1
|
Guo Y, Liu M, Chuang R, Zhang H, Li H, Xu L, Xia N, Xiao C, Rayan AM, Ghamry M. Mechanistic applications of low-temperature plasma in starch-based biopolymer film: A review. Food Chem 2025; 479:143739. [PMID: 40073561 DOI: 10.1016/j.foodchem.2025.143739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/12/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
The substitution of traditional packaging with bio-based edible films has emerged as a new research direction. The starch biopolymer films currently studied by researchers exhibit issues such as inadequate physical properties, barrier performance, mechanical strength, and biological activity. Consequently, a range of advanced techniques are employed to enhance the properties of biopolymer films. Low-temperature plasma stands out as an emerging multi-functional non-thermal green molecular surface modification technology that has been particularly effective in enhancing starch biopolymer films. Furthermore, owing to its non-thermal characteristics, low-temperature plasma is particularly suitable for heat-sensitive materials. Consequently, this study aims to investigate the impact of low-temperature plasma technology on enhancing the properties of biopolymer film substrates, elucidate its mechanisms of action on starch films and starch composite films, refine methods for modifying biopolymer films, and conduct a rational analysis of any contradictions.
Collapse
Affiliation(s)
- Yanli Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Mengzhuo Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Rui Chuang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Lina Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Chaogeng Xiao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Ahmed M Rayan
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Ghamry
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| |
Collapse
|
2
|
Ford M, Coad BR. Plasma glows and shifting water flows: Measuring the changes to water transport phenomena in seeds after plasma treatment. Food Chem 2025; 479:143733. [PMID: 40069081 DOI: 10.1016/j.foodchem.2025.143733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/26/2024] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Plasma discharges have been used as a treatment for seeds for a variety of food, horticultural and agricultural applications. It has generally been reported that plasma exposure increases the seed's water wettability, with some studies reporting increased water imbibition by seeds. It is speculated that increased water imbibition after plasma treatment is related to increased germination especially for food crops, yet there is little mechanistic understanding of why this may be so. Moreover, it is not well understood why plasma affects different plant species' seed in different ways. In this study, the objective was to develop a mechanistic understanding of how plasma exposure influences water transport in seeds/grains from different plant species. We exposed seeds to plasma and then analysed water absorption curves using modelling to extract thermodynamic constants related to the kinetics of water transport. The resulting quantitative data provided a clear understanding how plasma treatments increased the rate and amount of water uptake. We also discovered that with increasing plasma exposure, the rates at which water enters the seed changes depending on diffusional and capillary pathways. These insights help to explain why different seeds respond to plasma exposure in a variety of ways. Conclusions from water modelling studies were consistent with observed changes from microscopy and dye imbibition assays. This approach to analysing quantitative water transport phenomena after plasma exposure provides a method to mechanistically understand how plasma affects water imbibition in seeds with differing physiology. We discuss the relevance to food applications, and we believe results will be relevant to future studies of how to best apply plasma treatments to increase germination for food crops.
Collapse
Affiliation(s)
- Melanie Ford
- School of Agriculture, Food & Wine, The University of Adelaide, Adelaide SA, 5064, Australia; Western Australia Department of Primary Industries and Regional Development, Carnarvon, WA 6701, Australia; School of Agriculture and Environment, University of Western Australia, Perth, WA 6009, Australia.
| | - Bryan R Coad
- School of Agriculture, Food & Wine, The University of Adelaide, Adelaide SA, 5064, Australia; UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
3
|
Deng Z, Shi Y, Sun S, Hu Y, Lü X, Shan Y. Preparation of whey protein-chitosan edible coating modulated by cold plasma and its effect on quality and metabolites of chilled beef. Int J Biol Macromol 2025; 308:142367. [PMID: 40120882 DOI: 10.1016/j.ijbiomac.2025.142367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/08/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
The stability, safety, and sustainability of food preservation coatings have garnered increasing attention, with cold plasma modification emerging as an environmentally friendly alternative. This study developed a cold plasma (CP)-treated 1 % (w/v) whey protein isolate (WPI)/carboxymethyl chitosan (CMCS) coating (mass ratio 1:1) (CPW). The effects of CP treatment were investigated through particle size and zeta potential analyses. Further characterization using intrinsic fluorescence, confocal laser microscopy, and Fourier-transform infrared spectroscopy revealed the impact of CP treatment on WPI-CMCS polymer binding and stability within pH 4-6. Applied to beef preservation, CPW significantly inhibited color deterioration, delayed increases in TVB-N and TBARS levels, reduced total microbial counts, and maintained favorable texture properties during 4 °C storage (p < 0.05). Combined LC/MS and GC/MS analyses demonstrated that CPW treatment effectively reduced critical deterioration markers: lipid peroxidation products (13-L-hydroperoxylinoleic acid, 9(S)-HPODE, 9,10-DHOME) and protein degradation products (L-glutamic acid, L-arginine, L-phenylalanine), while regulating energy metabolism metabolites (citric acid, lactic acid). These findings indicate that CPW maintains beef quality by modulating energy metabolism, lipid peroxidation, and protein degradation pathways. This study demonstrates that CP modification enhances WPI-CMCS composites binding and stability, positioning CPW as a safe, green, and effective preservation coating with promising application prospects for chilled beef preservation, which has the potential to replace traditional chemical synthetic preservatives and mitigate the environmental pollution caused by non-biodegradable packaging.
Collapse
Affiliation(s)
- Zhanfei Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Yuyue Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Shuangshuang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Yayun Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China.
| |
Collapse
|
4
|
Sethi V, Verma C, Gupta A, Mukhopadhyay S, Gupta B. Infection-Resistant Polypropylene Hernia Mesh: Vision & Innovations. ACS APPLIED BIO MATERIALS 2025; 8:1797-1819. [PMID: 39943674 DOI: 10.1021/acsabm.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
The surgical repair of hernias, a prevalent condition affecting millions worldwide, has traditionally relied on polypropylene (PP) mesh due to its favorable mechanical properties and biocompatibility. However, postoperative infections remain a significant complication, underscoring the need for the development of infection-resistant hernia meshes. This study provides a comprehensive analysis of current advancements and innovative strategies aimed at enhancing the infection resistance of PP mesh. It presents an overview of various research efforts focused on the integration of antimicrobial agents, surface modifications, and the development of bioactive coatings to prevent bacterial colonization and biofilm formation. Additionally, the synergistic effects of novel material designs and the role of nanotechnology in optimizing the anti-infective properties of PP mesh are explored. Recent clinical outcomes and in vitro studies are critically examined, highlighting challenges and potential future directions in the development of next-generation hernia meshes. Emphasis is placed on the importance of interdisciplinary approaches in advancing surgical materials with the ultimate goal of improving patient outcomes in hernia repair.
Collapse
Affiliation(s)
- Vipula Sethi
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chetna Verma
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Amlan Gupta
- Department of Histopathology and Transfusion Medicine, Jay Prabha Medanta Hospital, Patna 800020, Bihar, India
| | - Samrat Mukhopadhyay
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Bhuvanesh Gupta
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
5
|
Sharma R, Nath PC, Rustagi S, Sharma M, Inbaraj BS, Dikkala PK, Nayak PK, Sridhar K. Cold Plasma-A Sustainable Energy-Efficient Low-Carbon Food Processing Technology: Physicochemical Characteristics, Microbial Inactivation, and Industrial Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:4166141. [PMID: 40124845 PMCID: PMC11930388 DOI: 10.1155/ijfo/4166141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
Nonthermal technologies, mostly utilized for microbial inactivation and quality preservation in food, are attracting increased interest, particularly in nonthermal plasma. Cold plasma (CP) demonstrates favorable results, such as increased germination, enhanced functional and rheological characteristics, and the eradication of microorganisms. Consequently, CP is a novel technology in food processing that has significantly contributed to the prevention of food spoilage. This study highlights contemporary research on CP technology in food processing. This includes its use in microbial decontamination, shelf life extension, mycotoxin degradation, enzyme inactivation, and surface modification of food products. The CP generation techniques under low pressure, including glow discharge, radio frequency and microwave techniques, and atmospheric pressure, including dielectric barrier discharge (DBD), plasma jet, and corona discharge, are discussed. Additionally, the source for the generation of plasma-activated water (PAW) with its significant role in food processing is critically discussed. The CP is an effective method for the decontamination of several food materials like fruits, vegetables, meat, and low-moisture food products. Also, the review addressed the effects of CP on the physicochemical properties of foods and CP for pretreatment in various aspects of food processing, including drying of food, extraction of bioactive compounds, and oil hydrogenation. CP improved the drying kinetics of food, resulting in reduced processing time and improved product quality. Similarly, CP is effective in maintaining food safety and quality, removing the formation of biofilm, and also in reducing protein allergenicity. The review also underscored the importance of CP as a sterilizing agent for food packaging materials, emphasizing its role in enhancing the barrier characteristics of biopolymer-based food packaging materials. Therefore, it is concluded that CP is effective in the reduction of pathogenic microorganisms from food products. Moreover, it is effective in maintaining the nutritional and sensory properties of food products. Overall, it is effective for application in all aspects of food processing. There is a critical need for ongoing research on upscaling for commercial purposes.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, India
| | - Pinku Chandra Nath
- Research and Development Cell, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad, Haryana, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China
| | | | - Praveen Kumar Dikkala
- Department of Food Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, India
| |
Collapse
|
6
|
Javed M, Cao W, Tang L, Keener KM. A Review of Decontamination of Aspergillus spp. and Aflatoxin Control for Grains and Nuts with Atmospheric Cold Plasma. Toxins (Basel) 2025; 17:129. [PMID: 40137902 PMCID: PMC11945501 DOI: 10.3390/toxins17030129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Aspergillus spp. and their produced aflatoxins are responsible for contaminating 25-30% of the global food supply, including many grains, and nuts which when consumed are detrimental to human and animal health. Despite regulatory frameworks, Aspergillus spp. and aflatoxin contamination is still a global challenge, especially in cereal-based matrices and their derived by-products. The methods for reducing Aspergillus spp. and aflatoxin contamination involve various approaches, including physical, chemical, and biological control strategies. Recently, a novel technology, atmospheric cold plasma (ACP), has emerged which can reduce mold populations and also degrade these toxins. ACP is a non-thermal technology that operates at room temperature and atmospheric pressure. It can reduce mold and toxins from grains and seeds without affecting food quality or leaving any chemical residue. ACP is the conversion of a gas, such as air, into a reactive gas. Specifically, an electrical charge is applied to the "working" gas (air) leading to the breakdown of diatomic oxygen, diatomic nitrogen, and water vapor into a mixture of radicals (e.g., atomic oxygen, atomic nitrogen, atomic hydrogen, hydroxyls), metastable species, and ions (e.g., nitrate, nitrite, peroxynitrate). In a cold plasma process, approximately 5% or less of the working gas is ionized. However, cold plasma treatment can generate over 1000 ppm of reactive gas species (RGS). The final result is a range of bactericidal and fungicidal molecules such as ozone, peroxides, nitrates, and many others. This review provides an overview of the mechanisms and chemistry of ACP and its application in inactivating Aspergillus spp. and degrading aflatoxins, serving as a novel treatment to enhance the safety and quality of grains and nuts. The final section of the review discusses the commercialization status of ACP treatment.
Collapse
Affiliation(s)
| | | | | | - Kevin M. Keener
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (M.J.); (W.C.); (L.T.)
| |
Collapse
|
7
|
Yang T, Skirtach AG. Nanoarchitectonics of Sustainable Food Packaging: Materials, Methods, and Environmental Factors. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1167. [PMID: 40077396 PMCID: PMC11901949 DOI: 10.3390/ma18051167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Nanoarchitectonics influences the properties of objects at micro- and even macro-scales, aiming to develop better structures for protection of product. Although its applications were analyzed in different areas, nanoarchitectonics of food packaging-the focus of this review-has not been discussed, to the best of our knowledge. The (A) structural and (B) functional hierarchy of food packaging is discussed here for the enhancement of protection, extending shelf-life, and preserving the nutritional quality of diverse products including meat, fish, dairy, fruits, vegetables, gelled items, and beverages. Interestingly, the structure and design of packaging for these diverse products often possess similar principles and methods including active packaging, gas permeation control, sensor incorporation, UV/pulsed light processing, and thermal/plasma treatment. Here, nanoarchitechtonics serves as the unifying component, enabling protection against oxidation, light, microbial contamination, temperature, and mechanical actions. Finally, materials are an essential consideration in food packaging, particularly beyond commonly used polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), and polyvinyl chloride (PVC) plastics, with emphasis on biodegradable (polybutylene succinate (PBS), polyvinyl alcohol (PVA), polycaprolactone (PCL), and polybutylene adipate co-terephthalate (PBAT)) as well as green even edible (bio)-materials: polysaccharides (starch, cellulose, pectin, gum, zein, alginate, agar, galactan, ulvan, galactomannan, laccase, chitin, chitosan, hyaluronic acid, etc.). Nanoarchitechnotics design of these materials eventually determines the level of food protection as well as the sustainability of the processes. Marketing, safety, sustainability, and ethics are also discussed in the context of industrial viability and consumer satisfaction.
Collapse
Affiliation(s)
| | - Andre G. Skirtach
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
8
|
Sirati ZC, Gharachorloo M, Ghomi Marzdashti H, Azizinezhad R. Production of partially hydrogenated soybean oil with low trans-fatty acids using surface dielectric barrier discharge cold plasma. FOOD SCI TECHNOL INT 2025; 31:104-114. [PMID: 37394750 DOI: 10.1177/10820132231186172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
This study examined the feasibility of applying surface dielectric barrier discharge cold plasma (SDBDCP) to partially hydrogenate crude soybean oil. The oil sample was treated for 13 h using SDBDCP at 15 kV with 100% hydrogen gas under room temperature and atmospheric pressure. Fatty acid composition, iodine value, refractive index, carotenoid content, melting point, peroxide value, and free fatty acids content (FFA) were investigated during SDBDCP treatment. Analysis of fatty acid composition demonstrated an increase in the content of saturated and monounsaturated fatty acids (from 41.32% to 55.3%) and a decrease in the content of polyunsaturated fatty acids (from 58.62% to 40.98%), which resulted in a reduction of the iodine value to 98.49 over the treatment time. Also, the fatty acid profile indicated that the total detected level of trans-fatty acids was very low (0.79%). After a 13-h treatment, the samples showed a refractive index of 1.4637, melting point of 10 °C, peroxide value of 4.1 meq/kg, and FFA content of 0.8%. In addition, the results revealed a 71% decline in the carotenoid content of the oil sample due to the saturation of their double bonds. Therefore, these findings suggest that SDBDCP can be effectively used for hydrogenation along with bleaching oil.
Collapse
Affiliation(s)
- Zoha Chahardehi Sirati
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Gharachorloo
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Reza Azizinezhad
- Biotechnology and Plant Breeding Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Acheampong A, Bondzie-Quaye P, Fetisoa MR, Huang Q. Applications of low-temperature plasma technology in microalgae cultivation and mutant breeding: A comprehensive review. BIORESOURCE TECHNOLOGY 2025; 419:132019. [PMID: 39725362 DOI: 10.1016/j.biortech.2024.132019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Low-temperature plasma (LTP) has gained significant attention recently due to its unique properties and potentially wide applications in agriculture, medicine, and food industry. Microalgae have become important to human life since they provide raw materials and bioactive products to industries. This review especially examines how LTP technology can be utilized to enhance microalgae growth and production of various metabolites and bioactive compounds such as astaxanthin, biofuel, lipid, proteins, and polysaccharides through mutagenesis and/or stimulation. Also, this review suggests that LTP may be combined with multi-omics tools such as proteomics, transcriptome, metabolomics and advanced methods such as single-cell analysis techniques to provide a promising strategy for acquiring desirable strains in algal mutant breeding and for enhancing the production of bioactive compounds in the microalgae. By shedding light on the benefits and applications of LTP, we hope to inspire new solutions to the challenges of commercial-scale microalgae development.
Collapse
Affiliation(s)
- Adolf Acheampong
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Monia Ravelonandrasana Fetisoa
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
10
|
Rout S, Panda PK, Dash P, Srivastav PP, Hsieh CT. Cold Plasma-Induced Modulation of Protein and Lipid Macromolecules: A Review. Int J Mol Sci 2025; 26:1564. [PMID: 40004030 PMCID: PMC11855354 DOI: 10.3390/ijms26041564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Nowadays, the food industry is prioritizing many innovative processing technologies that can produce minimally processed foods with superior and higher quality, lower costs, and faster operations. Among these advancements, cold plasma (CP) processing stands out for its remarkable capabilities in food preservation and extending the shelf life. Beyond its established role in microbial inactivation, CP has emerged as a transformative tool for modifying food biomolecules through reactive plasma species, addressing the versatile requirements of food industries for various applications. This review focuses on the interactions between reactive plasma species and essential food macromolecules, including proteins, lipids, and polysaccharides. The novelty lies in its detailed examination of how CP technology triggers structural, functional, and biochemical changes in proteins and lipids and explains the mechanisms involved. It connects fundamental molecular transformations to practical applications, such as enhanced protein functionality, lipid stabilization, and improved oxidative resistance. CP induces alterations in protein structure, especially in amino acid configurations, that can be applicable to the formulation of advanced gel, 3D printing, thermostable emulsions, enhanced solubility, and sensory materials. This review explores the ability of CP to modify protein allergenicity, its different effects on the mechanical and interfacial properties of proteins, and its role in the production of trans-fat-free oils. Despite its potential, a detailed understanding of the mechanism of CP's interactions with food macromolecules is also discussed. Furthermore, this review addresses key challenges and outlines future research opportunities, positioning CP as a sustainable and adaptable approach for innovating next-generation food systems. Further research is crucial to fully understand the potential of CP for food processing, followed by product development.
Collapse
Affiliation(s)
- Srutee Rout
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India; (S.R.); (P.P.S.)
| | - Pradeep Kumar Panda
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan;
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India; (S.R.); (P.P.S.)
| | - Chien-Te Hsieh
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
| |
Collapse
|
11
|
Sasaki S, Iwamoto H, Takashima K, Toyota M, Higashitani A, Kaneko T. Induction of systemic resistance through calcium signaling in Arabidopsis exposed to air plasma-generated dinitrogen pentoxide. PLoS One 2025; 20:e0318757. [PMID: 39913392 PMCID: PMC11801567 DOI: 10.1371/journal.pone.0318757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
Plasma technology, which can instantaneously transform air molecules into reactive species stimulating plants, potentially contributes to developing a sustainable agricultural system with high productivity and low environmental impact. In fact, plant immunity activation by exposure to a reactive gas mainly consisting of dinitrogen pentoxide (N2O5) was recently discovered, while physiological responses to N2O5 are rarely known. Here, we demonstrate early (within 10 min) physiological responses to N2O5 gas in Arabidopsis. Exposure to N2O5 gas induced an increase in cytosolic Ca2+ concentration within seconds in directly exposed leaves, followed by systemic long-distance Ca2+-based signaling within tens of seconds. In addition, jasmonic acid (JA)-related gene expression was induced within 10 minutes, and a significant upregulation of the defense-related gene PDF1.2 was observed after 1 day of exposure to N2O5 gas. These systemic resistant responses to N2O5 were found unique among air-plasma-generated species such as ozone (O3) and nitric oxide (NO)/nitrogen dioxide (NO2). Our results provide new insights into understanding of plant physiological responses to air-derived reactive species, in addition to facilitating the development of plasma applications in agriculture.
Collapse
Affiliation(s)
- Shota Sasaki
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Hiroto Iwamoto
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | | | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Suntory Foundation for Life Sciences, Soraku-gun, Kyoto, Japan
- College of Plant Science and Technology, Huazhong Agricultural University Wuhan, Hubei, China
| | | | - Toshiro Kaneko
- Graduate School of Engineering, Tohoku University, Sendai, Japan
- Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, Sendai, Japan
| |
Collapse
|
12
|
Hashempour-baltork F, Mirza Alizadeh A, Taghizadeh M, Hosseini H. Cold plasma technology: A cutting-edge approach for enhancing shrimp preservation. Heliyon 2024; 10:e40460. [PMID: 39669143 PMCID: PMC11636109 DOI: 10.1016/j.heliyon.2024.e40460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024] Open
Abstract
Cold plasma (CP) is an emerging technology employed to safeguard highly perishable food items, particularly aquatic products such as shrimp. Due to its significant amount of moisture, superior protein composition that contains important amino acids, and unsaturated fatty acid content, shrimp are susceptible to microbial deterioration and overall alterations in their physical and chemical characteristics. Such spoilage not only diminishes the nutritional value of shrimp but also has the potential to generate harmful substances, rendering it unsuitable for consumption. Recent observations have indicated a growing market demand for shrimp that maintains its quality and has a prolonged shelf life. Furthermore, there is a significant emphasis on the production of food items that undergo minimal processing or nonthermal preservation methods. Extensive documentation exists regarding the efficacy of CP technology in eliminating microorganisms from shrimp without inducing resistance or activating enzymes that contribute to shrimp spoilage. Therefore, CP can be mentioned as a slight processing interference to preserve shrimp quality. This chapter primarily explores the principles and methods of CP technology, as well as its impact on melanosis, physicochemical changes, microbial and sensory properties, and the preservation of shrimp quality.
Collapse
Affiliation(s)
- Fataneh Hashempour-baltork
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Adel Mirza Alizadeh
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mansoureh Taghizadeh
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Zhai Y, Wang Y, Wang B, Niu L, Xiang Q, Bai Y. Sublethal injury and recovery of Escherichia coli O157:H7 after dielectric barrier discharge plasma treatment. Arch Microbiol 2024; 206:465. [PMID: 39540944 DOI: 10.1007/s00203-024-04193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Dielectric barrier discharge (DBD) plasma can be used to control food spoilage and food pathogens. However, DBD plasma may induce sublethal injury in microorganisms, constituting a considerable risk to food safety. This research was designed to investigate the sublethal injury and recovery of Escherichia coli O157:H7 after DBD plasma treatment. The results indicated that the sublethal injury ratios of cells rose along with the augmentation of treatment time and input power of DBD plasma under mild treatment conditions, whereas injury accumulation ultimately culminated in cell death. The highest sublethal ratio of 99.3% was obtained after DBD plasma treatment at 18 W for 40 s. When solutions such as phosphate buffered saline (PBS), peptone water, glucose solution, and tryptic soy broth (TSB) were used for cell recovery, TSB was proven to be the most efficacious, facilitating the completion of recovery within 2 h. The repair ratio of injured cells increased as the recovery pH (3.0-7.0) and temperature (4-37 ºC) increased. Moreover, Mg2+ and Zn2+ were demonstrated to be necessary for the recovery process, while Ca2+ presented a weak effect. Understanding the sublethal injury of bacteria resulting from DBD plasma treatment and their repair conditions can provide useful insight into avoiding the occurrence of sublethal injury as well as inhibiting the occurrence of recovery during food processing and storage.
Collapse
Affiliation(s)
- Yafei Zhai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yuhao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Bohua Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Liyuan Niu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| |
Collapse
|
14
|
Senguler B, Kirkin C, Donmez H, Unal S. Treatment of onion skin waste using dielectric barrier discharge cold plasma processing. Food Sci Nutr 2024; 12:8387-8393. [PMID: 39479707 PMCID: PMC11521653 DOI: 10.1002/fsn3.4448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 11/02/2024] Open
Abstract
Onion skin constitutes a major part of industrial food waste, and cold plasma technology can be employed in the treatment of onion skin. Onion skin waste was ground and exposed to dielectric barrier discharge cold plasma (DBDCP) at 40 kV for 10 or 20 min. Samples that were not DBDCP treated were used as the control. The changes in the color, microbial load, total phenolic content (TPC), and antioxidant activity of the onion skin waste upon treatment were evaluated. An increase in the b* and C* values of the onion skin powder (OSP) was obtained after the DBDCP treatment. The DBDCP process also decreased the total mesophilic aerobic bacteria and yeast-mold counts of the OSP by up to 0.92 and 0.97 log cfu/g (colony-forming units per gram), respectively. In addition, the TPC and antioxidant activity, as determined by 2,2-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity and ferric-reducing antioxidant power (FRAP) methods, were increased for up to 59% and 28%, respectively, depending on the treatment time. In conclusion, the findings of the study show that using DBDCP processing in the treatment of onion skin waste can reduce microbial count while enhancing TPC and antioxidant activity.
Collapse
Affiliation(s)
- Berna Senguler
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityMaslak, IstanbulTurkey
- Department of Gastronomy and Culinary Arts, Faculty of Applied SciencesIstanbul Gelisim UniversityAvcilar, IstanbulTurkey
| | - Celale Kirkin
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityMaslak, IstanbulTurkey
| | - Hilal Donmez
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityMaslak, IstanbulTurkey
| | - Senanur Unal
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityMaslak, IstanbulTurkey
| |
Collapse
|
15
|
Teresa Fernández-Felipe M, Inés Valdez-Narváez M, Martinez A, Rodrigo D. Oxygen and air cold plasma for the inactivation of Bacillus cereus in low-water activity soy powder. Food Res Int 2024; 193:114861. [PMID: 39160048 DOI: 10.1016/j.foodres.2024.114861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Cold plasma (CP) technology is a promising alternative to thermal treatments for the microbial decontamination of foods with low-water activity. The aim of this work is study the application of low-pressure CP (0.35 mbar) for the inactivation of Bacillus cereus in a soybean powder matrix using O₂ and synthetic air as ionizing gases. The parameters tested were an input power of 100, 200 and 300 W and an exposure time of 10 to 30 min. The excited reactive species formed were monitored by optical emission spectroscopy, and survival data were analyzed using the Weibull mathematical model. Treatments with both gases were effective in inactivating B. cereus. Air plasma resulted in a maximum 3.71-log reduction in bacterial counts at 300 W and 30 min, while O2 plasma showed the strongest inactivation ability, achieving levels higher than 5 log cycles at 300 W and > 25 min. This is likely due to the strong antimicrobial activity of oxygen-derived radicals together with carbon monoxide as an oxidation by-product. In addition, the Weibull distribution function accurately modeled the inactivation of B. cereus. Cold plasma technology is a promising approach for the decontamination of bacteria in low-water activity foods.
Collapse
Affiliation(s)
- M Teresa Fernández-Felipe
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - María Inés Valdez-Narváez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Antonio Martinez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Dolores Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
16
|
Liu D, Sierens J, Haydamous C, Nikiforov A, De Geyter N, De Meulenaer B. Impact of Nonthermal Plasma Treatment on the Oxidation of Lipids with Different Unsaturation Degrees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20037-20047. [PMID: 39190011 DOI: 10.1021/acs.jafc.4c04365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Nonthermal plasma (NTP) treatment of food presents a new technology for the industry but raises concerns about lipid oxidation due to the presence of reactive species. Considering the critical role of the degree of unsaturation in lipid oxidation, this study investigates NTP-induced oxidation across various unsaturated lipids. These lipids are six oil samples primarily containing one of the following methylesters: oleate, linoleate, linolenate, arachidonate, eicosapentaenoate, and docosahexaenoate. Samples were treated with a nonthermal surface dielectric barrier discharge. Plasma-induced effects were first examined by classical lipid oxidation indicators, such as the peroxide value and p-anisidine value. The specific volatile oxidation products, including hexanal, nonanal, trans-2-hexenal, and methyl 9-oxononanoate, were determined to further elucidate the impact of ozone-related oxidation. Monitoring the production of selected nonvolatile oxidation products, such as epoxy-, oxo-, and hydroxy fatty acid methylesters, confirmed that plasma treatment facilitated the decomposition of lipid hydroperoxide. Generally, the level of plasma-induced oxidation increased in parallel with the unsaturation degree of the studied samples, except for the quantity of individual volatile carbonyls. The long-term effect of NTP treatment was investigated by a stability test, revealing that the oxidative stability depended on the input gas of plasma treatment, the sensitivity of the treated sample, and the presence of antioxidants. Except for the focus on the NTP impact, this study offered a case study of a comprehensive investigation into lipid oxidation.
Collapse
Affiliation(s)
- Danyang Liu
- Research Group NutriFOODchem, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Joke Sierens
- Research Group NutriFOODchem, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Christelle Haydamous
- Research Group NutriFOODchem, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Anton Nikiforov
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Ghent 9000, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Ghent 9000, Belgium
| | - Bruno De Meulenaer
- Research Group NutriFOODchem, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|
17
|
Shaban M, Merkert N, van Duin ACT, van Duin D, Weber AP. Advancing DBD Plasma Chemistry: Insights into Reactive Nitrogen Species such as NO 2, N 2O 5, and N 2O Optimization and Species Reactivity through Experiments and MD Simulations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16087-16099. [PMID: 39205652 PMCID: PMC11394011 DOI: 10.1021/acs.est.4c04894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study aims to fine-tune the plasma composition with a particular emphasis on reactive nitrogen species (RNS) including nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), and nitrous oxide (N2O), produced by a self-constructed cylindrical dielectric barrier discharge (CDBD). We demonstrated the effective manipulation of the plasma chemical profile by optimizing electrical properties, including the applied voltage and frequency, and by adjusting the nitrogen and oxygen ratios in the gas mixture. Additionally, quantification of these active species was achieved using Fourier transform infrared spectroscopy. The study further extends to exploring the aerosol polymerization of acrylamide (AM) into polyacrylamide (PAM), serving as a model reaction to evaluate the reactivity of different plasma-generated species, highlighting the significant role of NO2 in achieving high polymerization yields. Complementing our experimental data, molecular dynamics (MD) simulations, based on the ReaxFF reactive force field potential, explored the interactions between reactive oxygen species, specifically hydroxyl radicals (OH) and hydrogen peroxide (H2O2), with water molecules. Understanding these interactions, combined with the optimization of plasma chemistry, is crucial for enhancing the effectiveness of DBD plasma in environmental applications like air purification and water treatment.
Collapse
Affiliation(s)
- Masoom Shaban
- Institute of Particle Technology, Clausthal University of Technology, 38640 Clausthal-Zellerfeld, Germany
- Institute of Applied Mechanics, Clausthal University of Technology, 38640 Clausthal-Zellerfeld, Germany
| | - Nina Merkert
- Institute of Applied Mechanics, Clausthal University of Technology, 38640 Clausthal-Zellerfeld, Germany
| | - Adri C T van Duin
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- RxFF Consulting LLC, 1524 West College Avenue, Suite 202, State College, Pennsylvania 16801, United States
| | - Diana van Duin
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- RxFF Consulting LLC, 1524 West College Avenue, Suite 202, State College, Pennsylvania 16801, United States
| | - Alfred P Weber
- Institute of Particle Technology, Clausthal University of Technology, 38640 Clausthal-Zellerfeld, Germany
| |
Collapse
|
18
|
Li P, Zhang H, Tian C, Zou H. Experimental Investigation of Bacterial Inactivation of Beef Using Indirect Cold Plasma in Cold Chain and at Room Temperature. Foods 2024; 13:2846. [PMID: 39272611 PMCID: PMC11395448 DOI: 10.3390/foods13172846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Pathogen contamination is a severe problem in maintaining food safety in the cold chain. Cold plasma (CP) is a novel non-thermal disinfection method that can be applied for the bacterial inactivation of food in appropriate contexts. Currently, research on CP used on food at cold chain temperatures is rare. This work investigated the bacterial inactivation effect of CP on beef at typical cold storage temperatures of 4 and -18 °C and room temperature (25 °C). The reactive species in CP were indirectly tested by evaluating O3, NO3- and NO2- in cold plasma-activated water (PAW), which indicated the highest concentrations of reactive species in CP at 25 °C and the lowest at -18 °C. The bactericidal efficacy of CP treatment against beef inoculated with Escherichia coli at -18 °C, 4 °C, and 25 °C was 30.5%, 60.1%, and 59.5%, respectively. The 4 °C environment was the most appropriate treatment for CP against beef, with the highest bactericidal efficacy and a minor influence on beef quality. The indirect CP treatment had no significant effect on the texture, color, pH, or cooking loss of beef at -18 °C. CP shows significant potential for the efficient decontamination of food at cold chain temperatures.
Collapse
Affiliation(s)
- Peiru Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Cryogenic Science and Technology, Beijing 100190, China
| | - Hainan Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Cryogenic Science and Technology, Beijing 100190, China
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Changqing Tian
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Cryogenic Science and Technology, Beijing 100190, China
| | - Huiming Zou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Cryogenic Science and Technology, Beijing 100190, China
| |
Collapse
|
19
|
Ki SH, Ji SH, Kim SB, Park S. Characteristics of low-temperature plasma for activation of plastic-degrading microorganisms. Sci Rep 2024; 14:19749. [PMID: 39187510 PMCID: PMC11347650 DOI: 10.1038/s41598-024-70207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Plastic pollution is a problem that threatens the future of humanity, and various methods are being researched to solve it. Plastic biodegradation using microorganisms is one of these methods, and a recent study reported that plastic-degrading microorganisms activated by plasma increase the plastic decomposition rate. In contrast to microbial sterilization using low-temperature plasma, microbial activation requires a stable plasma discharge with a low electrode temperature suitable for biological samples and precise control over a narrow operating range. In this study, various plasma characteristics were evaluated using SDBD (Surface Dielectric Barrier Discharge) to establish the optimal conditions of plasma that can activate plastic-degrading microorganisms. The SDBD electrode was manufactured using low-temperature co-fired ceramic (LTCC) technology to ensure chemical resistance, minimize impurities, improve heat conduction, and consider freedom in designing the electrode metal part. Plasma stability, which is important for microbial activation, was investigated by changing the frequency and pulse width of the voltage applied to the electrode, and the degree of activation of plastic-degrading microorganisms was evaluated under each condition. The results of this study are expected to be used as basic data for research on the activation of useful microorganisms using low-temperature plasma.
Collapse
Affiliation(s)
- Se Hoon Ki
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjansan-ro, Jeollabuk-do, Gunsan, 54004, Republic of Korea
| | - Sang Hye Ji
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjansan-ro, Jeollabuk-do, Gunsan, 54004, Republic of Korea
| | - Seong Bong Kim
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjansan-ro, Jeollabuk-do, Gunsan, 54004, Republic of Korea
| | - Seungil Park
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjansan-ro, Jeollabuk-do, Gunsan, 54004, Republic of Korea.
| |
Collapse
|
20
|
Priyanti I, Wongsawaeng D, Kongprawes G, Ngaosuwan K, Kiatkittipong W, Hosemann P, Sola P, Assabumrungrat S. Enhanced cold plasma hydrogenation with glycerol as hydrogen source for production of trans-fat-free margarine. Sci Rep 2024; 14:18468. [PMID: 39122825 PMCID: PMC11315688 DOI: 10.1038/s41598-024-68729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The quest for better nutritious foods has encouraged novel scientific investigations to find trans-fat reduction methods. This research proposes an innovative approach for the production of healthier trans-fat-free margarine from palm oil by the use of dielectric barrier discharge (DBD) plasma technology with glycerol serving as the principal source of hydrogen. The effectiveness of DBD plasma in hydrogenating palm olein was investigated. By employing a methodical series of experiments and thorough analytical approaches, examination of the saturated fatty acid conversion experienced its iodine value (IV) reduction from 67.16 ± 0.70 to 31.61 ± 1.10 under the optimal process parameters of 1 L min-1 He flow rate, 35 W plasma discharge power, 10 mm gap size, ambient initial temperature, and 12 h reaction time with solid texture. According to the method for producing trans-fat-free margarine in the absence of a catalyst and H2 gas, the hydrogenation rate of the prepared mixture of palm olein-glycerol was remarkably improved; the trans-fat content in the produced product was zero; the efficacy of incorporating cis- and trans-isomerization was lowered, and the method has a promising industrial application prospect.
Collapse
Affiliation(s)
- Ika Priyanti
- Research Unit on Plasma Technology for High-Performance Materials Development, Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathum Wan, Bangkok, 10330, Thailand
| | - Doonyapong Wongsawaeng
- Research Unit on Plasma Technology for High-Performance Materials Development, Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathum Wan, Bangkok, 10330, Thailand.
| | - Grittima Kongprawes
- Research Unit on Plasma Technology for High-Performance Materials Development, Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathum Wan, Bangkok, 10330, Thailand
| | - Kanokwan Ngaosuwan
- Division of Chemical Engineering, Faculty of Engineering, Rajamangala University of Technology Krungthep, Bangkok, 10120, Thailand
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Peter Hosemann
- Department of Nuclear Engineering, Faculty of Engineering, University of California at Berkeley, Berkeley, California, 94720, USA
| | - Phachirarat Sola
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, 26120, Thailand
| | - Suttichai Assabumrungrat
- Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-Economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
21
|
Zhang D, Jiu X, Ma Y, Niu L, Bai Y, Xiang Q. Effects of dielectric barrier discharge plasma on Bacillus cereus spores inactivation and quality attributes of white peppers. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2024; 18:7087-7099. [DOI: 10.1007/s11694-024-02720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/19/2024] [Indexed: 01/06/2025]
|
22
|
Valdez-Narváez MI, Fernández-Felipe MT, Martinez A, Rodrigo D. Inactivation of Bacillus cereus Spores and Vegetative Cells in Inert Matrix and Rice Grains Using Low-Pressure Cold Plasma. Foods 2024; 13:2223. [PMID: 39063307 PMCID: PMC11276126 DOI: 10.3390/foods13142223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated the effects of low-pressure cold plasma on the inactivation of Bacillus cereus vegetative cells and spores in an inert matrix (borosilicate glass slide) and in rice grains, using oxygen as ionization gas. Greater reductions in B. cereus counts were observed in vegetative cells rather than spores. The experimental data obtained show that both the power of the plasma treatment and the matrix proved to be determining factors in the inactivation of both the spores and vegetative cells of B. cereus. To characterize the inactivation of B. cereus, experimental data were accurately fitted to the Weibull model. A significant decrease in parameter "a", representing resistance to treatment, was confirmed with treatment intensification. Furthermore, significant differences in the "a" value were observed between spores in inert and food matrices, suggesting the additional protective role of the food matrix for B. cereus spores. These results demonstrate the importance of considering matrix effects in plasma treatment to ensure the effective inactivation of pathogenic microorganisms, particularly in foods with low water activity, such as rice. This approach contributes to mitigating the impact of foodborne illnesses caused by pathogenic microorganisms.
Collapse
Affiliation(s)
| | | | | | - Dolores Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), 46980 Paterna, Valencia, Spain; (M.I.V.-N.); (M.T.F.-F.); (A.M.)
| |
Collapse
|
23
|
Valdez-Miranda JI, Guitiérrez-López GF, Robles-de la Torre RR, Hernández-Sánchez H, Robles-López MR. Health Benefits of High Voltage Electrostatic Field Processing of Fruits and Vegetables. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:260-269. [PMID: 38761282 DOI: 10.1007/s11130-024-01190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
High voltage electrostatic field processing (HVEF) is a food preservation procedure frequently used to produce healthy minimally processed fruits and vegetables (F&V) as it reduces the growth of microorganisms and activates or inhibits various enzymes, thus retarding their natural ripening while preserving and even enhancing native nutritional quality and sensory characteristics. HVEF is one of the various nonthermal processing technology (NTPT) regarded as abiotic stress that can activate the antioxidant system of F&V and can also inhibith spoilage enzymes as, polyphenol oxidase (PPO), lipoxygenase (LOX), pectin methylesterase (PME), polygalacturonase (PG), cellulase (Cel), β-xylosidase, xyloglucan and endotransglycosylase/hydrolase, bringing positive effect on hardness, firmness, colour attributes, electric conductivity, antioxidant compounds, microstructure and decreasing electrolyte leakage (EL), malondialdehyde (MDA) contents and browning degree. This technique can also increase the contents of fructose, glucose, and sucrose and decrease the production of CO2 and H2O2. Additionally, it has been reported that HVEF could be used with other treatments, such as modified atmosphere packaging (MAP) and acidic electrolyzed water (AEW) treatment, to enhance its effects. Future works should deepen on elucidating the activation of the antioxidant systems by applying HVEF of critical enzymes related to the synthesis pathways of phenolic compounds (PC) and carotenoids (Car). Holistic approaches to the effects of HVEF on metabolism based on systems biology also need to be studied by considering the overall biochemical, physical, and process engineering related aspects of this technique.
Collapse
Affiliation(s)
- Jose Irving Valdez-Miranda
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N Santo Tomás 11340, Ciudad de México, México
| | - Gustavo Fidel Guitiérrez-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N Santo Tomás 11340, Ciudad de México, México.
| | - Raúl René Robles-de la Torre
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex- Hacienda de San Juan Molino, Km 1.5 de la Carretera Estatal Santa Inés, Tecuexcomac- Tepetitla, Tepetitla, Tlaxcala, CP, 90700, México
| | - Humberto Hernández-Sánchez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N Santo Tomás 11340, Ciudad de México, México
| | - María Reyna Robles-López
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex- Hacienda de San Juan Molino, Km 1.5 de la Carretera Estatal Santa Inés, Tecuexcomac- Tepetitla, Tepetitla, Tlaxcala, CP, 90700, México
| |
Collapse
|
24
|
Li B, Peng L, Cao Y, Liu S, Zhu Y, Dou J, Yang Z, Zhou C. Insights into Cold Plasma Treatment on the Cereal and Legume Proteins Modification: Principle, Mechanism, and Application. Foods 2024; 13:1522. [PMID: 38790822 PMCID: PMC11120358 DOI: 10.3390/foods13101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Cereal and legume proteins, pivotal for human health, significantly influence the quality and stability of processed foods. Despite their importance, the inherent limited functional properties of these natural proteins constrain their utility across various sectors, including the food, packaging, and pharmaceutical industries. Enhancing functional attributes of cereal and legume proteins through scientific and technological interventions is essential to broadening their application. Cold plasma (CP) technology, characterized by its non-toxic, non-thermal nature, presents numerous benefits such as low operational temperatures, lack of external chemical reagents, and cost-effectiveness. It holds the promise of improving proteins' functionality while maximally retaining their nutritional content. This review delves into the pros and cons of different cold plasma generation techniques, elucidates the underlying mechanisms of protein modification via CP, and thoroughly examines research on the application of cold plasma in augmenting the functional properties of proteins. The aim is to furnish theoretical foundations for leveraging CP technology in the modification of cereal and legume proteins, thereby enhancing their practical applicability in diverse industries.
Collapse
Affiliation(s)
- Bin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Yanan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Siyao Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yuchen Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianguo Dou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Yang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenguang Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
25
|
Seyedalangi M, Sari AH, Nowruzi B, Anvar SAA. The synergistic effect of dielectric barrier discharge plasma and phycocyanin on shelf life of Oncorhynchus mykiss rainbow fillets. Sci Rep 2024; 14:9174. [PMID: 38649495 PMCID: PMC11035654 DOI: 10.1038/s41598-024-59904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
This study aimed to evaluate the efficacy of dielectric barrier discharge treatment (DBD) combined with phycocyanin pigment (PC) in extending the shelf life of Oncorhynchus mykiss rainbow fillets stored at 4 ± 0.1 °C. Microbiological, physicochemical, sensory and antioxidant properties were assessed over an 18-day storage period. The combined DBD and PC treatment significantly inhibited total viable counts and Psychrotrophic bacteria counts compared to the rest of the samples throughout storage. While Total Volatile Nitrogen concentrations remained below international standard until day 18, they exceeded this threshold in control sample by day 9. DBD treatment notably reduced Trimethylamine levels compared to controls (p < 0.05). PC and DBD combined inhibited DPPH and ABTS radical scavenging capacities by 80% and 85%, respectively, while demonstrating heightened iron-reducing antioxidant activity compared to controls. Analysis of 24 fatty acids indicated that PC mitigated DBD's adverse effects, yielding superior outcomes compared to controls. The ratio of n-3 to n-6 fatty acids in all samples met or fell below international standard. Thus, the combined use of DBD and PC shows promise in extending fillet shelf life by over 15 days at 4 °C.
Collapse
Affiliation(s)
- Maedehsadat Seyedalangi
- Department of Physics, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Sari
- Department of Physics, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Bahareh Nowruzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Amir Ali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
26
|
Nemli E, Ozkan G, Gultekin Subasi B, Cavdar H, Lorenzo JM, Zhao C, Capanoglu E. Interactions between proteins and phenolics: effects of food processing on the content and digestibility of phenolic compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2535-2550. [PMID: 38318731 DOI: 10.1002/jsfa.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/03/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
Phenolic compounds have recently become one of the most interesting topics in different research areas, especially in food science and nutrition due to their health-promoting effects. Phenolic compounds are found together with macronutrients and micronutrients in foods and within several food systems. The coexistence of phenolics and other food components can lead to their interaction resulting in complex formation. This review article aims to cover the effects of thermal and non-thermal processing techniques on the protein-phenolic interaction especially focusing on the content and digestibility of phenolics by discussing recently published research articles. It is clear that the processing conditions and individual properties of phenolics and proteins are the most effective factors in the final content and intestinal fates of phenolic compounds. Besides, thermal and non-thermal treatments, such as high-pressure processing, pulsed electric field, cold plasma, ultrasonication, and fermentation may induce alterations in those interactions. Still, new investigations are required for different food processing treatments by using a wide range of food products to enlighten new functional and healthier food product design, to provide the optimized processing conditions of foods for obtaining better quality, higher nutritional properties, and health benefits. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elifsu Nemli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Busra Gultekin Subasi
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Humeyra Cavdar
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| |
Collapse
|
27
|
Du Z, Li X, Zhao X, Huang Q. Multi-scale structural disruption induced by radio frequency air cold plasma accelerates enzymatic hydrolysis/ hydroxypropylation of tapioca starch. Int J Biol Macromol 2024; 260:129572. [PMID: 38253141 DOI: 10.1016/j.ijbiomac.2024.129572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
This study investigated the effects of radio frequency air cold plasma (RFACP) pretreatment on the multi-scale structures, physicochemical properties, enzymatic hydrolysis, and hydroxypropylation of tapioca starch. The results showed that cold plasma (CP) made starch granules rough on the surface and disrupted long- and short-range ordered structures, reducing relative crystallinity from 43.8 % to 37.4 % and R1047/1022 value from 0.992 to 0.934. Meanwhile, the starch molecules were depolymerized and oxidized by CP, reducing weight-average molecular weight from 9.64 × 107 to 2.17 × 107 g/mol, while increasing carbonyl and carboxyl groups by up to 118 % and 53 %. Additionally, CP-treated starches exhibited higher solubility and swelling power, along with lower gelatinization enthalpy. Short-time CP pretreatment (10 min) promoted the hydroxypropylation of starch and increased the molar substitution (0.081-0.112). Also, CP pretreatment accelerated enzymatic hydrolysis of starch, as indicated by the increase in hydrolysis rate (1.846 × 10-3-2.033 × 10-3 min-1) and degree of hydrolysis (51.45 % - 59.92 %). Overall, the multi-scale structural disruption induced by CP treatment facilitated the accessibility of enzymes/chemical reagents into starch granules and glucan chains. This study suggested that RFACP could be used for starch pretreatment to increase production efficiency in modified starch production, as well as in brewing and fermentation industries.
Collapse
Affiliation(s)
- Zhixiang Du
- College of Food Science and Technology, MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuxu Li
- College of Food Science and Technology, MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyun Zhao
- College of Food Science and Technology, MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qilin Huang
- College of Food Science and Technology, MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
28
|
Konchekov EM, Gudkova VV, Burmistrov DE, Konkova AS, Zimina MA, Khatueva MD, Polyakova VA, Stepanenko AA, Pavlik TI, Borzosekov VD, Malakhov DV, Kolik LV, Gusein-zade N, Gudkov SV. Bacterial Decontamination of Water-Containing Objects Using Piezoelectric Direct Discharge Plasma and Plasma Jet. Biomolecules 2024; 14:181. [PMID: 38397418 PMCID: PMC10886754 DOI: 10.3390/biom14020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Cold atmospheric plasma has become a widespread tool in bacterial decontamination, harnessing reactive oxygen and nitrogen species to neutralize bacteria on surfaces and in the air. This technology is often employed in healthcare, food processing, water treatment, etc. One of the most energy-efficient and universal methods for creating cold atmospheric plasma is the initiation of a piezoelectric direct discharge. The article presents a study of the bactericidal effect of piezoelectric direct discharge plasma generated using the multifunctional source "CAPKO". This device allows for the modification of the method of plasma generation "on the fly" by replacing a unit (cap) on the working device. The results of the generation of reactive oxygen and nitrogen species in a buffer solution in the modes of direct discharge in air and a plasma jet with an argon flow are presented. The bactericidal effect of these types of plasma against the bacteria E. coli BL21 (DE3) was studied. The issues of scaling the treatment technique are considered.
Collapse
Affiliation(s)
- Evgeny M. Konchekov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
| | - Victoria V. Gudkova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
- Institute of Physical Research and Technology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
| | - Aleksandra S. Konkova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
| | - Maria A. Zimina
- Institute of Physical Research and Technology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Mariam D. Khatueva
- Institute of Physical Research and Technology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Vlada A. Polyakova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
| | - Alexandra A. Stepanenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Tatyana I. Pavlik
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
| | - Valentin D. Borzosekov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
- Institute of Physical Research and Technology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Dmitry V. Malakhov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
| | - Leonid V. Kolik
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
| | - Namik Gusein-zade
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.G.); (D.E.B.); (N.G.-z.); (S.V.G.)
| |
Collapse
|
29
|
Sang X, Wang Y, Wang J, Cai Z, Zeng L, Deng W, Zhang J, Jiang Z. Effects of Gas Composition on the Lipid Oxidation and Fatty Acid Concentration of Tilapia Fillets Treated with In-Package Atmospheric Cold Plasma. Foods 2024; 13:165. [PMID: 38201193 PMCID: PMC10779136 DOI: 10.3390/foods13010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Cold plasma (CP) is a non-thermal preservation technology that has been successfully used to decontaminate and extend the shelf life of aquatic products. However, the preservation effect of CP treatment is determined by several factors, including voltage, time, and gas compositions. Therefore, this study aimed to investigate the effects of gas composition (GasA: 10% O2, 50% N2, 40% CO2; GasB: air; GasC: 30% O2, 30% N2, 40% CO2) on the lipid oxidation of tilapia fillets treated after CP treatment. Changes in the lipid oxidation values, the percentages of fatty acids, and sensory scores were studied during 8 d of refrigerator storage. The results showed that the CP treatment significantly increased all the primary and secondary lipid oxidation values measured in this study, as well as the percentages of saturated fatty acids, but decreased the percentages of unsaturated fatty acids, especially polyunsaturated fatty acids. The lipid oxidation values were significantly increased in the GasC-CP group. After 8 d, clearly increased percentages of saturated fatty acids, a low level of major polyunsaturated fatty acids (especially linoleic (C18:2n-6)), and a decrease in the percentages of eicosapentaenoic acid (C20:5n-3) and docosahexaenoic acid (C22:6n-3) were found in GasC-CP; that is, the serious oxidation of lipids was found in the high O2 concentration group. In addition, the sensory score was also lower than that of the hypoxia CP group. Therefore, high O2 concentrations can enhance lipid oxidation and the changes in the fatty acid concentration. Controlling the O2 concentration is reasonable to limit the degree to which lipids are oxidized in tilapia after the in-package CP treatment.
Collapse
Affiliation(s)
- Xiaohan Sang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Zhicheng Cai
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Lixian Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Wentao Deng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210014, China;
| | - Zhumao Jiang
- College of Life Sciences, Yantai University, Yantai 264005, China;
| |
Collapse
|
30
|
Ying X, Li T, Deng S, Brennan C, Benjakul S, Liu H, Wang F, Xie X, Liu D, Li J, Xiao G, Ma L. Advancements in nonthermal physical field technologies for prefabricated aquatic food: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13290. [PMID: 38284591 DOI: 10.1111/1541-4337.13290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
Aquatic foods are nutritious, enjoyable, and highly favored by consumers. In recent years, young consumers have shown a preference for prefabricated food due to its convenience, nutritional value, safety, and increasing market share. However, aquatic foods are prone to microbial spoilage due to their high moisture content, protein content, and unsaturated fatty acids. Furthermore, traditional processing methods of aquatic foods can lead to issues such as protein denaturation, lipid peroxidation, and other food safety and nutritional health problems. Therefore, there is a growing interest in exploring new technologies that can achieve a balance between antimicrobial efficiency and food quality. This review examines the mechanisms of cold plasma, high-pressure processing, photodynamic inactivation, pulsed electric field treatment, and ultraviolet irradiation. It also summarizes the research progress in nonthermal physical field technologies and their application combined with other technologies in prefabricated aquatic food. Additionally, the review discusses the current trends and developments in the field of prefabricated aquatic foods. The aim of this paper is to provide a theoretical basis for the development of new technologies and their implementation in the industrial production of prefabricated aquatic food.
Collapse
Affiliation(s)
- Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Taiyu Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Shanggui Deng
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Huifan Liu
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Feng Wang
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xi Xie
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dongjie Liu
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jun Li
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gengsheng Xiao
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lukai Ma
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
31
|
Usman I, Afzaal M, Imran A, Saeed F, Afzal A, Ashfaq I, Shah YA, Islam F, Azam I, Tariq I, Ateeq H, Asghar A, Farooq R, Rasheed A, Asif Shah M. Recent updates and perspectives of plasma in food processing: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2171052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ifrah Usman
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Atka Afzal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Iqra Ashfaq
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Yasir Abbas Shah
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Fakhar Islam
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Iqra Azam
- Department of Food Sciences, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Ifra Tariq
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Huda Ateeq
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aasma Asghar
- Department of Home Economics, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rimsha Farooq
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Amara Rasheed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohd Asif Shah
- Department of Economics, College of Business and Economics, Kebri Dehar, University, Kebri Dehar, Ethiopia
- Adjunct Faculty, University Centre for Research & Development, Chandigarh University, Mohali, India
| |
Collapse
|
32
|
Dezhpour A, Ghafouri H, Jafari S, Nilkar M. Effects of cold atmospheric-pressure plasma in combination with doxorubicin drug against breast cancer cells in vitro and invivo. Free Radic Biol Med 2023; 209:202-210. [PMID: 37890599 DOI: 10.1016/j.freeradbiomed.2023.10.405] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Cold atmospheric plasma (CAP) has been suggested for medical applications that can be applied indirectly through plasma-activated medium (PAM) and recently it has been introduced as an innovative therapeutic approach for all cancer types. Studies have exhibited that ROS/RNS are key factors in CAP-dependent apoptosis; nevertheless, ROS/RNS stability are weak. Combination therapy is considered an effective strategy to overcome these problems. In the present research, we revealed that the combination of CAP and doxorubicin (DOX) significantly induces the apoptosis of breast cancer cells both in vitro and in vivo. Our results indicated that both Ar and He/O2 CAP treatment as well as DOX drug alone reduced cell growth. CAP/PAM treatment in combination with DOX induced apoptosis in MCF-7 breast cancer cells and 4T1-implanted BALB/c mice, resulting in a significant increase in antitumor activity. The apoptotic effects of CAP-DOX on MCF-7 cells were inferred from altered expression of BAX and cleaved-caspase-3 which mechanistically take place through the mitochondrial pathway mediated by Bcl-2 family members. Besides, the BAX/BCL-2 ratio is significantly higher in the simultaneous treatment of CAP and DOX. This ratio was equal to 2.82 ± 0.24, 2.54 ± 0.30, and 11.27 ± 0.31 for treatment with DOX, He/O2 plasma, and combination treatment, respectively. Additionally, the tumor growth rate of He/O2-PAM + DOX and Ar-PAM + DOX treatments was significantly inhibited by PAM-injection, and the tumor growth rate of PAM alone or DOX alone was slightly reduced. It can be concluded that the effect of PAM + DOX may increase the anticancer activity and decrease the dose required for the chemotherapeutic treatment.
Collapse
Affiliation(s)
- A Dezhpour
- Department of Physics, Faculty of Science, University of Guilan, Rasht, Iran
| | - H Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| | - S Jafari
- Department of Physics, Faculty of Science, University of Guilan, Rasht, Iran.
| | - M Nilkar
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000, Ghent, Belgium
| |
Collapse
|
33
|
Soni A, Brightwell G. Effect of novel and conventional food processing technologies on Bacillus cereus spores. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:265-287. [PMID: 38461001 DOI: 10.1016/bs.afnr.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
This chapter provides a summary of the effect of thermal and non-thermal processing technologies on Bacillus cereus spores, a well-known pathogenic bacterium associated with foodborne illnesses. B. cereus has been frequently detected in rice, milk products, infant food, liquid eggs products and meat products all over the world. This Gram positive, rod-shaped, facultative anaerobe can produce endospores that can withstand pasteurization, UV radiation, and chemical reagents commonly used for sanitization. B. cereus spores can germinate into vegetative cells that can produce toxins. The conventional regime for eliminating spores from food is retorting which uses the application of high temperature (121 °C). However, at this temperature, there could be a significant amount of loss in the organoleptic and functional qualities of the food components, especially proteins. This leads to the research on the preventive measures against germination and if possible, to reduce the resistance before using a non-thermal technology (temperatures less than retorting-121 °C) for inactivation. This chapter reviews the development and success of several food processing technologies in their ability to inactivate B. cereus spores in food.
Collapse
Affiliation(s)
- Aswathi Soni
- Food System Integrity, Smart Foods and Bioproducts, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand.
| | - Gale Brightwell
- Food System Integrity, Smart Foods and Bioproducts, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand; New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea), Palmerston North, New Zealand
| |
Collapse
|
34
|
Özdemir E, Başaran P, Kartal S, Akan T. Cold plasma application to fresh green leafy vegetables: Impact on microbiology and product quality. Compr Rev Food Sci Food Saf 2023; 22:4484-4515. [PMID: 37661766 DOI: 10.1111/1541-4337.13231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023]
Abstract
Fresh green leafy vegetables (FGLVs) are consumed either garden-fresh or by going through very few simple processing steps. For this reason, foodborne diseases that come with the consumption of fresh products in many countries have prioritized the development of new and reliable technologies to reduce food-related epidemics. Cold plasma (CP) is considered one of the sustainable and green processing approaches that inactivate target microorganisms without causing a significant temperature increase during processing. This review presents an overview of recent developments regarding the commercialization potential of CP-treated FGLVs, focusing on specific areas such as microbial inactivation and the influence of CP on product quality. The effect of CP differs according to the power of the plasma, frequency, gas flow rate, application time, ionizing gases composition, the distance between the electrodes and pressure, as well as the characteristics of the product. As well as microbial decontamination, CP offers significant potential for increasing the shelf life of perishable and short-shelf-life products. In addition, organizations actively involved in CP research and development and patent applications (2016-2022) have also been analyzed.
Collapse
Affiliation(s)
- Emel Özdemir
- Department of Food Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Pervin Başaran
- Department of Food Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Sehban Kartal
- Department of Physics, Istanbul University, Istanbul, Turkey
| | - Tamer Akan
- Department of Physics, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
35
|
Pipliya S, Kumar S, Srivastav PP. Effect of dielectric barrier discharge nonthermal plasma treatment on physicochemical, nutritional, and phytochemical quality attributes of pineapple [Ananas comosus (L.)] juice. J Food Sci 2023; 88:4403-4423. [PMID: 37755601 DOI: 10.1111/1750-3841.16767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
Forward feed multilayered perception and central composite rotatable design were used to model the nonthermal plasma (NTP) experimental data in artificial neural network (ANN) and response surface methodology, respectively. The ANN was found to be more accurate in modeling the experimental dataset. The NTP process parameters (voltage and time) were optimized for pineapple juice within the range of 25-45 kV and 120-900 s using an ANN coupled with the genetic algorithm (ANN-GA). After 176 generations of GA, the ANN-GA approach produced the optimal condition, 38 kV and 631 s, and caused the inactivation of peroxidase (POD) and bromelain by 87.24% and 51.04%, respectively. However, 100.32% of the overall antioxidant capacity and 89.96% of the ascorbic acid were maintained in the optimized sample with a total color change (ΔE) of less than 1.97 at all plasma treatment conditions. Based on optimal conditions, NTP provides a sufficient level of POD inactivation combined with excellent phenolic component extractability and high antioxidant retention. Furthermore, plasma treatment had an insignificant effect (p > 0.05) on the physicochemical attributes (pH, total soluble solid, and titratable acidity) of juice samples. From the intensity peak of the Fourier-transform infrared spectroscopy analysis, it was found that the sugar components and phenolic compounds of plasma-treated juice were effectively preserved compared to the thermal-treated juice.
Collapse
Affiliation(s)
- Sunil Pipliya
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Sitesh Kumar
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
| |
Collapse
|
36
|
Jayasena DD, Kang T, Wijayasekara KN, Jo C. Innovative Application of Cold Plasma Technology in Meat and Its Products. Food Sci Anim Resour 2023; 43:1087-1110. [PMID: 37969327 PMCID: PMC10636222 DOI: 10.5851/kosfa.2023.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 11/17/2023] Open
Abstract
The growing demand for sustainable food production and the rising consumer preference for fresh, healthy, and safe food products have been driving the need for innovative methods for processing and preserving food. In the meat industry, this demand has led to the development of new interventions aimed at extending the shelf life of meats and its products while maintaining their quality and nutritional value. Cold plasma has recently emerged as a subject of great interest in the meat industry due to its potential to enhance the microbiological safety of meat and its products. This review discusses the latest research on the possible application of cold plasma in the meat processing industry, considering its effects on various quality attributes and its potential for meat preservation and enhancement. In this regard, many studies have reported substantial antimicrobial efficacy of cold plasma technology in beef, pork, lamb and chicken, and their products with negligible changes in their physicochemical attributes. Further, the application of cold plasma in meat processing has shown promising results as a potential novel curing agent for cured meat products. Understanding the mechanisms of action and the interactions between cold plasma and food ingredients is crucial for further exploring the potential of this technology in the meat industry, ultimately leading to the development of safe and high-quality meat products using cold plasma technology.
Collapse
Affiliation(s)
- Dinesh D. Jayasena
- Department of Animal Science, Faculty of
Animal Science and Export Agriculture, Uva Wellassa
University, Badulla 90000, Sri Lanka
| | - Taemin Kang
- Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Kaushalya N. Wijayasekara
- Department of Animal Science, Faculty of
Animal Science and Export Agriculture, Uva Wellassa
University, Badulla 90000, Sri Lanka
| | - Cheorun Jo
- Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul 08826,
Korea
- Institute of Green Bio Science and
Technology, Seoul National University, Pyeongchang 25354,
Korea
| |
Collapse
|
37
|
Oner ME, Gultekin Subasi B, Ozkan G, Esatbeyoglu T, Capanoglu E. Efficacy of cold plasma technology on the constituents of plant-based food products: Principles, current applications, and future potentials. Food Res Int 2023; 172:113079. [PMID: 37689859 DOI: 10.1016/j.foodres.2023.113079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 09/11/2023]
Abstract
Cold plasma (CP) is one of the novel non-thermal food processing technologies, which has the potential to extend the shelf-life of plant-based food products without adversely affecting the nutritional value and sensory characteristics. Besides microbial inactivation, this technology has been explored for food functionality, pesticide control, and allergen removals. Cold plasma technology presents positive results in applications related to food processing at a laboratory scale. This review discusses applications of CP technology and its effect on the constituents of plant-based food products including proteins, lipids, carbohydrates, and polar and non-polar secondary plant metabolites. As proven by the publications in the food field, the influence of CP on the food constituents and sensory quality of various food materials are mainly based on CP-related factors such as processing time, voltage level, power, frequency, type of gas, gas flow rate as well as the amount of sample, type, and content of food constituents. In addition to these, changes in the secondary plant metabolites depend on the action of CP on both cell membrane breakdown and increase/decrease in the scavenging compounds. This technology offers a good alternative to conventional methods by inactivating enzymes and increasing antioxidant levels. With a waterless and chemical-free property, this sustainable and energy-efficient technology presents several advantages in food applications. However, scaling up CP by ensuring uniform plasma treatment is a major challenge. Further investigation is required to provide information regarding the toxicity of plasma-treated food products.
Collapse
Affiliation(s)
- Manolya Eser Oner
- Department of Food Engineering, Faculty of Engineering, Alanya Alaaddin Keykubat University, 07425 Alanya, Antalya, Turkey; Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Busra Gultekin Subasi
- Chalmers University of Technology, Food and Nutrition Science, 41258 Göteborg, Sweden
| | - Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
38
|
Scholtz V, Jirešová J, Fišer L, Obrová K, Sláma M, Klenivskyi M, Khun J, Vaňková E. Non-thermal plasma disinfecting procedure is harmless to delicate items of everyday use. Sci Rep 2023; 13:15479. [PMID: 37726338 PMCID: PMC10509187 DOI: 10.1038/s41598-023-42405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023] Open
Abstract
Non-thermal plasma (NTP) is a well-known decontamination tool applicable for a wide range of microorganisms and viruses. Since the recent COVID-19 pandemic highlighted the need to decontaminate all daily used items, it is highly desirable to address the applicability of NTP, including its possible harmful effects. To the best of our knowledge, a comprehensive characterization of NTP effects on sensitive materials is still lacking. We investigated the potential damage to common materials of daily use inflicted by air atmospheric NTP generated in Plasmatico v1.0. The materials tested were paper, various metals, and passive and active electronic components modelling sensitive parts of commonly used small electronic devices. The NTP-exposed paper remained fully usable with only slight changes in its properties, such as whitening, pH change, and degree of polymerization. NTP caused mild oxidation of copper, tinned copper, brass, and a very mild oxidation of stainless steel. However, these changes do not affect the normal functionality of these materials. No significant changes were observed for passive electronic components; active components displayed a very slight shift of the measured values observed for the humidity sensor. In conclusion, NTP can be considered a gentle tool suitable for decontamination of various sensitive materials.
Collapse
Affiliation(s)
- V Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic.
| | - J Jirešová
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic
| | - L Fišer
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic
| | - K Obrová
- Division Molecular Microbiology, St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - M Sláma
- Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
| | - M Klenivskyi
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic
| | - J Khun
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic
| | - E Vaňková
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
39
|
Rathnakumar K, Balakrishnan G, Ramesh B, Sujayasree OJ, Pasupuleti SK, Pandiselvam R. Impact of emerging food processing technologies on structural and functional modification of proteins in plant-based meat alternatives: An updated review. J Texture Stud 2023; 54:599-612. [PMID: 36849713 DOI: 10.1111/jtxs.12747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
In the past decade, the plant-based meat alternative industry has grown rapidly due to consumers' demand for environmental-friendly, nutritious, sustainable and humane choices. Consumers are not only concerned about the positive relationship between food consumption and health, they are also keen on the environmental sustainability. With such increased consumers' demand for meat alternatives, there is an urgent need for identification and modification of protein sources to imitate the functionality, textural, organoleptic and nutritional characteristics of traditional meat products. However, the plant proteins are not readily digestible and require more functionalization and modification are required. Proteins has to be modified to achieve high quality attributes such as solubility, gelling, emulsifying and foaming properties to make them more palatable and digestible. The protein source from the plant source in order to achieve the claims which needs more high protein digestibility and amino acid bioavailability. In order to achieve these newer emerging non-thermal technologies which can operate under mild temperature conditions can reach a balance between feasibility and reduced environmental impact maintaining the nutritional attributes and functional attributes of the proteins. This review article has discussed the mechanism of protein modification and advancements in the application of non-thermal technologies such as high pressure processing and pulsed electric field and emerging oxidation technologies (ultrasound, cold plasma, and ozone) on the structural modification of plant-based meat alternatives to improve, the techno-functional properties and palatability for successful food product development applications.
Collapse
Affiliation(s)
- Kaavya Rathnakumar
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | - O J Sujayasree
- Division of Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR - Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
40
|
Zhu Q, Yao S, Wu Z, Li D, Ding T, Liu D, Xu E. Hierarchical structural modification of starch via non-thermal plasma: A state-of-the-art review. Carbohydr Polym 2023; 311:120747. [PMID: 37028874 DOI: 10.1016/j.carbpol.2023.120747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
The hierarchical architecture of natural and processed starches with different surface and internal structures determines their final physicochemical properties. However, the oriented control of starch structure presents a significant challenge, and non-thermal plasma (cold plasma, CP) has gradually been used to design and tailor starch macromolecules, though without clear illustration. In this review, the multi-scale structure (i.e., chain-length distribution, crystal structure, lamellar structure, and particle surface) of starch is summarized by CP treatment. The plasma type, mode, medium gas and mechanism are also illustrated, as well as their sustainable food applications, such as in food taste, safety, and packaging. The effects of CP on the chain-length distribution, lamellar structure, amorphous zone, and particle surface/core of starch includes irregularity due to the complex of CP types, action modes, and reactive conditions. CP-induced chain breaks lead to short-chain distributions in starch, but this rule is no longer useful when CP is combined with other physical treatments. The degree but not type of starch crystals is indirectly influenced by CP through attacking the amorphous region. Furthermore, the CP-induced surface corrosion and channel disintegration of starch cause changes in functional properties for starch-related applications.
Collapse
Affiliation(s)
- Qingqing Zhu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Siyu Yao
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China.
| |
Collapse
|
41
|
Xu J, Sun Q, Dong X, Gao J, Wang Z, Liu S. Insight into the microorganisms, quality, and protein structure of golden pompano ( Trachinotus ovatus) treated with cold plasma at different voltages. Food Chem X 2023; 18:100695. [PMID: 37234402 PMCID: PMC10206424 DOI: 10.1016/j.fochx.2023.100695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cold plasma (CP) is a non-thermal novel technology for the processing of heat-sensitive food products, but there is concern regarding its impact on food quality. Voltage is one of the most direct factors affecting the bacteriostatic effect of CP. Golden pompano (Trachinotus ovatus) was treated with CP at different voltages (10, 20, and 30 kV). The total viable count decreased as the CP voltage increased, reaching a maximum reduction of 1.54 lg CFU/g on golden pompano treated at 30 kV. No effects on water-holding capacity, pH, total volatile base nitrogen, and T2b relaxation time were observed, indicating that all CP treatments retained the freshness and bound water of the samples. However, as the CP voltage increased, peroxide value and thiobarbituric acid-reactive substances of golden pompano gradually increased, the protein tertiary structure unfolded, and α-helices converted to β-sheets, indicating inevitable lipid and protein oxidation caused by excessive CP voltage. Therefore, a suitable voltage of CP should be selected to inhibits the growth of microorganisms, which avoids deterioration of sea-foods quality.
Collapse
Affiliation(s)
- Jie Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
42
|
Kim HT, Jung CM, Kim SH, Lee SY. Review of Plasma Processing for Polymers and Bio-Materials Using a Commercial Frequency (50/60 Hz)-Generated Discharge. Polymers (Basel) 2023; 15:2850. [PMID: 37447496 DOI: 10.3390/polym15132850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023] Open
Abstract
This manuscript introduces the properties and diverse applications of plasma generated using commercial frequencies of 50/60 Hz. Commercial frequency (CF) derived plasma exhibits characteristics similar to DC discharge but with an electrical polarity and a non-continuous discharge. Due to the low-frequency nature, the reactor configurations usually are capacitively coupled plasma type. The advantages of this method include its simple power structure, low-reaction temperature, and low substrate damage. The electrical polarity can prevent charge buildup on the substrates and deposited films, thereby reducing substrate damage. The simple, low-cost, and easy-to-operate power structure makes it suitable for laboratory-scale usage. Additionally, the various applications, including plasma-enhanced vapor deposition, sputtering, dielectric barrier discharge, and surface modification, and their outcomes in the CF-derived plasma processes are summarized. The conclusion drawn is that the CF-derived plasma process is useful for laboratory-scale utilization due to its simplicity, and the results of the plasma process are also outstanding.
Collapse
Affiliation(s)
- Hong Tak Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Cheol Min Jung
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Hyun Kim
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Youp Lee
- Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
43
|
Degradation of Zearalenone by Dielectric Barrier Discharge Cold Plasma and Its Effect on Maize Quality. Foods 2023; 12:foods12061129. [PMID: 36981056 PMCID: PMC10048766 DOI: 10.3390/foods12061129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
In this study, a dielectric barrier discharge (DBD) cold plasma was used to degrade zearalenone, and the degradation efficiency and the quality of maize were evaluated. The results showed that the zearalenone degradation rates increased with the increase in voltage and time. When it was treated at 50 KV for 120 s, the degradation percentage of the zearalenone in maize could reach 56.57%. The kinetics’ analysis showed that the degradation followed a first-order reaction. The crude fiber of the maize reduced after the cold plasma treatment. In addition, cold plasma treatment did not significantly change the crude protein content, but slightly changed the fatty acid and color. The changes in maize quality are generally acceptable. DBD cold plasma may be a promising approach to reducing zearalenone in maize.
Collapse
|
44
|
Tahsiri Z, Hedayati S, Niakousari M. Improving the functional properties of wild almond protein isolate films by Persian gum and cold plasma treatment. Int J Biol Macromol 2023; 229:746-751. [PMID: 36596371 DOI: 10.1016/j.ijbiomac.2022.12.321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
The application of edible films in food packaging is limited due to their poor functional properties. Cold plasma treatment (CPT) is an emerging technology for the modification of edible films. In this study, edible films were developed from different ratios of wild almond protein isolate (WAPI) and Persian gum (PG). The characterization of films revealed that the sample containing 90 % WAPI and 10 % PG had the highest elongation at break (E), the highest tensile strength (TS), and the lowest water vapor permeability (WVP). Therefore, it was selected as having the best WAPI:PG ratio and exposed to CPT for 5, 10, and 15 min. The results revealed that the application of CPT significantly increased the thickness, TS, and E of edible films, while WVP and solubility were not affected. FTIR spectra showed slight increases in peak intensities at 1628, 1538, and 1400 cm-1. The micrographs revealed that the roughness of composite films increased with increased cold plasma treatment time. In general, edible films treated by CPT for 10 min demonstrated the best functional properties.
Collapse
Affiliation(s)
- Zahra Tahsiri
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehrdad Niakousari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
45
|
Lim JS, Kim D, Ki S, Mumtaz S, Shaik AM, Han I, Hong YJ, Park G, Choi EH. Characteristics of a Rollable Dielectric Barrier Discharge Plasma and Its Effects on Spinach-Seed Germination. Int J Mol Sci 2023; 24:ijms24054638. [PMID: 36902069 PMCID: PMC10002516 DOI: 10.3390/ijms24054638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
We investigated the characteristics of a rollable dielectric barrier discharge (RDBD) and evaluate its effects on seed germination rate and water uptake. The RDBD source was composed of a polyimide substrate and copper electrode, and it was mounted in a rolled-up structure for omnidirectional and uniform treatment of seeds with flowing synthetic air gas. The rotational and vibrational temperatures were measured to be 342 K and 2860 K, respectively, using optical emission spectroscopy. The chemical species analysis via Fourier-transform infrared spectroscopy and 0D chemical simulation showed that O3 production was dominant and NOx production was restrained at the given temperatures. The water uptake and germination rate of spinach seeds by 5 min treatment of RDBD was increased by 10% and 15%, respectively, and the standard error of germination was reduced by 4% in comparison with the controls. RDBD enables an important step forward in non-thermal atmospheric-pressure plasma agriculture for omnidirectional seed treatment.
Collapse
Affiliation(s)
- Jun Sup Lim
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 01897, Republic of Korea
| | - Daeun Kim
- Electrical and Biological Physics Department, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sehoon Ki
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan 54004, Republic of Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 01897, Republic of Korea
| | - Abdul Munnaf Shaik
- Electrical and Biological Physics Department, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 01897, Republic of Korea
| | - Young June Hong
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 01897, Republic of Korea
| | - Gyungsoon Park
- Electrical and Biological Physics Department, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 01897, Republic of Korea
- Electrical and Biological Physics Department, Kwangwoon University, Seoul 01897, Republic of Korea
- Correspondence:
| |
Collapse
|
46
|
The Application of Cold Plasma Technology in Low-Moisture Foods. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-022-09329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Galassi A, Ferrucci L, Costanzi M, Vallone L. Atmosferic pressure non-thermal plasma: Preliminary investigation. Ital J Food Saf 2022; 11:10043. [PMID: 36590021 PMCID: PMC9795819 DOI: 10.4081/ijfs.2022.10043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/01/2022] [Indexed: 12/12/2022] Open
Abstract
Antibacterial activity of atmosferic pressure non-thermal plasma (APNTP) was assessed for bacterial, yeast and mold strains. This investigation is to be considered preliminary: a second step is envisaged in which the efficacy of the technique and the device will be assessed directly on food of animal and plant origin. The strains (ATCC or wild type) of Listeria innocua, Escherichia coli, Salmonella thyphimurium, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecalis, Proteus mirabilis (bacteria); Alternaria alternata, Aspergillus flavus, Cladosporium herbarum, Fusarium graminearum, Geotrichum candidum, Penicillium roqueforti, Rhizopus nigricans (moulds); Candida parapsilosis and Candida albicans (yeasts) were subjected to plasma plume generated by the action of electric fields with a gas mixture (oxygen and helium) delivered for 5 min at a distance of 2 cm. Types of experiments were listed as following: microorganism at concentration 1×10^8 and 1×104 cfu on PCA (Plate Count Agar); Listeria innocua and Salmonella thiphymurium at concentration 1×10^4 cfu on semi-synthetic and synthetic medium; mycetes (moulds and yeasts) at concentration 1×10^8 and 1×10^4 cfu on SDA (Sabouraud Dextrose Agar). The results obtained on the bacteria subjected to atmospheric cold plasma were evident on all the strains tested except for Proteus mirabilis (1×10^8 cfu), most evident at a concentration of 1×10^4 cfu, not only on culture media PCA but also on semi-synthetic medium and jelly meat-PCA medium. In spite of bacterial results, treatment with plasma plume did not decrease or inhibit of fungal growth. That means plasma plume was neither fungicidal nor fungistatic activities.
Collapse
Affiliation(s)
| | | | | | - Lisa Vallone
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi,Dipartimento VESPA, Via dell’Università n. 9, Lodi, Italy. Tel. +39250334312.
| |
Collapse
|
48
|
Lin SP, Khumsupan D, Chou YJ, Hsieh KC, Hsu HY, Ting Y, Cheng KC. Applications of atmospheric cold plasma in agricultural, medical, and bioprocessing industries. Appl Microbiol Biotechnol 2022; 106:7737-7750. [PMID: 36329134 PMCID: PMC9638309 DOI: 10.1007/s00253-022-12252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Atmospheric cold plasma (ACP) is a nonthermal technology that is extensively used in several industries. Within the scopes of engineering and biotechnology, some notable applications of ACP include waste management, material modification, medicine, and agriculture. Notwithstanding numerous applications, ACP still encounters a number of challenges such as diverse types of plasma generators and sizes, causing standardization challenges. This review focuses on the uses of ACP in engineering and biotechnology sectors in which the innovation can positively impact the operation process, enhance safety, and reduce cost. Additionally, its limitations are examined. Since ACP is still in its nascent stage, the review will also propose potential research opportunities that can help scientists gain more insights on the technology. KEY POINTS: • ACP technology has been used in agriculture, medical, and bioprocessing industries. • Chemical study on the reactive species is crucial to produce function-specific ACP. • Different ACP devices and conditions still pose standardization problems.
Collapse
Affiliation(s)
- Shin-Ping Lin
- School of Food Safety, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan
| | - Darin Khumsupan
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yu-Jou Chou
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Kuan-Chen Hsieh
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Yuwen Ting
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.
| | - Kuan-Chen Cheng
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.
- Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung, 41354, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
| |
Collapse
|
49
|
Solid-state modification of tapioca starch using atmospheric nonthermal dielectric barrier discharge argon and helium plasma. Food Res Int 2022; 162:111961. [DOI: 10.1016/j.foodres.2022.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/04/2022]
|
50
|
Mol S, Akan T, Kartal S, Coşansu S, Tosun ŞY, Alakavuk DÜ, Ulusoy Ş, Doğruyol H, Bostan K. Effects of Air and Helium Cold Plasma on Sensory Acceptability and Quality of Fresh Sea Bass (Dicentrarchus labrax). FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|