1
|
Lee J, Weon S, Lee SSS, Yun ET, Chung MW, Kim C, Wang H, Fortner JD. Microwave-enhanced catalytic degradation of organic compounds with silica-coated iron oxide nanocrystals via fenton-like reaction pathway. NPJ CLEAN WATER 2025; 8:25. [PMID: 40190781 PMCID: PMC11968400 DOI: 10.1038/s41545-025-00449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/27/2025] [Indexed: 04/09/2025]
Abstract
Microwave (MW)-enhanced catalytic oxidation processes are emerging and effective techniques for the degradation of organic compounds in water and wastewater treatment processes. In this study, through applied MW irradiation, monodisperse, superparamagnetic iron oxide nanocrystals (IONCs) with thin, amorphous silica coatings are demonstrated to rapidly catalyze the degradation of organic compounds in water through a thermally enhanced, Fenton-type process. For this, we precisely synthesize amorphous silica-coated various metal oxide (single domain) nanocrystals, and then evaluate the degradation of methyl orange (MO) and benzoic acid (BA), chosen as model organic molecules. We examine (and optimize) the effects of core (nanocrystal) composition, size, and concentration, along with solution pH and hydrogen peroxide (H2O2) concentration. Further, we describe the catalytic degradation of BA with IONCs under MW irradiation through radical scavenger controls and electron paramagnetic resonance (EPR) analysis, which support the proposed reaction mechanism. For materials evaluated, the amorphous silica coating not only prevents the loss of nanocrystal integrity but also provides a reactive, yet stable, interface between nanocrystals and bulk solutions, where the degradation of organic compounds can occur. Synthesized IONCs show high performance, which is repeatable for over five cycles without any deterioration of the nanocrystals core or metal leaching. Taken together, this research highlights the potential of enhanced MW-enhanced oxidation processes appropriately coated (i.e., designed) MW absorbers (here as superparamagnetic IONCs) for advanced water treatment.
Collapse
Affiliation(s)
- Junseok Lee
- Department of Environmental Engineering, Incheon National University, Incheon, Republic of Korea
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT USA
| | - Seunghyun Weon
- School of Health and Environmental Science, Korea University, Seoul, Republic of Korea
| | - Seung Soo Steve Lee
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT USA
| | - Eun-tae Yun
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT USA
| | - Myoung Won Chung
- School of Health and Environmental Science, Korea University, Seoul, Republic of Korea
| | - Changwoo Kim
- Department of Environment and Energy Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, CT USA
| | - John D. Fortner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT USA
| |
Collapse
|
2
|
Tiwari U, Akhtar S, Mir SS, Khan MKA. Evaluation of selected indigenous spices- and herbs-derived small molecules as potential inhibitors of SREBP and its implications for breast cancer using MD simulations and MMPBSA calculations. Mol Divers 2025:10.1007/s11030-025-11122-9. [PMID: 39899124 DOI: 10.1007/s11030-025-11122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
In this study, we conducted an extensive analysis of 252 bioactive compounds derived from native spices and herbs for their potential anti-breast cancer activity against sterol regulatory element-binding protein (SREBP), using in silico techniques. To evaluate the oral bioavailability, overall pharmacokinetics, and safety profiles of these compounds, we employed Lipinski's rule of five and ADME descriptors, which depicted 66 lead molecules. These molecules were then docked with the SREBP using molecular docking tools, which revealed that diosgenin and smilagenin were the most promising hits compared to the reference inhibitor betulin, with average binding affinities of - 7.42 and - 7.37 kcal/mol and - 6.27 kcal/mol, respectively. To further assess the stability of these complexes along with betulin, we conducted molecular dynamics simulations over a 100 ns simulation period. We employed various parameters, including the root-mean-square deviation, root-mean-square fluctuation, solvent-accessible surface area, free energy of solvation, and radius of gyration, followed by principal component analysis. Furthermore, we evaluated the toxicity of the selected compounds against various anticancer cell lines, as well as their metabolic activity related to CYP450 metabolism and biological activity spectrum. Based on these results, both molecules exhibited promising drug candidate potential and could be utilized for further experimental analysis to elucidate their anticancer potential.
Collapse
Affiliation(s)
- Urvashi Tiwari
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Salman Akhtar
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Snober S Mir
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | | |
Collapse
|
3
|
Moirangthem S, Patra G, Biswas S, Das A, Nath S, Verma AK, Pal S, Chatterjee N, Bandyopadhyay S, Nanda PK, Sharma G, Das AK. Effect of Nutmeg ( Myristica fragrans) and Tea Tree ( Melaleuca alternifolia) Essential Oils on the Oxidative and Microbial Stability of Chicken Fillets During Refrigerated Storage. Foods 2024; 13:4139. [PMID: 39767083 PMCID: PMC11675315 DOI: 10.3390/foods13244139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The current study investigated the impact of nutmeg essential oil (NEO) and tea tree essential oil (TTEO) on the preservation of raw chicken fillets during nine days of refrigerated storage study. The primary aim was to explore the antioxidant and antimicrobial properties of these essential oils (EOs) and assess their ability to extend the shelf life of poultry meat. Gas chromatography-mass spectrometry (GC-MS) was utilized to identify the chemical compositions of NEO and TTEO, revealing the presence of compounds like myristicin and terpenoids, known for their antimicrobial and antioxidant activities. Antioxidant properties were evaluated using DPPH and ABTS radical scavenging assays, where both oils exhibited potent free radical scavenging abilities, with NEO showing higher efficacy than TTEO. The EOs showed their antimicrobial potential, exhibiting significant antibacterial activities against tested Gram-positive and Gram-negative pathogens, such as Staphylococcus aureus and Escherichia coli, respectively. Raw chicken fillets treated with either NEO or TTEO at 1% were analyzed for physico-chemical, microbiological, and sensory attributes. Results demonstrated that both NEO- and TTEO-treated samples maintained better microbiological qualities, with lower total viable counts and enhanced sensory attributes, such as color and odor, compared to the control samples. Furthermore, NEO and TTEO effectively delayed spoilage, extending the shelf life of chicken fillets by up to seven days. This study concludes that both the test's essential oils can be considered natural preservatives for enhancing the safety and quality of meat.
Collapse
Affiliation(s)
- Sushmita Moirangthem
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India; (S.M.); (G.P.); (S.B.); (A.D.)
| | - Gopal Patra
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India; (S.M.); (G.P.); (S.B.); (A.D.)
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India; (S.M.); (G.P.); (S.B.); (A.D.)
| | - Annada Das
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India; (S.M.); (G.P.); (S.B.); (A.D.)
| | - Santanu Nath
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India; (S.N.); (S.B.); (P.K.N.)
| | - Arun K. Verma
- Goat Products Technology Laboratory, ICAR-CIRG, Makhdoom, Mathura 281122, India;
| | - Srija Pal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B, Judges Court Road, Alipore, Kolkata 700027, India; (S.P.); (N.C.)
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B, Judges Court Road, Alipore, Kolkata 700027, India; (S.P.); (N.C.)
| | - Samiran Bandyopadhyay
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India; (S.N.); (S.B.); (P.K.N.)
| | - Pramod K. Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India; (S.N.); (S.B.); (P.K.N.)
| | - Geetanjali Sharma
- National Food Laboratory, 3, Kyd Street, Taltala, Kolkata 700016, India;
| | - Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India; (S.N.); (S.B.); (P.K.N.)
| |
Collapse
|
4
|
Wróblewski M, Wróblewska J, Nuszkiewicz J, Mila-Kierzenkowska C, Woźniak A. Antioxidant Potential of Medicinal Plants in the Treatment of Scabies Infestation. Molecules 2024; 29:5310. [PMID: 39598700 PMCID: PMC11596956 DOI: 10.3390/molecules29225310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Oxidative stress, characterized by an overproduction of reactive oxygen species that overwhelm the body's physiological defense mechanisms, is a key factor in the progression of parasitic diseases in both humans and animals. Scabies, a highly contagious dermatological condition caused by the mite Sarcoptes scabiei var. hominis, affects millions globally, particularly in developing regions. The infestation leads to severe itching and skin rashes, triggered by allergic reactions to the mites, their eggs, and feces. Conventional scabies treatments typically involve the use of scabicidal agents, which, although effective, are often associated with adverse side effects and the increasing threat of resistance. In light of these limitations, there is growing interest in the use of medicinal plants as alternative therapeutic options. Medicinal plants, rich in bioactive compounds with antioxidant properties, offer a promising, safer, and potentially more effective approach to treatment. This review explores the role of oxidative stress in scabies pathogenesis and highlights how medicinal plants can mitigate this by reducing inflammation and oxidative damage, thereby alleviating symptoms and improving patient outcomes. Through their natural antioxidant potential, these plants may serve as viable alternatives or complementary therapies in the management of scabies, especially in cases where resistance to conventional treatments is emerging.
Collapse
Affiliation(s)
| | | | | | | | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| |
Collapse
|
5
|
Oo T, Saiboonjan B, Mongmonsin U, Srijampa S, Srisrattakarn A, Tavichakorntrakool R, Chanawong A, Lulitanond A, Roytrakul S, Sutthanut K, Tippayawat P. Effectiveness of co-cultured Myristica fragrans Houtt. seed extracts with commensal Staphylococcus epidermidis and its metabolites in antimicrobial activity and biofilm formation of skin pathogenic bacteria. BMC Complement Med Ther 2024; 24:380. [PMID: 39482677 PMCID: PMC11526599 DOI: 10.1186/s12906-024-04675-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Skin commensal bacteria (Staphylococcus epidermidis) can help defend against skin infections, and they are increasingly being recognized for their role in benefiting skin health. This study aims to demonstrate the activities that Myristica fragrans Houtt. seed extracts, crude extract (CE) and essential oil (EO), have in terms of promoting the growth of the skin commensal bacterium S. epidermidis and providing metabolites under culture conditions to disrupt the biofilm formation of the common pathogen Staphylococcus aureus. METHODS The culture supernatant obtained from a co-culture of S. epidermidis with M. fragrans Houtt. seed extracts in either CE or EO forms were analyzed using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS), in silico investigations, and applied to assess the survival and biofilm formation of S. aureus. RESULTS The combination of commensal bacteria with M. fragrans Houtt. seed extract either CE or EO produced metabolic compounds such as short-chain fatty acids and antimicrobial peptides, contributing to the antimicrobial activity. This antimicrobial activity was related to downregulating key genes involved in bacterial adherence and biofilm development in S. aureus, including cna, agr, and fnbA. CONCLUSION These findings suggest that using the culture supernatant of the commensal bacteria in combination with CE or EO may provide a potential approach to combat biofilm formation and control the bacterial proliferation of S. aureus. This may be a putative non-invasive therapeutic strategy for maintaining a healthy skin microbiota and preventing skin infections.
Collapse
Affiliation(s)
- Thidar Oo
- Medical Technology Program, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Bhanubong Saiboonjan
- Center for Innovation and Standard for Medical Technology and Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Urairat Mongmonsin
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sukanya Srijampa
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arpasiri Srisrattakarn
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ratree Tavichakorntrakool
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Aroonwadee Chanawong
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Aroonlug Lulitanond
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Khaetthareeya Sutthanut
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Patcharaporn Tippayawat
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
6
|
Shanawany EEE, Abouelmagd F, Taha NM, Zalat RS, Abdelrahman EH, Abdel-Rahman EH. Myristica fragrans Houtt. methanol extract as a promising treatment for Cryptosporidium parvum infection in experimentally immunosuppressed and immunocompetent mice. Vet World 2024; 17:2062-2071. [PMID: 39507782 PMCID: PMC11536736 DOI: 10.14202/vetworld.2024.2062-2071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/05/2024] [Indexed: 11/08/2024] Open
Abstract
Background and Aim Cryptosporidiosis is a major waterborne disease affecting ruminants and humans worldwide. It causes diarrhea and neonatal mortality in buffalo calves, and watery diarrhea and mortality in children and immunodeficient patients. This study aimed to investigate the efficacy of Myristica fragrans methanolic extract in treatment of C. parvum infection in comparison with nitazoxanide (NZX) (a Food and Drug Administration-approved drug control) in immunosuppressed and immunocompetent mice. Materials and Methods One hundred laboratory-bred male Swiss albino mice were equally divided into immunocompetent and immunosuppressed groups. Each group was further divided into five subgroups: (1) non-infected and non-treated control, (2) infected and non-treated control (infected with Cryptosporidium parvum oocysts 3 × 103), (3) NZX-treated (100 mg/kg, 200 μL/mouse), (4) M. fragrans Houtt. methanol extract-treated (500 mg/kg), and (5) combination-treated (NZX + M. fragrans extract). Number of oocysts/g of feces, serum immunoglobulin (Ig) G level, and interferon (IFN)-γ, and interleukin (IL)-4 levels were used to evaluate the therapeutic effect. Results C. parvum oocyst shedding in stool samples was significantly decreased in all treatment groups, with 79.7%, 81.2 %, and 85.5 % reduction in immunocompetent mice treated with NZX, M. fragrans, and their combination, respectively. In immunosuppressed mice, oocyst shedding was reduced by 77.7%, 80.5 %, and 83.7 % upon NZX, M. fragrans, and their combination treatments, respectively. The serum IgG level was lowest in mice treated with a mixture of M. fragrans and NZX, followed by those treated with NZX, and was highest in mice treated with M. fragrans alone. Regarding cytokine levels, all groups treated with M. fragrans had low levels of IFN-γ and IL4 on day 21 post-infection. Conclusion Collectively, the treatment of cryptosporidiosis with M. fragrans extract was successful in mice, as demonstrated by the measured parameters. M. fragrans reduced C. parvum oocyst shedding and serum IgG, IFN-γ, and IL-4 levels in immunocompetent and immunosuppressed mice.
Collapse
Affiliation(s)
- Eman E. El Shanawany
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki-Giza, Egypt
| | - Faten Abouelmagd
- Department of Medical Parasitology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Noha Madbouly Taha
- Department of Parasitology, Kasr Al-Ainy School of Medicine, Cairo University, Egypt
| | - Rabab S. Zalat
- Department of Parasitology, Theodor Bilharz Research Institute, Egypt
| | - Enas H. Abdelrahman
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| | - Eman H. Abdel-Rahman
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki-Giza, Egypt
| |
Collapse
|
7
|
Al-Rawi SS, Ibrahim AH, Ahmed HJ, Khudhur ZO. Therapeutic, and pharmacological prospects of nutmeg seed: A comprehensive review for novel drug potential insights. Saudi Pharm J 2024; 32:102067. [PMID: 38690209 PMCID: PMC11059288 DOI: 10.1016/j.jsps.2024.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Background and objectives For centuries, plant seed extracts have been widely used and valued for their benefits. They have been used in food, perfumes, aromatherapy, and traditional medicine. These natural products are renowned for their therapeutic properties and are commonly used in medicinal treatments. Their significant pharmacological profiles provide an excellent hallmark for the prevention or treatment of various diseases. In this study, we comprehensively evaluated the biological and pharmacological properties of nutmeg seeds and explored their efficacy in treating various illnesses. Method Published articles in databases including Google Scholar, PubMed, Elsevier, Scopus, ScienceDirect, and Wiley, were analyzed using keywords related to nutmeg seed. The searched keywords were chemical compounds, antioxidants, anti-inflammatory, antibacterial, antifungal, antiviral, antidiabetic, anticancer properties, and their protective mechanisms in cardiovascular and Alzheimer's diseases. Results & discussion Nutmeg seeds have been reported to have potent antimicrobial properties against a wide range of various bacteria and fungi, thus showing potential for combating microbial infections and promoting overall health. Furthermore, nutmeg extract effectively reduces oxidative stress and inflammation by improving the body's natural antioxidant defense mechanism. Nutmeg affected lipid peroxidation, reduced lipid oxidation, reduced low-density lipoprotein (LDL), and increased phospholipid and cholesterol excretion. In addition, nutmeg extract improves the modulation of cardiac metabolism, accelerates cardiac conductivity and ventricular contractility, and prevents cell apoptosis. This study elucidated the psychotropic, narcotic, antidepressant, and anxiogenic effects of nutmeg seeds and their potential as a pharmaceutical medicine. Notably, despite its sedative and toxic properties, nutmeg ingestion alone did not cause death or life-threatening effects within the dosage range of 20-80 g powder. However, chemical analysis of nutmeg extracts identified over 50 compounds, including flavonoids, alkaloids, and polyphenolic compounds, which exhibit antioxidant properties and can be used as phytomedicines. Moreover, the exceptional pharmacokinetics and bioavailability of nutmeg have been found different for different administration routes, yet, more clinical trials are still needed. Conclusion Understanding the chemical composition and pharmacological properties of nutmeg holds promise for novel drug discovery and therapeutic advancements. Nutmeg seed offers therapeutic and novel drug prospects that can revolutionize medicine. By delving into their pharmacological properties, we can uncover the vast potential possibilities of this natural wonder.
Collapse
Affiliation(s)
- Sawsan S. Al-Rawi
- Department of Biology Education, Faculty of Education, Tishk International University, Erbil, KRG, Iraq
| | - Ahmad Hamdy Ibrahim
- Department of Pharmacy, Faculty of Pharmacy, Tishk International University, Erbil, KRG, Iraq
| | - Heshu Jalal Ahmed
- Department of Biology Education, Faculty of Education, Tishk International University, Erbil, KRG, Iraq
| | - Zhikal Omar Khudhur
- Department of Biology Education, Faculty of Education, Tishk International University, Erbil, KRG, Iraq
| |
Collapse
|
8
|
Cruz A, Sánchez-Hernández E, Teixeira A, Oliveira R, Cunha A, Martín-Ramos P. Phytoconstituents and Ergosterol Biosynthesis-Targeting Antimicrobial Activity of Nutmeg ( Myristica fragans Houtt.) against Phytopathogens. Molecules 2024; 29:471. [PMID: 38257384 PMCID: PMC10819938 DOI: 10.3390/molecules29020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, nutmeg (Myristica fragans Houtt.) has attracted considerable attention in the field of phytochemistry due to its diverse array of bioactive compounds. However, the potential application of nutmeg as a biorational for crop protection has been insufficiently explored. This study investigated the constituents of a nutmeg hydroethanolic extract via gas chromatography-mass spectrometry and vibrational spectroscopy. The research explored the extract's activity against phytopathogenic fungi and oomycetes, elucidating its mechanism of action. The phytochemical profile revealed fatty acids (including tetradecanoic acid, 9-octadecenoic acid, n-hexadecanoic acid, dodecanoic acid, and octadecanoic acid), methoxyeugenol, and elemicin as the main constituents. Previously unreported phytochemicals included veratone, gelsevirine, and montanine. Significant radial growth inhibition of mycelia was observed against Botrytis cinerea, Colletotrichum acutatum, Diplodia corticola, Phytophthora cinnamomi, and especially against Fusarium culmorum. Mode of action investigation, involving Saccharomyces cerevisiae labeled positively with propidium iodide, and a mutant strain affected in ERG6, encoding sterol C-24 methyltransferase, suggested that the extract induces a necrotic type of death and targets ergosterol biosynthesis. The evidence presented underscores the potential of nutmeg as a source of new antimicrobial agents, showing particular promise against F. culmorum.
Collapse
Affiliation(s)
- Adriana Cruz
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.C.); (A.T.); (R.O.); (A.C.)
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Eva Sánchez-Hernández
- Department of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain;
| | - Ana Teixeira
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.C.); (A.T.); (R.O.); (A.C.)
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Rui Oliveira
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.C.); (A.T.); (R.O.); (A.C.)
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Cunha
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.C.); (A.T.); (R.O.); (A.C.)
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Pablo Martín-Ramos
- Department of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain;
| |
Collapse
|
9
|
Sulieman AME, Abdallah EM, Alanazi NA, Ed-Dra A, Jamal A, Idriss H, Alshammari AS, Shommo SAM. Spices as Sustainable Food Preservatives: A Comprehensive Review of Their Antimicrobial Potential. Pharmaceuticals (Basel) 2023; 16:1451. [PMID: 37895922 PMCID: PMC10610427 DOI: 10.3390/ph16101451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Throughout history, spices have been employed for their pharmaceutical attributes and as a culinary enhancement. The food industry widely employs artificial preservatives to retard the deterioration induced by microbial proliferation, enzymatic processes, and oxidative reactions. Nevertheless, the utilization of these synthetic preservatives in food products has given rise to significant apprehension among consumers, primarily stemming from the potential health risks that they pose. These risks encompass a spectrum of adverse effects, including but not limited to gastrointestinal disorders, the disruption of gut microbiota, allergic reactions, respiratory complications, and concerns regarding their carcinogenic properties. Consequently, consumers are displaying an increasing reluctance to purchase preserved food items that contain such additives. Spices, known for their antimicrobial value, are investigated for their potential as food preservatives. The review assesses 25 spice types for their inherent antimicrobial properties and their applicability in inhibiting various foodborne microorganisms and suggests further future investigations regarding their use as possible natural food preservatives that could offer safer, more sustainable methods for extending shelf life. Future research should delve deeper into the use of natural antimicrobials, such as spices, to not only replace synthetic preservatives but also optimize their application in food safety and shelf-life extension. Moreover, there is a need for continuous innovation in encapsulation technologies for antimicrobial agents. Developing cost-effective and efficient methods, along with scaling up production processes, will be crucial to competing with traditional antimicrobial options in terms of both efficacy and affordability.
Collapse
Affiliation(s)
- Abdel Moneim E. Sulieman
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (N.A.A.); (A.J.)
| | - Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Naimah Asid Alanazi
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (N.A.A.); (A.J.)
| | - Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M’ghila Campus, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco;
| | - Arshad Jamal
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (N.A.A.); (A.J.)
| | - Hajo Idriss
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | | | | |
Collapse
|
10
|
Jeong SH, Park JY, Ryu YB, Kim WS, Lee IC, Kim JH, Kim D, Ha JH, Lee BW, Nam J, Cho KO, Kwon HJ. Myristica fragrans Extract Inhibits Platelet Desialylation and Activation to Ameliorate Sepsis-Associated Thrombocytopenia in a Murine CLP-Induced Sepsis Model. Int J Mol Sci 2023; 24:ijms24108863. [PMID: 37240208 DOI: 10.3390/ijms24108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Sepsis, characterized by an uncontrolled host inflammatory response to infections, remains a leading cause of death in critically ill patients worldwide. Sepsis-associated thrombocytopenia (SAT), a common disease in patients with sepsis, is an indicator of disease severity. Therefore, alleviating SAT is an important aspect of sepsis treatment; however, platelet transfusion is the only available treatment strategy for SAT. The pathogenesis of SAT involves increased platelet desialylation and activation. In this study, we investigated the effects of Myristica fragrans ethanol extract (MF) on sepsis and SAT. Desialylation and activation of platelets treated with sialidase and adenosine diphosphate (platelet agonist) were assessed using flow cytometry. The extract inhibited platelet desialylation and activation via inhibiting bacterial sialidase activity in washed platelets. Moreover, MF improved survival and reduced organ damage and inflammation in a mouse model of cecal ligation and puncture (CLP)-induced sepsis. It also prevented platelet desialylation and activation via inhibiting circulating sialidase activity, while maintaining platelet count. Inhibition of platelet desialylation reduces hepatic Ashwell-Morell receptor-mediated platelet clearance, thereby reducing hepatic JAK2/STAT3 phosphorylation and thrombopoietin mRNA expression. This study lays a foundation for the development of plant-derived therapeutics for sepsis and SAT and provides insights into sialidase-inhibition-based sepsis treatment strategies.
Collapse
Affiliation(s)
- Seong-Hun Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji-Young Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 53212, Republic of Korea
| | - Young Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 53212, Republic of Korea
| | - Ju-Hong Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Dohoon Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Ji-Hye Ha
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Ba-Wool Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Jiyoung Nam
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 53212, Republic of Korea
| |
Collapse
|
11
|
Chernukha I, Kupaeva N, Khvostov D, Bogdanova Y, Smirnova J, Kotenkova E. Assessment of Antioxidant Stability of Meat Pâté with Allium cepa Husk Extract. Antioxidants (Basel) 2023; 12:antiox12051103. [PMID: 37237969 DOI: 10.3390/antiox12051103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Antioxidants play a very important role in the food industry. Recently, both science and industry have shown substantial preference for natural antioxidants, including searching for antioxidant substances from natural sources without undesirable side effects. The purpose of this study was to evaluate the effect of adding Allium cepa husk extract at a volume of 68 or 34 μL/g of unsalted blanched materials to replace 34% and 17% of the beef broth, respectively, which corresponded to a total antioxidant capacity (TAC) of 44.4 or 22.2 μmol-equiv. Q/100 g meat pté (i.e., 13.42 or 6.71 mg of quercetin/100 g meat pté), on the quality and safety indicators of the developed meat pté. The TAC according to a ferric reducing antioxidant power assay, thiobarbituric acid reactive substances, and physicochemical and microbiological characteristics were determined during the storage of the meat pté. Proximal and UPLC-ESI-Q-TOF-MS analyses were also performed. The addition of yellow onion husk ethanolic extract to the meat pté at both volumes allowed the maintenance of an increased content of antioxidants, which contributed to a decrease in the generation of secondary products of lipid peroxidation for 14 days of storage at 4 ∘C. The results of the microbiological analyses showed that the developed meat ptés were safe according to all indicators of microbial spoilage within 10 days of production. The results supported the use of yellow onion husk extract in the food industry to contribute to improving the functionality of meat products, developing products for a healthy lifestyle, and providing clean-label foods without or with a minimal content of synthetic additives.
Collapse
Affiliation(s)
- Irina Chernukha
- V. M. Gorbatov Federal Research Center for Food Systems, Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, Talalikhina St., 26, 109316 Moscow, Russia
| | - Nadezhda Kupaeva
- V. M. Gorbatov Federal Research Center for Food Systems, Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, Talalikhina St., 26, 109316 Moscow, Russia
| | - Daniil Khvostov
- V. M. Gorbatov Federal Research Centre for Food Systems of RAS, Laboratory of Molecular Biology and Bioinformatics, Talalikhina St., 26, 109316 Moscow, Russia
| | - Yuliya Bogdanova
- V. M. Gorbatov Federal Research Centre for Food Systems of RAS, Department of Scientific, Applied and Technological Developments, Talalikhina St., 26, 109316 Moscow, Russia
| | - Jutta Smirnova
- V. M. Gorbatov Federal Research Center for Food Systems, Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, Talalikhina St., 26, 109316 Moscow, Russia
| | - Elena Kotenkova
- V. M. Gorbatov Federal Research Center for Food Systems, Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, Talalikhina St., 26, 109316 Moscow, Russia
| |
Collapse
|
12
|
Tran KN, Nguyen NPK, Nguyen LTH, Shin HM, Yang IJ. Screening for Neuroprotective and Rapid Antidepressant-like Effects of 20 Essential Oils. Biomedicines 2023; 11:biomedicines11051248. [PMID: 37238920 DOI: 10.3390/biomedicines11051248] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Depression is a serious psychiatric disorder with high prevalence, and the delayed onset of antidepressant effects remains a limitation in the treatment of depression. This study aimed to screen essential oils that have the potential for rapid-acting antidepressant development. PC12 and BV2 cells were used to identify essential oils with neuroprotective effects at doses of 0.1 and 1 µg/mL. The resulting candidates were treated intranasally (25 mg/kg) to ICR mice, followed by a tail suspension test (TST) and an elevated plus maze (EPM) after 30 min. In each effective essential oil, five main compounds were computationally analyzed, targeting glutamate receptor subunits. As a result, 19 essential oils significantly abolished corticosterone (CORT)-induced cell death and lactate dehydrogenase (LDH) leakage, and 13 reduced lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). From in vivo experiments, six essential oils decreased the immobility time of mice in the TST, in which Chrysanthemum morifolium Ramat. and Myristica fragrans Houtt. also increased time and entries into the open arms of the EPM. Four compounds including atractylon, α-curcumene, α-farnesene, and selina-4(14),7(11)-dien-8-one had an affinity toward GluN1, GluN2B, and Glu2A receptor subunits surpassed that of the reference compound ketamine. Overall, Atractylodes lancea (Thunb.) DC and Chrysanthemum morifolium Ramat essential oils are worthy of further research for fast-acting antidepressants through interactions with glutamate receptors, and their main compounds (atractylon, α-curcumene, α-farnesene, and selina-4(14),7(11)-dien-8-one) are predicted to underlie the fast-acting effect.
Collapse
Affiliation(s)
- Khoa Nguyen Tran
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Nhi Phuc Khanh Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Heung-Mook Shin
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
13
|
Trifan A, Zengin G, Korona-Glowniak I, Skalicka-Woźniak K, Luca SV. Essential Oils and Sustainability: In Vitro Bioactivity Screening of Myristica fragrans Houtt. Post-Distillation By-Products. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091741. [PMID: 37176799 PMCID: PMC10181112 DOI: 10.3390/plants12091741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
The essential oil of Myristica fragrans Hutt. (nutmeg) is an important commodity used as a flavoring agent in the food, pharmaceutical, and cosmetic fields. Hydrodistillation is chiefly employed at the industrial scale for nutmeg essential oil isolation, but such a technique generates large quantities of post-distillation by-products (e.g., spent plant material and residual distillation water). Therefore, our work aimed to propose a novel strategy for the valorization of nutmeg wastes, with beneficial economic and ecological advantages. Thus, the current study assessed the phytochemical (GC-MS, LC-HRMS/MS) and biological (antioxidant, enzyme inhibitory, antimicrobial) profile of nutmeg crude materials (essential oil and total extract) and post-distillation by-products (residual water and spent material extract). Identified in these were 43 volatile compounds, with sabinene (21.71%), α-pinene (15.81%), myristicin (13.39%), and β-pinene (12.70%) as the main constituents. LC-HRMS/MS analysis of the nutmeg extracts noted fifteen metabolites (e.g., organic acids, flavonoids, phenolic acids, lignans, and diarylnonanoids). Among the investigated nutmeg samples, the spent material extract was highlighted as an important source of bioactive compounds, with a total phenolic and flavonoid content of 63.31 ± 0.72 mg GAE/g and 8.31 ± 0.06 mg RE/g, respectively. Moreover, it showed prominent radical-scavenging and metal-reducing properties and significantly inhibited butyrylcholinesterase (4.78 ± 0.03 mg GALAE/g). Further, the spent material extract displayed strong antimicrobial effects against Streptococcus pneumoniae, Micrococcus luteus, and Bacillus cereus (minimum inhibitory concentrations of 62.5 mg/L). Overall, our study brings evidence on the health-promoting (antioxidant, anti-enzymatic, antimicrobial) potential of nutmeg post-distillation by-products with future reference to their valorization in the pharmaceutical, cosmeceutical, and food industries.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy-Phytotherapy, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life and Food Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
14
|
Parvin R, Seo JK, Eom JU, Ahamed Z, Yang HS. Inhibitory and antioxidative capacity of nutmeg extracts on reduction of lipid oxidation and heterocyclic amines in pan-roasted beef patties. Meat Sci 2023; 197:109064. [PMID: 36493554 DOI: 10.1016/j.meatsci.2022.109064] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Identification and inhibition of mutagenic and carcinogenic heterocyclic amines (HCAs) from pan-roasted beef patties were performed by adding (0.02%) tertiary butyl hydroquinone (TBHQ) and (0.05%) ethanol-extracted nutmeg (ENE) using HPLC and principal component analysis. Ten HCAs, including six polar and four non-polar, were assessed. The addition of (0.05%) ENE significantly (P < 0.05) reduced the cooking loss and shrinkage of patties during cooking and reduced the total formation HCAs by 73.97%, which proved the significant (P < 0.05) inhibitory effect as a natural antioxidant against lipid oxidation and HCA formation compared to TBHQ. The DPPH radical-scavenging activity, total phenolic content, and available active metabolites of ENE were estimated. Furthermore, a positive correlation was observed between pH, level of thiobarbituric acid reactive substances, and HCA formation in both the groups. TBHQ and ENE were significant HCAs inhibitors (P < 0.001), but ENE showed resilient oxidative stability during refrigeration storage. Therefore, ENE can be used to reduce HCAs formation in pan-roasted beef patties.
Collapse
Affiliation(s)
- Rashida Parvin
- Division of Applied Life Science (BK21Four), Gyeongsang National University, 501 Jinju-daero, Jinju-si, Gyeongsangnam-do 52828, Republic of Korea
| | - Jin-Kyu Seo
- Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju-si, Gyeongsangnam-do 52828, Republic of Korea
| | - Jeong-Uk Eom
- Division of Applied Life Science (BK21Four), Gyeongsang National University, 501 Jinju-daero, Jinju-si, Gyeongsangnam-do 52828, Republic of Korea
| | - Zubayed Ahamed
- Division of Applied Life Science (BK21Four), Gyeongsang National University, 501 Jinju-daero, Jinju-si, Gyeongsangnam-do 52828, Republic of Korea
| | - Han-Sul Yang
- Division of Applied Life Science (BK21Four), Gyeongsang National University, 501 Jinju-daero, Jinju-si, Gyeongsangnam-do 52828, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju-si, Gyeongsangnam-do 52828, Republic of Korea.
| |
Collapse
|
15
|
Antimicrobial Activity of Spices Popularly Used in Mexico against Urinary Tract Infections. Antibiotics (Basel) 2023; 12:antibiotics12020325. [PMID: 36830236 PMCID: PMC9952462 DOI: 10.3390/antibiotics12020325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Urinary tract infections (UTIs) are the most common infectious diseases worldwide. These infections are common in all people; however, they are more prevalent in women than in men. The main microorganism that causes 80-90% of UTIs is Escherichia coli. However, other bacteria such as Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae cause UTIs, and antibiotics are required to treat them. However, UTI treatment can be complicated by antibiotic resistance and biofilm formation. Therefore, medicinal plants, such as spices generally added to foods, can be a therapeutic alternative due to the variety of phytochemicals such as polyphenols, saponins, alkaloids, and terpenes present in their extracts that exert antimicrobial activity. Essential oils extracted from spices have been used to demonstrate their antimicrobial efficacy against strains of pathogens isolated from UTI patients and their synergistic effect with antibiotics. This article summarizes relevant findings on the antimicrobial activity of cinnamon, clove, cumin, oregano, pepper, and rosemary, spices popularly used in Mexico against the uropathogens responsible for UTIs.
Collapse
|
16
|
Effect of Gamma Irradiation on Fat Content, Fatty Acids, Antioxidants and Oxidative Stability of Almonds, and Electron Paramagnetic Resonance (EPR) Study of Treated Nuts. Molecules 2023; 28:molecules28031439. [PMID: 36771103 PMCID: PMC9920200 DOI: 10.3390/molecules28031439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Gamma irradiation has been applied as an efficient and inexpensive method for the sterilization of nuts for years. However, along with the benefits of such treatment, negative effects are possible because of the formation of reactive oxygen species with a toxic effect on important biologically active substances. Because of the scarce and contradictory information in the literature about gamma-irradiated almonds, the aim of our work was the examination of the lipid changes, antioxidant activity, and oxidative stability of almonds treated by 10 and 25 kGy gamma rays, as well as changes in intensity of the EPR spectra as an indicator for the stability of radiation-induced free radicals. The results revealed no significant differences in the EPR spectra of almonds treated at 10 and 25 kGy doses, neither in their intensity nor in kinetic behaviour. The EPR signals decayed exponentially over 250 days, with a decreasing of central line by 90%, with satellite lines by about 73%. No significant changes in the fat content, fatty acids composition, and acid value of irradiated almonds were observed. However, the amount of (alpha)tocopherols decreased from 292 to 175 mg/kg, whereas the conjugated dienes and trienes increased, K232 from 1.3 to 3 and K268 from 0.04 to 0.15, respectively, with the increasing of irradiation dose. The same was observed for total polyphenols in defatted almonds (1374 to 1520 mg/100 g), where in vitro antioxidant activity determined by ORAC and HORAC methods increased from 100 to 156 µmol TE/g and from 61 to 86 µmol GAE/g, respectively. The oxidative stability of oil decreased from 6 to 4 h at 120 °C and from 24.6 to 18.6 h at 100 °C (measured by Rancimat equipment). The kinetic parameters characterizing the oxidative stability of oil from 10 kGy irradiated almonds were studied before and after addition of different concentrations of ascorbyl palmitate as a synergist of tocopherols. Its effectiveness was concentration-dependent, and 0.75 mM ensured the same induction period as that of non-irradiated nut oil. Further enrichment with alpha-tocopherol in equimolar ratio with palmitate did not improve the oil stability. In conclusion, gamma irradiation is an appropriate method for the treatment of almonds without significant changes in fat content and fatty acids composition. The decreasing of oxidative stability after higher irradiation could be prevented by the addition of ascorbyl palmitate.
Collapse
|
17
|
Vakili F, Roosta Z, Safari R, Raeisi M, Hossain MS, Guerreiro I, Akbarzadeh A, Hoseinifar SH. Effects of dietary nutmeg ( Myristica fragrans) seed meals on growth, non-specific immune indices, antioxidant status, gene expression analysis, and cold stress tolerance in zebrafish ( Danio rerio). Front Nutr 2023; 9:1038748. [PMID: 36778969 PMCID: PMC9908599 DOI: 10.3389/fnut.2022.1038748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction A medicinal plant, Myristica fragrans seed meal (nutmeg), was utilized to evaluate its impact on the growth, immunity, and antioxidant defense of zebrafish (Danio rerio). Methods In this regard, zebrafish (0.47 ± 0.04 g) (mean ± S.D.) were fed with 0% (control), 1% (T1-nutmeg), 2% (T2-nutmeg), and 3% (T3-nutmeg) of powdered nutmeg for 70 days. At the end of the feeding trial, growth performance, survival rate of fish, and temperature-challenge effects were recorded. Immune and antioxidant parameters were also assessed through the collection of serum and skin mucus samples. Results The results indicated that nutmeg supplementation did not significantly influence the growth of zebrafish (P > 0.05); however, the survival rate of fish fed with 2 and 3% of nutmeg supplementation significantly decreased (P < 0.05). The skin mucus and serum total protein, total immunoglobulin (Ig), and lysozyme activity were significantly increased in T3-nutmeg treatment in comparison to the control (P < 0.05). Superoxide dismutase (SOD) and catalase (CAT) activities were also enhanced in the T3-nutmeg group (P < 0.05). Nutmeg supplementation significantly upregulated the mRNA expression of growth hormone (gh) and insulin growth factor-1 (igf-1). Moreover, the nutmeg inclusion upregulated the expression of interleukin-1β (IL-1β), lysozyme, sod, and cat. The dietary supplementation of nutmeg significantly increased the resistance of zebrafish against cold-water shock and survivability afterward (P < 0.05). Discussion In conclusion, the supplementation of 3% powdered nutmeg in zebrafish diets could be suggested as an effective immune stimulator that improves antioxidant defense and stress tolerance.
Collapse
Affiliation(s)
- Farzaneh Vakili
- Department of Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Zahra Roosta
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Someh Sara, Gilan, Iran
| | - Roghieh Safari
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mojtaba Raeisi
- Food, Drug and Natural Products Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Md. Sakhawat Hossain
- Hagerman Fish Culture Experiment Station, University of Idaho, Hagerman, ID, United States
| | - Inês Guerreiro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, Matosinhos, Portugal
| | - Arash Akbarzadeh
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
18
|
Poliński S, Topka P, Tańska M, Kowalska S, Czaplicki S, Szydłowska-Czerniak A. Effect of Grinding Process Parameters and Storage Time on Extraction of Antioxidants from Ginger and Nutmeg. Molecules 2022; 27:7395. [PMID: 36364222 PMCID: PMC9654629 DOI: 10.3390/molecules27217395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 01/10/2024] Open
Abstract
The aim of this study was to optimize the grinding process parameters (mesh size of grinder sieve (X1), the peripheral velocity of the grinding wheels (X2)), and the storage time (X3) of ground ginger rhizome and nutmeg to obtain ethanol and ethanol-water extracts with improved antioxidant properties. The optimal conditions were estimated using response surface methodology (RSM) based on a three-variable Box-Behnken design (BBD) in order to maximize the antioxidant capacity (AC) determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods, and the total phenolic content (TPC) was determined by the Folin-Ciocalteu (F-C) method in spice extracts. Additionally, the phenolic acid profiles in extracts from optimized conditions were analyzed using ultra-performance liquid chromatography (UPLC). It was found that the optimal preparation conditions for antioxidant extraction were dependent on the spice source and solvent type. The best antioxidant properties in nutmeg extracts were achieved for X1 = 1.0 mm, X2 = 40-41 Hz and X3 = 7 days, whereas the optimized parameters for ginger extracts were more varied (1.0-2.0 mm, 43-50 Hz and 1-9 days, respectively). The ginger extracts contained 1.5-1.8 times more phenolic acids, and vanillic, ferulic, gallic, and p-OH-benzoic acids were dominant. In contrast, the nutmeg extracts were rich in protocatechuic, vanillic, and ferulic acids.
Collapse
Affiliation(s)
- Szymon Poliński
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Confectionery Factory “Kopernik” S.A., 87-100 Toruń, Poland
| | - Patrycja Topka
- Confectionery Factory “Kopernik” S.A., 87-100 Toruń, Poland
- Department of Food Plant Chemistry and Processing, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| | - Małgorzata Tańska
- Department of Food Plant Chemistry and Processing, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| | - Sylwia Kowalska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Sylwester Czaplicki
- Department of Food Plant Chemistry and Processing, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
19
|
Shen RS, Cao D, Chen FL, Wu XJ, Gao J, Bai LP, Zhang W, Jiang ZH, Zhu GY. New Monoterpene-Conjugated Phenolic Constituents from Nutmeg and Their Autophagy Modulating Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9684-9693. [PMID: 35904183 DOI: 10.1021/acs.jafc.2c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The seed of Myristica fragrans Houtt (nutmeg) is one of the important spices that have been extensively used in the culinary, food, beverage, and also in medicinal products industry. Previous phytochemical studies on nutmeg were mainly focused on lignans and neolignans. However, the other constituents have been poorly studied. In this study, 11 new monoterpene-conjugated phenolic derivatives, named myrifratins A-K (1-11), and five known compounds were isolated from nutmeg. The novel neolignan-diarylnonanoid-monoterpene conjugates (1 and 2) were first isolated in nature. Compounds 3-7 were rarely monoterpene-diarylnonanoid-conjugated derivatives, and 8-11 were the first examples of monoterpene-neolignan conjugates. Compounds 4-6, 12, and 13 showed potent autophagy inhibitory activities in a concentration-dependent manner. Our findings showed an uncommon class of monoterpene-conjugated phenolic derivatives in nature and reported their autophagy inhibition activities for the first time, which may give a new insight into the benefits or safety of nutmeg in foods.
Collapse
Affiliation(s)
- Rong-Sheng Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Dai Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Fei-Long Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Xu-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Jin Gao
- Increasepharm(Hengqin) Institute Co., Limited, National Engineering Research Center for Modernization of Traditional Chinese Medicine New DDS Branch, Guangdong Province Engineering Research Center for Aerosol Inhalation Preparation, Zhuhai 519000, China
- Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
20
|
Kortei NK, Kumah G, Tettey CO, Agyemang AO, Annan T, Nortey NND, Essuman EK, Boakye AA. Mycoflora, aflatoxins, and antimicrobial properties of some Ghanaian local spices and herbs. J Food Saf 2022. [DOI: 10.1111/jfs.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Nii K. Kortei
- Department of Nutrition and Dietetics, School of Allied Health Sciences University of Health and Allied Sciences Ho Ghana
| | - Grace Kumah
- Department of Nutrition and Dietetics, School of Allied Health Sciences University of Health and Allied Sciences Ho Ghana
| | - Clement O. Tettey
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences University of Health and Allied Sciences Ho Ghana
| | - Alfred O. Agyemang
- Institute of Traditional and Alternative Medicine, University of Health and Allied Sciences Ho Ghana
| | - Theophilus Annan
- Food Microbiology Division Council for Scientific and Industrial Research—Food Research Institute Accra Ghana
| | - Nathaniel N. D. Nortey
- Institute of Traditional and Alternative Medicine, University of Health and Allied Sciences Ho Ghana
| | - Edward K. Essuman
- Department of Nutrition and Dietetics, School of Allied Health Sciences University of Health and Allied Sciences Ho Ghana
| | - Adjoa A. Boakye
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences University of Health and Allied Sciences Ho Ghana
| |
Collapse
|
21
|
Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5445291. [PMID: 35707379 PMCID: PMC9192232 DOI: 10.1155/2022/5445291] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
Plants generally secrete secondary metabolites in response to stress. These secondary metabolites are very useful for humankind as they possess a wide range of therapeutic activities. Secondary metabolites produced by plants include alkaloids, flavonoids, terpenoids, and steroids. Flavonoids are one of the classes of secondary metabolites of plants found mainly in edible plant parts such as fruits, vegetables, stems, grains, and bark. They are synthesized by the phenylpropanoid pathway. Flavonoids possess antibacterial, antiviral, antioxidant, anti-inflammatory, antimutagenic, and anticarcinogenic properties. Due to their various therapeutic applications, various pharmaceutical companies have exploited different plants for the production of flavonoids. To overcome this situation, various biotechnological strategies have been incorporated to improve the production of different types of flavonoids. In this review, we have highlighted the various types of flavonoids, their biosynthesis, properties, and different strategies to enhance the production of flavonoids.
Collapse
|
22
|
Qadir A, Khan N, Arif M, Warsi MH, Ullah SNMN, Yusuf M. GC–MS analysis of phytoconstituents present in Trigonella foenumgraecum L. seeds extract and its antioxidant activity. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Ashokkumar K, Simal-Gandara J, Murugan M, Dhanya MK, Pandian A. Nutmeg (Myristica fragrans Houtt.) essential oil: A review on its composition, biological, and pharmacological activities. Phytother Res 2022; 36:2839-2851. [PMID: 35567294 PMCID: PMC9541156 DOI: 10.1002/ptr.7491] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023]
Abstract
Myristica fragrans (Houtt.) is an evergreen tree native to the Maluku Islands, Indonesia. M. fragrans kernel is extensively used in Indian traditional medicines to treat various diseases. Several studies attempt to compile and interpret the pharmacological potential of Myristica fragrans (Houtt.) aqueous and various chemical extracts. Thus, the pharmacological potential of nutmeg essential oil has not been reviewed phytochemically and pharmacologically. Therefore, the present study aimed to share appropriate literature evidence regarding the plant essential oil chemical composition and therapeutic potential of Myristica fragrans essential oil (MFEO). MFEO of leaf, mace, kernel, and seed were used worldwide as potential Ayurvedic medicine and fragrance. MFEO extracted by various methods and oil yield was 0.7–3.2, 8.1–10.3, 0.3–12.5, and 6.2–7.6% in leaf, mace, seed, and kernel. The primary chemical constituents of MFEO were sabinene, eugenol, myristicin, caryophyllene, β‐myrcene, and α‐pinene. Clinical and experimental investigations have confirmed the antioxidant, antimicrobial, antiinflammatory, anticancer, antimalarial, anticonvulsant, hepatoprotective, antiparasitic, insecticidal, and nematocidal activities of MFEO. It is the first attempt to compile oil yield, composition, and the biological activities of MFEO. In future, several scientific investigations are required to understand the mechanism of action of MFEO and their bioactive constituents.
Collapse
Affiliation(s)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Muthusamy Murugan
- Cardamom Research Station, Kerala Agricultural University, Idukki, Kerala, India
| | | | - Arjun Pandian
- Department of Biotechnology, PRIST Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
24
|
Zhao W, Guo M, Feng J, Gu Z, Zhao J, Zhang H, Wang G, Chen W. Myristica fragrans Extract Regulates Gut Microbes and Metabolites to Attenuate Hepatic Inflammation and Lipid Metabolism Disorders via the AhR-FAS and NF-κB Signaling Pathways in Mice with Non-Alcoholic Fatty Liver Disease. Nutrients 2022; 14:nu14091699. [PMID: 35565666 PMCID: PMC9104743 DOI: 10.3390/nu14091699] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
Recent studies have shown that non-alcoholic fatty liver disease (NAFLD) is closely related to the gut microbiome. Myristica fragrans is widely used as a traditional seasoning and has a therapeutic effect on gastrointestinal diseases. Although previous studies have shown that M. fragrans extracts have anti-obesity and anti-diabetes effects in mice fed a high-fat diet, few studies have determined the active components or the corresponding mechanism in vivo. In this study, for the first time, an M. fragrans extract (MFE) was shown to be a prebiotic that regulates gut microbes and metabolites in mice fed a high-fat diet. Bioinformatics, network pharmacology, microbiome, and metabolomics analyses were used to analyze the nutrient–target pathway interactions in mice with NAFLD. The National Center for Biotechnology Information Gene Expression Omnibus database was used to analyze NAFLD-related clinical data sets to predict potential targets. The drug database and disease database were then integrated to perform microbiome and metabolomics analyses to predict the target pathways. The concentrations of inflammatory factors in the serum and liver, such as interleukin-6 and tumor necrosis factor-α, were downregulated by MFE. We also found that the hepatic concentrations of low-density lipoprotein cholesterol, total cholesterol, and triglycerides were decreased after MFE treatment. Inhibition of the nuclear factor kappa B (NF-κB) pathway and downregulation of the fatty acid synthase (FAS)-sterol regulatory element-binding protein 1c pathway resulted in the regulation of inflammation and lipid metabolism by activating tryptophan metabolite–mediated aryl hydrocarbon receptors (AhR). In summary, MFE effectively attenuated inflammation and lipid metabolism disorders in mice with NAFLD through the NF-κB and AhR–FAS pathways.
Collapse
Affiliation(s)
- Wenyu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (M.G.); (Z.G.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (M.G.); (Z.G.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jun Feng
- Department of Ultrasound, Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi 214122, China
- Correspondence: (J.F.); (G.W.)
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (M.G.); (Z.G.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (M.G.); (Z.G.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (M.G.); (Z.G.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (M.G.); (Z.G.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence: (J.F.); (G.W.)
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (M.G.); (Z.G.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
25
|
Rege SA, Varshneya MA, Momin SA. A Mini-Review: Effect of Medium on the Activity of Eugenol. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220408104804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The role of essential fatty acids is vital in the life of a human being. The lack of essential fatty acids causes various diseases such as cardiovascular, inflammatory bowel and obesity. Although synthetic antioxidants have already been used, nowadays, the demand for natural antioxidants has increased mainly because of the adverse effects of synthetic antioxidants. Spices are widely used in this context as a source of natural antioxidants. It has been observed that they also act as pro-oxidant. This review aims to evaluate the fundamental reason for the different activities of the spices by studying the example of Eugenol, a principal phenolic constituent of clove oil. The chemistry concerning the mechanism to display antioxidant and pro-oxidant activity is currently being reviewed. The isomerization of Eugenol to Isoeugenol plays a key role in exhibiting dissimilar behaviour of the Eugenol. Under the polar medium, isomerization of Eugenol does not take place and it acts as an antioxidant. However, in the non-polar medium, Eugenol isomerizes to Isoeugenol and displays a pro-oxidant effect. In a basic medium, Eugenol isomerizes to Isoeugenol undergoing degradation. Hence, to utilize the beneficial activity of Eugenol, it should be present in a polar or acidic medium. It can be concluded from this review article that the structural form of any molecule plays a major role in utilizing its activity and is also dependent on the medium. Hence, the medium also performs a vital role to influence the activity of any molecule.
Collapse
Affiliation(s)
- Sameera A. Rege
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai- 400 019. India
| | - Megha A. Varshneya
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai- 400 019. India
| | - Shamim A. Momin
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai- 400 019. India
| |
Collapse
|
26
|
Yoshioka Y, Kono R, Kuse M, Yamashita Y, Ashida H. Phenylpropanoids and neolignans isolated from Myristica fragrans enhance glucose uptake in myotubes. Food Funct 2022; 13:3879-3893. [PMID: 35275149 DOI: 10.1039/d1fo04408g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nutmeg is the seed of Myristica fragrans or its powder and is used as a spice and a traditional medicine. The antidiabetic effect of nutmeg is not fully understood yet. In this study, we examine the isolation and identification of the active compounds of Myristica fragrans with regards to glucose uptake and elucidate their mechanism in L6 myotubes. Myrisiticin, licarin B, erythro-2-(4-allyl-2,6-dimethoxy-phenoxy)-1-(3,4-dimethoxyphenyl)-propan-1-ol (ADDP) and (7S,8R)-2-(4-allyl-2,6-dimethoxyphenoxy)-1-(3,4,5-trimethoxyphenyl)-propan-1-ol (ADTP) were isolated and identified as the active compounds. Myristicin or a mixture of ADDP and ADTP promoted the translocation of glucose transporter 4 (GLUT4) through phosphorylation of AMP-activated protein kinase in L6 myotubes 15 min after treatment, while licarin B promoted it 240 min after treatment. Oral administration of the fraction from Myristica fragrans containing these active compounds to ICR mice suppressed post-prandial hyperglycemia. Thus, Myristica fragrans is a promising functional food to prevent post-prandial hyperglycemia and type 2 diabetes mellitus by promoting glucose uptake in muscle.
Collapse
Affiliation(s)
- Yasukiyo Yoshioka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, Hyogo 651-8501, Japan.,Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 4228526, Japan
| | - Ryunoshin Kono
- Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, Hyogo 651-8501, Japan.
| | - Masaki Kuse
- Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, Hyogo 651-8501, Japan.
| | - Yoko Yamashita
- Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, Hyogo 651-8501, Japan.
| | - Hitoshi Ashida
- Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, Hyogo 651-8501, Japan.
| |
Collapse
|
27
|
Preparation of Spice Extracts: Evaluation of Their Phytochemical, Antioxidant, Antityrosinase, and Anti-α-Glucosidase Properties Exploring Their Mechanism of Enzyme Inhibition with Antibrowning and Antidiabetic Studies In Vivo. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9983124. [PMID: 35281605 PMCID: PMC8916850 DOI: 10.1155/2022/9983124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022]
Abstract
Tyrosinase and α-glucosidase enzymes are known as promising target candidates for inhibitors to control unwanted pigmentation and type II diabetics mellitus. Therefore, twenty extracts as enzyme inhibitors were prepared from edible spices: nutmeg, mace, star anise, fenugreek, and coriander aiming to explore their antioxidant, antibrowning, and antidiabetic potential. Results confirmed that all extracts showed potent antioxidant activity ranging from IC50 = 0.14 ± 0.03 to 3.69 ± 0.37 μg/mL. In addition, all extracts exhibited excellent antityrosinase (IC50 = 1.16 ± 0.06 to 71.32 ± 4.63 μg/mL) and anti-α-glucosidase (IC504.76 ± 0.71 to 42.57 ± 2.13 μg/mL) activities outperforming the corresponding standards, hydroquinone, and acarbose, respectively. Among all extracts, star anise ethyl acetate (Star anise ETAC) was found most potent inhibitor for both tyrosinase and α-glucosidase enzymes and was further studied to explore the mechanism of enzyme inhibition. Kinetic analysis revealed its irreversible but mixed-type tyrosinase inhibition with preferentially competitive mode of action. However, it binds reversibly with α-glucosidase through competitive mode of action. Further, star anise ETAC extract showed concentration dependent and posttreatment time-dependent antibrowning effect on potato slices and antidiabetic effect on diabetic rabbits in vivo proposing it promising candidate for tyrosinase-rooted antibrowning and α-glucosidase-associated diabetes management for future studies.
Collapse
|
28
|
Abuga I, Sulaiman SF, Abdul Wahab R, Ooi KL, Abdull Rasad MSB. Phytochemical constituents and antibacterial activities of 45 Malay traditional medicinal plants. J Herb Med 2022. [DOI: 10.1016/j.hermed.2021.100496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Rafey A, Amin A, Kamran M, Haroon U, Farooq K, Foubert K, Pieters L. Analysis of Plant Origin Antibiotics against Oral Bacterial Infections Using In Vitro and In Silico Techniques and Characterization of Active Constituents. Antibiotics (Basel) 2021; 10:antibiotics10121504. [PMID: 34943716 PMCID: PMC8699006 DOI: 10.3390/antibiotics10121504] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
The pervasiveness of oral bacterial infections in diabetic patients is a serious health concern that may produce severe complications. We investigated 26 Ayurvedic medicinal plants traditionally used for treatment of the oral bacterial infections with the aim to look for new promising drug leads that can be further employed for herbal formulation design. The plants were grouped into three categories based on traditional usage. All plant extracts were examined for antibacterial, antibiofilm and antiquorum-sensing properties. The plants with significant activities including Juglans regia, Syzygium aromaticum, Eruca sativa, Myristica fragrans, Punica granatum and Azadirachta indica were further analyzed using HPLC-DAD-QToF and GC-MS. In silico and in vitro activity was evaluated for selected constituents. Finally, it could be concluded that eugenol and 2-phenylethylisothiocyanate are major contributors towards inhibition of bacterial biofilms and quorum sensing.
Collapse
Affiliation(s)
- Abdul Rafey
- NPRL, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (A.R.); (A.A.); (M.K.)
| | - Adnan Amin
- NPRL, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (A.R.); (A.A.); (M.K.)
| | - Muhammad Kamran
- NPRL, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (A.R.); (A.A.); (M.K.)
| | - Uzma Haroon
- Department of Dentistry, D.H.Q Teaching Hospital, Dera Ismail Khan 29050, Pakistan;
| | - Kainat Farooq
- Sardar Begum Dental College, Ghandhara University, Peshawar 25000, Pakistan;
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium;
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium;
- Correspondence:
| |
Collapse
|
30
|
Antasionasti I, Datu OS, Lestari US, Abdullah SS, Jayanto I. Correlation Analysis of Antioxidant Activities with Tannin, Total Flavonoid, and Total Phenolic Contents of Nutmeg (Myristica fragrans Houtt) Fruit Precipitated by Egg white. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i4.2497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The nutmeg (Myristica fragrans) flesh extract has a strong antioxidant activity. Therefore, M. fragrans flesh can be developed for functional drinks which are sources rich in antioxidants good for the prevention and treatment of diseases such as cancer and cardiovascular diseases. However, the tannins' content can cause a bitter and sour taste. Therefore, the tannins content should be reduced by the addition of egg white. The purpose of this study is to find out the comparison of antioxidant activity between a combination of M. fragrans flesh extract with various concentrations of egg white and to correlate its antioxidant activities with tannin, total flavonoid, and total phenolic contents. The antioxidant activities were conducted on M. fragrans flesh extract by using DPPH and ABTS radicals. Tannin, total flavonoid, and total phenolic contents from M. fragrans flesh extract were also tested. The M. fragrans flesh extracts without addition egg white have a strong antioxidant in scavenging the stable free radical ABTS (89.980±0.480 µg/mL) and intermediate antioxidant in scavenging the stable free radical DPPH (105.669±0.102 µg/mL). It is followed accordingly by tannin, total flavonoid, and total phenolic contents, namely 14.034±0.100 %w/w TAE, 26.929±0.129 %w/w QE, and 53.164±0.129 %w/w GAE, respectively. Correlation of tannin, total flavonoid, and total phenolic contents, which inhibited DPPH and ABTS radicals had R2 values of about 89.23-97.63%. It showed that antioxidant activity is strongly influenced by the tannin, total flavonoid, and total phenolic contents. Therefore, precipitation from the tannin-protein bond caused antioxidant activities were decreased.
Collapse
|
31
|
Bottoni M, Milani F, Galimberti PM, Vignati L, Romanini PL, Lavezzo L, Martinetti L, Giuliani C, Fico G. Ca' Granda, Hortus simplicium: Restoring an Ancient Medicinal Garden of XV-XIX Century in Milan (Italy). Molecules 2021; 26:6933. [PMID: 34834025 PMCID: PMC8620247 DOI: 10.3390/molecules26226933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
This work is based on the study of 150 majolica vases dated back to the mid XVII century that once preserved medicinal remedies prepared in the ancient Pharmacy annexed to the Ospedale Maggiore Ca' Granda in Milan (Lombardy, Italy). The Hortus simplicium was created in 1641 as a source of plant-based ingredients for those remedies. The main objective of the present work is to lay the knowledge base for the restoration of the ancient Garden for educational and informative purposes. Therefore, the following complementary phases were carried out: (i) the analysis of the inscriptions on the jars, along with the survey on historical medical texts, allowing for the positive identification of the plant ingredients of the remedies and their ancient use as medicines; (ii) the bibliographic research in modern pharmacological literature in order to validate or refute the historical uses; (iii) the realization of the checklist of plants potentially present in cultivation at the ancient Garden, concurrently with the comparison with the results of a previous in situ archaeobotanical study concerning pollen grains. For the species selection, considerations were made also regarding drug amounts in the remedies and pedoclimatic conditions of the study area. Out of the 150 vases, 108 contained plant-based remedies, corresponding to 148 taxa. The remedies mainly treated gastrointestinal and respiratory disorders. At least one of the medicinal uses was validated in scientific literature for 112 out of the 148 examined species. Finally, a checklist of 40 taxa, presumably hosted in the Hortus simplicium, was assembled.
Collapse
Affiliation(s)
- Martina Bottoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Fabrizia Milani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Paolo M. Galimberti
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, 20122 Milan, Italy;
| | - Lucia Vignati
- Landscape Ecomuseum of Parabiago, P.za della Vittoria 7, 20015 Milan, Italy;
| | - Patrizia Luise Romanini
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Luca Lavezzo
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Livia Martinetti
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milan, Italy;
| | - Claudia Giuliani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Gelsomina Fico
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| |
Collapse
|
32
|
Salazar D, Arancibia M, Casado S, Viteri A, López-Caballero ME, Montero MP. Green Banana ( Musa acuminata AAA) Wastes to Develop an Edible Film for Food Applications. Polymers (Basel) 2021; 13:polym13183183. [PMID: 34578084 PMCID: PMC8472418 DOI: 10.3390/polym13183183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, edible packaging based on discarded green banana (Musa acuminata AAA) flour (whole banana and banana peel flours) was developed for food applications. Films were characterized in terms of film-forming ability, mechanical, barrier, thermal, microbiological, and sensory properties. The film forming solutions were studied for rheological properties. Two formulations were selected based on their film-forming ability: whole banana flour (2.5%), peel flour (1.5%) and glycerol (1.0 %, F-1.0 G or 1.5%, F-1.5 G). Adding 1.5% plasticizer, due to the hygroscopic effect, favored the water retention of the films, increasing the density, which also resulted in a decrease in lightness and transparency. Water activity shows no difference between the two formulations, which were water resistant for at least 25 h. DSC results showed a similar melting temperature (Tm) for both films, around 122 °C. Both films solutions showed a viscoelastic behavior in the frequency spectrum, being the elastic modulus greater in F-1.0 G film than F-1.5 G film at low frequency. F-1.0 G film was less firm, deformable and elastic, with a less compact structure and a rougher surface as confirmed by AFM, favoring a higher water vapor permeability with respect to F.1.5 G film. Microorganisms such as Enterobacteria and Staphylococcus aureus were not found in the films after a period of storage (1 year under ambient conditions). The F-1.0 G film with added spices (cumin, oregano, garlic, onion, pepper, and nutmeg) was tested for some food applications: as a snack (with or without heat treatment) and as a wrap for grilled chicken. The performance of the seasoned film during chilled storage of chicken breast was also studied. Sensory evaluation showed good overall acceptability of all applications. In addition, the chicken breast wrapped with the seasoned film registered lower counts (1-log cycle) than the control (covered with a polystyrene bag) and the film without spices. Green banana flour is a promising material to develop edible films for food applications.
Collapse
Affiliation(s)
- Diego Salazar
- Facultad de Ciencia e Ingeniería en Alimentos, Universidad Técnica de Ambato, Av. Los Chasquis y Rio Payamino, Ambato 180206, Ecuador; (M.A.); (S.C.); (A.V.)
- Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (D.S.); (M.P.M.)
| | - Mirari Arancibia
- Facultad de Ciencia e Ingeniería en Alimentos, Universidad Técnica de Ambato, Av. Los Chasquis y Rio Payamino, Ambato 180206, Ecuador; (M.A.); (S.C.); (A.V.)
| | - Santiago Casado
- Facultad de Ciencia e Ingeniería en Alimentos, Universidad Técnica de Ambato, Av. Los Chasquis y Rio Payamino, Ambato 180206, Ecuador; (M.A.); (S.C.); (A.V.)
| | - Andrés Viteri
- Facultad de Ciencia e Ingeniería en Alimentos, Universidad Técnica de Ambato, Av. Los Chasquis y Rio Payamino, Ambato 180206, Ecuador; (M.A.); (S.C.); (A.V.)
| | - María Elvira López-Caballero
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Calle José Antonio Novais 10, 28040 Madrid, Spain;
| | - María Pilar Montero
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Calle José Antonio Novais 10, 28040 Madrid, Spain;
- Correspondence: (D.S.); (M.P.M.)
| |
Collapse
|
33
|
Oo T, Saiboonjan B, Srijampa S, Srisrattakarn A, Sutthanut K, Tavichakorntrakool R, Chanawong A, Lulitanond A, Tippayawat P. Inhibition of Bacterial Efflux Pumps by Crude Extracts and Essential Oil from Myristica fragrans Houtt. (Nutmeg) Seeds against Methicillin-Resistant Staphylococcus aureus. Molecules 2021; 26:4662. [PMID: 34361815 PMCID: PMC8348620 DOI: 10.3390/molecules26154662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/03/2022] Open
Abstract
Myristicafragrans Houtt. (Nutmeg) is a widely known folk medicine across several parts of Asia, particularly used in antimicrobial treatment. Bacterial resistance involves the expression of efflux pump systems (chromosomal norA and mepA) in methicillin-resistant Staphylococcus aureus (MRSA). Crude extract (CE) and essential oil (EO) obtained from nutmeg were applied as efflux pump inhibitors (EPIs), thereby enhancing the antimicrobial activity of the drugs they were used in. The major substances in CE and EO, which function as EPIs, in a descending order of % peak area include elemicin, myristicin, methoxyeugenol, myristicin, and asarone. Here, we investigated whether the low amount of CE and EO used as EPIs was sufficient to sensitize MRSA killing using the antibiotic ciprofloxacin, which acts as an efflux system. Interestingly, synergy between ciprofloxacin and CE or EO revealed the most significant viability of MRSA, depending on norA and mepA, the latter being responsible for EPI function of EO. Therefore, CE and EO obtained from nutmeg can act as EPIs in combination with substances that act as efflux systems, thereby ensuring that the MRSA strain is susceptible to antibiotic treatment.
Collapse
Affiliation(s)
- Thidar Oo
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
- Faculty of Medicine, Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Bhanubong Saiboonjan
- Center for Innovation and Standard for Medical Technology and Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Sukanya Srijampa
- Biosensor Research Group for Non-Communicable Disease and Infectious Disease, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.S.); (A.S.)
| | - Arpasiri Srisrattakarn
- Biosensor Research Group for Non-Communicable Disease and Infectious Disease, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.S.); (A.S.)
| | | | - Ratree Tavichakorntrakool
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.T.); (A.C.); (A.L.)
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Aroonwadee Chanawong
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.T.); (A.C.); (A.L.)
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Aroonlug Lulitanond
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.T.); (A.C.); (A.L.)
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharaporn Tippayawat
- Faculty of Medicine, Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
34
|
Khan MA, Srivastava V, Kabir M, Samal M, Insaf A, Ibrahim M, Zahiruddin S, Ahmad S. Development of Synergy-Based Combination for Learning and Memory Using in vitro, in vivo and TLC-MS-Bioautographic Studies. Front Pharmacol 2021; 12:678611. [PMID: 34276370 PMCID: PMC8283279 DOI: 10.3389/fphar.2021.678611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022] Open
Abstract
The present study is aimed at developing a synergistic combination to enhance learning and memory in Alzheimer’s patients with the help of eight common medicinal plants used in the AYUSH system. Aqueous and hydroalcoholic extracts of eight medicinal plants from the AYUSH system of medicine were prepared. These were subjected to in vitro anticholinesterase activity, to find out the combination index of synergistic combination. The synergistic combination and their individual extracts were subjected to total phenol, flavonoid and antioxidant activity estimation. Further, in vivo neurobehavioral studies in rats were carried out followed by TLC-MS-bioautographic identification of bioactive metabolites. Out of the sixteen extracts, aqueous extracts of Withania somnifera (L.) Dunal (WSA) and Myristica fragrans (L.) Dunal (MFA) were selected for the development of synergistic combination based on their IC50 value in vitro anticholinesterase assay. The synergistic combination inhibited the anticholinesterase activity significantly as compared to the individual extracts of WSA and MFA. The synergistic combination also showed more phenolic and flavonoid contents with potential antioxidant activity. The TLC-bioautography showed four white spots in WSA, signifying sitoindosides VII, VIII, quercetin, isopelletierine and Withanolide S as AChE inhibitory compounds while showing five white spots of anti-cholinesterase active metabolites identified as eugenol, methyl eugenol, myristic acid, galbacin and β-sitosterol in MFA. The observation of neurocognitive behavior in amnesia induced subjects manifested that both the synergistic combinations showed comparable results to that of standard piracetam, though the synergistic combination containing a higher concentration of WSA showed more appreciable results in ameliorating dementia in rats. The study suggests that the synergy based combination successfully enhanced memory and learning by abating free radical and acetylcholine levels, and increased learning and memory in rats, providing a strong rationale for its use in the treatment of dementia and Alzheimer’s disease.
Collapse
Affiliation(s)
- Maaz Ahmed Khan
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Varsha Srivastava
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mariya Kabir
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Monalisha Samal
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Areeba Insaf
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Ibrahim
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sultan Zahiruddin
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
35
|
Comprehensive study on the antioxidant capacity and phenolic profiles of black seed and other spices and herbs: effect of solvent and time of extraction. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01028-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AbstractThe effects of solvent and time of extraction on the antioxidant properties and phenolic profiles of 13 herbs and spices used for food seasoning and preservation were investigated. The profiles of phenolics in plant material were analysed by UPLC, and the chemometric approach was used for the deeper evaluation of relationships between phenolic compounds and the antioxidant properties of the samples. The best extraction conditions enabling to obtain the highest total phenolics and the antioxidant activity were: long time extraction (24 h) with 50% aqueous ethanol. The most potent antioxidant was clove with the ABTS—2495.85 µmol/g, DPPH—1443.35 µmol/g and FRAP—1310.91 µmol/g, which resulted from the high total phenolic content (TPC—167.22 mg GAE/g) and total flavonoid content (TFC—26.22 mg QE/g). Wide variations in the antioxidant activity (ABTS: 7.31—2495.85 µmol/g) and TPC (0.87–167.22 mg GAE/g) were observed with black seed extract showing one of the lowest values of the parameters studied. High linear correlation (above 0.95) calculated for the parameters showed significant contribution of phenolics to the antioxidant activity of spices. UPLC analysis together with PCA (principal component analysis) confirmed this relation and ABTS, FRAP, DPPH, TFC, TPC, total phenolic acids, protocatechuic acid, t-cinnamic acid, p-hydroxybenzoic acid determined sample distribution along PC1 (principal component 1), whereas total flavonoids determined by UPLC, kaempferol, catechin and luteolin along PC2. All samples were discriminated with 100% classification’s propriety according to GDA (general discrimination analysis) which proved huge diversity among phenolic profiles and the antioxidant properties of tested samples.
Collapse
|
36
|
Matulyte I, Marksa M, Bernatoniene J. Development of Innovative Chewable Gel Tablets Containing Nutmeg Essential Oil Microcapsules and Their Physical Properties Evaluation. Pharmaceutics 2021; 13:873. [PMID: 34204813 PMCID: PMC8231507 DOI: 10.3390/pharmaceutics13060873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 01/29/2023] Open
Abstract
Chewable gel tablets are a dosed pharmaceutical form, which can have an active substance, pharmacological effect, or value of nutrition. The texture of these tablets is soft, springy, flexible, and elastic-this is influenced by the chosen ingredients. The aim of this study was to prepare chewable gel tablets with nutmeg essential oil-loaded microcapsules and determine the volatile compounds released from this pharmaceutical form. Gel tablets were prepared by using gelatin as basis, nutmeg essential oil as active compound, and natural ingredients: thyme-sugar syrup, thyme extract, and citric acid as taste and color additives. Texture properties were measured by a texture analyzer. The release of volatile compounds from nutmeg essential oil and gel tablets were analyzed by headspace-gas chromatography with mass spectroscopy in control and artificial saliva conditions in vitro. Nutmeg essential oil microcapsules had influence on the gel tablet's physical properties (p < 0.05, by comparing tablets without glycerol and relative sample with glycerol); glycerol protects the tablets from the formation of sugar crystals on top and keeps good physical parameters (p < 0.05). A total of 12 volatile compounds were identified in nutmeg essential oil, and the six compounds with the highest amounts were selected as controls. Gel tablets prolong the release time of volatile compounds and reduce the amount of the compounds compared to the microcapsules (p < 0.05).
Collapse
Affiliation(s)
- Inga Matulyte
- Department of Drug Technology and Social Pharmacy, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
37
|
Cossetin LF, Santi EMT, Garlet QI, Matos AFIM, De Souza TP, Loebens L, Heinzmann BM, Monteiro SG. Comparing the efficacy of nutmeg essential oil and a chemical pesticide against Musca domestica and Chrysomya albiceps for selecting a new insecticide agent against synantropic vectors. Exp Parasitol 2021; 225:108104. [PMID: 33812979 DOI: 10.1016/j.exppara.2021.108104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/15/2021] [Accepted: 03/28/2021] [Indexed: 01/26/2023]
Abstract
The insecticidal activity of Myristica fragrans (Houtt) essential seed oil, (Nutmeg) was evaluated against Musca domestica (Linnaeus) and Chrysomya albiceps (Wiedemann); both important infectious pathogenic disease vectors. The oil was extracted by distillation, and 21 components were identified during chemical analysis; principally β-pinene (26%), α-pinene (10.5%), Sabinene (9.1%) and γ-terpinen (8.5%). Insecticidal properties were identified through larvicide and adulticide tests. Using the immersion method, the oil at 5% was found to be very effective (90 ± 1%) against M. domestica larvae. The results for adulticide activity varied by fly species, dosage, time, and method of exposure. Topical application (on the insect thorax) was more toxic to C. albiceps, where the lethal concentration at 50% (LC50) was 2.02 ± 0.56, and 8.57 ± 2.41 for the common flies. When the insects were exposed to oil impregnated paper, the results were similar for M. domestica and C. albiceps adults with respective LC50 values of 2.74 ± 0.24, and 3.65 ± 0.48. Thus, the results demonstrated that M. fragrans oil presents insecticidal activity and can be used for control of Musca domestica and Chrysomya albiceps.
Collapse
Affiliation(s)
- Luciana F Cossetin
- Department of Industrial Pharmacy, Faculty of Pharmacy, Federal University of Santa Maria, Santa Maria, Brazil.
| | - Eduarda M T Santi
- Department of Microbiology e Parasitology, Faculty of Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | - Quelen I Garlet
- Department of Industrial Pharmacy, Faculty of Pharmacy, Federal University of Santa Maria, Santa Maria, Brazil
| | - Antônio F I M Matos
- Department of Microbiology e Parasitology, Faculty of Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | - Tiago P De Souza
- Department of Microbiology e Parasitology, Faculty of Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luiza Loebens
- Department of Ecology and Evolution, Federal University of Santa Maria, Frederico Westphalen, Brazil
| | - Berta M Heinzmann
- Department of Industrial Pharmacy, Faculty of Pharmacy, Federal University of Santa Maria, Santa Maria, Brazil
| | - Sílvia G Monteiro
- Department of Microbiology e Parasitology, Faculty of Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
38
|
A Proteomics Study on the Mechanism of Nutmeg-Induced Hepatotoxicity. Molecules 2021; 26:molecules26061748. [PMID: 33804713 PMCID: PMC8003901 DOI: 10.3390/molecules26061748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
Nutmeg is a traditional spice and medicinal plant with a variety of pharmacological activities. However, nutmeg abuse due to its hallucinogenic characteristics and poisoning cases are frequently reported. Our previous metabolomics study proved the hepatotoxicity of nutmeg and demonstrated that high-dose nutmeg can affect the synthesis and secretion of bile acids and cause oxidative stress. In order to further investigate the hepatotoxicity of nutmeg, normal saline, 1 g/kg, 4 g/kg nutmeg were administrated to male Kunming mice by intragastrical gavage for 7 days. Histopathological investigation of liver tissue, proteomics and biochemical analysis were employed to explore the mechanism of liver damage caused by nutmeg. The results showed that a high-dose (4 g/kg) of nutmeg can cause significant increased level of CYP450s and depletion of antioxidants, resulting in obvious oxidative stress damage and lipid metabolism disorders; but this change was not observed in low-dose group (1 g/kg). In addition, the increased level of malondialdehyde and decreased level of glutathione peroxidase were found after nutmeg exposure. Therefore, the present study reasonably speculates that nutmeg exposure may lead to liver injury through oxidative stress and the degree of this damage is related to the exposure dose.
Collapse
|
39
|
Adelifar N, Rezanejad F. A comparative study of essential oil constituents, total phenolics and antioxidant capacity of the different organs of four species of the genus
bunium. FLAVOUR FRAG J 2021. [DOI: 10.1002/ffj.3650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Najmeh Adelifar
- Department of Biology Shahid Bahonar University of Kerman Kerman Iran
| | | |
Collapse
|
40
|
Ha MT, Vu NK, Tran TH, Kim JA, Woo MH, Min BS. Phytochemical and pharmacological properties of Myristica fragrans Houtt.: an updated review. Arch Pharm Res 2020; 43:1067-1092. [DOI: 10.1007/s12272-020-01285-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/04/2020] [Indexed: 01/01/2023]
|
41
|
Pateiro M, Munekata PES, Sant'Ana AS, Domínguez R, Rodríguez-Lázaro D, Lorenzo JM. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int J Food Microbiol 2020; 337:108966. [PMID: 33202297 DOI: 10.1016/j.ijfoodmicro.2020.108966] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/27/2023]
Abstract
Meat and meat products are perishable products that require the use additives to prevent the spoilage by foodborne microorganisms and pathogenic bacteria. Current trends for products without synthetic preservatives have led to the search for new sources of antimicrobial compounds. Essential oils (EOs), which has been used since ancient times, meet these goals since their effectiveness as antimicrobial agents in meat and meat products have been demonstrated. Cinnamon, clove, coriander, oregano, rosemary, sage, thyme, among others, have shown a greater potential to control and inhibit the growth of microorganisms. Although EOs are natural products, their quality must be evaluated before being used, allowing to grant the Generally Recognized as Safe (GRAS) classification. The bioactive compounds (BAC) present in their composition are linked to their activity, being the concentration and the quality of these compounds very important characteristics. Therefore, a single mechanism of action cannot be attributed to them. Extraction technique plays an important role, which has led to improve conventional techniques in favour of green emerging technologies that allow to preserve better target bioactive components, operating at lower temperatures and avoiding as much as possible the use of solvents, with more sustainable processing and reduced energy use and environmental pollution. Once extracted, these compounds display greater inhibition of gram-positive than gram-negative bacteria. Membrane disruption is the main mechanism of action involved. Their intense characteristics and the possible interaction with meat components make that their application combined with other EOs, encapsulated and being part of active film, increase their bioactivity without modifying the quality of the final product.
Collapse
Affiliation(s)
- Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - David Rodríguez-Lázaro
- Microbiology Division, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| |
Collapse
|
42
|
Yang M, Yan T, Yu M, Kang J, Gao R, Wang P, Zhang Y, Zhang H, Shi L. Advances in understanding of health‐promoting benefits of medicine and food homology using analysis of gut microbiota and metabolomics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Minmin Yang
- College of Life Sciences Shaanxi Normal University Xi'an China
| | - Tao Yan
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Meng Yu
- The Institute of Medicinal Plant Development Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jie Kang
- Physical Education Institute Shaanxi Normal University Xi'an China
| | - Ruoxi Gao
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Peng Wang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Yuhuan Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Huafeng Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
| | - Lin Shi
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
- Department of Biology and Biological Engineering Chalmers University of Technology Gothenburg Sweden
| |
Collapse
|
43
|
Bioactive properties and oxidative stability of nutmeg oleoresin microencapsulated by freeze drying using native and OSA sorghum starches as wall materials. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00502-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Manasa V, Vaishnav SR, Tumaney AW. Physicochemical characterization and nutraceutical compounds of the selected spice fixed oils. Journal of Food Science and Technology 2020; 58:3094-3105. [PMID: 34294972 DOI: 10.1007/s13197-020-04813-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 11/24/2022]
Abstract
Spices and herbs are well appreciated for their medicinal properties since ancient times. Till date, spices are being explored for volatile oils (essential), flavour and for addressing many chronic diseases. In the present study, we investigated the physicochemical properties, fatty acid composition, differential scanning calorimetry (DSC), elemental composition and nutraceutical compounds of fixed oils (non-volatile) from five selected spices viz., Alpinia galanga, Cinnamomum zeylanicum, Trigonella foenum-graecum, Foeniculum vulgare, and Myristica fragrans. The fixed oil (FO) content of volatiles-free powders of the five selected spices ranged from 1.58% (C. zeylanicum) to 26.43% (M. fragrans). The studied FO showed a good quality index which was analysed by estimation of free fatty acids, iodine value and unsaponifiable matter. The fatty acid analysis showed high palmitic acid in the FO of A. galanga and C. zeylanicum. High linoleic, oleic, and myristic acid levels were observed in T. foenum-graecum, F. vulgare and M. fragrans FOs, respectively. The nutraceutical compounds such as total phenolics were high in C. zeylanicum FO (0.53%). Hence the studied FO could be an excellent alternative to oil nutraceutical compounds. It may be used as a functional ingredient in foods which needs further validation for value addition.
Collapse
Affiliation(s)
- Vallamkondu Manasa
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India.,Department of Lipid Science, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, 570 020 India
| | - Salony R Vaishnav
- Department of Lipid Science, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, 570 020 India
| | - Ajay W Tumaney
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India.,Department of Lipid Science, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, 570 020 India
| |
Collapse
|
45
|
Pawlowski SP, Sweeney JD, Hillier NK. Electrophysiological Responses of the Beech Leaf-Mining Weevil, Orchestes fagi, to Seasonally-Variant Volatile Organic Compounds Emitted by American Beech, Fagus grandifolia. J Chem Ecol 2020; 46:935-946. [PMID: 32914252 DOI: 10.1007/s10886-020-01216-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/27/2020] [Accepted: 09/03/2020] [Indexed: 11/29/2022]
Abstract
The beech leaf-mining weevil, Orchestes fagi, is a common pest of European beech, Fagus sylvatica, and has recently become established in Nova Scotia, Canada where it similarly infests American beech, F. grandifolia. We collected volatile organic compounds (VOCs) emitted by F. grandifolia leaves at five developmental stages over one growing season and simultaneously analyzed them for volatile emissions and O. fagi antennal response using gas chromatography-electroantennographic detection (GC-EAD). Volatile profiles changed significantly throughout the growing season, shifting from primarily β-caryophyllene, methyl jasmonate, and simple monoterpene emissions to dominance of the bicyclic monoterpene sabinene during maturity. Two VOCs dominant during bud burst, (R)-(+)-limonene and geranyl-p-cymene, may be of biological relevance due to the highly specific oviposition period of O. fagi at this stage though antennal responses were inconclusive. Senescence showed a decrease in blend complexity with an increase in (Z)-3-hexenyl acetate and (Z)-3-hexen-1-ol as well as a resurgence of α-terpinene and geranyl-p-cymene. We present a novel electroantennal preparation for O. fagi. Antennae of both male and female O. fagi responded to the majority of detectable peaks for host volatiles presented via GC-EAD. Females displayed greater overall sensitivities and less specificity to host volatiles and it is hypothesized that this translates to more generalist olfaction than males. It is clear that olfactory cues are important physiologically though their implications on behaviour are still unknown. The results presented in this study provide a baseline and tools on which to connect the complex and highly time-specific phenology of both F. grandifolia and the destructive pest O. fagi through which olfactory-based lures can be investigated for monitoring systems.
Collapse
Affiliation(s)
- Simon P Pawlowski
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada.
| | - Jon D Sweeney
- Natural Resources Canada, Canadian Forest Service-Atlantic Forestry Centre, Fredericton, New Brunswick, Canada
| | - N Kirk Hillier
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
46
|
|
47
|
Paranagama MP, Piyarathne NS, Nandasena TL, Jayatilake S, Navaratne A, Galhena BP, Williams S, Rajapakse J, Kita K. The Porphyromonas gingivalis inhibitory effects, antioxidant effects and the safety of a Sri Lankan traditional betel quid - an in vitro study. BMC Complement Med Ther 2020; 20:259. [PMID: 32819379 PMCID: PMC7439561 DOI: 10.1186/s12906-020-03048-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 08/06/2020] [Indexed: 01/03/2023] Open
Abstract
Background The Sri Lankan traditional betel quid (TBQ) which had been extensively used in the country before its colonization is claimed to have antiperiodontopathic effects in the Sri Lankan folklore. However, there is no reported scientific evidence to support the claimed antiperiodontopathic effects mediated by this TBQ. The present study was carried out to investigate the protective effect of the Sri Lankan TBQ in the pathogenesis of periodontitis. Methods We investigate the ethyl acetate extract of the Sri Lankan TBQ for its antibacterial effects against the keystone periodontopathic bacterium, P. gingivalis and also its antioxidant potential, which is important to protect the periodontium from oxidative stress. Further, its safety was analyzed using the cytokinesis block micronucleus assay on human peripheral blood lymphocytes (PBLs). Results Ethyl acetate extract of this TBQ inhibited the growth of P. gingivalis with a minimum bactericidal concentration (MBC) of 125 μg/ml. It was found to be a rich source of polyphenols and displayed considerable DPPH and ABTS radical scavenging activities and a strong ferric reducing antioxidant power. This extract could protect the cultured human gingival fibroblasts from H2O2 induced oxidative stress. In addition, this TBQ extract was not genotoxic to human PBLs even at a concentration of 2.5 mg/ml. Moreover, it exhibited protective effects against bleomycin induced genotoxicity in PBLs. Conclusion Ethyl acetate extract of the Sri Lankan TBQ is a source of natural antibacterial compounds against P. gingivalis. It is also a source of natural antioxidants which can protect human gingival fibroblasts from H2O2 induced oxidative stress. These properties of the TBQ may have contributed to its claimed antiperiodontopathic effects. Besides, it was found to be relatively non-toxic to human cells. Thus this TBQ extract has a huge potential to be developed as a novel adjunctive therapeutic lead against periodontitis.
Collapse
Affiliation(s)
| | | | - Tharanga Lakmali Nandasena
- Department of Basic Sciences, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sumedha Jayatilake
- Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Ayanthi Navaratne
- Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Bandula Prasanna Galhena
- Department of Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Senani Williams
- Department of Pathology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Jayantha Rajapakse
- Department of Pathobiology, Faculty of Veterinary Medicine & Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
48
|
Zhao W, Song F, Hu D, Chen H, Zhai Q, Lu W, Zhao J, Zhang H, Chen W, Gu Z, Wang G. The Protective Effect of Myristica fragrans Houtt. Extracts Against Obesity and Inflammation by Regulating Free Fatty Acids Metabolism in Nonalcoholic Fatty Liver Disease. Nutrients 2020; 12:E2507. [PMID: 32825154 PMCID: PMC7551042 DOI: 10.3390/nu12092507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a disorder characterized by the excess accumulation of fat in the hepatocytes. It is commonly associated with severe obesity and inflammation. Free fatty acids (FFAs) are the key to regulate lipid metabolism and immune response in hepatocyte cells. This study examined the effects of AEN (alcohol extract of nutmeg, the seed of Myristica fragrans Houtt.) on the inhibition of lipid synthesis and inflammation in vitro and in vivo and on high-fat diet-induced obesity in NAFLD mice. Our results showed that AEN treatment could downregulate the expression of lipid synthesis-related genes fatty acid synthase (FASN) and sterol regulatory element-binding protein 1c (SREBP-1c) and lower the lipid content of cells. AEN also inhibited FFAs-mediated inflammation-related cytokines interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) expression in cells. In a mouse model, AEN reduced the bodyweight of obese mice and improved NAFLD without affecting food intake. Further analysis revealed that AEN significantly reduced inflammation level, cholesterol and lipid accumulation, blood glucose, and other liver function indexes in mice fed with a high-fat diet. In conclusion, AEN inhibited the aggravation of obesity and inflammation by downregulating lipid-gene expression in the liver to ameliorate NAFLD.
Collapse
Affiliation(s)
- Wenyu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fanfen Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Diangeng Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
49
|
Bharti SK, Pathak V, Alam T, Arya A, Singh VK, Verma AK, Rajkumar V. Materialization of novel composite bio‐based active edible film functionalized with essential oils on antimicrobial and antioxidative aspect of chicken nuggets during extended storage. J Food Sci 2020; 85:2857-2865. [DOI: 10.1111/1750-3841.15365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/18/2020] [Accepted: 05/21/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Sanjay Kumar Bharti
- Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry DUVASU Mathura Uttar Pradesh India
| | - Vikas Pathak
- Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry DUVASU Mathura Uttar Pradesh India
| | - Tanweer Alam
- Indian Institute of Packaging, an autonomous body under Aegis of Ministry of Commerce and Industry Government of India Delhi India
| | - Anita Arya
- Department of Livestock Products Technology College of Veterinary and Animal Sciences GBPUAT Pantnagar Uttarakhand India
| | - Vinod Kumar Singh
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry DUVASU Mathura Uttar Pradesh India
| | - Arun Kumar Verma
- Goat Products Technology Laboratory Central Institute for Research on Goats Mathura Uttar Pradesh India
| | - Vincentraju Rajkumar
- Goat Products Technology Laboratory Central Institute for Research on Goats Mathura Uttar Pradesh India
| |
Collapse
|
50
|
Ginting B, Saidi N, Murniana, Mustanir, Maulidna, Simanjuntak P. Lignan compound isolated from n-Hexane extract myristica fragrans Houtt root as antioxidant and antitumor activities against MCF-7 cell lines data. Data Brief 2020; 31:105997. [PMID: 32743030 PMCID: PMC7387772 DOI: 10.1016/j.dib.2020.105997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/25/2022] Open
Abstract
Nutmeg plant (Myristica fragrans Houtt) is known as one of traditional medicine. The nutmeg root has a strong potential in antioxidant and anticancer agents among other nutmeg plant parts. The n-hexane root extract has been carried out by thin-layer chromatography and obtained 8 fractions (labeled as Myristica fragrans Houtt Root: MFHR 1 − 8). Specifically, the MFHR 4 has been purified for several times to obtain a yellow-brown color. Furthermore, lignan compound 6′-methyl-(7‑hydroxy-8-methylbut-9-en)-3,2′-dimethoxybiphenyl-4,5-diol) was identified with chemical formula of C20H24O5 and analyzed using UV–vis spectroscopy, fourier-transform infrared spectroscopy (FTIR), 1D/2D nuclear magnetic resonance (NMR), and liquid chromatography–mass spectrometry (LC-MS). Based on MTT assay, MFHR demonstrated moderate anticancer activity against MCF-7 cell lines of 51.95 µM, meanwhile, DPPH activity confirmed the strong antioxidant activity with IC50 value of 12.67 ppm.
Collapse
Affiliation(s)
- Binawati Ginting
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Nurdin Saidi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Murniana
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Mustanir
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Maulidna
- Politeknik Teknologi Kimia Industri, Medan 20228, Indonesia
| | - Partomuan Simanjuntak
- Research Centre for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek Serpong, Tangerang Selatan, Banten, Indonesia
| |
Collapse
|