1
|
Sun J, Yang W, Li M, Zhang S, Sun Y, Wang F. Metagenomic analysis reveals soil microbiome responses to microplastics and ZnO nanoparticles in an agricultural soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138164. [PMID: 40188549 DOI: 10.1016/j.jhazmat.2025.138164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/08/2025]
Abstract
Both microplastics (MPs) and engineered nanoparticles are pervasive emerging contaminants that can produce combined toxicity to terrestrial ecosystems, yet their effects on soil microbiomes remain inadequately understood. Here, metagenomic analysis was employed to investigate the impacts of three common MPs [i.e., polyethylene (PE), polystyrene (PS), and polylactic acid (PLA)] and zinc oxide nanoparticles (nZnO) on soil microbiomes. Both MPs and nZnO significantly altered the taxonomic, genetic, and functional diversity of soil microbes, with distinct effects depending on dosage or type. Archaea, fungi, and viruses exhibited more pronounced responses compared to bacteria. Higher doses of MPs and nZnO reduced gene abundance for nutrient cycles like C degradation and N cycling, but enhanced CO2 fixation and S metabolism. nZnO consistently decreased the complexity, connectivity, and modularity of microbial networks; however, these negative effects could be mitigated by co-existing MPs, particularly at elevated doses. Notably, PLA (10 %, w/w) exhibited greater harm to fungal communities and increased negative interactions between microbes and nutrient-cycling genes, posing unique risks compared to PE and PS. These findings demonstrate that MPs and nZnO interact synergistically, complicating ecological predictions and emphasizing the need to consider pollutant interactions in ecological risk assessments, particularly for biodegradable MPs.
Collapse
Affiliation(s)
- Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China; Shandong Vocational College of Science and Technology, Weifang, Shandong 261000, PR China
| | - Weiwei Yang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Mingwei Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China.
| |
Collapse
|
2
|
Rong L, Wang Y, Meidl P, Baqar M, Li A, Wang L, Sun H. Insights into soil microbial assemblages and nitrogen cycling function responses to conventional and biodegradable microplastics. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137889. [PMID: 40081053 DOI: 10.1016/j.jhazmat.2025.137889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Biodegradable microplastics (MPs) are proposed as sustainable alternatives to conventional MPs, yet their distinct effects on soil microbial communities and ecological functions remain insufficiently understood. This study compares the impacts of biodegradable polylactic acid (PLA) and conventional polyvinyl chloride (PVC) MPs on soil microbial assemblages and nitrogen cycling. Fluorescein diacetate hydrolase (FDAse) activity was temporarily stimulated by 2 % (w/w) PLA and PVC MPs, while 7 % (w/w) PVC MPs initially inhibited FDAse activity before promoting it. PLA MPs (2 % and 7 %, w/w) dramatically reduced bacterial diversity and altered community structure, enriching genera such as Nocardioides, Arthrobacter, Agromyces, Amycolatopsis, Saccharothrix, and Ramlibacter, known for degrading complex compounds. Conversely, PVC MPs (2 % and 7 %, w/w) showed minimal influence on bacterial diversity, with only temporary structural shifts at high concentrations (7 % w/w). Network analysis revealed greater microbial complexity with PLA MPs, where MPs-degrading taxa emerged as keystone species. PLA MPs at both concentrations notably increased the abundance of nitrogenase iron protein subunit H gene (nifH) and nitrogen-fixing bacteria, such as Bradyrhizobium, while also sustaining ammonia monooxygenase subunit A gene (AOB amoA) effects up to day 90. At higher doses (7 % w/w), PLA MPs enriched copper-containing nitrite reductase gene (nirK) and cytochrome cd1 nitrite reductase gene (nirS) abundance, boosting denitrifiers like Cupriavidus, Pseudarthrobacter, and Ensifer. In contrast, PVC MPs showed short-term effects on nitrogen cycling function. These findings have important implications for promoting sustainable agriculture and managing the environmental risks posed by MPs in soil ecosystems.
Collapse
Affiliation(s)
- Lili Rong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Peter Meidl
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin 14195, Germany
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Andi Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
She Y, Wu L, Qi X, Sun S, Li Z. Aging behaviors intensify the impacts of microplastics on nitrate bioreduction-driven nitrogen cycling in freshwater sediments. WATER RESEARCH 2025; 279:123448. [PMID: 40064141 DOI: 10.1016/j.watres.2025.123448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 05/06/2025]
Abstract
Microplastics (MPs) inevitably undergo aging processes in natural environments; however, how aging behaviors influence the interactions between MPs exposures and nitrate bioreduction in freshwater sediments remains poorly understood. Here, we explored the distinct impacts of virgin and aged MPs (polystyrene (PS) and polylactic acid (PLA)) on nitrate bioreduction processes in lake sediments through a long-term microcosm experiment utilizing the 15N isotope tracing technique and molecular analysis. Compared to virgin MPs, aged PLA significantly increased the rates of denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) (p < 0.05), facilitating sediment nitrogen loss, while aged PS only significantly improved the rates of DNRA by 272-297 % and contributed to nitrogen retention in sediments. Metagenomic sequencing demonstrated that a more significant enrichment of functional genes responsible for nitrate bioreduction pathways occurred with aged MPs exposures than with virgin MPs. By combining analyses of MPs aging traits and the key drivers of nitrate bioreduction, we revealed that aging behaviors directly regulated sediment nutrient status (e.g., DOC/NOx- ratio) and microbiological properties (from genes to bacteria), thereby further determining the activity of nitrate bioreduction. This work provides new insights into the impacts of aged MPs on sediment nitrate reduction and highlights the role of MPs aging in future assessments of long-term MPs pollution in freshwater ecosystems.
Collapse
Affiliation(s)
- Yuecheng She
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liying Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Qi
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Siyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
4
|
Li Y, Liu L, Meng X, Qiu J, Liu Y, Zhao F, Tan H. Microplastics affect the nitrogen nutrition status of soybean by altering the nitrogen cycle in the rhizosphere soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137803. [PMID: 40043389 DOI: 10.1016/j.jhazmat.2025.137803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Microplastics (MPs) are widely distributed in agricultural systems. However, studies on the comprehensive effects of MPs on nitrogen cycling in crop rhizosphere soil, and the changes this effect causes to crop growth is still limited. In this study, we investigated how three types of 5 % MPs (polystyrene, PS; polyethylene, PE; polyvinyl chloride, PVC) affect soybean growth by altering rhizosphere soil nitrogen cycling. These MPs have no direct toxic effects on soybean under hydroponic conditions. However, under soil cultivation conditions, PE and PS promoted soybean growth and increased soybean roots nitrogen content and nitrogen assimilation enzyme activity, while PVC does the opposite. Further study found that PE and PS increased the inorganic nitrogen content, and the activity of nitrogen cycle-related enzymes and the abundance of genes and microorganism in rhizosphere soil. Meanwhile, PVC significantly reduced the inorganic nitrogen contents, inhibited the activity of nitrogen cycling related enzymes, and destroyed the microbial community structure in rhizosphere soil. More importantly, PVC significantly reduced the abundance of nitrogen cycle-related genes and microorganisms, and increased the abundance of viruses. These results indicated that PE and PS promote soybean growth by activating the nitrogen cycle in the rhizosphere soil and increasing the soil nitrogen content, whereas PVC inhibits soybean growth by disrupting the nitrogen cycle in the rhizosphere soil and reducing its nitrogen content.
Collapse
Affiliation(s)
- Yuanfu Li
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Li Liu
- Guangxi Subtropical Crops Research Institute, Nanning, Guangxi 530004, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Nanning, Guangxi 530004, China
| | - Xiaoou Meng
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Jingsi Qiu
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yanmei Liu
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Feng Zhao
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Huihua Tan
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
5
|
Basumatary T, Biswas D, Boro S, Nava AR, Narayan M, Sarma H. Dynamics and Impacts of Microplastics (MPs) and Nanoplastics (NPs) on Ecosystems and Biogeochemical Processes: The Need for Robust Regulatory Frameworks. ACS OMEGA 2025; 10:17051-17069. [PMID: 40352536 PMCID: PMC12060063 DOI: 10.1021/acsomega.5c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025]
Abstract
Microplastics (MPs) and nanoplastics (NPs) pose significant threats to aquatic and terrestrial ecosystems, disrupting nutrient cycling, altering soil properties, and affecting microbial communities. MPs and NPs bioaccumulate and contribute to global nutrient and water cycle disruptions, intensifying the impact of climate change. Despite the widespread use of plastics, inadequate plastic waste management leads to persistent environmental pollution. Toxic compounds are transported by MPs and NPs, affecting food chains, nutrient cycles, and overall ecosystem health. MPs impact soil biogeochemistry, microbial activity, and greenhouse gas emissions by altering the nitrogen and carbon cycles. One of the largest gaps in microplastic (MP) research today is the lack of standardized sampling and analytical methods. This lack of standardization significantly complicates the comparison of results across different studies. Multidisciplinary research and strict regulatory measures are needed to address MP pollution. This review highlights the critical need for mitigation methods to maintain ecosystem integrity and suggests standardization of sampling and data analysis. It offers insights into MP distribution, best practices for data analysis, and the impacts and interactions of MPs with biogeochemical processes. The Environmental Protection Agency has identified a critical need to improve the identification of nanoplastics. Particles smaller than 10 μm become increasingly difficult to quantify using standard MP detection practices.
Collapse
Affiliation(s)
- Tanushree Basumatary
- Bioremediation
Technology Research Group, Department of Botany, Bodoland University, Kokrajhar
(BTR), Assam 783370, India
| | - Debajyoti Biswas
- Department
of English, Bodoland University, Kokrajhar (BTR), Assam 783370, India
| | - Swrangsri Boro
- Bioremediation
Technology Research Group, Department of Botany, Bodoland University, Kokrajhar
(BTR), Assam 783370, India
| | - Amy R. Nava
- Department
of Molecular and Cellular Physiology, Stanford
University, Stanford, California 94305, United States
| | - Mahesh Narayan
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation
Technology Research Group, Department of Botany, Bodoland University, Kokrajhar
(BTR), Assam 783370, India
| |
Collapse
|
6
|
Yu Y, Wang Y, Tang DWS, Xue S, Liu M, Geissen V, Yang X. Soil C-N and microbial community were altered by polybutylene adipate terephthalate microplastics. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138328. [PMID: 40253785 DOI: 10.1016/j.jhazmat.2025.138328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
The risks posed by biodegradable plastics to the plant-soil system have been increasingly studied due to potentially hazardous effects on soil properties and nutrient cycling. In this study, we investigated the effects of Poly (butylene adipate-co-terephthalate) microplastics (PBAT-MPs) on soil carbon, nitrogen and microbial communities under different levels of contamination (0 % (control), 0.1 %, 0.2 %, 0.5 % and 1 %), in soils planted with soybean (Glycine max (Linn.) Merr.) and maize (Zea mays L.). The results showed that PBAT-MPs significantly altered soil dissolved organic carbon, dissolved organic nitrogen and nitrate nitrogen contents, and that these effects varied by plant type and growth stage (p < 0.05). PBAT-MPs significantly increased soil microbial biomass carbon and nitrogen for both plants (p < 0.05), except for microbial biomass nitrogen at the soybean flowering stage. PBAT-MPs altered the β-diversity and composition of bacterial and fungal communities, increasing the relative abundances of Proteobacteria but decreasing the relative abundances of Acidobacteriota for both plants. FAPROTAX analysis showed that PBAT-MPs had significant effects on functional bacterial groups related to the nitrogen and carbon cycle, that varied by plant type and growth stage. These results suggest that biodegradable microplastics may have plant-specific effects on soil microbial communities and microbial metabolism, and thereby influence soil carbon and nitrogen cycling.
Collapse
Affiliation(s)
- Yao Yu
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, 712100, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yan Wang
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen 6700AA, the Netherlands
| | - Darrell W S Tang
- Water, Energy, and Environmental Engineering, University of Oulu, Finland
| | - Sha Xue
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Mengjuan Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen 6700AA, the Netherlands
| | - Xiaomei Yang
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, 712100, China; Soil Physics and Land Management Group, Wageningen University & Research, Wageningen 6700AA, the Netherlands.
| |
Collapse
|
7
|
Zhang Z, Gao J, Guan E, Yao X, Wang W, Zhang Z, Wu H. Effects of polyethylene microplastics on soil microbial assembly and ecosystem multifunctionality in the remote mountain: Altitude matters. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138327. [PMID: 40273861 DOI: 10.1016/j.jhazmat.2025.138327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/02/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Microplastics (MPs) are ubiquitously present in almost every ecosystem globally, including the remote mountains. To date, the effects of MPs on the properties and functioning of soils in remote mountainous ecosystems have been less explored. This study aimed to investigate the ecological impacts of polyethylene (PE) MPs at ∼0.2 % (w/w) on soils in three typical altitude zones of Changbai Mountain, China, including the mixed coniferous and broad-leaved forest (MF) zone, birch forest (BF) zone, and alpine tundra (AT) zone. The results showed that PE MPs exerted diverse effects on soil carbon and nitrogen nutrients across altitude zones but consistently increased soil pH. PE MPs enhanced the humification of soil dissolved organic matter (DOM) and the α-diversity of the bacterial community in the lower-altitude MF zone but exerted negligible effects in the higher-altitude BF and AT zones. Phyla Proteobacteria and Actinobacteria dominated bacterial communities under all treatments but exhibited opposite variation patterns on exposure to MPs. PE MPs contributed to the enrichment of a larger number of carbohydrate-active enzymes (CAZy) gene families in the BF and particularly MF zones. Soil ecosystem multifunctionality was significantly improved by PE MPs in the AT and MF zones but was less affected in the BF zone. The soil bacterial diversity, pH, organic carbon, DOM chemodiversity, and climatic factors (i.e., mean annual temperature) were the pivotal predictors of soil ecosystem multifunctionality. This study provides new insights for evaluating the ecological impacts of MPs on soils in remote mountains.
Collapse
Affiliation(s)
- Zhiyu Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - En Guan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; College of Geographic Science and Tourism, Jilin Normal University, Siping 136000, China
| | - Xiaochen Yao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfeng Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China.
| | - Zhongsheng Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China
| | - Haitao Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China.
| |
Collapse
|
8
|
Gao S, Mu X, Li W, Wen Y, Ma Z, Liu K, Zhang C. Invisible threats in soil: Microplastic pollution and its effects on soil health and plant growth. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:158. [PMID: 40202677 DOI: 10.1007/s10653-025-02464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/18/2025] [Indexed: 04/10/2025]
Abstract
Microplastics (MPs) are a significant environmental contaminant that increasingly threaten soil health and crop productivity in agricultural systems. This review explores the origins, migration patterns, and ecological impacts of MPs within soil environments, specifically examining their influence on soil structure, microbial communities, and nutrient cycles essential for plant growth. Despite the progress in understanding Microplastic (MP) pollution, gaps remain in assessing the long-term implications on soil stability, microbial biodiversity, and crop yield. Through bibliometric and synthesis analyses of recent studies, this paper identifies how MPs disrupt soil physical and chemical processes, alter microbial dynamics, and interfere with carbon and nitrogen cycles, resulting in reduced soil fertility and compromised crop health. Key findings reveal that MPs can infiltrate plant root systems, impair water and nutrient uptake, and even accumulate in plant tissues, causing oxidative stress, cellular dysfunction, and yield reduction. This work emphasizes the urgent need for refined environmental risk assessments and sustainable agricultural practices to mitigate MP pollution. This comprehensive synthesis offers a foundational perspective to guide future research and policy efforts in addressing MPs' environmental and agricultural impacts.
Collapse
Affiliation(s)
- Shuanglong Gao
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Xiaoguo Mu
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Wenhao Li
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China.
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China.
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China.
| | - Yue Wen
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Zhanli Ma
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Keshun Liu
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Cunhong Zhang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| |
Collapse
|
9
|
Li C, Cao W, Wu W, Xin X, Jia H. Transcription-metabolism analysis of various signal transduction pathways in Brassica chinensis L. exposed to PLA-MPs. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136968. [PMID: 39731891 DOI: 10.1016/j.jhazmat.2024.136968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/06/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
Biodegradable plastics, regarded as an ideal substitute for traditional plastics, are increasingly utilized across various industries. However, due to their unique degradation properties, they can generate microplastics (MPs) at a faster rate, potentially posing a threat to plant development. This study employed transcriptomics and metabolomics to investigate the effects of polylactic acid microplastics (PLA-MPs) on the physiological and biochemical characteristics of Brassica chinensis L. over different periods. The findings indicated that exposure to varying concentrations of PLA-MPs had distinct influences on the growth and development of Brassica chinensis L. Transcriptomic analysis showed different concentrations of PLA-MPs directly influenced the expression of genes associated with plant hormones, such as SnRK2 and BnaA01g27170D. In addition, it was observed that these PLA-MPs also impacted plant growth and development by modulating the expression of other genes, eg. related to sulfur metabolism and glycerophosphate metabolism. Metabolomic analysis demonstrated alterations levels of metabolites such as L-glutamine, and arginine in response to PLA-MPs, which influenced pathways related to vitamin B6 metabolism, the one-carbon folate pool, glycerophospholipid metabolism, and cysteine. This study offers new insights into the potential impacts of biodegradable microplastics (BMPs) on plants and underscores the need for further investigation into the potentially more significant effects of BMPs on terrestrial ecosystems.
Collapse
Affiliation(s)
- Chengtao Li
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wen Cao
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wanqing Wu
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xiwei Xin
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Honglei Jia
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
10
|
Iqbal S, Li Y, Xu J, Worthy FR, Gui H, Faraj TK, Jones DL, Bu D. Smallest microplastics intensify maize yield decline, soil processes and consequent global warming potential. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136993. [PMID: 39754884 DOI: 10.1016/j.jhazmat.2024.136993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/07/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Microplastic pollution seriously affects global agroecosystems, strongly influencing soil processes and crop growth. Microplastics impact could be size-dependent, yet relevant field experiments are scarce. We conducted a field experiment in a soil-maize agroecosystem to assess interactions between microplastic types and sizes. Microplastics were added to soils used for maize cultivation: either polyethylene or polystyrene, of 75, 150, or 300 µm size. Overall, we found that microplastic contamination led to increased soil carbon, nitrogen and biogeochemical cycling. Polyethylene contamination was generally more detrimental than polystyrene. Smallest polyethylene microplastics (75 µm) were associated with two-fold raised CO2 and N2O emissions - hypothetically via raised microbial metabolic rates. Increased net greenhouse gases emissions were calculated to raise soil global warming potential of soils. We infer that MPs-associated emissions arose from altered soil processes. Polyethylene of 75 µm size caused the greatest reduction in soil carbon and nitrogen pools (1-1.5 %), with lesser impacts of larger microplastics. These smallest polyethylene microplastics caused the greatest declines in maize productivity (∼ 2-fold), but had no significant impact on harvest index. Scanning electron microscopy indicated that microplastics were taken up by the roots of maize plants, then also translocated to stems and leaves. These results raise serious concerns for the impact of microplastics pollution on future soil bio-geochemical cycling, food security and climate change. As microplastics will progressively degrade to smaller sizes, the environmental and agricultural impacts of current microplastics contamination of soils could increase over time; exacerbating potential planetary boundary threats.
Collapse
Affiliation(s)
- Shahid Iqbal
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, Yunnan 654400, China.
| | - Yunju Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, Yunnan 654400, China.
| | - Jianchu Xu
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, Yunnan 654400, China; CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, Yunnan 650201, China
| | - Fiona Ruth Worthy
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Heng Gui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, Yunnan 654400, China.
| | - Turki Kh Faraj
- Department of Soil Science, College of Food and Agricultural Sciences, King Saud University, Saudi Arabia
| | - Davey L Jones
- School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, Gwynedd LL572UW, UK; Soils West, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch WA6105, Australia
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
11
|
Wang G, Wei M, Sun Q, Shen T, Xie M, Liu D. Nitrogen Fertilization Alleviates Microplastic Effects on Soil Protist Communities and Rape ( Brassica napus L.) Growth. Microorganisms 2025; 13:657. [PMID: 40142549 PMCID: PMC11944579 DOI: 10.3390/microorganisms13030657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Agricultural plastic mulch enhances crop yields but leads to persistent microplastic contamination in soils. Concurrently, nitrogen (N) fertilization and atmospheric deposition profoundly reshape microbial ecosystems. This study examined the individual and interactive effects of polyethylene microplastics (PE, 1% w/w) and nitrogen addition (N, 180 kg ha-1 yr-1) on soil protist communities and rape (Brassica napus L.) productivity. High-throughput sequencing and soil-plant trait analyses revealed that PE alone reduced the soil water retention and the rape biomass while elevating the soil total carbon content, C/N ratios, and NH₄⁺-N/NO₃--N levels. Conversely, N addition significantly boosted the rape biomass and the chlorophyll content, likely through enhanced nutrient availability. Strikingly, the combined PE_N treatment exhibited antagonistic interactions; protist diversity and functional group composition stabilized to resemble the control conditions, and the rape biomass under the PE_N treatment showed no difference from the CK (with basal fertilizer only), despite significant reductions under the PE treatment alone. Soil nutrient dynamics (e.g., the SWC and the C/N ratio) and the protist community structure collectively explained 96% of the biomass variation. These findings highlight the potential of nitrogen fertilization to mitigate microplastic-induced soil degradation, offering a pragmatic strategy to stabilize crop productivity in contaminated agricultural systems. This study underscores the importance of balancing nutrient management with pollution control to sustain soil health under global microplastic and nitrogen deposition pressures.
Collapse
Affiliation(s)
- Ge Wang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu 610101, China; (G.W.); (M.W.); (Q.S.); (T.S.); (M.X.)
- College of Life Sciences, Sichuan Normal University, Chengdu 610041, China
| | - Maolu Wei
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu 610101, China; (G.W.); (M.W.); (Q.S.); (T.S.); (M.X.)
- College of Life Sciences, Sichuan Normal University, Chengdu 610041, China
| | - Qian Sun
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu 610101, China; (G.W.); (M.W.); (Q.S.); (T.S.); (M.X.)
- College of Life Sciences, Sichuan Normal University, Chengdu 610041, China
| | - Ting Shen
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu 610101, China; (G.W.); (M.W.); (Q.S.); (T.S.); (M.X.)
- College of Life Sciences, Sichuan Normal University, Chengdu 610041, China
| | - Miaomiao Xie
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu 610101, China; (G.W.); (M.W.); (Q.S.); (T.S.); (M.X.)
- College of Life Sciences, Sichuan Normal University, Chengdu 610041, China
| | - Dongyan Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu 610101, China; (G.W.); (M.W.); (Q.S.); (T.S.); (M.X.)
- College of Life Sciences, Sichuan Normal University, Chengdu 610041, China
| |
Collapse
|
12
|
He S, Ye Y, Cui Y, Huo X, Shen M, Li F, Yang Z, Zeng G, Xiong W. Different wetting states in riparian sediment ecosystems: Response to microplastics exposure. WATER RESEARCH 2025; 270:122823. [PMID: 39612814 DOI: 10.1016/j.watres.2024.122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
Climate change alters the wetting state of riparian sediments, impacting microbial community response and biogeochemical processes. Microplastics (MPs) invade nearly all ecosystems on earth, posing a significant environmental risk. However, little is known about the response mechanism of MP exposure in sediment ecosystems with different wetting states under alternating seasonal rain and drought conditions. In this study, sediments with three different wetting states were selected to explore the differential response of ecosystems to PLA MP exposure. We observed that PLA MP exposure directly affected biogeochemical processes in sediment ecosystems and induced significant changes in microbial communities. PLA MP exposure was found to alter the composition of key species and microbial functional groups in the ecosystem, resulting in a more complex, interconnected, but less stable microbial network. Our findings showed that PLA MP exposure enhances the contribution of stochastic processes, for example the dispersal limitation increasing from 7.41 % to 54.32 %, indicating that sediment ecosystems strive to buffer disturbances from PLA MP exposure. In addition, 87 pathogenic species were detected in our samples, with PLA MPs acting as vectors for their transmission, potentially amplifying ecosystem disturbance. Importantly, we revealed that submerged sediments may present a greater environmental risk, while alternating wet and dry sediments demonstrate greater resistance and resilience to PLA MPs pollution. Overall, this study sheds light on how sediment ecosystems respond to MP exposure, and highlights differences in sediment response mechanisms across wetting states.
Collapse
Affiliation(s)
- Siying He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yajing Cui
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xiuqin Huo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Fang Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Weiping Xiong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
13
|
Guo T, O'Connor PJ, Tang W, Ma B, Zhou M, Zhang M. Four birds with one stone: applying nitrification inhibitor on the basis of percarbamide restores yield, decreases fungicide residue, enhances soil multifunctionality and stimulates bacterial community. PEST MANAGEMENT SCIENCE 2025; 81:1067-1079. [PMID: 39467018 DOI: 10.1002/ps.8509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/18/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Fungicide residues were frequently detected in vegetables and soils, which severely affected crop yields and qualities. Reasonable nitrogen management might promote yields and decrease fungicide carbendazim residues in plant-soil systems. Current study explores comprehensive relationships among carbendazim residues, crop yields, soil multifunctionalities and endophytic and soil bacterial communities after applying nitrification inhibitors (3,4-dimethylpyrazole phosphate and dicyandiamide) and percarbamide to different soils. RESULTS Combined nitrification inhibitor and percarbamide additions produced multi-effects on restoring yields, declining fungicide residues, promoting soil multifunctionalities and stimulating bacterial communities. Relative to the control, percarbamide application promoted carbendazim dissipations in upland soils but decreased bacterial community diversities and stabilities in different soils. Compared to exclusive percarbamide, extra dicyandiamide applications decreased carbendazim residues by 25.8% in upland soils and 70.2% in paddy soils, declined carbendazim residues in carrots via improving soil pH, ammonium nitrogen (NH4 +-N) and Proteobacteria ratios. Relative to percarbamide application alone, extra dicyandiamide addition promoted the dry carrot yields by 133.2% in upland soils and 33.5% in paddy soils via promoting soil NH4 +-N, Acidobacteriota and Actinobacteriota ratios and bacterial community diversities and stabilities. Upland soil multifunctionality improvements diminished soil carbendazim residues via promoting soil pH and NH4 +-N, and paddy soil multifunctionalities and endophytic bacterial community structures generated negative influences on carrot carbendazim residues. CONCLUSION Our study suggested that nitrification inhibitor on the basis of percarbamide generated multi-effects on the different crop-soil systems: restoring carrot yields, reducing carbendazim contents, promoting soil multifunctionalities and stimulating bacterial community diversities and stabilities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tao Guo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
| | - Patrick J O'Connor
- Centre for Global Food and Resources, University of Adelaide, Adelaide, Australia
| | - Wenhui Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
| | - Bin Ma
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
| | - Minzhe Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
| | - Manyun Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Centre for Planetary Health and Food Security, Griffith University, Brisbane, Australia
| |
Collapse
|
14
|
Zhang C, Chen X, Zhou K, Li J, García Meza JV, Song S, Montes ML, Zamoniddin N, Xia L. Synergistic effects of clays and cyanobacteria on the accumulation dynamics of soil organic carbon in artificial biocrusts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124110. [PMID: 39809005 DOI: 10.1016/j.jenvman.2025.124110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Biocrusts are the primary organic carbon reservoirs in desert areas, in which inorganic clays potentially playing significant roles; however, the specific details of these roles remain largely unclear. In this study, typical 1:1 type (kaolin) and 2:1 type (montmorillonite, MMT) clay minerals were added to artificial biocrusts to investigate their effect on the acquisition performance of soil organic carbon (SOC). After 84 days of cultivation, the enhancement effects of kaolin and MMT were significant, resulting in SOC increments that were 5.03 times and 4.08 times higher than those of the Algae group (without clay). Notably, the two types of clay exhibited different advantages in SOC accumulation. Due to its larger external specific surface area and higher cation exchange capacity, MMT contributes more effectively to SOC stability. Specifically, the mineralization quotient (qM), hot-water extractable organic carbon (HWEOC), and molecular structural stability of SOC in the MMT group were 0.3, 0.34, and 1.31 times those of the Algae group, respectively. In contrast, kaolin was more favorable for microbial growth and SOC formation due to its higher dissolved organic carbon (DOC) content. Microbial biomass carbon (MBC), chlorophyll-a (Chl-a), photosynthetic performance index (PIABS), and Shannon index in the kaolin group were 5.67, 2.44, 11.95, and 1.82 times those of the Algae group, respectively. These findings highlighted the synergistic effect for SOC accumulation of clay and cyanobacteria in artificial biocrust systems, clarified the specific roles of two typical clay minerals, and offered new insights for accelerating the restoration of nutrient-limited areas such as deserts.
Collapse
Affiliation(s)
- Cui Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; Doctorado Institucional de Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí (UASLP), Sierra Leona 530, San Luis Potosí 78210, Mexico.
| | - Xiaoran Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China.
| | - Keqiang Zhou
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China.
| | - Jianbo Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China.
| | - J Viridiana García Meza
- Doctorado Institucional de Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí (UASLP), Sierra Leona 530, San Luis Potosí 78210, Mexico; Geomicrobiology, Metallurgy Institue, UASLP, Sierra Leona 550, San Luis Potosí, 78210, Mexico.
| | - Shaoxian Song
- Institute of Metallurgy, Universidad Autónoma de San Luis Potosí (UASLP), Av. Sierra Leona 550, San Luis Potosí, 78210, Mexico.
| | - María Luciana Montes
- Departamento de Física, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| | | | - Ling Xia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China.
| |
Collapse
|
15
|
Liu S, Suo Y, Wang J, Chen B, Wang K, Yang X, Zhu Y, Zhang J, Lu M, Liu Y. Impact of Polystyrene Microplastics on Soil Properties, Microbial Diversity and Solanum lycopersicum L. Growth in Meadow Soils. PLANTS (BASEL, SWITZERLAND) 2025; 14:256. [PMID: 39861609 PMCID: PMC11768701 DOI: 10.3390/plants14020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
The pervasive presence of microplastics (MPs) in agroecosystems poses a significant threat to soil health and plant growth. This study investigates the effects of varying concentrations and sizes of polystyrene microplastics (PS-MPs) on the Solanum lycopersicum L.'s height, dry weight, antioxidant enzyme activities, soil physicochemical properties, and rhizosphere microbial communities. The results showed that the PS0510 treatment significantly increased plant height (93.70 cm, +40.83%) and dry weight (2.98 g, +100%). Additionally, antioxidant enzyme activities improved across treatments for S. lycopersicum L. roots. Physicochemical analyses revealed enhanced soil organic matter and nutrient levels, including ammonium nitrogen, phosphorus, and effective potassium. Using 16S rRNA sequencing and molecular ecological network techniques, we found that PS-MPs altered the structure and function of the rhizosphere microbial community associated with S. lycopersicum L. The PS1005 treatment notably increased microbial diversity and displayed the most complex ecological network, while PS1010 led to reduced network complexity and more negative interactions. Linear discriminant analysis effect size (LEfSe) analysis identified biomarkers at various taxonomic levels, reflecting the impact of PS-MPs on microbial community structure. Mantel tests indicated positive correlations between microbial diversity and soil antioxidant enzyme activity, as well as relationships between soil physicochemical properties and enzyme activity. Predictions of gene function revealed that PS-MP treatments modified carbon and nitrogen cycling pathways, with PS1005 enhancing methanogenesis genes (mcrABG) and PS1010 negatively affecting denitrification genes (nirK, nirS). This study provides evidence of the complex effects of PS-MPs on soil health and agroecosystem functioning, highlighting their potential to alter soil properties and microbial communities, thereby affecting plant growth.
Collapse
Affiliation(s)
- Shuming Liu
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; (S.L.)
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Yan Suo
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Jinghuizi Wang
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Binglin Chen
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Kaili Wang
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Xiaoyu Yang
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Yaokun Zhu
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Jiaxing Zhang
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Mengchu Lu
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; (S.L.)
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Yunqing Liu
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; (S.L.)
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| |
Collapse
|
16
|
Li G, Tang Y, Xie H, Iqbal B, Wang Y, Dong K, Zhao X, Kim HJ, Du D, Xiao C. Combined Impact of Canada Goldenrod Invasion and Soil Microplastic Contamination on Seed Germination and Root Development of Wheat: Evaluating the Legacy of Toxicity. PLANTS (BASEL, SWITZERLAND) 2025; 14:181. [PMID: 39861534 PMCID: PMC11768274 DOI: 10.3390/plants14020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
The concurrent environmental challenges of invasive species and soil microplastic contamination increasingly affect agricultural ecosystems, yet their combined effects remain underexplored. This study investigates the interactive impact of the legacy effects of Canada goldenrod (Solidago canadensis L.) invasion and soil microplastic contamination on wheat (Triticum aestivum L.) seed germination and root development. We measured wheat seed germination and root growth parameters by utilizing a controlled potted experiment with four treatments (control, S. canadensis legacy, microplastics, and combined treatment). The results revealed that the legacy effects of S. canadensis and microplastic contamination affected wheat seed germination. The effects of different treatments on wheat seedling properties generally followed an "individual treatment enhances, and combined treatment suppresses" pattern, except for root biomass. Specifically, the individual treatment promoted wheat seedling development. However, combined treatment significantly suppressed root development, decreasing total root length and surface area by 23.85% and 31.86%, respectively. These findings demonstrate that while individual treatments may promote root development, their combined effects are detrimental, indicating a complex interaction between these two environmental stressors. The study highlights the need for integrated soil management strategies to mitigate the combined impacts of invasive species and microplastic contamination on crop productivity and ecosystem health.
Collapse
Affiliation(s)
- Guanlin Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (G.L.); (Y.T.); (H.X.); (Y.W.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yi Tang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (G.L.); (Y.T.); (H.X.); (Y.W.)
| | - Hongliang Xie
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (G.L.); (Y.T.); (H.X.); (Y.W.)
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Babar Iqbal
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (G.L.); (Y.T.); (H.X.); (Y.W.)
| | - Yanjiao Wang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (G.L.); (Y.T.); (H.X.); (Y.W.)
| | - Ke Dong
- Division of Bio Convergence, Kyonggi University, Suwon 16227, Republic of Korea
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea;
| | - Hyun-Jun Kim
- Department of Forest Resources, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Environment and Safety Engineering, School of Emergency Management, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Chunwang Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
17
|
Wang F, Sun J, Han L, Liu W, Ding Y. Microplastics regulate soil microbial activities: Evidence from catalase, dehydrogenase, and fluorescein diacetate hydrolase. ENVIRONMENTAL RESEARCH 2024; 263:120064. [PMID: 39332793 DOI: 10.1016/j.envres.2024.120064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Soil microbiomes drive many soil processes and maintain the ecological functions of terrestrial ecosystems. Microplastics (MPs, size <5 mm) are pervasive emerging contaminants worldwide. However, how MPs affect soil microbial activity has not been well elucidated. This review article first highlights the effects of MPs on overall soil microbial activities represented by three soil enzymes, i.e., catalase, dehydrogenase, and fluorescein diacetate hydrolase (FDAse), and explores the underlying mechanisms and influencing factors. Abundant evidence confirms that MPs can change soil microbial activities. However, existing results vary greatly from inhibition to promotion and non-significance, depending on polymer type, degradability, dose, size, shape, additive, and aging degree of the target MPs, soil physicochemical and biological properties, and exposure conditions, such as exposure time, temperature, and agricultural practices (e.g., planting, fertilization, soil amendment, and pesticide application). MPs can directly affect microbial activities by acting as carbon sources, releasing additives and pollutants, and shaping microbial communities via plastisphere effects. Smaller MPs (e.g., nanoplastics, 1 to <1000 nm) can also damage microbial cells through penetration. Indirectly, MPs can change soil attributes, fertility, the toxicity of co-existing pollutants, and the performance of soil fauna and plants, thus regulating soil microbiomes and their activities. In conclusion, MPs can regulate soil microbial activities and consequently pose cascading consequences for ecosystem functioning.
Collapse
Affiliation(s)
- Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China.
| | - Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Yuanhong Ding
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China.
| |
Collapse
|
18
|
Guo W, Li J, Wu Z, Chi G, Lu C, Ma J, Hu Y, Zhu B, Yang M, Chen X, Liu H. Biodegradable and conventional mulches inhibit nitrogen fixation by peanut root nodules - potentially related to microplastics in the soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136423. [PMID: 39536342 DOI: 10.1016/j.jhazmat.2024.136423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Mulching has been demonstrated to improve the soil environment and promote plant growth. However, the effects of mulching and mulch-derived microplastics (MPs) on nitrogen fixation by root nodules remain unclear. In this study, we investigated the effects of polyethylene (PE) and polylactic acid-polybutylene adipate-co-terephthalate (PLA-PBAT) film mulching on nitrogen fixation by root nodules after 4 years of continuous mulching using 15N tracer technology. Additionally, we examined the relationship between nitrogen fixation and MPs. We found a reduction in the proportion of nitrogen fixation by nodules (54.3 %-58.7 %) due to mulching. This decrease may be attributed to reduced dinitrogenase activity and flavonoid content at the seedling stage caused by mulching, and mulching with PLA-PBAT films significantly decreased the abundance of Bradyrhizobium at maturity. Furthermore, combined analysis of nitrogen-fixing bacteria (nifH) and metabolomes indicated that N-lauroylethanolamine may act as a regulatory signal influencing the root nodule nitrogen fixation process and that mulching resulted in significant changes in its content. The mantel test and PLS-PM suggest that microplastic from mulching may harm root nodule nitrogen fixation. This study reveals the influence of mulching on plant nitrogen uptake and the potential threat of mulch-derived microplastics, with a special focus on root nodule nitrogen fixation.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jizhi Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengfeng Wu
- Shandong Peanut Research Institute, Qingdao266100, China
| | - Guangyu Chi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Caiyan Lu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jian Ma
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yanyu Hu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bin Zhu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaoyin Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Huiying Liu
- Liaoning Academy of Agricultural Sciences, Shenyang 110161, China.
| |
Collapse
|
19
|
Cai J, Wu X, Yang J, Ma Y, Sun B, Wu F. Does higher ratio of wheat straw addition decrease PAHs degradation in PAHs-contaminated paddy soils and PAHs concentrations in rice? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176533. [PMID: 39368507 DOI: 10.1016/j.scitotenv.2024.176533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
There are considerable studies focusing on impacts of straw returning on PAHs degradation and bioavailability in PAHs-contaminated upland soils, while similar research in paddy soils is limited. Incubation experiments and pot trials were conducted to study effects of straw returning on PAHs degradation in paddy soils and PAHs accumulation in rice, respectively. There are threshold effects of straw returning on PAHs degradation in PAHs-contaminated paddy soils. The inflection point of PAHs degrading was recorded under 0.8 % wheat straw treatment (conventional (CS) and pretreated wheat straw (PS)), which increased PAHs degradation by 18.13-32.36 %. The lowest PAHs concentrations in rice were recorded under 1 % straw (CS and PS) treatment, which was attributed to the highest PAHs degradation in rhizosphere soils. Compared to CS treatment, PS treatment significantly (p < 0.05) increased PAHs degradation by 7.93-10.28 % and PAHs concentrations in rice by 12.38-45.87 % due to that increasing dissolved organic carbon (DOC) enhanced PAHs concentrations in porewater of rhizosphere soils. Higher diversity enhanced the metabolic pathways and function genes to degrade PAHs by improving bacterial phenotypes and biochemical processes under 1 % wheat straw and PS treatment. The present study firstly demonstrated that the effects of straw returning on PAHs degradation in PAHs-contaminated paddy soils and PAHs concentrations in rice depended on amount and methods of straw returning.
Collapse
Affiliation(s)
- Jun Cai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiangyao Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jing Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yuanzhe Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Benhua Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
20
|
Ma X, Wei Z, Wang X, Li C, Feng X, Shan J, Yan X, Ji R. Microplastics from polyvinyl chloride agricultural plastic films do not change nitrogenous gas emission but enhance denitrification potential. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135758. [PMID: 39244981 DOI: 10.1016/j.jhazmat.2024.135758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/04/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The effects of microplastics (MPs) from agricultural plastic films on soil nitrogen transformation, especially denitrification, are still obscure. Here, using a robotized flow-through system, we incubated vegetable upland soil cores for 66 days with MPs from PE mulching film (F-PE) and PVC greenhouse film (F-PVC) and directly quantified the emissions of nitrogenous gases from denitrification under oxic conditions, as well as the denitrification potential under anoxic conditions. The impact of MPs on soil nitrogen transformation was largely determined by the concentration of the additive phthalate esters (PAEs) containing in the MPs. The F-PE MPs with low level of PAEs (about 0.006 %) had no significant effect on soil mineral nitrogen content and nitrogenous gas emissions under oxic conditions. In contrast, the F-PVC MPs with high levels of PAEs (about 11 %) reduced soil nitrate content under oxic conditions, probably owing to promoted microbial assimilation of nitrogen, as the emissions of denitrification products (N2, NO, and N2O) was not affected. However, the F-PVC MPs significantly enhanced the denitrification potential of the soil due to the increased abundance of denitrifiers under anoxic conditions. These findings highlight the disturbance of MPs from agricultural films, particularly the additive PAEs on nitrogen transformation in soil ecosystems.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
21
|
Li L, Zhang Y, Kang S, Wang S, Gao T, Wang Z, Luo X, Kang Q, Sajjad W. Characteristics of microplastics and their abundance impacts on microbial structure and function in agricultural soils of remote areas in west China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124630. [PMID: 39079655 DOI: 10.1016/j.envpol.2024.124630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
As an emergent pollutant, microplastics (MPs) are becoming prevalent in the soil environment. However, the characteristics of MPs and the response of microbial communities to the abundance of MPs in agricultural soils in West China still need to be elucidated in detail. This study utilized the Agilent 8700 Laser Direct Infrared (LDIR) to analyze the characteristics of small-sized MPs (20-1000 μm) in soils from un-mulched and mulched agricultural fields in West China, and illustrated their correlation with microbial diversity. The results revealed a higher abundance of MPs in mulched soil ((4.12 ± 2.13) × 105 items kg-1) than that in un-mulched soil ((1.04 ± 0.26) × 105 items kg-1). The detected MPs were dominated by fragments, 20-50 μm and Polyamide (PA). High-throughput sequencing analysis indicated that alpha diversity (Chao1 and Shannon indices) in the plastisphere was lower compared to that in soil, and varied significantly with MPs abundance in soil. As the abundance of MPs increased, the proportion of soil about the degradation of organic matte and photoautotrophic taxa increased, which showed enrichment in the plastisphere. Functional predictions further indicated that MPs abundance affected potential soil functions, such as metabolic pathways associated with the C and N cycling. The plastisphere showed higher functional abundance associated with organic matter degradation, indicating higher potential health risks compared to soil environments. Based on the RDA analyses, it was determined that environmental physicochemical properties and MPs abundance had a greater impact on fungal communities than on bacterial communities. In general, the abundance of MPs affected the microbial diversity composition and potentially influenced the overall performance of soil ecosystems. This study offers empirical data on the abundance of MPs in long-term mulched agricultural fields and new insights for exploring the ecological risk issues associated with MPs.
Collapse
Affiliation(s)
- Longrui Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yulan Zhang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Rd. 318, Lanzhou 730000, China.
| | - Shichang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Rd. 318, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Shengli Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tanguang Gao
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhaoqing Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xi Luo
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Rd. 318, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Qiangqiang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Rd. 318, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Wasim Sajjad
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Rd. 318, Lanzhou 730000, China
| |
Collapse
|
22
|
Yang B, Wu L, Feng W, Lin Q. Global perspective of ecological risk of plastic pollution on soil microbial communities. Front Microbiol 2024; 15:1468592. [PMID: 39444686 PMCID: PMC11496196 DOI: 10.3389/fmicb.2024.1468592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction The impacts of plastic pollution on soil ecosystems have emerged as a significant global environmental concern. The progress in understanding how plastic pollution affects soil microbial communities and ecological functions is essential for addressing this issue effectively. Methods A bibliometric analysis was conducted on the literature from the Web of Science Core Collection database to offer valuable insights into the dynamics and trends in this field. Results To date, the effects of plastic residues on soil enzymatic activities, microbial biomass, respiration rate, community diversity and functions have been examined, whereas the effects of plastic pollution on soil microbes are still controversial. Discussion To include a comprehensive examination of the combined effects of plastic residue properties (Type, element composition, size and age), soil properties (soil texture, pH) at environmentally relevant concentrations with various exposure durations under field conditions in future studies is crucial for a holistic understanding of the impact of plastic pollution on soil ecosystems. Risk assessment of plastic pollution, particularly for nanoplasctics, from the perspective of soil food web and ecosystem multifunctioning is also needed. By addressing critical knowledge gaps, scholars can play a pivotal role in developing strategies to mitigate the ecological risks posed by plastic pollution on soil microorganisms.
Collapse
Affiliation(s)
- Bing Yang
- Sichuan Academy of Giant Panda, Chengdu, China
| | | | | | | |
Collapse
|
23
|
Liu Z, Wu Z, Zhang Y, Wen J, Su Z, Wei H, Zhang J. Impacts of conventional and biodegradable microplastics in maize-soil ecosystems: Above and below ground. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135129. [PMID: 39053066 DOI: 10.1016/j.jhazmat.2024.135129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
The increasing accumulation of microplastics (MPs) in agroecosystems has raised significant environmental and public health concerns, facilitating the application of biodegradable plastics. However, the comparative effects of conventional and biodegradable MPs in agroecosystem are still far from fully understood. Here we developed microcosm experiments to reveal the ecological effects of conventional (polyethylene [PE] and polypropylene [PP]) and biodegradable (polyadipate/butylene terephthalate [PBAT] and polycaprolactone [PCL]) MPs (0, 1%, 5%; w/w) in the maize-soil ecosystem. We found that PCL MPs reduced plant production by 73.6-75.2%, while PE, PP and PBAT MPs elicited almost negligible change. The addition of PCL MPs decreased specific enzyme activities critical for soil nutrients cycling by 71.5-95.3%. Biodegradable MPs tended to reduce bacterial α-diversity. The 1% treatments of PE and PBAT, and PCL enhanced bacterial networks complexity, whereas 5% of PE and PBAT, and PP had adverse effect. Moreover, biodegradable MPs appeared to reduce the α-diversity and networks complexity of fungal community. Overall, PCL reduced the ecosystem multifunctionality, mainly by inhibiting the microbial metabolic activity. This study offers evidence that biodegradable MPs can impair agroecosystem multifunctionality, and highlights the potential risks to replace the conventional plastics by biodegradable ones in agricultural practices.
Collapse
Affiliation(s)
- Ziqiang Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhenzhen Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yirui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhijun Su
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hui Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaen Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
Wu C, Ma Y, Shan Y, Song X, Wang D, Ren X, Hu H, Cui J, Ma Y. Exploring the potential of biochar for the remediation of microbial communities and element cycling in microplastic-contaminated soil. CHEMOSPHERE 2024; 362:142698. [PMID: 38925523 DOI: 10.1016/j.chemosphere.2024.142698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The detrimental effects of microplastics (MPs) on soil microbial and elemental raise significant environmental concerns. The potential of remediation with biochar to mitigate these negative impacts remains an open question. The remediation effects of biochar derived from corn and cotton straw on MPs concerning soil microorganisms and element cycling were investigated. Specifically, biochar induced substantial remediations in microbial community structure following MP exposure, restoring and fortifying the symbiotic network while exerting dominance over microbial community changes. A combined treatment of biochar and MPs exhibited a noteworthy increase in the abundance of NH4+, NO3-, and available phosphorous by 0.46-2.1 times, reversing the declining trend of dissolved organic carbon, showing a remarkable increase by 0.36 times. This combined treatment also led to a reduction in the abundance of the nitrogen fixation gene nifH by 0.46 times, while significantly increasing the expression of nitrification genes (amoA and amoB) and denitrification genes (nirS and nirK) by 22.5 times and 1.7 times, respectively. Additionally, the carbon cycle cbbLG gene showed a 2.3-fold increase, and the phosphorus cycle gene phoD increased by 0.1-fold. The mixed treatment enriched element-cycling microorganisms by 4.8-9.6 times. In summary, the addition of biochar repaired the negative effects of MPs in terms of microbial community dynamics, element content, gene expression, and functional microbiota. These findings underscore the crucial role of biochar in alleviating the adverse effects of MPs on microbial communities and elemental cycling, providing valuable insights into sustainable environmental remediation strategies.
Collapse
Affiliation(s)
- Changcai Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, 450001, Zhengzhou, China
| | - Yajie Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Yongpan Shan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Xianpeng Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Dan Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Xiangliang Ren
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Hongyan Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, 450001, Zhengzhou, China.
| | - Yan Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
25
|
Liava V, Golia EE. Effect of microplastics used in agronomic practices on agricultural soil properties and plant functions: Potential contribution to the circular economy of rural areas. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:634-650. [PMID: 38520089 DOI: 10.1177/0734242x241234234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
The extensive use of plastic materials and their improper disposal results in high amounts of plastic waste in the environment. Aging of plastics leads to their breakdown into smaller particles, such as microplastics (MPs) and nanoplastics. This research investigates plastics used in agricultural practices as they contribute to MP pollution in agricultural soils. The distribution and characteristics of MPs in agricultural soils were evaluated. In addition, the effect of MPs on soil properties, the relationship between MPs and metals in soil, the effect of MPs on the fate of pesticides in agricultural soils and the influence of MPs on plant growth were analysed, discussing legume, cereal and vegetable crops. Finally, a brief description of the main methods of chemical analysis and identification of MPs is presented. This study will contribute to a better understanding of MPs in agricultural soils and their effect on the soil-plant system. The changes induced by MPs in soil parameters can lead to potential benefits as it is possible to increase the availability of micronutrients and reduce plant uptake of toxic elements. Furthermore, although plastic pollution remains an emerging threat to soil ecosystems, their presence may result in benefits to agricultural soils, highlighting the principles of the circular economy.
Collapse
Affiliation(s)
- Vasiliki Liava
- Faculty of Agriculture, Forestry and Natural Environment, Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Evangelia E Golia
- Faculty of Agriculture, Forestry and Natural Environment, Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
26
|
Yuan X, Ma S, Geng H, Cao M, Chen H, Zhou B, Yuan R, Luo S, Sun K, Wang F. Joint effect of black carbon deriving from wheat straw burning and plastic mulch film debris on the soil biochemical properties, bacterial and fungal communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174522. [PMID: 38981545 DOI: 10.1016/j.scitotenv.2024.174522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Black carbon (BC) formed after straw burning remains in farmland soil and coexists with plastic mulch film (PMF) debris. It is unclear how BC influences soil multifunctionality in the presence of PMF debris. In this study, we determined the joint effects of BC and PMF debris on soil biochemical properties and microbial communities. We conducted a soil microcosm experiment by adding BC formed by direct burning of wheat straw and PMF debris (polyethylene (PE) and biodegradable PMF (BP)) into soil at the dosages of 1 %, and soils were sampled on the 15th, 30th, and 100th day of soil incubation for high-throughput sequencing. The results showed that the degradation of PMF debris was accompanied by the release of microplastics (MPs). BC decreased NH4+-N (PE: 68.63 %; BP: 58.97 %) and NO3--N (PE: 12.83 %; BP: 51.37 %) and increased available phosphorus (AP) (PE: 79.12 %; BP: 26.09 %) in soil containing PMF debris. There were significant differences in enzyme activity among all the treatments. High-throughput sequencing indicated that BC reduced bacterial and fungal richness and fungal diversity in PMF debris-exposed soil, whereas PMF debris and BC resulted in significant changes in the proportion of dominant phyla and genera of bacteria and fungi, which were affected by incubation time. Furthermore, BC affected microorganisms by influencing soil properties, and pH and N content were the main influencing factors. In addition, FAPRPTAX analysis indicated that BC and PMF debris affected soil C and N cycling. These findings provide new insights into the response of soil multifunctionality to BC and PMF debris.
Collapse
Affiliation(s)
- Xiaoyan Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing, 100875, PR China
| | - Shuai Ma
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing, 100875, PR China.
| | - Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Manman Cao
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing, 100875, PR China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Beihai Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Shuai Luo
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Ke Sun
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing, 100875, PR China
| | - Fei Wang
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing, 100875, PR China.
| |
Collapse
|
27
|
Fang C, Yang Y, Zhang S, He Y, Pan S, Zhou L, Wang J, Yang H. Unveiling the impact of microplastics with distinct polymer types and concentrations on tidal sediment microbiome and nitrogen cycling. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134387. [PMID: 38723479 DOI: 10.1016/j.jhazmat.2024.134387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/30/2024]
Abstract
Microplastics (MPs) are distributed widely in the ocean surface waters and sediments. Increasing MPs contamination in intertidal zone profoundly impacts microbial ecosystem services and biogeochemical process. Little is known about the response of tidal sediment microbiome to MPs. We conducted a 30-day laboratory microcosm study using five polymers (PE, PBS, PC, PLA and PET) at three concentrations (1 %, 2 % and 5 %, w/w). High throughput sequencing of 16 S rRNA, qPCR and enzyme activity test were applied to demonstrate the response of microbial community and nitrogen cycling functional genes to MPs. MPs reduced the microbial alpha diversity and the microbial dissimilarity while the effects of PLA-MPs were concentration dependent. LEfSe analysis indicated that the Proteobacteria predominated for all MP treatments. Mantel's test, RDA and correlation analysis implied that pH may be the key environmental factor for causing microbial alterations. MPs enhanced nitrogen fixation in tidal sediment. PLA levels of 1 % but not 5 % produced the most significant effects in nitrogen cycling functional microbiota and genes. PLS-PM revealed that impacts of MPs on tidal sediment microbial communities and nitrogen cycling were dominated by indirect effects. Our study deepened understanding and filled the knowledge gap of MP contaminants affecting tidal sediment microbial nitrogen cycling.
Collapse
Affiliation(s)
- Chang Fang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yuting Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Shuping Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yinglin He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Sentao Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Lei Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China.
| |
Collapse
|
28
|
Zhao S, Rillig MC, Bing H, Cui Q, Qiu T, Cui Y, Penuelas J, Liu B, Bian S, Monikh FA, Chen J, Fang L. Microplastic pollution promotes soil respiration: A global-scale meta-analysis. GLOBAL CHANGE BIOLOGY 2024; 30:e17415. [PMID: 39005227 DOI: 10.1111/gcb.17415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta-analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.
Collapse
Affiliation(s)
- Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Yongxing Cui
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF- CSIC- UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Caalonia, Spain
| | - Baiyan Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiqi Bian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Fazel Abdolahpur Monikh
- Department of Chemical Sciences, University of Padua, Padua, Italy
- Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec Bendlova 1409/7, Liberec, Czech Republic
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
29
|
Wang D, Xiong F, Wu L, Liu Z, Xu K, Huang J, Liu J, Ding Q, Zhang J, Pu Y, Sun R. A progress update on the biological effects of biodegradable microplastics on soil and ocean environment: A perfect substitute or new threat? ENVIRONMENTAL RESEARCH 2024; 252:118960. [PMID: 38636648 DOI: 10.1016/j.envres.2024.118960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Conventional plastics are inherently difficult to degrade, causing serious plastic pollution. With the development of society, biodegradable plastics (BPs) are considered as an alternative to traditional plastics. However, current research indicated that BPs do not undergo complete degradation in natural environments. Instead, they may convert into biodegradable microplastics (BMPs) at an accelerated rate, thereby posing a significant threat to environment. In this paper, the definition, application, distribution, degradation behaviors, bioaccumulation and biomagnification of BPs were reviewed. And the impacts of BMPs on soil and marine ecosystems, in terms of physicochemical property, nutrient cycling, microorganisms, plants and animals were comprehensively summarized. The effects of combined exposure of BMPs with other pollutants, and the mechanism of ecotoxicity induced by BMPs were also addressed. It was found that BMPs reduced pH, increased DOC content, and disrupted the nitrification of nitrogen cycle in soil ecosystem. The shoot dry weight, pod number and root growth of soil plants, and reproduction and body length of soil animals were inhibited by BMPs. Furthermore, the growth of marine plants, and locomotion, body length and survival of marine animals were suppressed by BMPs. Additionally, the ecotoxicity of combined exposure of BMPs with other pollutants has not been uniformly concluded. Exposure to BMPs induced several types of toxicity, including neurotoxicity, gastrointestinal toxicity, reproductive toxicity, immunotoxicity and genotoxicity. The future calls for heightened attention towards the regulation of the degradation of BPs in the environment, and pursuit of interventions aimed at mitigating their ecotoxicity and potential health risks to human.
Collapse
Affiliation(s)
- Daqin Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Fei Xiong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lingjie Wu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Zhihui Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jinyan Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qin Ding
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
30
|
Wang J, Jia M, Zhang L, Li X, Zhang X, Wang Z. Biodegradable microplastics pose greater risks than conventional microplastics to soil properties, microbial community and plant growth, especially under flooded conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172949. [PMID: 38703848 DOI: 10.1016/j.scitotenv.2024.172949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Biodegradable plastics (bio-plastics) are often viewed as viable option for mitigating plastic pollution. Nevertheless, the information regarding the potential risks of microplastics (MPs) released from bio-plastics in soil, particularly in flooded soils, is lacking. Here, our objective was to investigate the effect of polylactic acid MPs (PLA-MPs) and polyethylene MPs (PE-MPs) on soil properties, microbial community and plant growth under both non-flooded and flooded conditions. Our results demonstrated that PLA-MPs dramatically increased soil labile carbon (C) content and altered its composition and chemodiversity. The enrichment of labile C stimulated microbial N immobilization, resulting in a depletion of soil mineral nitrogen (N). This specialized environment created by PLA-MPs further filtered out specific microbial species, resulting in a low diversity and simplified microbial community. PLA-MPs caused an increase in denitrifiers (Noviherbaspirillum and Clostridium sensu stricto) and a decrease in nitrifiers (Nitrospira, MND1, and Ellin6067), potentially exacerbating the mineral N deficiency. The mineral N deficit caused by PLA-MPs inhibited wheatgrass growth. Conversely, PE-MPs had less effect on soil ecosystems, including soil properties, microbial community and wheatgrass growth. Overall, our study emphasizes that PLA-MPs cause more adverse effect on the ecosystem than PE-MPs in the short term, and that flooded conditions exacerbate and prolong these adverse effects. These results offer valuable insights for evaluating the potential threats of bio-MPs in both uplands and wetlands.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Minghao Jia
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Long Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
31
|
Xu S, Zhao R, Sun J, Sun Y, Xu G, Wang F. Microplastics change soil properties, plant performance, and bacterial communities in salt-affected soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134333. [PMID: 38643581 DOI: 10.1016/j.jhazmat.2024.134333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Microplastics (MPs) are emerging contaminants found globally. However, their effects on soil-plant systems in salt-affected habitats remain unknown. Here, we examined the effects of polyethylene (PE) and polylactic acid (PLA) on soil properties, maize performance, and bacterial communities in soils with different salinity levels. Overall, MPs decreased soil electrical conductivity and increased NH4+-N and NO3--N contents. Adding NaCl alone had promoting and inhibitive effects on plant growth in a concentration-dependent manner. Overall, the addition of 0.2% PLA increased shoot biomass, while 2% PLA decreased it. Salinity increased Na content and decreased K/Na ratio in plant tissues (particularly roots), which were further modified by MPs. NaCl and MPs singly and jointly regulated the expression of functional genes related to salt tolerance in leaves, including ZMSOS1, ZMHKT1, and ZMHAK1. Exposure to NaCl alone had a slight effect on soil bacterial α-diversity, but in most cases, MPs increased ACE, Chao1, and Shannon indexes. Both MPs and NaCl altered bacterial community composition, although the specific effects varied depending on the type and concentration of MPs and the salinity level. Overall, PLA had more pronounced effects on soil-plant systems compared to PE. These findings bridge knowledge gaps in the risks of MPs in salt-affected habitats.
Collapse
Affiliation(s)
- Shuang Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Rong Zhao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China; Shandong Vocational College of Science and Technology, Weifang, Shandong 261000, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China.
| |
Collapse
|
32
|
Yu H, Liu X, Qiu X, Sun T, Cao J, Lv M, Sui Z, Wang Z, Jiao S, Xu Y, Wang F. Discrepant soil microbial community and C cycling function responses to conventional and biodegradable microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134176. [PMID: 38569347 DOI: 10.1016/j.jhazmat.2024.134176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Biodegradable microplastics (MPs) are promising alternatives to conventional MPs and are of high global concern. However, their discrepant effects on soil microorganisms and functions are poorly understood. In this study, polyethylene (PE) and polylactic acid (PLA) MPs were selected to investigate the different effects on soil microbiome and C-cycling genes using high-throughput sequencing and real-time quantitative PCR, as well as the morphology and functional group changes of MPs, using scanning electron microscopy and Fourier transform infrared spectroscopy, and the driving factors were identified. The results showed that distinct taxa with potential for MP degradation and nitrogen cycling were enriched in soils with PLA and PE, respectively. PLA, smaller size (150-180 µm), and 5% (w/w) of MPs enhanced the network complexity compared with PE, larger size (250-300 µm), and 1% (w/w) of MPs, respectively. PLA increased β-glucosidase by up to 2.53 times, while PE (150-180 µm) reduced by 38.26-44.01% and PE (250-300 µm) increased by 19.00-22.51% at 30 days. Amylase was increased by up to 5.83 times by PLA (150-180 µm) but reduced by 40.26-62.96% by PLA (250-300 µm) and 16.11-43.92% by PE. The genes cbbL, cbhI, abfA, and Lac were enhanced by 37.16%- 1.99 times, 46.35%- 26.46 times, 8.41%- 69.04%, and 90.81%- 5.85 times by PLA except for PLA1B/5B at 30 days. These effects were associated with soil pH, NO3--N, and MP biodegradability. These findings systematically provide an understanding of the impact of biodegradable MPs on the potential for global climate change.
Collapse
Affiliation(s)
- Hui Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xin Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xiaoguo Qiu
- Shandong Provincial Eco-Environment Monitoring Center, Jinan 250101, China
| | - Tao Sun
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Jianfeng Cao
- Taian Ecological Environment Monitoring Center of Shandong Province, Taian 271000, China
| | - Ming Lv
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Zhiyuan Sui
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Zhizheng Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shuying Jiao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yuxin Xu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Fenghua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China.
| |
Collapse
|
33
|
Iqbal S, Xu J, Arif MS, Worthy FR, Jones DL, Khan S, Alharbi SA, Filimonenko E, Nadir S, Bu D, Shakoor A, Gui H, Schaefer DA, Kuzyakov Y. Do Added Microplastics, Native Soil Properties, and Prevailing Climatic Conditions Have Consequences for Carbon and Nitrogen Contents in Soil? A Global Data Synthesis of Pot and Greenhouse Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8464-8479. [PMID: 38701232 DOI: 10.1021/acs.est.3c10247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Microplastics threaten soil ecosystems, strongly influencing carbon (C) and nitrogen (N) contents. Interactions between microplastic properties and climatic and edaphic factors are poorly understood. We conducted a meta-analysis to assess the interactive effects of microplastic properties (type, shape, size, and content), native soil properties (texture, pH, and dissolved organic carbon (DOC)) and climatic factors (precipitation and temperature) on C and N contents in soil. We found that low-density polyethylene reduced total nitrogen (TN) content, whereas biodegradable polylactic acid led to a decrease in soil organic carbon (SOC). Microplastic fragments especially depleted TN, reducing aggregate stability, increasing N-mineralization and leaching, and consequently increasing the soil C/N ratio. Microplastic size affected outcomes; those <200 μm reduced both TN and SOC contents. Mineralization-induced nutrient losses were greatest at microplastic contents between 1 and 2.5% of soil weight. Sandy soils suffered the highest microplastic contamination-induced nutrient depletion. Alkaline soils showed the greatest SOC depletion, suggesting high SOC degradability. In low-DOC soils, microplastic contamination caused 2-fold greater TN depletion than in soils with high DOC. Sites with high precipitation and temperature had greatest decrease in TN and SOC contents. In conclusion, there are complex interactions determining microplastic impacts on soil health. Microplastic contamination always risks soil C and N depletion, but the severity depends on microplastic characteristics, native soil properties, and climatic conditions, with potential exacerbation by greenhouse emission-induced climate change.
Collapse
Affiliation(s)
- Shahid Iqbal
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, Yunnan, China
| | - Jianchu Xu
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, Yunnan, China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming 650201, Yunnan, China
| | - Muhammad Saleem Arif
- Department of Environmental Sciences, Government College University Faisalabad, Allama Iqbal Road, Faisalabad 38000, Pakistan
| | - Fiona R Worthy
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Davey L Jones
- School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, Gwynedd LL57 2UW, U.K
- Soils West, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | - Sehroon Khan
- Department of Biotechnology, Faculty of Natural Sciences, University of Science and Technology Bannu, Main Campus Bannu-Township, Bannu 28100, Khyber Pakhtunkhwa, Pakistan
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Ekaterina Filimonenko
- Center for Isotope Biogeochemistry, University of Tyumen, Volodarskogo Str., 6, Tyumen 625003, Russia
| | - Sadia Nadir
- Department of Biotechnology, Faculty of Natural Sciences, University of Science and Technology Bannu, Main Campus Bannu-Township, Bannu 28100, Khyber Pakhtunkhwa, Pakistan
| | - Dengpan Bu
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems, Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR), and World Agroforestry Center (ICRAF), Beijing 100193, China
| | - Awais Shakoor
- Teagasc, Environment, Soils and Land Use Department, Johnstown Castle, Co., Wexford Y35 Y521, Ireland
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Heng Gui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, Yunnan, China
| | - Douglas Allen Schaefer
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, Yunnan, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Goettingen 37077, Germany
- Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Institute of Environmental SciencesKazan Federal University, Kazan 420049, Russia
- Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia
| |
Collapse
|
34
|
Li X, Qin H, Tang N, Li X, Xing W. Microplastics enhance the invasion of exotic submerged macrophytes by mediating plant functional traits, sediment properties, and microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134032. [PMID: 38492389 DOI: 10.1016/j.jhazmat.2024.134032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Plant invasions and microplastics (MPs) have significantly altered the structure and function of aquatic habitats worldwide, resulting in severe damage to aquatic ecosystem health. However, the effects of MPs on plant invasion and the underlying mechanisms remain largely unknown. In this study, we conducted mesocosm experiments over a 90-day period to assess the effects of polystyrene microplastics on the invasion of exotic submerged macrophytes, sediment physicochemical properties, and sediment bacterial communities. Our results showed that PS-MPs significantly promoted the performance of functional traits and the invasive ability of exotic submerged macrophytes, while native plants remained unaffected. Moreover, PS-MPs addition significantly decreased sediment pH while increasing sediment carbon and nitrogen content. Additionally, MPs increased the diversity of sediment bacterial community but inhibited its structural stability, thereby impacting sediment bacterial multifunctionality to varying degrees. Importantly, we identified sediment properties, bacterial composition, and bacterial multifunctionality as key mediators that greatly enhance the invasion of exotic submerged macrophytes. These findings provide compelling evidence that the increase in MPs may exacerbate the invasion risk of exotic submerged macrophytes through multiple pathways. Overall, this study enhances our understanding of the ecological impacts of MPs on aquatic plant invasion and the health of aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaowei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hongjie Qin
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Na Tang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaolu Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Wei Xing
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
35
|
Chen L, Chang N, Qiu T, Wang N, Cui Q, Zhao S, Huang F, Chen H, Zeng Y, Dong F, Fang L. Meta-analysis of impacts of microplastics on plant heavy metal(loid) accumulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123787. [PMID: 38548159 DOI: 10.1016/j.envpol.2024.123787] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
The co-occurrence of microplastics (MPs) and heavy metal(loid)s (HMs) has attracted growing scientific interest because of their wide distribution and environmental toxicity. Nevertheless, the interactions between MPs and HMs in soil-plant systems remain unclear. We conducted a meta-analysis with 3226 observations from 87 independent studies to quantify the impact of MPs addition on the plant biomass and HMS accumulation. Co-occurrence of MPs and HMs (except for As) induced synergistic toxicity to plant growth. MPs promoted their uptake in the shoot by 11.0% for Cd, 30.0% for Pb, and 47.1% for Cu, respectively. In contrast, MPs caused a significant decrease (22.6%, 17.9-26.9%) in the shoot As accumulation. The type and dose of MPs were correlated with the accumulation of HMs. MPs increased available concentrations of Cd, Pb, and Cu, but decreased available As concentration in soils. Meanwhile, MPs addition significantly lowered soil pH. These findings may provide explanations for MPs-mediated effects on influencing the accumulation of HMs in plants. Using a machine learning approach, we revealed that soil pH and total HMs concentration are the major contributors affecting their accumulation in shoot. Overall, our study indicated that MPs may increase the environmental risks of HMs in agroecosystems, especially metal cations.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Na Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Qingliang Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Shuling Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Fengyu Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Hansong Chen
- College of Xingzhi, Zhejiang Normal University, Jinhua, 321000, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Faqin Dong
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
36
|
Ye H, Zhao Y, He S, Wu Z, Yue M, Hong M. Metagenomics reveals the response of desert steppe microbial communities and carbon-nitrogen cycling functional genes to nitrogen deposition. Front Microbiol 2024; 15:1369196. [PMID: 38596372 PMCID: PMC11002186 DOI: 10.3389/fmicb.2024.1369196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Nitrogen (N) deposition seriously affects the function of carbon (C) and N cycling in terrestrial ecosystems by altering soil microbial communities, especially in desert steppe ecosystems. However, there is a need for a comprehensive understanding of how microorganisms involved in each C and N cycle process respond to N deposition. Methods In this study, shotgun metagenome sequencing was used to investigate variations in soil C and N cycling-related genes in the desert steppe in northern China after 6 years of the following N deposition: N0 (control); N30 (N addition 30 kg ha-1 year-1): N50 (N addition 50 kg ha-1 year-1). Results N deposition significantly increased the relative abundance of Actinobacteria (P < 0.05) while significantly decreased the relative abundances of Proteobacteria and Acidobacteria (P < 0.05). This significantly impacted the microbial community composition in desert steppe soils. The annual addition or deposition of 50 kg ha-1 year-1 for up to 6 years did not affect the C cycle gene abundance but changed the C cycle-related microorganism community structure. The process of the N cycle in the desert steppe was affected by N deposition (50 kg ha-1 year-1), which increased the abundance of the pmoA-amoA gene related to nitrification and the nirB gene associated with assimilation nitrite reductase. There may be a niche overlap between microorganisms involved in the same C and N cycling processes. Discussion This study provides new insights into the effects of N deposition on soil microbial communities and functions in desert steppe and a better understanding of the ecological consequences of anthropogenic N addition.
Collapse
Affiliation(s)
- He Ye
- Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous Region, Hohhot, China
| | - Yu Zhao
- Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous Region, Hohhot, China
| | - Shilong He
- Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous Region, Hohhot, China
| | - Zhendan Wu
- Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous Region, Hohhot, China
| | - Mei Yue
- Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous Region, Hohhot, China
| | - Mei Hong
- Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous Region, Hohhot, China
| |
Collapse
|
37
|
He B, Liu Z, Wang X, Li M, Lin X, Xiao Q, Hu J. Dosage and exposure time effects of two micro(nono)plastics on arbuscular mycorrhizal fungal diversity in two farmland soils planted with pepper (Capsicum annuum L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170216. [PMID: 38278273 DOI: 10.1016/j.scitotenv.2024.170216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
As emerging environmental pollutants, micro(nano)plastics (MPs) like polyethylene terephthalate (PET) and low-density polyethylene (LDPE) have adverse effects on terrestrial biota and ecosystem function. However, the performance and roles of soil arbuscular mycorrhizal (AM) fungi in MPs-contaminated vegetable fields are poorly understood. Thus, a 120-day pot experiment was conducted to test the impacts of two input levels of either PET (~13 μm) or LDPE (~500 nm) on AM fungal diversity and pepper (Capsicum annuum L.) growth in two farmland soils collected from Nanjing (NJ) and Chongqing (CQ), respectively. In the vast majority of cases, 1 % rather than 0.1 % of both MPs greatly decreased the observed richness, Shannon and Simpson's indices, and Pielou's evenness of AM fungi, and decreased mycorrhizal colonization, root and shoot biomasses, fruit yield, and leaf superoxide dismutase, peroxidase, and catalase activities of pepper, while increased leaf malondialdehyde content. From day 40 to 120, the inhibition of either diversity or vitality of AM fungi by 1 % and 0.1 % of MPs gradually increased and weakened, respectively. Compared with PET, LDPE with substantially smaller particle size was more toxic to mycorrhization at day 40, but no longer at day 120. Almost all plant parameters significantly correlated to mycorrhizal colonization, which significantly correlated to both Shannon and Simpson's indices of AM fungi, and soil pH, available P and K concentrations, and alkaline phosphatase activity. All diversity indices of AM fungi clearly negatively correlated to soil pH from 4.4 to 5.6 for the NJ soil and from 5.3 to 6.5 for the CQ soil, and also positively to mineral N and negatively to available P concentrations for the NJ and CQ soils, respectively. Thus, the study emphasized that high input of MPs significantly inhibited soil AM fungal diversity and vitality and thereby vegetable growth via changing soil pH and major nutrient availability.
Collapse
Affiliation(s)
- Baiping He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Zihao Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Minghui Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingqing Xiao
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China.
| | - Junli Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
38
|
Adomako MO, Wu J, Lu Y, Adu D, Seshie VI, Yu FH. Potential synergy of microplastics and nitrogen enrichment on plant holobionts in wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170160. [PMID: 38244627 DOI: 10.1016/j.scitotenv.2024.170160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Wetland ecosystems are global hotspots for environmental contaminants, including microplastics (MPs) and nutrients such as nitrogen (N) and phosphorus (P). While MP and nutrient effects on host plants and their associated microbial communities at the individual level have been studied, their synergistic effects on a plant holobiont (i.e., a plant host plus its microbiota, such as bacteria and fungi) in wetland ecosystems are nearly unknown. As an ecological entity, plant holobionts play pivotal roles in biological nitrogen fixation, promote plant resilience and defense chemistry against pathogens, and enhance biogeochemical processes. We summarize evidence based on recent literature to elaborate on the potential synergy of MPs and nutrient enrichment on plant holobionts in wetland ecosystems. We provide a conceptual framework to explain the interplay of MPs, nutrients, and plant holobionts and discuss major pathways of MPs and nutrients into the wetland milieu. Moreover, we highlight the ecological consequences of loss of plant holobionts in wetland ecosystems and conclude with recommendations for pending questions that warrant urgent research. We found that nutrient enrichment promotes the recruitment of MPs-degraded microorganisms and accelerates microbially mediated degradation of MPs, modifying their distribution and toxicity impacts on plant holobionts in wetland ecosystems. Moreover, a loss of wetland plant holobionts via long-term MP-nutrient interactions may likely exacerbate the disruption of wetland ecosystems' capacity to offer nature-based solutions for climate change mitigation through soil organic C sequestration. In conclusion, MP and nutrient enrichment interactions represent a severe ecological risk that can disorganize plant holobionts and their taxonomic roles, leading to dysbiosis (i.e., the disintegration of a stable plant microbiome) and diminishing wetland ecosystems' integrity and multifunctionality.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jing Wu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China
| | - Ying Lu
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Daniel Adu
- School of Management Science and Engineering, Jiangsu University, Zhejiang 212013, Jiangsu, China
| | - Vivian Isabella Seshie
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
39
|
Yang A, Zhu D, Zhang W, Shao Y, Shi Y, Liu X, Lu Z, Zhu YG, Wang H, Fu S. Canopy nitrogen deposition enhances soil ecosystem multifunctionality in a temperate forest. GLOBAL CHANGE BIOLOGY 2024; 30:e17250. [PMID: 38500362 DOI: 10.1111/gcb.17250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Nitrogen (N) deposition affects ecosystem functions crucial to human health and well-being. However, the consequences of this scenario for soil ecosystem multifunctionality (SMF) in forests are poorly understood. Here, we conducted a long-term field experiment in a temperate forest in China, where N deposition was simulated by adding N above and under the canopies. We discover that canopy N addition promotes SMF expression, whereas understory N addition suppresses it. SMF was regulated by fungal diversity in canopy N addition treatments, which is largely due to the strong resistance to soil acidification and efficient resource utilization characteristics of fungi. While in understory N addition treatments, SMF is regulated by bacterial diversity, which is mainly because of the strong resilience to disturbances and fast turnover of bacteria. Furthermore, rare microbial taxa may play a more important role in the maintenance of the SMF. This study provides the first evidence that N deposition enhanced SMF in temperate forests and enriches the knowledge on enhanced N deposition affecting forest ecosystems. Given the divergent results from two N addition approaches, an innovative perspective of canopy N addition on soil microbial diversity-multifunctionality relationships is crucial to policy-making for the conservation of soil microbial diversity and sustainable ecosystem management under enhanced N deposition. In future research, the consideration of canopy N processes is essential for more realistic assessments of the effects of atmospheric N deposition in forests.
Collapse
Affiliation(s)
- An Yang
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation & Research Station of Forest Ecosystem, Xinyang, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Weixin Zhang
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation & Research Station of Forest Ecosystem, Xinyang, China
| | - Yuanhu Shao
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation & Research Station of Forest Ecosystem, Xinyang, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ziluo Lu
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hongtao Wang
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation & Research Station of Forest Ecosystem, Xinyang, China
| | - Shenglei Fu
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation & Research Station of Forest Ecosystem, Xinyang, China
| |
Collapse
|
40
|
Jia Y, Cheng Z, Peng Y, Yang G. Microplastics alter the equilibrium of plant-soil-microbial system: A meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116082. [PMID: 38335576 DOI: 10.1016/j.ecoenv.2024.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/31/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Microplastics (MPs) are widely identified as emerging hazards causing considerable eco-toxicity in terrestrial ecosystems, but the impacts differ in different ecosystem functions among different chemical compositions, morphology, sizes, concentrations, and experiment duration. Given the close relationships and trade-offs between plant and soil systems, probing the "whole ecosystem" instead of individual functions must yield novel insights into MPs affecting terrestrial ecosystems. Here, a comprehensive meta-analysis was employed to reveal an unambiguous response of the plant-soil-microbial system to MPs. Results showed that in view of plant, soil, and microbial functions, the general response patterns of plant and soil functions to MPs were obviously opposite. For example, polyethylene (PE) and polyvinyl chloride (PVC) MPs highly increased plant functions, while posed negative effects on soil functions. Polystyrene (PS) and biodegradable (Bio) MPs decreased plant functions, while stimulating soil functions. Additionally, low-density polyethylene (LDPE), PE, PS, PVC, Bio, and granular MPs significantly decreased soil microbial functions. These results clearly revealed that MPs alter the equilibrium of the plant-soil-microbial system. More importantly, our results further revealed that MPs tended to increase ecosystem multifunctionality, e.g., LDPE and PVC MPs posed positive effects on ecosystem multifunctionality, PE, PS, and Bio MPs showed neutral effects on ecosystem multifunctionality. Linear regression analysis showed that under low MPs size (<100 µm), ecosystem multifunctionality was gradually reduced with the increased size of MPs. The response of ecosystem multifunctionality showed a concave shape pattern along the gradient of experimental duration which was lower than 70 days. More importantly, there was a threshold (i.e., 5% w/w) for the effects of MPs concentration on ecosystem multifunctionality, i.e., under low concentration (< 5% w/w), ecosystem multifunctionality was gradually increased with the increased concentration of MPs, while ecosystem multifunctionality was gradually decreased under high concentration (i.e., > 5% w/w). These findings emphasize the importance of studying the effects of MPs on plant-soil-microbial systems and help us identify ways to reduce the eco-toxicity of MPs and maintain environmental safety in view of an ecology perspective.
Collapse
Affiliation(s)
- Yangyang Jia
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Zhen Cheng
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Yi Peng
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Guojiang Yang
- Institute of Farmland Water Conservancy and Soil-fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| |
Collapse
|
41
|
Grifoni M, Pellegrino E, Arrighetti L, Bronco S, Pezzarossa B, Ercoli L. Interactive impacts of microplastics and arsenic on agricultural soil and plant traits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169058. [PMID: 38070573 DOI: 10.1016/j.scitotenv.2023.169058] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
The ability of microplastics (MPs) to interact with environmental pollutants is currently of great concern due to the increasing use of plastic. Agricultural soils are sinks for multipollutants and the safety of biodegradable MPs in field conditions is questioned. However, still few studies have investigated the interactive effects between MPs and metals on the soil-plant system with agricultural soil and testing crops for human consumption. In this work, we tested the effect on soil and plant parameters of two common MPs, non-degradable plastic low-density polyethylene and biodegradable polymer polylactic acid at two different sizes (<250 μm and 250-300 μm) in association with arsenic (As). Lettuce (Lactuca sativa L.) was used as a model plant in a small-scale experiment lasting 60 days. Microplastics and As explained 12 % and 47 % of total variance, respectively, while their interaction explained 21 %, suggesting a higher toxic impact of As than MPs. Plant growth was promoted by MPs alone, especially when biodegradable MPs were added (+22 %). However, MPs did not affect nutrient concentrations in roots and leaves. The effect of MPs on enzyme activities was variable depending on the time of exposure (with larger effects immediately after exposure), the type and size of the MPs. On the contrary, the co-application of MP and As, although it did not change the amount of bioavailable As in soil in the short and medium term, it resulted in a significant decrease in lettuce biomass (-19 %) and root nutrient concentrations, especially when polylactic acid was applied. Generally, MPs in association with As determined the plant-soil toxicity. This work provides insights into the risk of copollution of MPs and As in agricultural soil and its phytotoxic effect for agricultural crops. However, the mechanisms of the joint effect of MP and As on plant toxicity need further investigation, especially under field conditions and in long-term experiments.
Collapse
Affiliation(s)
- Martina Grifoni
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Elisa Pellegrino
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - Leonardo Arrighetti
- Institute for Chemical and Physical Processes, Consiglio Nazionale delle Ricerche, CNR-IPCF, 56127 Pisa, Italy
| | - Simona Bronco
- Institute for Chemical and Physical Processes, Consiglio Nazionale delle Ricerche, CNR-IPCF, 56127 Pisa, Italy
| | - Beatrice Pezzarossa
- Research Institute on Terrestrial Ecosystems, Consiglio Nazionale delle Ricerche, CNR-IRET, 56127 Pisa, Italy
| | - Laura Ercoli
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| |
Collapse
|
42
|
Zhou J, Xu H, Xiang Y, Wu J. Effects of microplastics pollution on plant and soil phosphorus: A meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132705. [PMID: 37813034 DOI: 10.1016/j.jhazmat.2023.132705] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
The widespread use of microplastics leads to environmental pollution, which threatens ecosystem functions (i.e., nutrient cycling). Some studies have focused on the impacts of microplastics on phosphorus from plants and soils. However, inconsistent responses of plant and soil phosphorus to microplastics have been observed. This work synthesized the results of 781 paired observations from 73 publications to explore the overall effects of microplastics on plant and soil phosphorus and whether the impacts depended on microplastics properties and experimental variables. We found the overall negative effects of microplastics on plant phosphorus and soil available phosphorus. Additionally, microplastics significantly inhibited neutral phosphatase activity but increased soil phosphorus leaching. Furthermore, the impacts of microplastics on plant and soil phosphorus varied depending on microplastics types, sizes, concentrations, and experimental durations. Soil total phosphorus and available phosphorus exhibited stronger negative responses to biodegradable than conventional microplastics. Acid phosphatase was more sensitive to biodegradable than conventional microplastics. In addition, soil total phosphorus, available phosphorus, and alkaline phosphatase were significantly correlated with microplastic concentrations and exposure time. Overall, our findings suggest that microplastics potentially threaten soil fertility and plant productivity. This work provides an important reference for predicting ecosystem functions in the context of microplastics pollution.
Collapse
Affiliation(s)
- Juan Zhou
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, Yunnan, PR China; Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Key Laboratory of Southwest Cross-Board Ecosecurity, Ministry of Education, Kunming 650500, PR China
| | - Haibian Xu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, Yunnan, PR China; Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Key Laboratory of Southwest Cross-Board Ecosecurity, Ministry of Education, Kunming 650500, PR China
| | - Yangzhou Xiang
- School of Geography and Resources, Guizhou Education University, Guiyang 550018, PR China.
| | - Jianping Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, Yunnan, PR China; Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Key Laboratory of Southwest Cross-Board Ecosecurity, Ministry of Education, Kunming 650500, PR China.
| |
Collapse
|
43
|
Zeb A, Liu W, Ali N, Shi R, Wang Q, Wang J, Li J, Yin C, Liu J, Yu M, Liu J. Microplastic pollution in terrestrial ecosystems: Global implications and sustainable solutions. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132636. [PMID: 37778309 DOI: 10.1016/j.jhazmat.2023.132636] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Microplastic (MPs) pollution has become a global environmental concern with significant impacts on ecosystems and human health. Although MPs have been widely detected in aquatic environments, their presence in terrestrial ecosystems remains largely unexplored. This review examines the multifaceted issues of MPs pollution in terrestrial ecosystem, covering various aspects from additives in plastics to global legislation and sustainable solutions. The study explores the widespread distribution of MPs worldwide and their potential antagonistic interactions with co-occurring contaminants, emphasizing the need for a holistic understanding of their environmental implications. The influence of MPs on soil and plants is discussed, shedding light on the potential consequences for terrestrial ecosystems and agricultural productivity. The aging mechanisms of MPs, including photo and thermal aging, are elucidated, along with the factors influencing their aging process. Furthermore, the review provides an overview of global legislation addressing plastic waste, including bans on specific plastic items and levies on single-use plastics. Sustainable solutions for MPs pollution are proposed, encompassing upstream approaches such as bioplastics, improved waste management practices, and wastewater treatment technologies, as well as downstream methods like physical and biological removal of MPs. The importance of international collaboration, comprehensive legislation, and global agreements is underscored as crucial in tackling this pervasive environmental challenge. This review may serve as a valuable resource for researchers, policymakers, and stakeholders, providing a comprehensive assessment of the environmental impact and potential risks associated with MPs.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Chuan Yin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianv Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
44
|
Bodor A, Feigl G, Kolossa B, Mészáros E, Laczi K, Kovács E, Perei K, Rákhely G. Soils in distress: The impacts and ecological risks of (micro)plastic pollution in the terrestrial environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115807. [PMID: 38091673 DOI: 10.1016/j.ecoenv.2023.115807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Plastics have revolutionised human industries, thanks to their versatility and durability. However, their extensive use, coupled with inadequate waste disposal, has resulted in plastic becoming ubiquitous in every environmental compartment, posing potential risks to the economy, human health and the environment. Additionally, under natural conditions, plastic waste breaks down into microplastics (MPs<5 mm). The increasing quantity of MPs exerts a significant burden on the soil environment, particularly in agroecosystems, presenting a new stressor for soil-dwelling organisms. In this review, we delve into the effects of MP pollution on soil ecosystems, with a specific attention to (a) MP transport to soils, (b) potential changes of MPs under environmental conditions, (c) and their interaction with the physical, chemical and biological components of the soil. We aim to shed light on the alterations in the distribution, activity, physiology and growth of soil flora, fauna and microorganisms in response to MPs, offering an ecotoxicological perspective for environmental risk assessment of plastics. The effects of MPs are strongly influenced by their intrinsic traits, including polymer type, shape, size and abundance. By exploring the multifaceted interactions between MPs and the soil environment, we provide critical insights into the consequences of plastic contamination. Despite the growing body of research, there remain substantial knowledge gaps regarding the long-term impact of MPs on the soil. Our work underscores the importance of continued research efforts and the adoption of standardised approaches to address plastic pollution and ensure a sustainable future for our planet.
Collapse
Affiliation(s)
- Attila Bodor
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary.
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Bálint Kolossa
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Enikő Mészáros
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Krisztián Laczi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Etelka Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
45
|
Liu Z, Wen J, Liu Z, Wei H, Zhang J. Polyethylene microplastics alter soil microbial community assembly and ecosystem multifunctionality. ENVIRONMENT INTERNATIONAL 2024; 183:108360. [PMID: 38128384 DOI: 10.1016/j.envint.2023.108360] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Although pervasive microplastics (MPs) pollution in terrestrial ecosystems invites increasing global concern, impact of MPs on soil microbial community assembly and ecosystem multifunctionality received relatively little attention. Here, we manipulated a mesocosm experiment to investigate how polyethylene MPs (PE MPs; 0, 1%, and 5%, w/w) influence ecosystem functions including plant production, soil quality, microbial community diversity and assembly, enzyme activities in carbon (C), nitrogen (N) and phosphorus (P) cycling, and multifunctionality in the maize-soil continuum. Results showed that PE MPs exerted negligible effect on plant biomass (dry weight). The treatment of 5% PE MPs caused declines in the availability of soil water, C and P, whereas enhanced soil pH and C storage. The activity of C-cycling enzymes (α/β-1, 4-glucosidase and β-D-cellobiohydrolase) was promoted by 1% PE MPs, while that of β-1, 4-glucosidase was inhibited by 5% PE MPs. The 5% PE MPs reduced the activity of N-cycling enzymes (protease and urease), whereas increased that of the P-cycling enzyme (alkaline phosphatase). The 5% PE MPs shifted soil microbial community composition, and increased the number of specialist species, microbial community stability and networks resistance. Moreover, PE MPs altered microbial community assembly, with 5% treatment decreasing dispersal limitation proportion (from 13.66% to 9.96%). Overall, ecosystem multifunctionality was improved by 1% concentration, while reduced by 5% concentration of PE MPs. The activity of α/β-1, 4-glucosidase, urease and protease, and ammonium-N content were the most important predictors of ecosystem multifunctionality. These results underscore that PE MPs can alter soil microbial community assembly and ecosystem multifunctionality, and thus development and implementation of practicable solutions to control soil MPs pollution become increasingly imperative in sustainable agricultural production.
Collapse
Affiliation(s)
- Ziqiang Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhenxiu Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hui Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaen Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
46
|
Dong J, Yang B, Wang H, Cao X, He F, Wang L. Reveal molecular mechanism on the effects of silver nanoparticles on nitrogen transformation and related functional microorganisms in an agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166765. [PMID: 37660816 DOI: 10.1016/j.scitotenv.2023.166765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Silver nanoparticles (AgNPs) are widely present in aquatic and soil environment, raising significant concerns about their impacts on creatures in ecosystem. While the toxicity of AgNPs on microorganisms has been reported, their effects on biogeochemical processes and specific functional microorganisms remain relatively unexplored. In this study, a 28-day microcosmic experiment was conducted to investigate the dose-dependent effects of AgNPs (10 mg and 100 mg Ag kg-1 soil) on nitrogen transformation and functional microorganisms in agricultural soils. The molecular mechanisms were uncovered by examining change in functional microorganisms and metabolic pathways. To enable comparison, the toxicity of positive control with an equivalent Ag+ dose from CH3COOAg was also included. The results indicated that both AgNPs and CH3COOAg enhanced nitrogen fixation and nitrification, corresponding to increased relative abundances of associated functional genes. However, they inhibited denitrification via downregulating nirS, nirK, and nosZ genes as well as reducing nitrate and nitrite reductase activities. In contrast to high dose of AgNPs, low levels increased bacterial diversity. AgNPs and CH3COOAg altered the activities of associated metabolic pathways, resulting in the enrichment of specific taxa that demonstrated tolerance to Ag. At genus level, AgNPs increased the relative abundances of nitrogen-fixing Microvirga and Bacillus by 0.02 %-629.39 % and 14.44 %-30.10 %, respectively, compared with control group (CK). The abundances of denitrifying bacteria, such as Rhodoplanes, Pseudomonas, and Micromonospora, decreased by 19.03 % to 32.55 %, 24.73 % to 50.05 %, and 15.66 % to 76.06 %, respectively, compared to CK. CH3COOAg reduced bacterial network complexity, diminished the symbiosis mode compared to AgNPs. The prediction of genes involved in metabolic pathways related to membrane transporter and cell motility showed sensitive to AgNPs exposure in the soil. Further studies involving metabolomics are necessary to reveal the essential effects of AgNPs and CH3COOAg on biogeochemical cycle of elements in agricultural soil.
Collapse
Affiliation(s)
- Jinhao Dong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Xinlei Cao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Fei He
- Jinan Environmental Research Academy, Jinan 250098, China
| | - Lijiao Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
47
|
Li G, Tang Y, Khan KY, Son Y, Jung J, Qiu X, Zhao X, Iqbal B, Stoffella PJ, Kim GJ, Du D. The toxicological effect on pak choi of co-exposure to degradable and non-degradable microplastics with oxytetracycline in the soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115707. [PMID: 37988994 DOI: 10.1016/j.ecoenv.2023.115707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Microplastics and antibiotics are emerging as ubiquitous contaminants in farmland soil, harming crop quality and yield, and thus threatening global food security and human health. However, few studies have examined the individual and joint effects of degradable and/or non-degradable microplastics and antibiotics on crop plants. This study examined the individual and joint effects of polyethylene (PE) and polylactic acid (PLA) microplastics and the antibiotic oxytetracycline (OTC) on pak choi by measuring its growth, photosynthesis, antioxidant enzyme activity, and metabolite levels. Microplastics and/or oxytetracycline adversely affected root weight, photosynthesis, and antioxidant enzyme (superoxide dismutase, catalase, and ascorbate peroxidase) activities. The levels of leaf metabolites were significantly altered, causing physiological changes. Biosynthesis of plant secondary metabolites and amino acids was altered, and plant hormones pathways were disrupted. Separately and together, OTC, PE, and PLA exerted phytotoxic and antagonistic effects on pak choi. Separately and together with OTC, degradable microplastics altered the soil properties, thus causing more severe impacts on plant performance than non-degradable microplastics. This study elucidates the effects on crop plants of toxicity caused by co-exposure to degradable or non-degradable microplastic and antibiotics contamination and suggests mechanisms.
Collapse
Affiliation(s)
- Guanlin Li
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China; Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yi Tang
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Kiran Yasmin Khan
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Yowhan Son
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Xuchun Qiu
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Babar Iqbal
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Peter Joseph Stoffella
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, United States
| | - Gwang-Jung Kim
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Daolin Du
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
48
|
Dhevagi P, Keerthi Sahasa RG, Poornima R, Ramya A. Unveiling the effect of microplastics on agricultural crops - a review. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:793-815. [PMID: 37941363 DOI: 10.1080/15226514.2023.2275152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Microplastics (MPs), ever since they were identified as a potential and widely distributed persistent contaminant, the number of studies highlighting their impacts on various terrestrial ecosystems have been increasing. Recently, the effect of MPs on the agricultural ecosystem has gained momentum. Hence, the present review examines the impact of microplastics on agricultural crop systems and the mechanism underlying its toxicity. The current review revealed that most of the studies were conducted at a laboratory scale and under controlled conditions. Additionally, it was observed that polystyrene (PS) followed by polyethylene (PE) are the most studied polymer type, while the most studied plants are wheat and maize. Hitherto, literature studies suggest that the microplastics' influence on plant growth can be negative or sometimes neutral; while in some cases it exerts a hormetic effect which depends on other factors determining plant growth. Notably, the main mechanisms through which microplastics influence plant growth are mechanical damage, alteration of soil properties, or by leaching of additives. Overall, with burgeoning research interest in this aspect, the current review has significant implications for the toxicity of MPs on plants and throws light on the need to develop novel guidelines toward the sustainable use of plastics in agricultural sector. However, realistic field-level studies and estimating the MPs concentration at various region are essential to develop remediation approaches. Future studies should also focus on translocation and accumulation of micron sized MPs in edible portion of crops and their effect on food safety.
Collapse
Affiliation(s)
- Periyasamy Dhevagi
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Ramesh Poornima
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Ambikapathi Ramya
- Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
49
|
Xie Z, Men C, Yuan X, Miao S, Sun Q, Hu J, Zhang Y, Liu Y, Zuo J. Naturally aged polylactic acid microplastics stunted pakchoi (Brassica rapa subsp. chinensis) growth with cadmium in soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132318. [PMID: 37672995 DOI: 10.1016/j.jhazmat.2023.132318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023]
Abstract
Biodegradable microplastics (BMPs) and cadmium (Cd) are posing threats to agro-systems especially to plants and current studies mostly used virgin BMPs to explore their ecological effects. However, effects of naturally aged BMPs and their combined effects with Cd on pakchoi are yet to be unraveled. Therefore, this study incubated naturally aged polylactic acid (PLA) MPs through soil aging process and investigated the single and combined effects of Cd and PLA MPs (virgin and aged) on pakchoi (Brassica rapa subsp. chinensis) morphology, antioxidant systems and soil microbial activities. Our results found that after being deposited in soil for six months, aged PLA (PLAa) MPs formed with a fractured surface, demonstrating more detrimental effects on pakchoi than virgin ones. PLA/PLAa MPs and Cd stunted pakchoi growth, caused oxidative stress and altered the biophysical environment in soil, separately. Moreover, co-existence of PLA/PLAa MPs and Cd caused greater damages to pakchoi than applied alone. The co-presence of PLAa MPs and Cd inhibited pakchoi biomass accumulation rate by 92.2 % compared with the no-addition group. The results unraveled here emphasized BMPs, especially aged BMPs, could trigger negative effects on agro-systems with heavy metals. These findings will give reference to future holistic assessments of BMPs' ecological effects.
Collapse
Affiliation(s)
- Zhenwen Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Chengdu Xingrong Environment Co., Ltd, Chengdu 610041, China; Chengdu Drainage Co., Ltd, Chengdu 610011, China
| | - Cong Men
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrialpollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Yuan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Sun Miao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Quanyi Sun
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiamin Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanyan Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuxin Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
50
|
Salam M, Zheng H, Liu Y, Zaib A, Rehman SAU, Riaz N, Eliw M, Hayat F, Li H, Wang F. Effects of micro(nano)plastics on soil nutrient cycling: State of the knowledge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118437. [PMID: 37343476 DOI: 10.1016/j.jenvman.2023.118437] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
The ecological impacts of micro(nano)plastics (MNPs) have attracted attention worldwide because of their global occurrence, persistence, and environmental risks. Increasing evidence shows that MNPs can affect soil nutrient cycling, but the latest advances on this topic have not systematically reviewed. Here, we aim to present the state of knowledge about the effects of MNPs on soil nutrient cycling, particularly of C, N, and P. Using the latest data, the present review mainly focuses on three aspects, including (1) the effects and underlying mechanisms of MNPs on soil nutrient cycling, particularly of C, N and P, (2) the factors influencing the effects of MNPs on soil nutrient cycling, and (3) the knowledge gaps and future directions. We conclude that MNPs can alter soil nutrient cycling via mediating soil nutrient availability, soil enzyme activities, functional microbial communities, and their potential ecological functions. Furthermore, the effects of MNPs vary with MNPs characteristics (i.e., polymeric type, size, dosage, and shape), chemical additives, soil physicochemical conditions, and soil biota. Considering the complexity of MNP-soil interactions, multi-scale experiments using environmental relevant MNPs are required to shed light on the effects of MNPs on soil nutrients. By learning how MNPs influence soil nutrients cycles, this review can guide policy and management decisions to safeguard soil health and ensure sustainable agriculture and land use practices.
Collapse
Affiliation(s)
- Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Huaili Zheng
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Yingying Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, China
| | - Aneeqa Zaib
- Department of Environmental Science, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Aziz Ur Rehman
- Department of Environmental Sciences, University of Veterinary and Animal Sciences, 54000, Lahore, Punjab, Pakistan
| | - Nimra Riaz
- Department of Environmental Sciences, University of Veterinary and Animal Sciences, 54000, Lahore, Punjab, Pakistan
| | - Moataz Eliw
- Department of Agricultural Economics, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt
| | - Faisal Hayat
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, China.
| |
Collapse
|