1
|
Tiago GAO, Martins-Dias S, Marcelino LP, Marques AC. Promoting LDPE microplastic biodegradability: The combined effects of solar and gamma irradiation on photodegradation. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138227. [PMID: 40239523 DOI: 10.1016/j.jhazmat.2025.138227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Low-Density Polyethylene (LDPE) is non-biodegradable and breaks down into microplastics (MP) when exposed to sunlight and weathering. This poses a threat to ecosystems, contributing to the micropollutants found in urban treated wastewater. Our study aimed to investigate the effects of solar and gamma irradiation on the biodegradability of LDPE MP. We pretreated them with simulated solar irradiation without (photolysis) and with (photocatalysis) TiO2 nanoparticles followed by gamma irradiation, leading to the appearance of cracks and roughness on the surface. Simultaneously, thermal stability decreased, and the carbonyl index and crystallinity increased, indicating oxidation and chain scission. Aerobic biodegradability was measured in a static respirometer at 58ºC, using green compost as inoculum, and proved to be effective for screening biodegradability of the pretreated LDPE. The combination of photocatalysis and gamma irradiation produced a synergistic effect on photodegradation, making it the most effective method for promoting biodegradation, revealed by the increased specific oxygen uptake rate (SOUR), which is expressed as millimoles O2 per mol of carbon per hour, and the greatest biodegradation kinetics constant (kO2=0.0178 h-1). The primary mechanism driving biodegradation involved the formation of carbonyl groups, which initiated biological activity.
Collapse
Affiliation(s)
- Gonçalo A O Tiago
- Center for Natural Resources and the Environment (CERENA), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
| | - Susete Martins-Dias
- CERENA, Department of Biological Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal.
| | - Lucas P Marcelino
- Center for Natural Resources and the Environment (CERENA), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
| | - Ana C Marques
- CERENA, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal.
| |
Collapse
|
2
|
Wu Y, Chen Y, He R, Zhao T, Chen Z. Micronanoplastic exposure due to cardiopulmonary bypass in children: A prospective observational study. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137732. [PMID: 40010211 DOI: 10.1016/j.jhazmat.2025.137732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/04/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
Cardiopulmonary bypass (CPB) is widely used in cardiac operations. However, it remains unclear whether a CPB circuit, which is mainly made of plastics, can release micronanoplastics (MNPs) into the bloodstream. We conducted a prospective observational study involving children undergoing congenital heart disease repair with CPB support. Blood samples were collected before and after CPB and analyzed using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and laser direct infrared spectroscopy (LDIR) in combination with scanning electron microscopy. A total of 22 patients were involved in this study. The Py-GC/MS analysis revealed a significant increase in total MNPs after CPB support (p < 0.0001). Notably, CPB support significantly increased the levels of polystyrene (p = 0.046), polyethylene (p = 0.038), polypropylene (p < 0.0001), polyvinyl chloride (p < 0.0001), and polyamide 6 (p = 0.027). CPB time was positively correlated to MNP exposure (r = 0.43, p = 0.047). Increases in MNP exposure were positively correlated to an increase in white blood cells (r = 0.52, p = 0.013) and neutrophils (r = 0.46, p = 0.029). The LDIR analysis found that the post-CPB count of MNPs was significantly higher than the pre-CPB count (p = 0.015). In conclusion, CPB support significantly increases exposure to MNP in children undergoing cardiac operations. Further investigations are warranted to clarify the long-term health risks of MNP exposure caused by CPB support.
Collapse
Affiliation(s)
- Yuhao Wu
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yijing Chen
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Renke He
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Tianxin Zhao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China.
| | - Zhongzhong Chen
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China.
| |
Collapse
|
3
|
Rehman A, Habumugisha T, Huang F, Zhang Z, Kiki C, Al MA, Yan C, Shaheen U, Zhang X. Impacts of polystyrene nanoplastics on zebrafish gut microbiota and mechanistic insights. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118332. [PMID: 40393324 DOI: 10.1016/j.ecoenv.2025.118332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 05/11/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025]
Abstract
Aquatic environments are frequently contaminated with nanoplastics (NPs) ranging from 1-100 nm generated by plastic aging, but their bio-enrichment and toxicological impacts remain poorly understood. This study investigates how chronic exposure to carboxylated polystyrene nanoplastics (PNPs) alters gut microbiota composition and function in zebrafish (Danio rerio). Adult zebrafish were exposed to 50 nm PNPs at concentrations of 0.1, 1.0, and 10 mg/L for 14 and 28 days, followed by gut microbiota analysis using 16S rRNA gene sequencing. PNP exposure altered gut microbiota composition, including an increase in Proteobacteria abundance and a decrease in Firmicutes, Bacteroidetes, and the inflammation-related genus Alistipes. Beneficial probiotics such as Faecalibacterium, Streptococcus, Bifidobacterium, and Lachnospira were diminished, while pathogenic bacteria proliferated. TEM imaging revealed the internalization of PNP particles within intestinal tissues resulted in vacuolation, suggesting potential epithelial damage. Co-occurrence network patterns of gut microbiota greatly decreased during treatment with NPs. The neutral community model showed that among PNP treatments, 0.1 mg/L led to a less predictable (stochastic assembly process). PNP exposure led to increased predicted microbial functions (via PICRUSt2) related to xenobiotic metabolism, infection pathways, and lipopolysaccharide (LPS) production, while RNA transport and N-glycan biosynthesis were decreased. However, pathways related to microbial antioxidants exhibited significant variation across different PNP levels. These results provide critical insights into the toxicological impacts of chronic PNP exposure on fish gut health, highlighting the potential risks to aquatic ecosystems and human health.
Collapse
Affiliation(s)
- Abdul Rehman
- State Key Laboratory of Regional and Urban Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China; State Key Laboratory of Advanced Environmental Technology,Institute of Urban Environment Chinese Academy of Sciences, Xiamen 361021, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Théogène Habumugisha
- State Key Laboratory of Regional and Urban Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China; State Key Laboratory of Advanced Environmental Technology,Institute of Urban Environment Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Fuyi Huang
- State Key Laboratory of Regional and Urban Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China; State Key Laboratory of Advanced Environmental Technology,Institute of Urban Environment Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Zixing Zhang
- State Key Laboratory of Regional and Urban Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China; State Key Laboratory of Advanced Environmental Technology,Institute of Urban Environment Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Claude Kiki
- State Key Laboratory of Advanced Environmental Technology,Institute of Urban Environment Chinese Academy of Sciences, Xiamen 361021, P.R. China; Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Mamun Abdullah Al
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol Sun Yat-sen University, Zhuhai 519082, China
| | - Changzhou Yan
- State Key Laboratory of Regional and Urban Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China; State Key Laboratory of Advanced Environmental Technology,Institute of Urban Environment Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Uzma Shaheen
- State Key Laboratory of Regional and Urban Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China; State Key Laboratory of Advanced Environmental Technology,Institute of Urban Environment Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Xian Zhang
- State Key Laboratory of Regional and Urban Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China; State Key Laboratory of Advanced Environmental Technology,Institute of Urban Environment Chinese Academy of Sciences, Xiamen 361021, P.R. China.
| |
Collapse
|
4
|
Planche C, Lievens S, Van der Donck T, Sicard J, Van Der Borght M. Exposure of black soldier fly larvae to microplastics of various sizes and shapes: Ingestion and egestion dynamics and kinetics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 203:114852. [PMID: 40349524 DOI: 10.1016/j.wasman.2025.114852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/02/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Abstract
Black soldier fly (BSF, Hermetia illucens) larvae can valorize food waste into high-valuable products including animal feed. However, these wastes may contain microplastics originating from food packaging, potentially compromising larval growth and their safety as feed. This study investigates the impact of microplastic sizes and shapes on their ingestion and egestion by BSF larvae during waste bioconversion. BSF larvae were reared for 10 days on artificial food waste spiked with three size ranges of spherical or irregularly shaped fluorescent polyethylene microplastics. Daily, several larvae were dissected (n = 9 per treatment) to isolate their gut and to finally determine the number of particles in their alimentary canal using a fluorescence microscope. The microplastics had no impact on larval growth and no bioaccumulation of microplastics was observed in the larval gut (bioaccumulation factors < 0.3). However, there was a significant difference in the ingestion rate based on the different particle sizes. While almost no particles exceeding 100 µm were ingested by the larvae, a steady increase in microplastics was observed in the larval gut for the smaller particles. However, a three-day starvation period reduced the number of microplastics in the larval gut by over 90 %. No significant difference was observed between spherical and irregularly shaped microplastics in terms of larval bioaccumulation. We proposed a kinetic model for representing the temporal dynamics of microplastics accumulation and elimination with respect to particle distribution parameters, enabling the results obtained in this study to be extrapolated to other microplastic sizes.
Collapse
Affiliation(s)
- Christelle Planche
- INRAE, UR370 Animal Products Quality Unit, F-63122 Saint-Genès-Champanelle, France.
| | - Siebe Lievens
- KU Leuven, Research Group for Insect Production and Processing, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium.
| | - Tom Van der Donck
- KU Leuven, Department of Materials Engineering, Campus Arenberg, Kasteelpark Arenberg 44, 3001 Leuven, Belgium.
| | - Jason Sicard
- INRAE, UR370 Animal Products Quality Unit, F-63122 Saint-Genès-Champanelle, France.
| | - Mik Van Der Borght
- KU Leuven, Research Group for Insect Production and Processing, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium.
| |
Collapse
|
5
|
Ashokkumar V, Chandramughi VP, Mohanty K, Gummadi SN. Microplastic pollution: Critical analysis of global hotspots and their impact on health and ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:124995. [PMID: 40186977 DOI: 10.1016/j.jenvman.2025.124995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/06/2025] [Accepted: 03/13/2025] [Indexed: 04/07/2025]
Abstract
This paper examines microplastic hotspots and their drastic effects on human health and the environment pointing out microplastic pollution as one of the biggest global issues. Besides, it analyses the key sources including industrial effluent discharge, littered plastic wastes, and deterioration of synthetic products together with pathways and routes of exposure. The review also focuses on microplastic contamination in food systems such as meat, plant-based products, dairy, and seafood, detailing their entry into the food chain via soil, water, and air. On the other hand, this work also focuses on human health issues including cellular absorption, and bioaccumulation, which results in tissue oxidative stress, inflammation, hormonal imbalance and adverse long-term effects, including carcinogenicity and organ toxicity. The ultimate effects of microplastic pollution on the condition of the soil, water, and fauna and flora of the ecosystem, highlighting on the need for the prevention measures, were also addressed. This paper seeks to critically ascertain the problems posed by microplastics, including their slow biodegradation limit, the absence of proper regulations, and lack of a universally accepted standard. It also highlights that microplastic pollution requires interdisciplinary analyses, future studies, and high standards-compliant policies and regulations. This work raises the alarm for a collective international effort to protect the public health, food, and the earth.
Collapse
Affiliation(s)
- Veeramuthu Ashokkumar
- Center for Waste Management and Renewable Energy, SDC, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - V P Chandramughi
- Center for Waste Management and Renewable Energy, SDC, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
| |
Collapse
|
6
|
Li J, Xu Q, Xu X, He W, Zhang H, Ren H, Wang Y, Wang X, Zhao D. Apigenin protects ischemic stroke by regulating intestinal microbiota homeostasis, regulates brain metabolic profile. Front Pharmacol 2025; 16:1553081. [PMID: 40124778 PMCID: PMC11925864 DOI: 10.3389/fphar.2025.1553081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
Background and Objective Ischemic stroke is a cerebrovascular disease with highly incidence. Previous research has demonstrated that apigenin provides protective effects against ischemic stroke. However, it remains unclear whether apigenin can regulate intestinal flora against ischemic stroke. Methods In this study, we evaluated the regulatory effects of apigenin on intestinal microbiota using a middle cerebral artery occlusion rat model. The protective impact of apigenin on brain damage in ischemic stroke rats was assessed through Nissl staining, hematoxylin and eosin staining, and immunohistochemistry. Additionally, we employed 16S rRNA sequencing to analyze intestinal contents and utilized non-targeted metabolomics to investigate the effects of apigenin on brain metabolites, thereby exploring its mechanism of action. AMPK levels were detected by Western blot and immunohistochemistry. The kit was used to detect oxidative stress and inflammation. Results The intervention with apigenin resulted in significant alterations in the intestinal flora, characterized by an increase in the abundance of probiotic species and a decrease in harmful flora, alongside notable changes in brain metabolite profiles. This protective effect is attributed to apigenin's promotion of AMPK expression and enhancement of energy metabolism in the context of ischemic stroke. In addition, apigenin improved oxidative stress and inflammation in ischemic stroke. Conclusion These findings suggest that apigenin exerts a protective effect on ischemic stroke through the AMPK signaling pathway by modulating intestinal flora and associated metabolites. Consequently, apigenin emerges as a therapeutic candidate warranting further investigation.
Collapse
Affiliation(s)
- Jinjian Li
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Qiaoli Xu
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaoming Xu
- Department of Encephalopathy, Changchun Hospital of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Wei He
- Department of Encephalopathy, Changchun Hospital of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Hui Zhang
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Haoxu Ren
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yue Wang
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xu Wang
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Dexi Zhao
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
7
|
Marcellus KA, Prescott D, Scur M, Ross N, Gill SS. Exposure of Polystyrene Nano- and Microplastics in Increasingly Complex In Vitro Intestinal Cell Models. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:267. [PMID: 39997830 PMCID: PMC11858616 DOI: 10.3390/nano15040267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
With the rise in global plastic production and the presence of plastic waste in the environment, microplastics are considered an emerging environmental contaminant. Human exposure and the impact of microplastics on human health are not well studied. Recent studies have observed the presence of microplastics in human tissues and several studies have noted toxicity in in vitro and in vivo mammalian models. We examined the impact of polystyrene nano- and microplastics in increasingly complex intestinal cell models. Using an undifferentiated Caco-2 mono-culture model, we assessed particle association, cytotoxicity, and particle clearance/retention, whereas in differentiated mono- and tri-culture transwell models, we assessed membrane integrity and particle translocation. Only 50 nm and 500 nm particles were internalized in the undifferentiated cells; however, no signs of cellular toxicity were observed at any concentrations tested. Additionally, polystyrene particles had no impact on barrier integrity, but the 50 nm particles were able to cross to the basolateral side, albeit attenuated in the tri-culture model that had a mucus layer. This study reduced some of the variability common to MNPL testing across various in vitro models, but further testing is needed to fully understand the potential effects of human MNPL exposure.
Collapse
Affiliation(s)
| | | | | | | | - Santokh S. Gill
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
8
|
Ali S, Peña AN, Lafazanos YS, Ehrenpreis ED. What Gastroenterologists Should Know About Microplastics and Nanoplastics. J Clin Gastroenterol 2025; 59:105-109. [PMID: 39774594 DOI: 10.1097/mcg.0000000000002085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Global production and widespread use of plastics are increasing dramatically. With current limited recycling and recovery options, microplastics and nanoplastics (MNPs) persist in the natural environment. Due to their ubiquity, human exposure to MNPs is inevitable. In addition to their inherent toxic effects, MNPs can adsorb harmful contaminants and act as vectors for microorganisms, compounding toxicological effects. After entering the body, bioaccumulation occurs in several tissues and organs, including the liver and the gastrointestinal (GI) tract. Proposed clinical effects of MNP absorption include endocrine disruption, alteration of the GI microbiome, and promotion of chronic inflammatory conditions. MNPs can also influence energy metabolism, activate inflammatory pathways, and increase oxidative stress leading to apoptosis. The GI tract is a major site of bioaccumulation for the MNPs in animals and humans. In this editorial, the current understanding of how MNPs are processed is discussed. Discussion on MNP effects on internal microflora, and their proposed role in developing inflammatory bowel diseases, MNP toxicokinetics, and their significance in health and disease are also reviewed. There is a need to understand the impact of MNP exposure on gut health and gut microbiota and identify current research gaps.
Collapse
|
9
|
Pacher-Deutsch C, Schweighofer N, Hanemaaijer M, Marut W, Žukauskaitė K, Horvath A, Stadlbauer V. The microplastic-crisis: Role of bacteria in fighting microplastic-effects in the digestive system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125437. [PMID: 39631654 DOI: 10.1016/j.envpol.2024.125437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Plastic particles smaller than 5 mm, referred to as Microplastics, pose health risks, like metabolic, immunological, neurological, reproductive, and carcinogenic effects, after being ingested. Smaller plastic particles are more likely to be absorbed by human cells, with nanoplastics showing higher potential for cellular damage, including DNA fragmentation and altered protein functions. Micro- and nanoplastics (MNPs) affect the gastrointestinal tract by altering the microbial composition, they could influence digestive enzymes, and possibly disrupt mucus layers. In the stomach, they potentially interfere with digestion and barrier functions, while in the intestines, they could increase permeability via inflammation and tissue disruption. MNPs can lead to microbial dysbiosis, leading to gastrointestinal symptoms. By activating inflammatory pathways, altering T cell functions and affecting dendritic cells and macrophages, immune system homeostasis could possibly be disrupted. Probiotics offer potential strategies to alleviate plastic effects, by either degrading plastic particles or directly countering health effects. We compared genetic sequences of probiotics to the genome of known plastic degraders and concluded that no probiotic bacteria could serve the role of plastic degradation. However, probiotics could directly mitigate MNP-health effects. They can restore microbial diversity, enhance the gut barrier, regulate bile acid metabolism, reduce inflammation, regulate insulin balance, and counteract metabolic disruptions. Antioxidative properties protect against lipid peroxidation and MNP-related reproductive system damage. Probiotics can also bind and degrade toxins, like heavy metals and bisphenol A. Additionally, bacteria could be used to aggregate MNPs and reduce their impact. Therefore, probiotics offer a variety of strategies to counter MNP-induced health effects.
Collapse
Affiliation(s)
- Christian Pacher-Deutsch
- Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria.
| | | | | | | | - Kristina Žukauskaitė
- Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria; Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Vanessa Stadlbauer
- Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria; BioTechMed-Graz, Graz, Austria
| |
Collapse
|
10
|
Obłoza M, Ścibor M, Kaczor-Kamińska M, Kamiński K. A Simple Technique for Studying the Interaction of Polypropylene-Based Microplastics with Adherent Mammalian Cells Using a Holder. Molecules 2025; 30:516. [PMID: 39942622 PMCID: PMC11819840 DOI: 10.3390/molecules30030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Microplastics pose a great challenge to human health and could prove to be the most dangerous environmental contaminant of the 21st century. The study presented here is an attempt at proposing a new methodology for studying the interaction of microplastics with adherent mammalian cells using aides. The disposable holders proposed here provide direct contact between microplastics (with a density lower than that of water) and cells in the course of culturing, which is necessary as we postulate the existence of an interaction. Using several microscopic methods (confocal fluorescence microscopy and scanning electron microscopy (SEM)), we have observed that this interaction causes a non-destructive penetration of the cell monolayer and adhesion of microplastics to the cell surface. The Caco-2 cells were used for the experiments. The said cells are the approximation of the digestive system, which, due to the presence of plastics in drinking water, is particularly vulnerable to direct interactions with these contaminants. Model microplastics were obtained by grinding pellets of chemically pure polypropylene. The imaging of cells in both space and on the surface was supplemented by an assay to determine the cell welfare in the studied microplastic-exposed models, which did not show the occurrence of apoptosis or necrosis after a 24 h exposure.
Collapse
Affiliation(s)
- Magdalena Obłoza
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 St., 30-387 Krakow, Poland; (M.O.); (M.Ś.)
| | - Magdalena Ścibor
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 St., 30-387 Krakow, Poland; (M.O.); (M.Ś.)
| | - Marta Kaczor-Kamińska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7 St., 31-034 Krakow, Poland;
| | - Kamil Kamiński
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 St., 30-387 Krakow, Poland; (M.O.); (M.Ś.)
| |
Collapse
|
11
|
Ta AT, Babel S, Wang LP. Prevalence and characteristics of microplastic contamination in soft drinks and potential consumer exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123810. [PMID: 39721381 DOI: 10.1016/j.jenvman.2024.123810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/02/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Microplastics (MPs) contamination in human food is a growing concern due to potential health risks. Recent studies have indicated that MPs have been found in various human tissues and organs, including the placenta, lungs, liver, and blood. This highlights the importance of investigating the presence and concentration of MPs in food products, as it directly relates to human health and safety. In this study, MP contamination was detected and characterized in commercially available soft drinks in Thailand. Nine popular soft drink brands in Thailand, packaged in different materials, including plastic bottles, aluminum cans, and glass bottles, were investigated. The results revealed that regardless of packaging type, all the soft drink brands tested contained MPs, with concentrations ranging from 2 ± 3 to 39 ± 12 items per liter. MPs in the 50-100 μm size range, primarily with a fragment-like morphology, were most commonly found. Given that the average person in Thailand consumes approximately 41.13 L of soft drinks annually, it is estimated that an individual could ingest between 81 and 1609 MPs yearly. These findings raise significant concerns about the potential health impacts of MP ingestion through soft drinks and underscore the need for further research and regulation.
Collapse
Affiliation(s)
- Anh Tuan Ta
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University, Bangkok, 10400, Thailand; School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathum Thani, 12121, Thailand
| | - Sandhya Babel
- School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathum Thani, 12121, Thailand.
| | - Li Pang Wang
- Institute of Environmental Engineering and Management, College of Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan.
| |
Collapse
|
12
|
Uriot O, Defois-Fraysse C, Couturier I, Deschamps C, Durif C, Chaudemanche C, Dreux-Zigha A, Blanquet-Diot S. Effects of prebiotics from diverse sources on dysbiotic gut microbiota associated to western diet: Insights from the human Mucosal ARtificial COLon (M-ARCOL). Curr Res Food Sci 2024; 10:100968. [PMID: 39834797 PMCID: PMC11743849 DOI: 10.1016/j.crfs.2024.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Associated to various illnesses, Western Diet (WD) is acknowledged to have deleterious effects on human gut microbiota, decreasing bacterial diversity, lowering gut bacteria associated to health (such as Akkermansia muciniphila), while increasing those linked to diseases (e.g., Proteobacteria). In this study, we evaluated the potential of two new prebiotics to counteract the negative effect of WD on gut microbiota, namely raffinose family oligosaccharides (RFO) from chickpeas and laminarin (LAM) from algae, when compared to the well-known inulin (INU). The effects of prebiotics on gut microbiota composition and metabolic activities were investigated in the Mucosal-Artificial Colon, set-up to reproduce WD condition, as compared to healthy control (n = 3). None of the prebiotics was able to efficiently offset the shift in microbiota induced by WD. Nevertheless, when compared to non-supplemented WD, all prebiotics showed significant impacts on microbiota composition, that were both prebiotic and donor-dependant. RFO was the only prebiotic to enhance α-diversity, while it led to an increase in Blautia and Butyricicoccaceae, associated with higher amounts of gas and butyrate. LAM and INU did not strongly impact microbial metabolic activities but were associated with a rise in Prevotella_9/Agathobacter and Faecalibacterium, respectively. To conclude, this study showed that all tested prebiotics had different impacts on human gut microbiota structure and activities, which was further donor-dependent. M-ARCOL appears as a suitable in vitro tool to better understand the mechanisms of action of prebiotic compounds in relation to gut microbes and define responders and non-responders to prebiotic supplementation, opening the possibility of customized nutritional strategies.
Collapse
Affiliation(s)
- Ophélie Uriot
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| | | | - Ingrid Couturier
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| | - Charlotte Deschamps
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| | - Claude Durif
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| | | | | | - Stéphanie Blanquet-Diot
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| |
Collapse
|
13
|
Panneerselvan L, Raghuraman Rengarajan HJ, Kandaiah R, Bhagwat-Russell G, Palanisami T. Fibrous foes: First report on insidious microplastic contamination in dietary fiber supplements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125248. [PMID: 39510303 DOI: 10.1016/j.envpol.2024.125248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Regular consumption of health supplements to balance dietary intake has gained popularity worldwide. One such supplement that has gained popularity among consumers is dietary fibers. Microplastic (MPs) contamination in various food products is being reported worldwide. However, there is a paucity of understanding of the occurrence of MPs in dietary supplements. This study addresses this gap by investigating the degree of MPs contamination in dietary fiber supplements. Nine commonly consumed (powder and gummy-based) over-the-counter dietary fiber supplements in Australia were tested in this study. Microscopic examination revealed the presence of MPs fibers and fragments in all the tested products. Further categorization showed that MPs particles were of various colours, including black, blue, red, green, and white. The order of polymer abundance was Polyamide > Polydiallyl Phthalate > polyethylene polypropylene diene > Polyurethane = Polyethylene terephthalate > Polyethylene = Ethylene acrylic acid copolymer. Among the supplements, powder-based samples had higher MPs (at the adult dosage suggested by the manufacturer) than gummy-based product. The average predicted ingestion of microplastics from these supplements (all nine samples) was 5.89 ± 2.89 particles day-1. The dietary exposure for children and adults ranged from 0.1-0.48 and 0.18-4.08 particles day-1, respectively. Based on the microplastic contamination factor (MCF), among the nine samples tested, 69.81% exhibited a moderate level, while 20.76% showed a significant level of microplastic contamination. The polymer risk index (pRi) indicates products with very high and high-risk categories. The possible sources of MPs contamination in the products were studied. To our knowledge, this is the first study to record and quantify the presence of MPs in dietary fiber supplements, which is a direct source of MPs exposure to humans via., ingestion.
Collapse
Affiliation(s)
- Logeshwaran Panneerselvan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Haryni Jayaradhika Raghuraman Rengarajan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Raji Kandaiah
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Geetika Bhagwat-Russell
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Thava Palanisami
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia.
| |
Collapse
|
14
|
Kumar S, Dubey N, Kumar V, Choi I, Jeon J, Kim M. Combating micro/nano plastic pollution with bioplastic: Sustainable food packaging, challenges, and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125077. [PMID: 39369869 DOI: 10.1016/j.envpol.2024.125077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The widespread use of plastic in food packaging provides significant challenges due to its non-biodegradability and the risk of hazardous chemicals seeping into food and the environment. This highlights the pressing need to come up with alternatives to traditional plastic that prioritize environmental sustainability, food quality, and safety. The current study presents an up-to-date examination of micro/nano plastic (MP/NP) consumption and their associated toxicity to human health, while also considering bioplastic as safer and eco-friendly alternative materials for packaging. The study contributes to a deeper comprehension of the primary materials utilized for bioplastic manufacturing and their potential for large-scale use. The key findings underscore the distinctive features of bioplastics, such as starch, polyhydroxyalkanoates, polylactic acid, and polybutylene succinate, as well as their blends with active agents, rendering them suitable for innovative food packaging applications. Moreover, the study includes a discussion of insights from various scientific literature, agency reports (governmental and non-governmental), and industry trends in bioplastic production and their potential to combat MP/NP pollution. In essence, the review highlights future research directions for the safe integration of bioplastics in food packaging, addresses outstanding questions, and proposes potential solutions to challenges linked with plastic usage.
Collapse
Affiliation(s)
- Subhash Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Namo Dubey
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Inho Choi
- Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
15
|
Kılıç E. Abundance and ecological risk of microplastics in commercial fish species from northeastern Mediterranean Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125252. [PMID: 39510301 DOI: 10.1016/j.envpol.2024.125252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Microplastic pollution in marine environment has attracted the attention of scientists and policy makers. A substantial number of studies have examined the microplastic content in the gastrointestinal tract (GIT) of fish to monitor microplastic (MP) pollution levels in the ambient environment. The aim of the study was to access the microplastic abundance in the commonly consumed fish species and associated ecological risk assessment for consumers. To that end, microplastic presence in the gills and GIT of Boops boops, Mullus barbatus Mullus surmuletus, Saurida undosquamis, Sardina pilchardus, Trachurus mediterraneus, Pagellus erythrinus, Oblada melanurus, Diplous annularis was investigated. The polymer analysis of extracted MPs were done using Fourier transform infrared (FTIR) spectroscopy. Including all examined specimens, mean MP abundance in the GIT and gills were found as 0.8 ± 1.2 MPs/ind and 0.3 ± 0,7 MPs/ind, respectively. Consistent with the global picture, mainly detected MPs were fiber in shape (79%), black (39%) and blue (37%) in color, and less than 500 μm in size (63%). Polyethylene (21%), polyethylene derivatives (33%) and polypropylene (26%) were the most frequently detected polymers. Ecological risk assessment was calculated by employing polymer risk index, and varied between 4,6 and 27 indicating low to medium hazard risk for examined species. Hazard risk score showed that demersal and bentopelagic fish species were more prone to MP toxicity depending on the toxicity levels of identified polymers. Results indicated that polymer distribution in the marine environment is as significant as the habitat preferences of fish in determining the ecological risk posed by microplastic toxicity.
Collapse
Affiliation(s)
- Ece Kılıç
- İskenderun Technical University, Faculty of Marine Science and Technology, Turkey.
| |
Collapse
|
16
|
Yu H, Li H, Cui C, Han Y, Xiao Y, Zhang B, Li G. Association between blood microplastic levels and severity of extracranial artery stenosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136211. [PMID: 39442309 DOI: 10.1016/j.jhazmat.2024.136211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Microplastics (MPs) contamination raises concerns about their impact on human health, particularly cardiovascular diseases. This study investigated the blood MPs levels in patients with extracranial artery stenosis (ECAS) and their possible link to disease severity. 20 ECAS and 10 control patients were recruited. Blood samples, collected before the digital subtract angiography (DSA) procedure, were analyzed by pyrolysis-gas chromatography mass spectrometry (Py-GC/MS), laser direct infrared (LDIR) spectroscopy, and scanning electron microscopy (SEM). Demographic and clinical information was also examined. Strict quality controls were implemented to prevent contamination. MPs were detected by Py-GC/MS in all blood samples, with concentrations significantly higher in ECAS group compared to control (174.89 ± 24.95 vs 79.82 ± 31.73 μg/g, p < 0.001), and polyvinyl chloride (PVC) and polyamide 66 (PA66) were the most abundant among the detected polymers. Further analyses suggested that higher concentrations of MPs may be associated with more severe artery stenosis (p < 0.001). Compared with the normal group, ECAS group had a higher level of D-dimer (0.61 ± 0.6 μg/L vs 0.28 ± 0.09 μg/L, p < 0.05) and longer Thrombin Time (sec) (18.30 ± 3.43 μg/L vs 16.25 ± 1.74 μg/L, p < 0.05). Additionally, LDIR and SEM detected the shape and physical properties of the MPs. In this study, we revealed significant higher blood MPs levels in ECAS patients, with a notable correlation between MPs concentrations and arterial stenosis severity.
Collapse
Affiliation(s)
- Hongxiang Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hongxia Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yingying Han
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yaping Xiao
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Bei Zhang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Gang Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
17
|
Hou Y, Bian D, Xiao Y, Huang J, Liu J, Xiao E, Li Z, Yan W, Li Y. MRI-based microplastic tracking in vivo and targeted toxicity analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176743. [PMID: 39378947 DOI: 10.1016/j.scitotenv.2024.176743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Microplastics (MPs) as an emerging pollutant have raised significant concerns in environmental health. However, elucidating the distribution of MPs in living organisms remains challenging due to their trace residue and tough detection problems. In this study, a novel magnetic resonance imaging (MRI)-based tracking method was employed to monitor functionalized MPs biodistribution in vivo. Our results identified that the liver is the primary accumulation site of polystyrene microplastics (PS-MPs) in biological systems through continuous in vivo monitoring spanning 21 days. Biochemical tests were performed to assess the toxicological effects of functionalized MPs on the liver tissue, revealing hepatocyte death, inflammatory cell infiltration, and alterations in alkaline phosphatase levels. Notably, positively charged MPs exhibited more severe effects. A combined metabolomics-proteomics analysis further revealed that PS-MPs interfered with hepatic metabolic pathways, particularly bile secretion and ABC transporters. Overall, this study effectively assessed the distribution of functionalized MPs in vivo utilizing MRI technology, validated toxicity in targeted organ, and conducted an in-depth study on underlying biotoxicity mechanism. These findings offer crucial scientific insights into the potential impact of MPs in the actual environment on human health.
Collapse
Affiliation(s)
- Yuanyuan Hou
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in South China, Laboratory of Urban Forest Ecology of Hunan Province, China; Department of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Dujun Bian
- Radiology Department, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yunmu Xiao
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in South China, Laboratory of Urban Forest Ecology of Hunan Province, China; Department of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Jian Huang
- Obstetrics & Gynecology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jiayi Liu
- Radiology Department, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Enhua Xiao
- Radiology Department, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ziqian Li
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in South China, Laboratory of Urban Forest Ecology of Hunan Province, China; Department of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Wende Yan
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in South China, Laboratory of Urban Forest Ecology of Hunan Province, China; Department of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yong Li
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in South China, Laboratory of Urban Forest Ecology of Hunan Province, China; Department of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| |
Collapse
|
18
|
Dewika M, Markandan K, Ruwaida JN, Sara YY, Deb A, Irfan NA, Khalid M. Integrating the quintuple helix approach into atmospheric microplastics management policies for planetary health preservation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176063. [PMID: 39245389 DOI: 10.1016/j.scitotenv.2024.176063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Microplastic pollution has become a major global environmental issue, negatively impacting terrestrial and aquatic ecosystems as well as human health. Tackling this complex problem necessitates a multidisciplinary approach and collaboration among diverse stakeholders. Within this context, the Quintuple Helix framework, which highlights the involvement of academia, government, industry, civil society, and the environment, provides a comprehensive and inclusive perspective for formulating effective policies to manage atmospheric microplastics. This paper discusses each helix's roles, challenges, and opportunities and proposes strategies for collaboration and knowledge exchange among them. Furthermore, the paper highlights the importance of interdisciplinary research, innovative technologies, public awareness campaigns, regulatory frameworks, and corporate responsibility in achieving sustainable and resilient microplastic management policies. The Quintuple Helix approach can mitigate microplastics, safeguard ecosystems, and preserve planetary health by fostering collaboration and coordination among diverse stakeholders.
Collapse
Affiliation(s)
- M Dewika
- School of American Education, Sunway University, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| | - Kalaimani Markandan
- Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
| | - J Nor Ruwaida
- Air Resources Research Laboratory, Malaysia Japan International Institute of Technology, 54100 UTM Kuala Lumpur, Malaysia
| | - Y Y Sara
- Faculty of Civil Engineering & Technology, University Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Anjan Deb
- Department of Chemistry, University of Helsinki, FI-00014, Finland
| | - N Ahmad Irfan
- School of American Education, Sunway University, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Mohammad Khalid
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK; Faculty of Engineering, Manipal University Jaipur, Rajasthan, 303007, India; University Centre for Research and Development, Chandigarh University, Mohali, Punjab 140413, India.
| |
Collapse
|
19
|
Dukek P, Schleheck D, Kovermann M. High-resolution NMR spectroscopic approaches to quantify PET microplastics pollution in environmental freshwater samples. CHEMOSPHERE 2024; 367:143657. [PMID: 39486629 DOI: 10.1016/j.chemosphere.2024.143657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Reliable identification and precise quantification of microplastics pollution of the environment are essential prerequisites to comprehend the impact of microplastics on Earth's ecosystems. In this study, we propose a workflow to examine polyethylene terephthalate (PET) contamination of environmental surface waters by applying high-resolution nuclear magnetic resonance (NMR) spectroscopic approaches. The detection of PET by high-resolution NMR spectroscopy enables the unambiguous identification and - at the same time - precise quantification at atomic resolution independent from the size of the particles obtained from surface waters. Monitoring the properties of translational diffusion and relaxation of PET chains present in the samples obtained from Lake Constance water by filtration ('Manta trawls'), extraction and dissolving, hints towards a rather heterogeneous distribution in length of the PET chains. The workflow developed here achieved a limit of detection of 192.2 ng PET and a recovery rate of 88 ± 25% for PET microplastics that was spiked to the Manta trawls. The NMR driven analysis led to a concentration determination of 335 ± 200 ng PET per cubic meter of Lake Constance water. The workflow developed here offers not only a simple and reliable quantitative determination of the mass of PET in environmental samples independent of particle size but is additionally providing insights into the inherent polymeric features of PET, which are not accessible through other established methods of microplastics detection. Therefore, a broad application of the NMR spectroscopic approach presented here can be assumed.
Collapse
Affiliation(s)
- Paul Dukek
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - David Schleheck
- Limnological Institute, Department of Biology, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
20
|
Deng C, Zhu J, Fang Z, Yang Y, Zhao Q, Zhang Z, Jin Z, Jiang H. Identification and analysis of microplastics in para-tumor and tumor of human prostate. EBioMedicine 2024; 108:105360. [PMID: 39341155 PMCID: PMC11481604 DOI: 10.1016/j.ebiom.2024.105360] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND While microplastics are widely found in various human organs and tissues, the relationship between microplastics and human health, especially prostate health, remains unclear. This study aims to identify and quantify the properties, types, and abundance of microplastics in paired para-tumor and tumor tissues of human prostate. Additionally, the potential correlation between microplastics abundance and prostate cancer are investigated. METHODS Paired para-tumor and tumor samples of the prostate were collected from 22 patients who underwent robot-assisted radical prostatectomy. A combination of laser direct infrared spectroscopy, scanning electron microscopy and pyrolysis-gas chromatography-mass spectrometry was utilized to analyse the properties, type and abundance of microplastics. Correlations between microplastics abundance, demographic characteristics and clinical features of patients were also examined. FINDINGS Laser direct infrared analysis revealed the presence of microplastics, including polyamide, polyethylene terephthalate, and polyvinyl chloride, in both para-tumor and tumor tissues of human prostate. However, polystyrene was exclusively detected in tumor tissues. The particle size distribution in the prostate tissue mainly ranged from 20 to 100 μm. Approximately 31.58% of para-tumor samples exhibited sizes between 20 and 30 μm, while 35.21% of tumor samples displayed sizes between 50 and 100 μm. The shapes of these microplastics varied considerably with irregular forms being predominant. Additionally, microplastics were detected by pyrolysis-gas chromatography-mass spectrometry in 20 paired prostate tissues. The mean abundance of microplastics was found to be 181.0 μg/g and 290.3 μg/g in para-tumor and tumor of human prostate samples, respectively. Among the 11 target types microplastics polymers, only polystyrene, polypropylene, polyethylene, and polyvinyl chloride were detected. Notably, polystyrene, polyethylene, and polyvinyl chloride, except for polypropylene, demonstrated significantly higher abundance in tumor tissues compared to their respective paired para-tumor. Furthermore, a positive correlation was observed between polystyrene abundance in the tumor samples of human prostate and frequency of take-out food consumption. INTERPRETATION This research provides both qualitative and quantitative evidence of the microplastics presence as well as their properties, types, and abundance in paired para-tumor and tumor samples of human prostate. Correlations between microplastics abundance, demographics, and clinical characteristics of patients need to be further validated in future studies with a larger sample size. FUNDING This work was supported by the National Key Research and Development Program of China (2022YFC2702600) and the National Natural Science Foundation of China (Grant No. 82071698, No. 82101676, and No. 82271630).
Collapse
Affiliation(s)
- Chenyao Deng
- Department of Urology, Peking University First Hospital, Beijing, 100034, China; The Institution of Urology, Peking University, Beijing, 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China; National Urological Cancer Center, Beijing, 100034, China
| | - Jun Zhu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China; The Institution of Urology, Peking University, Beijing, 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China; National Urological Cancer Center, Beijing, 100034, China
| | - Zishui Fang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China; The Institution of Urology, Peking University, Beijing, 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China; National Urological Cancer Center, Beijing, 100034, China
| | - Yuzhuo Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, 100034, China
| | - Qiancheng Zhao
- Department of Urology, Peking University First Hospital, Beijing, 100034, China; The Institution of Urology, Peking University, Beijing, 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China; National Urological Cancer Center, Beijing, 100034, China
| | - Zhe Zhang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Zirun Jin
- Department of Urology, Peking University First Hospital, Beijing, 100034, China; The Institution of Urology, Peking University, Beijing, 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China; National Urological Cancer Center, Beijing, 100034, China.
| | - Hui Jiang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China; The Institution of Urology, Peking University, Beijing, 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China; National Urological Cancer Center, Beijing, 100034, China.
| |
Collapse
|
21
|
Liu G, Jiang Q, Qin L, Zeng Z, Zhang P, Feng B, Liu X, Qing Z, Qing T. The influence of digestive tract protein on cytotoxicity of polyvinyl chloride microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174023. [PMID: 38885711 DOI: 10.1016/j.scitotenv.2024.174023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Microplastics in food and drinking water can enter the human body through oral exposure, posing potential health risks to the human health. Most studies on the toxic effects of microplastics have focused on aquatic organisms, but the effects of the human digestive environment on the physicochemical properties of microplastics and their potential toxicity during gastrointestinal digestion are often limited. In this study, we first studied the influence of interactions between digestive tract protein (α-amylase, pepsin, and trypsin) and microplastics on the activity and conformation of digestive enzymes, and the physicochemical properties of polyvinyl chloride microplastics (PVC-MPs). Subsequently, a simulated digestion assay was performed to determine the biotransformation of PVC-MPs in the digestive tract and the intestinal toxicity of PVC-MPs. The in vitro experiments showed that the protein structure and activity of digestive enzymes were changed after adsorption by microplastics. After digestion, the static contact angle of PVC-MPs was decreased, indicating that the hydrophilicity of the PVC-MPs increased, which will increase its mobility in organisms. Cell experiment showed that the altered physicochemical property of PVC-MPs after digestion process also affect its cytotoxicity, including cellular uptake, cell viability, cell membrane integrity, reactive oxygen species levels, and mitochondrial membrane potential. Transcriptome analyses further confirmed the enhanced biotoxic effect of PVC-MPs after digestion treatment. Therefore, the ecological risk of microplastics may be underestimated owing to the interactions of microplastics and digestive tract protein during biological ingestion.
Collapse
Affiliation(s)
- Gonghao Liu
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China; Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| | - Qianwen Jiang
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Lingfeng Qin
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Zihang Zeng
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Peng Zhang
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Bo Feng
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Xiaofeng Liu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| | - Taiping Qing
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China.
| |
Collapse
|
22
|
Calvigioni M, Mazzantini D, Celandroni F, Vozzi G, Ghelardi E. Cultivating complexity: Advancements in establishing in vitro models for the mucus-adhering gut microbiota. Microb Biotechnol 2024; 17:e70036. [PMID: 39435730 PMCID: PMC11494453 DOI: 10.1111/1751-7915.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
A healthy mucus is essential for maintaining intestinal homeostasis and overall well-being. In recent years, extensive research focused on understanding the intricate interactions between mucus and the gut microbiota. Mucus-adhering bacteria play crucial roles in preserving barrier integrity, epithelial permeability and mucus architecture, as well as in the colonization resistance against pathogens. Unravelling the significance of these microorganisms in human health and disease is challenging, primarily because most of the studies on the human gut microbiota rely on faecal samples, which do not fully represent the microecological complexity found in the intestinal mucosa. This review discusses novel strategies to specifically target and evaluate the mucosal microbiota, such as culturomics applied to mucosal biopsies or brushings, intestinal organoids and artificial in vitro models incorporating mucus.
Collapse
Affiliation(s)
- Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Giovanni Vozzi
- Department of Information BioengineeringUniversity of PisaPisaItaly
- Research Center Enrico PiaggioUniversity of PisaPisaItaly
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
- Research Center Nutraceuticals and Food for Health – NutrafoodUniversity of PisaPisaItaly
| |
Collapse
|
23
|
Liang B, Deng Y, Huang Y, Zhong Y, Li Z, Du J, Ye R, Feng Y, Bai R, Fan B, Chen X, Huang X, Yang X, Xian H, Yang X, Huang Z. Fragile Guts Make Fragile Brains: Intestinal Epithelial Nrf2 Deficiency Exacerbates Neurotoxicity Induced by Polystyrene Nanoplastics. ACS NANO 2024; 18:24044-24059. [PMID: 39158845 DOI: 10.1021/acsnano.4c03874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Oral ingestion is the primary route for human exposure to nanoplastics, making the gastrointestinal tract one of the first and most impacted organs. Given the presence of the gut-brain axis, a crucial concern arises regarding the potential impact of intestinal damage on the neurotoxic effects of nanoplastics (NPs). The intricate mechanisms underlying NP-induced neurotoxicity through the microbiome-gut-brain axis necessitate further investigation. To address this, we used mice specifically engineered with nuclear factor erythroid-derived 2-related factor 2 (Nrf2) deficiency in their intestines, a strain whose intestines are particularly susceptible to polystyrene NPs (PS-NPs). We conducted a 28-day repeated-dose oral toxicity study with 2.5 and 250 mg/kg of 50 nm PS-NPs in these mice. Our study delineated how PS-NP exposure caused gut microbiota dysbiosis, characterized by Mycoplasma and Coriobacteriaceae proliferation, resulting in increased levels of interleukin 17C (IL-17C) production in the intestines. The surplus IL-17C permeated the brain via the bloodstream, triggering inflammation and brain damage. Our investigation elucidated a direct correlation between intestinal health and neurological outcomes in the context of PS-NP exposure. Susceptible mice with fragile guts exhibited heightened neurotoxicity induced by PS-NPs. This phenomenon was attributed to the elevated abundance of microbiota associated with IL-17C production in the intestines of these mice, such as Mesorhizobium and Lwoffii, provoked by PS-NPs. Neurotoxicity was alleviated by in vivo treatment with anti-IL-17C-neutralizing antibodies or antibiotics. These findings advanced our comprehension of the regulatory mechanisms governing the gut-brain axis in PS-NP-induced neurotoxicity and underscored the critical importance of maintaining intestinal health to mitigate the neurotoxic effects of PS-NPs.
Collapse
Affiliation(s)
- Boxuan Liang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yanhong Deng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yizhou Zhong
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhiming Li
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Du
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Feng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ruobing Bai
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bingchi Fan
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Chen
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiyun Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaohong Yang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xingfen Yang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
24
|
Nalbone L, Giarratana F, Genovese M, Panebianco A. Occurrence of microplastics in store-bought fresh and processed clams in Italy. MARINE POLLUTION BULLETIN 2024; 206:116739. [PMID: 39029150 DOI: 10.1016/j.marpolbul.2024.116739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Compared to the large amount of data on wild samples, only a few studies reported microplastic occurrence in store-bought bivalves in which the production chain can be the main contamination route. Microplastic occurrence was herein investigated in 100 samples of store-bought clams sold as fresh or processed (vacuum-frozen or in brine) in Italy. A 10 % KOH was used for soft tissue digestion and FT-IR spectroscopy for polymer identification. A total of 135 potential microplastics ranging in size between 20 μm and 5000 μm were enumerated estimating an annual dietary intake via clam consumption of 59.472 microplastics/person. No significant difference in the average abundance between the two commercial conditions was observed, while a prevalence of smaller particles was detected in processed samples suggesting a detrimental effect of cooking during production. Polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) were identified posing an overall low risk (class II). Microplastic occurrence in store-bought seafood requires additional and specific attention and future studies should investigate microplastic contribution linked to the production chain.
Collapse
Affiliation(s)
- Luca Nalbone
- Department of Veterinary Science, University of Messina, Polo Universitario dell 'Annunziata, Viale Giovanni Palatucci SNC, 98168 Messina, Italy.
| | - Filippo Giarratana
- Department of Veterinary Science, University of Messina, Polo Universitario dell 'Annunziata, Viale Giovanni Palatucci SNC, 98168 Messina, Italy; Riconnexia srls, Department of Veterinary Science, University of Messina, Polo Universitario dell 'Annunziata, Viale Giovanni Palatucci SNC, 98168 Messina, Italy.
| | - Martina Genovese
- Department of Veterinary Science, University of Messina, Polo Universitario dell 'Annunziata, Viale Giovanni Palatucci SNC, 98168 Messina, Italy.
| | - Antonio Panebianco
- Department of Veterinary Science, University of Messina, Polo Universitario dell 'Annunziata, Viale Giovanni Palatucci SNC, 98168 Messina, Italy.
| |
Collapse
|
25
|
Morgan SE, DeLouise LA. Assessing bioactivity of environmental water samples filtered using nanomembrane technology and mammalian cell lines. ECO-ENVIRONMENT & HEALTH 2024; 3:347-354. [PMID: 39281073 PMCID: PMC11400607 DOI: 10.1016/j.eehl.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 09/18/2024]
Abstract
This project reports on the use of a novel nanomembrane filtering technology to isolate and analyze the bioactivity of microplastic (MP)-containing debris from Lake Ontario water samples. Environmental MPs are a complex mixture of polymers and sorbed chemicals that are persistent and can exhibit a wide range of toxic effects. Since human exposure to MPs is unavoidable, it is necessary to characterize their bioactivity to assess potential health risks. This work seeks to quantify MP presence in the nearshore waters of Lake Ontario and begin to characterize the bioactivity of the filtrate containing MPs. We utilized silicon nitride (SiN) nanomembrane technology to isolate debris sized between 8 and 20 μm from lake water samples collected at various times and locations. MPs were identified with Nile red staining. Cell-based assays were conducted directly on the filtered debris to test for cell viability, aryl hydrocarbon receptor (AhR) activity, and interleukin 6 (IL-6) levels as a measure of proinflammatory response. All samples contained MPs. None of the isolated debris impacted cell viability. However, AhR activity and IL-6 levels varied over time. Additionally, no associations were observed between the amount of plastic and bioactivity. Observed differences in activity are likely due to variations in the physiochemical properties of debris between samples. Our results highlight the need for increased sampling to fully characterize the bioactivity of MPs in human cells and to elucidate the role that sample physiochemical and spatiotemporal properties play in this activity.
Collapse
Affiliation(s)
- Sarah E. Morgan
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Lake Ontario Center for Microplastics and Human Health in a Changing Environment, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lisa A. DeLouise
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Lake Ontario Center for Microplastics and Human Health in a Changing Environment, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
26
|
Snekkevik VK, Cole M, Gomiero A, Haave M, Khan FR, Lusher AL. Beyond the food on your plate: Investigating sources of microplastic contamination in home kitchens. Heliyon 2024; 10:e35022. [PMID: 39170486 PMCID: PMC11336334 DOI: 10.1016/j.heliyon.2024.e35022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Given that a substantial amount of time is spent in kitchens preparing food, the kitchen equipment used may be relevant in determining the composition and amount of microplastics ending up on our dinner plate. While previous research has predominantly focused on foodstuffs as a source of microplastics, we emphasise that micro- and nanoplastics are ubiquitous and likely originate from diverse sources. To address the existing knowledge gap regarding additional sources contributing to microplastics on our dinner plates, this review investigates various kitchen processes, utensils and equipment (excluding single-use items and foodstuffs) to get a better understanding of potential microplastic sources within a home kitchen. Conducting a narrative literature review using terms related to kitchenware and kitchen-affiliated equipment and processes, this study underscores that the selection of preparation tools, storage, serving, cooking, and cleaning procedures in our kitchens may have a significant impact on microplastic exposure. Mechanical, physical, and chemical processes occurring during food preparation contribute to the release of microplastic particles, challenging the assumption that exposure to microplastics in food is solely tied to food products or packaging. This review highlights diverse sources of microplastics in home kitchens, posing concerns for food safety and human health.
Collapse
Affiliation(s)
| | - Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory (PML), Plymouth, PL1 3DH, UK
| | - Alessio Gomiero
- Norwegian Research Centre (NORCE), Department of Climate & Environment, Mekjarvik 12, 4072, Randaberg, Norway
| | - Marte Haave
- SALT Lofoten AS, Pb. 91, Fiskergata 23, 8301, Svolvær, Norway
- Norwegian Research Centre (NORCE), Department of Climate & Environment, Nygårdsgt 112, 5008, Bergen, Norway
| | - Farhan R. Khan
- Norwegian Research Centre (NORCE), Department of Climate & Environment, Nygårdsgt 112, 5008, Bergen, Norway
| | - Amy L. Lusher
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| |
Collapse
|
27
|
Ghosal S, Bag S, Rao SR, Bhowmik S. Exposure to polyethylene microplastics exacerbate inflammatory bowel disease tightly associated with intestinal gut microflora. RSC Adv 2024; 14:25130-25148. [PMID: 39139248 PMCID: PMC11320195 DOI: 10.1039/d4ra04544k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Polyethylene microplastics (PE MPs) have sparked widespread concern about their possible health implications because of their abundance, pervasiveness in the environment and in our daily life. Multiple investigations have shown that a high dosage of PE MPs may adversely impact gastrointestinal health. In tandem with the rising prevalence of Inflammatory bowel disease (IBD) in recent decades, global plastic manufacturing has risen to more than 300 million tons per year, resulting in a build-up of plastic by-products such as PE MPs in our surroundings. We have explored current advancements in the effect PE MPs on IBD in this review. Furthermore, we compared and summarized the detrimental roles of PE MPs in gut microbiota of different organisms viz., earthworms, super worm's larvae, yellow mealworms, brine shrimp, spring tails, tilapia, gilt-head bream, crucian carp, zebrafish, juvenile yellow perch, European sea bass, c57BL/6 mice and human. According to this review, PE MPs played a significant role in decreasing the diversity of gut microbiota of above-mentioned species which leads to the development of IBD and causes severe intestinal inflammation. Finally, we pinpoint significant scientific gaps, such as the movement of such hazardous PE MPs and the accompanying microbial ecosystems and propose prospective research directions.
Collapse
Affiliation(s)
- Souvik Ghosal
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondy-Cuddalore Main Road, Pillaiyarkuppam Pondicherry - 607402 India
| | - Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta 92, A. P. C. Road Kolkata - 700009 India
| | - S R Rao
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondy-Cuddalore Main Road, Pillaiyarkuppam Pondicherry - 607402 India
| | - Sudipta Bhowmik
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondy-Cuddalore Main Road, Pillaiyarkuppam Pondicherry - 607402 India
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta 92, A. P. C. Road Kolkata - 700009 India
| |
Collapse
|
28
|
Wiese M, van der Wurff M, Ouwens A, van Leijden B, Verheij ER, Heerikhuisen M, van der Vossen JMBM. Modeling the effects of prebiotic interventions on luminal and mucosa-associated gut microbiota without and with Clostridium difficile challenge in vitro. Front Nutr 2024; 11:1403007. [PMID: 39183984 PMCID: PMC11342808 DOI: 10.3389/fnut.2024.1403007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/10/2024] [Indexed: 08/27/2024] Open
Abstract
Prebiotics can modulate the gut microbial community composition and function for improved (gut) health and increase resilience against infections. In vitro models of the gut facilitate the study of intervention effects on the gut microbial community relevant to health. The mucosa-associated gut microbiota, which thrives in close contact with the host plays a pivotal role in colonization resistance and health. Therefore, we here introduce the Mi-screen, an experimental approach implementing a 96-well plate equipped with a mucus agar layer for the additional culturing of mucosa-associated microbiota in vitro. In this study, we screened the effects of 2'-Fucosyllactose (2'-FL), fructooligosaccharides (FOS), and inulin within a complex microbiota without and with infection with the C. difficile strains ATCC 43599 (Ribotype 001) or ATCC BAA-1870 (Ribotype 027). We analyzed the microbial community composition and short-chain fatty acid levels after 48 h of incubation. The inclusion of an additional substrate and surface in the form of the mucus agar layer allowed us to culture a microbial richness ranging between 100-160 in Chao index, with Shannon indices of 5-6 across culture conditions, indicative of a microbial diversity of physiological relevance. The mucus agar layer stimulated the growth of characteristic mucosa-associated bacteria such as Roseburia inulinovorans. The prebiotic interventions affected luminal and mucosal microbial communities cultured in vitro and stimulated short-chain fatty acid production. FOS, inulin and 2'-FL promoted the growth of Bifidobacterium adolescentis within the mucosa-associated microbiota cultured in vitro. When spiking the untreated conditions with pathogenic C. difficile, the strains thrived within the luminal and the mucosal sample types, whereas prebiotic treatments exhibited inhibitory effects on C. difficile growth and prevented colonization. In conclusion, the Mi-screen facilitates the screening of luminal and mucosa-associated gut microbial community dynamics in vitro and therefore fills an important gap in the field of in vitro modeling.
Collapse
Affiliation(s)
- Maria Wiese
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Michelle van der Wurff
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Anita Ouwens
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Bowien van Leijden
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Elwin R. Verheij
- Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Margreet Heerikhuisen
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Jos M. B. M. van der Vossen
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| |
Collapse
|
29
|
Nissen L, Spisni E, Spigarelli R, Casciano F, Valerii MC, Fabbri E, Fabbri D, Zulfiqar H, Coralli I, Gianotti A. Single exposure of food-derived polyethylene and polystyrene microplastics profoundly affects gut microbiome in an in vitro colon model. ENVIRONMENT INTERNATIONAL 2024; 190:108884. [PMID: 39004044 DOI: 10.1016/j.envint.2024.108884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Microplastics (MPs) are widespread contaminants highly persistent in the environment and present in matrices to which humans are extensively exposed, including food and beverages. MP ingestion occurs in adults and children and is becoming an emerging public health issue. The gastrointestinal system is the most exposed to MP contamination, which can alter its physiology starting from changes in the microbiome. This study investigates by an omic approach the impact of a single intake of a mixture of polyethylene (PE) and polystyrene (PS) MPs on the ecology and metabolic activity of the colon microbiota of healthy volunteers, in an in vitro intestinal model. PE and PS MPs were pooled together in a homogeneous mix, digested with the INFOGEST system, and fermented with MICODE (multi-unit in vitro colon model) at loads that by literature correspond to the possible intake of food-derived MPs of a single meal. Results demonstrated that MPs induced an opportunistic bacteria overgrowth (Enterobacteriaceae, Desulfovibrio spp., Clostridium group I and Atopobium - Collinsella group) and a contextual reduction on abundances of all the beneficial taxa analyzed, with the sole exception of Lactobacillales. This microbiota shift was consistent with the changes recorded in the bacterial metabolic activity.
Collapse
Affiliation(s)
- Lorenzo Nissen
- DiSTAL - Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60 47521, Cesena, Italy; CIRI - Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60 47521, Cesena, Italy; CRBA, Centre for Applied Biomedical Research, Alma Mater Studiorum - University of Bologna, Policlinico di Sant'Orsola, Bologna 40100, Italy.
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Science, Alma Mater Studiorum University of Bologna, Via Selmi 3 40126, Bologna, Italy; CRBA, Centre for Applied Biomedical Research, Alma Mater Studiorum - University of Bologna, Policlinico di Sant'Orsola, Bologna 40100, Italy.
| | - Renato Spigarelli
- Department of Biological, Geological and Environmental Science, Alma Mater Studiorum University of Bologna, Via Selmi 3 40126, Bologna, Italy.
| | - Flavia Casciano
- DiSTAL - Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60 47521, Cesena, Italy; CIRI - Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60 47521, Cesena, Italy; CRBA, Centre for Applied Biomedical Research, Alma Mater Studiorum - University of Bologna, Policlinico di Sant'Orsola, Bologna 40100, Italy.
| | - Maria Chiara Valerii
- Department of Biological, Geological and Environmental Science, Alma Mater Studiorum University of Bologna, Via Selmi 3 40126, Bologna, Italy.
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Science, Alma Mater Studiorum University of Bologna, Via Selmi 3 40126, Bologna, Italy.
| | - Daniele Fabbri
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Tecnopolo di Rimini, via Dario Campana 71 47922, Rimini, Italy.
| | - Hira Zulfiqar
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Tecnopolo di Rimini, via Dario Campana 71 47922, Rimini, Italy.
| | - Irene Coralli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Tecnopolo di Rimini, via Dario Campana 71 47922, Rimini, Italy.
| | - Andrea Gianotti
- DiSTAL - Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60 47521, Cesena, Italy; CIRI - Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60 47521, Cesena, Italy; CRBA, Centre for Applied Biomedical Research, Alma Mater Studiorum - University of Bologna, Policlinico di Sant'Orsola, Bologna 40100, Italy.
| |
Collapse
|
30
|
Tassone S, Barbera S, Kaihara H, Glorio Patrucco S, Abid K. First Evidence of the Effects of Polyethylene Terephthalate Microplastics on Ruminal Degradability and Gastro-Intestinal Digestibility of Mixed Hay. Animals (Basel) 2024; 14:2139. [PMID: 39123665 PMCID: PMC11311064 DOI: 10.3390/ani14152139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Microplastics (MPs) raise environmental concerns. However, their effects on the ruminal-gastro-intestinal system have not yet been studied. This study aims to investigate the effects of polyethylene terephthalate (PET) MPs on the ability of the ruminal-gastro-intestinal system to degrade and digest mixed hay. Using a three-step in vitro ruminal-gastro-intestinal incubation system, PET MPs were introduced at concentrations of 0, 5, 10, and 15 g/L in ruminal and gastro-intestinal solutions. Ruminal fluid was collected from three 16-month-old Piedmontese bulls. The experiment was conducted on three mixed hays and was repeated three times, with triplicate incubations in each run. The results reveal that PET MPs reduced the degradability and digestibility of crude protein. Specifically, crude protein degradation was reduced by 9% at medium and 16% at high PET MP concentrations in the ruminal phase, while the crude protein digestibility of undegraded crude protein was reduced by 8% at the lowest PET MPs concentration in the gastro-intestinal tract. Additionally, PET MPs reduced the degradation of neutral detergent fiber at medium and high PET MP concentrations in the ruminal phase by 9% and 13%, respectively. These results highlight the risks of PET MPs contamination on ruminal-gastro-intestinal functions and underscore the urgent need to mitigate MPs contamination in the livestock sector.
Collapse
Affiliation(s)
| | | | | | | | - Khalil Abid
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, TO, Italy; (S.T.); (S.B.); (H.K.); (S.G.P.)
| |
Collapse
|
31
|
Prabhu K, Ghosh S, Sethulekshmi S, Shriwastav A. In vitro digestion of microplastics in human digestive system: Insights into particle morphological changes and chemical leaching. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173173. [PMID: 38740201 DOI: 10.1016/j.scitotenv.2024.173173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/18/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Despite the well-reported occurrences and established pathways for microplastics (MPs) ingestion by humans, the eventual fate of these particles in the human gastrointestinal system is poorly understood. The present study tries to gain a better understanding of the fate of four common food-borne MPs, i.e. Polystyrene (PS), Polypropylene (PP), Low-density Polyethylene (LDPE), and Nylon, in a simulated in vitro human digestive system. Firstly, the changes in the physicochemical properties of 20-210 μm sized MPs as well as the leaching of chemicals were monitored using fluorescence microscopy, FTIR, and LC-QTOF-MS. Thereafter, the mass loss and morphological alterations in 3-4 mm sized MPs were observed after removing the organic matter. The interaction of PS and PP MPs with duodenal and bile juices manifested in a corona formation. The increase in surface roughness in PP MPs aligned with MP-enzyme dehydrogenation reactions and the addition of NO groups. A few fragments ranging from 30 to 250 μm, with negligible mass loss, were released during the MP digestion process. In addition, the leaching of compounds, e.g. capsi-amide, butanamide, and other plasticizers and monomers was also observed from MPs during digestion, and which may have the potential to accumulate and get absorbed by the digestive organs, and to subsequently impart toxic effects.
Collapse
Affiliation(s)
- Keerthana Prabhu
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Sayanti Ghosh
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - S Sethulekshmi
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Amritanshu Shriwastav
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400 076, India.
| |
Collapse
|
32
|
Ganie ZA, Mandal A, Arya L, T S, Talib M, Darbha GK. Assessment and accumulation of microplastics in the Indian riverine systems: Risk assessment and implications of translocation across the water-to-fish continuum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106944. [PMID: 38823071 DOI: 10.1016/j.aquatox.2024.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Microplastic (MP) pollution has engulfed global aquatic systems, and the concerns about microplastic translocation and bioaccumulation in fish and other aquatic organisms are now an unpleasant truth. In the past few years, MP pollution in freshwater systems, particularly rivers and subsequently in freshwater organisms, especially in fish, has caught the attention of researchers. Rivers provide livelihood to approximately 40 % of the global population through food and potable water. Hence, assessment of emerging contaminants like microplastics in rivers and the associated fauna is crucial. This study assessed microplastics (MPs) in fish, sediment and freshwater samples across the third largest riverine system of peninsular India, the Mahanadi River. The number concentrations of MPs measured in water, sediment and fish ranged from 337.5 ± 54.4-1333.3 ± 557.2 MPs/m3, 14.7 ± 3.7-69.3 ± 10.1 MPs/kg. Dry weight and 0.4-3.2 MPs/Fish, respectively. Surprisingly, MPs were found in every second fish sample, with a higher MP number in the gut than in the gills. Black and blue coloured filaments with <0.5 mm size were the dominant MPs with polypropylene and polyethylene polymers in abundance. The Polymer Hazard Index (PHI) and the Potential Ecological Risk Index (PERI) studies revealed that the majority of the sampling sites fell in Risk category V (dangerous category). An irregular trend in the MP concentration was observed downstream of the river, though relatively elevated MP concentrations in water and fish samples were observed downstream of the river. t-Distributed Stochastic Neighbour Embedding (t-SNE) unveiled distinct patterns in MP distribution with a higher similarity exhibited in the MPs found in fish gill and gut samples, unlike water and sediment, which shared certain characteristics. The findings in the current study contribute to filling the knowledge gap of MP assessment and accumulation in global freshwater systems and highlight the microplastic contamination and accumulation in fish with its potential implications on human health.
Collapse
Affiliation(s)
- Zahid Ahmad Ganie
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Abhishek Mandal
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Lavish Arya
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Sangeetha T
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Mohmmed Talib
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|
33
|
O'Sullivan D, Arora T, Durif C, Uriot O, Brun M, Riu M, Foguet-Romero E, Samarra I, Domingo-Almenara X, Gahan CGM, Etienne-Mesmin L, Blanquet-Diot S. Impact of Western Diet on Enterohemorrhagic Escherichia coli Colonization in the Human In Vitro Mucosal Artificial Colon as Mediated by Gut Microbiota. Nutrients 2024; 16:2046. [PMID: 38999794 PMCID: PMC11243482 DOI: 10.3390/nu16132046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a major food-borne pathogen that causes human disease ranging from diarrhea to life-threatening complications. Accumulating evidence demonstrates that the Western diet enhances the susceptibility to enteric infection in mice, but the effect of diet on EHEC colonization and the role of human gut microbiota remains unknown. Our research aimed to investigate the effects of a Standard versus a Western diet on EHEC colonization in the human in vitro Mucosal ARtificial COLon (M-ARCOL) and the associated changes in the gut microbiota composition and activities. After donor selection using simplified fecal batch experiments, two M-ARCOL bioreactors were inoculated with a human fecal sample (n = 4) and were run in parallel, one receiving a Standard diet, the other a Western diet and infected with EHEC O157:H7 strain EDL933. EHEC colonization was dependent on the donor and diet in the luminal samples, but was maintained in the mucosal compartment without elimination, suggesting a favorable niche for the pathogen, and may act as a reservoir. The Western diet also impacted the bacterial short-chain fatty acid and bile acid profiles, with a possible link between high butyrate concentrations and prolonged EHEC colonization. The work demonstrates the application of a complex in vitro model to provide insights into diet, microbiota, and pathogen interactions in the human gut.
Collapse
Affiliation(s)
- Deborah O'Sullivan
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Trisha Arora
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
- Department of Electrical, Electronic and Control Engineering (DEEEA), Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Computational Metabolomics for Systems Biology Lab, Eurecat-Technology Centre of Catalonia, 08005 Barcelona, Spain
| | - Claude Durif
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Ophélie Uriot
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Morgane Brun
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Marc Riu
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
| | - Elisabet Foguet-Romero
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
| | - Iris Samarra
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
| | - Xavier Domingo-Almenara
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
- Department of Electrical, Electronic and Control Engineering (DEEEA), Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Computational Metabolomics for Systems Biology Lab, Eurecat-Technology Centre of Catalonia, 08005 Barcelona, Spain
| | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| | - Lucie Etienne-Mesmin
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Stéphanie Blanquet-Diot
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| |
Collapse
|
34
|
da Silva Brochado MG, de Noronha BG, da Costa Lima A, Guedes AG, da Silva RC, Dos Santos Dias DCF, Mendes KF. What is the most effective analytical method for quantification and identification of microplastics in contaminated soils? ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:260. [PMID: 38907119 DOI: 10.1007/s10653-024-02082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
The increasing concern over microplastics (MPs) contamination in agricultural soils due to excessive plastic use is a worldwide concern. The objective of this study was to determine which analytical technique is most effective for the analysis of MPs in agricultural soils. Near-infrared spectroscopy (NIR), scanning electron microscopy (SEM), multispectral analysis, and X-ray diffraction were used to analyze sections of clay soil containing varying percentages of virgin white MPs from 0 to 100%. X-ray analysis only detected MPs at high concentrations (20%). However, NIR at 2.300 nm and multispectral analysis at 395 nm demonstrated greater accuracy and sensitivity in distinguishing between all MPs levels. SEM revealed that MPs have an amorphous structure that is distinct from crystalline soil, potentially influencing their interactions with other soil constituents. These findings highlight the value of NIR and multispectral analysis in accurately identifying and measuring MPs in soil. Efficient management plans rely on increased awareness of MPs' environmental impact.
Collapse
Affiliation(s)
| | | | | | - Allana Grecco Guedes
- Department of Entomology, Federal University of Viçosa, Viçosa, 36570-900, Brazil
| | | | | | - Kassio Ferreira Mendes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, 13400-970, Brazil
| |
Collapse
|
35
|
Cole M, Gomiero A, Jaén-Gil A, Haave M, Lusher A. Microplastic and PTFE contamination of food from cookware. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172577. [PMID: 38641111 DOI: 10.1016/j.scitotenv.2024.172577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Microplastics are a prolific environmental contaminant that have been evidenced in human tissues. Human uptake of microplastic occurs via inhalation of airborne fibres and ingestion of microplastic-contaminated foods and beverages. Plastic and PTFE-coated cookware and food contact materials may release micro- and nanoplastics into food during food preparation. In this study, the extent to which non-plastic, new plastic and old plastic cookware releases microplastics into prepared food is investigated. Jelly is used as a food simulant, undergoing a series of processing steps including heating, cooling, mixing, slicing and storage to replicate food preparation steps undertaken in home kitchens. Using non-plastic cookware did not introduce microplastics to the food simulant. Conversely, using new and old plastic cookware resulted in significant increases in microplastic contamination. Microplastics comprised PTFE, polyethylene and polypropylene particulates and fibrous particles, ranging 13-318 μm. Assuming a meal was prepared daily per the prescribed methodology, new and old plastic cookware may be contributing 2409-4964 microplastics per annum into homecooked food. The health implications of ingesting microplastics remains unclear.
Collapse
Affiliation(s)
- Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory (PML), Plymouth PL1 3DH, UK.
| | - Alessio Gomiero
- NORCE Norwegian Research Centre, Mekjarvik 12, 4072 Randaberg, Norway
| | - Adrián Jaén-Gil
- NORCE Norwegian Research Centre, Mekjarvik 12, 4072 Randaberg, Norway
| | - Marte Haave
- NORCE Norwegian Research Centre, Mekjarvik 12, 4072 Randaberg, Norway; SALT Lofoten AS, Pb. 91, Fiskergata 23, 8301 Svolvær, Norway
| | - Amy Lusher
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| |
Collapse
|
36
|
Jang Y, Nyamjav I, Kim HR, Suh DE, Park N, Lee YE, Lee S. Identification of plastic-degrading bacteria in the human gut. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172775. [PMID: 38670383 DOI: 10.1016/j.scitotenv.2024.172775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Environmental pollution caused by the excessive use of plastics has resulted in the inflow of microplastics into the human body. However, the effects of microplastics on the human gut microbiota still need to be better understood. To determine whether plastic-degrading bacteria exist in the human gut, we collected the feces of six human individuals, did enrichment cultures and screened for bacterial species with a low-density polyethylene (LDPE) or polypropylene (PP)-degrading activity using a micro-spray method. We successfully isolated four bacterial species with an LDPE-degrading activity and three with a PP-degrading activity. Notably, all bacterial species identified with an LDPE or PP-degrading activity were opportunistic pathogens. We analyzed the microbial degradation of the LDPE or PP surface using scanning electron microscopy and confirmed that each bacterial species caused the physical changes. Chemical structural changes were further investigated using X-ray photoelectron spectroscopy and Fourier-transform-infrared spectroscopy, confirming the oxidation of the LDPE or PP surface with the formation of carbonyl groups (C=O), ester groups (CO), and hydroxyl groups (-OH) by each bacterial species. Finally, high temperature gel permeation chromatography (HT-GPC) analysis showed that these bacterial species performed to a limited extent depolymerization. These results indicate that, as a single species, these opportunistic pathogens in the human gut have a complete set of enzymes and other components required to initiate the oxidation of the carbon chains of LDPE or PP and to degrade them. Furthermore, these findings suggest that these bacterial species can potentially biodegrade and metabolize microplastics in the human gut.
Collapse
Affiliation(s)
- Yejin Jang
- School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Indra Nyamjav
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hong Rae Kim
- Department of Research and Development, Repla Inc., Suwon 16679, Republic of Korea
| | - Dong-Eun Suh
- Department of Research and Development, Repla Inc., Suwon 16679, Republic of Korea
| | - Nohyoon Park
- School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Ye Eun Lee
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Sukkyoo Lee
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| |
Collapse
|
37
|
Zheng Y, Xu S, Liu J, Liu Z. The effects of micro- and nanoplastics on the central nervous system: A new threat to humanity? Toxicology 2024; 504:153799. [PMID: 38608860 DOI: 10.1016/j.tox.2024.153799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Given the widespread production and use of plastics, poor biodegradability, and inadequate recycling, micro/nanoplastics (MNPs) have caused widespread environmental pollution. As a result, humans inevitably ingest MNPs through various pathways. However, there is still no consensus on whether exposure to MNPs has adverse effects on humans. This article aims to provide a comprehensive overview of the knowledge of MNPs and the potential mechanisms of their impact on the central nervous system. Numerous in vivo and in vitro studies have shown that exposure to MNPs may pass through the blood-brain barrier (BBB) and lead to neurotoxicity through impairments in oxidative and inflammatory balance, neurotransmitter alternation, nerve conduction-related key enzymes, and impact through the gut-brain axis. It is worth noting that MNPs may act as carriers and have more severe effects on the body when co-exposed with other substances. MNPs of smaller sizes cause more severe harm. Despite the scarcity of reports directly relevant to humans, this review brings together a growing body of evidence showing that exposure to MNPs disturbs neurons and has even been found to alter the memory and behavior of organisms. This effect may lead to further potential negative influence on the central nervous system and contribute to the development of other diseases such as central nervous system inflammation and Parkinson 's-like neurodegenerative disorders. There is a need further to investigate the threat of MNPs to human health.
Collapse
Affiliation(s)
- Yanxu Zheng
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital, 87th Xiangya Road, Changsha, Hunan 410008, PR China
| | - Jingyu Liu
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, 87th Xiangya Road, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410013, PR China.
| |
Collapse
|
38
|
De Boever S, Devisscher L, Vinken M. Unraveling the micro- and nanoplastic predicament: A human-centric insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170262. [PMID: 38253106 DOI: 10.1016/j.scitotenv.2024.170262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Micro- and nanoplastics are vast anthropogenic pollutants in our direct surroundings with a robust environmental stability and a potential for a long-lasting and increasing global circulation. This has raised concerns among the public and policy makers for human health upon exposure to these particles. The micro- and nanoplastic burden on humans is currently under debate, along with criticism on the experimental approaches used in hazard assessment. The present review presents an overview of the human-relevant aspects associated with the current micro-and nanoplastic burden. We focus on environmental circulation and the estimation of exposure quantities to humans, along with a state-of-the-art overview of particle accumulation in over 15 human organs and other specimen. Additionally, data regarding particle characteristics used in toxicity testing was extracted from 91 studies and discussed considering their environmental and human relevance.
Collapse
Affiliation(s)
- Sybren De Boever
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Centre Ghent, Faculty of Medicine and Health Sciences, Universiteit Gent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
39
|
Zhao B, Rehati P, Yang Z, Cai Z, Guo C, Li Y. The potential toxicity of microplastics on human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168946. [PMID: 38043812 DOI: 10.1016/j.scitotenv.2023.168946] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Microplastics are plastic particles, films, and fibers with a diameter of < 5 mm. Given their long-standing existence in the environment and terrible increase in annual emissions, concerns were raised about the potential health risk of microplastics on human beings. In particular, the increased consumption of masks during the COVID-19 pandemic has dramatically increased human contact with microplastics. To date, the emergence of microplastics in the human body, such as feces, blood, placenta, lower airway, and lungs, has been reported. Related toxicological investigations of microplastics were gradually increased. To comprehensively illuminate the interplay of microplastic exposure and human health, we systematically reviewed the updated toxicological data of microplastics and summarized their mode of action, adverse effects, and toxic mechanisms. The emerging critical issues in the current toxicological investigations were proposed and discussed. Our work would facilitate a better understanding of MPs-induced health hazards for toxicological evaluation and provide helpful information for regulatory decisions.
Collapse
Affiliation(s)
- Bosen Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Palizhati Rehati
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
40
|
Paul MB, Böhmert L, Thünemann AF, Loeschner K, Givelet L, Fahrenson C, Braeuning A, Sieg H. Influence of artificial digestion on characteristics and intestinal cellular effects of micro-, submicro- and nanoplastics. Food Chem Toxicol 2024; 184:114423. [PMID: 38158035 DOI: 10.1016/j.fct.2023.114423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The production of plastics is rising since they have been invented. Micro, submicro- and nanoplastics are produced intentionally or generated by environmental processes, and constitute ubiquitous contaminants which are ingested orally by consumers. Reported health concerns include intestinal translocation, inflammatory response, oxidative stress and cytotoxicity. Every digestive milieu in the gastrointestinal tract does have an influence on the properties of particles and can cause changes in their effect on biological systems. In this study, we subjected plastic particles of different materials (polylactic acid, polymethylmethacrylate, melamine formaldehyde) and sizes (micro- to nano-range) to a complex artificial digestion model consisting of three intestinal fluid simulants (saliva, gastric and intestinal juice). We monitored the impact of the digestion process on the particles by performing Dynamic Light Scattering, Scanning Electron Microscopy and Asymmetric Flow Field-Flow Fractionation. An in vitro model of the intestinal epithelial barrier was used to monitor cellular effects and translocation behavior of (un)digested particles. In conclusion, artificial digestion decreased cellular interaction and slightly increased transport of all particles across the intestinal barrier. The interaction with organic matter resulted in clear differences in the agglomeration behavior. Moreover, we provide evidence for polymer-, size- and surface-dependent cellular effects of the test particles.
Collapse
Affiliation(s)
- Maxi B Paul
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Linda Böhmert
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Andreas F Thünemann
- Federal Institute for Materials Research and Testing (BAM), Division Synthesis and Scattering of Nanostructured Materials, Unter Den Eichen 87, 12205, Berlin, Germany.
| | - Katrin Loeschner
- Technical University of Denmark, Research Group for Analytical Food Chemistry, Kemitorvet 201, 2800, Kgs. Lyngby, Denmark.
| | - Lucas Givelet
- Technical University of Denmark, Research Group for Analytical Food Chemistry, Kemitorvet 201, 2800, Kgs. Lyngby, Denmark.
| | - Christoph Fahrenson
- Technical University of Berlin, Center for Electron Microscopy (ZELMI), Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
41
|
Ali N, Katsouli J, Marczylo EL, Gant TW, Wright S, Bernardino de la Serna J. The potential impacts of micro-and-nano plastics on various organ systems in humans. EBioMedicine 2024; 99:104901. [PMID: 38061242 PMCID: PMC10749881 DOI: 10.1016/j.ebiom.2023.104901] [Citation(s) in RCA: 91] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023] Open
Abstract
Humans are exposed to micro-and-nano plastics (MNPs) through various routes, but the adverse health effects of MNPs on different organ systems are not yet fully understood. This review aims to provide an overview of the potential impacts of MNPs on various organ systems and identify knowledge gaps in current research. The summarized results suggest that exposure to MNPs can lead to health effects through oxidative stress, inflammation, immune dysfunction, altered biochemical and energy metabolism, impaired cell proliferation, disrupted microbial metabolic pathways, abnormal organ development, and carcinogenicity. There is limited human data on the health effects of MNPs, despite evidence from animal and cellular studies. Most of the published research has focused on specific types of MNPs to assess their toxicity, while other types of plastic particles commonly found in the environment remain unstudied. Future studies should investigate MNPs exposure by considering realistic concentrations, dose-dependent effects, individual susceptibility, and confounding factors.
Collapse
Affiliation(s)
- Nurshad Ali
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK; Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Jenny Katsouli
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Emma L Marczylo
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Toxicology Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
| | - Timothy W Gant
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Toxicology Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
| | - Stephanie Wright
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Jorge Bernardino de la Serna
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK.
| |
Collapse
|
42
|
Cheng W, Zhou Y, Chen H, Wu Q, Li Y, Wang H, Feng Y, Wang Y. The iron matters: Aged microplastics disrupted the iron homeostasis in the liver organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167529. [PMID: 37788777 DOI: 10.1016/j.scitotenv.2023.167529] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Plastic products undergo artificial and unintentional aging during daily use, causing the presence of aged microplastics (aMP). Humans are inevitably exposed to aMP. Liver is one of the critical target organs of MP through oral intake, however, limited research has focused on the hepatic toxicity of aMP compared to pristine MP (pMP). We utilized the human pluripotent stem cells-derived liver organoids (LOs) to compare the cytotoxicity of pristine polystyrene microplastics (pPS) (1 μm, carbonyl index 0.08) and aged polystyrene microplastics (aPS) (1 μm, carbonyl index 0.20) ranged from 20 to 200 ng/mL. Our findings indicate that aPS was more cytotoxic than pPS. We explored the disrupted iron homeostasis in terms of the [Fe2+] and [Fe3+] levels, iron storage and transport. A "vector-like effect" induced by aPS has been preliminarily suggested by the correlated change in total iron level and co-localization of PS and ferritin light chain (FTL) in the LOs following exposure to aPS and ferric ammonium citrate (FAC) individually and combinedly. In addition, we observed abnormal mitochondrial morphology, elevated lipid peroxidation, and declined GSH peroxidase activity, together with the declined expression of transferrin receptor (TFRC) and elevated expressions of SLC7A11, FTL. The gene handled iron transport and iron use were disrupted by aPS. Moreover, we employed FAC to introduce iron overload and Nacetylcysteine (NAC) to protect the lipid peroxidation. In aPS + FAC group, aggravated effects could be observed in aspects of [Fe2+] level, lipid peroxidation, and compromised expression levels of iron homeostasis-related markers, in contrast, in aPS + NAC group, most of changes recovered but the hepatocytoxicity remained. Specifically, a dimorphic change in elevated FTL and decreased ferritin heavy chain (FTH1) caused by 50 ng/mL aMP (57.33 ± 3.57 items/mL, equivalent to human intake level), indicated a specific response to low-dose aMP.
Collapse
Affiliation(s)
- Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yue Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hange Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qian Wu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Wang
- The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, School of Public Health, Collaborative Innovation Center for Clinical and Translational Science by Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
43
|
Liu Z, You XY. Recent progress of microplastic toxicity on human exposure base on in vitro and in vivo studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166766. [PMID: 37666331 DOI: 10.1016/j.scitotenv.2023.166766] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Microplastics are widely distributed in the environment, including the atmosphere, soil and water bodies. They have been found to have toxic effects on organisms. The impact on human health is also receiving considerable attention. Microplastics can be found in drinking water, food, air and plastic products, and they can enter human body through the pathways such as ingestion, inhalation, and skin contact. After exposure to microplastics, they can induce cellular toxicity and produce toxic effects on multiple organs and systems, including the digestive, respiratory, nervous, reproductive and cardiovascular systems. This paper presents a comprehensive review and analysis on the recent progress of human exposure studies, in vitro experiments, rodent experiments, and other model experiments in microplastic human toxicity research. It comprehensively analyzes the potential human toxic effects of microplastics, providing a theoretical basis for further research on microplastic human toxicity and its mechanisms. Furthermore, this paper highlights the knowledge gaps and provides the recommendations for future research on human toxicity of microplastics.
Collapse
Affiliation(s)
- Zhengguo Liu
- Tianjin Engineering Center of Urban River Eco-purification Technology, School of Environmental Science and Engineering, Tianjin University, Jinnan District, Tianjin 300350, China
| | - Xue-Yi You
- Tianjin Engineering Center of Urban River Eco-purification Technology, School of Environmental Science and Engineering, Tianjin University, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
44
|
Tilves C, Zhao HJ, Differding MK, Zhang M, Liu T, Hoyo C, Østbye T, Benjamin-Neelon SE, Mueller NT. Associations of Plastic Bottle Exposure with Infant Growth, Fecal Microbiota, and Short-Chain Fatty Acids. Microorganisms 2023; 11:2924. [PMID: 38138068 PMCID: PMC10745781 DOI: 10.3390/microorganisms11122924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND/OBJECTIVES Murine models show that plastics, via their chemical constituents (e.g., phthalates), influence microbiota, metabolism, and growth. However, research on plastics in humans is lacking. Here, we examine how the frequency of plastic bottle exposure is associated with fecal microbiota, short-chain fatty acids (SCFAs), and anthropometry in the first year of life. SUBJECTS/METHODS In 442 infants from the prospective Nurture birth cohort, we examined the association of frequency of plastic bottle feeding at 3 months with anthropometric outcomes (skinfolds, length-for-age, and weight-for-length) at 12 months of age and growth trajectories between 3 and 12 months. Furthermore, in a subset of infants (n = 70) that contributed fecal samples at 3 months and 12 months of age, we examined plastic bottle frequency in relation to fecal microbiota composition and diversity (measured by 16S rRNA gene sequencing of V4 region), and fecal SCFA concentrations (quantified using gas chromatography mass spectrometry). RESULTS At 3 months, 67.6% of infants were plastic bottle fed at every feeding, 15.4% were exclusively breast milk fed, and 48.9% were exclusively formula fed. After adjustment for potential confounders, infants who were plastic bottle fed less than every feeding compared to those who were plastic bottle fed at every feeding at 3 months did not show differences in anthropometry over the first 12 months of life, save for lower length-for-age z-score at 12 months (adjusted β = -0.45, 95% CI: -0.76, -0.13). Infants who were plastic bottle fed less than every feeding versus every feeding had lower fecal microbiota alpha diversity at 3 months (mean difference for Shannon index: -0.59, 95% CI: -0.99, -0.20) and lower isovaleric acid concentration at 3 months (mean difference: -2.12 μmol/g, 95% CI: -3.64, -0.60), but these results were attenuated following adjustment for infant diet. Plastic bottle frequency was not strongly associated with microbiota diversity or SCFAs at 12 months after multivariable adjustment. Frequency of plastic bottle use was associated with differential abundance of some bacterial taxa, however, significance was not consistent between statistical approaches. CONCLUSIONS Plastic bottle frequency at 3 months was not strongly associated with measures of adiposity or growth (save for length-for-age) over the first year of life, and while plastic bottle use was associated with some features of fecal microbiota and SCFAs in the first year, these findings were attenuated in multivariable models with infant diet. Future research is needed to assess health effects of exposure to other plastic-based products and objective measures of microplastics and plastic constituents like phthalates.
Collapse
Affiliation(s)
- Curtis Tilves
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.T.); (H.J.Z.); (M.K.D.); (M.Z.); (T.L.)
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Heather Jianbo Zhao
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.T.); (H.J.Z.); (M.K.D.); (M.Z.); (T.L.)
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Moira K. Differding
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.T.); (H.J.Z.); (M.K.D.); (M.Z.); (T.L.)
| | - Mingyu Zhang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.T.); (H.J.Z.); (M.K.D.); (M.Z.); (T.L.)
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Tiange Liu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.T.); (H.J.Z.); (M.K.D.); (M.Z.); (T.L.)
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Truls Østbye
- Department of Family Medicine and Community Health, Duke University, Durham, NC 27708, USA;
| | - Sara E. Benjamin-Neelon
- Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Noel T. Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.T.); (H.J.Z.); (M.K.D.); (M.Z.); (T.L.)
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
45
|
Jiménez-Arroyo C, Tamargo A, Molinero N, Reinosa JJ, Alcolea-Rodriguez V, Portela R, Bañares MA, Fernández JF, Moreno-Arribas MV. Simulated gastrointestinal digestion of polylactic acid (PLA) biodegradable microplastics and their interaction with the gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166003. [PMID: 37549707 DOI: 10.1016/j.scitotenv.2023.166003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
The accumulation of microplastics (MPs) in the environment as well as their presence in foods and humans highlight the urgent need for studies on the effects of these particles on humans. Polylactic acid (PLA) is the most widely used bioplastic in the food industry and medical field. Despite its biodegradability, biocompatibility, and "Generally Recognized As Safe" (GRAS) status, recent animal model studies have shown that PLA MPs can alter the intestinal microbiota; however, to date, no studies have been reported on the possible gut and health consequences of its intake by humans. This work simulates the ingestion of a realistic daily amount of PLA MPs and their pass through the gastrointestinal tract by combining the INFOGEST method and the gastrointestinal simgi® model to evaluate possible effects on the human colonic microbiota composition (16S rRNA gene sequencing analysis) and metabolic functionality (lactic acid and short-chain fatty acids (SCFA) production). Although PLA MPs did not clearly alter the microbial community homeostasis, increased Bifidobacterium levels tended to increase in presence of millimetric PLA particles. Furthermore, shifts detected at the functional level suggest an alteration of microbial metabolism, and a possible biotransformation of PLA by the human microbial colonic community. Raman spectroscopy and field emission scanning electron microscopy (FESEM) characterization revealed morphological changes on the PLA MPs after the gastric phase of the digestion, and the adhesion of organic matter as well as a microbial biofilm, with surface biodegradation, after the intestinal and colonic phases. With this evidence and the emerging use of bioplastics, understanding their impact on humans and potential biodegradation through gastrointestinal digestion and the human microbiota merits critical investigation.
Collapse
Affiliation(s)
- C Jiménez-Arroyo
- Institute of Food Science Research, CIAL, CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - A Tamargo
- Institute of Food Science Research, CIAL, CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - N Molinero
- Institute of Food Science Research, CIAL, CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - J J Reinosa
- Instituto de Cerámica y Vidrio, CSIC, c/ Kelsen, 28049 Madrid, Spain; Encapsulae S.L., c/Lituania 10, 12006 Castellón de la Plana, Spain
| | - V Alcolea-Rodriguez
- Instituto de Catálisis y Petroleoquímica, CSIC, c/ Marie Curie, 2, 28049 Madrid, Spain
| | - R Portela
- Instituto de Catálisis y Petroleoquímica, CSIC, c/ Marie Curie, 2, 28049 Madrid, Spain
| | - M A Bañares
- Instituto de Catálisis y Petroleoquímica, CSIC, c/ Marie Curie, 2, 28049 Madrid, Spain
| | - J F Fernández
- Encapsulae S.L., c/Lituania 10, 12006 Castellón de la Plana, Spain
| | - M V Moreno-Arribas
- Institute of Food Science Research, CIAL, CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
46
|
Djouina M, Waxin C, Dubuquoy L, Launay D, Vignal C, Body-Malapel M. Oral exposure to polyethylene microplastics induces inflammatory and metabolic changes and promotes fibrosis in mouse liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115417. [PMID: 37651791 DOI: 10.1016/j.ecoenv.2023.115417] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Accumulating evidence shows widespread contamination of water sources and food with microplastics. Although the liver is one of the main sites of bioaccumulation within the human body, it is still unclear whether microplastics produce damaging effects. In particular, the hepatic consequences of ingesting polyethylene (PE) microplastics in mammals are unknown. In this study, female mice were fed with food contaminated with 36 and 116 µm diameter PE microbeads at a dosage of 100 µg/g of food for 6 and 9 weeks. Mice were exposed to each type of microbead, or co-exposed to the 2 types of microbeads. Mouse liver showed altered levels of genes involved in uptake, synthesis, and β-oxidation of fatty acids. Ingestion of PE microbeads disturbed the detoxification response, promoted oxidative imbalance, increased inflammatory foci and cytokine expression, and enhanced proliferation in liver. Since relative expression of the hepatic stellate cell marker Pdgfa and collagen deposition were increased following PE exposure, we assessed the effect of PE ingestion in a mouse model of CCl4-induced fibrosis and showed that PE dietary exposure exacerbated liver fibrogenesis. These findings provide the first demonstration of the adverse hepatic effects of PE ingestion in mammals and highlight the need for further health risk assessment in humans.
Collapse
Affiliation(s)
- Madjid Djouina
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Christophe Waxin
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cécile Vignal
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Mathilde Body-Malapel
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France.
| |
Collapse
|
47
|
Liebgott C, Chaib I, Doyen P, Robert H, Eutamene H, Duflos G, Reynaud S, Grassl B, Mercier-Bonin M. Fate and impact of nanoplastics in the human digestive environment after oral exposure: A common challenge for toxicology and chemistry. Trends Analyt Chem 2023; 166:117175. [DOI: 10.1016/j.trac.2023.117175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Ji J, Wu X, Li X, Zhu Y. Effects of microplastics in aquatic environments on inflammatory bowel disease. ENVIRONMENTAL RESEARCH 2023; 229:115974. [PMID: 37088319 DOI: 10.1016/j.envres.2023.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
The incidence of inflammatory bowel disease (IBD) has been increasing in recent years, particularly in newly industrialized nations. Environmental factors have been identified as playing a crucial role in IBD pathogenesis. Microplastics (MPs), a novel class of environmental pollutants, are a significant global pollution concern. MPs are found in almost all aquatic environments. MPs in the environment may pose health risks, specifically concerning the intestinal system, due to prolonged exposure through the consumption of aquatic foods and drinking water. In this review, we aimed to provide a comprehensive overview of the current knowledge on the impact of MPs in water resources on the occurrence and progression of IBD. Our systematic analysis of in vitro and in vivo studies found that MPs induce intestinal barrier dysfunction, imbalance in the intestinal microbiome, and metabolic abnormalities, ultimately leading to IBD. In addition, MP exposure causes greater harm to individuals with preexisting gastrointestinal disorders than those without them. Our analysis of this literature review highlights the need for further research to improve the understanding of the complex relationship between MP exposure and IBD.
Collapse
Affiliation(s)
- Jiali Ji
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Xi Li
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ya Zhu
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
49
|
Grote K, Brüstle F, Vlacil AK. Cellular and Systemic Effects of Micro- and Nanoplastics in Mammals-What We Know So Far. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3123. [PMID: 37109957 PMCID: PMC10145381 DOI: 10.3390/ma16083123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Microplastics (MP) and nanoplastics (NP) are accumulating more and more in our environment and have been frequently detected in water and soil, but also in a variety of mainly marine organisms. Polymers such as polyethylene, polypropylene, and polystyrene are those most commonly found. Once in the environment, MP/NP are carriers for many other substances, which often convey toxic effects. Even though intuitively it is thought that ingesting MP/NP cannot be healthy, little is known about their effects on mammalian cells and organisms so far. To better understand the potential hazards of MP/NP on humans and to offer an overview of the already associated pathological effects, we conducted a comprehensive literature review on cellular effects, as well as experimental animal studies on MP/NP in mammals.
Collapse
Affiliation(s)
- Karsten Grote
- Cardiology and Angiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Fabian Brüstle
- Cardiology and Angiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Ann-Kathrin Vlacil
- Stem Cell Unit, Department of Cardiovascular Research, Humanitas Research Hospital, 20089 Milan, Italy
| |
Collapse
|
50
|
Zhang X, Feng Q, Li X, Guo L, Ma D, Cheng X, Qi Y. Microplastics in household fecal sewage treatment facilities of rural China. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130925. [PMID: 36753913 DOI: 10.1016/j.jhazmat.2023.130925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Fecal sewage (FS), composed of human feces and wastewater, potentially contains microplastics (MPs) that are prone to environmental pollution. In this study, 65 FS samples, as collected from 65 villages in 27 Chinese provinces, have been employed to investigate the characteristics of MPs in three kinds of household FS treatment facilities of rural regions, and the possibility of FS irrigation as the source of MPs in farmlands. As a result, seven physicochemical properties and microbial community of FS were detected, and pertinent social statistical data were collected to determine influencing factors of MPs. The abundance of FS-based MPs ranged from 47.16 to 143.05 particles L-1, with an average 90.38 ± 20.63 particles L-1. The FS from northern China had higher MPs abundance than that from southern and northwestern China. Average MPs abundance was cesspit (101.33) > septic tank (86.54) > biogas digester (84.11). The estimated mass of FS-based MPs entering farmlands in China was 7.8 × 103-5.6 × 104 tons a year. Chemical oxygen demand and genus Phascolarctobacterium might mainly affected MPs abundance in FS, while some other factors such as suspended substance, ambient temperature, and medical care spending were also significantly correlated with FS-based MPs abundance.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
| | - Qingge Feng
- School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Li Guo
- College of Design Art, Liuzhou Institute of Technology, Liuzhou 545616, China
| | - Dachao Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xiaodie Cheng
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yuan Qi
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|