1
|
Zhang D, Chen Q, Xu T, Yin D. Current research status on the distribution and transport of micro(nano)plastics in hyporheic zones and groundwater. J Environ Sci (China) 2025; 151:387-409. [PMID: 39481947 DOI: 10.1016/j.jes.2024.03.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 11/03/2024]
Abstract
Micro(nano)plastics, as an emerging environmental pollutant, are gradually discovered in hyporheic zones and groundwater worldwide. Recent studies have focused on the origin and spatial/temporal distribution of micro(nano)plastics in regional groundwater, together with the influence of their properties and effects of environmental factors on their transport. However, the transport of micro(nano)plastics in the whole hyporheic zone-groundwater system and the behavior of co-existing substances still lack a complete theoretical interpretation. To provide systematic theoretical support for that, this review summarizes the current pollution status of micro(nano)plastics in the hyporheic zone-groundwater system, provides a comprehensive introduction of their sources and fate, and classifies the transport mechanisms into mechanical transport, physicochemical transport and biological processes assisted transport from the perspectives of mechanical stress, physicochemical reactions, and bioturbation, respectively. Ultimately, this review proposes to advance the understanding of the multi-dimensional hydrosphere transport of micro(nano)plastics centered on groundwater, the microorganisms-mediated synergistic transformation and co-transport involving the intertidal circulation. Overall, this review systematically dissects the presence and transport cycles of micro(nano)plastics within the hyporheic zone-groundwater system and proposes prospects for future studies based on the limitations of current studies.
Collapse
Affiliation(s)
- Dongming Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Thanigaivel S, Kamalesh R, Ragini YP, Saravanan A, Vickram AS, Abirami M, Thiruvengadam S. Microplastic pollution in marine environments: An in-depth analysis of advanced monitoring techniques, removal technologies, and future challenges. MARINE ENVIRONMENTAL RESEARCH 2025; 205:106993. [PMID: 39914291 DOI: 10.1016/j.marenvres.2025.106993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 03/08/2025]
Abstract
Microplastics, recognized as toxic contaminants, have pervaded terrestrial, atmospheric, and marine environments, transitioning from emerging pollutants to pervasive threats. About 10 % of the plastic produced worldwide enters into the ocean which constitutes 85 % of marine litter. Microplastic distribution holds the highest concentration in the Atlantic Ocean whereas the Southern Ocean holds the lowest. Concerning microplastics, reports state that each year about 1.3 million metric tons of microplastics enter the ocean. The microparticles account for about 90 % of the floating ocean debris and over 75 % of these particles originate from land-based sources which include urban runoff, and mismanaged wastes. This review offers a thorough examination of the sources of microplastics and their environmental consequences and ecological impacts. The ubiquity of microplastics necessitates robust control measures, starting with their monitoring and detection in aquatic ecosystems to assess the effectiveness of mitigation strategies. Current removal methods, including physical, chemical, and bio-based techniques, are detailed, alongside advances in filtration, separation, and integrated hybrid approaches for microplastic control. The review concludes with perspectives on the limitations of existing methods and directions for future research in microplastic monitoring, detection, and removal.
Collapse
Affiliation(s)
- S Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Chengalpattu district, Kattankulathur, Tamil Nadu, 603203, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India
| | - Y P Ragini
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India
| | - M Abirami
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Thiruvengadam
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
3
|
Zheng B, Wu H, Zhang M, Lin S. Removal of polystyrene microplastics from wastewater by Ti-Al electrode electrocoagulation under pulse current: Efficiency and mechanism. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70057. [PMID: 40098310 DOI: 10.1002/wer.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/10/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
As microplastic pollution in aquatic ecosystems continues to rise, research on wastewater treatment methods designed to address microplastics has gained significant attention. To reduce the power consumption of electrocoagulation, this study presents an approach using Ti-Al electrode under pulsed current conditions to address polystyrene (PS) microplastic contamination in wastewater. After selecting the appropriate electrode materials and shapes, we conducted a comprehensive investigation into the effects of various operational parameters-such as initial solution pH, electrolyte concentration, current density, pulse frequency, and pulse duty cycle-on PS removal efficiency. Under optimal conditions (electrode spacing of 1 cm, current density of 4 A·m-2, pulse duty cycle of 40%, pulse frequency of 500 Hz, initial solution pH of 7, and electrolyte concentration of 0.05 mol·L-1), the removal efficiency of PS reached 93.24%, with a power consumption of 0.00977 kWh·mg-1. Analysis of the resulting flocs revealed that free radicals generated during the electrocoagulation process disrupted the microplastic surfaces and facilitated the formation of Ti and Al flocs, which ultimately removed the microplastics through a combination of adsorption, electro-neutralization, and capture mechanisms. This study demonstrates the effectiveness of Ti electrode electrocoagulation for treating microplastic-laden wastewater and provides valuable insights for advancing microplastic treatment technologies. PRACTITIONER POINTS: Using pulse current electrocoagulation to remove polystyrene microplastics from wastewater. Titanium electrodes outperforms traditional electrodes ()in terms of efficiency and energy consumption. The mechanism for removing polystyrene microplastics using titanium electrodes in pulse current electrocoagulation was proposed. Titanium electrode electrocoagulation is effective in removing microplastics from wastewater and provides a reference for actual wastewater treatment.
Collapse
Affiliation(s)
- Bin Zheng
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Haixia Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Min Zhang
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Shaohua Lin
- School of Civil Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Xie L, Zhu K, Chen N, Deng Y, Jiang W, Jia H. A Critical Review of an Environmental Risk Substance Induced by Aging Microplastics: Insights into Environmentally Persistent Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22502-22518. [PMID: 39661042 DOI: 10.1021/acs.est.4c09107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Microplastics (MPs), as an emerging contaminants category, can undergo complex aging in a variety of environmental matrices in which the chemical bonds of polymer molecules can be broken to form free radicals. While the existence of free radicals in aged plastics has been known for over half a century, only recently has significant research on a new type of environmentally risky substance, namely environmentally persistent free radicals (EPFRs), present in aged MPs and their environmental effects, been started, but it is still in its infancy. To address these issues, this work examines EPFR generation on MPs and their environmental effect by reviewing publications from 2012 to 2023. The aging processes and mechanisms of MPs in the environment are first summarized. Then, the occurrence and formation mechanisms of EPFRs on aged MPs are specifically discussed. Additionally, the reactivity of EPFRs on aging MPs and their influencing factors are comprehensively considered, such as their physicochemical properties, oxygen content, and coexisting substances. Due to their reactivity, EPFRs can interact directly with some substances (e.g., p-nitrophenol and proteins, etc.) or induce the generation of reactive oxygen species, leading to diverse environmental effects, including pollutant transformation, biotoxicity, and health risks. Finally, research challenges and perspectives for EPFRs formation on aging MPs and related environmental implications are presented. Given the environmental fate and risk of MPs-EPFRs, our urgent call for a better understanding of the potential hazards of aged MPs is to help develop a sustainable path for plastics management.
Collapse
Affiliation(s)
- Linyang Xie
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Na Chen
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yongxi Deng
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Wenjun Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| |
Collapse
|
5
|
Li K, Chen Z, Hao W, Ye Z. Differential inhibition of tire wear particles on sludge dewatering by aging modes. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136214. [PMID: 39432931 DOI: 10.1016/j.jhazmat.2024.136214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
The study assessed the acute toxicities of tire wear particles (TWPs) on activated sludge, comparing cryogenically ground TWPs (C-TWPs) with photo-aged (PA-TWPs), ozone-aged (OA-TWPs), and Fenton-aged (FA-TWPs) variants over 96 h. At 0.1 mg/L, TWPs showed no significant effects on sludge respiration or purification. However, at 50 mg/L, significant impacts on respiration, decontamination capacity, and microbial community structure were observed, particularly in aged TWPs. Specifically, aged TWPs, especially FA-TWPs, are prone to inducing necrosis by generating non-cellular reactive oxygen species (ROS) catalyzed by persistent free radicals, leading to an increase in lactate dehydrogenase release ranging from 215 % to 284 %. Conversely, C-TWPs tend to trigger apoptosis via intracellular ROS accumulation, leading to a 358 % increase in intracellular ROS. Aged TWPs exhibited higher affinities for proteins and polysaccharides, while C-TWPs preferred phospholipids. All TWPs adversely affected sludge dewatering, with strong correlations found between specific resistance to filtration (SRF) and total protein (r = 0.981, p < 0.001) and between bound water and early cell apoptosis (r = 0.961, p < 0.01). Additionally, a correlation between SRF and cellular necrosis (r = 0.956, p < 0.01) was noted, linked to increased protein and extracellular polymeric substance levels. These results emphasize substantial influence of aged TWPs on sludge dewatering efficiency via diverse bacterial cell death mechanisms.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China.
| | - Zhangle Chen
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China
| | - Wanqi Hao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China
| | - Zidong Ye
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China
| |
Collapse
|
6
|
Li E, Huang J, Yu H, Liu S, He W, Zhang W, Pang H, Zhang C. Photoaged tire wear particles hinder the transport of Pb(II) in urban soils under acid rain: Experimental and numerical investigations. WATER RESEARCH 2024; 266:122410. [PMID: 39260196 DOI: 10.1016/j.watres.2024.122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Rapid urbanization brought lots of serious environmental contamination, including the accumulation of heavy metals, acid rain, and the emission of tire wear particles (TWPs), with detrimental effects for terrestrial ecosystems. Nevertheless, how naturally aged TWPs affect the mobilization of heavy metals in soils under acid rain is still unclear. Here, we investigate the adsorption and transport mechanisms of Pb(II) co-existing with acid rainwater in soil-TWP mixtures via batch experiments, column experiments and modeling. Results showed that photoaged TWP significantly prolonged the Pb(II) adsorption equilibrium time (1 to 16 h) and enhanced the Pb(II) adsorption capacity of soils. Soil column profiles confirmed that TWP effectively boosted the initial accumulation of lead in the topsoil and thus impeded the downward transport of lead. The retardation factor (R) estimated by the linear two-site sorption model (TSM) fitting the Pb(II) breakthrough curves gradually increased from 1.098 to 16.38 in soils with TWP (0-10 %). Comparative results of linear or nonlinear TSM suggested nonlinear sorption replacing linear sorption as the main Pb(II) sorption mechanism under 1 % and 10 % TWP. This research provides significant insights into the implications of TWP on the Pb(II) retention behaviors and highlights the severer potential remobilization risks of Pb(II) in urban soils under different acid rain environments.
Collapse
Affiliation(s)
- Enjie Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Hanbo Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenjuan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
7
|
Wisitthammasri W, Promduang P, Chotpantarat S. Characterization of microplastics in soil, leachate and groundwater at a municipal landfill in Rayong Province, Thailand. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104455. [PMID: 39514993 DOI: 10.1016/j.jconhyd.2024.104455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Recent years have witnessed a dramatic increase in global plastic production, leading to heightened concerns over microplastics (MPs) contamination as a significant environmental challenge. MP particles are ubiquitously distributed across both continental and marine ecosystems. Given the paucity of research on MPs in Thailand, particularly regarding MPs contamination in terrestrial environments, this study focused on investigating the distribution and characteristics of MPs in a landfill area. We collected 15 soil samples, 2 leachate samples, and 7 groundwater samples from both inside and outside a municipal landfill situated in the urbanized coastal region of Rayong Province. Our findings revealed variability in MPs concentration across different sample types. In soil, the MP count ranged from 240 to 26,100 pieces per kg of dry soil, 58.71 % of all sample sizes are lower than 0.5 mm. Similarly, the size found in the leachate sample, and the average MP in the leachate samples was 139 pieces per liter of MPs. The groundwater samples showed a fluctuation in MPs count from 18 to 94 pieces per liter, and the size of MPs ranged mostly from 0.5 to 1 mm. The predominant forms of MPs identified were sheets, followed by fragments, fibers, and granules. According to μ-FTIR analysis, the majority of the MPs were composed of polyethylene and polypropylene, commonly used in plastic packaging and ropes. The observed high concentrations and extensive distribution of MP contamination underscore the urgency for further studies and effective management strategies to mitigate the adverse impacts of this pollution on various organisms and ecosystems.
Collapse
Affiliation(s)
- Wanlapa Wisitthammasri
- International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University, Thailand
| | | | - Srilert Chotpantarat
- Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Environmental Innovation and Management of Metals (EnvIMM), Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
8
|
Zeng Y, He D, Sun J, Zhang A, Luo H, Pan X. Non-radical oxidation driven by iron-based materials without energy assistance in wastewater treatment. WATER RESEARCH 2024; 264:122255. [PMID: 39153313 DOI: 10.1016/j.watres.2024.122255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Chemical oxidation is extensively utilized to mitigate the impact of organic pollutants in wastewater. The non-radical oxidation driven by iron-based materials is noted for its environmental friendliness and resistance to wastewater matrix, and it is a promising approach for practical wastewater treatment. However, the complexity of heterogeneous systems and the diversity of evolutionary pathways make the mechanisms of non-radical oxidation driven by iron-based materials elusive. This work provides a systematic review of various non-radical oxidation systems driven by iron-based materials, including singlet oxygen (1O2), reactive iron species (RFeS), and interfacial electron transfer. The unique mechanisms by which iron-based materials activate different oxidants (ozone, hydrogen peroxide, persulfate, periodate, and peracetic acid) to produce non-radical oxidation are described. The roles of active sites and the unique structures of iron-based materials in facilitating non-radical oxidation are discussed. Commonly employed identification methods in wastewater treatment are compared, such as quenching, chemical probes, spectroscopy, mass spectrometry, and electrochemical testing. According to the process of iron-based materials driving non-radical oxidation to remove organic pollutants, the driving factors at different stages are summarized. Finally, challenges and countermeasures are proposed in terms of mechanism exploration, detection methods and practical applications of non-radical oxidation driven by iron-based materials. This work provides valuable insights for understanding and developing non-radical oxidation systems.
Collapse
Affiliation(s)
- Yifeng Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China.
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
9
|
Cheng X, Wang S, Zhang X, Iqbal MS, Yang Z, Xi Y, Xiang X. Accelerated aging behavior of degradable and non-degradable microplastics via advanced oxidation and their adsorption characteristics towards tetracycline. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116864. [PMID: 39137460 DOI: 10.1016/j.ecoenv.2024.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The increasing global utilization of biodegradable plastics due to stringent regulations on traditional plastics has caused a significant rise in microplastic (MPs) pollution in aquatic ecosystems from biodegradable products. However, the environmental behavior of biodegradable MPs remains inadequately elucidated. This study explored the aging processes of polylactic acid (PLA) and polystyrene (PS) under a heat-activated potassium persulfate (K2S2O8) system, as well as their adsorption characteristics towards tetracycline (TCs). In comparison to PS, the surface structure of PLA experienced more pronounced changes over aging, exhibiting evident pits, cracks, and fragmentation. The carbonyl index (CI) and oxygen/carbon ratio (O/C) of PS displayed exponential growth over time, whereas the values for PLA showed linear and exponential increases, respectively. The adsorption capacity of TCs by PS and PLA aged for 6 days increased from 0.312 mg‧g-1 and 0.457 mg‧g-1for original PS and PLA, respectively, to 0.372 mg‧g-1 and 0.649 mg‧g-1. Meanwhile, the adsorption rate (k2 values) for TCs decreased by 42.03 % for PS and 79.64 % for PLA compared to their initial values. The findings indicated that biodegradable PLA-MPs may exhibit higher tetracycline carrying capacities than PS, potentially increasing environmental and organismal risks, particularly in view of aging effects.
Collapse
Affiliation(s)
- Xinfeng Cheng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, China; School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| | - Shihao Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Xin Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | | | - Zhifu Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yilong Xi
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, China; School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - XianLing Xiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, China; School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
10
|
Lisiecka N, Parus A, Simpson M, Kloziński A, Zembrzuska J, Frankowski R, Zgoła-Grześkowiak A, Woźniak-Karczewska M, Siwińska-Ciesielczyk K, Niemczak M, Sandomierski M, Eberlein C, Heipieper HJ, Chrzanowski Ł. Unraveling the effects of acrylonitrile butadiene styrene (ABS) microplastic ageing on the sorption and toxicity of ionic liquids with 2,4-D and glyphosate herbicides. CHEMOSPHERE 2024; 364:143271. [PMID: 39241837 DOI: 10.1016/j.chemosphere.2024.143271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Microplastics represent a novel category of environmental pollutants, and understanding their interactions with typical xenobiotics is crucial. In this study, we investigated the impact of ionic liquids (ILs) containing herbicidal anions, namely glyphosate [Glyph] and 2,4-dichlorophenoxyacetate [2,4-D], and the surfactant cation - dodecyltrimethylammonium [C12TMA] on acrylonitrile butadiene styrene (ABS) microplastics. The aim of the study was to assess the sorption capacity of microplastics that were present in both untreated and aged form using standard and modified Fenton methods. In addition, impact on toxicity and stress adaptation of the model soil bacterium Pseudomonas putida KT2440 was measured. Upon ageing, ABS microplastics underwent a fivefold increase in BET surface area and total pore volume (from 0.001 to 0.004 cm3/g) which lead to a dramatic increase in adsorption of the cations on ABS microplastics from 40 to 45% for virgin ABS to 75-80% for aged ABS. Toxicity was mainly attributed to hydrophobic cations in ILs (EC50 ∼ 60-65 mg/dm3), which was also mitigated by sorption on ABS. Furthermore, both cations and anions behaved similarly across different ILs, corresponding chlorides, and substrates used in the ILs synthesis. These findings highlight microplastics potential as hazardous sorbents, contributing to the accumulation of xenobiotics in the environment.
Collapse
Affiliation(s)
- Natalia Lisiecka
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland; Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Anna Parus
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.
| | - Maria Simpson
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Arkadiusz Kloziński
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Joanna Zembrzuska
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Robert Frankowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Marta Woźniak-Karczewska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | | | - Michał Niemczak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Mariusz Sandomierski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Christian Eberlein
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Hermann J Heipieper
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland; Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
11
|
Wang Q, Ge W, Shi R, He J, Li S, Zhu C, Zhang X, Shi M, Ni N, Wang N. Adsorption behavior and mechanism of different types of (aged) microplastics for napropamide in soils. CHEMOSPHERE 2024; 364:143211. [PMID: 39214413 DOI: 10.1016/j.chemosphere.2024.143211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The role of microplastics (MPs) as pollutant carriers and their influence on the fate of organic pollutants has received considerable attention. However, the impacts of MPs on the adsorption of amide herbicides in soil, have not been investigated. In this study, non-biodegradable (polyethylene, PEM) and biodegradable (polybutylene adipate terephthalate, PBATM) MPs were aged by exposure to one month of ultraviolet irradiation. The impacts of MPs on the adsorption of napropamide (Nap) in two agricultural soils (black soil [BS] and fluvo-aquic soil [CS]) were investigated through batch experiments. The findings suggested that the adsorption of Nap onto PEM was mainly governed by physical processes, while, chemical mechanisms, should not be overlooked on PBATM. With the addition of 0.2% MPs, the maximum adsorption capacity (Qm) and adsorption distribution coefficient (KF) of soil containing PEM (soil-PEM) were higher than that of soil-PBATM, however, the Qm and KF values of soil-PBATM for Nap were higher when the addition of MPs was 2%. After UV aging, the increased specific surface area of MPs led to an increased adhesion of soil particles. These were attributed to the different surface properties and concentrations of different (aged) MPs, resulting in differences in the inhibition effect by soil particles. The adhesion of soil particles was confirmed by X-ray photoelectron spectroscopy. Additionally, regardless of the addition of MPs, the Qm values of BS for Nap were higher than those for CS. In summary, MPs can alter the adsorption of Nap in soil, influencing both its mobility within the soil ecosystem and the environmental risk.
Collapse
Affiliation(s)
- Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China
| | - Wenjie Ge
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China; Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Renyong Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, 210008, China
| | - Jian He
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Shuchang Li
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China; Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Changqing Zhu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xiaohui Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Mali Shi
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ni Ni
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Na Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
12
|
Ziembowicz S, Kida M. The effect of water ozonation in the presence of microplastics on water quality and microplastics degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172595. [PMID: 38642756 DOI: 10.1016/j.scitotenv.2024.172595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
The occurrence of microplastics in water treatment plants poses a concern for the quality of treated water. When microplastics pass through water treatment plants, they can be oxidized, changing their surface characteristics and the quality of the treated water. This work aimed to investigate the impact of ozone and the association of ozone and hydrogen peroxide on five different microplastic particles that are commonly detected in water samples. The changes in the concentration of total organic carbon and the change in the pH of the water, the leaching of phthalic acid esters, as well as the changes in size and chemical changes in the structure of the tested microplastics were evaluated. The influence of ozonation time, water pH, and type of microplastics, as well as the influence of the addition of hydrogen peroxide, was analyzed. The effect of ozonation was an increase in DOC values ranging from 0.8 to 28 mg/L. The eluting substances included phthalic acid esters, plasticizers with a proven negative impact on organisms. The percentage loss of the surface area of the microplastic was in the range of 1.3 to 26.7 %. PE was more susceptible to degradation. LDIR analyzes were carried out to investigate the effect of O3 and O3/H2O2 treatments on the surface of MPs. This study demonstrated that MPs could change their physical and chemical characteristics if they are subjected to oxidation processes used in water treatment plants. The parameters of purified water change to unfavorable ones due to the leaching of additives. Although much research has been conducted on the occurrence of microplastics in treated water, awareness needs to be raised about the interactions between plastic particles and water treatment technology processes.
Collapse
Affiliation(s)
- Sabina Ziembowicz
- Department of Chemistry and Environmental Engineering, Faculty of Civil and Environmental Engineering and Architecture, Rzeszów University of Technology, 35-959 Rzeszów, al. Powstańców Warszawy 6, Poland.
| | - Małgorzata Kida
- Department of Chemistry and Environmental Engineering, Faculty of Civil and Environmental Engineering and Architecture, Rzeszów University of Technology, 35-959 Rzeszów, al. Powstańców Warszawy 6, Poland
| |
Collapse
|
13
|
Zhang Y, Xu X, Xu J, Li Z, Cheng L, Fu J, Sun W, Dang C. When antibiotics encounter microplastics in aquatic environments: Interaction, combined toxicity, and risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172455. [PMID: 38636871 DOI: 10.1016/j.scitotenv.2024.172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Antibiotics and microplastics (MPs), known as emerging pollutants, are bound to coexist in aquatic environments due to their widespread distribution and prolonged persistence. To date, few systematic summaries are available for the interaction between MPs and antibiotics in aquatic ecosystems, and a comprehensive reanalysis of their combined toxicity is also needed. Based on the collected published data, we have analyzed the source and distribution of MPs and antibiotics in global aquatic environments, finding their coexistence occurs in a lot of study sites. Accordingly, the presence of MPs can directly alter the environmental behavior of antibiotics. The main influencing factors of interaction between antibiotics and MPs have been summarized in terms of the characteristics of MPs and antibiotics, as well as the environmental factors. Then, we have conducted a meta-analysis to evaluate the combined toxicity of antibiotics and MPs on aquatic organisms and the related toxicity indicators, suggesting a significant adverse effect on algae, and inapparent on fish and daphnia. Finally, the environmental risk assessments for antibiotics and MPs were discussed, but unfortunately the standardized methodology for the risk assessment of MPs is still challenging, let alone assessment for their combined toxicity. This review provides insights into the interactions and environment risks of antibiotics and MPs in the aquatic environment, and suggests perspectives for future research.
Collapse
Affiliation(s)
- Yibo Zhang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Xin Xu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jing Xu
- Dezhou Eco-environment Monitoring Center of Shandong Province, Dezhou, 253000, China
| | - Zhang Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Long Cheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jie Fu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chenyuan Dang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| |
Collapse
|
14
|
Zeng G, Dai M, Liu P, Chen T, Hu L, Luo H, Zhou Q, Du M, Pan X. Phthalocyanine blue leaching and exposure effects on Microcystis aeruginosa (cyanobacteria) of photoaged microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133984. [PMID: 38460263 DOI: 10.1016/j.jhazmat.2024.133984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Light-stabilizing additives may contribute to the overall pollution load of microplastics (MPs) and potentially enter the food chain, severely threatening aquatic life and human health. This study investigated the variation between polystyrene (PS) MPs and phthalocyanine blue (CuPC)-containing MPs before and after photoaging, as well as their effects on Microcystis aeruginosa. The presence of PS-MPs increased cell mortality, antioxidant enzyme activity, and the variation in extracellular components, while the presence of CuPC exacerbated these variations. CuPC-containing MPs caused different increasing trends in superoxide dismutase and malondialdehyde activities due to electron transfer across the membrane. Transcriptomic analysis revealed that the MPs and CuPC affected various cellular processes, with the greatest impact being on cell membranes. Compared with MPs, CuPC negatively affected ribosome and polysaccharide formation. These findings provide insights into the molecular mechanisms underlying the cellular response to MPs and their associated light-stabilizer pollution and imply the necessity for mitigating the pollution of both MPs and light-stabilizers.
Collapse
Affiliation(s)
- Ganning Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, China
| | - Mengzheng Dai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peirui Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tiansheng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lingling Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qian Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mingming Du
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
15
|
Ma M, An N, Wang Y, Zhao C, Cui Z, Zhou W, Gu M, Li Q. Sulfur-containing iron carbon nanocomposites activate persulfate for combined chemical oxidation and microbial remediation of petroleum-polluted soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133889. [PMID: 38422735 DOI: 10.1016/j.jhazmat.2024.133889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
In this study, sulfur-containing iron carbon nanocomposites (S@Fe-CN) were synthesized by calcining iron-loaded biomass and utilized to activate persulfate (PS) for the combined chemical oxidation and microbial remediation of petroleum-polluted soil. The highest removal efficiency of total petroleum hydrocarbons (TPHs) was achieved at 0.2% of activator, 1% of PS and 1:1 soil-water ratio. The EPR and quenching experiments demonstrated that the degradation of TPHs was caused by the combination of 1O2,·OH, SO4·-, and O2·-. In the S@Fe-CN activated PS (S@Fe-CN/PS) system, the degradation of TPHs underwent two phases: chemical oxidation (days 0 to 3) and microbial degradation (days 3 to 28), with kinetic constants consistent with the pseudo-first-order kinetics of chemical and microbial remediation, respectively. In the S@Fe-CN/PS system, soil enzyme activities decreased and then increased, indicating that microbial activities were restored after chemical oxidation under the protection of the activators. The microbial community analysis showed that the S@Fe-CN/PS group affected the abundance and structure of microorganisms, with the relative abundance of TPH-degrading bacteria increased after 28 days. Moreover, S@Fe-CN/PS enhanced the microbial interactions and mitigated microbial competition, thereby improving the ability of indigenous microorganisms to degrade TPHs.
Collapse
Affiliation(s)
- Mengyu Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Ning An
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Yanqin Wang
- Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Chao Zhao
- Shandong Provincial Soil Pollution Prevention and Control Centre, Jinan 250012, PR China
| | - Zhaojie Cui
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan 250100, PR China
| | - Meixia Gu
- Sinopec Petroleum Engineering & Design Co., Ltd., Dongying 257100, PR China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China.
| |
Collapse
|
16
|
Li Y, Zhang S, Liu S, Chen Y, Luo M, Li J, Xu S, Hou X. Eco-friendly hydrophobic ZIF-8/sodium alginate monolithic adsorbent: An efficient trap for microplastics in the aqueous environment. J Colloid Interface Sci 2024; 661:259-270. [PMID: 38301464 DOI: 10.1016/j.jcis.2024.01.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Microplastics (MPs), a newly emerging class of environmental contaminants, pose a severe threat to the entire ecosystem. The development of efficient and environmentally responsible adsorbents for removing the MPs is a particularly urgent research. Herein, a kind of monolithic ZIF-8 based adsorbents featuring stable hydrophobicity and micropore-mesopore-macropore hierarchical porous structure were fabricated by in situ growth of ZIF-8 nanoparticles on sodium alginate (SA) framework, and using polydimethylsiloxane (PDMS) as a hydrophobic agent. The monolithic nature of ZIF-8/SA allowed an easy solid-liquid separation process for adsorbents from water environment compared to powdered materials. The hierarchical porous structure ensures a remarkable MPs removal performance. The ZIF-8/SA showed high adsorption capacities of 594, 585, and 282 mg/g for polymethyl methacrylate (PMMA), poly (vinylidene difluoride) (PVDF), and polyvinyl chloride (PVC) respectively, and rapid adsorption kinetic progress within 120 min. The ZIF-8/SA adsorbents also exhibited excellent stability in the presence of interfering ions, acid/alkali, and humic acid, and displayed adsorption performance of > 70 % even in actual aquatic environment such as tap water, river water, and seawater. The results of characterizations showed that the synergistic effect of electrostatic interaction, hydrogen bonding, hydrophobic force, and van der Waals force was the main adsorption mechanism. The well-designed hydrophobic ZIF-8/SA monolithic materials would be promising to rapidly remove the MPs from the water environment.
Collapse
Affiliation(s)
- Yingying Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, People's Republic of China
| | - Sijia Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, People's Republic of China
| | - Shuanghe Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, People's Republic of China
| | - Yuhan Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, People's Republic of China
| | - Minqi Luo
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, People's Republic of China
| | - Jiahui Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, People's Republic of China
| | - Shuang Xu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, People's Republic of China.
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, People's Republic of China.
| |
Collapse
|
17
|
Saygin H, Tilkili B, Kayisoglu P, Baysal A. Oxidative stress, biofilm-formation and activity responses of P. aeruginosa to microplastic-treated sediments: Effect of temperature and sediment type. ENVIRONMENTAL RESEARCH 2024; 248:118349. [PMID: 38309565 DOI: 10.1016/j.envres.2024.118349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Climate change and plastic pollution are the big environmental problems that the environment and humanity have faced in the past and will face in many decades to come. Sediments are affected by many pollutants and conditions, and the behaviors of microorganisms in environment may be influenced due to changes in sediments. Therefore, the current study aimed to explore the differential effects of various microplastics and temperature on different sediments through the metabolic and oxidative responses of gram-negative Pseudomonas aeruginosa. The sediments collected from various fields including beaches, deep-sea discharge, and marine industrial areas. Each sediment was extracted and then treated with various microplastics under different temperature (-18, +4, +20 and 35 °C) for seven days. Then microplastics were removed from the suspension and microplastic-exposed sediment samples were incubated with Pseudomonas aeruginosa to test bacterial activity, biofilm, and oxidative characteristics. The results showed that both the activity and the biofilm formation of Pseudomonas aeruginosa increased with the temperature of microplastic treatment in the experimental setups at the rates between an average of 2-39 % and 5-27 %, respectively. The highest levels of bacterial activity and biofilm formation were mainly observed in the beach area (average rate +25 %) and marine industrial (average rate +19 %) sediments with microplastic contamination, respectively. Moreover, oxidative characteristics significantly linked the bacterial activities and biofilm formation. The oxidative indicators of Pseudomonas aeruginosa showed that catalase and glutathione reductase were more influenced by microplastic contamination of various sediments than superoxide dismutase activities. For instance, catalase and glutathione reductase activities were changed between -37 and +169 % and +137 to +144 %, respectively; however, the superoxide dismutase increased at a rate between +1 and + 21 %. This study confirmed that global warming as a consequence of climate change might influence the effect of microplastic on sediments regarding bacterial biochemical responses and oxidation characteristics.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Batuhan Tilkili
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Pinar Kayisoglu
- Deptment of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey
| | - Asli Baysal
- Deptment of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey.
| |
Collapse
|
18
|
Xie J, Gowen A, Xu W, Xu J. Analysing micro- and nanoplastics with cutting-edge infrared spectroscopy techniques: a critical review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2177-2197. [PMID: 38533677 DOI: 10.1039/d3ay01808c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The escalating prominence of micro- and nanoplastics (MNPs) as emerging anthropogenic pollutants has sparked widespread scientific and public interest. These minuscule particles pervade the global environment, permeating drinking water and food sources, prompting concerns regarding their environmental impacts and potential risks to human health. In recent years, the field of MNP research has witnessed the development and application of cutting-edge infrared (IR) spectroscopic instruments. This review focuses on the recent application of advanced IR spectroscopic techniques and relevant instrumentation to analyse MNPs. A comprehensive literature search was conducted, encompassing articles published within the past three years. The findings revealed that Fourier transform infrared (FTIR) spectroscopy stands as the most used technique, with focal plane array FTIR (FPA-FTIR) representing the cutting edge in FTIR spectroscopy. The second most popular technique is quantum cascade laser infrared (QCL-IR) spectroscopy, which has facilitated rapid analysis of plastic particles. Following closely is optical photothermal infrared (O-PTIR) spectroscopy, which can furnish submicron spatial resolution. Subsequently, there is atomic force microscopy-based infrared (AFM-IR) spectroscopy, which has made it feasible to analyse MNPs at the nanoscale level. The most advanced IR instruments identified in articles covered in this review were compared. Comparison metrics encompass substrates/filters, data quality, spatial resolution, data acquisition speed, data processing and cost. The limitations of these IR instruments were identified, and recommendations to address these limitations were proposed. The findings of this review offer valuable guidance to MNP researchers in selecting suitable instrumentation for their research experiments, thereby facilitating advancements in research aimed at enhancing our understanding of the environmental and human health risks associated with MNPs.
Collapse
Affiliation(s)
- Junhao Xie
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Aoife Gowen
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Wei Xu
- Department of Life Sciences, Center for Coastal Studies, College of Sciences, Texas A&M University-Corpus Christi, USA
| | - Junli Xu
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
19
|
Zeng Y, Luo H, He D, Li J, Zhang A, Sun J, Xu J, Pan X. Influence mechanism of anions on iron doping into swine bone char: Promoting non-radical oxidation of acetaminophen in a Fenton-like system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170982. [PMID: 38367723 DOI: 10.1016/j.scitotenv.2024.170982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
The application of iron-doped biochar in peroxymonosulfate (PMS) activation systems has gained increasing attention due to their effectiveness and environmental friendliness in addressing environmental issues. However, the behavioral mechanism of iron doping and the detailed 1O2 generation mechanism in PMS activation systems remain ambiguous. Here, we investigated the effects of three anions (Cl-, NO3-and SO42-) on the process of iron doping into bone char, leading to the synthesis of three iron-doped bone char (Fe-ClBC, Fe-NBC and Fe -SBC). These iron-doped bone char were used to catalyze PMS to degrade acetaminophen (APAP) and exhibited the following activity order: Fe-ClBC > Fe-NBC > Fe-SBC. Characterization results indicated that iron doping primarily occurred through the substitution of calcium in hydroxyapatite within BC. In the course of the impregnation, the binding of SO42- and Ca2+ hindered the exchange of iron ions, resulting in lower catalytic activity of Fe-SBC. The primary reactive oxygen species in the Fe-ClBC/PMS and Fe-NBC/PMS systems were both 1O2. 1O2 is produced through O2•- conversion and PMS self-dissociation, which involves the generation of metastable iron intermediates and electron transfer within iron species. The presence of oxygen vacancies and more carbon defects in the Fe-ClBC catalyst facilitates 1O2 generation, thereby enhancing APAP degradation within the Fe-ClBC/PMS system. This study is dedicated to in-depth exploration of the mechanisms underlying iron doping and defect materials in promoting 1O2 generation.
Collapse
Affiliation(s)
- Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China.
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Xu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
20
|
Zhou T, Song S, Min R, Liu X, Zhang G. Advances in chemical removal and degradation technologies for microplastics in the aquatic environment: A review. MARINE POLLUTION BULLETIN 2024; 201:116202. [PMID: 38484537 DOI: 10.1016/j.marpolbul.2024.116202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 04/07/2024]
Abstract
In recent years, global attention has been extensively focused on the water pollution and health risks caused by microplastics(MPs), thereby making the treatment of microplastics a key area of research. Chemical removal and degradation present effective approaches to addressing this issue. Consequently, this review summarizes the latest research advancements in the chemical removal and degradation of microplastics in water, comparing the treatment efficacy and advantages and disadvantages of various removal/degradation techniques. It elucidates the chemical mechanisms underlying the removal/degradation of microplastics and identifies the primary influencing factors during the treatment process. A systematic analysis of the performance of microplastic treatment technologies is conducted, examining the impact of microplastic characteristics, operational conditions, and other parameters on the effectiveness of microplastic treatment.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shangjian Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Rui Min
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xin Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
21
|
Verma A, Sharma G, Kumar A, Dhiman P, Mola GT, Shan A, Si C. Microplastic pollutants in water: A comprehensive review on their remediation by adsorption using various adsorbents. CHEMOSPHERE 2024; 352:141365. [PMID: 38331267 DOI: 10.1016/j.chemosphere.2024.141365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Microplastics (MPs), as emerging pollutants, have attracted the attention of environmentalists, statespersons, and the scientific community over the last few decades. To address the spread of MPs in the environment, it is imperative to develop various removal techniques and materials that are effective, scalable, and ecologically benign. However, to the best of our knowledge, no review has systematically examined the removal of MPs using adsorption or provided an in-depth discussion on various adsorbents. Adsorption is an inexpensive and effective technology for wastewater treatment. Recently, many researchers have conducted studies on MP remediation using diverse adsorbent materials, such as biochar, activated carbon, sponges, carbon nanotubes, metal-layered oxides, metal-organic frameworks (MOFs), and zeolites. Each adsorbent has advantages and disadvantages. To overcome their disadvantages, researchers have been designing and developing hybrid adsorbents for MP remediation. This review provides insights into these individual adsorbents and also discusses hybrid adsorbents for MP removal. Finally, the review elaborates on future possibilities and ways to enable more efficient, scalable, and environmentally friendly MP cleanup. Overall, this review bridges the gap between contemporary MP remediation using adsorption techniques and adsorbent development.
Collapse
Affiliation(s)
- Akshay Verma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, India
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, India.
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, India
| | - Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, India
| | - Genene Tessema Mola
- School of Chemistry & Physics, University of KwaZulu-Natal, Pietermaritzburg, Scottsville, 3209, South Africa
| | - Ali Shan
- College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology, Tianjin, 300457, China
| |
Collapse
|
22
|
Mao S, He C, Niu G, Ma Y. Effect of aging on the release of di-(2-ethylhexyl) phthalate from biodegradable and petroleum-based microplastics into soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116006. [PMID: 38295739 DOI: 10.1016/j.ecoenv.2024.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024]
Abstract
Due to microplastics (MPs) being widely distributed in soil, the use of advanced oxidation to remediate organic-contaminated soils may accelerate the aging of MPs in soil and impact the release of di-(2-ethylhexyl) phthalate (DEHP), a potential carcinogen used as a plasticizer in plastics, from MPs. In this study, persulfate oxidation (PO) and temperature treatment (TT) were used to treat biodegradable and petroleum-based MPs, including polylactic acid (PLA), polyvinyl chloride (PVC), and polystyrene (PS). The methods used for evaluating the characteristics changes of MP were X-ray diffraction (XRD) analysis and water contact angle measurement. The effects of aging on DEHP release from MPs were investigated via soil incubation. The results showed PO and TT led to increased surface roughness, oxygen-containing functional group content, and hydrophilicity of the MPs with prolonged aging, consequently accelerating the release of DEHP from the MPs. Interestingly, PLA aged faster than PVC and PS under similar conditions. After 30 days of PO treatment, DEHP release from PLA into the soil increased 0.789-fold, exceeding the increase from PVC (0.454-fold) and PS (0.287-fold). This suggests that aged PLA poses a higher ecological risk than aged PVC or PS. Furthermore, PO treatment resulted in the oxidation and degradation of DEHP on the MP surface. After 30 days of PO treatment, the DEHP content in PLA, PVC, and PS decreased by 19.1%, 25.8%, and 23.5%, respectively. Specifying the types of MPs studied and the environmental conditions would provide a more precise context for the results. These findings provide novel insights into the fate of biodegradable and petroleum-based MPs and the potential ecotoxicity arising from advanced oxidation remediation in contaminated soils.
Collapse
Affiliation(s)
- Shaohua Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chiquan He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Guoyao Niu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yangyang Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
23
|
Haleem N, Kumar P, Zhang C, Jamal Y, Hua G, Yao B, Yang X. Microplastics and associated chemicals in drinking water: A review of their occurrence and human health implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169594. [PMID: 38154642 DOI: 10.1016/j.scitotenv.2023.169594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Microplastics (MPs) have entered drinking water (DW) via various pathways, raising concerns about their potential health impacts. This study provides a comprehensive review of MP-associated chemicals, such as oligomers, plasticizers, stabilizers, and ultraviolet (UV) filters that can be leached out during DW treatment and distribution. The leaching of these chemicals is influenced by various environmental and operating factors, with three major ones identified: MP concentration and polymer type, pH, and contact time. The leaching process is substantially enhanced during the disinfection step of DW treatment, due to ultraviolet light and/or disinfectant-triggered reactions. The study also reviewed human exposure to MPs and associated chemicals in DW, as well as their health impacts on the human nervous, digestive, reproductive, and hepatic systems, especially the neuroendocrine toxicity of endocrine-disrupting chemicals. An overview of MPs in DW, including tap water and bottled water, was also presented to enable a background understanding of MPs-associated chemicals. In short, certain chemicals leached from MPs in DW can have significant implications for human health and demand further research on their long-term health impacts, mitigation strategies, and interactions with other pollutants such as disinfection byproducts (DBPs) and per- and polyfluoroalkyl substances (PFASs). This study is anticipated to facilitate the research and management of MPs in DW and beverages.
Collapse
Affiliation(s)
- Noor Haleem
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA; Institute of Environmental Sciences and Engineering National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Pradeep Kumar
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Cheng Zhang
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
| | - Yousuf Jamal
- Institute of Chemical Engineering & Technology, University of the Punjab, Lahore 54590, Pakistan
| | - Guanghui Hua
- Department of Civil and Environmental Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Bin Yao
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Xufei Yang
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
24
|
Dai Y, Li L, Guo Z, Yang X, Dong D. Emerging isolation and degradation technology of microplastics and nanoplastics in the environment. ENVIRONMENTAL RESEARCH 2024; 243:117864. [PMID: 38072105 DOI: 10.1016/j.envres.2023.117864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/18/2023] [Accepted: 12/02/2023] [Indexed: 02/06/2024]
Abstract
Microplastics (MPs, less than 5 mm in size) are widely distributed in surroundings in various forms and ways, and threaten ecosystems security and human health. Its environmental behavior as pollutants carrier and the after-effects exposed to MPs has been extensively exploited; whereas, current knowledge on technologies for the separation and degradation of MPs is relatively limited. It is essential to isolate MPs from surroundings and/or degrade to safe levels. This in-depth review details the origin and distribution of MPs. Provides a comprehensive summary of currently available MPs separation and degradation technologies, and discusses the mechanisms, challenges, and application prospects of these technologies. Comparison of the contribution of various separation methods to the separation of NPs and MPs. Furthermore, the latest research trends and direction in bio-degradation technology are outlooked.
Collapse
Affiliation(s)
- Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Lele Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China.
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
25
|
Li L, Xue B, Lin H, Lan W, Wang X, Wei J, Li M, Li M, Duan Y, Lv J, Chen Z. The adsorption and release mechanism of different aged microplastics toward Hg(II) via batch experiment and the deep learning method. CHEMOSPHERE 2024; 350:141067. [PMID: 38163463 DOI: 10.1016/j.chemosphere.2023.141067] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Aged microplastics are ubiquitous in the aquatic environment, which inevitably accumulate metals, and then alter their migration. Whereas, the synergistic behavior and effect of microplastics and Hg(II) were rarely reported. In this context, the adsorptive behavior of Hg(II) by pristine/aged microplastics involving polystyrene, polyethylene, polylactic acid, and tire microplastics were investigated via kinetic (pseudo-first and second-order dynamics, the internal diffusion model), Langmuir, and Freundlich isothermal models; the adsorption and desorption behavior was also explored under different conditions. Microplastics aged by ozone exhibited a rougher surface attached with abundant oxygen-containing groups to enhance hydrophilicity and negative surface charge, those promoted adsorption capacity of 4-20 times increment compared with the pristine microplastics. The process (except for aged tire microplastics) was dominated by a monolayer chemical reaction, which was significantly impacted by pH, salinity, fulvic acid, and co-existing ions. Furthermore, the adsorbed Hg(II) could be effectively eluted in 0.04% HCl, simulated gastric liquids, and seawater with a maximum desorption amount of 23.26 mg/g. An artificial neural network model was used to predict the performance of microplastics in complex media and accurately capture the main influencing factors and their contributions. This finding revealed that aged microplastics had the affinity to trap Hg(II) from freshwater, whereafter it released the Hg(II) once transported into the acidic medium, the organism's gastrointestinal system, or the estuary area. These indicated that aged microplastics could be the sink or the source of Hg(II) depending on the surrounding environment, meaning that aged microplastics could be the vital carrier to Hg(II).
Collapse
Affiliation(s)
- Lianghong Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Bin Xue
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Haiying Lin
- School of Resources, Environment and Materials, Guangxi University, Nanning, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning, China.
| | - Wenlu Lan
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Beihai, Guangxi, China; Marine Environmental Monitoring Centre of Guangxi, Beihai, Guangxi, China.
| | - Xinyi Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Junqi Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Mingen Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Mingzhi Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Yu Duan
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Jiatong Lv
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Zixuan Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| |
Collapse
|
26
|
Wen J, Sun H, Yang B, Song E, Song Y, Jiang G. Environmentally Relevant Concentrations of Microplastic Exposure Cause Cholestasis and Bile Acid Metabolism Dysregulation through a Gut-Liver Loop in Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1832-1841. [PMID: 38230996 DOI: 10.1021/acs.est.3c07108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The massive production of plastics causes the ubiquitous existence of microplastics (MPs) in the biota, therefore, posing exposure risks and potential health concerns to human beings. However, the exact mechanisms of MPs-induced toxicities and abnormalities are largely unknown. In this study, we developed a mouse model of gavage polystyrene microplastics (PS MPs) for 30 days. We found that PS MPs can damage the intestinal barrier, accumulate in the liver tissue, and cause injury. The liver and intestine are both highly associated with bile acid (BA) metabolism. Indeed, we found that PS MPs dysregulate BA synthesis and efflux-related gene expression in the liver, causing cholestasis. Tandemly, PS MPs alter the ratio of primary to secondary BA in the feces by affecting the composition of the intestinal flora. At last, PS MPs alter mice's fecal BA profile, which affects normal BA metabolism. Taken together, the present study provides robust data on the mechanism of toxicity of MPs causing the disturbance of BA metabolism via a 4-step gut-liver loop.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hang Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bingwei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
27
|
Wang X, Dai Y, Li Y, Yin L. Application of advanced oxidation processes for the removal of micro/nanoplastics from water: A review. CHEMOSPHERE 2024; 346:140636. [PMID: 37949189 DOI: 10.1016/j.chemosphere.2023.140636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Micro/nanoplastics (MNPs) have been increasingly found in environments, food, and organisms, arousing wide public concerns. MNPs may enter food chains through water, posing a threat to human health. Therefore, efficient and environmentally friendly technologies are needed to remove MNPs from contaminated aqueous environments. Advanced oxidation processes (AOPs) produce a vast amount of active species, such as hydroxyl radicals (·OH), known for their strong oxidation capacity. As a result, an increasing number of researchers have focused on using AOPs to decompose and remove MNPs from water. This review summarizes the progress in researches on the removal of MNPs from water by AOPs, including ultraviolet photolysis, ozone oxidation, photocatalysis, Fenton oxidation, electrocatalysis, persulfate oxidation, and plasma oxidation, etc. The removal efficiencies of these AOPs for MNPs in water and the influencing factors are comprehensively analyzed, meanwhile, the oxidation mechanisms and reaction pathways are also discussed in detail. Most AOPs can achieve the degradation of MNPs, mainly manifest as the decrease of particle size and the increase of mass loss, but the mineralization rate is low, thus requiring further optimization for improved performance. Investigating various AOPs is crucial for achieving the complete decomposition of MNPs in water. AOPs will undoubtedly play a vital role in the future for the removal of MNPs from water.
Collapse
Affiliation(s)
- Xiaojie Wang
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources & Environmental Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Yunrong Dai
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources & Environmental Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Lifeng Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
28
|
Luo H, Tu C, He D, Zhang A, Sun J, Li J, Xu J, Pan X. Interactions between microplastics and contaminants: A review focusing on the effect of aging process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165615. [PMID: 37481081 DOI: 10.1016/j.scitotenv.2023.165615] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Microplastics (MPs) in the environment are a major global concern due to their persistent nature and wide distribution. The aging of MPs is influenced by several processes including photodegradation, thermal degradation, biodegradation and mechanical fragmentation, which affect their interaction with contaminants. This comprehensive review aims to summarize the aging process of MPs and the factors that impact their aging, and to discuss the effects of aging on the interaction of MPs with contaminants. A range of characterization methods that can effectively elucidate the mechanistic processes of these interactions are outlined. The rate and extent of MPs aging are influenced by their physicochemical properties and other environmental factors, which ultimately affect the adsorption and aggregation of aged MPs with environmental contaminants. Pollutants such as heavy metals, organic matter and microorganisms have a tendency to accumulate on MPs through adsorption and the interactions between them impact their environmental behavior. Aging enhances the specific surface area and oxygen-containing functional groups of MPs, thereby affecting the mechanism of interaction between MPs and contaminants. To obtain a more comprehensive understanding of how aging affects the interactions, this review also provides an overview of the mechanisms by which MPs interact with contaminants. In the future, there should be further in-depth studies of the potential hazards of aged MPs in different environments e.g., soil, sediment, aquatic environment, and effects of their interaction with environmental pollutants on human health and ecology.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Chaolin Tu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Xu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
29
|
He H, Li F, Liu K, Zhan J, Wang X, Lai C, Yang X, Huang B, Pan X. The disinfectant residues promote the leaching of water contaminants from plastic pipe particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121577. [PMID: 37023886 DOI: 10.1016/j.envpol.2023.121577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Disinfection treatment is an indispensable water purification process, but it can leave trace concentrations of disinfectant in the purified water. Disinfectants oxidation can age plastic pipes and release hazardous microplastics and chemicals into drinking water. Lengths of commercially-available unplasticized polyvinyl chloride and polypropylene random copolymer water pipe were ground into particles and exposed to micro-molar concentrations of ClO2, NaClO, trichloroisocyanuric acid, or O3 for up to 75 days. The disinfectants aged the plastic and changed its surface morphology and functional groups. Meanwhile, disinfectants could significantly promote the release of organic matter from plastic pipes into the water. ClO2 generated the highest concentrations of organic matter in the leachates from both plastics. Plasticizers, antioxidants and low molecular weight organic matter were detected in all of the leachates. Leachate samples inhibited the proliferation of CT26 mouse colon cancer and induced oxidative stress in the cells. Even trace concentrations of residual disinfectant can constitute a drinking water risk.
Collapse
Affiliation(s)
- Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Fan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Kunqian Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Juhong Zhan
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China
| | - Xiaoxia Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, China
| |
Collapse
|
30
|
Ma M, Xu F, Liu J, Li B, Liu Z, Gao B, Li Q. Insights into S-doped iron-based carbonaceous nanocomposites with enhanced activation of persulfate for rapid degradation of organic pollutant. CHEMOSPHERE 2023; 335:139006. [PMID: 37257657 DOI: 10.1016/j.chemosphere.2023.139006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
In the work, S-doped iron-based carbon nanocomposites (Fe-S@CN) for activating persulfate (PS) were prepared by calcining iron-loaded sodium lignosulfonate. The characterization revealed that the main substances of Fe-S@CN were FeS and Fe3C, which were distributed on porous carbon nanosheets in rod-like morphology. In the Fe-S@CN/PS system, carbamazepine could be completely removed within 30 min, and the relative contribution of hydroxyl radicals (OH·), sulfate radicals (SO4·-) and total singlet oxygen (1O2) and superoxide radicals (O2·-) for carbamazepine removal were approximated as 8.7%, 19.2% and 72.1%, respectively. Electron paramagnetic resonance spectroscopy demonstrated that S doping promoted the formation of various active species. Compared with the catalyst without S doping, Fe-S@CN exhibited higher activation performance (1.48-fold) for PS due to the enhanced electron transfer rate and facilitated Fe2+/Fe3+ cycle. Density functional theory calculations showed that S doping promoted the binding between the catalyst and PS, and enhanced the overall internal electron density of the catalyst. Fe-S@CN exhibited excellent catalytic performance over a wide pH range (3.0-11.0). The active sites of Fe-S@CN used in the cycling experiments was also largely recovered after thermal regeneration. Overall, this study shows for the first time the impact of SLS as an S dopant on enhanced PS activation.
Collapse
Affiliation(s)
- Mengyu Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, PR China
| | - Fei Xu
- Environment Research Institute, Shandong University, Qingdao, 266200, PR China
| | - Jikai Liu
- Jining Ecological and Environmental Technology Guarantee Center, Jining, 272000, PR China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zhen Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, PR China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, PR China.
| |
Collapse
|
31
|
V G, Shanmugavel SP, Tyagi VK, Rajesh Banu J. Microplastics as emergent contaminants in landfill leachate: Source, potential impact and remediation technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118240. [PMID: 37235990 DOI: 10.1016/j.jenvman.2023.118240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
A significant amount of plastic waste is generated each year on a global scale, in which the maximum quantity of plastic waste is typically dumped in landfills in various parts of the world. Moreover, dumping plastic waste in landfills cannot address the issue of proper disposal; it simply delays the process. Exploiting waste resources entails environmental hazards because plastic wastes buried in landfills gradually break down into Microplastics (MPs) due to physical, chemical, and biological effects. The possibility of landfill leachate as a source of MPs in the environment has not received much attention. Without systematic treatment, MPs in leachate increase the risk to human health and environmental health since they contain dangerous and toxic pollutants and antibiotic resistance genes transmitted by leachate vectors. Due to their severe environmental risks, MPs are now widely recognized as emerging pollutants. Therefore, the composition of MPs in landfill leachate and the interaction of MPs with other hazardous contaminants are summarised in this review. The available potential mitigation or treatment methods of MPs in landfill leachate as of now, along with the drawbacks and challenges of the present leachate treatment for eliminating MPs, are described in this review. Since it is unclear how MPs will be removed from the current leachate facilities, it is crucial to develop innovative treatment facilities as quickly as possible. Finally, the areas that require more research to provide complete solutions to the persistent problem of plastic debris are discussed.
Collapse
Affiliation(s)
- GodvinSharmila V
- Department of Civil Engineering, Mar Ephraem College of Engineering and Technology, Marthandam, 629171, Tamil Nadu, India
| | - Surya Prakash Shanmugavel
- Department of Solid Waste Management and Health, Greater Chennai Corporation, Tamil Nadu, 600 003, India
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, 610005, India.
| |
Collapse
|
32
|
Meegoda JN, Hettiarachchi MC. A Path to a Reduction in Micro and Nanoplastics Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085555. [PMID: 37107837 PMCID: PMC10139116 DOI: 10.3390/ijerph20085555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023]
Abstract
Microplastics (MP) are plastic particles less than 5 mm in size. There are two categories of MP: primary and secondary. Primary or microscopic-sized MP are intentionally produced material. Fragmentation of large plastic debris through physical, chemical, and oxidative processes creates secondary MP, the most abundant type in the environment. Microplastic pollution has become a global environmental problem due to their abundance, poor biodegradability, toxicological properties, and negative impact on aquatic and terrestrial organisms including humans. Plastic debris enters the aquatic environment via direct dumping or uncontrolled land-based sources. While plastic debris slowly degrades into MP, wastewater and stormwater outlets discharge a large amount of MP directly into water bodies. Additionally, stormwater carries MP from sources such as tire wear, artificial turf, fertilizers, and land-applied biosolids. To protect the environment and human health, the entry of MP into the environment must be reduced or eliminated. Source control is one of the best methods available. The existing and growing abundance of MP in the environment requires the use of multiple strategies to combat pollution. These strategies include reducing the usage, public outreach to eliminate littering, reevaluation and use of new wastewater treatment and sludge disposal methods, regulations on macro and MP sources, and a wide implementation of appropriate stormwater management practices such as filtration, bioretention, and wetlands.
Collapse
Affiliation(s)
- Jay N. Meegoda
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Correspondence: ; Tel.: +1-973-596-2464
| | | |
Collapse
|
33
|
Ren X, Han Y, Zhao H, Zhang Z, Tsui TH, Wang Q. Elucidating the characteristic of leachates released from microplastics under different aging conditions: Perspectives of dissolved organic carbon fingerprints and nano-plastics. WATER RESEARCH 2023; 233:119786. [PMID: 36848850 DOI: 10.1016/j.watres.2023.119786] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Despite numerous studies that have been devoted to investigating the aging behaviors of microplastics (MPs), dissolved organic carbon (DOC) and nano-plastics (NPs) released from MPs under different aging conditions were limited. Herein, the characterizations and underlying mechanisms of DOC and NPs leaching from MPs (PVC and PS) in the aquatic environment for 130 days under different aging conditions were investigated. The results showed that aging could reduce the abundance of MPs, and high temperature and UV aging generated small-sized MPs (< 100 μm), especially UV aging. DOC-releasing characteristics were related to MP type and aging condition. Meanwhile, MPs were prone to release protein-like and hydrophilic substances except for 60 °C aging of PS MPs. Additionally, 8.77 × 109-8.87 × 1010 and 4.06 × 109-3.94 × 1010 NPs/L were detected in leachates from PVC and PS MPs-aged treatments, respectively. High temperature and UV promoted the release of NPs, especially UV irradiation. Meanwhile, smaller sizes and rougher NPs were observed in UV-aged treatments, implying higher ecological risks of leachates from MPs under UV aging. This study highlights the leachate released from MPs under different aging conditions comprehensively, which could offset the knowledge gap between the MPs' aging and their potential threats.
Collapse
Affiliation(s)
- Xiuna Ren
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, PR China
| | - Ye Han
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, PR China
| | - Haoran Zhao
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, PR China
| | - To-Hung Tsui
- NUS Environment Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX13PJ, United Kingdom
| | - Quan Wang
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
34
|
Liu C, Zhang X, Liu J, Li Z, Zhang Z, Gong Y, Bai X, Tan C, Li H, Li J, Hu Y. Ageing characteristics and microplastic release behavior from rainwater facilities under ROS oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161397. [PMID: 36608825 DOI: 10.1016/j.scitotenv.2023.161397] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Reactive oxygen species (ROS) are ubiquitous in the natural environment that are generated by chemical or biochemical processes. Plastic rainwater facilities, as an important part of modern rainwater systems, are inevitably deteriorated by ROS. As a consequence, microplastics will be released. However, information on how ROS affect the ageing characteristics of plastic rainwater facilities and the subsequent microplastic release behavior is still insufficient. To address this knowledge gap, Fenton reagents were used to simulate the reactive oxygen species (ROS) induced ageing process of three typical plastic rainwater components (rainwater pipe, made of polyvinyl chloride; modular storage tank, made of polypropylene; inspection well, made of high-density polyethylene) and the subsequent microplastic release behavior. After 6 days of Fenton ageing, an increase in sharpness, holes, and fractures on the rainwater facilities' surface was observed by scanning electron microscope (SEM). The functional group changes on the rainwater facilities' surface were analyzed by Fourier transform infrared spectrometer (FTIR) and two-dimensional correlation spectroscopy (2D-COS) and compared with the results of X-ray photoelectron spectroscopy (XPS). During the ageing process, oxygen-containing functional groups were generated and the carbon chains were broken, which promoted peeling and the release of microplastics. The amount of released microplastics (ranging from 158 to 6617 items/g facility) varied with the type of rainwater facilities, and the order was modular storage tank > inspection well > rainwater pipe. The release amount increased with ageing time, and a significant linear relationship was observed (r2 > 0.91). The particle size of the released microplastics ranged from 2 to 1362 μm, among which 10-30 μm particles accounted for the largest proportion (62.7 %). The release amount increased exponentially with decreasing particle size (r2 > 0.71). This study indicates that large amounts of microplastics could be released from plastic rainwater components during ROS-induced ageing.
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiaoran Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Junfeng Liu
- Department of Water Conservancy and Civil Engineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Zhifei Li
- Beijing General Municipal Engineering Design & Research Institute Co., Ltd, Beijing 100044, China
| | - Ziyang Zhang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yongwei Gong
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Xiaojuan Bai
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chaohong Tan
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Haiyan Li
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Junqi Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Yuansheng Hu
- Department of Civil Engineering and Construction, Faculty of Engineering and Design, Atlantic Technological University Sligo, Ash Lane, Sligo F91YW50, Ireland
| |
Collapse
|
35
|
Lu Q, Zhou Y, Sui Q, Zhou Y. Mechanism and characterization of microplastic aging process: A review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2023; 17:100. [PMID: 36935734 PMCID: PMC10010843 DOI: 10.1007/s11783-023-1700-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
With the increasing production of petroleum-based plastics, the problem of environmental pollution caused by plastics has aroused widespread concern. Microplastics, which are formed by the fragmentation of macro plastics, are bio-accumulate easily due to their small size and slow degradation under natural conditions. The aging of plastics is an inevitable process for their degradation and enhancement of adsorption performance toward pollutants due to a series of changes in their physiochemical properties, which significantly increase the toxicity and harm of plastics. Therefore, studies should focus on the aging process of microplastics through reasonable characterization methods to promote the aging process and prevent white pollution. This review summarizes the latest progress in natural aging process and characterization methods to determine the natural aging mechanism of microplastics. In addition, recent advances in the artificial aging of microplastic pollutants are reviewed. The degradation status and by-products of biodegradable plastics in the natural environment and whether they can truly solve the plastic pollution problem have been discussed. Findings from the literature pointed out that the aging process of microplastics lacks professional and exclusive characterization methods, which include qualitative and quantitative analyses. To lessen the toxicity of microplastics in the environment, future research directions have been suggested based on existing problems in the current research. This review could provide a systematic reference for in-depth exploration of the aging mechanism and behavior of microplastics in natural and artificial systems.
Collapse
Affiliation(s)
- Qinwei Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237 China
| | - Yi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| |
Collapse
|
36
|
Kye H, Kim J, Ju S, Lee J, Lim C, Yoon Y. Microplastics in water systems: A review of their impacts on the environment and their potential hazards. Heliyon 2023; 9:e14359. [PMID: 36950574 PMCID: PMC10025042 DOI: 10.1016/j.heliyon.2023.e14359] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Microplastics, the microscopic plastics, are fragments of any type of plastic that are being produced today as plastic waste originating from anthropogenic activities. Such microplastics are discharged into the environment, and they enter back into the human body through different means. The microplastics spread in the environment due to environmental factors and the inherent properties of microplastics, such as density, hydrophobicity, and recalcitrance, and then eventually enter the water environment. In this study, to better understand the behavior of microplastics in the water environment, an extensive literature review was conducted on the occurrence of microplastics in aquatic environments categorized by seawater, wastewater, and freshwater. We summarized the abundance and distribution of microplastics in the water environment and studied the environmental factors affecting them in detail. In addition, focusing on the sampling and pretreatment processes that can limit the analysis results of microplastics, we discussed in depth the sampling methods, density separation, and organic matter digestion methods for each water environment. Finally, the potential hazards posed by the behavior of aging microplastics, such as adsorption of pollutants or ingestion by aquatic organisms, due to exposure to the environment were also investigated.
Collapse
Affiliation(s)
- Homin Kye
- Department of Environmental and Energy Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Jiyoon Kim
- Department of Environmental and Energy Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Seonghyeon Ju
- Department of Environmental and Energy Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Junho Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Chaehwi Lim
- Department of Environmental and Energy Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| |
Collapse
|
37
|
Dos Santos NDO, Busquets R, Campos LC. Insights into the removal of microplastics and microfibres by Advanced Oxidation Processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160665. [PMID: 36473655 DOI: 10.1016/j.scitotenv.2022.160665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Water treatment plants' effluents are hotspots of microplastics (MPs) and microfibres (MFs) released into the aquatic environment because they were not designed to capture these particles. Special attention should be given to MFs, since they mainly come from laundry and are related to one of the main MP shapes detected in water and wastewater treatment plants. In this sense, Advanced Oxidation Processes (AOPs) could be a feasible solution for tackling MP and MF pollution, however, it is still premature to extract conclusions due to the limited number of studies on the degradation of these particles (specifically MFs) using AOPs. This review addresses the impacts of AOPs on MPs/MFs, focusing on their degradation efficiency, toxicity, and sustainability of the processes, among other aspects. The review points out that polyamide MFs can achieve mass loss >90% by photocatalytic system using TiO2. Also, the low oxidation of MPs (<30 %) by conventional Fenton process affects mainly the surface of the MPs. However, other Fenton-based processes can provide better removal of some types of MPs, mainly using temperatures >100 °C, reaction time ≥ 5 h, and initial pH ≤ 3, achieving MP weight loss up to 96 %. Despite these results, better operating conditions are still required for AOPs since the ones reported so far are not feasible for full-scale application. Additionally, ozonation in treatment plants has increased the fragmentation of MPs (including MFs), leading to a new generation of MPs. More attention is needed on toxicity effects of intermediates and methods of analysis employed for the analysis of MPs/MFs in wastewater effluent should be standardized so that studies can be compared effectively. Future research should focus on the sustainability of the AOP for MP removal in water treatment (power consumption, chemicals consumed and operational costs) for a better understanding of full-scale applicability of AOP adapted to MP treatment.
Collapse
Affiliation(s)
- Naiara de Oliveira Dos Santos
- Department of Civil, Environmental & Geomatic Engineering, Faculty of Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Rosa Busquets
- Department of Civil, Environmental & Geomatic Engineering, Faculty of Engineering, University College London, London WC1E 6BT, United Kingdom; School of Life Sciences, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University, Penrhyn Road, Kingston Upon Thames KT1 2EE, United Kingdom
| | - Luiza C Campos
- Department of Civil, Environmental & Geomatic Engineering, Faculty of Engineering, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
38
|
Jeong Y, Gong G, Lee HJ, Seong J, Hong SW, Lee C. Transformation of microplastics by oxidative water and wastewater treatment processes: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130313. [PMID: 36372022 DOI: 10.1016/j.jhazmat.2022.130313] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are contaminants of emerging concern that accumulate in various environments, where they pose threats to both the ecosystem and public health. Since MPs have been detected in drinking water resources and wastewater effluents, more efficient treatment is needed at wastewater treatment plants (WWTPs) and drinking water treatment plants (DWTPs). This review discusses the potential of biological, photochemical, Fenton (-like) systems, ozonation, and other oxidation processes in the treatment of MPs in terms of their indicators of oxidation such as mass loss and surface oxidation. The oxidation processes were further analyzed in terms of limitations and environmental implications. Most previous studies examining MPs degradation using conventional treatments-such as UV disinfection, ozonation, and chlorination-employed significantly higher doses than the common doses applied in DWTPs and WWTPs. Owing to such dose gaps, the oxidative transformation of MPs observed in many previous studies are not likely to occur under practical conditions. Some novel oxidation processes showed promising MPs treatment efficiencies, while many of them have not yet been applied on a larger scale due to high costs and the lack of extensive basic research. Health and environmental impacts related to the discharge of oxidized MPs in effluents should be considered carefully in different aspects: the role as vectors of external pollutants, release of organic compounds (including organic byproducts from oxidation) and fragmentation into smaller particles as MPs circulate in the ecosystem as well as the possibility of bioaccumulation. Future research should also focus on ways to incorporate developed oxidation processes in DWTPs and WWTPs to mitigate MPs contamination.
Collapse
Affiliation(s)
- Yeonseo Jeong
- Department of Chemical Engineering and Materials Science, University of Minnesota, 21 Washington Ave. SE, Minneapolis, MN 55455-0132, United States
| | - Gyeongtaek Gong
- Clean Energy Research Center, Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hye-Jin Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jihye Seong
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seok Won Hong
- Center for Water Cycle Research, Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
39
|
Zhang J, Li G, Yuan X, Li P, Yu Y, Yang W, Zhao S. Reduction of Ultrafiltration Membrane Fouling by the Pretreatment Removal of Emerging Pollutants: A Review. MEMBRANES 2023; 13:77. [PMID: 36676884 PMCID: PMC9862110 DOI: 10.3390/membranes13010077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 05/28/2023]
Abstract
Ultrafiltration (UF) processes exhibit high removal efficiencies for suspended solids and organic macromolecules, while UF membrane fouling is the biggest obstacle affecting the wide application of UF technology. To solve this problem, various pretreatment measures, including coagulation, adsorption, and advanced oxidation, for application prior to UF processes have been proposed and applied in actual water treatment processes. Previously, researchers mainly focused on the contribution of natural macromolecular pollutants to UF membrane fouling, while the mechanisms of the influence of emerging pollutants (EPs) in UF processes (such as antibiotics, microplastics, antibiotic resistance genes, etc.) on membrane fouling still need to be determined. This review introduces the removal efficiency and separation mechanism for EPs for pretreatments combined with UF membrane separation technology and evaluates the degree of membrane fouling based on the UF membrane's materials/pores and the structural characteristics of the cake layer. This paper shows that the current membrane separation process should be actively developed with the aim of overcoming specific problems in order to meet the technical requirements for the efficient separation of EPs.
Collapse
Affiliation(s)
- Jianguo Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Gaotian Li
- School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xingcheng Yuan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Panpan Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yongfa Yu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Weihua Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shuang Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
40
|
Binda G, Zanetti G, Bellasi A, Spanu D, Boldrocchi G, Bettinetti R, Pozzi A, Nizzetto L. Physicochemical and biological ageing processes of (micro)plastics in the environment: a multi-tiered study on polyethylene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6298-6312. [PMID: 35994148 PMCID: PMC9895034 DOI: 10.1007/s11356-022-22599-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/15/2022] [Indexed: 05/04/2023]
Abstract
Pollution by plastic and microplastic impacts the environment globally. Knowledge on the ageing mechanisms of plastics in natural settings is needed to understand their environmental fate and their reactivity in the ecosystems. Accordingly, the study of ageing processes is gaining focus in the context of the environmental sciences. However, laboratory-based experimental research has typically assessed individual ageing processes, limiting environmental applicability. In this study, we propose a multi-tiered approach to study the environmental ageing of polyethylene plastic fragments focusing on the combined assessment of physical and biological processes in sequence. The ageing protocol included ultraviolet irradiation in air and in a range of water solutions, followed by a biofouling test. Changes in surface characteristics were assessed by Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle. UV radiation both in air and water caused a significant increase in the density of oxidized groups (i.e., hydroxyl and carbonyl) on the plastic surface, whereby water solution chemistry influenced the process both by modulating surface oxidation and morphology. Biofouling, too, was a strong determinant of surface alterations, regardless of the prior irradiation treatments. All biofouled samples present (i) specific infrared bands of new surface functional groups (e.g., amides and polysaccharides), (ii) a further increase in hydroxyl and carbonyl groups, (iii) the diffuse presence of algal biofilm on the plastic surface, and (iv) a significant decrease in surface hydrophobicity. This suggests that biological-driven alterations are not affected by the level of physicochemical ageing and may represent, in real settings, the main driver of alteration of both weathered and pristine plastics. This work highlights the potentially pivotal role of biofouling as the main process of plastic ageing, providing useful technical insights for future experimental works. These results also confirm that a multi-tiered laboratory approach permits a realistic simulation of plastic environmental ageing in controlled conditions.
Collapse
Affiliation(s)
- Gilberto Binda
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway.
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy.
| | - Giorgio Zanetti
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Arianna Bellasi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Davide Spanu
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Ginevra Boldrocchi
- Department of Human and Innovation for the Territory, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Roberta Bettinetti
- Department of Human and Innovation for the Territory, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Andrea Pozzi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Luca Nizzetto
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway
- RECETOX, Masarik University, Kamenice 753/5, 625 00, Brno, Czech Republic
| |
Collapse
|
41
|
Enhanced Adsorption of Bromoform onto Microplastic Polyethylene Terephthalate Exposed to Ozonation and Chlorination. Molecules 2022; 28:molecules28010259. [PMID: 36615452 PMCID: PMC9821972 DOI: 10.3390/molecules28010259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
This paper selected microplastic polyethylene terephthalate (PET), commonly found in water/wastewater plant effluent, to investigate the changes of PET oxidized under ozonation (designated as ozonized PET), followed by sodium hypochlorite oxidation (designated as ozonized-chlorinated PET) and studied their influence on the adsorption of the disinfection by-product bromoform (TBM). Fragmentation and cracks appeared on the oxidized PET surface. As the oxidation degree increased, the contact angle decreased from 137° to 128.90° and 128.50°, suggesting hydrophilicity was enhanced. FTIR and XPS analyses suggested that carbonyl groups increased on the surface of ozonized PET and ozonized-chlorinated PET, while the formation of intermolecular halogen bonds was possible when PET experienced dual oxidation. These physiochemical changes enhanced the adsorption of TBM. The adsorption capacity of TBM followed the order of ozonized-chlorinated PET (2.64 × 10−6 μg/μg) > ozonized PET (2.58 × 10−6 μg/μg) > pristine PET (2.43 × 10−6 μg/μg). The impact of raw water characteristics on the adsorption of TBM onto PETs, such as the pH, and the coexistence of inorganic ions and macromolecules (humic acid, surfactant, and bovine serum albumin) were studied. A different predominant adsorption mechanism between TBM and pristine PET or oxidized PETs was proposed.
Collapse
|
42
|
Golmohammadi M, Fatemeh Musavi S, Habibi M, Maleki R, Golgoli M, Zargar M, Dumée LF, Baroutian S, Razmjou A. Molecular mechanisms of microplastics degradation: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Wang X, Diao Y, Dan Y, Liu F, Wang H, Sang W, Zhang Y. Effects of solution chemistry and humic acid on transport and deposition of aged microplastics in unsaturated porous media. CHEMOSPHERE 2022; 309:136658. [PMID: 36183879 DOI: 10.1016/j.chemosphere.2022.136658] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are susceptible to aging in the environment, and aged MPs are highly migratory in soil due to their smaller particle size and more negative surface charge, but the effects of soil environmental factors on the fate and transport of aged MPs are still unclear. In this study, the transport behavior of pristine/aged MPs in unsaturated sandy porous media was examined under different ionic strength (IS), cationic type (Na+, Ca2+) and humic acid (HA) conditions. The results indicated that the surface charge, surface oxygen-containing functional groups and surface morphology of MPs changed significantly after aging, and that the mobility of aged MPs was significantly enhanced than the pristine MPs under all test conditions. The retention amounts of pristine/aged MPs in unsaturated porous media increased with IS, and IS had a less inhibitory effect on the transport of aged MPs than pristine MPs. The mobility of pristine/aged MPs in Ca2+ solutions was significantly weaker than that in Na+ solutions due to enhanced straining and electrostatic adsorption. HA promoted the mobility of pristine/aged MPs in unsaturated porous media under all IS Na+ (1, 10, and 25 mM) solutions and lower IS (1 mM) Ca2+ solutions, and the ability of HA to promote the transport of aged MPs was significantly stronger than that of pristine MPs due to the higher adsorption of HA on the surface of aged MPs. However, at higher IS (10 mM) Ca2+ solution conditions, the bridging effect of Ca2+ led to the formation of HA-MPs complexes, which altered the hydrophobicity of the pristine/aged MPs surface and the pristine/aged MPs were mainly retained on the air-water interface (AWI). CFT theory and two-site kinetic retention models indicated that the retention of pristine/aged MPs in unsaturated media was dominated by monolayer adsorption, straining and clogging effects. The current research findings may provide insights into the fate and transport of aged MPs in soil and their potential risk of groundwater contamination.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yinzhu Diao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yitong Dan
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Feihong Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huan Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
44
|
Luo H, Liu C, He D, Sun J, Li J, Pan X. Effects of aging on environmental behavior of plastic additives: Migration, leaching, and ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157951. [PMID: 35961392 DOI: 10.1016/j.scitotenv.2022.157951] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs), an emerging pollutant, are of global concern due to their wide distribution and large quantities. In addition to MPs themselves, various additives within MPs (such as plasticizers, flame retardants, antioxidants and heavy metals) may also have harmful effects on the environment. Most of these additives are physically bound to plastics and can therefore be leached from the plastic and released into the environment. Aging of MPs in the actual environment can affect the migration and release of additives, further increasing the ecotoxicological risk of additives to organisms. This work reviews the functions of several commonly used additives in MPs, and summarizes the representative characterization methods. Furthermore, the migration and leaching of additives in the human environment and marine environment are outlined. As aging promotes the internal chain breaking of MPs and the increase of specific surface area, it in turn stimulates the release of additives. The hazards of additive exposure have been elucidated, and various studies from the laboratory have shown that more toxic additives such as phthalates and brominated flame retardants can disrupt a variety of biological processes in organisms, including metabolism, skeletal development and so on. Increase of MPs ecological risk caused by the leaching of toxic additives is discussed, especially under the effect of aging. This study presents a systematic summary of various functional and environmental behaviors of additives in plastics, using weathering forces as the main factor, which helps to better assess the environmental impact and potential risks of MPs.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Chenyang Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
45
|
Microplastics and nanoplastics in food, water, and beverages, part II. Methods. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Wang L, Shi Y, Chai J, Huang L, Wang Y, Wang S, Pi K, Gerson AR, Liu D. Transfer of microplastics in sludge upon Fe(II)-persulfate conditioning and mechanical dewatering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156316. [PMID: 35660426 DOI: 10.1016/j.scitotenv.2022.156316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Sewage treatment plants act as both sinks and sources of microplastics with elevated concentrations of microplastics accumulating in the sludge. Consequently, the effects of sludge conditioning and dewatering processes on the fate of microplastics need to be clarified. Microplastic characteristics in sludge, before and after advanced oxidation Fe(II)-activated persulfate conditioning were studied using a microplastics dynamic flotation separator (MDFS). In the unconditioned sludge (no dewatering), white and transparent microplastics dominated and seven types of plastic polymer were detected with polyethylene (30.3%) and polypropylene (23.9%) being the main ones. Pellet microplastics were found to be the dominant morphology, accounting for 67.0% of the total number of microplastics. The abundance of microplastics extracted using the MDFS device from the unconditioned (no dewatering) sludge was 320 ± 3 particles g-1 dried sludge, which was greater by 37% than extracted using microplastics static flotation separation. Due to the release of the adsorbed microplastics from the destroyed sludge flocs after conditioning, the abundance of extractable microplastics increased by 19 ± 2% as compared to the unconditioned sludge (both with no dewatering). After filter presses (plate-frame filter, vacuum filter) and centrifuge dewatering, 81-90% of the microplastics were present in the filter cake, of which microplastics <500 μm accounted for more than 80% of the total number. The abundance of microplastics per unit volume of filtrate after filter press dewatering was significantly smaller than after centrifuge dewatering (3.2-4.4 × 103 cf 13.0 × 103 particles L-1, respectively). The difference increments in relative abundance of <10 μm microplastics in the centrifuge filtrate was about twice that of the filter presses. The surface morphology of the microplastics did not change in the conditioning process. This study highlights the need to assess the application of advanced oxidation conditioning which has significant influence on the microplastics distribution via the subsequent sludge dewatering.
Collapse
Affiliation(s)
- Lu Wang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yafei Shi
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China; Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, Wuhan, Hubei 430068, China.
| | - Jiaqi Chai
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lin Huang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yan Wang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Shulian Wang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Kewu Pi
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China; Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, Wuhan, Hubei 430068, China
| | - Andrea R Gerson
- Blue Minerals Consultancy, Wattle Grove, Tasmania 7109, Australia
| | - Defu Liu
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China; Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, Wuhan, Hubei 430068, China
| |
Collapse
|
47
|
Liu R, Tan Z, Wu X, Liu Y, Chen Y, Fu J, Ou H. Modifications of microplastics in urban environmental management systems: A review. WATER RESEARCH 2022; 222:118843. [PMID: 35870394 DOI: 10.1016/j.watres.2022.118843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/19/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are a worldwide environmental pollution issue. Besides the natural environmental stresses, various treatments in urban environmental management systems induce modifications on MPs, further affecting their environmental behavior. Investigating these modifications and inherent mechanisms is crucial for assessing the environmental impact and risk of MPs. In this review, up-to-date knowledge regarding the modifications of MPs in urban environmental management systems was summarized. Variations of morphology, chemical composition, hydrophilicity and specific surface area of MPs were generalized. The aging and degradation of MPs during drinking water treatment, wastewater treatment, sewage sludge treatment and solid waste treatment were investigated. A high abundance of MPs occurred in sewage sludge and aging solid waste, while digestion and composting contributed to significant decomposition and reduction of MPs. These treatments have become converters for MPs before entering the environment. Several novel technologies for MPs removal were listed; However, no appropriate methods can be put into actual application by now, except the membrane separation. The corresponding effects of degradation on the behaviors of MPs, including adsorption, sinking and contaminant leakage, were discussed. Finally, three priorities for research were proposed. This critical review provides viewpoints and references for risk evaluation of MPs after treatments in urban environmental management systems.
Collapse
Affiliation(s)
- Ruijuan Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
| | - Zongyi Tan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
| | - Xinni Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
| | - Yuan Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yuheng Chen
- Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China; Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 511443, China
| | - Jianwei Fu
- Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China; Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 511443, China
| | - Huase Ou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
48
|
Ma M, Chen Y, Su R, Liu Z, He J, Zhou W, Gu M, Yan M, Li Q. In situ synthesis of Fe-N co-doped carbonaceous nanocomposites using biogas residue as an effective persulfate activator for remediation of aged petroleum contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128963. [PMID: 35486999 DOI: 10.1016/j.jhazmat.2022.128963] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/06/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Persulfate (PS)-based chemical oxidation is an effective method for the remediation of petroleum-contaminated soils, but higher concentrations of PS (3-40%) may lead to soil acidification (pH decreased by 1.8-6.2 units) and affect the microbial communities. In this study, Fe/N co-doped carbonaceous nanocomposites (Fe-N @ CN) that can efficiently activate PS were developed from biogas residue for the remediation of petroleum-contaminated soil. The as-obtained Fe-N@CN displayed that the Fe-based nanoparticles were encapsulated in graphitic nanosheets, with Fe3C and FeN0.0760 as the main bonding modes. The removal efficiency of total petroleum hydrocarbons (TPHs) reached 73.14% in 3 days with a PS dose of 2% and catalyst dose of 0.4%, and increased by 15.8% on adding 30 mmol/kg of β-cyclodextrin. The free-radical quenching experiment and electron paramagnetic resonance revealed that SO4·-,·OH, O2·-, and 1O2 were involved in the removal of TPHs. Because of the low PS dosage, the remediation process had no significant effect on the soil pH. During the remediation process, soil catalase activity was enhanced and then recovered, whereas the soil bacterial community, reflected by the operational taxonomic unit values, decreased and then recovered. TPH-degrading bacteria were produced in the Fe-N@CN/PS/soil system after chemical oxidation, further contributing to soil remediation.
Collapse
Affiliation(s)
- Mengyu Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Yi Chen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Ruidian Su
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Zhen Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Jinkai He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan 250100, PR China
| | - Meixia Gu
- Sinopec Petroleum Engineering & Design Co., Ltd., Dongying 257100, PR China
| | - Maolu Yan
- Shandong Eco-Homeland Environmental Protection Co., Jinan 250000, PR China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China.
| |
Collapse
|
49
|
Liu X, Deng Q, Zheng Y, Wang D, Ni BJ. Microplastics aging in wastewater treatment plants: Focusing on physicochemical characteristics changes and corresponding environmental risks. WATER RESEARCH 2022; 221:118780. [PMID: 35759845 DOI: 10.1016/j.watres.2022.118780] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 05/21/2023]
Abstract
Microplastics (MPs) have been frequently detected in effluent wastewater and sludge in wastewater treatment plants (WWTPs), the discharge and agricultural application of which represent a primary source of environmental MPs contamination. As important as quantitative removal is, changes of physicochemical characteristics of MPs (e.g., shapes, sizes, density, crystallinity) in WWTPs are crucial to their environmental behaviors and risks and have not been put enough attention yet. This review is therefore to provide a current overview on the changes of physicochemical characteristics of MPs in WWTPs and their corresponding environmental risks. The changes of physicochemical characteristics as well as the underlying mechanisms of MPs in different successional wastewater and sludge treatment stages that mainly driven by mechanical (e.g., mixing, pumping, filtering), chemical (e.g., flocculation, advanced oxidation, ultraviolet radiation, thermal hydrolysis, incineration and lime stabilization), biological (e.g., activated sludge process, anaerobic digestion, composition) and their combination effects were first recapitulated. Then, the inevitable correlations between physicochemical characteristics of MPs and their environmental behaviors (e.g., migration, adsorption) and risks (e.g., animals, plants, microbes), are comprehensively discussed with particular emphasis on the leaching of additives and physicochemical characteristics that affect the co-exist pollutants behavior of MPs in WWTPs on environmental risks. Finally, knowing the summarized above, some relating unanswered questions and concerns that need to be unveiled in the future are prospected. The physicochemical properties of MPs change after passing through WWTP, leading to subsequent changes in co-contaminant adsorption, migration, and toxicity. This could threaten our ecosystems and human health and must be worth investigating.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P R China
| | - Qian Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P R China
| | - Yuyang Zheng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P R China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P R China.
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
50
|
Chen Z, Liu X, Wei W, Chen H, Ni BJ. Removal of microplastics and nanoplastics from urban waters: Separation and degradation. WATER RESEARCH 2022; 221:118820. [PMID: 35841788 DOI: 10.1016/j.watres.2022.118820] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
The omnipresent micro/nanoplastics (MPs/NPs) in urban waters arouse great public concern. To build a MP/NP-free urban water system, enormous efforts have been made to meet this goal via separating and degrading MPs/NPs in urban waters. Herein, we comprehensively review the recent developments in the separation and degradation of MPs/NPs in urban waters. Efficient MP/NP separation techniques, such as adsorption, coagulation/flocculation, flotation, filtration, and magnetic separation are first summarized. The influence of functional materials/reagents, properties of MPs/NPs, and aquatic chemistry on the separation efficiency is analyzed. Then, MP/NP degradation methods, including electrochemical degradation, advanced oxidation processes (AOPs), photodegradation, photocatalytic degradation, and biological degradation are detailed. Also, the effects of critical functional materials/organisms and operational parameters on degradation performance are discussed. At last, the current challenges and prospects in the separation, degradation, and further upcycling of MPs/NPs in urban waters are outlined. This review will potentially guide the development of next-generation technologies for MP/NP pollution control in urban waters.
Collapse
Affiliation(s)
- Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Xiaoqing Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Hong Chen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|