1
|
Montúfar-Romero M, Valenzuela-Miranda D, Valenzuela-Muñoz V, Morales-Rivera MF, Gallardo-Escárate C. Microbiota Dysbiosis in Mytilus chilensis Is Induced by Hypoxia, Leading to Molecular and Functional Consequences. Microorganisms 2025; 13:825. [PMID: 40284661 PMCID: PMC12029581 DOI: 10.3390/microorganisms13040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/22/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
Bivalve microbiota play a vital role in host health, supporting nutrient processing, immunity, and disease resistance. However, the increasing hypoxia in Chilean coastal waters, caused by climate change and eutrophication, threatens to disrupt this microbial balance, potentially promoting pathogens and impairing essential functions. Mytilus chilensis is vulnerable to hypoxia-reoxygenation cycles, yet the effects on its microbiota remain poorly understood. This study investigates the impact of hypoxia on the structure and functional potential of the microbial communities residing in the gills and digestive glands of M. chilensis. Employing full-length 16S rRNA gene sequencing, we explored hypoxia's effects on microbial diversity and functional capacity. Our results revealed significant alterations in the microbial composition, with a shift towards facultative anaerobes thriving in low oxygen environments. Notably, there was a decrease in dominant bacterial taxa such as Rhodobacterales, while opportunistic pathogens such as Vibrio and Aeromonas exhibited increased abundance. Functional analysis indicated a decline in critical microbial functions associated with nutrient metabolism and immune support, potentially jeopardizing the health and survival of the host. This study sheds light on the intricate interactions between host-associated microbiota and environmental stressors, underlining the importance of managing the microbiota in the face of climate change and aquaculture practices.
Collapse
Affiliation(s)
- Milton Montúfar-Romero
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (M.F.M.-R.)
- Instituto Público de Investigación de Acuicultura y Pesca (IPIAP), Guayaquil 090314, Ecuador
| | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (M.F.M.-R.)
- Centro de Biotecnología, Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (M.F.M.-R.)
- Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Concepción 4070409, Chile
| | - María F. Morales-Rivera
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (M.F.M.-R.)
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (M.F.M.-R.)
- Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Concepción 4070409, Chile
| |
Collapse
|
2
|
Xu XT, Jiang MJ, Fu YL, Xie F, Li JJ, Meng QH. Gut microbiome composition in patients with liver cirrhosis with and without hepatic encephalopathy: A systematic review and meta-analysis. World J Hepatol 2025; 17:100377. [PMID: 39871903 PMCID: PMC11736471 DOI: 10.4254/wjh.v17.i1.100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/26/2024] [Accepted: 11/19/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND The gut microbiome is associated with hepatic encephalopathy (HE), but research results on the gut microbiome characteristics of patients with liver cirrhosis with and without HE are inconsistent. AIM To study the gut microbiota characteristics of patients with liver cirrhosis with and without HE. METHODS We searched the PubMed, Web of Science, EMBASE, and Cochrane databases using two keywords, HE, and gut microbiome. According to the inclusion and exclusion criteria, suitable literature was screened to extract data on the diversity and composition of the fecal microbiota in patients with liver cirrhosis with and without HE. The data were analyzed using RevMan and STATA. RESULTS Seventeen studies were included: (1) A meta-analysis of 7 studies revealed that the Shannon index in liver cirrhosis patients with HE was significantly lower than that in patients without HE [-0.20, 95% confidence interval (CI): -0.28 to -0.13, I2 = 20%]; (2) The relative abundances of Lachnospiraceae (-2.73, 95%CI: -4.58 to -0.87, I2 = 38%) and Ruminococcaceae (-2.93, 95%CI: -4.29 to -1.56, I2 = 0%) in liver cirrhosis patients with HE was significantly lower than those in patients without HE; (3) In patients with HE, Enterococcus, Proteobacteria, Enterococcaceae, and Enterobacteriaceae proportions increased, but Ruminococcaceae, Lachnospiraceae, Prevotellaceae, and Bacteroidetes proportions decreased; (4) Differences in the fecal metabolome between liver cirrhosis patients with and without HE were detected; and (5) Differential gut microbiomes may serve as diagnostic and prognostic tools. CONCLUSION The gut microbiomes of patients with liver cirrhosis with and without HE differ. Some gut microbiomes may distinguish liver cirrhosis patients with or without HE and determine patient prognosis.
Collapse
Affiliation(s)
- Xiao-Tong Xu
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
- Interventional Therapy Center for Oncology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
| | - Min-Jie Jiang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, Shandong Province, China
| | - Yun-Lai Fu
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
- Interventional Therapy Center for Oncology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
| | - Fang Xie
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
| | - Jian-Jun Li
- Interventional Therapy Center for Oncology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
| | - Qing-Hua Meng
- Interventional Therapy Center for Oncology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Manithody C, Denton C, Mehta S, Carter J, Kurashima K, Bagwe A, Swiderska-Syn M, Guzman M, Besmer S, Jain S, McHale M, Qureshi K, Nazzal M, Caliskan Y, Long J, Lin CJ, Hutchinson C, Ericsson AC, Jain AK. Intraduodenal fecal microbiota transplantation ameliorates gut atrophy and cholestasis in a novel parenteral nutrition piglet model. Am J Physiol Gastrointest Liver Physiol 2024; 327:G640-G654. [PMID: 39163019 PMCID: PMC11559648 DOI: 10.1152/ajpgi.00012.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Total parenteral nutrition (TPN) provides lifesaving nutritional support intravenously; however, it is associated with significant side effects. Given gut microbial alterations noted with TPN, we hypothesized that transferring fecal microbiota from healthy controls would restore gut-systemic signaling in TPN and mitigate injury. Using our novel ambulatory model (US Patent: US 63/136,165), 31 piglets were randomly allocated to enteral nutrition (EN), TPN only, TPN + antibiotics (TPN-A), or TPN + intraduodenal fecal microbiota transplant (TPN + FMT) for 14 days. Gut, liver, and serum were assessed through histology, biochemistry, and qPCR. Stool samples underwent 16 s rRNA sequencing. Permutational multivariate analysis of variance, Jaccard, and Bray-Curtis metrics were performed. Significant bilirubin elevation in TPN and TPN-A versus EN (P < 0.0001) was prevented with FMT. IFN-G, TNF-α, IL-β, IL-8, and lipopolysaccharide (LPS) were significantly higher in TPN (P = 0.009, P = 0.001, P = 0.043, P = 0.011, P < 0.0001), with preservation upon FMT. Significant gut atrophy by villous-to-crypt ratio in TPN (P < 0.0001) and TPN-A (P = 0.0001) versus EN was prevented by FMT (P = 0.426 vs. EN). Microbiota profiles using principal coordinate analysis demonstrated significant FMT and EN overlap, with the largest separation in TPN-A followed by TPN, driven primarily by Firmicutes and Fusobacteria. TPN-altered gut barrier was preserved upon FMT; upregulated cholesterol 7 α-hydroxylase and bile salt export pump in TPN and TPN-A and downregulated fibroblast growth factor receptor 4, EGF, farnesoid X receptor, and Takeda G Protein-coupled Receptor 5 (TGR5) versus EN was prevented by FMT. This study provides novel evidence of prevention of gut atrophy, liver injury, and microbial dysbiosis with intraduodenal FMT, challenging current paradigms into TPN injury mechanisms and underscores the importance of gut microbes as prime targets for therapeutics and drug discovery.NEW & NOTEWORTHY Intraduodenal fecal microbiota transplantation presents a novel strategy to mitigate complications associated with total parenteral nutrition (TPN), highlighting gut microbiota as a prime target for therapeutic and diagnostic approaches. These results from a highly translatable model provide hope for TPN side effect mitigation for thousands of chronically TPN-dependent patients.
Collapse
Affiliation(s)
- Chandrashekhara Manithody
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Christine Denton
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Shaurya Mehta
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Jasmine Carter
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Kento Kurashima
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Ashlesha Bagwe
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Marzena Swiderska-Syn
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Miguel Guzman
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Sherri Besmer
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Sonali Jain
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Matthew McHale
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Kamran Qureshi
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Mustafa Nazzal
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Yasar Caliskan
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - John Long
- Department of Comparative Medicine, Saint Louis University, Saint Louis, Missouri, United States
| | - Chien-Jung Lin
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Chelsea Hutchinson
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States
| | - Ajay Kumar Jain
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| |
Collapse
|
4
|
Xu Q, Guo M, Wang H, Liu H, Wei Y, Wang X, Mackay CR, Wang Q. A Butyrate-Yielding Dietary Supplement Prevents Acute Alcoholic Liver Injury by Modulating Nrf2-Mediated Hepatic Oxidative Stress and Gut Microbiota. Int J Mol Sci 2024; 25:9420. [PMID: 39273367 PMCID: PMC11395132 DOI: 10.3390/ijms25179420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Alcoholic liver disease (ALD) is a globally prevalent form of liver disease for which there is no effective treatment. Recent studies have found that a significant decrease in butyrate was closely associated with ALD development. Given the low compliance and delivery efficiency associated with oral-route butyrate administration, a highly effective butyrate-yielding dietary supplement, butyrylated high-amylose maize starch (HAMSB), is a good alternative approach. Here, we synthesized HAMSB, evaluated the effect of HAMSB on acute ALD in mice, compared its effect with that of oral administration of butyrate, and further studied the potential mechanism of action. The results showed HAMSB alleviated acute ALD in mice, as evidenced by the inhibition of hepatic-function impairment and the improvement in liver steatosis and lipid metabolism; in these respects, HAMSB supplementation was superior to oral sodium butyrate administration. These improvements can be attributed to the reduction of oxidative stress though the regulation of Nrf2-mediated antioxidant signaling in the liver and the improvement in the composition and function of microbiota in the intestine. In conclusion, HAMSB is a safe and effective dietary supplement for preventing acute ALD that could be useful as a disease-modifying functional food or candidate medicine.
Collapse
Affiliation(s)
- Qi Xu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| | - Mei Guo
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| | - Haidi Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| | - Haitao Liu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| | - Yunbo Wei
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| | - Xiao Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| | - Charles R. Mackay
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
- Department of Microbiology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Quanbo Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| |
Collapse
|
5
|
Wu S, Li L, Xi H, Wu X, He Y, Sun X, Wu L. Bibliometrics and knowledge mapping of the pathogenesis of hepatic encephalopathy in patients with liver cirrhosis. Heliyon 2024; 10:e34330. [PMID: 39145014 PMCID: PMC11320160 DOI: 10.1016/j.heliyon.2024.e34330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Background Hepatic encephalopathy is a common and serious complication of decompensated cirrhosis. It can considerably contribute to economic burden and impaired quality of life. However, its pathogenesis remains unclear. Method In this study, we aimed to visually analyse the research status and development trends in hepatic encephalopathy pathogenesis using bibliometrics and knowledge mapping. Information regarding publications between 1978 and 2022 were obtained from the Web of Science Core Collection. CiteSpace was used to analyse and present data by year, author, institution, country, journal, reference, and keyword. Results A total of 1578 publications on hepatic encephalopathy pathogenesis in patients with cirrhosis were retrieved from Web of Science Core Collection. A gradual increasing trend in annual publications has occurred. The collaborative network analysis results suggest the United States of America, the University of London, and Bajaj, Jasmohan S as the most influential country, institution, and author, respectively, in this research field. Notably, China appeariiuis to be the most promising country. Research on 'hepatology' garners the most significant papers in the field. Combined with reference co-citation and keyword co-occurrence analyses, we found that ammonia metabolism, gut microbiota, sarcopenia, and trace elements will become future research frontiers that are likely to be explored for a considerable length of time. Conclusion Future research directions in HE pathogenesis may target modulating the ammonia metabolism, the gut microbiota, sarcopenia, and trace elements.
Collapse
Affiliation(s)
- Shiyan Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| | - Lu Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| | - Heng Xi
- Department of Pharmacy, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| | - Xiaoping Wu
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| | - Yumei He
- North Sichuan Medical College, Nanchong, 623300, Sichuan Province, China
| | - Xiaobin Sun
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| | - Liping Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| |
Collapse
|
6
|
Ahmed Z, Gangwani MK, Iqbal U, Kazi AI, Arif SF, Priyanka F, Lee-Smith W, Aziz M, Jaber F, Dahiya DS, Ali H, Inamdar S, Confer B. Role of Rifaximin in the Prevention of Variceal Bleeding: Systematic Review and Meta-Analysis. Am J Ther 2024; 31:e511-e514. [PMID: 38810173 DOI: 10.1097/mjt.0000000000001712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Affiliation(s)
- Zohaib Ahmed
- Department of Medicine, University of Toledo Medical Center, Toledo, OH
| | | | - Umair Iqbal
- Department of Gastroenterology and Hepatology, Geisenger Medical Center, Danville, PA
| | - Amal Iqbal Kazi
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Syeda Faiza Arif
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Fnu Priyanka
- Department of Medicine, University of Toledo Medical Center, Toledo, OH
| | - Wade Lee-Smith
- Depatment of Toledo Libraries, University of Toledo, Toledo, OH
| | - Muhammad Aziz
- Department of Medicine, University of Toledo Medical Center, Toledo, OH
| | - Fouad Jaber
- Department of Medicine, University of Missouri-Kansas City, Kansas, MO
| | | | - Hassam Ali
- Department of Gastroenterology and Hepatology, East Carolina University Health, Greenville, NC
| | - Sumant Inamdar
- Department of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Texarkana, AR
| | - Bradley Confer
- Department of Gastroenterology and Hepatology, Geisenger Medical Center, Danville, PA
| |
Collapse
|
7
|
Ai Z, Liu S, Zhang J, Hu Y, Tang P, Cui L, Wang X, Zou H, Li X, Liu J, Nan B, Wang Y. Ginseng Glucosyl Oleanolate from Ginsenoside Ro, Exhibited Anti-Liver Cancer Activities via MAPKs and Gut Microbiota In Vitro/Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7845-7860. [PMID: 38501913 DOI: 10.1021/acs.jafc.3c08150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Ginseng is widely recognized for its diverse health benefits and serves as a functional food ingredient with global popularity. Ginsenosides with a broad range of pharmacological effects are the most crucial active ingredients in ginseng. This study aimed to derive ginseng glucosyl oleanolate (GGO) from ginsenoside Ro through enzymatic conversion and evaluate its impact on liver cancer in vitro and in vivo. GGO exhibited concentration-dependent HepG2 cell death and markedly inhibited cell proliferation via the MAPK signaling pathway. It also attenuated tumor growth in immunocompromised mice undergoing heterograft transplantation. Furthermore, GGO intervention caused a modulation of gut microbiota composition by specific bacterial populations, including Lactobacillus, Bacteroides, Clostridium, Enterococcus, etc., and ameliorated SCFA metabolism and colonic inflammation. These findings offer promising evidence for the potential use of GGO as a natural functional food ingredient in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Zhiyi Ai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Sitong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Junshun Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Yue Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Ping Tang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Linlin Cui
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Xinzhu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Hongyang Zou
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
8
|
Ganesan R, Gupta H, Jeong JJ, Sharma SP, Won SM, Oh KK, Yoon SJ, Han SH, Yang YJ, Baik GH, Bang CS, Kim DJ, Suk KT. Characteristics of microbiome-derived metabolomics according to the progression of alcoholic liver disease. Hepatol Int 2024; 18:486-499. [PMID: 37000389 DOI: 10.1007/s12072-023-10518-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/07/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND AND AIM The prevalence and severity of alcoholic liver disease (ALD) are increasing. The incidence of alcohol-related cirrhosis has risen up to 2.5%. This study aimed to identify novel metabolite mechanisms involved in the development of ALD in patients. The use of gut microbiome-derived metabolites is increasing in targeted therapies. Identifying metabolic compounds is challenging due to the complex patterns that have long-term effects on ALD. We investigated the specific metabolite signatures in ALD patients. METHODS This study included 247 patients (heathy control, HC: n = 62, alcoholic fatty liver, AFL; n = 25, alcoholic hepatitis, AH; n = 80, and alcoholic cirrhosis, AC, n = 80) identified, and stool samples were collected. 16S rRNA sequencing and metabolomics were performed with MiSeq sequencer and liquid chromatography coupled to time-of-flight-mass spectrometry (LC-TOF-MS), respectively. The untargeted metabolites in AFL, AH, and AC samples were evaluated by multivariate statistical analysis and metabolic pathotypic expression. Metabolic network classifiers were used to predict the pathway expression of the AFL, AH, and AC stages. RESULTS The relative abundance of Proteobacteria was increased and the abundance of Bacteroides was decreased in ALD samples (p = 0.001) compared with that in HC samples. Fusobacteria levels were higher in AH samples (p = 0.0001) than in HC samples. Untargeted metabolomics was applied to quantitatively screen 103 metabolites from each stool sample. Indole-3-propionic acid levels are significantly lower in AH and AC (vs. HC, p = 0.001). Indole-3-lactic acid (ILA: p = 0.04) levels were increased in AC samples. AC group showed an increase in indole-3-lactic acid (vs. HC, p = 0.040) level. Compared with that in HC samples, the levels of short-chain fatty acids (SCFAs: acetic acid, butyric acid, propionic acid, iso-butyric acid, and iso-valeric acid) and bile acids (lithocholic acids) were significantly decreased in AC. The pathways of linoleic acid metabolism, indole compounds, histidine metabolism, fatty acid degradation, and glutamate metabolism were closely associated with ALD metabolism. CONCLUSIONS This study identified that microbial metabolic dysbiosis is associated with ALD-related metabolic dysfunction. The SCFAs, bile acids, and indole compounds were depleted during ALD progression. CLINICAL TRIAL Clinicaltrials.gov, number NCT04339725.
Collapse
Affiliation(s)
- Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Jin-Ju Jeong
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Satya Priya Sharma
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Young Joo Yang
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Gwang Ho Baik
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Chang Seok Bang
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea.
| |
Collapse
|
9
|
Shao J, Lai C, Zheng Q, Luo Y, Li C, Zhang B, Sun Y, Liu S, Shi Y, Li J, Zhao Z, Guo L. Effects of dietary arsenic exposure on liver metabolism in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116147. [PMID: 38460405 DOI: 10.1016/j.ecoenv.2024.116147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Arsenic, a ubiquitous environmental toxicant with various forms and complex food matrix interactions, can reportedly exert differential effects on the liver compared to drinking water exposure. To examine its specific liver-related harms, we targeted the liver in C57BL/6 J mice (n=48, 8-week-old) fed with arsenic-contaminated food (30 mg/kg) for 60 days, mimicking the rice arsenic composition observed in real-world scenarios (iAsV: 7.3%, iAsIII: 72.7%, MMA: 1.0%, DMA: 19.0%). We then comprehensively evaluated liver histopathology, metabolic changes, and the potential role of the gut-liver axis using human hepatocellular carcinoma cells (HepG2) and microbiota/metabolite analyses. Rice arsenic exposure significantly altered hepatic lipid (fatty acids, glycerol lipids, phospholipids, sphingolipids) and metabolite (glutathione, thioneine, spermidine, inosine, indole-derivatives, etc.) profiles, disrupting 33 metabolic pathways (bile secretion, unsaturated fatty acid biosynthesis, glutathione metabolism, ferroptosis, etc.). Pathological examination revealed liver cell necrosis/apoptosis, further confirmed by ferroptosis induction in HepG2 cells. Gut microbiome analysis showed enrichment of pathogenic bacteria linked to liver diseases and depletion of beneficial strains. Fecal primary and secondary bile acids, short-chain fatty acids, and branched-chain amino acids were also elevated. Importantly, mediation analysis revealed significant correlations between gut microbiota, fecal metabolites, and liver metabolic alterations, suggesting fecal metabolites may mediate the impact of gut microbiota and liver metabolic disorders. Gut microbiota and its metabolites may play significant roles in arsenic-induced gut-liver injuries. Overall, our findings demonstrate that rice arsenic exposure triggers oxidative stress, disrupts liver metabolism, and induces ferroptosis.
Collapse
Affiliation(s)
- Junli Shao
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chengze Lai
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qiuyi Zheng
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yu Luo
- Guangzhou Liwan District Center for Disease Control and Prevention, Guangzhou, Guangdong 510176, China
| | - Chengji Li
- Yunfu Disease Control and Prevention Center, Guangdong Province 527300, China
| | - Bin Zhang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yanqin Sun
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China
| | - Shizhen Liu
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yingying Shi
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jinglin Li
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Zuguo Zhao
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
10
|
Nie G, Zhang H, Xie D, Yan J, Li X. Liver cirrhosis and complications from the perspective of dysbiosis. Front Med (Lausanne) 2024; 10:1320015. [PMID: 38293307 PMCID: PMC10824916 DOI: 10.3389/fmed.2023.1320015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
The gut-liver axis refers to the intimate relationship and rigorous interaction between the gut and the liver. The intestinal barrier's integrity is critical for maintaining liver homeostasis. The liver operates as a second firewall in this interaction, limiting the movement of potentially dangerous compounds from the gut and, as a result, contributing in barrier management. An increasing amount of evidence shows that increased intestinal permeability and subsequent bacterial translocation play a role in liver damage development. The major pathogenic causes in cirrhotic individuals include poor intestinal permeability, nutrition, and intestinal flora dysbiosis. Portal hypertension promotes intestinal permeability and bacterial translocation in advanced liver disease, increasing liver damage. Bacterial dysbiosis is closely related to the development of cirrhosis and its related complications. This article describes the potential mechanisms of dysbiosis in liver cirrhosis and related complications, such as spontaneous bacterial peritonitis, hepatorenal syndrome, portal vein thrombosis, hepatic encephalopathy, and hepatocellular carcinoma, using dysbiosis of the intestinal flora as an entry point.
Collapse
Affiliation(s)
- Guole Nie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Honglong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Danna Xie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jun Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
- Cancer Prevention and Control Center of Lanzhou University Medical School, Lanzhou, China
- Gansu Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou, China
- Gansu Clinical Medical Research Center of General Surgery, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
- Cancer Prevention and Control Center of Lanzhou University Medical School, Lanzhou, China
- Gansu Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou, China
- Gansu Clinical Medical Research Center of General Surgery, Lanzhou, China
| |
Collapse
|
11
|
Effenberger M, Grander C, Grabherr F, Tilg H. Nonalcoholic Fatty Liver Disease and the Intestinal Microbiome: An Inseparable Link. J Clin Transl Hepatol 2023; 11:1498-1507. [PMID: 38161503 PMCID: PMC10752805 DOI: 10.14218/jcth.2023.00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 01/03/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) particularly affects patients with type 2 diabetes and obesity. The incidence of NAFLD has increased significantly over the last decades and is now pandemically across the globe. It is a complex systemic disease comprising hepatic lipid accumulation, inflammation, lipotoxicity, gut dysbiosis, and insulin resistance as main features and with the potential to progress to cirrhosis and hepatocellular carcinoma (HCC). In numerous animal and human studies the gut microbiota plays a key role in the pathogenesis of NAFLD, NAFLD-cirrhosis and NAFLD-associated HCC. Lipotoxicity is the driver of inflammation, insulin resistance, and liver injury. Likewise, western diet, obesity, and metabolic disorders may alter the gut microbiota, which activates innate and adaptive immune responses and fuels hereby hepatic and systemic inflammation. Indigestible carbohydrates are fermented by the gut microbiota to produce important metabolites, such as short-chain fatty acids and succinate. Numerous animal and human studies suggested a pivotal role of these metabolites in the progression of NAFLD and its comorbidities. Though, modification of the gut microbiota and/or the metabolites could even be beneficial in patients with NAFLD, NAFLD-cirrhosis, and NAFLD-associated HCC. In this review we collect the evidence that exogenous and endogenous hits drive liver injury in NAFLD and propel liver fibrosis and the progressing to advanced disease stages. NAFLD can be seen as the product of a complex interplay between gut microbiota, the immune response and metabolism. Thus, the challenge will be to understand its pathogenesis and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Renu K, Myakala H, Chakraborty R, Bhattacharya S, Abuwani A, Lokhandwala M, Vellingiri B, Gopalakrishnan AV. Molecular mechanisms of alcohol's effects on the human body: A review and update. J Biochem Mol Toxicol 2023; 37:e23502. [PMID: 37578200 DOI: 10.1002/jbt.23502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Alcohol consumption has been linked to numerous negative health outcomes although it has some beneficial effects on moderate dosages, the most severe of which being alcohol-induced hepatitis. The number of people dying from this liver illness has been shown to climb steadily over time, and its prevalence has been increasing. Researchers have found that alcohol consumption primarily affects the brain, leading to a wide range of neurological and psychological diseases. High-alcohol-consumption addicts not only experienced seizures, but also ataxia, aggression, social anxiety, and variceal hemorrhage that ultimately resulted in death, ascites, and schizophrenia. Drugs treating this liver condition are limited and can cause serious side effects like depression. Serine-threonine kinases, cAMP protein kinases, protein kinase C, ERK, RACK 1, Homer 2, and more have all been observed to have their signaling pathways disrupted by alcohol, and alcohol has also been linked to epigenetic changes. In addition, alcohol consumption induces dysbiosis by changing the composition of the microbiome found in the gastrointestinal tract. Although more studies are needed, those that have been done suggest that probiotics aid in keeping the various microbiota concentrations stable. It has been argued that reducing one's alcohol intake may seem less harmful because excessive drinking is a lifestyle disorder.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Haritha Myakala
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Rituraj Chakraborty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sharmishtha Bhattacharya
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Asmita Abuwani
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Mariyam Lokhandwala
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Balachandar Vellingiri
- Department of Zoology, Stem Cell and Regenerative Medicine/Translational Research, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
13
|
Xia Q, Lei Y, Wang J, Wang Q. Probiotic management and inflammatory factors as a novel treatment in cirrhosis: A systematic review and meta-analysis. Open Life Sci 2023; 18:20220741. [PMID: 37872967 PMCID: PMC10590617 DOI: 10.1515/biol-2022-0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 10/25/2023] Open
Abstract
The interaction between intestinal microecological dysregulation, altered inflammatory factors, and cirrhosis is unclear. The aim of this systematic review and meta-analysis was to synthesize the results of previous studies to assess the efficacy of probiotics in the treatment of cirrhosis and their effect on inflammatory factors, as well as to explore the relationship between gut microecological dysregulation and liver disease to gain a deeper understanding of this interaction. Up to December 2022, eligible studies were identified by searching the following databases: National Knowledge Infrastructure (CNKI), Wanfang Data, Web of Science, PubMed, Embase, Medline, and the Cochrane Library. Statistical analysis was performed using software RevMan Version 5.4. A total of 33 eligible randomized controlled trials were included in the study, and data on probiotic strains, duration of intervention, measures in the control group, and outcomes were extracted and evaluated. Compared to the control group, the experimental group had significant improvements in overall efficacy. The results of the meta-analysis revealed that probiotic use significantly decreased biochemical parameters for liver function, including aspartate transaminase, alanine aminotransferase, and total bilirubin. Similar result was obtained in interleukin-6, tumor necrosis factor-α, and endotoxin. However, probiotic intervention did not significantly affect interleukin-2 and interleukin-10. The current meta-analysis illustrates that probiotic supplementation reduces inflammatory markers and biochemical parameters for liver function in patients with cirrhosis, suggesting that probiotic management may be a novel treatment for cirrhosis. Furthermore, the interaction of the gut microbiota, associated metabolites, and inflammation factors with cirrhosis may provide a promising therapeutic target for the pharmacological and clinical treatment of cirrhosis.
Collapse
Affiliation(s)
- Qinglan Xia
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan430065, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan430065, China
| | - Jiadun Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan430065, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan430065, China
- Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan430056, China
| |
Collapse
|
14
|
Wu P, Wu B, Zhuang Z, Liu J, Hong L, Ma B, Lin B, Wang J, Lin C, Chen J, Chen S. Intestinal mucosal and fecal microbiota profiles in Crohn's disease in Chinese children. MEDICINE IN MICROECOLOGY 2022. [DOI: 10.1016/j.medmic.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
15
|
Goffaux A, Delorme A, Dahlqvist G, Lanthier N. Improving the prognosis before and after liver transplantation: Is muscle a game changer? World J Gastroenterol 2022; 28:5807-5817. [PMID: 36353207 PMCID: PMC9639652 DOI: 10.3748/wjg.v28.i40.5807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 02/06/2023] Open
Abstract
Liver transplantation (LT) is currently the only curative treatment option for selected patients with end stage liver disease or hepatocellular carcinoma. Improving waiting list-mortality, post-transplant morbidity and mortality and refining the selection of the patients remain our current central objectives. In this field, different concepts dealing with nutrition and the muscle such as sarcopenia, malnutrition, frailty or myosteatosis have emerged as possible game changers. For more than a decade, many prospective studies have demonstrated that sarcopenia and frailty are major predictive factors of mortality in the waiting list but also after LT. Malnutrition is also a well-known risk factor for morbidity and mor-tality. Muscle composition is a newer concept giving insight on muscle quality which has also been shown to be linked to poorer outcomes. Each of these terms has a precise definition as well as pathophysiological mechanisms. The bi-directional liver-muscle axis makes sense in this situation. Defining the best, easy to use in clinical practice tools to assess muscle quality, quantity, and function in this specific population and developing quality prospective studies to identify interventional strategies that could improve these parameters as well as evaluate the effect on mortality are among the important challenges of today.
Collapse
Affiliation(s)
- Alexis Goffaux
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels 1200, Belgium
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels 1200, Belgium
| | - Alicia Delorme
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels 1200, Belgium
| | - Géraldine Dahlqvist
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels 1200, Belgium
| | - Nicolas Lanthier
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels 1200, Belgium
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels 1200, Belgium
| |
Collapse
|
16
|
Xu Q, Zhang S, Quan J, Wu Z, Gu S, Chen Y, Zheng B, Lv L, Li L. The evaluation of fecal microbiota transplantation vs vancomycin in a Clostridioides difficile infection model. Appl Microbiol Biotechnol 2022; 106:6689-6700. [DOI: 10.1007/s00253-022-12154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
|
17
|
Bushyhead D, Quigley EMM. Small Intestinal Bacterial Overgrowth-Pathophysiology and Its Implications for Definition and Management. Gastroenterology 2022; 163:593-607. [PMID: 35398346 DOI: 10.1053/j.gastro.2022.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 12/19/2022]
Abstract
The concept of small intestinal bacterial overgrowth (SIBO) arose in the context of maldigestion and malabsorption among patients with obvious risk factors that permitted the small bowel to be colonized by potentially injurious colonic microbiota. Such colonization resulted in clinical signs, symptoms, and laboratory abnormalities that were explicable within a coherent pathophysiological framework. Coincident with advances in medical science, diagnostic testing evolved from small bowel culture to breath tests and on to next-generation, culture-independent microbial analytics. The advent and ready availability of breath tests generated a dramatic expansion in both the rate of diagnosis of SIBO and the range of associated gastrointestinal and nongastrointestinal clinical scenarios. However, issues with the specificity of these same breath tests have clouded their interpretation and aroused some skepticism regarding the role of SIBO in this expanded clinical repertoire. Furthermore, the pathophysiological plausibility that underpins SIBO as a cause of maldigestion/malabsorption is lacking in regard to its purported role in irritable bowel syndrome, for example. One hopes that the application of an ever-expanding armamentarium of modern molecular microbiology to the human small intestinal microbiome in both health and disease will ultimately resolve this impasse and provide an objective basis for the diagnosis of SIBO.
Collapse
Affiliation(s)
- Daniel Bushyhead
- Lynda K. and David M. Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas.
| | - Eamonn M M Quigley
- Lynda K. and David M. Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas
| |
Collapse
|
18
|
Won SM, Oh KK, Gupta H, Ganesan R, Sharma SP, Jeong JJ, Yoon SJ, Jeong MK, Min BH, Hyun JY, Park HJ, Eom JA, Lee SB, Cha MG, Kwon GH, Choi MR, Kim DJ, Suk KT. The Link between Gut Microbiota and Hepatic Encephalopathy. Int J Mol Sci 2022; 23:8999. [PMID: 36012266 PMCID: PMC9408988 DOI: 10.3390/ijms23168999] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatic encephalopathy (HE) is a serious complication of cirrhosis that causes neuropsychiatric problems, such as cognitive dysfunction and movement disorders. The link between the microbiota and the host plays a key role in the pathogenesis of HE. The link between the gut microbiome and disease can be positively utilized not only in the diagnosis area of HE but also in the treatment area. Probiotics and prebiotics aim to resolve gut dysbiosis and increase beneficial microbial taxa, while fecal microbiota transplantation aims to address gut dysbiosis through transplantation (FMT) of the gut microbiome from healthy donors. Antibiotics, such as rifaximin, aim to improve cognitive function and hyperammonemia by targeting harmful taxa. Current treatment regimens for HE have achieved some success in treatment by targeting the gut microbiota, however, are still accompanied by limitations and problems. A focused approach should be placed on the establishment of personalized trial designs and therapies for the improvement of future care. This narrative review identifies factors negatively influencing the gut-hepatic-brain axis leading to HE in cirrhosis and explores their relationship with the gut microbiome. We also focused on the evaluation of reported clinical studies on the management and improvement of HE patients with a particular focus on microbiome-targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon 24253, Korea
| |
Collapse
|
19
|
Hu W, Gao W, Liu Z, Fang Z, Wang H, Zhao J, Zhang H, Lu W, Chen W. Specific Strains of Faecalibacterium prausnitzii Ameliorate Nonalcoholic Fatty Liver Disease in Mice in Association with Gut Microbiota Regulation. Nutrients 2022; 14:nu14142945. [PMID: 35889903 PMCID: PMC9325077 DOI: 10.3390/nu14142945] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Evidence linking Faecalibacterium prausnitzii abundance to nonalcoholic fatty liver disease (NAFLD) is accumulating; however, the causal relationship remains obscure. In this study, 12 F. prausnitzii strains were orally administered to high fat diet fed C57BL/6J mice for 12 weeks to evaluate the protective effects of F. prausnitzii on NAFLD. We found that five F. prausnitzii strains, A2-165, LB8, ZF21, PL45, and LC49, significantly restored serum lipid profiles and ameliorated glucose intolerance, adipose tissue dysfunction, hepatic steatosis, inflammation, and oxidative stress in a mouse model of NAFLD. Moreover, two strains, LC49 and LB8, significantly enhanced short-chain fatty acid (SCFA) production and modulated the gut microbiota. Based on the combined analysis of linear discriminant analysis effect size and microbial communities, the core microbiome related to NAFLD comprised Odoribacter, Roseburia, Erysipelatoclostridium, Tyzzerella, Faecalibaculum, Blautia, and Acetatifactor, and the last five genera can be reversed by treatment with the LC49 and LB8 strains. Additionally, the LC49 and LB8 strains enriched Lactobacillus, Ileibacterium, Faecalibacterium, Dubosiella, and Bifidobacterium and downregulated pathways involving carbohydrate metabolism, amino acid metabolism, and fatty acid biosynthesis. Interestingly, LC49 supplementation also upregulated tryptophan metabolism, glutathione metabolism, and valine, leucine, and isoleucine degradation, which might be related to NAFLD prevention. Collectively, F. prausnitzii LC49 and LB8 exerted considerable anti-NAFLD and microbiota-regulating effects, indicating their potential as probiotic agents for NAFLD treatment.
Collapse
Affiliation(s)
- Wenbing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (W.G.); (Z.L.); (Z.F.); (H.W.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenyu Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (W.G.); (Z.L.); (Z.F.); (H.W.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zongmin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (W.G.); (Z.L.); (Z.F.); (H.W.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (W.G.); (Z.L.); (Z.F.); (H.W.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (W.G.); (Z.L.); (Z.F.); (H.W.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (W.G.); (Z.L.); (Z.F.); (H.W.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (W.G.); (Z.L.); (Z.F.); (H.W.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (W.G.); (Z.L.); (Z.F.); (H.W.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel./Fax: +86-510-8519-7302
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (W.G.); (Z.L.); (Z.F.); (H.W.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Subudhi PD, Bihari C, Sarin SK, Baweja S. Emerging Role of Edible Exosomes-Like Nanoparticles (ELNs) as Hepatoprotective Agents. Nanotheranostics 2022; 6:365-375. [PMID: 35795340 PMCID: PMC9254361 DOI: 10.7150/ntno.70999] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/24/2022] [Indexed: 11/07/2022] Open
Abstract
Liver diseases are responsible for over 2 million deaths each year and the number is rapidly increasing. There is a strong link between edibles, gut microbiota, liver fat and the liver damage. There are very limited therapeutic options for treatment specifically for Alcoholic liver disease (ALD) and Non-Alcoholic liver disease (NAFLD). Recently, identified Edible Exosomes-like nanoparticles (ELNs) are plant derived membrane bound particles, released by microvesicular bodies for cellular communication and regulate immune responses against many pathogens. Many studies have identified their role as hepatoprotective agent as they carry bioactive material as cargoes which are transferred to recipient cells and affect various biological functions in liver. They are also known to carry specific miRNA, which increases the copy number of beneficial bacteria and the production of lactic acid metabolites in gut and hence restrains from liver injury through portal vein. Few in-vitro studies also have been reported about the anti-inflammatory, anti-oxidant and detoxification properties of ELNs which again protects the liver. The properties such as small size, biocompatibility, stability, low toxicity and non-immunogenicity make ELNs as a better therapeutic option. But, till now, studies on the effect of ELNs as therapeutics are still at its infancy yet promising. Here we discuss about the isolation, characterization, their role in maintaining the gut microbiome and liver homeostasis. Also, we give an outline about the latest advances in ELNs modifications, its biological effects, limitations and we propose the future prospective of ELNs as therapeutics.
Collapse
Affiliation(s)
- P Debishree Subudhi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| | - Chhagan Bihari
- Department of Pathology, Institute of Liver and Biliary Sciences, Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, Delhi, India
| | - Sukriti Baweja
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| |
Collapse
|
21
|
Qiu S, Chen J, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. GOS Ameliorates Nonalcoholic Fatty Liver Disease Induced by High Fat and High Sugar Diet through Lipid Metabolism and Intestinal Microbes. Nutrients 2022; 14:nu14132749. [PMID: 35807929 PMCID: PMC9268751 DOI: 10.3390/nu14132749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
The treatment of nonalcoholic fatty liver disease (NAFLD) remains very challenging. This study investigated the therapeutic effect of galactose oligosaccharide (GOS), an important prebiotic, on NAFLD through in vivo and in vitro experiments and preliminarily explored the mechanism by which GOS improves liver lipid metabolism and inflammation through liver and intestinal microbiological analysis. The results of mouse liver lipidomics showed that GOS could promote body thermogenesis in mice with high-fat and high-sugar diet (HFHSD)-induced NAFLD, regulate lipolysis in liver fat cells, and accelerate glycine and cholesterol metabolism. GOS dose-dependently reduced the contents of total cholesterol (TC) and triglyceride (TG) in cells and reduced the accumulation of lipid droplets in cells. GOS also reduced the Firmicutes/Bacteroidetes ratio and altered the composition of the intestinal microbiota in mice fed a HFHSD. GOS can improve liver lipid metabolism and intestinal structure of NAFLD. These results provide a theoretical and experimental basis supporting the use of GOS as a health food with anti-NAFLD functions.
Collapse
Affiliation(s)
- Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiajia Chen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (J.G.); (Z.S.); Tel.: +86-20-3935-2067 (Z.S.)
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (J.G.); (Z.S.); Tel.: +86-20-3935-2067 (Z.S.)
| |
Collapse
|
22
|
Wu Z, Xu Q, Gu S, Wang Q, Chen Y, Lv L, Zheng B, Wang K, Wang S, Xia J, Li L. Modulation of Lactobacillus rhamnosus GG on the gut microbiota and metabolism in mice with Clostridioides difficile infection. Food Funct 2022; 13:5667-5679. [PMID: 35510410 DOI: 10.1039/d2fo00374k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clostridioides difficile infection (CDI) is a common nosocomial infection and is an urgent threat to public health. Vancomycin is the preferred antibiotic treatment for CDI but is associated with recurrence. Lactobacillus rhamnosus GG is an adjunctive treatment for gastroenteritis and diarrhea and exerts its effects by modulating the immune responses and repairing the intestinal barrier. This study explored the effect of LGG on restoring the intestinal microbiota in mouse models. Primary and recurrent CDI models were constructed, and LGG was administered to C57BL/6 mice. Structural changes in the mouse gut microbiota were determined using 16S rRNA gene analysis based on Illumina sequencing. In the CDI model, 6 days after infection, 33.3% mortality, significant weight loss and colonic injury were observed. LGG can ameliorate these events. In the R-CDI mouse model, vancomycin combined with LGG prevented weight loss, improved the histopathological scores, and effectively reduced the mortality. LGG + vancomycin administration promoted the recovery of the intestinal flora by inhibiting Enterococcus and counteracting the side effects of vancomycin treatment. In both the preventive and therapeutic CDI mouse models, the oral LGG strain showed the ability to protect against primary and recurrent infections, indicating that probiotics have potential for treating intestinal diseases. Overall, these observations suggest that LGG can be applied as a preventive treatment for CDI or in combination with antibiotics to reduce recurrence.
Collapse
Affiliation(s)
- Zhengjie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Shuting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
23
|
Park JW, Kim SE, Lee NY, Kim JH, Jung JH, Jang MK, Park SH, Lee MS, Kim DJ, Kim HS, Suk KT. Role of Microbiota-Derived Metabolites in Alcoholic and Non-Alcoholic Fatty Liver Diseases. Int J Mol Sci 2021; 23:426. [PMID: 35008852 PMCID: PMC8745242 DOI: 10.3390/ijms23010426] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease encompasses diseases that have various causes, such as alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). Gut microbiota dysregulation plays a key role in the pathogenesis of ALD and NAFLD through the gut-liver axis. The gut microbiota consists of various microorganisms that play a role in maintaining the homeostasis of the host and release a wide number of metabolites, including short-chain fatty acids (SCFAs), peptides, and hormones, continually shaping the host's immunity and metabolism. The integrity of the intestinal mucosal and vascular barriers is crucial to protect liver cells from exposure to harmful metabolites and pathogen-associated molecular pattern molecules. Dysbiosis and increased intestinal permeability may allow the liver to be exposed to abundant harmful metabolites that promote liver inflammation and fibrosis. In this review, we introduce the metabolites and components derived from the gut microbiota and discuss their pathologic effect in the liver alongside recent advances in molecular-based therapeutics and novel mechanistic findings associated with the gut-liver axis in ALD and NAFLD.
Collapse
Affiliation(s)
- Ji-Won Park
- Department of Internal Medicine, Hallym University Sacred Heart Hospital of Hallym University Medical Center, 22, Gwanpyeong-ro 170 beon-gil, Dongan-gu, Anyang-si 14068, Korea; (J.-W.P.); (S.-E.K.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
| | - Sung-Eun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital of Hallym University Medical Center, 22, Gwanpyeong-ro 170 beon-gil, Dongan-gu, Anyang-si 14068, Korea; (J.-W.P.); (S.-E.K.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
| | - Na Young Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
- Department of Internal Medicine, Chuncheon Sacred Heart Hospital of Hallym University Medical Center, 77, Sakju-ro, Chuncheon-si 24253, Korea
| | - Jung-Hee Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
- Department of Internal Medicine, Dongtan Sacred Heart Hospital of Hallym University Medical Center, 7, Keunjaebong-gil, Hwaseong-si 445-907, Korea
| | - Jang-Han Jung
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
- Department of Internal Medicine, Dongtan Sacred Heart Hospital of Hallym University Medical Center, 7, Keunjaebong-gil, Hwaseong-si 445-907, Korea
| | - Myoung-Kuk Jang
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
- Department of Internal Medicine, Kangdong Sacred Heart Hospital of Hallym University Medical Center, 18, Cheonho-daero 173-gil, Gangdong-gu, Seoul 05355, Korea
| | - Sang-Hoon Park
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
- Department of Internal Medicine, Kangnam Sacred Heart Hospital of Hallym University Medical Center, 1, Singil-ro, Yeongdeungpo-gu, Seoul 07441, Korea
| | - Myung-Seok Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
- Department of Internal Medicine, Kangnam Sacred Heart Hospital of Hallym University Medical Center, 1, Singil-ro, Yeongdeungpo-gu, Seoul 07441, Korea
| | - Dong-Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
- Department of Internal Medicine, Chuncheon Sacred Heart Hospital of Hallym University Medical Center, 77, Sakju-ro, Chuncheon-si 24253, Korea
| | - Hyoung-Su Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
- Department of Internal Medicine, Kangdong Sacred Heart Hospital of Hallym University Medical Center, 18, Cheonho-daero 173-gil, Gangdong-gu, Seoul 05355, Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
- Department of Internal Medicine, Chuncheon Sacred Heart Hospital of Hallym University Medical Center, 77, Sakju-ro, Chuncheon-si 24253, Korea
| |
Collapse
|
24
|
Acute-on-chronic liver failure in Egypt: an underestimated complication of liver cirrhosis. Eur J Gastroenterol Hepatol 2021; 33:e458-e463. [PMID: 33741801 DOI: 10.1097/meg.0000000000002132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is a severe liver cirrhosis complication with high mortality rates. Despite that chronic liver diseases are prevalent in Egypt, there is no available data about patients with ACLF. We aimed to evaluate the pattern of ACLF in Egypt. METHODS This prospective cohort study included all patients with ACLF, according to the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver, admitted to Al-Rajhi liver Hospital, Egypt, between November 2018 and October 2019. We recorded data at admission, days 3, 7, 14 and 28, and calculated ACLF grades and Chronic Liver Failure Consortium scores until discharge or death. Kaplan-Meier survival analysis was used for survival analysis. RESULTS We analyzed 52 patients with ACLF. Liver cirrhosis was secondary to hepatitis C virus in 46 patients (88.9%), and hepatitis B virus in 4 (7.4%). The main ACLF precipitating factors were infection in 38 (73.1%) and variceal bleeding in 9 (17.3%). The most common infections were spontaneous bacterial peritonitis (44.7%) and chest infection (31.6%). The 28 and 90-day mortality rates were 86.5 and 96.2%. None of the patients who survived >28 days had ACLF 3 at admission or day 7. Among those who died <28 days, ACLF 3 was reported in 7 at admission and 19 on day 7. Living donor liver transplantation was not offered in any case. CONCLUSION In this study, the 28-day mortality rate was higher than in the literature. Egypt urgently needs to develop specific protocols for the proper management of ACLF.
Collapse
|
25
|
Kim YK, Song J. Therapeutic Applications of Resveratrol in Hepatic Encephalopathy through Its Regulation of the Microbiota, Brain Edema, and Inflammation. J Clin Med 2021; 10:jcm10173819. [PMID: 34501267 PMCID: PMC8432232 DOI: 10.3390/jcm10173819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic encephalopathy is a common complication in patients with liver cirrhosis and portosystemic shunting. Patients with hepatic encephalopathy present a variety of clinical features, including neuropsychiatric manifestations, cognitive dysfunction, impaired gut barrier function, hyperammonemia, and chronic neuroinflammation. These pathogeneses have been linked to various factors, including ammonia-induced oxidative stress, neuronal cell death, alterations in the gut microbiome, astrocyte swelling, and blood-brain barrier disruptions. Many researchers have focused on identifying novel therapeutics and prebiotics in the hope of improving the treatment of these conditions. Resveratrol is a natural polyphenic compound and is known to exert several pharmacological effects, including antioxidant, anti-inflammatory, and neuroprotective activities. Recent studies suggest that resveratrol contributes to improving the neuropathogenic effects of liver failure. Here, we review the current evidence describing resveratrol's effects in neuropathogenesis and its impact on the gut-liver axis relating to hepatic encephalopathy. We highlight the hypothesis that resveratrol exerts diverse effects in hepatic encephalopathy and suggest that these effects are likely mediated by changes to the gut microbiota, brain edema, and neuroinflammation.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
- Correspondence: ; Tel.: +82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
26
|
Thomson P, Núñez P, Quera R, Bay C. Gastrointestinal microbiome, what is behind faecal microbiota transplantation? New Microbes New Infect 2021; 42:100898. [PMID: 34168881 PMCID: PMC8207221 DOI: 10.1016/j.nmni.2021.100898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/19/2022] Open
Abstract
The intestinal microbiota is made up of billions of microorganisms that coexist in an organised ecosystem, where strict and facultative anaerobic bacteria predominate. The alteration or imbalance of these microorganisms, known as dysbiosis, can be associated with both gastrointestinal and extraintestinal diseases. Based on a review of the literature, the intestinal microbiota is described in its state of health, the changes associated with some gastrointestinal diseases and the potential role that faecal microbiota transplantation has in the reestablishment of an altered ecosystem. Undoubtedly, the information revealed makes us reflect on the indication of faecal microbiota transplantation in various pathologies of intestinal origin. However, to ensure the efficacy and safety of this therapy, more studies are needed to obtain more evidence.
Collapse
Affiliation(s)
- P. Thomson
- Veterinarian School of Medicine, Faculty of Life Science, Andrés Bello University, Avenida República 440, Santiago, Chile
| | - P. Núñez
- Department of Gastroenterology, Hospital San Juan De Dios – University of Chile, Huérfanos 3255, Santiago, Chile
- Gastroenterology Department, Clínica Universidad de los Andes, Avda. Plaza 2501, Chile
| | - R. Quera
- Gastroenterology Department, Clínica Universidad de los Andes, Avda. Plaza 2501, Chile
| | - C. Bay
- Department of Pediatrics, Medicine School, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, Chile
| |
Collapse
|
27
|
Montoro-Huguet MA, Belloc B, Domínguez-Cajal M. Small and Large Intestine (I): Malabsorption of Nutrients. Nutrients 2021; 13:1254. [PMID: 33920345 PMCID: PMC8070135 DOI: 10.3390/nu13041254] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Numerous disorders can alter the physiological mechanisms that guarantee proper digestion and absorption of nutrients (macro- and micronutrients), leading to a wide variety of symptoms and nutritional consequences. Malabsorption can be caused by many diseases of the small intestine, as well as by diseases of the pancreas, liver, biliary tract, and stomach. This article provides an overview of pathophysiologic mechanisms that lead to symptoms or complications of maldigestion (defined as the defective intraluminal hydrolysis of nutrients) or malabsorption (defined as defective mucosal absorption), as well as its clinical consequences, including both gastrointestinal symptoms and extraintestinal manifestations and/or laboratory abnormalities. The normal uptake of nutrients, vitamins, and minerals by the gastrointestinal tract (GI) requires several steps, each of which can be compromised in disease. This article will first describe the mechanisms that lead to poor assimilation of nutrients, and secondly discuss the symptoms and nutritional consequences of each specific disorder. The clinician must be aware that many malabsorptive disorders are manifested by subtle disorders, even without gastrointestinal symptoms (for example, anemia, osteoporosis, or infertility in celiac disease), so the index of suspicion must be high to recognize the underlying diseases in time.
Collapse
Affiliation(s)
- Miguel A. Montoro-Huguet
- Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Ciencias de la Salud y del Deporte, University of Zaragoza, 50009 Zaragoza, Spain
- Unidad de Gastroenterología, Hepatología y Nutrición, Hospital Universitario San Jorge de Huesca, 22004 Huesca, Spain; (B.B.); (M.D.-C.)
- Aragonese Institute of Health Sciences (IACS), 50009 Zaragoza, Spain
| | - Blanca Belloc
- Unidad de Gastroenterología, Hepatología y Nutrición, Hospital Universitario San Jorge de Huesca, 22004 Huesca, Spain; (B.B.); (M.D.-C.)
- Aragonese Institute of Health Sciences (IACS), 50009 Zaragoza, Spain
| | - Manuel Domínguez-Cajal
- Unidad de Gastroenterología, Hepatología y Nutrición, Hospital Universitario San Jorge de Huesca, 22004 Huesca, Spain; (B.B.); (M.D.-C.)
- Aragonese Institute of Health Sciences (IACS), 50009 Zaragoza, Spain
| |
Collapse
|
28
|
Mikolasevic I, Delija B, Mijic A, Stevanovic T, Skenderevic N, Sosa I, Krznaric-Zrnic I, Abram M, Krznaric Z, Domislovic V, Filipec Kanizaj T, Radic-Kristo D, Cubranic A, Grubesic A, Nakov R, Skrobonja I, Stimac D, Hauser G. Small intestinal bacterial overgrowth and non-alcoholic fatty liver disease diagnosed by transient elastography and liver biopsy. Int J Clin Pract 2021; 75:e13947. [PMID: 33406286 DOI: 10.1111/ijcp.13947] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We aimed to determine if there was a higher incidence of small intestinal bacterial overgrowth (SIBO) in non-alcoholic fatty liver disease (NAFLD) than in patients without NAFLD. Moreover, we assessed whether patients with significant fibrosis (SF) had a higher incidence of SIBO compared with patients with non-significant or no liver fibrosis. METHODS NAFLD was diagnosed in 117 patients by using Fibroscan with a controlled attenuation parameter (CAP) as well as liver biopsy (LB). SIBO was defined by esophagogastroduodenoscopy with an aspiration of the descending duodenum. RESULTS Patients with non-alcoholic steatohepatitis (NASH) and those with SF on LB had a significantly higher incidence of SIBO than patients without NASH and those without SF, respectively (P < .05). According to histological characteristics, there was a higher proportion of patients in the SIBO group with higher steatosis and fibrosis grade, lobular and portal inflammation, and ballooning grade (P < .001). In multivariate analysis, significant predictors associated with SF and NASH were type 2 diabetes mellitus (T2DM) and SIBO. Moreover, in multivariate analysis, significant predictors that were independently associated with SIBO were T2DM, fibrosis stage and ballooning grade (OR 8.80 (2.07-37.37), 2.50 (1.16-5.37) and 27.6 (6.41-119), respectively). The most commonly isolated were gram-negative bacteria, predominantly Escherichia coli and Klebsiella pneumoniae. CONCLUSION In this relatively large population of patients, we used a gold standard for both SIBO (quantitative culture of duodenum's descending part aspirate) and NAFLD (LB), and we demonstrated that NASH patients and those with SF had a higher incidence of SIBO. Moreover, significant predictors independently associated with SIBO were T2DM, fibrosis stage and ballooning grade. Although TE is a well-investigated method for steatosis and fibrosis detection, in our study, independent predictors of SIBO were histological characteristics of NAFLD, while elastographic parameters did not reach statistical significance.
Collapse
Affiliation(s)
- Ivana Mikolasevic
- Department of Gastroenterology, UHC Rijeka, Rijeka, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Gastroenterology, UH Merkur, Zagreb, Croatia
| | - Bozena Delija
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ana Mijic
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | | | - Ivan Sosa
- Department of Forensic Medicine and Criminalistics, University of Rijeka Faculty of Medicine, Rijeka, Croatia
| | | | - Maja Abram
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Clinical Microbiology, UHC Rijeka, Rijeka, Croatia
| | - Zeljko Krznaric
- Department of Gastroenterology and Hepatology, UHC Zagreb, Zagreb, Croatia
- Faculty of Medicine, UHC Zagreb, Zagreb, Croatia
| | - Viktor Domislovic
- Department of Gastroenterology and Hepatology, UHC Zagreb, Zagreb, Croatia
| | - Tajana Filipec Kanizaj
- Department of Gastroenterology, UH Merkur, Zagreb, Croatia
- Faculty of Medicine, UHC Zagreb, Zagreb, Croatia
| | - Delfa Radic-Kristo
- Faculty of Medicine, UHC Zagreb, Zagreb, Croatia
- Department of Hematology, UH Merkur, Zagreb, Croatia
| | - Aleksandar Cubranic
- Department of Gastroenterology, UHC Rijeka, Rijeka, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Aron Grubesic
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Hematology, UHC Rijeka, Rijeka, Croatia
| | - Radislav Nakov
- Queen Yoanna University Hospital, Medical University of Sofia, Sofia, Bulgaria
| | - Ivana Skrobonja
- Department of Clinical Microbiology, UHC Rijeka, Rijeka, Croatia
| | - Davor Stimac
- Department of Gastroenterology, UHC Rijeka, Rijeka, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Goran Hauser
- Department of Gastroenterology, UHC Rijeka, Rijeka, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Faculty of Health Studies, UHC Rijeka, Rijeka, Croatia
| |
Collapse
|
29
|
Rackayová V, Flatt E, Braissant O, Grosse J, Capobianco D, Mastromarino P, McMillin M, DeMorrow S, McLin VA, Cudalbu C. Probiotics improve the neurometabolic profile of rats with chronic cholestatic liver disease. Sci Rep 2021; 11:2269. [PMID: 33500487 PMCID: PMC7838316 DOI: 10.1038/s41598-021-81871-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic liver disease leads to neuropsychiatric complications called hepatic encephalopathy (HE). Current treatments have some limitations in their efficacy and tolerability, emphasizing the need for alternative therapies. Modulation of gut bacterial flora using probiotics is emerging as a therapeutic alternative. However, knowledge about how probiotics influence brain metabolite changes during HE is missing. In the present study, we combined the advantages of ultra-high field in vivo 1H MRS with behavioural tests to analyse whether a long-term treatment with a multistrain probiotic mixture (VIVOMIXX) in a rat model of type C HE had a positive effect on behaviour and neurometabolic changes. We showed that the prophylactic administration of this probiotic formulation led to an increase in gut Bifidobacteria and attenuated changes in locomotor activity and neurometabolic profile in a rat model of type C HE. Both the performance in behavioural tests and the neurometabolic profile of BDL + probiotic rats were improved compared to the BDL group at week 8 post-BDL. They displayed a significantly lesser increase in brain Gln, a milder decrease in brain mIns and a smaller decrease in neurotransmitter Glu than untreated animals. The clinical implications of these findings are potentially far-reaching given that probiotics are generally safe and well-tolerated by patients.
Collapse
Affiliation(s)
- Veronika Rackayová
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Vaud, Switzerland
| | - Emmanuelle Flatt
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Olivier Braissant
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Daniela Capobianco
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University of Rome, Rome, Italy
| | - Paola Mastromarino
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University of Rome, Rome, Italy
| | - Matthew McMillin
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Central Texas Veterans Health Care System, Temple, TX, USA
| | - Sharon DeMorrow
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Central Texas Veterans Health Care System, Temple, TX, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Valérie A McLin
- Swiss Pediatric Liver Center, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva and University Hospitals Geneva, Geneva, Switzerland
| | - Cristina Cudalbu
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Vaud, Switzerland.
| |
Collapse
|
30
|
Laguna de la Vera AL, Welsch C, Pfeilschifter W, Trebicka J. Gut–liver–brain axis in chronic liver disease with a focus on hepatic encephalopathy. THE COMPLEX INTERPLAY BETWEEN GUT-BRAIN, GUT-LIVER, AND LIVER-BRAIN AXES 2021:159-185. [DOI: 10.1016/b978-0-12-821927-0.00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
31
|
Puri P, Dhiman RK, Taneja S, Tandon P, Merli M, Anand AC, Arora A, Acharya SK, Benjamin J, Chawla YK, Dadhich S, Duseja A, Eapan C, Goel A, Kalra N, Kapoor D, Kumar A, Madan K, Nagral A, Pandey G, Rao PN, Saigal S, Saraf N, Saraswat VA, Saraya A, Sarin SK, Sharma P, Shalimar, Shukla A, Sidhu SS, Singh N, Singh SP, Srivastava A, Wadhawan M. Nutrition in Chronic Liver Disease: Consensus Statement of the Indian National Association for Study of the Liver. J Clin Exp Hepatol 2021; 11:97-143. [PMID: 33679050 PMCID: PMC7897902 DOI: 10.1016/j.jceh.2020.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Malnutrition and sarcopenia are common in patients with chronic liver disease and are associated with increased risk of decompensation, infections, wait-list mortality and poorer outcomes after liver transplantation. Assessment of nutritional status and management of malnutrition are therefore essential to improve outcomes in patients with chronic liver disease. This consensus statement of the Indian National Association for Study of the Liver provides a comprehensive review of nutrition in chronic liver disease and gives recommendations for nutritional screening and treatment in specific clinical scenarios of malnutrition in cirrhosis in adults as well as children with chronic liver disease and metabolic disorders.
Collapse
Key Words
- ACLF, acute on chronic liver failure
- ASM, appendicular skeletal muscle mass
- BCAA, branched chain amino acids
- BIA, bioimpedance analysis
- BMD, bone mineral densitometry
- BMI, body mass index
- CLD, chronic liver disease
- CS, corn-starch
- CT, computed tomography
- CTP, Child–Turcotte–Pugh
- DEXA, dual-energy X-ray absorptiometry
- EASL, European Association for the Study of the Liver
- ESPEN, European society for Clinical Nutrition and Metabolism
- GSD, glycogen storage disease
- HGS, hand-grip strength
- IBW, ideal body weight
- IEM, inborn error of metabolism
- INASL, Indian National Association for Study of the Liver
- L3, third lumbar
- LFI, Liver Frailty Index
- MCT, medium-chain triglyceride
- MELD, model for end-stage liver disease
- MLD, metabolic liver disease
- MRI, magnetic resonance imaging
- RDA, recommended daily allowance
- REE, NASH
- RFH-NPT, Royal Free Hospital-Nutritional Prioritizing Tool
- SMI, skeletal muscle index
- Sarcopenia
- TEE, total energy expenditure
- chronic liver disease
- cirrhosis
- malnutrition
- non-alcoholic liver disease, resting energy expenditure
- nutrition
Collapse
Affiliation(s)
- Pankaj Puri
- Fortis Escorts Liver & Digestive Diseases Institute, New Delhi, 110025, India
| | - Radha K. Dhiman
- Department of Hepatobiliary Sciences, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Sunil Taneja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Puneeta Tandon
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Manuela Merli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, 00185, Italy
| | - Anil C. Anand
- Kalinga Institute of Medical Sciences, Bhubhaneswar, 751024, Odisha, India
| | - Anil Arora
- Institute of Liver, Gastroenterology and Pancreatico-Biliary Sciences of Sir Ganga Ram Hospital, New Delhi, 110060, India
| | - Subrat K. Acharya
- Fortis Escorts Liver & Digestive Diseases Institute, New Delhi, 110025, India
| | - Jaya Benjamin
- Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi, 110070, India
| | - Yogesh K. Chawla
- Kalinga Institute of Medical Sciences, Bhubhaneswar, 751024, Odisha, India
| | - Sunil Dadhich
- Department of Gastroenterology SN Medical College, Jodhpur, 342003, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - C.E. Eapan
- Department of Gastroenterology, Christian Medical College, Vellore, 632004, India
| | - Amit Goel
- Department of Hepatobiliary Sciences, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Naveen Kalra
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Dharmesh Kapoor
- Department of Gastroenterology, Global Hospital, Hyderabad, 500004, India
| | - Ashish Kumar
- Institute of Liver, Gastroenterology and Pancreatico-Biliary Sciences of Sir Ganga Ram Hospital, New Delhi, 110060, India
| | - Kaushal Madan
- Max Smart Super Speciality Hospital, New Delhi, India
| | - Aabha Nagral
- Department of Gastroenterology, Jaslok Hospital, Mumbai, 400026, India
| | - Gaurav Pandey
- Department of Hepatobiliary Sciences, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Padaki N. Rao
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, 500082, India
| | - Sanjiv Saigal
- Department of Hepatology, Medanta Hospital, Gurugram, 122001, India
| | - Neeraj Saraf
- Department of Hepatology, Medanta Hospital, Gurugram, 122001, India
| | - Vivek A. Saraswat
- Department of Hepatobiliary Sciences, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110016, India
| | - Shiv K. Sarin
- Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi, 110070, India
| | - Praveen Sharma
- Institute of Liver, Gastroenterology and Pancreatico-Biliary Sciences of Sir Ganga Ram Hospital, New Delhi, 110060, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110016, India
| | - Akash Shukla
- Department of Gastroenterology, Seth GSMC & KEM Hospital, Mumbai, 400022, India
| | - Sandeep S. Sidhu
- Department of Gastroenterology, SPS Hospital, Ludhiana, 141001, India
| | - Namrata Singh
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110016, India
| | - Shivaram P. Singh
- Department of Gastroenterology, SCB Medical College, Cuttack, 753007, India
| | - Anshu Srivastava
- Department of Hepatobiliary Sciences, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Manav Wadhawan
- Institute of Liver & Digestive Diseases, BL Kapur Memorial Hospital, New Delhi, 110005, India
| |
Collapse
|
32
|
Solé C, Guilly S, Da Silva K, Llopis M, Le-Chatelier E, Huelin P, Carol M, Moreira R, Fabrellas N, De Prada G, Napoleone L, Graupera I, Pose E, Juanola A, Borruel N, Berland M, Toapanta D, Casellas F, Guarner F, Doré J, Solà E, Ehrlich SD, Ginès P. Alterations in Gut Microbiome in Cirrhosis as Assessed by Quantitative Metagenomics: Relationship With Acute-on-Chronic Liver Failure and Prognosis. Gastroenterology 2021; 160:206-218.e13. [PMID: 32941879 DOI: 10.1053/j.gastro.2020.08.054] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Cirrhosis is associated with changes in gut microbiome composition. Although acute-on-chronic liver failure (ACLF) is the most severe clinical stage of cirrhosis, there is lack of information about gut microbiome alterations in ACLF using quantitative metagenomics. We investigated the gut microbiome in patients with cirrhosis encompassing the whole spectrum of disease (compensated, acutely decompensated without ACLF, and ACLF). A group of healthy subjects was used as control subjects. METHODS Stool samples were collected prospectively in 182 patients with cirrhosis. DNA library construction and sequencing were performed using the Ion Proton Sequencer (ThermoFisher Scientific, Waltham, MA). Microbial genes were grouped into clusters, denoted as metagenomic species. RESULTS Cirrhosis was associated with a remarkable reduction in gene and metagenomic species richness compared with healthy subjects. This loss of richness correlated with disease stages and was particularly marked in patients with ACLF and persisted after adjustment for antibiotic therapy. ACLF was associated with a significant increase of Enterococcus and Peptostreptococcus sp and a reduction of some autochthonous bacteria. Gut microbiome alterations correlated with model for end-stage liver disease and Child-Pugh scores and organ failure and was associated with some complications, particularly hepatic encephalopathy and infections. Interestingly, gut microbiome predicted 3-month survival with good stable predictors. Functional analysis showed that patients with cirrhosis had enriched pathways related to ethanol production, γ-aminobutyric acid metabolism, and endotoxin biosynthesis, among others. CONCLUSIONS Cirrhosis is characterized by marked alterations in gut microbiome that parallel disease stages with maximal changes in ACLF. Altered gut microbiome was associated with complications of cirrhosis and survival. Gut microbiome may contribute to disease progression and poor prognosis. These results should be confirmed in future studies.
Collapse
Affiliation(s)
- Cristina Solé
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion en Red de Enfermedades Hepaticas y Digestivas (CIBEReHD), Madrid, Spain
| | - Susie Guilly
- Université Paris-Saclay, INRAE (Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement), Jouy en Josas, France
| | - Kevin Da Silva
- Université Paris-Saclay, INRAE (Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement), Jouy en Josas, France
| | - Marta Llopis
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion en Red de Enfermedades Hepaticas y Digestivas (CIBEReHD), Madrid, Spain
| | - Emmanuelle Le-Chatelier
- Université Paris-Saclay, INRAE (Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement), Jouy en Josas, France
| | - Patricia Huelin
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion en Red de Enfermedades Hepaticas y Digestivas (CIBEReHD), Madrid, Spain
| | - Marta Carol
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Rebeca Moreira
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion en Red de Enfermedades Hepaticas y Digestivas (CIBEReHD), Madrid, Spain
| | - Núria Fabrellas
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Gloria De Prada
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion en Red de Enfermedades Hepaticas y Digestivas (CIBEReHD), Madrid, Spain
| | - Laura Napoleone
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion en Red de Enfermedades Hepaticas y Digestivas (CIBEReHD), Madrid, Spain
| | - Isabel Graupera
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion en Red de Enfermedades Hepaticas y Digestivas (CIBEReHD), Madrid, Spain
| | - Elisa Pose
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion en Red de Enfermedades Hepaticas y Digestivas (CIBEReHD), Madrid, Spain
| | - Adrià Juanola
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion en Red de Enfermedades Hepaticas y Digestivas (CIBEReHD), Madrid, Spain
| | - Natalia Borruel
- Centro de Investigacion en Red de Enfermedades Hepaticas y Digestivas (CIBEReHD), Madrid, Spain; Digestive System Research Unit, Hospital Universitari Vall d'Hebrón, Barcelona, Spain
| | - Magali Berland
- Université Paris-Saclay, INRAE (Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement), Jouy en Josas, France
| | - David Toapanta
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Francesc Casellas
- Centro de Investigacion en Red de Enfermedades Hepaticas y Digestivas (CIBEReHD), Madrid, Spain; Digestive System Research Unit, Hospital Universitari Vall d'Hebrón, Barcelona, Spain
| | - Francisco Guarner
- Centro de Investigacion en Red de Enfermedades Hepaticas y Digestivas (CIBEReHD), Madrid, Spain; Digestive System Research Unit, Hospital Universitari Vall d'Hebrón, Barcelona, Spain
| | - Jöel Doré
- Université Paris-Saclay, INRAE (Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement), Jouy en Josas, France
| | - Elsa Solà
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion en Red de Enfermedades Hepaticas y Digestivas (CIBEReHD), Madrid, Spain
| | - Stanislav Dusko Ehrlich
- Université Paris-Saclay, INRAE (Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement), Jouy en Josas, France.
| | - Pere Ginès
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion en Red de Enfermedades Hepaticas y Digestivas (CIBEReHD), Madrid, Spain.
| |
Collapse
|
33
|
Chapman B, Sinclair M, Gow PJ, Testro AG. Malnutrition in cirrhosis: More food for thought. World J Hepatol 2020; 12:883-896. [PMID: 33312416 PMCID: PMC7701970 DOI: 10.4254/wjh.v12.i11.883] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Malnutrition is highly prevalent in liver cirrhosis and its presence carries important prognostic implications. The clinical conditions and pathophysiological mechanisms that cause malnutrition in cirrhosis are multiple and interrelated. Anorexia and liver decompensation symptoms lead to poor dietary intake; metabolic changes characterised by elevated energy expenditure, reduced glycogen storage, an accelerated starvation response and protein catabolism result in muscle and fat wasting; and, malabsorption renders the cirrhotic patient unable to fully absorb or utilise food that has been consumed. Malnutrition is therefore a considerable challenge to manage effectively, particularly as liver disease progresses. A high energy, high protein diet is recognised as standard of care, yet patients struggle to follow this recommendation and there is limited evidence to guide malnutrition interventions in cirrhosis and liver transplantation. In this review, we seek to detail the factors which contribute to poor nutritional status in liver disease, and highlight complexities far greater than "poor appetite" or "reduced oral intake" leading to malnutrition. We also discuss management strategies to optimise nutritional status in this patient group, which target the inter-related mechanisms unique to advanced liver disease. Finally, future research requirements are suggested, to develop effective treatments for one of the most common and debilitating complications afflicting cirrhotic patients.
Collapse
Affiliation(s)
- Brooke Chapman
- Nutrition and Dietetics Department, Austin Health, Heidelberg 3084, Australia.
| | - Marie Sinclair
- Liver Transplant Unit, Austin Health, Heidelberg 3084, Australia
| | - Paul J Gow
- Liver Transplant Unit, Austin Health, Heidelberg 3084, Australia
| | - Adam G Testro
- Liver Transplant Unit, Austin Health, Heidelberg 3084, Australia
| |
Collapse
|
34
|
Kim TJ, Lee H. Clinical Significance of Changes in Gut Microbiome Associated with Use of Proton Pump Inhibitors. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2020. [DOI: 10.7704/kjhugr.2020.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proton pump inhibitors (PPIs) are commonly used for the treatment of gastric acid-related disorders, and are generally well tolerated. However, by reducing the secretion of gastric acid in the long term, PPI can increase the risk of inducing an imbalance in the gut microbiome composition. Moreover, gastric hypochlorhydria that is caused by PPIs favors the survival and migration of oral bacteria in the lower part of the gastrointestinal tract, with a possible induction of pro-inflammatory microenvironment. Therefore, gut dysbiosis that is associated with the use of PPI has been found to cause adverse infectious and inflammatory diseases. In this regard, adverse effects of the PPI-related gut dysbiosis have been reported in different observational studies, but their clinical relevance remains unclear. Therefore, the aim of this review was to explore the available data on the PPI-related gut dysbiosis in order to better understand its clinical significance.
Collapse
|
35
|
Bian X, Yang L, Wu W, Lv L, Jiang X, Wang Q, Wu J, Li Y, Ye J, Fang D, Shi D, Wang K, Wang Q, Lu Y, Xie J, Xia J, Li L. Pediococcus pentosaceus LI05 alleviates DSS-induced colitis by modulating immunological profiles, the gut microbiota and short-chain fatty acid levels in a mouse model. Microb Biotechnol 2020; 13:1228-1244. [PMID: 32363766 PMCID: PMC7264873 DOI: 10.1111/1751-7915.13583] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota is considered a key factor in pathogenesis and progression of inflammatory bowel disease (IBD). The bacterium Pediococcus pentosaceus LI05 alleviated host inflammation by maintaining the gut epithelial integrity, modulating the host immunity, gut microbiota and metabolism, but its effect on IBD remains unclear. The present study aimed to investigate the role and mechanisms of P. pentosaceus LI05. Mice were administered P. pentosaceus LI05 or phosphate-buffered saline once daily by oral gavage for 14 days, and colitis was induced by providing mice 2% DSS-containing drinking water for 7 days. P. pentosaceus LI05 ameliorated colitis in mice and reduced the body weight loss, disease activity index (DAI) scores, colon length shortening, intestinal permeability and the proinflammatory cytokine levels. Furthermore, a significantly altered gut microbiota composition with increased diversity and short-chain fatty acid (SCFA) production was observed in mice treated with P. pentosaceus LI05. Several genera, including Akkermansia and Faecalibacterium, were differentially enriched in the P. pentosaceus LI05-treated mice and were negatively correlated with colitis indices and positively correlated with gut barrier markers and SCFA levels. The P. pentosaceus LI05 treatment alleviated intestinal inflammation by maintaining the intestinal epithelial integrity and modulating the immunological profiles, gut microbiome and metabolite composition. Based on our findings, P. pentosaceus LI05 might be applied as potential preparation to ameliorate colitis.
Collapse
Affiliation(s)
- Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Xianwan Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Qing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Jingjing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Jianzhong Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Yanmeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Jiaojiao Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| |
Collapse
|
36
|
Abstract
Research increasingly shows that the gut-liver-brain axis is a crucial component in the pathophysiology of hepatic encephalopathy (HE). Due to the limitations of current standard-of-care medications, non-pharmacological treatments that target gut dysbiosis, including probiotics, nutritional management, and fecal microbiota transplants, are being considered as alternative and adjunct therapies. Meta-analyses note that probiotics could offer benefits in HE treatment, but have not shown superiority over lactulose. Emerging literature suggests that fecal microbiota transplants could offer a novel strategy to treat gut dysbiosis and favorably impact HE. Finally, liver support devices and liver transplantation could offer a last-resort treatment option for persistent HE.
Collapse
Affiliation(s)
- Vanessa Weir
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, Perelman Center for Advanced Medicine, 7 South Pavilion, 3400 Civic Center Boulevard, HUP, Philadelphia, PA 19104, USA
| | - K Rajender Reddy
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, 2 Dulles, 3400 Spruce Street, HUP, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Bian X, Wu W, Yang L, Lv L, Wang Q, Li Y, Ye J, Fang D, Wu J, Jiang X, Shi D, Li L. Administration of Akkermansia muciniphila Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. Front Microbiol 2019; 10:2259. [PMID: 31632373 PMCID: PMC6779789 DOI: 10.3389/fmicb.2019.02259] [Citation(s) in RCA: 380] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) develop as a result of complex interactions among genes, innate immunity and environmental factors, which are related to the gut microbiota. Multiple clinical and animal data have shown that Akkermansia muciniphila is associated with a healthy mucosa. However, its precise role in colitis is currently unknown. Our study aimed to determine its protective effects and underlying mechanisms in a dextran sulfate sodium (DSS)-induced colitis mouse model. Twenty-four C57BL/6 male mice were administered A. muciniphila MucT or phosphate-buffered saline (PBS) once daily by oral gavage for 14 days. Colitis was induced by drinking 2% DSS from days 0 to 6, followed by 2 days of drinking normal water. Mice were weighed daily and then sacrificed on day 8. We found that A. muciniphila improved DSS-induced colitis, which was evidenced by reduced weight loss, colon length shortening and histopathology scores and enhanced barrier function. Serum and tissue levels of inflammatory cytokines and chemokines (TNF-α, IL1α, IL6, IL12A, MIP-1A, G-CSF, and KC) decreased as a result of A. muciniphila administration. Analysis of 16S rDNA sequences showed that A. muciniphila induced significant gut microbiota alterations. Furthermore, correlation analysis indicated that pro-inflammatory cytokines and other injury factors were negatively associated with Verrucomicrobia, Akkermansia, Ruminococcaceae, and Rikenellaceae, which were prominently abundant in A. muciniphila-treated mice. We confirmed that A. muciniphila treatment could ameliorate mucosal inflammation either via microbe-host interactions, which protect the gut barrier function and reduce the levels of inflammatory cytokines, or by improving the microbial community. Our findings suggest that A. muciniphila may be a potential probiotic agent for ameliorating colitis.
Collapse
Affiliation(s)
- Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Qing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Jianzhong Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Jingjing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Xianwan Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Vlasova AV, Isakov VA, Pilipenko VI, Sheveleva SA, Markova YM, Polyanina AS, Maev IV. [Methanobrevibacter smithii in irritable bowel syndrome: a clinical and molecular study]. TERAPEVT ARKH 2019; 91:47-51. [PMID: 32598754 DOI: 10.26442/00403660.2019.08.000383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
AIM To assess the role of Methanobrevibacter smithii in patients with irritable bowel syndrome associated with small intestinal bowel overgrowth. MATERIALS AND METHODS Sixty - seven patients with IBS according to Rome IV were enrolled into the study in whom hydrogen breath test was performed. Thirty - two healthy subjects with negative breath test was used as a control. All IBS symptoms assessed daily with 5 grade Lykert scale for 7 days, stool was assessed by Brystol stool scale. M. smithii was confirmed in stool samples by PCR. RESULTS AND DISCUSSION In 67 IBS patients CH4 overproduction was found in 32 (47.7%), H2 overproduction in 31 (46.2%) and normal values in 4 (5.9%) by hydrogen breath test. M. smithii was confirmed by stool PCR in all patients with CH4 overproduction. Severity and prevalence of main clinical features of IBS were similar in both SIBO groups but were significantly higher than in control (p.
Collapse
Affiliation(s)
- A V Vlasova
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
| | - V A Isakov
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
| | - V I Pilipenko
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
| | - S A Sheveleva
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
| | - Y M Markova
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
| | - A S Polyanina
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
| | - I V Maev
- Yevdokimov Moscow State University of Medicine and Dentistry
| |
Collapse
|
39
|
Ni J, Huang R, Zhou H, Xu X, Li Y, Cao P, Zhong K, Ge M, Chen X, Hou B, Yu M, Peng B, Li Q, Zhang P, Gao Y. Analysis of the Relationship Between the Degree of Dysbiosis in Gut Microbiota and Prognosis at Different Stages of Primary Hepatocellular Carcinoma. Front Microbiol 2019; 10:1458. [PMID: 31293562 PMCID: PMC6603198 DOI: 10.3389/fmicb.2019.01458] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota dysbiosis is closely associated with primary hepatocellular carcinoma (HCC). Recent studies have evaluated the early diagnosis of primary HCC through analysis of gut microbiota dysbiosis. However, the relationship between the degree of dysbiosis and the prognosis of primary HCC remains unclear. Because primary HCC is accompanied by dysbiosis and dysbiosis usually increases the circulatory concentrations of endotoxin and other harmful bacterial substances, which further increases liver damage, we hypothesized that level of dysbiosis associated with primary HCC increases with the stage of cancer progression. To test this hypothesis, we introduced a more integrated index referred to as the degree of dysbiosis (Ddys ); and we investigated Ddys of the gut microbiota with the development of primary HCC through high-throughput sequencing of 16S rRNA gene amplicons. Our results showed that compared with healthy individuals, patients with primary HCC showed increased pro-inflammatory bacteria in their fecal microbiota. The Ddys increased significantly in patients with primary HCC compared with that in healthy controls. Moreover, there was a tendency for the Ddys to increase with the development of primary HCC, although no significant difference was detected between different stages of primary HCC. Our findings provide important insights into the use of gut microbiota analysis during the treatment of primary HCC.
Collapse
Affiliation(s)
- Jiajia Ni
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Rong Huang
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Huifang Zhou
- Department of Clinical Laboratory, First People's Hospital of Kashi, Kashgar, China
| | - Xiaoping Xu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Yang Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Peihua Cao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Kebo Zhong
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Mei Ge
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Xiaoxia Chen
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Baohua Hou
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Min Yu
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baogang Peng
- Department of Hepatic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiao Li
- Department of Hepatic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Zhang
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Baffy G. Potential mechanisms linking gut microbiota and portal hypertension. Liver Int 2019; 39:598-609. [PMID: 30312513 DOI: 10.1111/liv.13986] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Abstract
Gut microbiota is the largest collection of commensal micro-organisms in the human body, engaged in reciprocal cellular and molecular interactions with the liver. This mutually beneficial relationship may break down and result in dysbiosis, associated with disease phenotypes. Altered composition and function of gut microbiota has been implicated in the pathobiology of nonalcoholic fatty liver disease (NAFLD), a prevalent condition linked to obesity, insulin resistance and endothelial dysfunction. NAFLD may progress to cirrhosis and portal hypertension, which is the result of increased intrahepatic vascular resistance and altered splanchnic circulation. Gut microbiota may contribute to rising portal pressure from the earliest stages of NAFLD, although the significance of these changes remains unclear. NAFLD has been linked to lower microbial diversity and weakened intestinal barrier, exposing the host to bacterial components and stimulating pathways of immune defence and inflammation. Moreover, disrupted host-microbial metabolic interplay alters bile acid signalling and the release of vasoregulatory gasotransmitters. These perturbations become prominent in cirrhosis, increasing the risk of clinically significant portal hypertension and leading to bacterial translocation, sepsis and acute-on-chronic liver failure. Better understanding of the gut-liver axis and identification of novel microbial molecular targets may yield specific strategies in the prevention and management of portal hypertension.
Collapse
Affiliation(s)
- Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
41
|
Small intestinal bacterial overgrowth and nonalcoholic fatty liver disease. Clin Exp Hepatol 2019; 5:1-10. [PMID: 30915401 PMCID: PMC6431096 DOI: 10.5114/ceh.2019.83151] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota has recently been recognized as a major environmental factor in the pathophysiology of several human diseases. The anatomical and functional association existing between the gut and the liver provides the theoretical basis to assume that the liver is a major target for gut microbes. In the last decades, many studies have reported an altered composition of gut microbiota in patients with chronic liver diseases and liver cirrhosis, suggesting a progressively marked dysbiosis to be related to worsening of the liver disease. Modifications of microbiota result in alteration in providing signals through the intestine and bacterial products, as well as hormones produced in the bowel that affect metabolism at different levels including the liver. There is increasing evidence for a correlation between intestinal microbiota, bacterial translocation and hepatic steatosis. Intestinal microbiota affects nutrient absorption and energy homeostasis. Altered intestinal permeability may favor the passage of bacteria derived compounds into the systemic circulation, causing a systemic inflammatory state, characteristic of the metabolic syndrome. At present, an increasing number of studies indicate a close relationship between dysbiosis, defined as abnormal composition and the amount of intestinal bacteria (gut microbiota), intestinal permeability and some metabolic, inflammatory, degenerative and even psychiatric diseases. Microbiota pharmacological modulation seems to be a promising tool for a new therapeutic approach to non-alcoholic fatty liver disease and in prevention of cirrhosis. The following study aims to briefly discuss the role of microbiota disorder (dysbiosis), and in particular small intestinal bacterial overgrowth (SIBO), in the pathogenesis of nonalcoholic fatty liver disease (NAFLD).
Collapse
|
42
|
Dornas W, Lagente V. Intestinally derived bacterial products stimulate development of nonalcoholic steatohepatitis. Pharmacol Res 2019; 141:418-428. [PMID: 30658094 DOI: 10.1016/j.phrs.2019.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
Abstract
Fatty livers are susceptible to factors that cause inflammation and fibrosis, but fat deposition and the inflammatory response can be dissociated. While nonalcoholic fatty liver disease (NAFLD), caused by pathologic fat accumulation inside the liver, can remain stable for several years, in other cases NAFLD progresses to nonalcoholic steatohepatitis (NASH), which is characterized by fat accumulation and inflammation and is not a benign condition. In this review, we discuss the NASH host cells and microbial mechanisms that stimulate inflammation and predispose the liver to hepatocyte injury and fibrotic stages via increased lipid deposition. We highlight the interactions between intestine-derived bacterial products, such as lipopolysaccharide, and nutritional models of NAFLD and/or obese individuals. The results of modulating enteric microbiota suggest that gut-derived endotoxins may be essential determinants of fibrotic progression and regression in NASH.
Collapse
Affiliation(s)
- Waleska Dornas
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Université de Rennes, INSERM, INRA, F-35000 Rennes, France.
| | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Université de Rennes, INSERM, INRA, F-35000 Rennes, France.
| |
Collapse
|
43
|
Li Y, Lv L, Ye J, Fang D, Shi D, Wu W, Wang Q, Wu J, Yang L, Bian X, Jiang X, Jiang H, Yan R, Peng C, Li L. Bifidobacterium adolescentis CGMCC 15058 alleviates liver injury, enhances the intestinal barrier and modifies the gut microbiota in D-galactosamine-treated rats. Appl Microbiol Biotechnol 2018; 103:375-393. [PMID: 30345482 DOI: 10.1007/s00253-018-9454-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Acute liver failure is a drastic, unpredictable clinical syndrome with high mortality. Various preventive and adjuvant therapies based on modulating the gut flora have been proposed for hepatic injury. We aimed to explore the preventive and therapeutic effects of Bifidobacterium adolescentis CGMCC15058 on rat liver failure, as well as the potential microecological and immunological mechanisms of those effects. B. adolescentis CGMCC15058 (3 × 109 CFU), isolated from healthy human stool, was gavaged to Sprague-Dawley rats for 14 days. Acute liver injury was induced on the 15th day by intraperitoneal injection of D-galactosamine. After 24 h, liver and terminal ileum histology, liver function, plasma cytokines, bacterial translocation and gut microbiota composition were assessed. We found that pretreatment with B. adolescentis significantly relieved elevated serum levels of alanine aminotransferase (ALT), total bile acid and lipopolysaccharide-binding protein and enhanced the expression of mucin 4 and the tight junction protein zonula occludens-1. B. adolescentis exhibited anti-inflammatory properties as indicated by decreased levels of mTOR and the inflammatory cytokines TNF-α and IL-6, as well as elevated levels of the anti-inflammatory cytokine interleukins-10 in the liver. Similar anti-inflammatory signs were also found in plasma. B. adolescentis significantly altered the microbial community, depleting the common pathogenic taxon Proteus and markedly enriching the taxa Coriobacteriaceae, Bacteroidales and Allobaculum, which are involved in regulating the metabolism of lipids and aromatic amino acids. Our findings not only suggest B. adolescentis acts as a prospective probiotic against liver failure but also provide new insights into the prevention and treatment of liver disease.
Collapse
Affiliation(s)
- Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jianzhong Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Qing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jingjing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xianwan Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Conggao Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
44
|
Xu Q, Gu S, Chen Y, Quan J, Lv L, Chen D, Zheng B, Xu L, Li L. Protective Effect of Pediococcus pentosaceus LI05 Against Clostridium difficile Infection in a Mouse Model. Front Microbiol 2018; 9:2396. [PMID: 30356740 PMCID: PMC6189400 DOI: 10.3389/fmicb.2018.02396] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022] Open
Abstract
Clostridium difficile infection (CDI) is a major cause of infectious diarrhea among hospitalized patients. Probiotics could be instrumental in restoring the intestinal dysbiosis caused by CDI. Here, we examined the protective effect of Pediococcus pentosaceus LI05 in a mouse CDI model. C57BL/6 mice were administrated P. pentosaceus LI05 (LI05 group) or sterile anaerobic PBS (CDI group) everyday for 14 days. Mice were exposed to antibiotics cocktail for 5 days; then challenged with C. difficile strain VPI10463. Mice were monitored daily for survival and weight loss. Colonic tissue and serum samples were assessed for intestinal histopathology, intestinal barrier function and systemic inflammation. The oral administration of P. pentosaceus LI05 improved the survival rate and alleviated the histopathological impact of C. difficile. Compared to the CDI group, the levels of inflammatory mediators in the colon as well as inflammatory cytokines and chemokines in serum were substantially attenuated in the LI05 group. P. pentosaceus LI05 alleviated the CDI-induced of disruption of ZO-1, occludin and claudin-1. Additionally, fecal microbiome analysis showed an enrichment in the abundance of the Porphyromonadaceae and Rikenellaceae, while, the relative abundance of Enterobacteriaceae were decreased. Our results demonstrated that the preventive effect of P. pentosaceus LI05 against CDI was mediated via improving tight junction proteins and down-regulating the inflammatory response. Therefore, P. pentosaceus LI05 could be a promising probiotic in CDI.
Collapse
Affiliation(s)
- Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiazheng Quan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dazhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lichen Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Flamm SL, Mullen KD, Heimanson Z, Sanyal AJ. Rifaximin has the potential to prevent complications of cirrhosis. Therap Adv Gastroenterol 2018; 11:1756284818800307. [PMID: 30283499 PMCID: PMC6166307 DOI: 10.1177/1756284818800307] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/09/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cirrhosis-related complications are associated with poor prognosis. With our analyses, we examined the potential benefit of rifaximin in reducing the risk of developing cirrhosis-related complications. METHODS Adults with cirrhosis and hepatic encephalopathy (HE) in remission were randomly assigned to receive rifaximin 550 mg twice daily or placebo for 6 months with concomitant lactulose permitted. Post hoc analyses examined time to cirrhosis-related complications (HE, spontaneous bacterial peritonitis (SBP), variceal bleeding, acute kidney injury/hepatorenal syndrome). Subgroup analyses evaluated efficacy for select baseline disease characteristics. RESULTS Of patients receiving rifaximin (n = 140) and placebo (n = 159), 53.6% and 49.1%, respectively, had baseline Model for End-Stage Liver Disease (MELD) score ⩾ 12 and international normalized ratio (INR) ⩾ 1.2. Baseline ascites was observed in 36.4% (rifaximin) and 34.6% (placebo) of patients. In patients with MELD score ⩾ 12 and INR ⩾ 1.2, rifaximin reduced the relative risk (RR) of any first complication experienced during trial by 59% [hazard ratio (HR) = 0.41, 95% confidence interval (CI): 0.25-0.67; p < 0.001] versus placebo. For patients with baseline ascites, rifaximin reduced the RR of any first complication experienced during trial by 42% versus placebo (HR = 0.58, 95% CI: 0.34-1.0; p = 0.045). For some subgroups, there was a decrease in RR of complications of SBP, variceal bleeding, and acute kidney injury/hepatorenal syndrome with rifaximin versus placebo, although there were few events reported in the study. CONCLUSION Rifaximin may reduce the incidence of cirrhosis-related complications and the recurrence of overt HE.[ClinicalTrials.gov identifier: NCT00298038.].
Collapse
|
46
|
Konturek PC, Harsch IA, Konturek K, Schink M, Konturek T, Neurath MF, Zopf Y. Gut⁻Liver Axis: How Do Gut Bacteria Influence the Liver? Med Sci (Basel) 2018; 6:medsci6030079. [PMID: 30227645 PMCID: PMC6165386 DOI: 10.3390/medsci6030079] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic liver diseases are a major cause of morbidity and mortality worldwide. Recently, gut dysbiosis was identified as an important factor in the pathogenesis of liver diseases. The relationship between gut microbiota and the liver is still not well understood; however, dysfunction of the gut mucosal barrier ("leaky gut") and increased bacterial translocation into the liver via the gut⁻liver axis probably play crucial roles in liver disease development and progression. The liver is an important immunological organ, and, after exposure to gut-derived bacteria via portal circulation, it responds with activation of the innate and adaptive immune system, leading to hepatic injury. A better understanding of the pathophysiological links among gut dysbiosis, the integrity of the gut barrier, and the hepatic immune response to gut-derived factors is essential for the development of new therapies to treat chronic liver diseases.
Collapse
Affiliation(s)
- Peter Christopher Konturek
- Department of Internal Medicine 2nd, Thuringia-Clinic Saalfeld, Teaching Hospital of the University of Jena, 68, D-07318 Jena, Germany.
| | - Igor Alexander Harsch
- Department of Internal Medicine 2nd, Thuringia-Clinic Saalfeld, Teaching Hospital of the University of Jena, 68, D-07318 Jena, Germany.
| | - Kathrin Konturek
- Department of Internal Medicine 2nd, Thuringia-Clinic Saalfeld, Teaching Hospital of the University of Jena, 68, D-07318 Jena, Germany.
| | - Monic Schink
- 1st Department of Internal Medicine, University Erlangen-Nuremberg, 91054 Erlangen, Germany.
| | - Thomas Konturek
- Department of Medicine, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA.
| | - Markus F Neurath
- 1st Department of Internal Medicine, University Erlangen-Nuremberg, 91054 Erlangen, Germany.
| | - Yurdaguel Zopf
- 1st Department of Internal Medicine, University Erlangen-Nuremberg, 91054 Erlangen, Germany.
| |
Collapse
|
47
|
Liu B, Zhang Y, Wang R, An Y, Gao W, Bai L, Li Y, Zhao S, Fan J, Liu E. Western diet feeding influences gut microbiota profiles in apoE knockout mice. Lipids Health Dis 2018; 17:159. [PMID: 30021609 PMCID: PMC6052692 DOI: 10.1186/s12944-018-0811-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut microbiota plays an important role in many metabolic diseases such as diabetes and atherosclerosis. Apolipoprotein E (apoE) knock-out (KO) mice are frequently used for the study of hyperlipidemia and atherosclerosis. However, it is unknown whether apoE KO mice have altered gut microbiota when challenged with a Western diet. METHODS In the current study, we assessed the gut microbiota profiling of apoE KO mice and compared with wild-type mice fed either a normal chow or Western diet for 12 weeks using 16S pyrosequencing. RESULTS On a western diet, the gut microbiota diversity was significantly decreased in apoE KO mice compared with wild type (WT) mice. Firmicutes and Erysipelotrichaceae were significantly increased in WT mice but Erysipelotrichaceae was unchanged in apoE KO mice on a Western diet. The weighted UniFrac principal coordinate analysis exhibited clear separation between WT and apoE KO mice on the first vector (58.6%) with significant changes of two dominant phyla (Bacteroidetes and Firmicutes) and seven dominant families (Porphyromonadaceae, Lachnospiraceae, Ruminococcaceae, Desulfovibrionaceae, Helicobacteraceae, Erysipelotrichaceae and Veillonellaceae). Lachnospiraceae was significantly enriched in apoE KO mice on a Western diet. In addition, Lachnospiraceae and Ruminococcaceae were positively correlated with relative atherosclerosis lesion size in apoE KO. CONCLUSIONS Collectively, our study showed that there are marked changes in the gut microbiota of apoE KO mice, particularly challenged with a Western diet and these alterations may be possibly associated with atherosclerosis.
Collapse
Affiliation(s)
- Baoning Liu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, 710061 Shaanxi China
| | - Yali Zhang
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, 710061 Shaanxi China
| | - Rong Wang
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, 710061 Shaanxi China
| | - Yingfeng An
- Shaanxi Province Centre for Disease Control and Prevention, Xi’an, 710054 Shaanxi China
| | - Weiman Gao
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
| | - Liang Bai
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, 710061 Shaanxi China
| | - Yandong Li
- Department of Pathology, First Affiliated Hospital of Xi’an Medical University, Xi’an, 710000 Shaanxi China
| | - Sihai Zhao
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, 710061 Shaanxi China
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898 Japan
| | - Enqi Liu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, 710061 Shaanxi China
| |
Collapse
|
48
|
Oliveira RB, Martinelli ALC, Troncon LEA, Elias J. Small intestinal bacterial overgrowth (SIBO) and vitamin K-responsive coagulopathy: a previously unrecorded association. BMJ Case Rep 2018; 2018:bcr-2017-223531. [PMID: 29880619 DOI: 10.1136/bcr-2017-223531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A 17-year-old woman, with a history of three operations on the upper gut in early life and intermittent diarrhoea, presented with a history of epistaxis and leg ecchymosis for the previous 3 months. Initial investigation revealed mild anaemia, low serum albumin, moderately elevated aminotransferases and an exceedingly prolonged prothrombin time (PT) which was promptly shortened to normal by intravenous vitamin K. Additional investigations revealed a grossly abnormal glucose hydrogen breath test, a dilated duodenum and deficiencies of vitamins A, D and E. Repeated courses of antimicrobial agents caused prompt but transient shortening of PT and eventually a duodenal-jejunal anastomosis was performed. Since then, up to 36 months later, the patient has been in good general health and PT has been consistently normal with no vitamin K supplementation. Small intestinal bacterial overgrowth has previously been associated with several conditions but this is the first description of its association with vitamin K-responsive coagulopathy.
Collapse
Affiliation(s)
- Ricardo Brandt Oliveira
- Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | | | | | - Jorge Elias
- Internal Medicine, Radiology Division, Ribeirao Preto Medical School-University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
49
|
Mancini A, Campagna F, Amodio P, Tuohy KM. Gut : liver : brain axis: the microbial challenge in the hepatic encephalopathy. Food Funct 2018; 9:1373-1388. [PMID: 29485654 DOI: 10.1039/c7fo01528c] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) is a debilitating neuropsychiatric condition often associated with acute liver failure or cirrhosis. Advanced liver diseases are characterized by a leaky gut and systemic inflammation. There is strong evidence that the pathogenesis of HE is linked to a dysbiotic gut microbiota and to harmful microbial by-products, such as ammonia, indoles, oxindoles and endotoxins. Increased concentrations of these toxic metabolites together with the inability of the diseased liver to clear such products is thought to play an important patho-ethiological role. Current first line clinical treatments target microbiota dysbiosis by decreasing the counts of pathogenic bacteria, blood endotoxemia and ammonia levels. This review will focus on the role of the gut microbiota and its metabolism in HE and advanced cirrhosis. It will critically assess data from different clinical trials measuring the efficacy of the prebiotic lactulose, the probiotic VSL#3 and the antibiotic rifaximin in treating HE and advanced cirrhosis, through gut microbiota modulation. Additionally data from Randomised Controlled Trials using pre-, pro- and synbiotic will be also considered by reporting meta-analysis studies. The large amount of existing data showed that HE is a clear example of how an altered gut microbiota homeostasis can influence and impact on physiological functions outside the intestine, with implication for host health at the systems level. Nevertheless, a strong effort should be made to increase the information on gut microbiota ecology and its metabolic function in liver diseases and HE.
Collapse
Affiliation(s)
- Andrea Mancini
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, Trento, Italy.
| | - Francesca Campagna
- Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy
| | - Piero Amodio
- Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, Trento, Italy.
| |
Collapse
|
50
|
The Gut-Brain Axis and the Microbiome: Clues to Pathophysiology and Opportunities for Novel Management Strategies in Irritable Bowel Syndrome (IBS). J Clin Med 2018; 7:jcm7010006. [PMID: 29301380 PMCID: PMC5791014 DOI: 10.3390/jcm7010006] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most common of all medical disorders worldwide and, while for some it represents no more than a nuisance, for others it imposes significant negative impacts on daily life and activities. IBS is a heterogeneous disorder and may well have a number of causes which may lie anywhere from the external environment to the contents of the gut lumen and from the enteric neuromuscular apparatus and the gut immune system to the central nervous system. Consequently, the paradigm of the gut-brain axis, which includes the participation of these various factors, has proven a useful model to assist clinicians and patients alike in understanding the genesis of symptoms in IBS. Now, given the widespread interest in the gut microbiome in health and disease, in general, reports of disordered enteric bacterial communities in IBS, and experimental data to indicate that components of the gut microbiota can influence brain morphology and function, as well as behavior and cognition, this concept has been extended to encompass the microbiota-gut-brain axis. The implications of this novel concept to the assessment and management of IBS will be explored in this review.
Collapse
|