1
|
Yang B, Zhao J, Zhang C, Guo S, Chen Y, Wang Y, Huang X, Zeng Q. Ultra-high capacity and selectivity for uranium fixation by carbon nanosphere supported hydroxyapatite nanorod adsorbent. J Colloid Interface Sci 2025; 688:478-489. [PMID: 40020486 DOI: 10.1016/j.jcis.2025.02.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Uranium (U(VI)) has chemical and radiological toxicity, so the effective treatment of uranium-containing wastewater is crucial for both environmental safety and human health. Here, a carbon nanosphere (CNS) supported hydroxyapatite (HAP) nanorod (HAP/CNS) adsorbent was prepared using a simple glucose-assisted hydrothermal method toeffectively immobilize U(VI). Glucose not only derived CNS, but also facilitated HAP crystallization, prohibited HAP aggregation, and introduced oxygen-containing functional groups (i.e., COOH). The optimized HAP/CNS possessed a fantastic adsorption capability of 3080.3 mg/g for U(VI), nearly three times that of HAP and much higher than many reported HAP-based adsorbents. Notably, HAP/CNS was less affected by coexisting ions (distribution coefficient, Kd, researched 6.0 × 104 mL/g) and humic acid, and maintained good capability for real wastewater. The pseudo-second-order kinetic model and Langmuir isotherm model could better explain U(VI) removal behavior by HAP/CNS. Results showed that HAP/CNS and UO22+ combined to form a new uranium-containing compound, i.e., calcium-uranium mica (Ca(UO2)2(PO4)2·3H2O) via ion exchange and dissolution-precipitation, which should be the main reason for the ultra-high capacity and selectivity of HAP/CNS. Additionally, the hydrophilic oxygen-containing functional groups synergistically facilitated U(VI) fixation through complexation. This work introduces a superior adsorbent for purifying uranium-contaminated wastewater and elucidates its synergetic mechanism in uranium fixation.
Collapse
Affiliation(s)
- Bing Yang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Jingjing Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chao Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Shuaishuai Guo
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yanlin Chen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yi Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Xixian Huang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Müller IE, Lin AYW, Otani Y, Zhang X, Wu ZY, Kisailus D, Mouncey NJ, Guest JS, Rad B, Ercius P, Yoshikuni Y. Cost-effective urine recycling enabled by a synthetic osteoyeast platform for production of hydroxyapatite. Nat Commun 2025; 16:4216. [PMID: 40328834 PMCID: PMC12056147 DOI: 10.1038/s41467-025-59416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/22/2025] [Indexed: 05/08/2025] Open
Abstract
Recycling human urine offers a sustainable solution to environmental challenges posed by conventional wastewater treatment. While it is possible to recover nutrients like nitrogen and phosphorus from urine, the low economic value of these products limits large-scale adoption. Here, we show that engineered yeast can convert urine into hydroxyapatite (HAp), a high-value biomaterial widely used in bone and dental applications. Inspired by the biological mechanisms of bone-forming cells, we develop a synthetic yeast platform osteoyeast, which uses enzymes to break down urea and increase the pH of the surrounding environment. This triggers the yeast vacuoles to accumulate calcium and phosphate as amorphous calcium phosphate, which is then secreted in vesicles and crystallized into HAp. We achieve HAp production at titers exceeding 1 g/L directly from urine. Techno-economic analysis demonstrates that this process offers clear economic and environmental advantages, making it a compelling strategy for high-value resource recovery from human waste.
Collapse
Affiliation(s)
- Isaak E Müller
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alex Y W Lin
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yusuke Otani
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xinyi Zhang
- The Grainger College of Engineering, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Zong-Yen Wu
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Kisailus
- Department of Materials Science and Engineering, University of California at, Irvine, CA, USA
| | - Nigel J Mouncey
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeremy S Guest
- The Grainger College of Engineering, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Behzad Rad
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Peter Ercius
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Yasuo Yoshikuni
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Global Institution for Collaborative Research and Education, Hokkaido University, Hokkaido, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| |
Collapse
|
3
|
Daood U, Amalraj FD, Kaur K, Bapat RA, Seow LL. Engineering quantum carbon dots unveiling quantum wave entanglement wave function on enamel substrate: A relativistic in-vitro study. Dent Mater 2025; 41:523-535. [PMID: 40055081 DOI: 10.1016/j.dental.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVES As artificial atoms, quantum dots are widely used in quantum information research since their individual energy levels may be precisely controlled using gate voltages. The purpose of the study was to modify carbon quantum dots (CQDs) and evaluate its effects on the structure, crystal orientation and mechanical properties of the enamel substrate along with antibacterial properties of CQDs. MATERIALS AND METHODS Enamel specimens of 4 mm × 4 mm × 3 mm were cut and CQD solution was dialyzed in deionized water mixed with urea solution and placed in microwave system (800 W) to obtain *CQD0.1 %-, **CQD0.2 %-, ***CQD0.3 %-, and *****CQD0.5 % for enamel blocks to be immersed for 2 weeks. X-ray diffraction analysis and density-functional theory (DFT) calculations were performed to determine degree of phase purity. Transmission electron microscopy (TEM) was used for imaging of CQDs and treated enamel, with zeta potential measured with Zetasizer. Raman spectra was acquired with spectral range of 400-2000 cm-1. Atomic force microscopy was performed with a peak force set at 200 nN. Lactobacillus biofilm was prepared on treated enamel substrates and analysed using confocal, scanning electron microscopy and TEM. RESULTS DFT calculations summarised improved lattice parameters of HAp***CQD0.3 %- and HAp***CQD0.5 %-. Zeta potential is least for salineS and is maximum for *****CQD0.5 %- distributed system. The salineS, and *CQD0.1 %- groups had comparable v₁PO₄³⁻ value, indicating consistent phosphate intensities. TEM successfully verified carbon dots as spherical. Enamel crystals aligned their c-axis perpendicular to the electron beam within 1° with CQDs treated specimens exhibiting misoriented-crystals. *****CQD0.5 %- group had highest elastic modulus and nano hardness with maximum shear stress. Calculated bond length and angles using XRD show higher measures (p < 0.05) in all CQD groups. *****CQD0.5 %- exhibited a fibre texture pattern with an orientational distribution resembling an angle distortion. Most bacteria in the biofilms fluoresced red in CQD groups with no colony chain formations observed with *****CQD0.5 %- group. CQDs assemblies were observed to cause explosive lysis through loss of cell integrity. CONCLUSION *****CQD0.5 %- modified enamel substrate displayed significant crystallite changes providing a novel option for fabrication of diverse functional CQDs aimed at modification of enamel tissue while possessing optimum antimicrobial properties.
Collapse
Affiliation(s)
- Umer Daood
- Restorative Dentistry Division, School of Dentistry, IMU University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, 57000 Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur, Malaysia; Dental Materials Science, Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong.
| | - Fabian Davamani Amalraj
- Faculty of Biomedical Science, School of Health Sciences, IMU University, Kuala Lumpur, Malaysia
| | - Kanwardeep Kaur
- Clinical Oral Health Sciences Division, School of Dentistry, IMU University, Kuala Lumpur, Malaysia
| | - Ranjeet Ajit Bapat
- Restorative Dentistry Division, School of Dentistry, IMU University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, 57000 Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | - Liang Lin Seow
- Restorative Dentistry Division, School of Dentistry, IMU University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, 57000 Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Gao D, Tao H, Hou Z, Chen G, Wu J, Liang H. Positive effects of composite material immobilized enzymes in 2,4,6-trichlorophenol degradation on soil properties and plant growth. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:139. [PMID: 40146306 DOI: 10.1007/s10653-025-02479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/23/2025] [Indexed: 03/28/2025]
Abstract
2,4,6-Trichlorophenol (2,4,6-TCP) is recognized as a bio-toxic compound which is widely present in water and soil, and immobilized enzymes technology is widely used to degrade 2,4,6-TCP efficiently. However, previous studies have primarily focused on the degradation capability of immobilized enzymes towards 2,4,6-TCP, while the impacts on soil after degradation remain largely unexplored. In this study, sodium alginate/hydroxyapatite/chitosan microspheres immobilized with enzymes were used for 2,4,6-TCP degradation, and the impacts of degradation on soil properties and plant growth were explored. The results indicated that sodium alginate/hydroxyapatite/chitosan microsphere-immobilized enzymes achieved a removal rate of 94.72% for 160 mg L-1 2,4,6-TCP over 24 h and 73.17% for 160 mg kg-1 2,4,6-TCP contaminated soil over 72 h. Soil dehydrogenase and catalase activities were enhanced during degradation. The inhibitory effects of 2,4,6-TCP on wheat root and leaf elongation were mitigated by immobilized enzymes that degrade 2,4,6-TCP. Nutrients, such as fast-acting phosphorus and fast-acting potassium, were increased by immobilized enzymes that release nutrient elements. The changes of wheat growth observed in the soil after 2,4,6-TCP degradation by immobilized enzymes were driven by nutrients and degradation. These insights may facilitate the advancement of future applications of immobilized enzyme degradation technologies, contributing to sustainable soil management and ecological restoration.
Collapse
Affiliation(s)
- Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Huayu Tao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Zelin Hou
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Guanyu Chen
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Jing Wu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
5
|
Alfuhaid N, Adel S, Ibrahim AMA, Amro MA, Hassan MHA, Ali AM, Abd El-Aal M. Evaluating the Toxicity of Synthetic Hydroxyapatite Nanoparticles (HAPNPs) against Pulse Beetle, Callosobruchus maculatus (Insecta: Coleoptera). ACS OMEGA 2025; 10:10724-10732. [PMID: 40124021 PMCID: PMC11923658 DOI: 10.1021/acsomega.5c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025]
Abstract
The pulse beetle Callosobruchus maculatus is a serious insect pest of stored legumes. Therefore, the management of such pests has become a necessity as it causes great economic loss to its plant host. Unfortunately, pest management programs against C. maculatus encounter several obstacles, such as the generation of insecticide resistance and environmental hazards of traditional insecticides. The current study was designed to overcome these obstacles by using synthetic nanoparticles as alternative insecticides. In this study, a synthetic form of eggshell-based hydroxyapatite nanoparticles (HAPNPs) was used as a control agent against C. maculatus. This material was selected because of its environmental safety, which is ensured due to its wide spectrum of applications in our daily activities. HAPNPs originating from eggshells were characterized by XRD, FTIR, and TEM. The obtained results revealed a lack of impurities in the synthesized particles and that the average plate size is ∼62.8 nm, while the rod structure has a length and width of ∼91 nm and ∼22.7 nm, respectively. A comparative study on the toxicity of HAPNPs and Malathion insecticide against C. maculatus showed a significant impact of NPs originating from eggshells than the positive control insecticide. Based on this finding, further analyses were performed to understand its subsequent effects. Eggshell-based HAPNPs disrupted C. maculatus fecundity and adult emergence rate. In the meantime, it highly reduced the negative effects of C. maculatus on cowpea seeds. Scanning electron microscopy showed clear disruption of the insect integument wax layer and the aggregation of HAPNPs on the beetle's spiracles, leading to respiratory failure and hence the death of the insects. Interestingly, there was no impact of HAPNP application on total antioxidants and H2O2 levels in C. maculatus. These results introduce a novel management tool using a safer nanopesticide against the cowpea beetle.
Collapse
Affiliation(s)
- Nawal
Abdulaziz Alfuhaid
- Department
of Biology, College of Science and Humanities
in Al-kharj, Prince Sattam Bin Abdulaziz University, Al-kharj 16326, Saudi Arabia
| | - Samar Adel
- Department
of Zoology and Entomology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Ahmed M. A. Ibrahim
- Department
of Zoology and Entomology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed A. Amro
- Plant
Protection Research Institute, ARC, Dokki 12611, Egypt
| | - Mohamed H. A. Hassan
- Plant
Protection Department, Faculty of Agriculture, Assiut University, Assiut 71516, Egypt
| | - Ali Mohamed Ali
- Department
of Zoology and Entomology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Abd El-Aal
- Catalysis
and Surface Chemistry LabChemistry Department, Faculty
of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
6
|
Coibion D, Berardo L, Somers N, Cloots R, Schrijnemakers A, Boschini F. Oxidative hydrothermal treatment of bovine bones: A lower CO 2 emission process to obtain high specific surface area hydroxyapatite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124299. [PMID: 39862822 DOI: 10.1016/j.jenvman.2025.124299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/23/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Hydroxyapatite (HA) is known to be the main component of the mineral part of bones. Due to its properties HA is studied for various applications such as bone graft, drug carrier, heterogeneous catalyst or sorbent for waste water treatment. HA can be synthesized or valorized from bone wastes, as the food industry produce billions of kilograms of animal bones. The oxidative hydrothermal treatment presented in this work offers an alternative to the conventional calcination in order to remove the organic matter contained in bones. The impact of adding dioxygen into the hydrothermal system on the degradation of organic matter was studied by varying the partial O2 pressure from 0 to 30 bar. In addition, the influence of temperature (220, 250, and 280 °C) and dwelling time (0 and 2 h) at these temperatures was investigated. The degradation of the organic matter was proved by TGA-DSC and FTIR. The presence of organic compounds dissolved in water was assessed by TOC measurements and the production of CO2 was followed by Raman spectroscopy. A hydroxyapatite powder with an organic content <1 wt% has been successfully recovered at a lower temperature, for a shorter duration and with a lower production of CO2 compared to calcination. In addition, the recovered HA has a much higher specific surface area (up to 164 m2/g) compared to calcined bones (up to 83.1 m2/g), which is favorable for biomedical and sorbent applications.
Collapse
Affiliation(s)
- Damien Coibion
- GREENMAT, CESAM Research Unit, Institute of Chemistry B6, University of Liège, 4000, Liège, Belgium.
| | - Loris Berardo
- GREENMAT, CESAM Research Unit, Institute of Chemistry B6, University of Liège, 4000, Liège, Belgium
| | - Nicolas Somers
- GREENMAT, CESAM Research Unit, Institute of Chemistry B6, University of Liège, 4000, Liège, Belgium
| | - Rudi Cloots
- GREENMAT, CESAM Research Unit, Institute of Chemistry B6, University of Liège, 4000, Liège, Belgium
| | - Audrey Schrijnemakers
- GREENMAT, CESAM Research Unit, Institute of Chemistry B6, University of Liège, 4000, Liège, Belgium
| | - Frédéric Boschini
- GREENMAT, CESAM Research Unit, Institute of Chemistry B6, University of Liège, 4000, Liège, Belgium
| |
Collapse
|
7
|
Sead FF, Jain V, Ballal S, Singh A, Devi A, Chandra Sharma G, Joshi KK, Kazemi M, Javahershenas R. Research on transition metals for the multicomponent synthesis of benzo-fused γ-lactams. RSC Adv 2025; 15:2334-2346. [PMID: 39867320 PMCID: PMC11756498 DOI: 10.1039/d4ra08798d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025] Open
Abstract
Benzo-fused γ-lactams are fundamental in medicinal chemistry, acting as essential elements for various therapeutic agents due to their structural adaptability and capability to enhance biological activity. In their synthesis, transition metals play a pivotal role as catalysts, offering more efficient alternatives to traditional methods by facilitating C-N bond formation through mechanisms like intramolecular coupling. Recent advances have especially spotlighted transition-metal-catalyzed C-H amination reactions for directly converting C(sp2)-H to C(sp2)-N bonds, streamlining the creation of these compounds. Furthermore, biocatalytic approaches have emerged, providing asymmetric synthesis of lactams with high yield and enantioselectivity. This review examined the transition metal-catalyzed synthesis techniques for producing benzo-fused γ-lactams, marking a significant leap in organic synthesis by proposing more effective, selective, and greener production methods. It serves as a valuable resource for researchers in the fields of transition metal catalysts and those engaged in synthesizing these lactams.
Collapse
Affiliation(s)
- Fadhil Faez Sead
- Department of Dentistry, College of Dentistry, The Islamic University Najaf Iraq
- Department of medical analysis, Medical laboratory technique college, the Islamic University of Al Diwaniyah Al Diwaniyah Iraq
- Department of medical analysis, Medical laboratory technique college, the Islamic University of Babylon Babylon Iraq
| | - Vicky Jain
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University Rajkot-360003 Gujarat India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University) Bangalore Karnataka India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura Punjab 140401 India
| | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri Mohali140307 Punjab India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan Jaipur India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University Dehradun India
- Graphic Era Deemed to be (b) University Dehradun Uttarakhand India
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Tehran Branch, Islamic Azad University Tehran Iran
| | - Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry Urmia University Urmia Iran
| |
Collapse
|
8
|
Velázquez-Herrera FD, Zarazua-Aguilar Y, Garzón-Pérez AS, Álvarez-Gómez KM, Fetter G. Composites formed by layered double hydroxides with inorganic compounds: An overview of the synthesis methods and characteristics. MethodsX 2024; 13:102912. [PMID: 39280761 PMCID: PMC11402166 DOI: 10.1016/j.mex.2024.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Nowadays, layered double hydroxides (LDH), sometimes referred as hydrotalcite-like compounds, have gained great attention since their composition and structure can be easily modified, so that they can be implemented in multiple fields. LDH-based composite materials based on LDH exhibit tremendously improved properties such as high specific surface area, which promotes the accessibility to a greater number of LDH active sites, considerably improving their catalytic, adsorbent and biological activities. Therefore, this review summarizes and discusses the synthesis methods of composites constituted by LDH with other inorganic compounds such as zeolites, cationic clays, hydroxyapatites, among many others, and describe the resulting characteristics of the resulting composites, emphasizing the morphology. Brief descriptions of their properties and applications are also included.
Collapse
Affiliation(s)
| | - Yohuali Zarazua-Aguilar
- Unidad Académica Profesional Acolman, Universidad Autónoma del Estado de México, Acolman, Edo Mex, Mexico
| | - Amanda S Garzón-Pérez
- Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Karin Monserrat Álvarez-Gómez
- Instituto de Ciencias-Zeolitas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, PUE, Mexico
| | - Geolar Fetter
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria, Puebla, PUE, Mexico
| |
Collapse
|
9
|
Pereira LF, de Azevedo-Silva LJ, Minim PR, Lisboa-Filho PN, Fortulan CA, Griggs JA, Ferrairo BM, Borges AFS. Are we approaching the development of a novel calcium phosphate-based bioceramic dental material? Dent Mater 2024; 40:1843-1853. [PMID: 39209605 DOI: 10.1016/j.dental.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Develop a sustainable bovine hydroxyapatite dental ceramic with the addition of titanium dioxide (TiO2) nanoparticles (5 % and 8 % by weight), analyzing the outcome of this addition to the microstructure, as well as its mechanical and chemical properties, in order to evaluate whether they satisfy the International Organization for Standardization (ISO) 6872:2015 for dental ceramics or not. METHODS Disks were obtained through uniaxial followed by isostatic pressing from bovine hydroxyapatite powder and TiO2 nanoparticles and sintered at 1300ºC for 2 h. Three experimental groups were developed (HA, HA+5 %TiO2 and HA+8 %TiO2) and subjected to X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), indentation fracture (IF), biaxial flexural strength (BFS) and chemical solubility test. RESULTS XRD revealed, for HA group, the appearance of a peak corresponding to b-tricalcium phosphate (ß-TCP). For HA+ 5 %TiO2 and HA+ 8 %TiO2, the entire composition was converted into ß-TCP and calcium titanate (CaTiO3). The SEM images showed a dense ceramic matrix and a uniform distribution of another phase in groups with TiO2 nanoparticles. HA+ 5 %TiO2 (1.40 ± 0.18 MPa.m1/2) and HA+ 8 %TiO2 (1.32 ± 0.18 MPa.m1/2) showed significantly higher fracture toughness values than HA (0.67 ± 0.09 MPa.m1/2). HA showed significantly higher characteristic stress (295.8 MPa) in comparison to groups with 5 % (235.1 MPa) and 8 % (214.4 MPa) TiO2 nanoparticles. Differences were not observed between the Weibull modulus values. The solubility results indicated that all experimental ceramics were above the 2000 ug/cm2 limit set by the ISO 6872:2015. SIGNIFICANCE This study proposed the development and characterization of a new ceramic for dental prosthesis made from HA extracted from bovine bones, with the intention of reusing these solids waste and transforming them into a sustainable and low-cost material. Although the experimental calcium phosphate ceramic with additions of 5 % and 8 % of TiO2 achieved desirable mechanical properties, the chemical solubility values were very high.
Collapse
Affiliation(s)
- Letícia Florindo Pereira
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Vila Universitária, 17012-901 Bauru, SP, Brazil
| | - Lucas José de Azevedo-Silva
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Vila Universitária, 17012-901 Bauru, SP, Brazil
| | - Pedro Rodrigues Minim
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Vila Universitária, 17012-901 Bauru, SP, Brazil
| | - Paulo Noronha Lisboa-Filho
- Department of Physics, School of Sciences, São Paulo State University, Av. Engenheiro Luiz Edmundo Carrijo Coube, s/n, Vargem Limpa, 17033360 Bauru, SP, Brazil
| | - Carlos Alberto Fortulan
- Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense, 400, Centro, 13566-590 São Carlos, SP, Brazil
| | - Jason Alan Griggs
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Room D528, 39216-4505 Jackson, MS, United States
| | - Brunna Mota Ferrairo
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Vila Universitária, 17012-901 Bauru, SP, Brazil; Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Vila Universitária, 17012-901 Bauru, SP, Brazil
| | - Ana Flávia Sanches Borges
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Vila Universitária, 17012-901 Bauru, SP, Brazil.
| |
Collapse
|
10
|
Guan Y, Zhang W, Mao Y, Li S. Nanoparticles and bone microenvironment: a comprehensive review for malignant bone tumor diagnosis and treatment. Mol Cancer 2024; 23:246. [PMID: 39487487 PMCID: PMC11529338 DOI: 10.1186/s12943-024-02161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Malignant bone tumors, which are difficult to treat with current clinical strategies, originate from bone tissues and can be classified into primary and secondary types. Due to the specificity of the bone microenvironment, the results of traditional means of treating bone tumors are often unsatisfactory, so there is an urgent need to develop new treatments for malignant bone tumors. Recently, nanoparticle-based approaches have shown great potential in diagnosis and treatment. Nanoparticles (NPs) have gained significant attention due to their versatility, making them highly suitable for applications in bone tissue engineering, advanced imaging techniques, and targeted drug delivery. For diagnosis, NPs enhance imaging contrast and sensitivity by integrating targeting ligands, which significantly improve the specific recognition and localization of tumor cells for early detection. For treatment, NPs enable targeted drug delivery, increasing drug accumulation at tumor sites while reducing systemic toxicity. In conclusion, understanding bone microenvironment and using the unique properties of NPs holds great promise in improving disease management, enhancing treatment outcomes, and ultimately improving the quality of life for patients with malignant bone tumors. Further research and development will undoubtedly contribute to the advancement of personalized medicine in the field of bone oncology.
Collapse
Affiliation(s)
- Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Wei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China.
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
11
|
Jiménez-Pérez A, Martínez-Alonso M, García-Tojal J. Hybrid Hydroxyapatite-Metal Complex Materials Derived from Amino Acids and Nucleobases. Molecules 2024; 29:4479. [PMID: 39339474 PMCID: PMC11434463 DOI: 10.3390/molecules29184479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Calcium phosphates (CaPs) and their substituted derivatives encompass a large number of compounds with a vast presence in nature that have aroused a great interest for decades. In particular, hydroxyapatite (HAp, Ca10(OH)2(PO4)6) is the most abundant CaP mineral and is significant in the biological world, at least in part due to being a major compound in bones and teeth. HAp exhibits excellent properties, such as safety, stability, hardness, biocompatibility, and osteoconductivity, among others. Even some of its drawbacks, such as its fragility, can be redirected thanks to another essential feature: its great versatility. This is based on the compound's tendency to undergo substitutions of its constituent ions and to incorporate or anchor new molecules on its surface and pores. Thus, its affinity for biomolecules makes it an optimal compound for multiple applications, mainly, but not only, in biological and biomedical fields. The present review provides a chemical and structural context to explain the affinity of HAp for biomolecules such as proteins and nucleic acids to generate hybrid materials. A size-dependent criterium of increasing complexity is applied, ranging from amino acids/nucleobases to the corresponding macromolecules. The incorporation of metal ions or metal complexes into these functionalized compounds is also discussed.
Collapse
Affiliation(s)
| | | | - Javier García-Tojal
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.J.-P.); (M.M.-A.)
| |
Collapse
|
12
|
Mignardi S, Tocci E, Medeghini L. Clam shell waste recycling and valorization for sustainable Hg remediation. Heliyon 2024; 10:e35375. [PMID: 39170423 PMCID: PMC11336571 DOI: 10.1016/j.heliyon.2024.e35375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Shellfish aquaculture world production is constantly growing due to the increase in demand for seafood and reached over 18 million tons in 2022. The suitable management of the shell waste is one of the main environmental challenging issues as most of this waste is sent to landfills with emanation of foul odors, pathogens proliferation and reduction of available space. However, the conversion of this biowaste to new value-added materials could provide significant environmental and economic benefits. Clam shell waste was the starting material for the synthesis of hydroxyapatite (CSHAP) applied as an adsorbent for Hg2+ removal from aqueous solutions. Adsorption experiments were performed in batch using simulated wastewaters prepared from HgCl2 to investigate the effects of contact time and initial Hg2+ concentration on the removal process. Mineralogical composition, morphological features and elemental composition of CSHAP before and after the experiments were investigated by XRPD, SEM-EDS and FTIR analysis. The concentrations of Hg2+ and Ca2+ in the solutions were analyzed by ICP-AES. The adsorption kinetics of Hg2+ was simulated with the pseudo-first-order rate model, the pseudo-second order model and the intraparticle diffusion model. The results of the kinetics study showed that the Hg2+ adsorption followed the pseudo-second-order kinetics model and reached equilibrium within 40 min. The Langmuir model fitted the experimental results better than the Freundlich, Temkin and Dubinin-Radushkevic isotherm models, with a maximum adsorption capacity of 65.8 mg/g which is generally higher than other waste-derived adsorbents used for the removal of Hg2+ ions from water. The removal mechanism includes rapid surface complexation on CSHAP grains, followed by a slow incorporation of the Hg2+ ions in the crystalline structure. The results of this study could contribute to delineate a new research direction for a more sustainable management of clam shell biowaste.
Collapse
Affiliation(s)
- Silvano Mignardi
- Department of Earth Sciences, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
- CIABC, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Emanuele Tocci
- Department of Earth Sciences, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Laura Medeghini
- Department of Earth Sciences, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
- CIABC, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| |
Collapse
|
13
|
Benataya K, Lakrat M, Hammani O, Aaddouz M, Ait Yassine Y, Abuelizz HA, Zarrouk A, Karrouchi K, Mejdoubi E. Synthesis of High-Purity Hydroxyapatite and Phosphoric Acid Derived from Moroccan Natural Phosphate Rocks by Minimizing Cation Content Using Dissolution-Precipitation Technique. Molecules 2024; 29:3854. [PMID: 39202932 PMCID: PMC11357432 DOI: 10.3390/molecules29163854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
This study investigates, in the first part, the synthesis and purification of a poorly crystalline hydroxyapatite (HAp) using natural Moroccan phosphate (Boucraa region) as a raw material. Despite its successful preparation, the obtained HAp was contaminated by several metallic cations (mostly Cd, Pb, Sn, Ti, Mn, Mg, Fe, and Al) migrated from the natural rocks during the digestion process, inhibiting HAp application in several sectors. To minimize the existence of these elements, the dissolution-precipitation technique (DP) was investigated as a non-selective purification process. Following the initial DP cycle conducted on the precipitated HAp, the removal efficiency was approximately 60% for Al, Fe, Mg, Mn, and Ti and 90% for Cd and Pb. After three consecutive DP cycles, notable improvement in the removal efficiency was observed, reaching 66% for Fe, 69% for Mg, 73% for Mn, and 74% for Al, while Cd, Pb, and Ti were totally removed. In the second part of this study, the purified HAp was digested using sulfuric acid to produce high-quality phosphoric acid (PA) and gypsum (GP). The elemental analysis of the PA indicates a removal efficiency of approximately 89% for Fe and over 94% for all the examined cations. In addition, the generated GP was dominated by SO3 and CaO accompanied with minor impurities. Overall, this simple process proves to be practically useful, to reduce a broad spectrum of cationic impurities, and to be flexible to prepare valuable products such hydroxyapatite, phosphoric acid, and gypsum.
Collapse
Affiliation(s)
- Karim Benataya
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (K.B.); (M.L.); (M.A.); (E.M.)
| | - Mohammed Lakrat
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (K.B.); (M.L.); (M.A.); (E.M.)
| | - Othmane Hammani
- Chemistry Platform, Unités d’Appui Technique à la Recherche Scientifique (UATRS), Centre National pour la Recherche Scientifique & Technique (CNRST), Rabat 10102, Morocco;
| | - Mohamed Aaddouz
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (K.B.); (M.L.); (M.A.); (E.M.)
| | - Youssef Ait Yassine
- Higher School of Technology, Ibn Zohr University, Laayoune 3007, Morocco;
- Laboratory of Thermodynamics and Energy, Faculty of Sciences, Ibn Zohr University, Agadir 80150, Morocco
| | - Hatem A. Abuelizz
- Department of Pharmaceutical Chemistry College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Abdelkader Zarrouk
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat P.O. Box 1014, Morocco;
- Research Centre, Manchester Salt & Catalysis, 88-90 Chorlton Road, Manchester M15 4AN, UK
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Elmiloud Mejdoubi
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (K.B.); (M.L.); (M.A.); (E.M.)
| |
Collapse
|
14
|
Pupilli F, Tavoni M, Marsan O, Drouet C, Tampieri A, Sprio S. Tuning Mg Doping and Features of Bone-like Apatite Nanoparticles Obtained via Hydrothermal Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16557-16570. [PMID: 39056438 DOI: 10.1021/acs.langmuir.4c02035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Nanocrystalline apatites have been intensively studied for decades, not only for their well-known mimesis of bone apatite but also for applicative purposes, whether as biomaterials for skeletal repair or more recently for a variety of nanomedical applications enabled by their peculiar surface characteristics. Particularly, ion-doped apatites are of great interest because the incorporation of foreign ions in the composition of apatite (nano)crystals alters the bulk and surface properties, modifying their ability to interact with the external environment. This is clearly seen in the physiology of bone tissue, whose mineral phase, a low crystallinity apatitic phase, can dynamically exchange ions with cells, thus driving bone metabolism. Taking bone mineral as a model, the present work describes the development of Mg-doped hydroxyapatite nanoparticles, exploiting hydrothermal synthesis to achieve extents of Mg2+ doping hardly achieved before and using citrate to develop stable apatite colloidal dispersions. Morphological and physicochemical analyses, associated with in-depth investigation of ions populating the apatitic lattice and the nonapatitic surface layer, concurred to demonstrate the cooperative presence of Mg2+ and citrate ions, affecting the dynamic ion retention/release mechanisms. Achieving high Mg2+ doping rates and understanding how Mg doping translates into surface activation of apatite-based nanoparticles is expected to foster the design of novel smart and tunable devices, to adsorb and release ionic species and cargo molecules, with potential innovations in the biomedical field or even beyond, as in catalysis or for environmental remediation.
Collapse
Affiliation(s)
- Federico Pupilli
- Institute of Science, Technology and Sustainability for Ceramic Materials-National Research Council of Italy (ISSMC-CNR), Via Granarolo 64, 48018 Faenza, Italy
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131 Padova, Italy
| | - Marta Tavoni
- Institute of Science, Technology and Sustainability for Ceramic Materials-National Research Council of Italy (ISSMC-CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Olivier Marsan
- CIRIMAT, CNRS, Université de Toulouse, Ensiacet, 4 Allee Emile Monso, Toulouse Cedex 4 31030, France
| | - Christophe Drouet
- Institute of Science, Technology and Sustainability for Ceramic Materials-National Research Council of Italy (ISSMC-CNR), Via Granarolo 64, 48018 Faenza, Italy
- CIRIMAT, CNRS, Université de Toulouse, Ensiacet, 4 Allee Emile Monso, Toulouse Cedex 4 31030, France
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramic Materials-National Research Council of Italy (ISSMC-CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Simone Sprio
- Institute of Science, Technology and Sustainability for Ceramic Materials-National Research Council of Italy (ISSMC-CNR), Via Granarolo 64, 48018 Faenza, Italy
| |
Collapse
|
15
|
Gelati L, Rabuffetti M, Benaglia M, Campisi S, Gervasini A, Speranza G, Morelli CF. Hydroxyapatite: An Eco-Friendly Material for Enzyme Immobilization. Chempluschem 2024; 89:e202400204. [PMID: 38682248 DOI: 10.1002/cplu.202400204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Biocatalysis has emerged in the last decade as a valuable and eco-friendly tool in chemical synthesis, allowing in several instances to reduce or eliminate the use of hazardous reagents, environmentally dangerous solvents and harsh reaction conditions. Enzymes are indeed able to catalyse chemical transformations on non-natural substrates under mild reaction conditions, still maintaining their high chemo-, regio-, and stereoselectivity. Enzyme immobilization, i. e. the grafting of enzymes on solid supports, can be viewed as an enabling technology, as it allows a better control of the reaction and the recycling of the biocatalyst, thus rendering economically viable the use of expensive enzymes also on a large scale. To pursue a sustainable approach, the supports for enzyme immobilization should be eco-friendly and possibly renewable. This review highlights the use of hydroxyapatite (HAP), an inorganic biomaterial able to confer strength and stiffness to the bone tissue in animals, as carrier for enzyme immobilization. HAP is a cheap, non-toxic and biocompatible material, with high surface area and protein affinity. Different enzyme classes, immobilization strategies, and the use of diverse HAP-based supports will be discussed, underlining the immobilization conditions and the properties of the obtained biocatalysts.
Collapse
Affiliation(s)
- Leonardo Gelati
- Dipartimento di Chimica, Università degli studi di Milano, via C. Golgi 19, 20133, Milano, Italy
- Dipartimento di Architettura e Disegno industriale, Università degli studi della Campania, via San Lorenzo - Abazia di San Lorenzo, 81031, Aversa, Italy
| | - Marco Rabuffetti
- Dipartimento di Chimica, Università degli studi di Milano, via C. Golgi 19, 20133, Milano, Italy
| | - Maurizio Benaglia
- Dipartimento di Chimica, Università degli studi di Milano, via C. Golgi 19, 20133, Milano, Italy
| | - Sebastiano Campisi
- Dipartimento di Chimica, Università degli studi di Milano, via C. Golgi 19, 20133, Milano, Italy
| | - Antonella Gervasini
- Dipartimento di Chimica, Università degli studi di Milano, via C. Golgi 19, 20133, Milano, Italy
| | - Giovanna Speranza
- Dipartimento di Chimica, Università degli studi di Milano, via C. Golgi 19, 20133, Milano, Italy
| | - Carlo F Morelli
- Dipartimento di Chimica, Università degli studi di Milano, via C. Golgi 19, 20133, Milano, Italy
| |
Collapse
|
16
|
Shi W, Tang Y, Liu Y, Fan J, Huang S, Guo Y, Zhang B, Lens PNL. Deciphering the role of micro/nano-hydroxyapatite in aerobic granular sludge system: Effects on treatment performance and enhancement mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121850. [PMID: 39018842 DOI: 10.1016/j.jenvman.2024.121850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/26/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Hydroxyapatite (HAP), a mineral nucleus identified within aerobic granular sludge (AGS), plays a vital role in enhancing the AGS systems. However, the microscopic mechanism underlying their roles remains largely unexplored. Herein, a systematic investigation was carried out to elucidate the impact and enhanced mechanisms associated with HAP of different sizes, i.e. micro-HAP (mHAP) and nano-HAP (nHAP), on the aerobic granulation, nutrient removal and microbial diversity of AGS. Results showed that the presence of nHAP and mHAP significantly shortened the granulation process to 15 and 20 days, respectively. This might be ascribed to the fact that the large specific surface area of nHAP aggregates was conducive to microbial adhesion, biomass accumulation and sludge granulation. Compared with mHAP, the granules with nHAP showed better settlement performance, mechanical strength and larger diameter. The X-ray diffraction (XRD) and Raman spectrometer analysis confirmed the presence of HAP within the granules, which was found to stimulate the secretion of extracellular polymeric substance, improve the compactness of granule structure and suppress the growth of filamentous bacteria, thereby contributing to a stable AGS system. The presence of HAP, especially nHAP, effectively enriched the functional microorganisms, such as nitrifying and denitrifying bacteria (e.g. Candidatus_Competibacter) and phosphorus accumulating organisms (e.g. Flavobacterium), leading to the improved nutrient removal efficiencies (COD > 96%, TN > 76%, and TP > 74%). Further analysis revealed the up-regulation of functional enzymes (e.g. nitrite oxidoreductase and polyphosphate kinase) involved in nutrient metabolism, underlying the inherent mechanisms for the excellent nutrient removal. This study deepens the understanding of granulation mechanisms from the perspective of mineral cores, and proposes an economically feasible strategy for rapid initiation and stabilization of AGS reactors.
Collapse
Affiliation(s)
- Wenxin Shi
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Yi Tang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Yi Liu
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Jiawei Fan
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Shuchang Huang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Yuan Guo
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Bing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, Westvest 7, 2601, DA, Delft, the Netherlands
| |
Collapse
|
17
|
Júnior FEB, Marin BT, Mira L, Fernandes CHM, Fortunato GV, Almeida MO, Honório KM, Colombo R, de Siervo A, Lanza MRV, Barros WRP. Monitoring Photo-Fenton and Photo-Electro-Fenton process of contaminants emerging concern by a gas diffusion electrode using Ca 10-xFe x-yW y(PO 4) 6(OH) 2 nanoparticles as heterogeneous catalyst. CHEMOSPHERE 2024; 361:142515. [PMID: 38830460 DOI: 10.1016/j.chemosphere.2024.142515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
The catalytic performance of modified hydroxyapatite nanoparticles, Ca10-xFex-yWy(PO4)6(OH)2, was applied for the degradation of methylene blue (MB), fast green FCF (FG) and norfloxacin (NOR). XPS analysis pointed to the successful partial replacement of Ca by Fe. Under photo-electro-Fenton process, the catalyst Ca4FeII1·92W0·08FeIII4(PO4)6(OH)2 was combined with UVC radiation and electrogenerated H2O2 in a Printex L6 carbon-based gas diffusion electrode. The application of only 10 mA cm-2 resulted in 100% discoloration of MB and FG dyes in 50 min of treatment at pH 2.5, 7.0 and 9.0. The proposed treatment mechanism yielded maximum TOC removal of ∼80% and high mineralization current efficiency of ∼64%. Complete degradation of NOR was obtained in 40 min, and high mineralization of ∼86% was recorded after 240 min of treatment. Responses obtained from LC-ESI-MS/MS are in line with the theoretical Fukui indices and the ECOSAR data. The study enabled us to predict the main degradation route and the acute and chronic toxicity of the by-products formed during the contaminants degradation.
Collapse
Affiliation(s)
- Fausto E B Júnior
- São Carlos Instiute of Chemistry, University of São Paulo - USP, Avenida Trabalhador São Carlense 400, São Carlos, SP, 13566-590, Brazil; Faculty of Exact Sciences and Technology - FACET, Federal University of Grande Dourados - UFGD, Rodovia Dourados-Itahum, Km 12, Dourados,MS, 79804-970, Brazil
| | - Beatriz T Marin
- São Carlos Instiute of Chemistry, University of São Paulo - USP, Avenida Trabalhador São Carlense 400, São Carlos, SP, 13566-590, Brazil
| | - Leticia Mira
- São Carlos Instiute of Chemistry, University of São Paulo - USP, Avenida Trabalhador São Carlense 400, São Carlos, SP, 13566-590, Brazil
| | - Carlos H M Fernandes
- São Carlos Instiute of Chemistry, University of São Paulo - USP, Avenida Trabalhador São Carlense 400, São Carlos, SP, 13566-590, Brazil
| | - Guilherme V Fortunato
- São Carlos Instiute of Chemistry, University of São Paulo - USP, Avenida Trabalhador São Carlense 400, São Carlos, SP, 13566-590, Brazil
| | - Michell O Almeida
- São Carlos Instiute of Chemistry, University of São Paulo - USP, Avenida Trabalhador São Carlense 400, São Carlos, SP, 13566-590, Brazil
| | - Kathia M Honório
- School of Arts, Sciences and Humanities, University of São Paulo - EACH-USP, Rua Arlindo Béttio 1000, São Paulo, SP, 03828-000, Brazil
| | - Renata Colombo
- School of Arts, Sciences and Humanities, University of São Paulo - EACH-USP, Rua Arlindo Béttio 1000, São Paulo, SP, 03828-000, Brazil
| | - Abner de Siervo
- Campinas Institute of Physics, State University of Campinas - UNICAMP, Sérgio Buarque de Holanda 777, Campinas, SP, 13083-859, Brazil
| | - Marcos R V Lanza
- São Carlos Instiute of Chemistry, University of São Paulo - USP, Avenida Trabalhador São Carlense 400, São Carlos, SP, 13566-590, Brazil.
| | - Willyam R P Barros
- Faculty of Exact Sciences and Technology - FACET, Federal University of Grande Dourados - UFGD, Rodovia Dourados-Itahum, Km 12, Dourados,MS, 79804-970, Brazil.
| |
Collapse
|
18
|
Kataoka T, Liu Z, Yamada I, Galindo TGP, Tagaya M. Surface functionalization of hydroxyapatite nanoparticles for biomedical applications. J Mater Chem B 2024; 12:6805-6826. [PMID: 38919049 DOI: 10.1039/d4tb00551a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This review completely covers the various aspects of hydroxyapatite (HAp) nanoparticles and their role in different biological situations, and provides the surface and interface contents on (i) hydroxyapatite nanoparticles and their hybridization with organic molecules, (ii) surface designing of hydroxyapatite nanoparticles to provide their biocompatibility and photofunction, and (iii) coating technology of hydroxyapatite nanoparticles. In particular, we summarized how the HAp nanoparticles interact with the different ions and molecules and highlighted the potential for hybridization between HAp nanoparticles and organic molecules, which is driven by the interactions of the HAp nanoparticle surface ions with several functional groups of biological molecules. In addition, we highlighted the studies focusing on the interfacial interactions between the HAp nanoparticles and proteins for exploring the enhanced biocompatibility. Such studies focus on how these interactions affect the hydration layers and protein adsorption. However, the hydration layer state involves diverse molecular interactions that can alter the shape of the adsorbed proteins, thereby affecting cell adhesion and spreading on the surfaces. We also summarized the relationship between the surface properties of the HAp nanoparticles and the hydration layer. Furthermore, we spotlighted the cytocompatible photoluminescent probes that can be developed by designing HAp/organic nanohybrid structures. We then emphasized the importance of photofunctionalization in theranostics, which involves the integration of diagnostics and therapy based on the surface design of the HAp nanoparticles. Furthermore, the coating techniques using HAp nanoparticles and HAp nanoparticle/polymer composites were outlined for fusing base biomaterials with biological tissues. The advantages of HAp/biocompatible polymer composite coatings include the ability to effectively cover porous or irregularly shaped surfaces while controlling the thickness of the coating layer, and the addition of HAp nanoparticles to the polymer matrix improves the mechanical properties, increases the roughness, and forms the morphologies that mimic bone nanostructures. Therefore, the fundamental design of hydroxyapatite nanoparticles and their surfaces was suggested from various aspects for biomedical applications.
Collapse
Affiliation(s)
- Takuya Kataoka
- Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Zizhen Liu
- Department of Materials Science and Bioengineering, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
- Research Fellow of the Japan Society for the Promotion of Science (DC), 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Iori Yamada
- Department of Materials Science and Bioengineering, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Tania Guadalupe Peñaflor Galindo
- Department of General Education, National Institute of Technology, Nagaoka College, 888 Nishikatakai, Nagaoka, Niigata 940-8532, Japan
| | - Motohiro Tagaya
- Department of Materials Science and Bioengineering, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|
19
|
Costa W, Félix Farias AF, Silva-Filho EC, Osajima JA, Medina-Carrasco S, Del Mar Orta M, Fonseca MG. Polysaccharide Hydroxyapatite (Nano)composites and Their Biomedical Applications: An Overview of Recent Years. ACS OMEGA 2024; 9:30035-30070. [PMID: 39035931 PMCID: PMC11256335 DOI: 10.1021/acsomega.4c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Hydroxyapatite can combine with polysaccharide originating biomaterials with special applications in the biomedical field. In this review, the synthesis of (nano)composites is discussed, focusing on natural polysaccharides such as alginate, chitosan, and pectin. In this way, advances in recent years in the development of preparing materials are revised and discussed. Therefore, an overview of the recent synthesis and applications of polyssacharides@hydroxyapatites is presented. Several studies based on chitosan@hydroxyapatite combined with other inorganic matrices are highlighted, while pectin@hydroxyapatite is present in a smaller number of reports. Biomedical applications as drug carriers, adsorbents, and bone implants are discussed, combining their dependence with the nature of interactions on the molecular scale and the type of polysaccharides used, which is a relevant aspect to be explored.
Collapse
Affiliation(s)
- Wanderson
Barros Costa
- Fuel and
Materials Laboratory − NPE-LACOM, UFPB, 58051-085, João Pessoa, Paraiba, Brazil
| | - Ana F. Félix Farias
- Fuel and
Materials Laboratory − NPE-LACOM, UFPB, 58051-085, João Pessoa, Paraiba, Brazil
| | | | - Josy A. Osajima
- Interdisciplinary
Laboratory for Advanced Materials − LIMAV, UFPI, 64049-550, Teresina, Piaui, Brazil
| | - Santiago Medina-Carrasco
- SGI Laboratorio
de Rayos X - Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla
(CITIUS), 41012, Sevilla, Spain
| | - Maria Del Mar Orta
- Departamento
de Química Analítica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García, González 2, 41012 Sevilla, Spain
| | - Maria G. Fonseca
- Fuel and
Materials Laboratory − NPE-LACOM, UFPB, 58051-085, João Pessoa, Paraiba, Brazil
| |
Collapse
|
20
|
Arab M, Behboodi P, Malek Khachatourian A, Nemati A. Enhanced mechanical properties and biocompatibility of hydroxyapatite scaffolds by magnesium and titanium oxides for bone tissue applications. Heliyon 2024; 10:e33847. [PMID: 39027606 PMCID: PMC11255589 DOI: 10.1016/j.heliyon.2024.e33847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Significant attention has been devoted to bioactive implants for bone tissue applications, particularly composite scaffolds based on hydroxyapatite (HaP). This study explores the effects of Magnesium and Titanium oxides on the characteristics of HaP-based composite (HMT) scaffolds. The ceramic nanopowders were synthesized using in situ sol-gel, and then the scaffolds were fabricated by gel-casting technique, followed by heat treatment at 1200 °C. The thermal, microstructural, and structural properties of the samples were investigated by different characterization techniques. It was observed that the formation of the MgTiO3 phase in the composite scaffold was likely the key factor contributing to the improved mechanical properties. Finally, to evaluate bioactivity and biodegradability, scaffolds were immersed in simulated body fluid (SBF) buffer and analyzed by Field Emission Scanning Electron Microscopy (FESEM), and the viability of human fibroblast cells was assessed using the MTT assay. The composite scaffolds containing the MgTiO3 phase showed greater HaP layer formation on the scaffold surface, indicating enhanced biocompatibility.
Collapse
Affiliation(s)
- Mehdi Arab
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Panteha Behboodi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Ali Nemati
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
21
|
Luo F, Liu Z, Wang S, Wang J, He L, Liao Z, Hou H, Liu X, Wang X, Chen Z. Deep dewatering of sludge and resource recovery of hydroxyapatite: A recyclable approach via ionic liquid biphasic system and hydrogen bonds reformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173095. [PMID: 38729370 DOI: 10.1016/j.scitotenv.2024.173095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Deep dewatering of Waste Activated Sludge (WAS) through mechanical processes remains inefficient, primarily due to the formation of a stable hydrogen bonding network between the biopolymers and water, which consequently leads to significant water trapped by Extracellular Polymeric Substances (EPS). In this study, a novel and recyclable treatment for WAS based on Ionic Liquids (ILs) was established, named IL-biphasic aqueous system (IL-ABS) treatment. Specifically, the IL-ABS formed in WAS facilitated rapid and efficient in-situ deep dewatering while concurrently recovering hydroxyapatite. The water content decreased from an initial 98.27 % to 65.35 % with IL-ABS, formed by 1-Butyl-3-methylimidazolium bromide (BmimBr) and K3PO4 synthesized from waste H3PO4. Moreover, the recycled BmimBr maintaining the water content of the dewatered sludge consistently between 65.61 % and 67.25 % across five cycles, exhibited remarkable reproducibility. Through three-dimensional excitation-emission matrix, lactate dehydrogenase analyses and confocal laser scanning microscopy, the high concentration of BmimBr in the upper phase effectively disrupted the cells and EPS, which exposed protein and polysaccharide on the EPS surface. Subsequently, the K3PO4 in the lower phase led to an enhanced salting-out effect in WAS. Furthermore, FT-IR analysis revealed that K3PO4 disrupted the original hydrogen bonds between EPS and water. Then, BmimBr formed numerous hydrogen bonds with the sludge flocs, leading to deep dewatering and agglomeration of the sludge flocs during the unique phase separation process of IL-ABS. Notably, sludge-derived hydroxyapatite product exhibited remarkable adsorption capacity for prevalent heavy metal contaminants such as Pb2+, Cd2+ and Cu2+, with efficiencies comparable to those of commercial hydroxyapatite, thereby achieving the resource utilization of waste H3PO4. Moreover, economic calculations demonstrated the suitability of this novel treatment. This innovative treatment exhibits potential for practical applications in the non-mechanical deep dewatering of WAS.
Collapse
Affiliation(s)
- Fang Luo
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Liu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Siqi Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Lingzhi He
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuwei Liao
- Urban Construction Engineering Division, Wenhua College, Wuhan, China
| | - Huijie Hou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangrui Liu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Wang
- Urban Construction Engineering Division, Wenhua College, Wuhan, China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
22
|
Hafez IT, Biskos G. Bioinspired nanostructured hydroxyapatite-polyelectrolyte multilayers for stone conservation. J Colloid Interface Sci 2024; 674:459-473. [PMID: 38941938 DOI: 10.1016/j.jcis.2024.06.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Stone-built cultural heritage faces threats from natural forces and anthropogenic pollutants, including local climate, acid rain, and outdoor conditions like temperature fluctuations and wind exposure, all of which impact their structural integrity and lead to their degradation. The development of a water-based, environmentally-friendly protective coatings that meet a combination of requirements posed by the diversity of the substrates, different environmental conditions, and structures with complex geometries remains a formidable challenge, given the numerous obstacles faced by current conservation strategies. Here we report the structural, electrical, and mechanical characterization, along with performance testing, of a nanostructured hydrophilic and self-healing hybrid coating based on hydroxyapatite (HAp) nanocrystals and polyelectrolyte multilayers (PEM), formed in-situ on Greek marble through a simple spray layer-by-layer surface functionalization technique. The polyelectrolyte-hydroxyapatite multilayer (PHM) structure resembled the design of naturally forming trabecular bone, attained at a short procedural time. It exhibited chemical affinity, aesthetical compatibility and resistance to weathering while offering reversibility. The proposed method is able to generate micron-sized coatings with controlled properties, such as adhesion and self-healing, leading to less weathered surfaces. Our results show that the PHM is a highly effective protective material that can be applied for stone protection and other similar applications.
Collapse
Affiliation(s)
- Iosif T Hafez
- Science and Technology in Archaeology and Culture Research Center, The Cyprus Institute, Nicosia 2121, Cyprus; Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 2121, Cyprus.
| | - George Biskos
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 2121, Cyprus; Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2628 CN, the Netherlands
| |
Collapse
|
23
|
Miyah Y, El Messaoudi N, Benjelloun M, Acikbas Y, Şenol ZM, Ciğeroğlu Z, Lopez-Maldonado EA. Advanced applications of hydroxyapatite nanocomposite materials for heavy metals and organic pollutants removal by adsorption and photocatalytic degradation: A review. CHEMOSPHERE 2024; 358:142236. [PMID: 38705409 DOI: 10.1016/j.chemosphere.2024.142236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
This comprehensive review delves into the forefront of scientific exploration, focusing on hydroxyapatite-based nanocomposites (HANCs) and their transformative role in the adsorption of heavy metals (HMs) and organic pollutants (OPs). Nanoscale properties, including high surface area and porous structure, contribute to the enhanced adsorption capabilities of HANCs. The nanocomposites' reactive sites facilitate efficient contaminant interactions, resulting in improved kinetics and capacities. HANCs exhibit selective adsorption properties, showcasing the ability to discriminate between different contaminants. The eco-friendly synthesis methods and potential for recyclability position the HANCs as environmentally friendly solutions for adsorption processes. The review acknowledges the dynamic nature of the field, which is characterized by continuous innovation and a robust focus on ongoing research endeavors. The paper highlights the HANCs' selective adsorption capabilities of various HMs and OPs through various interactions, including hydrogen and electrostatic bonding. These materials are also used for aquatic pollutants' photocatalytic degradation, where reactive hydroxyl radicals are generated to oxidize organic pollutants quickly. Future perspectives explore novel compositions, fabrication methods, and applications, driving the evolution of HANCs for improved adsorption performance. This review provides a comprehensive synthesis of the state-of-the-art HANCs, offering insights into their diverse applications, sustainability aspects, and pivotal role in advancing adsorption technologies for HMs and OPs.
Collapse
Affiliation(s)
- Youssef Miyah
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez-Morocco, Morocco; Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez-Morocco, Morocco.
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco.
| | - Mohammed Benjelloun
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez-Morocco, Morocco
| | - Yaser Acikbas
- Department of Materials Science and Nanotechnology Engineering, Usak University, 64200, Usak, Turkey
| | - Zeynep Mine Şenol
- Sivas Cumhuriyet University, Faculty of Health Sciences, Department of Nutrition and Diet, 58140, Sivas, Turkey
| | - Zeynep Ciğeroğlu
- Department of Chemical Engineering, Faculty of Engineering, Usak University, 64300, Usak, Turkey
| | - Eduardo Alberto Lopez-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP: 22390, Tijuana, Baja California, Mexico
| |
Collapse
|
24
|
Sun C, Huang C, Wang P, Yin J, Tian H, Liu Z, Xu H, Zhu J, Hu X, Liu Z. Low-cost eggshell-fly ash adsorbent for phosphate recovery: A potential slow-release phosphate fertilizer. WATER RESEARCH 2024; 255:121483. [PMID: 38508039 DOI: 10.1016/j.watres.2024.121483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Fly ash (FA) and eggshells (ES) are common solid wastes with significant potential for the recovery of phosphorus from water. This study focuses on synthesizing a low-cost and environmental-friendly phosphate adsorbent called eggshell-fly ash geopolymer composite (EFG) using eggshells instead of chemicals. The CaO obtained from the high-temperature pyrolysis of eggshells provides active sites for phosphate adsorption, and CO2 serves as a pore-forming agent. The phosphate adsorption performance of EFG varied with the eggshell-fly ash ratios and achieved a maximum of 49.92 mg P/g at an eggshell-fly ash ratio of 40 %. The adsorption process was well described by the pseudo-second-order model and the Langmuir model. EFG also exhibited a good regeneration performance through six-cycle experiments and achieved the highest phosphate desorption at pH 4.0. The results of the column experiment showed that EFG can be used as a filter media for phosphorus removal in a real-scale application with low cost. Soil burial test indicated saturated EFG has a good phosphate slow-release performance (maintained for up to 60 days). Overall, EFG has demonstrated to be a promising adsorbent for phosphorus recovery.
Collapse
Affiliation(s)
- Chengyou Sun
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Jinglin Yin
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haoran Tian
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zili Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haiyin Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| |
Collapse
|
25
|
Geng H, Wang F, Wu H, Qin Q, Ma S, Chen H, Zhou B, Yuan R, Luo S, Sun K. Biochar and nano-hydroxyapatite combined remediation of soil surrounding tailings area: Multi-metal(loid)s fixation and soybean rhizosphere soil microbial improvement. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133817. [PMID: 38422730 DOI: 10.1016/j.jhazmat.2024.133817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
The soil near tailings areas is relatively barren and contaminated by multi-metal(loid)s, seriously threatening the safety of crop production. Here, biochar and nano-hydroxyapatite (nHAP) were combined to improve the sterilized and unsterilized polymetallic contaminated soil, and soil incubation and soybean pot experiments were designed. Results showed that biochar and nHAP not only increased soil C, N, and P but also effectively reduced multi-metal bioavailability, wherein the combined application of the two amendments had the best effect on metal immobilization. The synergistic effect of the two amendments decreased the acid-soluble contents of Co, Cu, Fe, and Pb in rhizosphere soils up to 86.75%, 80.69%, 89.09%, and 96.70%, respectively. The ameliorant reduced the accumulation of metal(loid)s in soybean plants, and rhizosphere microorganisms inhibited the migration of soil metals to plants. Additionally, biochar and nHAP regulated the rhizosphere soil microbial community. The rhizosphere soil of the sterilization group tended to prioritize the restoration of the original dominant bacteria. As, Pb, Fe, Urease, OM, TN, and TP were the critical environmental variables affecting rhizosphere soil bacterial communities. Therefore, combining biochar and nHAP is an environmentally friendly strategy to reduce polymetallic mobility in tailings soil and crops and improve soil microbial community structure.
Collapse
Affiliation(s)
- Huanhuan Geng
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875, PR China; School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Fei Wang
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875, PR China.
| | - Haoming Wu
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875, PR China
| | - Qizheng Qin
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), D11 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Shuai Ma
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875, PR China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Beihai Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Shuai Luo
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Ke Sun
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875, PR China
| |
Collapse
|
26
|
Zeng Y, Luo H, He D, Li J, Zhang A, Sun J, Xu J, Pan X. Influence mechanism of anions on iron doping into swine bone char: Promoting non-radical oxidation of acetaminophen in a Fenton-like system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170982. [PMID: 38367723 DOI: 10.1016/j.scitotenv.2024.170982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
The application of iron-doped biochar in peroxymonosulfate (PMS) activation systems has gained increasing attention due to their effectiveness and environmental friendliness in addressing environmental issues. However, the behavioral mechanism of iron doping and the detailed 1O2 generation mechanism in PMS activation systems remain ambiguous. Here, we investigated the effects of three anions (Cl-, NO3-and SO42-) on the process of iron doping into bone char, leading to the synthesis of three iron-doped bone char (Fe-ClBC, Fe-NBC and Fe -SBC). These iron-doped bone char were used to catalyze PMS to degrade acetaminophen (APAP) and exhibited the following activity order: Fe-ClBC > Fe-NBC > Fe-SBC. Characterization results indicated that iron doping primarily occurred through the substitution of calcium in hydroxyapatite within BC. In the course of the impregnation, the binding of SO42- and Ca2+ hindered the exchange of iron ions, resulting in lower catalytic activity of Fe-SBC. The primary reactive oxygen species in the Fe-ClBC/PMS and Fe-NBC/PMS systems were both 1O2. 1O2 is produced through O2•- conversion and PMS self-dissociation, which involves the generation of metastable iron intermediates and electron transfer within iron species. The presence of oxygen vacancies and more carbon defects in the Fe-ClBC catalyst facilitates 1O2 generation, thereby enhancing APAP degradation within the Fe-ClBC/PMS system. This study is dedicated to in-depth exploration of the mechanisms underlying iron doping and defect materials in promoting 1O2 generation.
Collapse
Affiliation(s)
- Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China.
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Xu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
27
|
Caratenuto A, Leach K, Liu Y, Zheng Y. Nanofibrous Biomaterial-Based Passive Cooling Paint Structurally Linked by Alkane-Oleate Interactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12717-12730. [PMID: 38427802 PMCID: PMC10941070 DOI: 10.1021/acsami.4c01383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Passive radiative cooling materials, which provide cooling without consuming electricity, are widely recognized as an important technology for reducing greenhouse gas emissions and delivering thermal comfort to less industrialized communities. Optimizing thermal and optical properties is of primary importance for these materials, but for real-world utilization, ease of application and scalability also require significant emphasis. In this work, we embed the biomaterial hydroxyapatite, in the form of nanoscale fibers, within an oil-based medium to achieve passive cooling from an easy-to-apply paint-like solution. The chemical structure and bonding behaviors of this mixture are studied in detail using FTIR, providing transferable conclusions for pigment-like passive cooling solutions. By reflecting 95% of solar energy and emitting 92% of its radiative output through the atmospheric transparency window, this composite material realizes an average subambient cooling performance of 3.7 °C in outdoor conditions under a mean solar irradiance of 800 W m-2. The inflammability of the material provides enhanced durability as well as unique opportunities for recycling which promote circular economic practices. Finally, the surface structure can be easily altered to tune bonding behaviors and hydrophobicity, making it an ideal passive cooling coating candidate for outdoor applications.
Collapse
Affiliation(s)
- Andrew Caratenuto
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kyle Leach
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yang Liu
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yi Zheng
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
28
|
Wang T, Cao W, Dong K, Li H, Wang D, Xu Y. Hydroxyapatite and its composite in heavy metal decontamination: Adsorption mechanisms, challenges, and future perspective. CHEMOSPHERE 2024; 352:141367. [PMID: 38331264 DOI: 10.1016/j.chemosphere.2024.141367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Nanohydroxyapatite (n-HAP), recognized by its peculiar crystal architecture and distinctive attributes showcased the underlying potential in adsorbing heavy metal ions (HMI). In this paper, the intrinsic mechanism of HMI adsorption by n-HAP was first revealed. Subsequently, the selectivity and competitiveness of n-HAP for HMI in a variety of environments containing various interferences from cations, anions, and organic molecules are elucidated. Next, n-HAP was further categorized according to its morphological dimensions, and its adsorption properties and intrinsic mechanisms were investigated based on these different morphologies. It was shown that although n-HAP has excellent adsorption capacity and cost-effectiveness, its application is often challenging to realize due to its inherent fragility and agglomeration, the technical problems required for its handling, and the difficulty of recycling. Finally, to address these issues, this paper discusses the tendency of n-HAP and its hybridized/modified materials to adsorb HMI as well as the limitations of their applications. By summarizing the limitations and future directions of hybridization/modification HAP in the field of HMI contamination abatement, this paper provides insightful perspectives for its gradual improvement and rational application.
Collapse
Affiliation(s)
- Ting Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Weiyuan Cao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Kun Dong
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Dunqiu Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Yufeng Xu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China.
| |
Collapse
|
29
|
Zhu H, Ding X, Wang C, Cao M, Yu B, Cong H, Shen Y. Preparation of rare earth-doped nano-fluorescent materials in the second near-infrared region and their application in biological imaging. J Mater Chem B 2024; 12:1947-1972. [PMID: 38299679 DOI: 10.1039/d3tb01987j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Second near-infrared (NIR-II) fluorescence imaging (FLI) has gained widespread interest in the biomedical field because of its advantages of high sensitivity and high penetration depth. In particular, rare earth-doped nanoprobes (RENPs) have shown completely different physical and chemical properties from macroscopic substances owing to their unique size and structure. This paper reviews the synthesis methods and types of RENPs for NIR-II imaging, focusing on new methods to enhance the luminous intensity of RENPs and multi-band imaging and multi-mode imaging of RENPs in biological applications. This review also presents an overview of the challenges and future development prospects based on RENPs in NIR-II regional bioimaging.
Collapse
Affiliation(s)
- Hetong Zhu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Xin Ding
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Chang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Mengyu Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
30
|
Luo H, Wang D, Zeng Y, He D, Zeng G, Xu J, Pan X. Iron-doped swine bone char as hydrogen peroxide activator for efficient removal of acetaminophen in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168833. [PMID: 38036120 DOI: 10.1016/j.scitotenv.2023.168833] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Bone char is a functional material obtained by calcining animal bones and is widely used for environmental remediation. In this work, iron was inserted into porcine bone-derived bone char via ion exchange to synthesize iron-doped bone char (Fe-BC) for efficient catalysis of hydrogen peroxide. This is the first time that Fe-BC has been used as a catalyst for the activation of H2O2. The effectiveness of the Fe-BC catalyst was influenced by the annealing temperature and the amount of iron doping. The results showed that the activation of H2O2 by the Fe-BC catalyst with the best catalytic performance could achieve 97.6% of APAP degradation within 30 min. Insights from electron paramagnetic resonance (EPR), free radical scavenging experiments and linear sweep voltammetry (LSV) proposed a reaction mechanism based on free radicals dominated degradation pathways (OH and O2-). Iron served as the primary active site in Fe-BC, with defect sites and oxygen-containing groups in the catalyst also contributing to the removal of pollutants. The Fe-BC/H2O2 system demonstrated resilience to interference from common anions (Cl-, NO3-, SO42- and HCO3-) in water, but was less effective against humic acid (HA). Based on the detection of intermediates produced during APAP degradation, possible degradation pathways of APAP were proposed and the toxicity of intermediates was evaluated. This work provides fresh insights into the use of heterogeneous Fenton catalysts for the removal of organic pollutants from water.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Dongli Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ganning Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Xu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
31
|
Maqbool Z, Shahbaz Farooq M, Rafiq A, Uzair M, Yousuf M, Ramzan Khan M, Huo S. Unlocking the potential of biochar in the remediation of soils contaminated with heavy metals for sustainable agriculture. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23257. [PMID: 38310926 DOI: 10.1071/fp23257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
Agricultural soils contaminated with heavy metals (HMs) impose a threat to the environmental and to human health. Amendment with biochar could be an eco-friendly and cost-effective option to decrease HMs in contaminated soil. This paper reviews the application of biochar as a soil amendment to immobilise HMs in contaminated soil. We discuss the technologies of its preparation, their specific properties, and effect on the bioavailability of HMs. Biochar stabilises HMs in contaminated soil, enhance the overall quality of the contaminated soil, and significantly reduce HM uptake by plants, making it an option in soil remediation for HM contamination. Biochar enhances the physical (e.g. bulk density, soil structure, water holding capacity), chemical (e.g. cation exchange capacity, pH, nutrient availability, ion exchange, complexes), and biological properties (e.g. microbial abundance, enzymatic activities) of contaminated soil. Biochar also enhances soil fertility, improves plant growth, and reduces the plant availability of HMs. Various field studies have shown that biochar application reduces the bioavailability of HMs from contaminated soil while increasing crop yield. The review highlights the positive effects of biochar by reducing HM bioavailability in contaminated soils. Future work is recommended to ensure that biochars offer a safe and sustainable solution to remediate soils contaminated with HMs.
Collapse
Affiliation(s)
- Zubaira Maqbool
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Department of Soil Science and Environmental Science, Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Shahbaz Farooq
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Park Road, Islamabad 44000, Pakistan
| | - Anum Rafiq
- Institute Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Uzair
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Muhammad Yousuf
- Pakistan Agriculture Research Council (PARC), G5, Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Shuhao Huo
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
32
|
Xia L, Tan C, Ren W, Liu X, Zhang X, Wu J, Zhang X, Guo F, Yu Y, Yang R. Robust, biodegradable and flame-retardant nanocomposite films based on TEMPO-oxidized cellulose nanofibers and hydroxyapatite nanowires. Carbohydr Polym 2024; 324:121495. [PMID: 37985047 DOI: 10.1016/j.carbpol.2023.121495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Flammability is a fatal drawback for sustainable packaging materials made from cellulose and its derivatives. Incorporating inorganic nanomaterials is a viable approach to improve the fire-resistant property. However, due to the aggregation of inorganic fillers and weak interactions between components, incorporating inorganic nanomaterials always had an adverse impact on the mechanical properties and optical transparency of cellulose-based nanocomposites. Herein, we presented a robust, biodegradable, and flame-retardant nanocomposite film composed of TEMPO-oxidized cellulose nanofibers (TOCNFs) and inorganic hydroxyapatite nanowires (HNWs). Both TOCNFs and HNWs possessed one-dimensional microstructure and could form unique organic-inorganic networks microstructure. The organic-inorganic networks interact through physical intertwinement and multiple chemical bonds, endowing nanocomposite film with outstanding mechanical properties. This nanocomposite film showed a tensile strength of 223.68 MPa and Young's modulus of 9.18 GPa, which were superior to most reported cellulose-based nanocomposite. Furthermore, this nanocomposite film demonstrated exceptional thermal stability and flame-retardant feature attributed to the inorganic framework formed by HNWs. This nanocomposite film also possessed a high optical transmittance even when HNWs content reached 30 % and could be decomposed quickly in soil. By employing organic-inorganic interpenetrating network structure design and multiple bonding interaction, cellulose-based nanocomposites can overcome inherent limitations and attain desirable comprehensive properties.
Collapse
Affiliation(s)
- Linmin Xia
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Chenshu Tan
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Wenting Ren
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Xiaohong Liu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Xiangyu Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Jianyu Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Xuexia Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Fei Guo
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Yan Yu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China.
| | - Rilong Yang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China.
| |
Collapse
|
33
|
Doria SM, Islam MN, Gagnon ZR. Teíchophoresis-enabled electrokinetic sample preparation and detection of calcium in natural plant samples. Talanta 2024; 267:125094. [PMID: 37666085 DOI: 10.1016/j.talanta.2023.125094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
We present a novel upstream electrokinetic sample preparation and liquid interfacial microfluidic method to pre-concentrate, detect and quantify the concentration of a charged species, such as calcium, from a natural plant sample. We employ a new electrokinetic phenomenon, termed as "Teíchophoresis" (TPE) to preconcentrate sample calcium ions (up to a 20X increase) against a conductive wall. Using microfluidic flow, we then continuously transport the pre-concentrated calcium to a hydrodynamically streamed interfacial sensing zone where we utilize the model fluorescent chelation reaction between calcium and Calcium Green-1 (CG1) to fluorescently quantify the calcium concentration. Using a combination of finite element analysis and finite difference numerical modelling, we model the kinetics of the CG1-calcium interfacial binding and predictably validate our TPE-driven concentration results. Finally, we demonstrate the applicability of our device for real world samples by determining the calcium concentration in a tree bark extract acquired from a southern live oak and confirm our concentration results using ICP-MS.
Collapse
Affiliation(s)
- Steven M Doria
- Artie McFerrin Department of Chemical Engineering, Texas A & M University, College Station, TX, 77843, USA
| | - Md Nazibul Islam
- Artie McFerrin Department of Chemical Engineering, Texas A & M University, College Station, TX, 77843, USA
| | - Zachary R Gagnon
- Artie McFerrin Department of Chemical Engineering, Texas A & M University, College Station, TX, 77843, USA.
| |
Collapse
|
34
|
Bernardino EG, Ferreira MEC, Bergamasco R, Yamaguchi NU. Photocatalyst of manganese ferrite and reduced graphene oxide supported on activated carbon from cow bone for wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4779-4796. [PMID: 38105329 DOI: 10.1007/s11356-023-31501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
The present research aimed to evaluate the photocatalytic activity of manganese ferrite (M) and reduced graphene oxide (G) supported on pulverized activated carbon from cow bone waste (PAC-MG). PAC-MG was characterized by different instrumental techniques. The efficiency of PAC-MG was evaluated using solar irradiation under different conditions of photocatalyst concentration, H2O2 concentration, and pH ranges for the discoloration of methylene blue dye (MB). The synergy between the nanomaterials potentiated the photocatalytic activity, reaching 85.5% of MB discoloration when using 0.25 g L-1 of catalyst at neutral pH with no oxidant needed. Furthermore, PAC-MG demonstrated excellent stability in 6 consecutive cycles. Finally, it is expected that the present study can add value to industrial waste and contribute to the development of novel water and wastewater treatment methods, ensuring water quality for human consumption and the environment.
Collapse
Affiliation(s)
- Eduarda Gameleira Bernardino
- Post-Graduation Program in Clean Technologies, Cesumar Institute of Science, Technology, and Innovation, Cesumar University, Maringá, Brazil
| | | | - Rosângela Bergamasco
- Department of Chemical Engineering, State University of Maringá, Maringá, Brazil
| | - Natália Ueda Yamaguchi
- Post-Graduation Program in Clean Technologies, Cesumar Institute of Science, Technology, and Innovation, Cesumar University, Maringá, Brazil.
| |
Collapse
|
35
|
Diez-Escudero A, Espanol M, Ginebra MP. High-aspect-ratio nanostructured hydroxyapatite: towards new functionalities for a classical material. Chem Sci 2023; 15:55-76. [PMID: 38131070 PMCID: PMC10732134 DOI: 10.1039/d3sc05344j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Hydroxyapatite-based materials have been widely used in countless applications, such as bone regeneration, catalysis, air and water purification or protein separation. Recently, much interest has been given to controlling the aspect ratio of hydroxyapatite crystals from bulk samples. The ability to exert control over the aspect ratio may revolutionize the applications of these materials towards new functional materials. Controlling the shape, size and orientation of HA crystals allows obtaining high aspect ratio structures, improving several key properties of HA materials such as molecule adsorption, ion exchange, catalytic reactions, and even overcoming the well-known brittleness of ceramic materials. Regulating the morphogenesis of HA crystals to form elongated oriented fibres has led to flexible inorganic synthetic sponges, aerogels, membranes, papers, among others, with applications in sustainability, energy and catalysis, and especially in the biomedical field.
Collapse
Affiliation(s)
- Anna Diez-Escudero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
| | - Montserrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC) Av. Eduard Maristany 16 08019 Barcelona Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology Baldiri Reixac 10-12 08028 Barcelona Spain
| |
Collapse
|
36
|
Sheng L, Zhang H, Ma J, Ding D. Preparation of core-shell composite materials capable of slowly releasing phosphate and their remediation performance of uranium-contaminated groundwater. CHEMOSPHERE 2023; 344:140160. [PMID: 37716562 DOI: 10.1016/j.chemosphere.2023.140160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Acid in-situ leach uranium mining significantly alters the geochemistry of the ore zone, and leaves uranium, residual acid, as well as other potential contaminants in groundwater, which bring harm to human health and ecological environment. Many investigators have been trying to propose remediation strategies for the uranium-contaminated groundwater. Phosphate is an effective immobilization reagent of uranium in the groundwater. However, direct injection of phosphate tends to quickly form precipitates, resulting in fast blockage of the seepage passages in the ore zone around the injection holes and hindering its diffusion. In this paper, HAP@SiO2-600, HAP@SiO2-600@25SA, and HAP@SiO2-600@75SA with core-shell structures were prepared. Their slow-release of phosphate, the effects of pH, contact time, initial uranium concentration, and coexisting ions on their removal rate and efficiency of uranium, and their function of remediating uranium-contaminated groundwater were investigated. It was found that the increase of SA content in the outer layer of HAP@SiO2-600@25SA and HAP@SiO2-600@75SA resulted in the slow release rate of phosphate, decreasing the removal rate of uranium. The adsorption capacities of HAP@SiO2-600, HAP@SiO2-600@25SA, and HAP@SiO2-600@75SA from the aqueous solution at pH = 3.0 and 303 K were up to 582.6, 558.5, and 507.3 mg g-1, respectively. In addition, the materials showed excellent uranium removal performance in experiments where multiple ions coexisted. For actual acidic uranium-contaminated groundwater, HAP@SiO2-600, HAP@SiO2-600@25SA, and HAP@SiO2-600@75SA effectively increased the pH from 2.75 to 4.40, 3.87, and 3.72, respectively, and decreased the uranium concentration from 5.12 to 0.0062, 0.0065, and 0.0058 mg L-1, respectively. The FT-IR, XRD, TEM and XPS characterizations were performed to further clarify the uranium removal mechanism, and it was found that the elimination of U(VI) was ascribed to dissolution-precipitation, adsorption and ion exchange. The results show that the core-shell composite material capable of slowly releasing phosphate is effective in remediating uranium-contaminated groundwater.
Collapse
Affiliation(s)
- Liangbing Sheng
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China; Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, Hengyang Normal University, Hengyang 421001, China; Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources, Hengyang 421001, China
| | - Hui Zhang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources, Hengyang 421001, China
| | - Jianhong Ma
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources, Hengyang 421001, China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources, Hengyang 421001, China.
| |
Collapse
|
37
|
Ambrosio JAR, Marmo VLM, Gonçalves EP, Pinto JG, Ferreira-Strixino J, Raniero LJ, Beltrame M, Simioni AR. Hydroxyapatite microspheres used as a drug delivery system for gliosarcoma strain 9l/Lacz treatment by photodynamic therapy protocols. Photodiagnosis Photodyn Ther 2023; 44:103830. [PMID: 37852406 DOI: 10.1016/j.pdpdt.2023.103830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Hydroxyapatite (HAp) presents similarities with the human bone structure and presents properties such as biodegradability, biocompatibility, and osteoconductivity, which favors its use in prostheses implants and enables its use as a vehicle for the delivery of photosensitizers (PS) from systems of release (DDS) for photodynamic therapy applications Methods: In this work was to synthesized hydroxyapatite microspheres (meHAp), encapsulated with chloroaluminium phthalocyanine (ClAlPc), for DDS. meHAp was synthesized using vaterite as a template. The drug was encapsulated by mixing meHAp and a 50.0 mg.mL-1 ClAlPc solution. Photochemical, photophysical, and photobiological studies characterized the system. RESULTS The images from the SEM analysis showed the spherical form of the particles. All spectroscopic results showed excellent photophysical parameters of the drug studied when served in the meHAp system. The incorporation efficiency was 57.8 %. The trypan blue exclusion test results showed a significant reduction (p < 0.05) in cell viability for the groups treated with PDT at all concentrations above 250 μg.mL-1. In 9 L/lacZ gliosarcoma cells, PDT mediated at concentrations from 250 to 62.5 µg.mL-1 reduced cell viability by more than 98 %. In the cell internalization study, it was possible to observe the internalization of phthalocyanines at 37 °C, with the accumulation of PS in the cytoplasm and inside the nucleus in the two tested concentrations. CONCLUSIONS From all the results presented throughout the article, the meHAp system shows promise for use as a modified release system (DSD) in photodynamic therapy.
Collapse
Affiliation(s)
- Jessica A R Ambrosio
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil
| | - Vitor L M Marmo
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil
| | - Erika P Gonçalves
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil
| | - Juliana G Pinto
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil
| | - Juliana Ferreira-Strixino
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil
| | - Leandro J Raniero
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil
| | - Milton Beltrame
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil
| | - Andreza R Simioni
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil.
| |
Collapse
|
38
|
Mondal S, Park S, Choi J, Vu TTH, Doan VHM, Vo TT, Lee B, Oh J. Hydroxyapatite: A journey from biomaterials to advanced functional materials. Adv Colloid Interface Sci 2023; 321:103013. [PMID: 37839281 DOI: 10.1016/j.cis.2023.103013] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Hydroxyapatite (HAp), a well-known biomaterial, has witnessed a remarkable evolution over the years, transforming from a simple biocompatible substance to an advanced functional material with a wide range of applications. This abstract provides an overview of the significant advancements in the field of HAp and its journey towards becoming a multifunctional material. Initially recognized for its exceptional biocompatibility and bioactivity, HAp gained prominence in the field of bone tissue engineering and dental applications. Its ability to integrate with surrounding tissues, promote cellular adhesion, and facilitate osseointegration made it an ideal candidate for various biomedical implants and coatings. As the understanding of HAp grew, researchers explored its potential beyond traditional biomaterial applications. With advances in material synthesis and engineering, HAp began to exhibit unique properties that extended its utility to other disciplines. Researchers successfully tailored the composition, morphology, and surface characteristics of HAp, leading to enhanced mechanical strength, controlled drug release capabilities, and improved biodegradability. These modifications enabled the utilization of HAp in drug delivery systems, biosensors, tissue engineering scaffolds, and regenerative medicine applications. Moreover, the exceptional biomineralization properties of HAp allowed for the incorporation of functional ions and molecules during synthesis, leading to the development of bioactive coatings and composites with specific therapeutic functionalities. These functionalized HAp materials have demonstrated promising results in antimicrobial coatings, controlled release systems for growth factors and therapeutic agents, and even as catalysts in chemical reactions. In recent years, HAp nanoparticles and nanostructured materials have emerged as a focal point of research due to their unique physicochemical properties and potential for targeted drug delivery, imaging, and theranostic applications. The ability to manipulate the size, shape, and surface chemistry of HAp at the nanoscale has paved the way for innovative approaches in personalized medicine and regenerative therapies. This abstract highlights the exceptional evolution of HAp, from a traditional biomaterial to an advanced functional material. The exploration of novel synthesis methods, surface modifications, and nanoengineering techniques has expanded the horizon of HAp applications, enabling its integration into diverse fields ranging from biomedicine to catalysis. Additionally, this manuscript discusses the emerging prospects of HAp-based materials in photocatalysis, sensing, and energy storage, showcasing its potential as an advanced functional material beyond the realm of biomedical applications. As research in this field progresses, the future holds tremendous potential for HAp-based materials to revolutionize medical treatments and contribute to the advancement of science and technology.
Collapse
Affiliation(s)
- Sudip Mondal
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Thi Thu Ha Vu
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Truong Tien Vo
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Byeongil Lee
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| | - Junghwan Oh
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Ohlabs Corp., Busan 48513, Republic of Korea.
| |
Collapse
|
39
|
Zhang M, Wei W, Chen Y, Han X. Effects of Cr(VI) oxyanion, humic acid and solution chemistry on the aggregation and colloidal stability of green synthesized chlorapatite nanoparticles. CHEMOSPHERE 2023; 342:140147. [PMID: 37716557 DOI: 10.1016/j.chemosphere.2023.140147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/19/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
Aggregation is a crucial process determining the fate, mobility and ecological risks of nanomaterials. Chlorapatite nanoparticles (nClAP) exhibit widely applications in environmental remediation and consequently will inevitably enter aquatic systems. However, the aggregation characteristics of nClAP are still mostly uncovered. This study investigated the aggregation kinetics and colloidal stability of nClAP as a function of pH, humic acid (HA), Cr(VI) oxyanions, monovalent and divalent electrolytes. Results showed that pH values from 5 to 9 had a notable impact on the aqueous behaviors of nClAP. The addition of HA made the zeta potential (ZP) of nClAP more negative and thus enhanced nClAP stability through electrostatic and steric effects. Similarly, the adsorption of Cr(VI) on the surface of nClAP created a physical barrier and negative charge, improving the stability of nClAP by inducing steric force. Lower ZP and hydrodynamic diameter (HDD) reflected that the enhanced stability of nClAP by HA was more significant than Cr(VI). In comparison, the presence of Ca2+ ions were more effective than monovalent Na + ions in promoting the aggregation of nClAP. The classical DLVO theory incorporating the steric repulsion were used to interpret the aggregation and dispersion of nClAP, making it was easier to overcome energy barriers and agglomerate. This study provides new mechanistic insights which could help better understand the effects of Cr(VI) oxyanions and HA on nClAP's colloidal stability.
Collapse
Affiliation(s)
- Mengjia Zhang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Wei Wei
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| | - Yang Chen
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Xuan Han
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
40
|
Murphy B, Morris MA, Baez J. Development of Hydroxyapatite Coatings for Orthopaedic Implants from Colloidal Solutions: Part 1-Effect of Solution Concentration and Deposition Kinetics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2577. [PMID: 37764606 PMCID: PMC10535049 DOI: 10.3390/nano13182577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
This study introduces and explores the use of supersaturated solutions of calcium and phosphate ions to generate well-defined hydroxyapatite coatings for orthopaedic implants. The deposition of hydroxyapatite is conducted via several solutions of metastable precursors that precipitate insoluble hydroxyapatite minerals at a substrate-solution interface. Solutions of this nature are intrinsically unstable, but this paper outlines process windows in terms of time, temperature, concentration and pH in which coating deposition is controlled via the stop/go reaction. To understand the kinetics of the deposition process, comparisons based on ionic strength, particle size, electron imaging, elemental analyses and mass of the formed coating for various deposition solutions are carried out. This comprehensive dataset enables the measurement of deposition kinetics and identification of an optimum solution and its reaction mechanism. This study has established stable and reproducible process windows, which are precisely controlled, leading to the successful formation of desired hydroxyapatite films. The data demonstrate that this process is a promising and highly repeatable method for forming hydroxyapatites with desirable thickness, morphology and chemical composition at low temperatures and low capital cost compared to the existing techniques.
Collapse
Affiliation(s)
- Bríd Murphy
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Mick A. Morris
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Jhonattan Baez
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| |
Collapse
|
41
|
Kazi OA, Chen W, Eatman JG, Gao F, Liu Y, Wang Y, Xia Z, Darling SB. Material Design Strategies for Recovery of Critical Resources from Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300913. [PMID: 37000538 DOI: 10.1002/adma.202300913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Population growth, urbanization, and decarbonization efforts are collectively straining the supply of limited resources that are necessary to produce batteries, electronics, chemicals, fertilizers, and other important products. Securing the supply chains of these critical resources via the development of separation technologies for their recovery represents a major global challenge to ensure stability and security. Surface water, groundwater, and wastewater are emerging as potential new sources to bolster these supply chains. Recently, a variety of material-based technologies have been developed and employed for separations and resource recovery in water. Judicious selection and design of these materials to tune their properties for targeting specific solutes is central to realizing the potential of water as a source for critical resources. Here, the materials that are developed for membranes, sorbents, catalysts, electrodes, and interfacial solar steam generators that demonstrate promise for applications in critical resource recovery are reviewed. In addition, a critical perspective is offered on the grand challenges and key research directions that need to be addressed to improve their practical viability.
Collapse
Affiliation(s)
- Omar A Kazi
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Wen Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jamila G Eatman
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Feng Gao
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yining Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yuqin Wang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Zijing Xia
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Seth B Darling
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
42
|
Elbasuney S, El-Khawaga AM, Elsayed MA, Elsaidy A, Correa-Duarte MA. Enhanced photocatalytic and antibacterial activities of novel Ag-HA bioceramic nanocatalyst for waste-water treatment. Sci Rep 2023; 13:13819. [PMID: 37620510 PMCID: PMC10449880 DOI: 10.1038/s41598-023-40970-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023] Open
Abstract
Hydroxyapatite (HA), the most common bioceramic material, offers attractive properties as a catalyst support. Highly crystalline mono-dispersed silver doped hydroxyapatite (Ag-HA) nanorods of 60 nm length was developed via hydrothermal processing. Silver dopant offered enhanced chemisorption for crystal violet (CV) contaminant. Silver was found to intensify negative charge on the catalyst surface; in this regard enhanced chemisorption of positively charged contaminants was accomplished. Silver dopant experienced decrease in the binding energy of valence electron for oxygen, calcium, and phosphorous using X-ray photoelectron spectroscopy XPS/ESCA; this finding could promote electron-hole generation and light absorption. Removal efficiency of Ag-HA nanocomposite for CV reached 88% after the synergistic effect with 1.0 mM H2O2; silver dopant could initiate H2O2 cleavage and intensify the release of active ȮH radicals. Whereas HA suffers from lack of microbial resistance; Ag-HA nanocomposite demonstrated high activity against Gram-positive (S. aureus) bacteria with zone of inhibition (ZOI) mm value of 18.0 mm, and high biofilm inhibition of 91.1%. Ag-HA nanocompsite experienced distinctive characerisitcs for utilization as green bioceramic photocatalyst for wastewater treatment.
Collapse
Affiliation(s)
- Sherif Elbasuney
- Military Technical College, Egyptian Armed Forces, Cairo, Egypt.
- School of Chemical Engineering, Military Technical College, Cairo, Egypt.
| | - Ahmed M El-Khawaga
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, New Galala City, Suez, Egypt.
| | - Mohamed A Elsayed
- School of Chemical Engineering, Military Technical College, Cairo, Egypt
| | - Amir Elsaidy
- School of Chemical Engineering, Military Technical College, Cairo, Egypt
| | - Miguel A Correa-Duarte
- Department of Physical Chemistry, Biomedical Research Center (CINBIO), and Institute of Biomedical Research of Ourense-Pontevedra-Vigo (IBI), Universidad de Vigo, 36310, Vigo, Spain
| |
Collapse
|
43
|
Ammar M, Ashraf S, Baltrusaitis J. Nutrient-Doped Hydroxyapatite: Structure, Synthesis and Properties. CERAMICS 2023; 6:1799-1825. [DOI: 10.3390/ceramics6030110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Complex inorganic powders based on calcium phosphates have found a plethora of practical applications. Of particular interest are the CaO-P2O5 system-based multi-component material powders and granules as the source of major- and micronutrients for the plants. The emerging strategy is to use nano fertilizers based on hydroxyapatite (HAP) for phosphorus and other nutrient delivery. The doping of micronutrients into HAP structure presents an interesting challenge in obtaining specific phase compositions of these calcium phosphates. Various techniques, including mechanochemical synthesis, have been employed to fabricate doped HAP. Mechanochemical synthesis is of particular interest in this review since it presents a relatively simple, scalable, and cost-effective method of calcium phosphate powder processing. The method involves the use of mechanical force to promote chemical reactions and create nanometric powders. This technique has been successfully applied to produce HAP nanoparticles alone, and HAP doped with other elements, such as zinc and magnesium. Nanofertilizers developed through mechanochemical synthesis can offer several advantages over conventional fertilizers. Their nanoscale size allows for rapid absorption and controlled release of nutrients, which leads to improved nutrient uptake efficiency by plants. Furthermore, the tailored properties of HAP-based nano fertilizers, such as controlled porosity and degradation levels, contribute to their effectiveness in providing plant nutrition.
Collapse
Affiliation(s)
- Mohamed Ammar
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Sherif Ashraf
- Department of Physics, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
44
|
Zhang X, Zou G, Chu H, Shen Z, Zhang Y, Abbas MHH, Albogami BZ, Zhou L, Abdelhafez AA. Biochar applications for treating potentially toxic elements (PTEs) contaminated soils and water: a review. Front Bioeng Biotechnol 2023; 11:1258483. [PMID: 37662433 PMCID: PMC10472142 DOI: 10.3389/fbioe.2023.1258483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Environmental pollution with potentially toxic elements (PTEs) has become one of the critical and pressing issues worldwide. Although these pollutants occur naturally in the environment, their concentrations are continuously increasing, probably as a consequence of anthropic activities. They are very toxic even at very low concentrations and hence cause undesirable ecological impacts. Thus, the cleanup of polluted soils and water has become an obligation to ensure the safe handling of the available natural resources. Several remediation technologies can be followed to attain successful remediation, i.e., chemical, physical, and biological procedures; yet many of these techniques are expensive and/or may have negative impacts on the surroundings. Recycling agricultural wastes still represents the most promising economical, safe, and successful approach to achieving a healthy and sustainable environment. Briefly, biochar acts as an efficient biosorbent for many PTEs in soils and waters. Furthermore, biochar can considerably reduce concentrations of herbicides in solutions. This review article explains the main reasons for the increasing levels of potentially toxic elements in the environment and their negative impacts on the ecosystem. Moreover, it briefly describes the advantages and disadvantages of using conventional methods for soil and water remediation then clarifies the reasons for using biochar in the clean-up practice of polluted soils and waters, either solely or in combination with other methods such as phytoremediation and soil washing technologies to attain more efficient remediation protocols for the removal of some PTEs, e.g., Cr and As from soils and water.
Collapse
Affiliation(s)
- Xu Zhang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture, Shanghai, China
| | - Guoyan Zou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture, Shanghai, China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Zheng Shen
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Mohamed H. H. Abbas
- Soils and Water Department, Faculty of Agriculture, Soils and Water Department, Benha University, Benha, Egypt
| | - Bader Z. Albogami
- Department of Biology, Faculty of Arts and Sciences, Najran University, Najran, Saudi Arabia
| | - Li Zhou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture, Shanghai, China
| | - Ahmed A. Abdelhafez
- Soils and Water Department, Faculty of Agriculture, New Valley University, New Valley, Egypt
- National Committee of Soil Science, Academy of Scientific Research and Technology, Cairo, Egypt
| |
Collapse
|
45
|
Guo Y, Liu H, Cao H, Dong X, Wang Z, Chen J, Xu C. Complexation of uranyl with benzoic acid in aqueous solution at variable temperatures: potentiometry, spectrophotometry and DFT calculations. Dalton Trans 2023; 52:11265-11271. [PMID: 37526577 DOI: 10.1039/d3dt01896b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Investigation of the fundamental coordination chemistry between U(VI) and simple organic ligands is important to understand the chemical behavior of U(VI) in the natural environment and separation processes. In this work, the complexation of U(VI) with a common carboxylic acid, benzoic acid, has been systematically investigated through potentiometry, spectrometry and DFT calculations. Three successive complexes (UO2L+, UO2L2 and UO2L3-, L = benzoate ion) between U(VI) and benzoic acid are successfully identified in aqueous solution and their corresponding thermodynamic parameters (stability constant, enthalpy and entropy) are determined. Notably, this is the first time that the previously missing 1 : 2 and 1 : 3 (U to L) complexes in aqueous solution and their complexation thermodynamics have been reported, which would aid in more accurate prediction of the chemical behavior of U(VI) in the presence of benzoic acid. Moreover, the structures of the complexes are elucidated using DFT calculations, which show that benzoic acid coordinates to U(VI) in a bidentate form in all the complexes.
Collapse
Affiliation(s)
- Yuxiao Guo
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Haiwang Liu
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Hong Cao
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Xue Dong
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Zhipeng Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Jing Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
46
|
Lagopati N, Pippa N, Gatou MA, Papadopoulou-Fermeli N, Gorgoulis VG, Gazouli M, Pavlatou EA. Marine-Originated Materials and Their Potential Use in Biomedicine. APPLIED SCIENCES 2023; 13:9172. [DOI: 10.3390/app13169172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Aquatic habitats cover almost 70% of the Earth, containing several species contributing to marine biodiversity. Marine and aquatic organisms are rich in chemical compounds that can be widely used in biomedicine (dentistry, pharmacy, cosmetology, etc.) as alternative raw biomaterials or in food supplements. Their structural characteristics make them promising candidates for tissue engineering approaches in regenerative medicine. Thus, seaweeds, marine sponges, arthropods, cnidaria, mollusks, and the biomaterials provided by them, such as alginate, vitamins, laminarin, collagen, chitin, chitosan, gelatin, hydroxyapatite, biosilica, etc., are going to be discussed focusing on the biomedical applications of these marine-originated biomaterials. The ultimate goal is to highlight the sustainability of the use of these biomaterials instead of conventional ones, mainly due to the antimicrobial, anti-inflammatory, anti-aging and anticancer effect.
Collapse
Affiliation(s)
- Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Nefeli Papadopoulou-Fermeli
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Vassilis G. Gorgoulis
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Clinical Molecular Pathology, Medical School, University of Dundee, Dundee DD1 9SY, UK
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| |
Collapse
|
47
|
Hartati YW, Devi MJ, Irkham, Zulqaidah S, Noviyanti AR, Rochani S, Topkaya SN, Einaga Y. Electrochemical investigation of hydroxyapatite-lanthanum strontium cobalt ferrite composites (HA-LSCF) for SARS-CoV-2 aptasensors. RSC Adv 2023; 13:20209-20216. [PMID: 37416913 PMCID: PMC10321058 DOI: 10.1039/d3ra01531a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
The hydroxyapatite-lanthanum strontium cobalt ferrite (HA-LSCF) composite showed a good response on a screen-printed carbon electrode (SPCE) electrochemical aptasensor to detect SARS-CoV-2. SPCE/HA-LSCF with a thiolated aptamer has a strong affinity for the SARS-CoV-2 spike RBD protein. This occurs due to the binding of -SH to the HA-positive region. In the presence of LSCF, which is conductive, an increase in electron transfer from the redox system [Fe(CN)6]3-/4- occurs. The interaction of the aptamer with the RBD protein can be observed based on the decrease in the electron transfer process. As a result, the developed biosensor is highly sensitive to the SARS-CoV-2 spike RBD protein with a linear range of 0.125 to 2.0 ng mL-1, a detection limit of 0.012 ng mL-1, and a quantification limit of 0.040 ng mL-1. The analytical application of the aptasensor demonstrates its feasibility in the analysis of saliva or swab samples.
Collapse
Affiliation(s)
- Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Melania Janisha Devi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Salsha Zulqaidah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Atiek Rostika Noviyanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Siti Rochani
- Mining Technology Research Center, National Research and Innovation Agency Indonesia
| | | | - Yasuaki Einaga
- Department of Chemistry, Keio University 3-14-1 Hiyoshi Yokohama 223-8522 Japan
| |
Collapse
|
48
|
Minim PR, de Azevedo-Silva LJ, Ferrairo BM, Pereira LF, Goulart CA, Monteiro-Sousa RS, Lisboa Filho PN, Fortulan CA, Salomão R, Borges AFS, Rubo JH. The combined effects of binder addition and different sintering methods on the mechanical properties of bovine hydroxyapatite. J Mech Behav Biomed Mater 2023; 144:105993. [PMID: 37385128 DOI: 10.1016/j.jmbbm.2023.105993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
Hydroxyapatite (HA) from bovine bones has been used as a biomaterial in dentistry due to its biocompatibility and bioactivity. However, dense HA bioceramics still present inadequate properties for applications that require high mechanical performance, such as infrastructure. Microstructural reinforcements and control of ceramic processing steps are methods to improve these shortcomings. The present study assessed the effects of polyvinyl butyral (PVB) addition in combination with two sintering methodologies (2-step and conventional), on the mechanical properties of polycrystalline bovine HA bioceramics. The samples were divided into four groups (with 15 samples per group): conventional sintering with binder (HBC) and without binder (HWC) and 2-step sintering with (HB2) and without binder (HW2). HA was extracted from bovine bones, turned into nanoparticles in a ball mill, and subjected to uniaxial and isostatic pressing into discs, according to ISO 6872 standards. All groups were characterized by x-ray diffractometry (XRD), differential thermal analysis (DTA) and Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and relative density. Besides, mechanical analyses (biaxial flexural strength (BFS) and modulus of elasticity) were also performed. The characterization results demonstrated that adding agglutinants or the sintering method did not affect HA's chemical and structural characteristics. Even so, the HWC group showed the highest mechanical values for BFS and modulus of elasticity being 109.0 (98.0; 117.0) MPa and 105.17 ± 14.65 GPa, respectively. The HA ceramics submitted to conventional sintering and without the addition of binders achieved better mechanical properties than the other groups. The impacts of each variable were discussed and correlated to the final microstructures and mechanical properties.
Collapse
Affiliation(s)
- P R Minim
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - L J de Azevedo-Silva
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - B M Ferrairo
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - L F Pereira
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - C A Goulart
- Department of Physics, School of Sciences, São Paulo State University, Bauru, Brazil
| | - R S Monteiro-Sousa
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - P N Lisboa Filho
- Department of Physics, School of Sciences, São Paulo State University, Bauru, Brazil
| | - C A Fortulan
- Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - R Salomão
- Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - A F S Borges
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | - J H Rubo
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| |
Collapse
|
49
|
Li X, Xiao J, Gai X, Du Z, Salam MMA, Chen G. Facilitated remediation of heavy metals contaminated land using Quercus spp. with different strategies: Variations in amendments and experiment periods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:163245. [PMID: 37004777 DOI: 10.1016/j.scitotenv.2023.163245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Phytoremediation using trees combined with soil amendments has gained much attention for its highly cost-effective trait. In natural field conditions, however, the results may not reflect the true performance of amendments based on short-term laboratory studies. In this three-year field trial, various soil amendments such as rice straw biochar, palygorskite, a combined biochar of rice straw biochar and palygorskite, and hydroxyapatite were used to systematically study the potential of the low-accumulator (Quercus fabri Hance) and high-accumulator (Quercus texana Buckley) for cadmium (Cd) and zinc (Zn) to remediate severely contaminated soils. Soil amendments enhanced the dendroremediation capacity of Quercus as the growth period prolonged. In 2021, the rice straw biochar treatment increased Cd and Zn accumulation by 1.76 and 2.09 times in Q. fabri, respectively, compared to the control. Cd and Zn accumulation increased to 1.78 and 2.10 times, respectively, under combined biochar treatment for Q. texana compared to the control. Metals accumulation was mainly enhanced by soil amendments through increasing the growth biomass of Q. fabri and improving the biomass and bioconcentration ability of Q. texana. Overall, soil amendments effectively improved the phytoremediation efficiency of Quercus in the long term, and selecting suitable amendments should be fully considered in phytoremediation.
Collapse
Affiliation(s)
- Xiaogang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Jiang Xiao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Xu Gai
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Zhongyu Du
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Mir Md Abdus Salam
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, 111, 80100 Joensuu, Finland
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China.
| |
Collapse
|
50
|
Li O, Liang J, Chen Y, Tang S, Li Z. Exploration of Converting Food Waste into Value-Added Products via Insect Pretreatment-Assisted Hydrothermal Catalysis. ACS OMEGA 2023; 8:18760-18772. [PMID: 37273594 PMCID: PMC10233670 DOI: 10.1021/acsomega.3c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
The environmental burden of food waste (FW) disposal coupled with natural resource scarcity has aroused interest in FW valorization; however, transforming FW into valuable products remains a challenge because of its heterogeneous nature. In this study, a two-stage method involving black soldier fly (BSF)-based insect pretreatment and subsequent hydrothermal catalysis over a single-atom cerium-incorporated hydroxyapatite (Ce-HAP) was explored to convert FW into high added-value furfurals (furfural and 5-hydroxymethylfurfural). FW consisting of cereal, vegetables, meat, eggs, oil, and salt was initially degraded by BSF larvae to generate homogeneous BSF biomass, and then, crucial parameters impacting the conversion of BSF biomass into furfurals were investigated. Under the optimized conditions, 9.3 wt % yield of furfurals was attained, and repeated trials confirmed the recyclability of Ce-HAP. It was proved that the revenue of furfural production from FW by this two-stage method ranged from 3.14 to 584.4 USD/tonne. This study provides a potential technical orientation for FW resource utilization.
Collapse
|