiabetic, lipid-lowering, and anticancer properties, as well as its modulatory effects on intestinal microbiota. The technological properties of BC milk, focusing on its heat stability, coagulation behavior, and potential for product development, are examined. The review also addresses current processing techniques and their impact on milk quality. Finally, the economic potential and future perspectives of BC milk in China are evaluated. This review provides valuable insights into the multifaceted aspects of BC milk, serving as a foundation for future research and development in this emerging field. The motivation for this review stems from the growing interest in BC milk as a functional food and the need for a comprehensive understanding of its properties, applications, and market potential to guide future research and industry development.
Collapse
Affiliation(s)
- Shamila Seyiti
- School of Economics and Management, Xinjiang University, Shengli Road 666, Urumqi 830046, China;
| | - Abulimiti Kelimu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Nongda East Road 311, Urumqi 830052, China
| | - Gulinaer Yusufu
- School of Economics and Management, Xinjiang University, Shengli Road 666, Urumqi 830046, China;
| |
Collapse
|
7
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
8
|
Ansari F, Pourjafar H, Samakkhah SA, Mirzakhani E. An overview of probiotic camel milk as a nutritional beverage: Challenges and perspectives. Food Sci Nutr 2024; 12:6123-6141. [PMID: 39554333 PMCID: PMC11561798 DOI: 10.1002/fsn3.4298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 11/19/2024] Open
Abstract
There are challenges such as standardization for commercialization and guaranteeing sensory characteristics in camel milk processing. This review gathers a general view of the probiotic camel milk, its contents, its health aspects, and its industrial production. One of the potential candidates of a healthy food product is "probiotic camel milk" which contains several nutritional elements including Lactic acid bacteria and Bifidobacteria and postbiotics such as endopolysaccharides, exopolysaccharides, numerous beneficial enzymes, short-chain fatty acids, teichoic acids, peptides, peptidoglycan-derived neuropeptides, cell surface proteins, different vitamins, plasmalogens, and different kinds of organic acids. It should also be considered that camel milk generally has some advantages over cow milk like its health-beneficial antidiabetic, hypoallergenic, and anticancer properties. As a result, it is gaining much attention from both consumers and manufacturers, and the global probiotic market trend is growing. Although there are obstacles in standardizing processing techniques and maintaining sensory excellence, the health benefits, economic prospects, and adaptability of camel milk and its probiotic variations create a promising avenue for continued research and advancement. Therefore, developing standardized processing techniques and sensory evaluation methods for probiotic camel milk can unlock its full potential as a nutritious beverage, offering a promising solution for consumers seeking healthy and functional food products.
Collapse
Affiliation(s)
- Fereshteh Ansari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO)TehranIran
- Research Center for Evidence‐Based MedicineHealth Management and Safety Promotion Research Institute, Tabriz University of Medical SciencesTabrizIran
- Iranian EBM Centre: A Joanna Briggs Institute Affiliated GroupTabrizIran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research CenterAlborz University of Medical SciencesKarajIran
| | - Shohreh Alian Samakkhah
- Department of Food Hygiene, Faculty of Veterinary MedicineAmol University of Special Modern TechnologiesAmolIran
| | - Esmaeel Mirzakhani
- Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
9
|
Zhang XF, Qi Y, Zhang YP, Deng JL, Chen XL, Li RN, Zhou QL, Fan JM. Fermented foods and metabolic outcomes in diabetes and prediabetes: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2024; 64:9514-9531. [PMID: 37204758 DOI: 10.1080/10408398.2023.2213770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Several randomized controlled trials (RCTs) have investigated the effects of fermented foods on metabolic outcomes in adult patients suffering from diabetes and prediabetes. However, the results of these RCTs are conflicting. This systematic review and meta-analysis was carried out on data from RCTs to evaluate the effects of fermented foods in patients with diabetes and prediabetes. The PubMed, Web of Science, Embase, the Cochrane Library and Scopus databases were searched up to 21 June, 2022. English-language RCTs of fermented foods consumption were included which gave metabolic outcomes on body composition, glucose control, insulin sensitivity, lipid profile, as well as blood pressure. Eighteen RCTs met the inclusion criteria and 843 participants were included in the final analysis. The pooled results showed a significant reduction of fasting blood glucose (FBG), the homeostatic model assessment of insulin resistance (HOMA-IR), total cholesterol (TC), low density lipid cholesterol (LDL-C) and diastolic blood pressure (DBP) in the intervention group versus the control group. The results of this research showed that fermented foods have the potential to improve some metabolic outcomes, including FBG, HOMA-IR, TC, LDL-C, and DBP in patients with diabetes and prediabetes.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Qi
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yong-Ping Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jin-Lan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao-Li Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruo-Nan Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qi-Lun Zhou
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Ming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Bilal Z, Akhmetsadykova S, Baubekova A, Tormo H, Faye B, Konuspayeva G. The Main Features and Microbiota Diversity of Fermented Camel Milk. Foods 2024; 13:1985. [PMID: 38998490 PMCID: PMC11240983 DOI: 10.3390/foods13131985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024] Open
Abstract
Fermented camel milk, named shubat in Central Asia, is historically and culturally important because it is mainly consumed by Kazakh people who live not only in Kazakhstan but also in close neighboring countries. However, despite its cultural and dietetic significance for this local population, research on its composition and processing technology and the richness of its microflora is relatively scarce. The present review of this product, which is an important beverage in the Kazakh culture, provides up-to-date information regarding its main components and their variability according to different factors, surveys recent changes in the processing technologies for making it using modern techniques, and explores the biodiversity of its microflora. It was reported that the protein, vitamin C, and calcium contents in shubat vary between 1.19 and 5.63%, 28 and 417 mg L-1, and 1.03 and 1.88 g L-1. The lactose content totally disappears. Shubat contains a complex microbial consortium that contributes to its strong reputation for health benefits, but a scientific demonstration of these claims has only been partially achieved.
Collapse
Affiliation(s)
- Zauresh Bilal
- Biotechnology Department, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan; (Z.B.); (A.B.)
- LLP “Scientific and Production Enterprise Antigen”, 4, Azerbayeva Str., Almaty 040905, Kazakhstan;
| | - Shynar Akhmetsadykova
- LLP “Scientific and Production Enterprise Antigen”, 4, Azerbayeva Str., Almaty 040905, Kazakhstan;
- LLP “Kazakh Research Institute for Livestock and Fodder Production”, Horse and Camel Breeding Department, 51, Zhandosov Str., Almaty 50035, Kazakhstan
| | - Almagul Baubekova
- Biotechnology Department, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan; (Z.B.); (A.B.)
| | - Helene Tormo
- Département Sciences de l’Agroalimentaire et de la Nutrition, Ecole D’ingénieurs de Purpan, INPT, 75, voie du TOEC, BP 57611, CEDEX 3, 31076 Toulouse, France;
| | - Bernard Faye
- Center of International Cooperation on Agriculture Research for Development–CIRAD, UMR SELMET, Campus International de Baillarguet, CEDEX 5, 34398 Montpellier, France;
| | - Gaukhar Konuspayeva
- Biotechnology Department, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan; (Z.B.); (A.B.)
- LLP “Scientific and Production Enterprise Antigen”, 4, Azerbayeva Str., Almaty 040905, Kazakhstan;
| |
Collapse
|
11
|
Yan S, Wang H, Feng B, Ye L, Chen A. Causal relationship between gut microbiota and diabetic nephropathy: a two-sample Mendelian randomization study. Front Immunol 2024; 15:1332757. [PMID: 38533501 PMCID: PMC10964483 DOI: 10.3389/fimmu.2024.1332757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Emerging evidence has provided compelling evidence linking gut microbiota (GM) and diabetic nephropathy (DN) via the "gut-kidney" axis. But the causal relationship between them hasn't been clarified yet. We perform a Two-Sample Mendelian randomization (MR) analysis to reveal the causal connection with GM and the development of DN, type 1 diabetes nephropathy (T1DN), type 2 diabetes nephropathy (T2DN), type 1 diabetes mellitus (T1DM), and type 2 diabetes mellitus (T2DM). Methods We used summary data from MiBioGen on 211 GM taxa in 18340 participants. Generalized MR analysis methods were conducted to estimate their causality on risk of DN, T1DN, T2DN, T1DM and T2DM from FinnGen. To ensure the reliability of the findings, a comprehensive set of sensitivity analyses were conducted to confirm the resilience and consistency of the results. Results It was showed that Class Verrucomicrobiae [odds ratio (OR) =1.5651, 95%CI:1.1810-2.0742,PFDR=0.0018], Order Verrucomicrobiales (OR=1.5651, 95%CI: 1.1810-2.0742, PFDR=0.0018) and Family Verrucomicrobiaceae (OR=1.3956, 95%CI:1.0336-1.8844, PFDR=0.0296) had significant risk of DN. Our analysis found significant associations between GM and T2DN, including Class Verrucomimicrobiae (OR=1.8227, 95% CI: 1.2414-2.6763, PFDR=0.0139), Order Verrucomimicrobiae (OR=1.5651, 95% CI: 1.8227-2.6764, PFDR=0.0024), Rhodospirillales (OR=1.8226, 95% CI: 1.2412-2.6763, PFDR=0.0026), and Family Verrucomicroniaceae (OR=1.8226, 95% CI: 1.2412-2.6763, PFDR=0.0083). The Eubacteriumprotogenes (OR=0.4076, 95% CI: 0.2415-0.6882, PFDR=0.0021) exhibited a protection against T1DN. Sensitivity analyses confirmed that there was no significant heterogeneity and pleiotropy. Conclusions At the gene prediction level, we identified the specific GM that is causally linked to DN in both T1DM and T2DM patients. Moreover, we identified distinct microbial changes in T1DN that differed from those seen in T2DN, offering valuable insights into GM signatures associated with subtype of nephropathy.
Collapse
Affiliation(s)
- Shuxiang Yan
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Baiyu Feng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Lin Ye
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Anqun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| |
Collapse
|
12
|
Balasubramanian R, Schneider E, Gunnigle E, Cotter PD, Cryan JF. Fermented foods: Harnessing their potential to modulate the microbiota-gut-brain axis for mental health. Neurosci Biobehav Rev 2024; 158:105562. [PMID: 38278378 DOI: 10.1016/j.neubiorev.2024.105562] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Over the past two decades, whole food supplementation strategies have been leveraged to target mental health. In addition, there has been increasing attention on the ability of gut microbes, so called psychobiotics, to positively impact behaviour though the microbiota-gut-brain axis. Fermented foods offer themselves as a combined whole food microbiota modulating intervention. Indeed, they contain potentially beneficial microbes, microbial metabolites and other bioactives, which are being harnessed to target the microbiota-gut-brain axis for positive benefits. This review highlights the diverse nature of fermented foods in terms of the raw materials used and type of fermentation employed, and summarises their potential to shape composition of the gut microbiota, the gut to brain communication pathways including the immune system and, ultimately, modulate the microbiota-gut-brain axis. Throughout, we identify knowledge gaps and challenges faced in designing human studies for investigating the mental health-promoting potential of individual fermented foods or components thereof. Importantly, we also suggest solutions that can advance understanding of the therapeutic merit of fermented foods to modulate the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Ramya Balasubramanian
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, County Cork, Ireland
| | | | - Eoin Gunnigle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, County Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
13
|
Ayoub MA, Yap PG, Mudgil P, Khan FB, Anwar I, Muhammad K, Gan CY, Maqsood S. Invited review: Camel milk-derived bioactive peptides and diabetes-Molecular view and perspectives. J Dairy Sci 2024; 107:649-668. [PMID: 37709024 DOI: 10.3168/jds.2023-23733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023]
Abstract
In dairy science, camel milk (CM) constitutes a center of interest for scientists due to its known beneficial effect on diabetes as demonstrated in many in vitro, in vivo, and clinical studies and trials. Overall, CM had positive effects on various parameters related to glucose transport and metabolism as well as the structural and functional properties of the pancreatic β-cells and insulin secretion. Thus, CM consumption may help manage diabetes; however, such a recommendation will become rationale and clinically conceivable only if the exact molecular mechanisms and pathways involved at the cellular levels are well understood. Moreover, the application of CM as an alternative antidiabetic tool may first require the identification of the exact bioactive molecules behind such antidiabetic properties. In this review, we describe the advances in our knowledge of the molecular mechanisms reported to be involved in the beneficial effects of CM in managing diabetes using different in vitro and in vivo models. This mainly includes the effects of CM on the different molecular pathways controlling (1) insulin receptor signaling and glucose uptake, (2) the pancreatic β-cell structure and function, and (3) the activity of key metabolic enzymes in glucose metabolism. Moreover, we described the current status of the identification of CM-derived bioactive peptides and their structure-activity relationship study and characterization in the context of molecular markers related to diabetes. Such an overview will not only enrich our scientific knowledge of the plausible mode of action of CM in diabetes but should ultimately rationalize the claim of the potential application of CM against diabetes. This will pave the way toward new directions and ideas for developing a new generation of antidiabetic products taking benefits from the chemical composition of CM.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Pei-Gee Yap
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (i2U) Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Irfa Anwar
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (i2U) Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| |
Collapse
|
14
|
Wang Y, Liang Z, Shen F, Zhou W, Manaer T, Jiaerken D, Nabi X. Exploring the immunomodulatory effects and mechanisms of Xinjiang fermented camel milk-derived bioactive peptides based on network pharmacology and molecular docking. Front Pharmacol 2023; 13:1038812. [PMID: 36686662 PMCID: PMC9846521 DOI: 10.3389/fphar.2022.1038812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
Purpose: Fermented camel milk from Xinjiang is rich in probiotics and has immunomodulatory effects as an important source of bioactive peptides. However, it is not clear whether it is the probiotic or the bioactive peptide that acts. The present study aimed to extract and identify bioactive peptides from fermented camel milk in Xinjiang and investigate their immunomodulatory effects and mechanisms based on network pharmacology and molecular docking. Methods: Four probiotic bacteria were used to ferment the fresh camel milk and the bioactive peptides were extracted and isolated by ultrafiltration and column chromatography. Network pharmacology predicts targets and pathways of action. GeneCards and OMIM-GENE-MAP database were used in order to search disease target genes and screen common target genes. Then we used STRING web to construct a protein-protein interaction (PPI) interaction network of the common target protein. The key targets were analyzed by GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis through the David database. The "drug (bioactive peptide)-disease-targets-pathway" network was established and molecular docking was used for prediction. Results: Two fractions were obtained by UV spectrophotometer; whey acidic protein, α-lactalbumin, and peptidoglycan recognition protein 1 were the main protein-like components of Xinjiang fermented camel milk-derived bioactive peptides. The repeat sequence of peptidoglycan recognition protein 1 was selected and then seven bioactive peptides were obtained. Bioactive peptides had 222 gene targets, anti-inflammatory diseases had 2598 gene targets, and immune regulation had 866 gene targets, the intersection of which was 66 in common gene targets. Gene ontology and KEGG analysis reveals that bioactive peptides mainly play a vital role in the signaling pathways of lipid and atherosclerosis, pathways in cancer. The molecular docking results showed that the seven bioactive peptides bound well to the top four scoring proteins. Conclusion: The immunomodulatory and anti-inflammatory effects and mechanisms of Xinjiang fermented camel milk-derived bioactive peptides were initially investigated by network pharmacology and molecular docking, providing a scientific basis for future studies.
Collapse
Affiliation(s)
- Yuxing Wang
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Zhuangzhuang Liang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Fang Shen
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Wenting Zhou
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Tabusi Manaer
- Xinjiang Uygur Autonomous Region Institute for Drug Control, Urumqi, China
| | - Didaier Jiaerken
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Xinhua Nabi
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China,*Correspondence: Xinhua Nabi,
| |
Collapse
|
15
|
Konuspayeva G, Baubekova A, Akhmetsadykova S, Faye B. Traditional dairy fermented products in Central Asia. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Indigenous Chinese fermented dairy products: Microbial diversity, flavour, and health benefits. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Akhmetsadykova SH, Konuspayeva G, Akhmetsadykov N. Camel breeding in Kazakhstan and future perspectives. Anim Front 2022; 12:71-77. [PMID: 35974781 PMCID: PMC9374522 DOI: 10.1093/af/vfac048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Shynar H Akhmetsadykova
- LLP Kazakh Research Institute for Livestock and Fodder Production, Almaty 50035, Kazakhstan
- Research and Production Enterprise, “ANTIGEN” Co Ltd, Almaty 050409, Kazakhstan
- Biotechnology Department, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | | | - Nurlan Akhmetsadykov
- Research and Production Enterprise, “ANTIGEN” Co Ltd, Almaty 050409, Kazakhstan
- Kazakh National Agrarian Research University, Almaty 050013, Kazakhstan
| |
Collapse
|
18
|
Wang Y, Zhao J, Qin Y, Yu Z, Zhang Y, Ning X, Sun S. The Specific Alteration of Gut Microbiota in Diabetic Kidney Diseases—A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:908219. [PMID: 35784273 PMCID: PMC9248803 DOI: 10.3389/fimmu.2022.908219] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background Emerging evidence indicates that gut dysbiosis is involved in the occurrence and development of diabetic kidney diseases (DKD). However, the key microbial taxa closely related to DKD have not been determined. Methods PubMed, Web of Science, Cochrane, Chinese Biomedical Databases, China National Knowledge Internet, and Embase were searched for case-control or cross-sectional studies comparing the gut microbiota of patients with DKD and healthy controls (HC) from inception to February 8, 2022, and random/fixed-effects meta-analysis on the standardized mean difference (SMD) were performed for alpha diversity indexes between DKD and HC, and beta diversity indexes and the relative abundance of gut microbiota were extracted and summarized qualitatively. Results A total of 16 studies (578 patients with DKD and 444 HC) were included. Compared to HC, the bacterial richness of patients with DKD was significantly decreased, and the diversity indexes were decreased but not statistically, companying with a distinct beta diversity. The relative abundance of phylum Proteobacteria, Actinobacteria, and Bacteroidetes, family Coriobacteriaceae, Enterobacteriaceae, and Veillonellaceae, genus Enterococcus, Citrobacter, Escherichia, Klebsiella, Akkermansia, Sutterella, and Acinetobacter, and species E. coli were enriched while that of phylum Firmicutes, family Lachnospiraceae, genus Roseburia, Prevotella, and Bifidobacterium were depleted in patients with DKD. Conclusions The gut microbiota of patients with DKD may possess specific features characterized by expansion of genus Escherichia, Citrobacter, and Klebsiella, and depletion of Roseburia, which may contribute most to the alterations of their corresponding family and phylum taxa, as well as the bacterial diversity and composition. These microbial taxa may be closely related to DKD and serve as promising targets for the management of DKD. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021289863.
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Postgraduate Student, Xi’an Medical University, Xi’an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Nephrology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Zixian Yu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yumeng Zhang
- Department of Postgraduate Student, Xi’an Medical University, Xi’an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Shiren Sun,
| |
Collapse
|
19
|
Awwad SF, Abdalla A, Howarth FC, Stojanovska L, Kamal-Eldin A, Ayyash MM. Invited Review: Potential effects of short- and long-term intake of fermented dairy products on prevention and control of type 2 diabetes mellitus. J Dairy Sci 2022; 105:4722-4733. [DOI: 10.3168/jds.2021-21484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022]
|
20
|
Liu Y, Zheng S, Cui J, Guo T, Zhang J. Lactiplantibacillus plantarum Y15 alleviate type 2 diabetes in mice via modulating gut microbiota and regulating NF-κB and insulin signaling pathway. Braz J Microbiol 2022; 53:935-945. [PMID: 35150432 PMCID: PMC8853432 DOI: 10.1007/s42770-022-00686-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics have been used for the treatment of chronic metabolic diseases, including type 2 diabetes (T2D). However, the mechanisms of antidiabetic effects are not well understood. The object of this study is to assess the antidiabetic effect of Lactiplantibacillus plantarum Y15 isolated from Chinese traditional dairy products in vivo. Results revealed that L. plantarum Y15 administration improved the biochemical indexes related to diabetes, reduced pro-inflammatory cytokines, L. plantarum Y15 administration reshaped the structure of gut microbiota, decreased the abundance of LPS-producing, and increased short-chain fatty acids (SCFAs)-producing bacteria, which subsequently reduce the levels of lipopolysaccharide (LPS) and pro-inflammatory cytokines. L. plantarum Y15 administration also regulated the expressions of the inflammation and insulin signaling pathway-related genes. These results suggest that L. plantarum Y15 may serve as a potential probiotic for developing food products to ameliorate T2D.
Collapse
Affiliation(s)
- Yin Liu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China.
| | - Shujuan Zheng
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Jiale Cui
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Tingting Guo
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Jingtao Zhang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| |
Collapse
|
21
|
Srivastava S, Singh PR. Oral Administration of Lactobacillus casei and Bifidobacterium bifidum Improves Glucagon like Peptide-1(GLP-1) and Glucose-Dependent Insulinotropic Polypeptide (GIP) Level in Streptozotocin Induced Diabetic Rats. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2021. [DOI: 10.12944/crnfsj.9.2.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The gut microbiome plays significant role in the function and integrity of the gastrointestinal tract. They also maintain immune homeostasis and host energy metabolism. The metabolic products of these intestinal microbes can alter carbohydrate metabolism, nutrient absorption and reduce appetite to promote healthy lifestyle. Intestinal disbiosis observed in metabolic disorders like obesity and diabetes. Restoration of dysbiosed gut microbiome through oral administration of probiotics that may have profound health effect in diabetes. In case of diabetes, reports postulated impaired level of incretin, therefore we explored the effect of oral administration of probiotic bacteria Lactobacillus casei NCDC 017 (LC017) and Bifidobacterium bifidum NCDC 231 (BB231) alone and in combination on secretion of incretin hormones such as glucagon like peptide-1 and glucose dependent insulinotropic polypeptide. Thirty six male Wistar rats were randomly divided into six groups and diabetes was induced by single dose of streptozotocin (50 mg/kg body weight) in experimental rats intraperitonially except a group of healthy rats. The diabetic rats were daily administered orally with single dose (~107cfu/ml) of LC017 and BB231 alone and in combination for 28 days. Also, one group of diabetic rats was treated with an anti-diabetic drug, acarbose (10mg/kg body weight) and used a standard control. The change in body weight, sucrose tolerance test, GLP-1, GIP level in serum and GLP-1 level in different part of intestine were observed. The results have shown reduction in body weight in diabetic rats as compared to non-diabetic rats but improved after treatment of probiotic bacteria. Administration of LC017 and BB231 significantly improved GLP-1 and GIP level which were initially impaired in diabetic rats and their combination significantly decreased glucose level in sucrose tolerance test. This study indicated that LC017 and BB231 have significant hypoglycaemic potential in diabetic rats by increasing GLP-1 and GIP level. These findings offered a base for the use of LC017 and BB231 for improvement and treatment of diabetes.
Collapse
Affiliation(s)
- Sumiran Srivastava
- 1Department of Biotechnology, Bundelkhand University, Jhansi, Uttar Pradesh, India
| | - Prof. Rambir Singh
- 2Department of Horticulture, Aromatic and Medicinal Plants, Mizoram University, Aizawl, Mizoram, India
| |
Collapse
|
22
|
Manaer T, Yu L, Nabi XH, Dilidaxi D, Liu L, Sailike J. The beneficial effects of the composite probiotics from camel milk on glucose and lipid metabolism, liver and renal function and gut microbiota in db/db mice. BMC Complement Med Ther 2021; 21:127. [PMID: 33888105 PMCID: PMC8061000 DOI: 10.1186/s12906-021-03303-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Background Probiotics may have beneficial effects on patients with type 2 diabetes mellitus (T2DM). We separated 4 lactobacillus and 1 saccharomycetes from traditional fermented cheese whey (TFCW) and prepared composite probiotics from camel milk (CPCM) and investigated their effects on glucose and lipid metabolism, liver and renal function and gut microbiota in db/db mice. Methods CPCM was prepared in the laboratory and 40 db/db mice were randomly divided into 4 groups as metformin, low-dose and high-dose group and model group, and treated for 6 weeks. In addition, 10 C57BL/Ks mice as normal control group were used for comparison. Fasting blood glucose (FBG), body weight (BW), oral glucose tolerance test (OGTT), glycated hemoglobin (HbAlc), C-peptide (CP), triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), 24 h urinary microalbumin (24 h malb), urine ketone, urine sugar, pancreas and liver tissue and intestinal flora were tested. Results Compared to diabetic group, high dose CPCM significantly decreased FBG, OGTT, HbAlc and IRI, plasma TC, TG, LDL-C, 24 h malb, urine ketone and urine sugar, increased CP, HDL-C levels, improved the liver and kidney function, protected the function of islets, also increased intestinal tract lactic acid bacteria and Bifidobacterium, decreased Escherichia in db/db mice. Conclusion CPCM decreased FBG, OGTT and HbAlc, increased CP, modulated lipid metabolism and improved liver and kidney protected injury in db/db mice, which may be related to various probiotics acting through protecting the function of islets and regulating intestinal flora disturbance. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03303-4.
Collapse
Affiliation(s)
- Tabusi Manaer
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, 830011, China.,Xinjiang Uygur Autonomous Region Institute for Drug Control, Urumqi, 830054, China
| | - Lan Yu
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, 830011, China.,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Xin-Hua Nabi
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, 830011, China.
| | - Dinareer Dilidaxi
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, 830011, China
| | - Lu Liu
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, 830011, China
| | | |
Collapse
|
23
|
|
24
|
Zhang Z, Bai L, Guan M, Zhou X, Liang X, Lv Y, Yi H, Zhou H, Liu T, Gong P, Sun J, Zhang L. Potential probiotics Lactobacillus casei K11 combined with plant extracts reduce markers of type 2 diabetes mellitus in mice. J Appl Microbiol 2021; 131:1970-1982. [PMID: 33694236 DOI: 10.1111/jam.15061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
AIMS Probiotics and plant extracts have been used to prevent the development of type 2 diabetes mellitus (T2DM). The study aimed to explore the effect of the interaction between potential probiotics and bitter gourd extract (BGE) or mulberry leaf extract (MLE) on T2DM. METHODS AND RESULTS Potential probiotics were tested for their gastrointestinal tract viability and growth situation combined with BGE and MLE in vitro. The diabetes model was constructed in C57BL/6 mice, and the potential effect and mechanism of regulating blood glucose were verified. Hematoxylin-eosin staining (HE), gas chromatography (GC), ELISA, and RT-PCR were also used for analysis. The results showed that Lactobacillus casei K11 had outstanding gastrointestinal tract viability and growth situation with plant extracts. Administration of L. casei K11 combined with BGE and MLE significantly reduced blood glucose levels and ameliorated insulin resistance in diabetic mice than the administration of Lactobacillus paracasei J5 combined with BGE and MLE. Moreover, in L. casei K11 combined with BGE and MLE groups, lipid metabolism, oxidative stress, and proinflammatory cytokine levels were regulated. Furthermore, the results indicated that L. casei K11 combined with BGE and MLE improved free fatty acid receptor 2 (FFAR2) upregulation, glucagon-like peptide-1 (GLP-1) secretion, and short-chain fatty acid (SCFA) levels. CONCLUSIONS These findings showed that L. casei K11 combined with BGE and MLE modified the SCFA-FFAR2-GLP-1 pathway to improve T2DM. SIGNIFICANCE AND IMPACT OF THE STUDY This study identified a new modality for evaluating interactions between potential probiotics and plant extracts. Our findings revealed that L. casei K11 combined with BGE and MLE significantly promoted the SCFA-FFAR2-GLP-1 pathway to inhibit T2DM.
Collapse
Affiliation(s)
- Z Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - L Bai
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - M Guan
- Qingdao Central Hospital, Qingdao, Shandong, China
| | - X Zhou
- Qingdao Central Hospital, Qingdao, Shandong, China
| | - X Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Y Lv
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - H Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - H Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - T Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - P Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - J Sun
- Qingdao Central Hospital, Qingdao, Shandong, China
| | - L Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
25
|
Tian S, Li X, Wang Y, Lu Y. The protective effect of sulforaphane on type II diabetes induced by high-fat diet and low-dosage streptozotocin. Food Sci Nutr 2021; 9:747-756. [PMID: 33598160 PMCID: PMC7866575 DOI: 10.1002/fsn3.2040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/26/2022] Open
Abstract
Sulforaphane (SFN) which is abundant in broccoli florets, seeds, and sprouts has been reported to have beneficial effects on attenuating metabolic diseases, such as antiobesity, antidiabetes, and antioxidative activities. However, the effects of SFN on the regulation of type II diabetes through easing nonalcoholic fatty liver (NAFLD) and repairing pancreas tissue are rarely reported. In this study, we found that the administration with different dosages of SFN was able to increase serum insulin level, enhance HOMA-β index, decrease fasting blood glucose and serum total cholesterol, triglyceride, low-density lipoprotein (LDL-C), fibroblast growth factor21 (FGF21) levels, ease NAFLD level, and repair the pancreas tissue. In addition, SFN was able to increase liver antioxidant capacities. In particular, high (10 mg/kg) dosage of SFN exerted a significant beneficial effect for decreasing serum lipopolysaccharide levels. Furthermore, the administration of SFN could also decrease the relative abundance of Allobaculum at the genus level. Low dosage (2 mg/kg) of SFN could increase the relative abundance of Bacteroidetes and decrease the relative abundance of Firmicutes at the phylum level. Overall, our results showed that SFN exerted its antidiabetic effect through easing NAFLD and repairing pancreas tissue in association with modulation of gut microbiota. The ease of NAFLD by SFN was accompanied by enhancing liver antioxidant abilities and improving FGF21 resistance.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| | - Xiangfei Li
- College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| | - Yunfan Wang
- College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| | - Yingjian Lu
- College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| |
Collapse
|
26
|
Kilari BP, Mudgil P, Azimullah S, Bansal N, Ojha S, Maqsood S. Effect of camel milk protein hydrolysates against hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin (STZ)-induced diabetic rats. J Dairy Sci 2020; 104:1304-1317. [PMID: 33272578 DOI: 10.3168/jds.2020-19412] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
This study investigated the effect of camel milk protein hydrolysates (CMPH) at 100, 500 and 1,000 mg/kg of body weight (BW) for 8 wk on hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin-induced diabetic rats. Body weights and fasting blood glucose levels were observed after every week until 8 wk, and oral glucose tolerance test (OGTT) levels and biochemical parameters were evaluated after 8 wk in blood and serum samples. Antioxidant enzyme activity and lipid peroxidation in the liver were estimated, and histological examination of the liver and pancreatic tissues was also conducted. Results showed that CMPH at 500 mg/kg of BW [camel milk protein hydrolysate, mid-level dosage (CMPH-M)] exhibited potent hypoglycemic activity, as shown in the reduction in fasting blood glucose and OGTT levels. The hypolipidemic effect of CMPH was indicated by normalization of serum lipid levels. Significant improvement in activity of superoxide dismutase and catalase, and reduced glutathione levels were observed, along with the attenuation of malondialdehyde content in groups fed CMPH, especially CMPH-M, was observed. Decreased levels of liver function enzymes (aspartate aminotransferase and alanine aminotransferase) in the CMPH-M group was also noted. Histology of liver and pancreatic tissue displayed absence of lipid accumulation in hepatocytes and preservation of β-cells in the CMPH-M group compared with the diabetic control group. This is the first study to report anti-hyperglycemic and anti-hyperlipidemic effect of CMPH in an animal model system. This study indicates that CMPH can be suggested for its therapeutic benefits for hyperglycemia and hyperlipidemia, thus validating its use for better management of diabetes and associated comorbidities.
Collapse
Affiliation(s)
- Bhanu Priya Kilari
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, 17666, United Arab Emirates
| | - Nidhi Bansal
- ARC Dairy Innovation Hub, School of Agriculture and Food Sciences, The University of Queensland, QLD 4072, Australia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, 17666, United Arab Emirates.
| | - Sajid Maqsood
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.
| |
Collapse
|
27
|
Wang Y, Wu Y, Sailike J, Sun X, Abuduwaili N, Tuoliuhan H, Yusufu M, Nabi XH. Fourteen composite probiotics alleviate type 2 diabetes through modulating gut microbiota and modifying M1/M2 phenotype macrophage in db/db mice. Pharmacol Res 2020; 161:105150. [DOI: 10.1016/j.phrs.2020.105150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 07/22/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
|
28
|
Li X, Chen L, Zhu X, Lu Z, Lu Y. Effect of γ-aminobutyric acid-rich yogurt on insulin sensitivity in a mouse model of type 2 diabetes mellitus. J Dairy Sci 2020; 103:7719-7729. [PMID: 32684454 DOI: 10.3168/jds.2019-17757] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/24/2020] [Indexed: 12/28/2022]
Abstract
This study aimed to investigate the effect of a γ-aminobutyric acid (GABA)-rich yogurt fermented with Streptococcus thermophilus fmb-5 on insulin sensitivity in high-fat and low-dose streptozotocin-induced type 2 diabetes mellitus mice. To study the ability of the yogurt to enhance insulin sensitivity, diabetic mice were treated with 0.5, 1, or 2 g/L of GABA yogurt once a day from wk 1 to 12. Compared with results in untreated diabetic mice, treatment with different dosages of GABA yogurt was associated with increased serum insulin and fat coefficient (fat weight relative to body weight) levels, decreased blood urea nitrogen, kidney coefficient (kidney weight relative to body weight), glucose area under the curve levels, and insulin sensitivity index, but did not alter blood glucose level or body weight. The highest dosage of GABA yogurt had a greater beneficial effect with respect to insulin resistance than the lower dosages. In particular, dietary supplementation of the high dosage of GABA yogurt favorably regulated HOMA-β (homeostasis model assessment of β-cell function), total cholesterol, high-density lipoprotein cholesterol, fat coefficient, and improved islet cells morphology. These results demonstrated that 2 g/L GABA yogurt could ameliorate insulin sensitivity. The GABA-rich yogurts appeared to be responsible for health-beneficial effects in this mouse model of diabetes.
Collapse
Affiliation(s)
- Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, P. R. China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lin Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, P. R. China.
| |
Collapse
|
29
|
Zhao D, Zhu H, Gao F, Qian Z, Mao W, Yin Y, Tan J, Chen D. Antidiabetic effects of selenium-enriched Bifidobacterium longum DD98 in type 2 diabetes model of mice. Food Funct 2020; 11:6528-6541. [PMID: 32638790 DOI: 10.1039/d0fo00180e] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Both selenium and probiotics have shown antidiabetic effects in a type 2 diabetes model. The objective of this study is to investigate the alleviating effects of selenium-enriched Bifidobacterium longum DD98 (Se-B. longum DD98) on diabetes in mice and explore the possible underlying mechanism. A type 2 diabetes model was established using a high-fat diet and streptozotocin (STZ) injection in mice. To investigate the beneficial effects of Se-B. longum DD98, diabetic mice were then treated with B. longum DD98, Se-B. longum DD98, or sodium selenite (Na2SeO3) for three weeks. The results suggested that all three treatments could reduce the levels of fasting blood glucose (FBG), glycated hemoglobin (HbA1c), insulin and leptin, improve glucose tolerance, regulate lipid metabolism, and protect against the impairment of the liver and pancreas, while Se-B. longum DD98 showed a greater effect on relieving the above mentioned symptoms of type 2 diabetes in mice. Furthermore, this effect was associated with butyrate production and inflammatory response. Se-B. longum DD98 better increased the level of butyrate in feces and decreased the levels of proinflammatory cytokines in the pancreas compared with B. longum DD98 and Na2SeO3, leading to ameliorative insulin resistance. Se-B. longum DD98 also improved the glucagon like peptide-1 (GLP-1) level in serum and intestinal cells, which protected the pancreatic β-islet cells from damage induced by type 2 diabetes. These results demonstrated that Na2SeO3, B. longum DD98, or Se-B. longum DD98 could alleviate the progression of type 2 diabetes in mice. Se-B. longum DD98 showed greater antidiabetic effects than the other two treatments, and could be considered as a promising candidate for treating type 2 diabetes.
Collapse
Affiliation(s)
- Dan Zhao
- Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 201100, China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Marques AM, Sarandy MM, Novaes RD, Gonçalves RV, Freitas MB. Preclinical relevance of probiotics in type 2 diabetes: A systematic review. Int J Exp Pathol 2020; 101:68-79. [PMID: 32608551 DOI: 10.1111/iep.12359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes (T2DM) is among the most prevalent metabolic diseases in the world and may result in several long-term complications. The crosstalk between gut microbiota and host metabolism is closely related to T2DM. Currently, fragmented data hamper defining the relationship between probiotics and T2DM. This systematic review aimed at investigating the effects of probiotics on T2DM in animal models. We systematically reviewed preclinical evidences using PubMed/MEDLINE and Scopus databases, recovering 24 original articles published until September 27th, 2019. This systematic review was performed according to PRISMA guidelines. We included experimental studies with animal models reporting the effects of probiotics on T2DM. Studies were sorted by characteristics of publications, animal models, performed analyses, probiotic used and interventions. Bias analysis and methodological quality assessments were examined through the SYRCLE's Risk of Bias tool. Probiotics improved T2DM in 96% of the studies. Most studies (96%) used Lactobacillus strains, and all of them led to improved glycaemia. All studies used rodents as models, and male animals were preferred over females. Results suggest that probiotics have a beneficial effect in T2DM animals and could be used as a supporting alternative in the disease treatment. Considering a detailed evaluation of the reporting and methodological quality, the current preclinical evidence is at high risk of bias. We hope that our critical analysis will be useful in mitigating the sources of bias in further studies.
Collapse
Affiliation(s)
| | | | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas, Brazil
| | | | | |
Collapse
|
31
|
Rukavina Mikusic NL, Kouyoumdzian NM, Choi MR. Gut microbiota and chronic kidney disease: evidences and mechanisms that mediate a new communication in the gastrointestinal-renal axis. Pflugers Arch 2020; 472:303-320. [PMID: 32064574 DOI: 10.1007/s00424-020-02352-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) represents a growing public health problem associated with loss of kidney function and cardiovascular disease (CVD), the main leading cause of morbidity and mortality in CKD. It is well established that CKD is associated with gut dysbiosis. Over the past few years, there has been a growing interest in studying the composition of the gut microbiota in patients with CKD as well as the mechanisms by which gut dysbiosis contributes to CKD progression, in order to identify possible therapeutic targets to improve the morbidity and survival in CKD. The purpose of this review is to explore the clinical evidence and the mechanisms involved in the gut-kidney crosstalk as well as the possible interventions to restore a normal balance of the gut microbiota in CKD. It is well known that the influence of the gut microbiota on the gut-kidney axis acts in a reciprocal way: on the one hand, CKD significantly modifies the composition and functions of the gut microbiota. On the other hand, gut microbiota is able to manipulate the processes leading to CKD onset and progression through inflammatory, endocrine, and neurologic pathways. Understanding the complex interaction between these two organs (gut microbiota and kidney) may provide novel nephroprotective interventions to prevent the progression of CKD by targeting the gut microbiota. The review is divided into three main sections: evidences from clinical studies about the existence of a gut microbiota dysbiosis in CKD; the complex mechanisms that explain the bidirectional relationship between CKD and gut dysbiosis; and reports regarding the effects of prebiotic, probiotic, and synbiotic supplementation to restore gut microbiota balance in CKD.
Collapse
Affiliation(s)
- Natalia Lucía Rukavina Mikusic
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Nicolás Martín Kouyoumdzian
- CONICET - Universidad de Buenos Aires, Instituto Alberto C. Taquini de Investigaciones en Medicina Translacional (IATIMET), Buenos Aires, Argentina
| | - Marcelo Roberto Choi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Buenos Aires, Argentina.
- CONICET - Universidad de Buenos Aires, Instituto Alberto C. Taquini de Investigaciones en Medicina Translacional (IATIMET), Buenos Aires, Argentina.
| |
Collapse
|
32
|
Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice. Biomed Pharmacother 2020; 125:109914. [PMID: 32035395 DOI: 10.1016/j.biopha.2020.109914] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUD/AIM Previous studies have found that probiotic fermented camel milk has anti-diabetic effect by inducing (glucagon-like peptide-1) GLP-1 secretion. Probiotics are valuable in prevention and treatment of diabetes. As a result, our team islolated 14 probiotics from fermented camel milk. These probiotics have beneficial characteristics, but the possible anti-diabetic mechanisms remains unclear. The present study aimed to explore the possoble anti-diabetic mechanisms of 14 probiotics. METHODS C57BL/Ks mice were normal group. The db/db mice were randomized into five groups: model group, metformin group, liraglutide group, low-dose and high-dose probiotic group. Biochemical parameters were determined by the respective assay kits. The levels of the short-chain fatty acids (SCFAs) and microbiota were respectively determined by gas chromatography and qRT-PCR. HE staining and immunofluorescence were used for histomorphological observation. Quantitative PCR and western-blot were determined the gene and protein expression of Bax, Bcl-2, Caspase-3 and PI3K/AKT. RESULTS Probiotics significantly improved blood glucose and blood lipid parameters, as well as the morphological changes of pancreas, liver and kidney. Probiotics improved the gut barrier function through increasing the levels of SCFA-producing bacteria and SCFAs as well as the expression of claudin-1 and mucin-2, and decreasing Escherichia coli and LPS level. In additon, probiotics enhanced insulin secretion through glucose-triggered GLP-1 secretion by upregulating G protein-coupled receptor 43/41 (GPR43/41), proglucagon and proconvertase 1/3 activity. Forthermore, probiotics protected pancreas against apoptosis, which may be dependent on the upregulation of PI3K/AKT pathway. CONCLUSIONS The anti-diabetic effect of 14 probiotics in db/db mice seem to be related to an increase of SCFA-producing bacteria, the improvement of intestinal barrier function and the upregulation of GLP-1 production, and indicate these probiotics might be a good candidate to prevent and treat diabetes.
Collapse
|
33
|
Yan F, Li N, Yue Y, Wang C, Zhao L, Evivie SE, Li B, Huo G. Screening for Potential Novel Probiotics With Dipeptidyl Peptidase IV-Inhibiting Activity for Type 2 Diabetes Attenuation in vitro and in vivo. Front Microbiol 2020; 10:2855. [PMID: 31998245 PMCID: PMC6965065 DOI: 10.3389/fmicb.2019.02855] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/25/2019] [Indexed: 01/04/2023] Open
Abstract
Diabetes has become the second most severe disease to human health. Probiotics are important for maintaining gastrointestinal homeostasis and energy balance and have been demonstrated to play a positive role in the prevention and treatment of metabolic syndromes, such as obesity, inflammation, dyslipidemia, and hyperglycemia. The objective of this study was to screen potential antidiabetic strains in vitro and evaluate its effects in vivo. For the in vitro section, dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant activities of 14 candidate Lactobacillus spp. strains were tested. Then hydrophobicity and acid and bile salt tolerance assays were determined. The most promising in vitro strain was further evaluated for its antidiabetic properties in vivo using type 2 diabetes mice induced by high-fat diet and intraperitoneal injection of streptozotocin (STZ). The reference strain for this study was Lactobacillus rhamnosus GG. Results showed that cell-free excretory supernatants and cell-free extracts of Lactobacillus acidophilus KLDS1.0901 had better DPP-IV inhibitory activity, antioxidative activities, and biological characteristics than other strains. At the end of the treatment, we found that L. acidophilus KLDS1.0901 administration decreased the levels of fasting blood glucose (FBG), glycosylated hemoglobin, insulin in serum and AUCglucose, and increased the level of glucagon-like peptide 1 in serum compared with diabetic mice (p < 0.05). Moreover, L. acidophilus KLDS1.0901 supplementation increased the activities of superoxide dismutase, glutathione peroxidase, the level of glutathione, and reduced the level of malondialdehyde in serum. These results indicated that L. acidophilus KLDS1.0901 could be used as a potential antidiabetic strain; its application as food supplement and drug ingredient is thus recommended.
Collapse
Affiliation(s)
- Fenfen Yan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,Food College, Northeast Agricultural University, Harbin, China
| | - Na Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,Food College, Northeast Agricultural University, Harbin, China
| | - Yingxue Yue
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,Food College, Northeast Agricultural University, Harbin, China
| | - Chengfeng Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,Food College, Northeast Agricultural University, Harbin, China
| | - Li Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,Food College, Northeast Agricultural University, Harbin, China
| | - Smith Etareri Evivie
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,Food Science and Human Nutrition Unit, Department of Animal Science, University of Benin, Benin City, Nigeria
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,Food College, Northeast Agricultural University, Harbin, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,Food College, Northeast Agricultural University, Harbin, China
| |
Collapse
|
34
|
Karim N, Rahman A, Chanudom L, Thongsom M, Tangpong J. Mangosteen Vinegar Rind from Garcinia mangostana Prevents High-Fat Diet and Streptozotocin-Induced Type II Diabetes Nephropathy and Apoptosis. J Food Sci 2019; 84:1208-1215. [PMID: 31012974 DOI: 10.1111/1750-3841.14511] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/23/2019] [Accepted: 02/14/2019] [Indexed: 12/28/2022]
Abstract
Type II diabetes (T2D) nephropathy, a major cause of end-stage kidney disease, progresses and develops from oxidative stress. Natural polyphenols can protect the kidney from diabetic nephropathy exerting antioxidant activities. The present approach enumerates the reno-protective and anti-apoptotic effects of mangosteen vinegar rind (MVR, a phenolic aqueous extract) against high-fat diet (5 g/day up to five weeks)-/streptozotocin (single ip, dose 30 mg/kgBW)-induced T2D nephropathy of albino mice. In vitro total phenolic content, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant capacity, and α-amylase inhibition activity as antidiabetic assay of MVR were performed. In vivo mice body weight, oral glucose, and maltose tolerance test, metabolic parameters (plasma glucose, insulin level, omeostasis model assessment-estimated insulin resistance), biochemical parameters (kidney hypertrophy, blood urea nitrogen, creatinine), oxidative stress parameters (malondialdehyde, superoxide dismutase, catalase) were estimated in an intervention study. Additionally, renal morphology and early apoptosis were observed following the H & E staining and TUNEL assay of the tissue frozen section. We found that the aqueous extract of MVR possesses potent in vitro antioxidative and antidiabetic activities. Animal intervention results showed that MVR 100, 200 mg/kgBW, and Glibenclamide 60 mg/kgBW treatments significantly improved (P < 0.05) the abovementioned parameters compared to the diabetic control group. Furthermore, treatments also significantly restored (P < 0.05) kidney histological alterations and reduced cellular apoptosis compared to the diabetic control group. These findings concluded that MVR treatments significantly modulated the glucose intolerance, metabolic alterations, and oxidative stress-induced pathological alterations and cellular apoptosis of diabetic kidney. PRACTICAL APPLICATION: Garcinia mangostana, a polyphenol rich natural product, is obtained from the tropical rain forest area of Southeast Asian countries and processes diverse biological activities including antioxidant, anti-proliferative, anti-inflammatory, anti-carcinogenic, and so on. This research first time focuses on the nephro-protective and anti-apoptotic effects of mangosteen vinegar rind (MVR) from the mangosteen fruit pericarp. Our study provides the efficient data to prove the beneficial effect of MVR as a dietary supplement for the prevention and management of diabetic nephropathy.
Collapse
Affiliation(s)
- Naymul Karim
- Biomedical Sciences, School of Allied Health Sciences, Walailak Univ., Nakhon Si Thammarat, 80161, Thailand
| | - Atiar Rahman
- Dept. of Biochemistry and Molecular Biology, Univ. of Chittagong, Chittagong, 80280, Bangladesh
| | - Lanchakon Chanudom
- Biology Program, Faculty of Science and Technology, Nakhonsithammarat Rajabhat University, Nakhon Si Thammarat, Thailand
| | - Montakarn Thongsom
- Biology Program, Faculty of Science and Technology, Nakhonsithammarat Rajabhat University, Nakhon Si Thammarat, Thailand
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak Univ., Nakhon Si Thammarat, 80161, Thailand
| |
Collapse
|
35
|
Sun Z, Sun X, Li J, Li Z, Hu Q, Li L, Hao X, Song M, Li C. Using probiotics for type 2 diabetes mellitus intervention: Advances, questions, and potential. Crit Rev Food Sci Nutr 2019; 60:670-683. [PMID: 30632770 DOI: 10.1080/10408398.2018.1547268] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) has become one of the most prevalent diseases on earth and several treatments have been developed. However, the current intervention approaches have not been as effective as expected. One promising supplementary strategy is the use of probiotics through direct or indirect approaches. Probiotics are microbial food cultures conferring health-promoting properties. In this review, we summarized the current theories and mechanisms of T2DM intervention using probiotics and hypothesize that probiotics intervene T2DM during its onsetting, developing, and complicating. For the first time, we comprehensively analyzed T2DM intervention in animal models using both wide-type probiotics in different forms and using recombinant probiotics. Then, probiotic intervention in T2DM patients was reviewed and the main results were compared with that obtained from animal studies. Finally yet importantly, remaining questions that are important such as in which form and in which state, as well as the future potential of probiotic intervention in T2DM were discussed from a perspective of food microbiologists. In conclusion, probiotic intervention in T2DM is promising but there are still many important issues unsolved yet. Critical review of the advances, questions, and potential of probiotic intervention in T2DM promotes the development of this approach for further application in humans.
Collapse
Affiliation(s)
- Zhongke Sun
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Xuejiao Sun
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China.,College of Life Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Li
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Zhaoyang Li
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Qingwei Hu
- Zhoukou Maternal and Child Health Care Hospital, Zhoukou, China
| | - Lili Li
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Xinqi Hao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Maoping Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Chengwei Li
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China.,College of Life Sciences, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
36
|
Zhai Q, Chen W. Functional Evaluation Model for Lactic Acid Bacteria. LACTIC ACID BACTERIA 2019:183-237. [DOI: 10.1007/978-981-13-7832-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
37
|
Okur ME, Özbek H, Polat DÇ, Yılmaz S, Arslan R. Hypoglycemic activity of Capparis ovata desf. var. palaestina zoh. methanol extract. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000318031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
38
|
Dang F, Jiang Y, Pan R, Zhou Y, Wu S, Wang R, Zhuang K, Zhang W, Li T, Man C. Administration of Lactobacillus paracasei ameliorates type 2 diabetes in mice. Food Funct 2018; 9:3630-3639. [PMID: 29961787 DOI: 10.1039/c8fo00081f] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Probiotics have been proposed as an option for the prevention of type 2 diabetes mellitus (T2DM). The objective of this study was to evaluate the hypoglycemic effects of Lactobacillus paracasei on diabetic mice and explore the possible underlying molecular mechanism. The α-glucosidase inhibitory activities of eight L. paracasei strains were assessed in vitro. L. paracasei TD062 with high α-glucosidase inhibitory activity (31.9%) showed an excellent antidiabetic ability and it could survive in simulated gastrointestinal juices. To investigate the beneficial effects of L. paracasei TD062, diabetic mice were treated with the strain at 109, 108 and 107 CFU ml-1. The results indicated that the administration of L. paracasei TD062 could regulate the levels of fasting blood glucose (FBG), postprandial blood glucose (PBG), glucose tolerance, hepatic glycogen and lipid metabolism. In addition, the antioxidant capacity was also improved by oral administration of L. paracasei TD062. And the hypoglycemic effects exhibited dose dependence to some extent. Furthermore, it was revealed that L. paracasei TD062 had a positive effect on the expression levels of genes related to glucose metabolism and the PI3K/Akt pathway. These results demonstrated that L. paracasei TD062 played an important role in preventing the development of T2DM and might be applied as a new type of hypoglycemic agent in functional foods.
Collapse
Affiliation(s)
- Fangfang Dang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Alkan EE, Celik I. The therapeutics effects and toxic risk of Heracleum persicum Desf. extract on streptozotocin-induced diabetic rats. Toxicol Rep 2018; 5:919-926. [PMID: 30225197 PMCID: PMC6138785 DOI: 10.1016/j.toxrep.2018.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022] Open
Abstract
There is an increasing interest against to fight of diabetes by using hypoglycemic plants in the world. The public thinks that Heracleum persicum (HP) has antidiabetic effect local consumer in Turkey. As far as our literature survey, no studies have been reported so far on antidiabetic effects and toxic risk potential of the HP lyophilized extract supplementation used in this study. The aim of this study, for the first time, was to investigate the therapeutic effects of diabetic complications, antioxidant properties and toxic risk potential of HP against experimentaly streptozotocin (STZ) induced diabetes in rats, which were evaluated by measuring the level of serum biomarker releated diabetes complications changes such glucose, insülin, c-peptide, lipid profile (LP), hepatic and renal damage biomarkers (HRDB), glucosylated hemoglobin (HbA1c), antioxidant defense system constituents (ADSCs), malondialdehyde (MDA) content measured in erythrocyte, brain, kidney and liver tissues, and α-glucosidase activitiy of small intestine. The plant aqueous extract was allowed to freeze-dried under a vacuum at -54 °C to obtain a fine lyophilized extract. The study was performed on STZ-induced diabetic rats (45 mg/kg, body weight (bw), intraperitonally) designed as normal control (NC), diabetic control (DC), diabetes + acarbose (DAC) (20 mg/kg, bw), diabetes + HP (100 mg/kg, bw) (DH1), diabetes + HP (200 mg/kg, bw) (DH2) and diabetes + HP (400 mg/kg, bw) (DH3)] groups. The experimental process lasted 21 days. According to results; the levels of blood glucose (BG), glucosylated hemoglobin (HbA1c) and malondialdehyde (MDA) of DC group increased significantly (p<0.05) compared to NC group, whereas these parameters of the groups treated with oral administrations of HP plant lyophilized extract were observed significant (p<0.05) declines compared to DC. The biochemical analyses showed a considerable decrease in insulin and c-peptide levels and the fluctuated ADSCs in the DC group as compared to control group, whereas the extract supplementations diet restored the diabetic complications parameters towards to the NC. On the other hands, liver damage serum enzymes as serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were incressed significantly (p<0.05) in the plant extract supplementations groups as compared to NC and DC groups. It was concluded that while the extracts of HP have had therapeutic effects on some complications caused by diabetes, but might be caused hepatocyte damage changes as the transport functions and membrane permeability of these cells, thus causing enzymes to leak.
Collapse
Affiliation(s)
| | - Ismail Celik
- Department of Molecular Biology and Genetics, Science Faculty, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
40
|
Combining different proteomic approaches to resolve complexity of the milk protein fraction of dromedary, Bactrian camels and hybrids, from different regions of Kazakhstan. PLoS One 2018; 13:e0197026. [PMID: 29746547 PMCID: PMC5944991 DOI: 10.1371/journal.pone.0197026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/25/2018] [Indexed: 12/13/2022] Open
Abstract
Nutritional suitability of milk is not only related to gross composition, but is also strongly affected by the microheterogeniety of the protein fraction. Hence, to go further into the evaluation of the potential suitability of non-bovine milks in human/infant nutrition it is necessary to have a detailed characterization of their protein components. Combining proven proteomic approaches (SDS-PAGE, LC-MS/MS and LC-ESI-MS) and cDNA sequencing, we provide here in depth characterization of the milk protein fraction of dromedary and Bactrian camels, and their hybrids, from different regions of Kazakhstan. A total 391 functional groups of proteins were identified from 8 camel milk samples. A detailed characterization of 50 protein molecules, relating to genetic variants and isoforms arising from post-translational modifications and alternative splicing events, belonging to nine protein families (κ-, αs1-, αs2-, β-; and γ-CN, WAP, α-LAC, PGRP, CSA/LPO) was achieved by LC-ESI-MS. The presence of two unknown proteins UP1 (22,939 Da) and UP2 (23,046 Da) was also reported as well as the existence of a β-CN short isoform (946 Da lighter than the full-length β-CN), arising very likely in both genetic variants (A and B) from proteolysis by plasmin. In addition, we report, for the first time to our knowledge, the occurrence of a αs2-CN phosphorylation isoform with 12P groups within two recognition motifs, suggesting thereby the existence of two kinase systems involved in the phosphorylation of caseins in the mammary gland. Finally, we demonstrate that genetic variants, which hitherto seemed to be species- specific (e.g. β-CN A for Bactrian and β-CN B for dromedary), are in fact present both in Camel dromedarius and C. bactrianus.
Collapse
|
41
|
Fallah Z, Feizi A, Hashemipour M, Kelishadi R. Effect of fermented camel milk on glucose metabolism, insulin resistance, and inflammatory biomarkers of adolescents with metabolic syndrome: A double-blind, randomized, crossover trial. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2018; 23:32. [PMID: 29887900 PMCID: PMC5961288 DOI: 10.4103/jrms.jrms_1191_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 12/31/2017] [Accepted: 01/04/2018] [Indexed: 01/19/2023]
Abstract
Background: This study, for the first time, aimed to assess the effects of fermented camel milk (FCM) on glycemic and inflammatory parameters related to metabolic syndrome (MetS), an aggregation of cardiometabolic risk factors, in adolescents. Materials and Methods: In a double-blind, randomized crossover trial, overweight/obese adolescents (fulfilling MetS criteria, aged 11–18 years) were randomly assigned to receive FCM 250 cc per day for an 8-week period, a 4-week washout, and then diluted cow's yogurt (DCY) 250 cc/day for another 8-week period, or the reverse sequence. Fasting blood sugar (FBS), fasting insulin, insulin resistance by three equations, incretin hormone glucose-dependent insulinotropic peptide (GIP), and glucagon-like peptide-1 (GLP1) as well as inflammatory markers such as interleukin 6 (IL6) and tumor necrosis factor-alpha (TNF-α) were measured before and after each of the four periods. A 3-day food record and physical activity questionnaire were completed before each period. Statistical analyses were done using Minitab and SPSS software considering the significance level of 0.05. Results: Twenty-four participants with a mean (standard deviation) age of 13.77 (1.87) years (range: 10.45–16.25 years) (58% girls) completed the study. It resulted in nonsignificant mean reduction in IL6 (−18.28 pg/mL [95% confidence interval [CI]: −47.48; 10.90]; P = 0.20) and nonsignificant increase in glucose metabolizing hormones such as GIP (683.10 pg/mL [95% CI: −457.84; 1824.0]; P = 0.22) and GLP1 (6.98 pg/mL [95% CI: −66.61; 80.57]; P = 0.84) by FCM consumption in comparison to DCY. Nonsignificant decrease was observed in TNF-α in the first periods of the study. The changes of FBS, fasting insulin, and insulin resistance indices were not statistically significant as well. Conclusion: According to preliminary positive influences of FCM on inflammatory markers, and findings related to glucose metabolism, we suggest conducting further studies on its clinical impacts.
Collapse
Affiliation(s)
- Zahra Fallah
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Hashemipour
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
42
|
Fallah Z, Feizi A, Hashemipour M, Kelishadi R. Positive Effect of Fermented Camel Milk on Liver Enzymes of Adolescents with Metabolic Syndrome: a Double Blind, Randomized, Cross-over Trial. Mater Sociomed 2018; 30:20-25. [PMID: 29670474 PMCID: PMC5857053 DOI: 10.5455/msm.2018.30.20-25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Metabolic syndrome (MetS) has several health consequences. Liver enzymes elevation is among them. Aim: This study aimed to assess the effects of fermented Camel milk (FCM), as a functional food and dairy, on some features of MetS in adolescents including liver enzymes status, serum lipids and anthropometric measures. Methods: Overweight/obese adolescents with MetS were randomly assigned to FCM 250 cc per day for 8 weeks, a 4-week washout, and then to diluted Cow’s yogurt (DCY) 250 cc per day for 8 weeks, or the reverse sequence. Anthropometric measures, liver enzymes and serum lipids were measured just before and after each one of the four periods. A three-day food record and physical activity questionnaire were completed before each period. Statistical analyses were done using Minitab and SPSS soft-wares considering the significance level of 0.05. Results: Twenty-four participants with a mean age (SD) of 13.77 (1.87) years (range: 10.45-16.25) (58% girls) completed the study. It resulted significant mean reduction of aspartate aminotransferase (AST) (-3.75 U/L [95% CI: -7.06; -0.43]; p=0.042) and alanine aminotransferase (ALT) (-2.54 U/L [95% CI: -3.33; -2.24], and p=0.006) and AST/ALT ratio (-0.16 U/L [95% CI: -0.28; -0.05]; p= 0.029) by FCM consumption in comparison to DCY. Non-significant favorable effects on anthropometric measures and serum lipids were seen as well. Conclusion: According to the observed favorable effects of fermented camel milk on liver enzymes, its consumption may be considered as a functional food supplement in related circumstances.
Collapse
Affiliation(s)
- Zahra Fallah
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Students' Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Hashemipour
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Students' Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
43
|
Tian P, Li B, He C, Song W, Hou A, Tian S, Meng X, Li K, Shan Y. Antidiabetic (type 2) effects of Lactobacillus G15 and Q14 in rats through regulation of intestinal permeability and microbiota. Food Funct 2018; 7:3789-3797. [PMID: 27713957 DOI: 10.1039/c6fo00831c] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The antidiabetic effects of Lactobacillus. paracasei subsp. paracasei G15 and Lactobacillus. casei Q14 in high fat diet and streptozotocin-induced type 2 diabetic (T2D) rats were evaluated in this study. The strains were separated from Chinese traditional fermented dairy food. Administration of G15 and Q14 for 6 weeks significantly improved the glucose tolerance and reduced the HbA1c levels in T2D rats. The probiotic treatment reduced the intestinal mucosal permeability and improved the epithelial barrier function through modification of the gut microbiota, which in turn lowered circulating LPS and inflammation cytokines, including IL-1β and IL-8, and eventually alleviated the inflammatory status and islet β-cell dysfunction. Combination of Q14 and metformin reversed the thymic atrophy and both G15 and Q14 lowered the circulating IL-6 level, indicating the immune-modulating potential of the strains. Lactobacillus. paracasei subsp. paracasei G15 and Lactobacillus. casei Q14 provide an insight into the biotherapy application of traditional fermented foods and their functional ingredients in the treatment of diabetes.
Collapse
Affiliation(s)
- Peijun Tian
- School of Food Science and Engineering, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150000, China.
| | - Baolong Li
- Center of Safety and Evaluation of Drugs, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin 150000, China
| | - Canxia He
- School of Food Science and Engineering, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150000, China.
| | - Wei Song
- School of Food Science and Engineering, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150000, China.
| | - Aiju Hou
- School of Food Science and Engineering, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150000, China.
| | - Sicong Tian
- School of Food Science and Engineering, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150000, China.
| | - Xinyu Meng
- Center of Safety and Evaluation of Drugs, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin 150000, China
| | - Kaikai Li
- School of Food Science and Engineering, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150000, China.
| | - Yujuan Shan
- School of Food Science and Engineering, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin 150000, China.
| |
Collapse
|
44
|
Wang G, Li X, Zhao J, Zhang H, Chen W. Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism. Food Funct 2018; 8:3155-3164. [PMID: 28782784 DOI: 10.1039/c7fo00593h] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Probiotics, as dietary supplements, transmit their major effects through the regulation of gut microbiota. According to a previous study, one possible mechanism of Lactobacillus casei CCFM419 protection against diabetes may involve gut flora. To test this hypothesis, high fat and streptozotocin-induced C57BL/6J mice were fed L. casei CCFM419 at 108, 109, and 1010 colony forming units (CFU). Compared to untreated mice, 109 CFU of L. casei CCFM419 attenuated several symptoms of diabetes, including fasting blood glucose, postprandial blood glucose, glucose intolerance, and insulin resistance. In addition, this CFU level also decreased the levels of the inflammatory markers tumor necrosis factor-α and interleukin-6 and increased intestinal glucagon-like peptide-1 (GLP-1) levels, which are associated with the production of short chain fatty acids (SCFAs). The 16S rRNA gene sequencing of fecal samples demonstrated that 109 CFU of L. casei CCFM419 dramatically increased the abundance of Bacteroidetes and decreased the proportion of Firmicutes at the phylum level, and enriched Bifidobacterium, Lactobacillus, and SCFA-producing bacteria, including Allobaculum and Bacteroides. These findings suggested that L. casei CCFM419 modified the gut flora-SCFA-inflammation/GLP-1 mechanism to ameliorate type 2 diabetes.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.
| | | | | | | | | |
Collapse
|
45
|
Li KK, Tian PJ, Wang SD, Lei P, Qu L, Huang JP, Shan YJ, Li BL. Targeting gut microbiota: Lactobacillus alleviated type 2 diabetes via inhibiting LPS secretion and activating GPR43 pathway. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
46
|
Abstract
Microbial fermentation has been used historically for the preservation of foods, the health benefits of which have since come to light. Early dairy fermentations depended on the spontaneous activity of the indigenous microbiota of the milk. Modern fermentations rely on defined starter cultures with desirable characteristics to ensure consistency and commercial viability. The selection of defined starters depends on specific phenotypes that benefit the product by guaranteeing shelf life and ensuring safety, texture, and flavour. Lactic acid bacteria can produce a number of bioactive metabolites during fermentation, such as bacteriocins, biogenic amines, exopolysaccharides, and proteolytically released peptides, among others. Prebiotics are added to food fermentations to improve the performance of probiotics. It has also been found that prebiotics fermented in the gut can have benefits that go beyond helping probiotic growth. Studies are now looking at how the fermentation of prebiotics such as fructo-oligosaccharides can help in the prevention of diseases such as osteoporosis, obesity, and colorectal cancer. The potential to prevent or even treat disease through the fermentation of food is a medically and commercially attractive goal and is showing increasing promise. However, the stringent regulation of probiotics is beginning to detrimentally affect the field and limit their application.
Collapse
Affiliation(s)
- Daragh Hill
- Department of Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland.,The School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Ivan Sugrue
- Department of Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Elke Arendt
- APC Microbiome Institute, University College Cork, Cork, Ireland.,The School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Department of Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland.,College of Science Engineering and Food Science, University College Cork, Cork, Ireland
| |
Collapse
|
47
|
Li X, Wang E, Yin B, Fang D, Chen P, Wang G, Zhao J, Zhang H, Chen W. Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Benef Microbes 2017; 8:421-432. [PMID: 28504567 DOI: 10.3920/bm2016.0167] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The antidiabetic effect of Lactobacillus is increasingly recognized worldwide. In this research, the hypoglycemic activity of Lactobacillus casei CCFM419 was investigated in mice with high-fat and low-dose streptozotocin induced type 2 diabetes. Oral L. casei CCFM419 administration favourably regulated blood glucose balance, increased glucose tolerance and protected islets in the diabetic mice, accompanied by an improvement in lipid metabolism. The homeostasis model of insulin resistance, insulin level and insulin tolerance test and mRNA expression of PI3K/Akt signalling pathway indexes revealed that L. casei CCFM419 had a positive effect on insulin resistance. Furthermore, treatment with L. casei CCFM419 recovered the level of short-chain fatty acids and increased the abundance of butyrate-producing bacteria, such as Allobaculum and Bacteriodes. These results demonstrated that L. casei CCFM419 had the potential ability to ameliorate insulin resistance and hyperglycaemic in type 2 diabetic mice through underlying PI3K/Akt signalling pathway and short-chain fatty acids/gut microbiota pathways.
Collapse
Affiliation(s)
- X Li
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,2 Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China P.R
| | - E Wang
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,2 Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China P.R
| | - B Yin
- 3 Kangyuan Dairy Co., Ltd., Yangzhou University, Yangzhou 225004, China P.R
| | - D Fang
- 3 Kangyuan Dairy Co., Ltd., Yangzhou University, Yangzhou 225004, China P.R
| | - P Chen
- 5 Shanxi University of Technology, School of Biological Science and Engineering, Hanzhong 723001, China P.R
| | - G Wang
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,2 Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China P.R
| | - J Zhao
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,2 Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China P.R
| | - H Zhang
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,2 Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China P.R
| | - W Chen
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,2 Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China P.R.,4 Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China P.R
| |
Collapse
|
48
|
Li X, Wang N, Yin B, Fang D, Jiang T, Fang S, Zhao J, Zhang H, Wang G, Chen W. Effects of Lactobacillus plantarum CCFM0236 on hyperglycaemia and insulin resistance in high-fat and streptozotocin-induced type 2 diabetic mice. J Appl Microbiol 2017; 121:1727-1736. [PMID: 27552342 DOI: 10.1111/jam.13276] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/31/2016] [Accepted: 08/15/2016] [Indexed: 01/10/2023]
Abstract
AIMS The aim of this study was to rapidly screen potential hypoglycaemic strain by α-glucosidase inhibitory activity in vitro, then explored the antidiabetic effect of Lactobacillus plantarum CCFM0236 in vivo. METHODS AND RESULTS The cell-free supernatant of Lact. plantarum CCFM0236 significantly inhibited α-glucosidase activity in vitro. Therefore, the effects of Lact. plantarum CCFM0236, with potential hypoglycaemia activity, on insulin resistance and hyperglycaemia were explored in high-fat and streptozotocin-induced type 2 diabetes mice. Oral administration of Lact. plantarum CCFM0236 was found to decrease food intake, blood glucose level, glycosylated haemoglobin level and leptin level. Treatments of Lact. plantarum CCFM0236 also favourably regulated insulin level, AUCglucose , and HOMA-IR index, and increased the activities of glutathione peroxidase and the levels of glutathione, high-density lipoprotein cholesterol and interleukin-10. In addition, Lact. plantarum CCFM0236 reduced levels of malondialdehyde and tumour necrosis factor-α and protected pancreas function. CONCLUSIONS Lactobacillus plantarum CCFM0236 has potential hypoglycaemic ability by ameliorating insulin resistance, antioxidant capacity and systemic inflammation in mice. SIGNIFICANCE AND IMPACT OF THE STUDY The method of α-glucosidase inhibitory activity could be effectively used to screen potential hypoglycaemic products and Lact. plantarum CCFM0236 might be a promising therapeutic agent for ameliorating type 2 diabetes.
Collapse
Affiliation(s)
- X Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - N Wang
- School of Business, Jiangnan University, Wuxi, China
| | - B Yin
- Kangyuan Dairy Co., Ltd., Yangzhou University, Yangzhou, China
| | - D Fang
- Kangyuan Dairy Co., Ltd., Yangzhou University, Yangzhou, China
| | - T Jiang
- Jiangsu Wecare Biotechnology co., Ltd, Wujiang, China
| | - S Fang
- Jiangsu Wecare Biotechnology co., Ltd, Wujiang, China
| | - J Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - H Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - G Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - W Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
49
|
Alavi F, Salami M, Emam-Djomeh Z, Mohammadian M. Nutraceutical Properties of Camel Milk. NUTRIENTS IN DAIRY AND THEIR IMPLICATIONS ON HEALTH AND DISEASE 2017:451-468. [DOI: 10.1016/b978-0-12-809762-5.00036-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
50
|
Adefegha SA, Oboh G, Adefegha OM. Ashanti pepper (Piper guineense Schumach et Thonn) attenuates carbohydrate hydrolyzing, blood pressure regulating and cholinergic enzymes in experimental type 2 diabetes rat model. J Basic Clin Physiol Pharmacol 2017; 28:19-30. [PMID: 27658140 DOI: 10.1515/jbcpp-2016-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/02/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Ashanti pepper (Piper guineense Schumach et Thonn) seed is well known in folkloric medicine in the management of type 2 diabetes (T2DM) with little or no scientific documentation for its action. This study investigated the effect of Ashanti pepper seed on some enzymes relevant to carbohydrate hydrolysis, blood regulation and the cholinergic system, as well as the blood glucose level, lipid profile, antioxidant parameters, and hepatic and renal function markers in T2DM rats. METHODS T2DM was induced by feeding rats with high-fat diet (HFD) for 14 days followed by a single intraperitoneal dose of 35 mg/kg body weight of streptozotocin (STZ). Three days after STZ induction, diabetic rats were placed on a dietary regimen containing 2%-4% Ashanti pepper. RESULTS Reduced blood glucose level with decreased α-amylase, α-glucosidase and angiotensin I converting enzyme (ACE) activities were observed in Ashanti pepper seed and acarbose-treated rat groups when compared to that of the diabetic control rat group. Furthermore, the results revealed that inclusion of 2%-4% Ashanti pepper seed in diabetic rat fed group diets may ameliorate the lipid profile, antioxidant status, and hepatic and renal function in T2DM rats as much as in the acarbose-treated groups. In addition, a chromatographic profile of the seed revealed the presence of quercitrin (116.51 mg/g), capsaicin (113.94 mg/g), dihydrocapsaicin (88.29 mg/g) and isoquercitrin (74.89 mg/g). CONCLUSIONS The results from this study clearly suggest that Ashanti pepper could serve as a promising source of phenolic compounds with great alternative therapeutic potentials in the management of T2DM.
Collapse
|