1
|
Guo M, Jiang X, Ouyang H, Zhang X, Zhang S, Wang P, Bi G, Wu T, Zhou W, Liang F, Yang X, Fan S, Fang JH, Chen P, Bi H. Parabacteroides distasonis promotes liver regeneration by increasing β-hydroxybutyric acid (BHB) production and BHB-driven STAT3 signals. Acta Pharm Sin B 2025; 15:1430-1446. [PMID: 40370533 PMCID: PMC12069244 DOI: 10.1016/j.apsb.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 05/16/2025] Open
Abstract
The liver regenerative capacity is crucial for patients with end-stage liver disease following partial hepatectomy (PHx). The specific bacteria and mechanisms regulating liver regeneration post-PHx remain unclear. This study demonstrated dynamic changes in the abundance of Parabacteroides distasonis (P. distasonis) post-PHx, correlating with hepatocyte proliferation. Treatment with live P. distasonis significantly promoted hepatocyte proliferation and liver regeneration after PHx. Targeted metabolomics revealed a significant positive correlation between P. distasonis and β-hydroxybutyric acid (BHB), as well as hyodeoxycholic acid and 3-hydroxyphenylacetic acid in the gut after PHx. Notably, treatment with BHB, but not hyodeoxycholic acid or 3-hydroxyphenylacetic acid, significantly promoted hepatocyte proliferation and liver regeneration in mice after PHx. Moreover, STAT3 inhibitor Stattic attenuated the promotive effects of BHB on cell proliferation and liver regeneration both in vitro and in vivo. Mechanistically, P. distasonis upregulated the expression of fatty acid oxidation-related proteins, and increased BHB levels in the liver, and then BHB activated the STAT3 signaling pathway to promote liver regeneration. This study, for the first time, identifies the involvement of P. distasonis and its associated metabolite BHB in promoting liver regeneration after PHx, providing new insights for considering P. distasonis and BHB as potential strategies for promoting hepatic regeneration.
Collapse
Affiliation(s)
- Manlan Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaowen Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hui Ouyang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xianglong Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuaishuai Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guofang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenhong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengting Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian-hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|
2
|
Wang W, Liu X, Nan H, Li H, Yan L. Specific gut microbiota and serum metabolite changes in patients with osteoarthritis. Front Cell Dev Biol 2025; 13:1543510. [PMID: 40027098 PMCID: PMC11868077 DOI: 10.3389/fcell.2025.1543510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Recent research indicated a strong link between the gut microbiota and osteoarthritis. However, the complex interplay between the gut microbiota, serum metabolites, and the progression of osteoarthritis in affected individuals remains largely unexplored. This study aimed to investigate the characteristics of the gut microbiota and serum metabolites in patients with osteoarthritis. Methods Participants with either healthy knees or osteoarthritis were enrolled and categorized into healthy control (HC) and osteoarthritis (OA) groups. Fecal and blood samples were collected for 16S rRNA gene sequencing, metabolomic analysis via liquid chromatography-mass spectrometry (LC-MS), and integrated evaluation. Results The results showed no significant variation in gut microbiota richness and diversity between the two groups. However, the abundance of Bacteroides plebeius and Faecalibacterium prausnitzii was reduced in the OA group, both of which are known for their potential as next-generation probiotics for human health. Metabolomic analysis indicated that serum metabolites, including pyrogallol and 3-hydroxybutyrate (3HB), were significantly lower in the OA group. These metabolites are known to positively impact osteoarthritis progression and other diseases and demonstrated good diagnostic performance for distinguishing osteoarthritis patients from healthy controls. Correlation analysis revealed a positive correlation between Bacteroides plebeius and Faecalibacterium prausnitzii and between pyrogallol and 3HB. Discussion This study highlighted specific gut microbiota and serum metabolite profiles in osteoarthritis patients, suggesting that the specific changes in bacteria and derived metabolites are closely tied to osteoarthritis progression. This underscores the potential of gut microbiota and serum metabolites as modifiable elements and therapeutic targets for osteoarthritis prevention.
Collapse
Affiliation(s)
- Wendong Wang
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Xincheng Liu
- Department of Articular Orthopaedics, The Second People’s Hospital of Dalian, Dalian, China
| | - Hao Nan
- Department of Articular Orthopaedics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Huan Li
- Department of Articular Orthopaedics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Litao Yan
- Department of Articular Orthopaedics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
3
|
Hu Y, Hu X, Jiang L, Luo J, Huang J, Sun Y, Qiao Y, Wu H, Zhou S, Li H, Li J, Zhou L, Zheng S. Microbiome and metabolomics reveal the effect of gut microbiota on liver regeneration of fatty liver disease. EBioMedicine 2025; 111:105482. [PMID: 39644773 PMCID: PMC11667181 DOI: 10.1016/j.ebiom.2024.105482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is associated with impaired regenerative capacity and poor postoperative prognosis following hepatectomy. Previous research has highlighted the importance of the gut-liver axis in the physiological and pathological processes of the liver. However, the contribution of gut bacteria to the regeneration of livers with MAFLD and its metabolic regulatory mechanisms remain elusive. METHODS Partial hepatectomy (PHx) was performed on C57Bl/6J mice fed with high-fat diet (HFD) for 12 weeks. Pathological examination, immunohistochemistry, and qRT-PCR analysis were performed to assess the severity of steatosis and proliferative potential. The gut microbiome was examined by 16S rRNA gene sequencing and shotgun metagenomics, whereas liver metabolomics was analysed via untargeted and targeted metabolomics using liquid chromatography-tandem mass spectrometry (LC-MS). FINDINGS HFD-induced hepatic steatosis in mice led to impaired liver regeneration following PHx. The gut microbiota and liver metabolites were altered along with the liver regeneration process. Longitudinal time-series analysis revealed dynamic alterations in these data, whereas correlation analysis screened out bacterial candidates that potentially influence liver regeneration in MAFLD by modulating metabolic pathways. Among these bacteria, the dominant bacterium Akkermansia was selected for subsequent investigation. MAFLD mice gavaged with Akkermansia muciniphila (A. muciniphila) exhibited reduced liver lipid accumulation and accelerated liver regeneration, possibly through the regulation of the tricarboxylic acid (TCA) cycle. INTERPRETATION These data demonstrated the interplay between the gut microbiome, liver metabolomics, and liver regeneration in mice with MAFLD. A. muciniphila has the potential to serve as a clinical intervention agent to accelerate postoperative recovery in MAFLD. FUNDING This work was supported by the Research Project of Jinan Microecological Biomedicine Shandong Laboratory [JNL-2022008B]; the Zhejiang Provincial Natural Science Foundation of China [LZ21H180001]; the Fundamental Research Funds for the Central Universities [No. 2022ZFJH003].
Collapse
Affiliation(s)
- Yiqing Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Xiaoyi Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Li Jiang
- Laboratory of Animal Research Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jia Luo
- The Affiliated Hospital of Kunming University of Science and Technology, The First People' Hospital of Yunnan Province, Kunming, 650500, China
| | - Jiacheng Huang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yaohan Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yinbiao Qiao
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Hao Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Shijie Zhou
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Haoyu Li
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Jianhui Li
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, 310015, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China; Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, 310015, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China.
| |
Collapse
|
4
|
Kiseleva YV, Zharikova TS, Maslennikov RV, Temirbekov SM, Olsufieva AV, Polyakova OL, Pontes-Silva A, Zharikov YO. Gut Microbiota and Liver Regeneration: A Synthesis of Evidence on Structural Changes and Physiological Mechanisms. J Clin Exp Hepatol 2024; 14:101455. [PMID: 39035190 PMCID: PMC11259939 DOI: 10.1016/j.jceh.2024.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 07/23/2024] Open
Abstract
Liver regeneration (LR) is a unique biological process with the ability to restore up to 70% of the organ. This allows for the preservation of liver resections for various liver tumors and for living donor liver transplantation (LDLT). However, in some cases, LR is insufficient and interventions that can improve LR are urgently needed. Gut microbiota (GM) is one of the factors influencing LR, as the liver and intestine are intimately connected through the gut-liver axis. Thus, healthy GM facilitates normal LR, whereas dysbiosis leads to impaired LR due to imbalance of bile acids, inflammatory cytokines, microbial metabolites, signaling pathways, etc. Therefore, GM can be considered as a new possible therapeutic target to improve LR. In this review, we critically observe the current knowledge about the influence of gut microbiota (GM) on liver regeneration (LR) and the possibility to improve this process, which may reduce complication and mortality rates after liver surgery. Although much research has been done on this topic, more clinical trials and systemic reviews are urgently needed to move this type of intervention from the experimental phase to the clinical field.
Collapse
Affiliation(s)
- Yana V. Kiseleva
- Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Tatiana S. Zharikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Roman V. Maslennikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Anna V. Olsufieva
- Moscow University for Industry and Finance “Synergy”, Moscow, Russia
| | - Olga L. Polyakova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos (SP), Brazil
| | - Yury O. Zharikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
5
|
Huang J, Xu T, Quan G, Li Y, Yang X, Xie W. Current progress on the microbial therapies for acute liver failure. Front Microbiol 2024; 15:1452663. [PMID: 39479215 PMCID: PMC11521890 DOI: 10.3389/fmicb.2024.1452663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Acute liver failure (ALF), associated with a clinical fatality rate exceeding 80%, is characterized by severe liver damage resulting from various factors in the absence of pre-existing liver disease. The role of microbiota in the progression of diverse liver diseases, including ALF, has been increasingly recognized, with the interactions between the microbiota and the host significantly influencing both disease onset and progression. Despite growing interest in the microbiological aspects of ALF, comprehensive reviews remain limited. This review critically examines the mechanisms and efficacy of microbiota-based treatments for ALF, focusing on their role in prevention, treatment, and prognosis over the past decade.
Collapse
Affiliation(s)
- Jiayuan Huang
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Tianyu Xu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Guoqiao Quan
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuange Li
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoya Yang
- Department of Physiology, Guangzhou Health Science College, Guangzhou, China
| | - Wenrui Xie
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
6
|
Sun R, Fei F, Jin D, Yang H, Xu Z, Cao B, Li J. The integrated analysis of gut microbiota and metabolome revealed steroid hormone biosynthesis is a critical pathway in liver regeneration after 2/3 partial hepatectomy. Front Pharmacol 2024; 15:1407401. [PMID: 39188944 PMCID: PMC11345278 DOI: 10.3389/fphar.2024.1407401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction: The liver is the only organ capable of full regeneration in mammals. However, the exact mechanism of gut microbiota and metabolites derived from them relating to liver regeneration has not been fully elucidated. Methods: To demonstrate how the gut-liver axis contributes to liver regeneration, using an LC-QTOF/MS-based metabolomics technique, we examine the gut microbiota-derived metabolites in the gut content of C57BL/6J mice at various points after 2/3 partial hepatectomy (PHx). Compound identification, multivariate/univariate data analysis and pathway analysis were performed subsequently. The diversity of the bacterial communities in the gastrointestinal content was measured using 16S rRNA gene sequencing. Then, the integration analysis of gut microbiota and metabolome was performed. Results: After 2/3 PHx, the residual liver proliferated quickly in the first 3 days and had about 90% of its initial weight by the seventh day. The results of PLS-DA showed that a significant metabolic shift occurred at 6 h and 36 h after 2/3 PHx that was reversed at the late phase of liver regeneration. The α and β-diversity of the gut microbiota significantly changed at the early stage of liver regeneration. Specifically, Escherichia Shigella, Lactobacillus, Akkermansia, and Muribaculaceae were the bacteria that changed the most considerably during liver regeneration. Further pathway analysis found the most influenced co-metabolized pathways between the host and gut bacteria including glycolysis, the TCA cycle, arginine metabolism, glutathione metabolism, tryptophan metabolism, and purine and pyrimidine metabolism. Specifically, steroid hormone biosynthesis is the most significant pathway of the host during liver regeneration. Discussion: These findings revealed that during liver regeneration, there was a broad modification of gut microbiota and systemic metabolism and they were strongly correlated. Targeting specific gut bacterial strains, especially increasing the abundance of Akkermansia and decreasing the abundance of Enterobacteriaceae, may be a promising beneficial strategy to modulate systemic metabolism such as amino acid and nucleotide metabolism and promote liver regeneration.
Collapse
Affiliation(s)
- Runbin Sun
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Fei
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dandan Jin
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haoyi Yang
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi Xu
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bei Cao
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Li
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Lin YN, Hsu JR, Wang CL, Huang YC, Wang JY, Wu CY, Wu LL. Nuclear factor interleukin 3 and metabolic dysfunction-associated fatty liver disease development. Commun Biol 2024; 7:897. [PMID: 39048678 PMCID: PMC11269659 DOI: 10.1038/s42003-024-06565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
This study investigates sex-specific effects in a gain-of-function model to evaluate Nfil3 function in relation to high-fat diet (HFD)-induced metabolic dysfunction-associated steatotic liver disease (MASLD) and gut microbiota (GM)-induced alterations in the bile acid (BA) profile. MASLD is induced in both wild type and Nfil3-deficient (NKO) C57BL/6 J mice through an HFD. The hepatic immune response is evaluated using flow cytometry, revealing that NKO mice exhibit lower body weight, serum triglyceride (TG) levels, tissue injury, inflammation, and fat accumulation. The Nfil3 deletion reduces macrophage counts in fibrotic liver tissues, decreases proinflammatory gene and protein expression, and diminishes gut barrier function. Alpha and beta diversity analysis reveal increased GM alpha diversity across different sexes. The Nfil3 gene deletion modifies the BA profile, suggesting that negative feedback through the Nfil3-FXR-FGF15 axis facilitates BA recycling from the liver via enterohepatic circulation. Therefore, inhibiting Nfil3 in the liver offers a viable treatment approach for MASLD.
Collapse
Grants
- CI-110-22 Yen Tjing Ling Medical Foundation
- 11210 Ministry of Health and Welfare (Ministry of Health and Welfare, Taiwan)
- National Science and Technology Council (NSTC), Taiwan (nos. 108-2320-B-010-045-MY3, 110-2320-B-002-080-MY3, MOST 111-2314-B-A49-072, and NSTC 112-2314-B-A49-028-MY3 to L.L.W and NSTC 112-2740-B-A49-002, NSTC 112-2327-B-A49-005–, NSTC 112-2321-B-A49-005–, MOHW112-TDU-B-221-124007, and MOHW113-TDU-B-221-13400 to C.Y. Wu), Yen Tjing Ling Medical Foundation (nos.CI-110-22 and CI-111-24 to L.L.W), and the TYGH-NYCU Joint Research Program (no. PTH110001) and Ministry of Health and Welfare (No. 11210).
Collapse
Affiliation(s)
- Yung-Ni Lin
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Rou Hsu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Lin Wang
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chen Huang
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jzy-Yu Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Family Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chun-Ying Wu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Li-Ling Wu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
8
|
Yang J, Chen L, Zhao SS, Du C, Fan YZ, Liu HX, Li Y, Li YZ. FGF21-dependent alleviation of cholestasis-induced liver fibrosis by sodium butyrate. Front Pharmacol 2024; 15:1422770. [PMID: 39040469 PMCID: PMC11260614 DOI: 10.3389/fphar.2024.1422770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024] Open
Abstract
Background The beneficial effects of fibroblast growth factor 21 (FGF21) and sodium butyrate (NaB) on protection against cholestasis-induced liver fibrosis are not well known. This study aimed to explore the effects of FGF21 and NaB on bile duct ligation (BDL)-induced liver fibrosis. Methods Wild-type (WT) and FGF21 knockout (KO) mice received BDL surgery for 14 days. Liver fibrosis was assessed by Masson's staining for fibrosis marker expressions at the mRNA or protein levels. Adenovirus-mediated FGF21 overexpression in the WT mice was assessed against BDL damage. BDL surgeries were performed in WT and FGF21 KO mice that were administered either phosphate-buffered saline or NaB. The effects of NaB on the energy metabolism and gut microbiota were assessed using stable metabolism detection and 16S rRNA gene sequencing. Results BDL-induced liver fibrosis in the WT mice was accompanied by high induction of FGF21. Compared to the WT mice, the FGF21 KO mice showed more severe liver fibrosis induced by BDL. FGF21 overexpression protected against BDL-induced liver fibrosis, as proved by the decreasing α-SMA at both the mRNA and protein levels. NaB administration enhanced the glucose and energy metabolisms as well as remodeled the gut microbiota. NaB alleviated BDL-induced liver fibrosis in the WT mice but aggravated the same in FGF21 KO mice. Conclusion FGF21 plays a key role in alleviating cholestasis-induced liver damage and fibrosis. NaB has beneficial effects on cholestasis in an FGF21-dependent manner. NaB administration can thus be a novel nutritional therapy for treating cholestasis via boosting FGF21 signaling and regulating the gut microbiota.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Lei Chen
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Shan-Shan Zhao
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Chuang Du
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Yi-Zhe Fan
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Hui-Xin Liu
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Yongchun Li
- The Sixth Affiliated Hospital of South China University of Technology, Foshan, Guangdong, China
| | - Yong-Zhi Li
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Key Laboratory of Bladder Disease Gene Research, Institute of Health Science, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Wu T, Li L, Zhou W, Bi G, Jiang X, Guo M, Yang X, Fang J, Pang J, Fan S, Bi H. Gut Microbiota Affects Mouse Pregnane X Receptor Agonist Pregnenolone 16α-Carbonitrile-Induced Hepatomegaly by Regulating Pregnane X Receptor and Yes-Associated Protein Activation. Drug Metab Dispos 2024; 52:597-605. [PMID: 38697851 DOI: 10.1124/dmd.123.001604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Pregnane X receptor (PXR) is essential in the regulation of liver homeostasis, and the gut microbiota is closely linked to liver physiologic and pathologic status. We previously found that activation of PXR significantly promotes liver enlargement through interaction with yes-associated protein (YAP). However, whether gut microbiota contributes to PXR-induced hepatomegaly and the involved mechanisms remain unclear. In this study, C57BL/6 mice were administered the mouse-specific agonist pregnenolone 16α-carbonitrile (PCN) for 5 days. Depletion of gut microbiota was achieved using broad-spectrum antibiotics (ABX) and fecal microbiota transplantation (FMT) was performed to restore the gut microbia. The composition of gut microbiota was analyzed by 16S rRNA sequencing, while the expression of PXR, YAP, and their downstream target genes and proteins were assessed. The results indicated that PCN treatment altered the composition and abundance of specific bacterial taxa. Furthermore, depletion of gut microbiota using ABX significantly attenuated PCN-induced hepatomegaly. FMT experiments further demonstrated that the fecal microbiota from PCN-treated mice could induce liver enlargement. Mechanistic studies revealed that ABX treatment impeded the PXR and YAP activation induced by PCN, as evidenced by decreased expression of PXR, YAP, and their downstream targets. Moreover, alterations in PXR and YAP activation were likely contributing to hepatomegaly in recipient mice following FMT from PCN-treated mice. Collectively, the current study demonstrated that gut microbiota is involved in PCN-induced hepatomegaly via regulating PXR and YAP activation, providing potential novel insights into the involvement of gut microbiota in PXR-mediated hepatomegaly. SIGNIFICANCE STATEMENT: This work describes that the composition of gut microbiota is altered in mouse pregnane X receptor (PXR) agonist pregnenolone 16α-carbonitrile (PCN)-induced hepatomegaly. Treatment with an antibiotic cocktail depletes the intestinal microbiota, leading to the impairment of liver enlargement caused by PCN. Additionally, fecal microbiota transplantation from PCN-treated mice induces liver enlargement. Further study revealed that gut microbiota is involved in hepatomegaly via regulating PXR and yes-associated protein activation.
Collapse
Affiliation(s)
- Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Lu Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Wenhong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Guofang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Xiaowen Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Manlan Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Jianhong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Jianxin Pang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (T.W., L.L., W.Z., G.B., X.J., M.G., X.Y., J.F., J.P., S.F., H.B.) and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China (X.Y., H.B.)
| |
Collapse
|
10
|
Yan L, Wang X, Yu T, Qi Z, Li H, Nan H, Wang K, Luo D, Hua F, Wang W. Characteristics of the gut microbiota and serum metabolites in postmenopausal women with reduced bone mineral density. Front Cell Infect Microbiol 2024; 14:1367325. [PMID: 38912210 PMCID: PMC11190063 DOI: 10.3389/fcimb.2024.1367325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/29/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Emerging evidence suggests that the gut microbiota is closely associated with bone homeostasis. However, little is known about the relationships among the bone mineral density (BMD) index, bone turnover markers, and the gut microbiota and its metabolites in postmenopausal women. Methods In this study, to understand gut microbiota signatures and serum metabolite changes in postmenopausal women with reduced BMD, postmenopausal individuals with normal or reduced BMD were recruited and divided into normal and OS groups. Feces and serum samples were collected for 16S rRNA gene sequencing, liquid chromatography coupled with mass spectrometry (LC-MS)-based metabolomics and integrated analysis. Results The results demonstrated that bacterial richness and diversity were greater in the OS group than in the normal group. Additionally, distinguishing bacteria were found among the two groups and were closely associated with the BMD index and bone turnover markers. Metabolomic analysis revealed that the expression of serum metabolites, such as etiocholanolone, testosterone sulfate, and indole-3-pyruvic acid, and the corresponding signaling pathways, especially those involved in tryptophan metabolism, fatty acid degradation and steroid hormone biosynthesis, also changed significantly. Correlation analysis revealed positive associations between normal group-enriched Bacteroides abundance and normal group-enriched etiocholanolone and testosterone sulfate abundances; in particular, Bacteroides correlated positively with BMD. Importantly, the tryptophan-indole metabolism pathway was uniquely metabolized by the gut bacteria-derived tnaA gene, the predicted abundance of which was significantly greater in the normal group than in the control group, and the abundance of Bacteroides was strongly correlated with the tnaA gene. Discussion Our results indicated a clear difference in the gut microbiota and serum metabolites of postmenopausal women. Specifically altered bacteria and derived metabolites were closely associated with the BMD index and bone turnover markers, indicating the potential of the gut microbiota and serum metabolites as modifiable factors and therapeutic targets for preventing osteoporosis.
Collapse
Affiliation(s)
- Litao Yan
- Department of Articular Orthopaedics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xianfeng Wang
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| | - Tiantian Yu
- Department of Gynaecology and Obstetrics, Dalian Municipal Woman and Children’s Medical Center, Dalian, China
| | - Zhiming Qi
- Department of Articular Orthopaedics, The Second People’s Hospital of Dalian, Dalian, China
| | - Huan Li
- Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Hao Nan
- Department of Articular Orthopaedics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Kun Wang
- Department of Articular Orthopaedics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Di Luo
- Department of Clinical Laboratory, The Second People’s Hospital of Dalian, Dalian, China
| | - Fei Hua
- Department of Endocrinology and Metabolism, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wendong Wang
- Department of Articular Orthopaedics, The Second People’s Hospital of Dalian, Dalian, China
| |
Collapse
|
11
|
Yeo XY, Chae WR, Lee HU, Bae HG, Pettersson S, Grandjean J, Han W, Jung S. Nuanced contribution of gut microbiome in the early brain development of mice. Gut Microbes 2023; 15:2283911. [PMID: 38010368 PMCID: PMC10768743 DOI: 10.1080/19490976.2023.2283911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
The complex symbiotic relationship between the mammalian body and gut microbiome plays a critical role in the health outcomes of offspring later in life. The gut microbiome modulates virtually all physiological functions through direct or indirect interactions to maintain physiological homeostasis. Previous studies indicate a link between maternal/early-life gut microbiome, brain development, and behavioral outcomes relating to social cognition. Here we present direct evidence of the role of the gut microbiome in brain development. Through magnetic resonance imaging (MRI), we investigated the impact of the gut microbiome on brain organization and structure using germ-free (GF) mice and conventionalized mice, with the gut microbiome reintroduced after weaning. We found broad changes in brain volume in GF mice that persist despite the reintroduction of gut microbes at weaning. These data suggest a direct link between the maternal gut or early-postnatal microbe and their impact on brain developmental programming.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Woo Ri Chae
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of BioNano Technology, Gachon University, Seongnam, Republic of Korea
| | - Hae Ung Lee
- National Neuroscience Institute, Tan Tock Seng Hospital, Singapore Health Services, Singapore, Singapore
| | - Han-Gyu Bae
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sven Pettersson
- National Neuroscience Institute, Tan Tock Seng Hospital, Singapore Health Services, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medical Sciences, Sunway University, Kuala Lumpur, Malaysia
| | - Joanes Grandjean
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Weiping Han
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sangyong Jung
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
12
|
Roberts JL, Chiedo B, Drissi H. Systemic inflammatory and gut microbiota responses to fracture in young and middle-aged mice. GeroScience 2023; 45:3115-3129. [PMID: 37821753 PMCID: PMC10643610 DOI: 10.1007/s11357-023-00963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Age is a patient-specific factor that can significantly delay fracture healing and exacerbate systemic sequelae during convalescence. The basis for this difference in healing rates is not well-understood, but heightened inflammation has been suggested to be a significant contributor. In this study, we investigated the systemic cytokine and intestinal microbiome response to closed femur fracture in 3-month-old (young adult) and 15-month-old (middle-aged) female wild-type mice. Middle-aged mice had a serum cytokine profile that was distinct from young mice at days 10, 14, and 18 post-fracture. This was characterized by increased concentrations of IL-17a, IL-10, IL-6, MCP-1, EPO, and TNFα. We also observed changes in the community structure of the gut microbiota in both young and middle-aged mice that was evident as early as day 3 post-fracture. This included an Enterobacteriaceae bloom at day 3 post-fracture in middle-aged mice and an increase in the relative abundance of the Muribaculum genus. Moreover, we observed an increase in the relative abundance of the health-promoting Bifidobacterium genus in young mice after fracture that did not occur in middle-aged mice. There were significant correlations between serum cytokines and specific genera, including a negative correlation between Bifidobacterium and the highly induced cytokine IL-17a. Our study demonstrates that aging exacerbates the inflammatory response to fracture leading to high levels of pro-inflammatory cytokines and disruption of the intestinal microbiota.
Collapse
Affiliation(s)
- Joseph L Roberts
- Department of Orthopaedics, Emory University School of Medicine, 21 Ortho Ln, 6th Fl, Office 12, Atlanta, GA, 30329, USA.
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA.
- College of Health Solutions, Arizona State University, 850 N 5th St, Office 360J, Phoenix, AZ, 85004, USA.
| | - Brandon Chiedo
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, 21 Ortho Ln, 6th Fl, Office 12, Atlanta, GA, 30329, USA.
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA.
| |
Collapse
|
13
|
Wang S, De Paepe K, Van de Wiele T, Fu X, Wang S, Zhang B, Huang Q. Starch-entrapped microspheres enhance gut microbiome-mediated anti-obesity effects of resistant starch in high-fat diet induced obese C57BL/6J mice. Food Res Int 2023; 172:113215. [PMID: 37689957 DOI: 10.1016/j.foodres.2023.113215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 09/11/2023]
Abstract
The prevalence of obesity is growing worldwide and has been extensively linked to gut microbiota dysbiosis. In addition to exercise and physical activity, fiber-rich foods may be a first-line prophylactic to manage obesity. This study investigated in vivo dietary intervention with high-amylose maize starch (HAMS) and starch-entrapped microspheres (MS) to treat high-fat diet induced metabolic disorder and gut microbiome dysbiosis in mice. MS more efficiently controlled body weight as well as adipose tissue mass compared to HAMS. Furthermore, MS significantly reduced blood glucose, insulin, lipid and pro-inflammatory cytokine levels compared to the high-fat diet, while the effects of HAMS were less pronounced. The MS-altered gut microbiota composition favoring Streptococcaceae, Bacilli, Firmicutes and unclassified Clostridiales was predicted to promote fatty acid, pantothenate and Coenzyme A biosynthesis. In line with this, elevated fecal short chain fatty acid (SCFA), in particular, propionate concentration was observed in MS-fed mice. Our study provides novel insights into the mechanistic action of MS on intestinal homeostasis, providing a basis for future dietary therapeutic applications.
Collapse
Affiliation(s)
- Shaokang Wang
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Xiong Fu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Bin Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Research Institute, Guangzhou 510555, China.
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Research Institute, Guangzhou 510555, China.
| |
Collapse
|
14
|
Zheng J, Li Z, Xu H. Intestinal Microbiotas and Alcoholic Hepatitis: Pathogenesis and Therapeutic Value. Int J Mol Sci 2023; 24:14809. [PMID: 37834256 PMCID: PMC10573193 DOI: 10.3390/ijms241914809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Alcoholic hepatitis (AH) is a rapidly progressing and severe stage of alcoholic liver disease, presenting a grim prognosis. Extensive research has elucidated several underlying mechanisms that contribute to the development of AH, including metabolic alterations, immune stimulation, and intestinal dysbiosis. These pathological changes intricately intertwine during the progression of AH. Notably, recent studies have increasingly highlighted the pivotal role of alterations in the intestinal microbiota in the pathogenesis of AH. Consequently, future investigations should place significant emphasis on exploring the dynamics of intestinal microbiota. In this comprehensive review, we consolidate the primary causes of AH while underscoring the influence of gut microbes. Furthermore, by examining AH treatment strategies, we delineate the potential therapeutic value of interventions targeting the gut microbiota. Given the existing limitations in AH treatment options, we anticipate that this review will contribute to forthcoming research endeavors aimed at advancing AH treatment modalities.
Collapse
Affiliation(s)
- Jiazhen Zheng
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (J.Z.); (Z.L.)
| | - Ziyi Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (J.Z.); (Z.L.)
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
15
|
Chen H, Deng Y, Wang Q, Chen W, Liu Z, Tan H, Chen D. Large polystyrene microplastics results in hepatic lipotoxicity in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122015. [PMID: 37343913 DOI: 10.1016/j.envpol.2023.122015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/15/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
Like small microplastics (MPs), recent studies reveal that large MPs could cause health risks in mice, even if they are not enriched in tissues. However, potential hepatoxicity following large MPs exposure and the underlying mechanisms have not been thoroughly investigated. In the present study, we explored the disruption of hepatic lipid metabolism and potential underlying toxic mechanisms in mice caused by long-term exposure to large polystyrene MPs (40-100 μm) based on a multi-omic approach. After 21 weeks of feeding foods containing MPs (50 and 500 mg/kg food), lipidomic revealed that environmentally relevant and higher doses MP exposures resulted in significant changes in a total of 20 lipid classes. Ceramide (Cer) and dihydroceramide (dhCer) were significantly reduced, while cholesteryl ester (CE), lysoalkylphosphatidylcholine (LPCO), lysophosphatidylethanolamine (LPE) and total glyceride (TG) were all elevated by MPs. The transcriptomic and other physiological data suggested that the potential toxic mechanisms may be related to disorders of fatty acid and cholesterol synthesis and metabolism disorders, and transporting of TG. Our findings demonstrate the hepatic lipotoxicity following exposure to environmentally relevant and higher doses of large MPs, calling for future research and management of the environmental risks of MPs with relatively large particle sizes.
Collapse
Affiliation(s)
- Hexia Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yongfeng Deng
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiteng Liu
- Shenzhen Colleage of International Education, Shenzhen 518043, China
| | - Hongli Tan
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
16
|
He R, Gao S, Yao H, Zhao Z, Tong J, Zhang H. Mechanism of Metabolic Response to Hepatectomy by Integrated Analysis of Gut Microbiota, Metabolomics, and Proteomics. Microbiol Spectr 2023; 11:e0206722. [PMID: 37036349 PMCID: PMC10269556 DOI: 10.1128/spectrum.02067-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/12/2023] [Indexed: 04/11/2023] Open
Abstract
Hepatectomy is a common clinical procedure for the treatment of many liver diseases, and the successful recovery of a patient's liver metabolism and function after surgery is crucial for a good prognosis. The objective of this study was to elucidate the metabolic response to hepatectomy using high-throughput sequencing analysis of 16S rRNA gene, metabolomics, and proteomics data. Fecal and serum samples from beagle dogs were collected on day 0 (LH0), day 7 (LH7), and day 28 (LH28) after laparoscopic partial hepatectomy. Liver tissue samples were taken on LH0 and LH7. Dysbiosis in the fecal microbiota was explored, and host-microbiome interactions based on global metabolic and protein profiles and inflammatory processes were determined. Results showed that the relative abundance of Allobaculum and Turicibacter was decreased and that of Escherichia-Shigella was increased after hepatectomy (P < 0.05); the phenylalanine, tyrosine, and tryptophan biosynthetic pathway, along with the phenylalanine and aminoacyl-tRNA biosynthetic pathway, was significantly associated with liver injury. The serum metabolites l-phenylalanine and l-arginine were useful as biomarkers, and the fecal metabolite l-threonine was a signature target monitor for liver recovery. The proteomics profile revealed 412 significantly different proteins and further highlighted two key signaling pathways (mitogen-activated protein kinase [MAPK] and peroxisome proliferator-activated receptor [PPAR]) involved in the response to liver injury. We systematically explored the metabolic mechanism of liver injury and recovery, providing new insights into effective ways to promote recovery after hepatectomy and improve liver function and long-term survival. These fundamental studies on hepatectomy will provide the basis for future advances in treatment and recovery from common liver diseases. IMPORTANCE As the largest parenchymal organ, the liver is a target for bacterial and viral infections, nonalcoholic fatty liver disease (NAFLD), cirrhosis, cancer, and many other diseases, constituting a serious worldwide problem. The treatment for many of these diseases involves hepatectomy. Here, we show that aberrant inflammatory processes after hepatectomy of the liver as reflected in the association between liver metabolism and gut microbiota create a grave risk. This study investigated the mechanisms of gut microbiota and host metabolism involved in liver injury and recovery after hepatectomy, using proteomics to reveal the mechanisms of postoperative liver injury and a comprehensive multi-omics approach to identify changes in metabolism after hepatectomy.
Collapse
Affiliation(s)
- Ruoxuan He
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Shuang Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Hua Yao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Zixuan Zhao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Jinjin Tong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Hua Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Wen Y, Emontzpohl C, Xu L, Atkins CL, Jeong JM, Yang Y, Kim K, Wu C, Akira S, Ju C. Interleukin-33 facilitates liver regeneration through serotonin-involved gut-liver axis. Hepatology 2023; 77:1580-1592. [PMID: 36129070 PMCID: PMC10758291 DOI: 10.1002/hep.32744] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Insufficient liver regeneration causes post-hepatectomy liver failure and small-for-size syndrome. Identifying therapeutic targets to enhance hepatic regenerative capacity remains urgent. Recently, increased IL-33 was observed in patients undergoing liver resection and in mice after partial hepatectomy (PHx). The present study aims to investigate the role of IL-33 in liver regeneration after PHx and to elucidate its underlying mechanisms. APPROACH AND RESULTS We performed PHx in IL-33 -/- , suppression of tumorigenicity 2 (ST2) -/- , and wild-type control mice, and found deficiency of IL-33 or its receptor ST2 delayed liver regeneration. The insufficient liver regeneration could be normalized in IL-33 -/- but not ST2 -/- mice by recombinant murine IL-33 administration. Furthermore, we observed an increased level of serotonin in portal blood from wild-type mice, but not IL-33 -/- or ST2 -/- mice, after PHx. ST2 deficiency specifically in enterochromaffin cells recapitulated the phenotype of delayed liver regeneration observed in ST2 -/- mice. Moreover, the impeded liver regeneration in IL-33 -/- and ST2 -/- mice was restored to normal levels by the treatment with (±)-2,5-dimethoxy-4-iodoamphetamine, which is an agonist of the 5-hydroxytrytamine receptor (HTR)2A. Notably, in vitro experiments demonstrated that serotonin/HTR2A-induced hepatocyte proliferation is dependent on p70S6K activation. CONCLUSIONS Our study identified that IL-33 is pro-regenerative in a noninjurious model of liver resection. The underlying mechanism involved IL-33/ST2-induced increase of serotonin release from enterochromaffin cells to portal blood and subsequent HTR2A/p70S6K activation in hepatocytes by serotonin. The findings implicate the potential of targeting the IL-33/ST2/serotonin pathway to reduce the risk of post-hepatectomy liver failure and small-for-size syndrome.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Christoph Emontzpohl
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Long Xu
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | | | - Jong-Min Jeong
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yang Yang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Kangho Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
18
|
Gut Microbiota and Metabolome Changes in Three Pulmonary Hypertension Rat Models. Microorganisms 2023; 11:microorganisms11020472. [PMID: 36838437 PMCID: PMC9959815 DOI: 10.3390/microorganisms11020472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Dysbiosis of the gut microbiota and metabolites is found in both pulmonary hypertension patients and pulmonary hypertension rodent models. However, the exact changes in gut microbiota during the development of pulmonary hypertension is unclear. The function of the gut microbiota is also ambiguous. Here, this study showed that the gut microbiota was disrupted in rats with hypoxia (Hyp)-, hypoxia/Sugen5416 (HySu)-, and monocrotaline (MCT)-induced pulmonary hypertension. The gut microbiota is dynamically changed during the development of Hyp-, HySu-, and MCT-induced rat pulmonary hypertension. The variation in the α diversity of the gut microbiota in Hyp-induced pulmonary hypertension rats was similar to that in rats with MCT-induced pulmonary hypertension and different from that in rats with HySu-induced pulmonary hypertension. In addition, six plasma biomarkers, His, Ala, Ser, ADMA, 2-hydroxybutyric acid, and cystathionine, were identified in Hyp-induced pulmonary hypertension rats. Furthermore, a disease-associated network connecting Streptococcus with Hyp-induced pulmonary hypertension-associated metabolites was described here, including trimethylamine N-oxide, Asp, Asn, Lys, His, Ser, Pro, and Ile.
Collapse
|
19
|
Zhang XL, Chen L, Yang J, Zhao SS, Jin S, Ao N, Yang J, Liu HX, Du J. Vitamin D alleviates non-alcoholic fatty liver disease via restoring gut microbiota and metabolism. Front Microbiol 2023; 14:1117644. [PMID: 36819064 PMCID: PMC9932697 DOI: 10.3389/fmicb.2023.1117644] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) represents a severe public health problem. Dysbiosis of gut microbiome has been identified as one of the key environmental factors contributing to NAFLD. As an essential nutrition, Vitamin D (VD) plays an important role in regulating gut microbiota based on its receptor (Vitamin D Receptor, VDR) which is highly expressed in the gastrointestinal tract. Methods Rats were fed with HFD (high-fat diet) for 12 weeks. And the rats were treated with VD two times a week by intraperitoneal injection for 12 weeks. H&E staining combined with plasma biochemical index was performed to characterize pathological changes and function of the liver. Fecal microbiota 16S rRNA gene sequencing and metabolomics were taken to reveal the altered gut microbiota and metabolites. Result The VD alleviates the HFD-induced lipid accumulation in the liver as well as decreases the levels of amlodipine besylate (ALT) and amlodipine aspartate (AST). VD supplement decreased the ratio of phylum Firmicutes/Bacteroidetes (F/B) but increased alpha diversity. In addition, the VD treatment improved the HFD-induced gut microbiota by increasing the Prevotella and Porphyromonadaceae and decreasing Mucispirillum, Acetatifactor, Desulfovibrio, and Oscillospira abundance. Furthermore, the capability of tyrosine metabolism, tryptophan metabolism, arginine biosynthesis, and sphingolipid metabolism was enhanced after VD treatment. Consistently, Prevotella positively correlated with tryptophan metabolism and sphingolipid metabolism. Importantly, the Prevotella abundance was positively associated with serotonin, melatonin, tryptamine, L-arginine, and 3-dehydrosphinganine which synthesize from tryptophan, tyrosine, arginosuccinate, and serine, respectively. Conclusion VD treatment inhibited HFD-induced NAFLD accompany by dysbiosis gut microbiota and metabolites, suggesting that VD supplement could be a potential intervention used for NAFLD treatment by targeting the specific microbiota.
Collapse
Affiliation(s)
- Xiao-Lei Zhang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lei Chen
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China,Institute of Life Sciences, China Medical University, Shenyang, Liaoning, China,Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China
| | - Jiang Yang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shan-Shan Zhao
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China,Institute of Life Sciences, China Medical University, Shenyang, Liaoning, China,Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China
| | - Shi Jin
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Ao
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jing Yang
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China,Institute of Life Sciences, China Medical University, Shenyang, Liaoning, China,Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China
| | - Hui-Xin Liu
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China,Institute of Life Sciences, China Medical University, Shenyang, Liaoning, China,Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China,*Correspondence: Hui-Xin Liu,
| | - Jian Du
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China,Jian Du,
| |
Collapse
|
20
|
Keane JM, Walsh CJ, Cronin P, Baker K, Melgar S, Cotter PD, Joyce SA, Gahan CGM, Houston A, Hyland NP. Investigation of the gut microbiome, bile acid composition and host immunoinflammatory response in a model of azoxymethane-induced colon cancer at discrete timepoints. Br J Cancer 2023; 128:528-536. [PMID: 36418894 PMCID: PMC9938136 DOI: 10.1038/s41416-022-02062-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Distinct sets of microbes contribute to colorectal cancer (CRC) initiation and progression. Some occur due to the evolving intestinal environment but may not contribute to disease. In contrast, others may play an important role at particular times during the tumorigenic process. Here, we describe changes in the microbiota and host over the course of azoxymethane (AOM)-induced tumorigenesis. METHODS Mice were administered AOM or PBS and were euthanised 8, 12, 24 and 48 weeks later. Samples were analysed using 16S rRNA gene sequencing, UPLC-MS and qRT-PCR. RESULTS The microbiota and bile acid profile showed distinct changes at each timepoint. The inflammatory response became apparent at weeks 12 and 24. Moreover, significant correlations between individual taxa, cytokines and bile acids were detected. One co-abundance group (CAG) differed significantly between PBS- and AOM-treated mice at week 24. Correlation analysis also revealed significant associations between CAGs, bile acids and the bile acid transporter, ASBT. Aberrant crypt foci and adenomas were first detectable at weeks 24 and 48, respectively. CONCLUSION The observed changes precede host hyperplastic transformation and may represent early therapeutic targets for the prevention or management of CRC at specific timepoints in the tumorigenic process.
Collapse
Affiliation(s)
- J M Keane
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - C J Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - P Cronin
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - K Baker
- Department of Medicine, University College Cork, Cork, Ireland
- Department of Pathology, University College Cork, Cork, Ireland
| | - S Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - P D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - S A Joyce
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - C G M Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - A Houston
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Medicine, University College Cork, Cork, Ireland.
| | - N P Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
21
|
Ma J, Li J, Jin C, Yang J, Zheng C, Chen K, Xie Y, Yang Y, Bo Z, Wang J, Su Q, Wang J, Chen G, Wang Y. Association of gut microbiome and primary liver cancer: A two-sample Mendelian randomization and case-control study. Liver Int 2023; 43:221-233. [PMID: 36300678 DOI: 10.1111/liv.15466] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/28/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS Observational epidemiology studies suggested a relationship between the gut microbiome and primary liver cancer. However, the causal relationship remains unclear because of confounding factors and reverse causality. We aimed to explore the causal role of the gut microbiome in the development of primary liver cancer, including hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). METHODS Mendelian randomization (MR) study was conducted using summary statistics from genome-wide association studies (GWAS) of the gut microbiome and liver cancer, and sequencing data from a case-control study validated the findings. A 5-cohort GWAS study in Germany (N = 8956) served as exposure, whilst the UK biobank GWAS study (N = 456 348) served as an outcome. The case-control study was conducted at the First Affiliated Hospital of Wenzhou Medical University from December 2018 to October 2020 and included 184 HCC patients, 63 ICC patients and 40 healthy controls. RESULTS A total of 57 features were available for MR analysis, and protective causal associations were identified for Family_Ruminococcaceae (OR = 0.46 [95% CI, 0.26-0.82]; p = .009) and Genus_Porphyromonadaceae (OR = 0.59 [95% CI, 0.42-0.83]; p = .003) with HCC, and for Family_Porphyromonadaceae (OR = 0.36 [95% CI, 0.14-0.94]; p = .036) and Genus_Bacteroidetes (OR = 0.55 [95% CI, 0.34-0.90]; p = .017) with ICC respectively. The case-control study results showed that the healthy controls had a higher relative abundance of Family_Ruminococcaceae (p = .00033), Family_Porphyromonadaceae (p = .0055) and Genus_Bacteroidetes (p = .021) than the liver cancer patients. CONCLUSIONS This study demonstrates that Ruminococcaceae, Porphyromonadaceae and Bacteroidetes are related to a reduced risk of liver cancer (HCC or ICC), suggesting potential significance for the prevention and control of liver cancer.
Collapse
Affiliation(s)
- Jun Ma
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Jialiang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chen Jin
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Jinhuan Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chongming Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaiwen Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yitong Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Yang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingxian Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Qing Su
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Juejin Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Predictors of Liver Failure in Non-Cirrhotic Patients Undergoing Hepatectomy. World J Surg 2022; 46:3081-3089. [PMID: 36209339 DOI: 10.1007/s00268-022-06742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Post-hepatectomy liver failure (PHLF) is associated with high mortality following liver resection. There have been limited studies evaluating predictors of PHLF and clinically significant PHLF in non-cirrhotic patients. METHODS This was a retrospective cohort study using the National Surgical Quality Improvement Program database (NSQIP) to evaluate 8,093 non-cirrhotic patients undergoing hepatectomy from 2014 to 2018. Primary endpoints were PHLF and clinically significant PHLF (PHLF grade B or C). RESULTS Among all patients, 4.74% (n = 383) developed PHLF and 2.5% clinically significant PHLF (n = 203). The overall 30-day mortality was 1.35% (n = 109), 11.5% (n = 44) in patients with PHLF, and 19.2% in those with clinically significant PHLF. Factors associated with PHLF were: metastatic liver disease (OR = 1.84, CI = 1.14-2.98), trisectionectomy (OR = 3.71, CI = 2.59-5.32), right total lobectomy (OR = 4.17, CI = 3.06-5.68), transfusions (OR = 1.99, CI = 1.52-2.62), organ/space SSI (OR = 2.84, CI = 2.02-3.98), post-operative pneumonia (OR = 2.43, CI = 1.57-3.76), sepsis (OR = 2.27, CI = 1.47-3.51), and septic shock (OR = 5.67, CI = 3.43-9.36). Patients who developed PHLF or clinically significant PHLF had 2-threefold increased risk of perioperative mortality. Post-hepatectomy renal failure (OR = 8.47, CI = 3.96-18.1), older age (OR = 1.04, CI = 1.014-1.063), male sex (OR = 1.83, CI = 1.07-3.14), sepsis (OR = 2.96, CI = 1.22-7.2), and septic shock (OR = 3.92, CI = 1.61-9.58) were independently associated with 30-mortality in patients with clinically significant PHLF. CONCLUSION PHLF in non-cirrhotic patients increased the risk of perioperative mortality and is associated with the extent of hepatectomy and infectious complications. Careful evaluation of the liver remnant, antibiotic prophylaxis, nutritional assessment, and timely management of post-operative infections could decrease major morbidity and mortality following hepatectomy.
Collapse
|
23
|
Yang J, Chen L, Shang XY, Chen YL, Zhao SS, Jin S, Yang J, Liu HX, Du J. Roux-en-Y gastric bypass-induced perturbative changes in microbial communities and metabolic pathways in rats. Front Microbiol 2022; 13:1034839. [PMID: 36439854 PMCID: PMC9685675 DOI: 10.3389/fmicb.2022.1034839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Obesity has become a global health and socioeconomic problem because of an inadequate balance between energy intake and energy expenditure. Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) are the two most commonly used strategies for weight loss, which have been proven to benefit from gut microbiota restoration. METHODS Rats received SG, RYGB, and sham operations for 10 weeks. At the end of the experiment, the fecal microbiota was analyzed using 16s rRNA gene sequencing. In addition, the shift in the plasma metabolism of rats that underwent RYGB surgery was analyzed using untargeted metabolomics. The crosstalk between microbiome and metabolites was revealed using metabolic pathway enrichment and integrated analysis. RESULT The SG surgery induced a modest shift in the gut microbiota relative to the RYGB. RYGB significantly decreased the alpha diversity and Firmicutes/Bacteroides (F/B) ratio and increased the proportion of Escherichia, Bacteroides, and Akkermansia genera compared to sham and SG operations. The predicted function of gut microbiota revealed that the RYGB surgery uniquely enhanced the capability of linoleic acid and sphingolipid metabolism. Furthermore, the circulating serine, phosphatidylcholine (PC) 20:5/22:5, riboflavin, L-carnitine, and linoleic acid were evaluated after RYGB surgery. In addition, the metabolic pathway enrichment and integrated analysis suggest that the RYGB induced Escherichia, Bacteroides, and Akkermansia might inhibit the sphingonine and phytosphingosine metabolisms from serine and promote the PC (20:5/22:5) metabolism to produce linoleic acid. CONCLUSION This comprehensive analysis not only revealed the difference in the gut microbiota shifts after SG and RYGB but also discovered the perturbative changes in microbial communities and metabolic pathways after RYGB surgery, which provided clues for improving the beneficial effect of RYGB in metabolic disease intervention via regulating bacterial-metabolite crosstalk.
Collapse
Affiliation(s)
- Jing Yang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lei Chen
- Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
- Health Sciences Institute, China Medical University, Shenyang, China
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Xue-Ying Shang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi-Lin Chen
- Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
- Health Sciences Institute, China Medical University, Shenyang, China
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Shan-Shan Zhao
- Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
- Health Sciences Institute, China Medical University, Shenyang, China
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Shi Jin
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Yang
- Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
- Health Sciences Institute, China Medical University, Shenyang, China
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Hui-Xin Liu
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
- Health Sciences Institute, China Medical University, Shenyang, China
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Jian Du
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Xu Z, Jiang N, Xiao Y, Yuan K, Wang Z. The role of gut microbiota in liver regeneration. Front Immunol 2022; 13:1003376. [PMID: 36389782 PMCID: PMC9647006 DOI: 10.3389/fimmu.2022.1003376] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
The liver has unique regeneration potential, which ensures the continuous dependence of the human body on hepatic functions. As the composition and function of gut microbiota has been gradually elucidated, the vital role of gut microbiota in liver regeneration through gut-liver axis has recently been accepted. In the process of liver regeneration, gut microbiota composition is changed. Moreover, gut microbiota can contribute to the regulation of the liver immune microenvironment, thereby modulating the release of inflammatory factors including IL-6, TNF-α, HGF, IFN-γ and TGF-β, which involve in different phases of liver regeneration. And previous research have demonstrated that through enterohepatic circulation, bile acids (BAs), lipopolysaccharide, short-chain fatty acids and other metabolites of gut microbiota associate with liver and may promote liver regeneration through various pathways. In this perspective, by summarizing gut microbiota-derived signaling pathways that promote liver regeneration, we unveil the role of gut microbiota in liver regeneration and provide feasible strategies to promote liver regeneration by altering gut microbiota composition.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Nan Jiang
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuanyuan Xiao
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- *Correspondence: Zhen Wang, ; Kefei Yuan, ; Yuanyuan Xiao,
| | - Kefei Yuan
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- *Correspondence: Zhen Wang, ; Kefei Yuan, ; Yuanyuan Xiao,
| | - Zhen Wang
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- *Correspondence: Zhen Wang, ; Kefei Yuan, ; Yuanyuan Xiao,
| |
Collapse
|
25
|
Nasr MAF, Alkhedaide AQ, Radwan MME, Hafez AESE, Hussein MA, El Bayomi RM. Growth, carcass parameters, biochemical and oxidative stress indices, and meat traits of duck breeds under different stocking densities. Poult Sci 2022; 101:101992. [PMID: 35841644 PMCID: PMC9293631 DOI: 10.1016/j.psj.2022.101992] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 10/29/2022] Open
Abstract
This investigation was aimed to inspect if there is an influence of various stocking density on growth, carcass parameters, blood indices, and meat traits of Muscovy and Mallard ducks. One hundred twenty-six 1-day-old of each Muscovy and Mallard ducks were randomly allocated into three experimental groups with different stocking density. Group one (SD1) was 5 ducks/m2, while group 2 (SD2) was 7 ducks/m2 and group 3 (SD3) was 9 ducks/m2. The growth, carcass parameters, meat quality, blood indices were calculated. Body weight of SD1 was 18 and 4.5% heavier than SD2, while, it was 29.5 and 12% heavier than SD3 of Muscovy and Mallard duck breeds, respectively. SD3 possessed the highest levels of, H/L, ALT, AST, LDL, VLDL, and MDA with the lowest levels of lymphocyte, SOD,GSH, GPX, C3, total antioxidant capacity and IGG of both ducks' breeds. The carcass weight decreased by 40 and 15% from SD1 to SD3 in Muscovy and mallard ducks, respectively. The dressing % was highest at SD1 (84 and 83%) when compared with SD3(71and80%) of Muscovy and Mallard ducks, respectively. Cooking loss was 20 and 16% greater in group three when compared with group one in Muscovy and Mallard ducks, respectively. In conclusion ducks raised in low SD possessed the best performance with better welfare.
Collapse
Affiliation(s)
- Mohammed A F Nasr
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511 Egypt.
| | - Adel Q Alkhedaide
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif 21944, Saudi Arabia
| | - Marwa M E Radwan
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Abd-El Salam E Hafez
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed A Hussein
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Rasha M El Bayomi
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
26
|
Mechanism of hydrogen protection on high intensity sports injury in rats through antioxidation and its improvement of intestinal flora function. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Pettinelli P, Arendt BM, Schwenger KJ, Sivaraj S, Bhat M, Comelli EM, Lou W, Allard JP. Relationship Between Hepatic Gene Expression, Intestinal Microbiota, and Inferred Functional Metagenomic Analysis in NAFLD. Clin Transl Gastroenterol 2022; 13:e00466. [PMID: 35166723 PMCID: PMC10476782 DOI: 10.14309/ctg.0000000000000466] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION We previously reported a lower fecal abundance of Ruminococcus spp., Faecalibacterium prausnitzii , and Coprococcus spp. in nonalcoholic fatty liver disease (NAFLD). In this article, we assess the associations between hepatic gene expression, the specific taxa, and bacterial pathways. METHODS The relationships between hepatic genes that were differentially expressed in patients with NAFLD vs healthy controls (HC) and the abundance of these specific taxa were studied. Inferred functional metagenomic analysis using Piphillin was also performed to investigate associations with bacterial pathways. RESULTS Fifteen patients with NAFLD and 6 HC participated. Of 728 hepatic genes examined, 176 correlated with the abundance of Ruminococcus spp., 138 with F. prausnitzii , and 92 with Coprococcus spp. For Ruminococcus spp., genes were enriched in gene ontology (GO) terms related to apoptotic process, response to external and cytokine stimuli, and regulation of signaling. Several genes related to the Kyoto Encyclopedia of Genes and Genomes pathway insulin resistance were correlated with F. prausnitzii . The hepatic genes associated with F. prausnitzii were enriched in GO terms related to cellular response to different stimuli, apoptotic process, and regulation of metabolic pathways. For Coprococcus spp., only the GO term response to external stimulus was enriched. There was a distinct pattern of associations between hepatic genes and bacterial taxa in NAFLD vs HC. For bacterial pathways, 65 and 18 hepatic genes correlated with bacterial metabolic functions in NAFLD and HC, respectively. DISCUSSION Hepatic gene expression related to insulin resistance, inflammation, external stimuli, and apoptosis correlated with bacterial taxa. Patients with NAFLD showed a higher presence of bacterial pathways associated with lipid metabolism.
Collapse
Affiliation(s)
- Paulina Pettinelli
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada;
- Departamento de Ciencias de la Salud, Carrera de Nutrición y Dietética, Facultad de Medicina, Pontificia Universidad Católica de Chile, Región Metropolitana, Chile
| | - Bianca M. Arendt
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada;
| | | | - Saranya Sivaraj
- Multi Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Mamatha Bhat
- Multi Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
- Division of Gastroenterology and Hepatology, Department of Medicine, University Health Network, Toronto, Ontario, Canada;
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Elena M. Comelli
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Joannah and Brian Lawson Centre for Child Nutrition and Health, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;
| | - Wendy Lou
- Dalla Lana School of Public Health, Health Sciences Building, University of Toronto, Toronto, Ontario, Canada.
| | - Johane P. Allard
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada;
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Li L, Tian Y, Zhang S, Feng Y, Wang H, Cheng X, Ma Y, Zhang R, Wang C. Regulatory Effect of Mung Bean Peptide on Prediabetic Mice Induced by High-Fat Diet. Front Nutr 2022; 9:913016. [PMID: 35757244 PMCID: PMC9218720 DOI: 10.3389/fnut.2022.913016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022] Open
Abstract
Dietary supplementation with mung bean peptides (MBPs) has several health benefits. However, the effect of MBPs on prediabetes and gut microbiota imbalance caused by a high-fat diet (HFD) has not been thoroughly studied. In this study, dietary supplementation with MBPs for 5 weeks significantly reduced HFD-induced body weight gain, hyperglycaemia, hyperlipidaemia, insulin resistance, inflammation, and oxidative stress and alleviated liver and kidney damage in mice. In addition, it significantly reversed the HFD-induced gut microbiota imbalance, increased the gut microbial diversity, and decreased the abundance of Firmicutes and Bacteroidetes in prediabetic mice. Furthermore, we identified Lachnospiraceae_NK4A136 and Lactobacillus as important eubacteria with the potential to alleviate the clinical symptoms of prediabetes. According to PICRUSt2 analysis, the changes in intestinal microflora induced by MBPs diet intervention may be related to the downregulation of expression of genes such as rocR, lysX1, and grdA and regulation of seven pathways, including pyruvate, succinic acid, and butyric acid. Moreover, 17 genera with significantly altered levels in the intestine of HFD-fed mice, including Akkermansia, Roseburia, and Ruminiclostridium, were significantly correlated with 26 important differential metabolites, such as D-glutathione, anti-oleic acid, and cucurbitacin. Overall, these results show that MBPs diet intervention plays a key role in the management of HFD-induced prediabetes.
Collapse
Affiliation(s)
- Lina Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China.,Library, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu Tian
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuchao Feng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Haoyu Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaoyu Cheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yantao Ma
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Rui Zhang
- Library, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
29
|
Crosstalk between gut microbiota and lung inflammation in murine toxicity models of respiratory exposure or co-exposure to carbon nanotube particles and cigarette smoke extract. Toxicol Appl Pharmacol 2022; 447:116066. [PMID: 35595072 DOI: 10.1016/j.taap.2022.116066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022]
Abstract
Carbon nanotubes (CNTs) are emerging environmental and occupational toxicants known to induce lung immunotoxicity. While the underlying mechanisms are evolving, it is yet unknown whether inhaled CNTs would cause abnormalities in gut microbiota (dysbiosis), and if such microbiota alteration plays a role in the modulation of CNT-induced lung immunotoxicity. It is also unknown whether co-exposure to tobacco smoke will modulate CNT effects. We compared the effects of lung exposure to multi-wall CNT, cigarette smoke extract (CSE), and their combination (CNT + CSE) in a 4-week chronic toxicity mouse model. The exposures induced differential perturbations in gut microbiome as evidenced by altered microbial α- and β- diversity, indicating a lung-to-gut communication. The gut dysbiosis due to CNTs, unlike CSE, was characterized by an increase in Firmicutes/Bacteroidetes ratio typically associated with proinflammatory condition. Notably, while all three exposures reduced Proteobacteria, the CNT exposure and co-exposure induced appearance of Tenericutes and Cyanobacteria, respectively, implicating them as potential biomarkers of exposure. CNTs differentially induced certain lung proinflammatory mediators (TNF-α, IL-1β, CCL2, CXCL5) whereas CNTs and CSE commonly induced other mediators (CXCL1 and TGF-β). The co-exposure showed either a component-dominant effect or a summative effect for both dysbiosis and lung inflammation. Depletion of gut microbiota attenuated both the differentially-induced and commonly-induced (TGF-β) lung inflammatory mediators as well as granulomas implying gut-to-lung communication and a modulatory role of gut dysbiosis. Taken together, the results demonstrated gut dysbiosis as a systemic effect of inhaled CNTs and provided the first evidence of a bidirectional gut-lung crosstalk modulating CNT lung immunotoxicity.
Collapse
|
30
|
Xu Y, Zhu W, Ge Q, Zhou X. Effect of different types of oil intake on the blood index and the intestinal flora of rats. AMB Express 2022; 12:49. [PMID: 35511307 PMCID: PMC9072605 DOI: 10.1186/s13568-022-01387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
Dietary fat is an important part of human diet and has a close relationship with human health. However, it is still unclear how gut microbiota in adolescent responds to dietary fats at a normal dose. In this study, fat-free group (BC) was used as blank control group, we explored blood index and gut microbiota structure in growing rat(aged 1 months) after feeding a normal dose of 16.9% stewed lard(SL), refined lard(RL), fish oil(FO) and soybean oil(SO) for 6 weeks, respectively. The results showed that compared with RL group, SL group showed reduced fasting blood sugar and blood lipid levels and improved nutrient absorption capacity of the intestine. The blood indexes of glucose (Glu), total cholesterol (TC) and total triglyceride (TG) in FO treatment group were relatively low. The abundance of Bacteroidetes in the BC group decreased, and the abundance of Firmicutes increased. The Firmicutes/Bacteroidetes ratio of the FO group was relatively low, and the Firmicutes/Bacteroidetes ratio of the SL group and the SO group was lower than that of the RL group. The abundance of Bacteroidaceae in the SL group was increased. Research results showed that fat-free diets will increase the risk of obesity to a certain extent; compared with refined lard, stewed lard, soybean oil and fish oil can reduce the risk of obesity to a certain extent. The present study could find that the addition and types of dietary fat will affect the abundance and diversity of rat intestinal flora, and provide some information for nutritional evaluation about these dietary lipids.
Collapse
|
31
|
Zhang Q, Wu ZH, Zhao SS, Yang J, Chen L, Wang XY, Wang ZY, Liu HX. Identification and Spatial Visualization of Dysregulated Bile Acid Metabolism in High-Fat Diet-Fed Mice by Mass Spectral Imaging. Front Nutr 2022; 9:858603. [PMID: 35433798 PMCID: PMC9007086 DOI: 10.3389/fnut.2022.858603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Changes in overall bile acid (BA) levels and specific BA metabolites are involved in metabolic diseases, gastrointestinal, and liver cancer. BAs have become established as important signaling molecules that enable fine-tuned inter-tissue communication within the enterohepatic circulation. The liver, BAs site of production, displayed physiological and functional zonal differences in the periportal zone versus the centrilobular zone. In addition, BA metabolism shows regional differences in the intestinal tract. However, there is no available method to detect the spatial distribution and molecular profiling of BAs within the enterohepatic circulation. Herein, we demonstrated the application in mass spectrometry imaging (MSI) with a high spatial resolution (3 μm) plus mass accuracy matrix-assisted laser desorption ionization (MALDI) to imaging BAs and N-1-naphthylphthalamic acid (NPA). Our results could clearly determine the zonation patterns and regional difference characteristics of BAs on mouse liver, ileum, and colon tissue sections, and the relative content of BAs based on NPA could also be ascertained. In conclusion, our method promoted the accessibility of spatial localization and quantitative study of BAs on gastrointestinal tissue sections and demonstrated that MALDI-MSI was a valuable tool to investigate and locate several BA molecules in different tissue types leading to a better understanding of the role of BAs behind the gastrointestinal diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Health Sciences Institute, China Medical University, Shenyang, China.,Institute of Life Sciences, China Medical University, Shenyang, China
| | - Zhen-Hua Wu
- Health Sciences Institute, China Medical University, Shenyang, China.,Institute of Life Sciences, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| | - Shan-Shan Zhao
- Health Sciences Institute, China Medical University, Shenyang, China.,Institute of Life Sciences, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| | - Jing Yang
- Health Sciences Institute, China Medical University, Shenyang, China.,Institute of Life Sciences, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| | - Lei Chen
- Health Sciences Institute, China Medical University, Shenyang, China.,Institute of Life Sciences, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| | - Xiao-Yu Wang
- Health Sciences Institute, China Medical University, Shenyang, China.,Institute of Life Sciences, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| | - Zhan-You Wang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Hui-Xin Liu
- Health Sciences Institute, China Medical University, Shenyang, China.,Institute of Life Sciences, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| |
Collapse
|
32
|
Shao C, Jing Y, Zhao S, Yang X, Hu Y, Meng Y, Huang Y, Ye F, Gao L, Liu W, Sheng D, Li R, Zhang X, Wei L. LPS/Bcl3/YAP1 signaling promotes Sox9 +HNF4α + hepatocyte-mediated liver regeneration after hepatectomy. Cell Death Dis 2022; 13:277. [PMID: 35351855 PMCID: PMC8964805 DOI: 10.1038/s41419-022-04715-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/09/2022]
Abstract
Recent reports have demonstrated that Sox9+HNF4α+ hepatocytes are involved in liver regeneration after chronic liver injury; however, little is known about the origin of Sox9+HNF4α+ hepatocytes and the regulatory mechanism. Employing a combination of chimeric lineage tracing, immunofluorescence, and immunohistochemistry, we demonstrate that Sox9+HNF4α+ hepatocytes, generated by transition from mature hepatocytes, play an important role in the initial phase after partial hepatectomy (PHx). Additionally, knocking down the expression of Sox9 suppresses hepatocyte proliferation and blocks the recovery of lost hepatic tissue. In vitro and in vivo assays demonstrated that Bcl3, activated by LPS, promotes hepatocyte conversion and liver regeneration. Mechanistically, Bcl3 forms a complex with and deubiquitinates YAP1 and further induces YAP1 to translocate into the nucleus, resulting in Sox9 upregulation and mature hepatocyte conversion. We demonstrate that Bcl3 promotes Sox9+HNF4α+ hepatocytes to participate in liver regeneration, and might therefore be a potential target for enhancing regeneration after liver injury.
Collapse
Affiliation(s)
- Changchun Shao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Shanmin Zhao
- Laboratory Animal Center of Second Military Medical University, Shanghai, 200433, China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Yiming Hu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Yihua Huang
- Department of Pathology, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Fei Ye
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Lu Gao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Wenting Liu
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Dandan Sheng
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Xiaoren Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China.
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
33
|
Almeida JI, Tenreiro MF, Martinez-Santamaria L, Guerrero-Aspizua S, Gisbert JP, Alves PM, Serra M, Baptista PM. Hallmarks of the human intestinal microbiome on liver maturation and function. J Hepatol 2022; 76:694-725. [PMID: 34715263 DOI: 10.1016/j.jhep.2021.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 12/18/2022]
Abstract
As one of the most metabolically complex systems in the body, the liver ensures multi-organ homeostasis and ultimately sustains life. Nevertheless, during early postnatal development, the liver is highly immature and takes about 2 years to acquire and develop almost all of its functions. Different events occurring at the environmental and cellular levels are thought to mediate hepatic maturation and function postnatally. The crosstalk between the liver, the gut and its microbiome has been well appreciated in the context of liver disease, but recent evidence suggests that the latter could also be critical for hepatic function under physiological conditions. The gut-liver crosstalk is thought to be mediated by a rich repertoire of microbial metabolites that can participate in a myriad of biological processes in hepatic sinusoids, from energy metabolism to tissue regeneration. Studies on germ-free animals have revealed the gut microbiome as a critical contributor in early hepatic programming, and this influence extends throughout life, mediating liver function and body homeostasis. In this seminar, we describe the microbial molecules that have a known effect on the liver and discuss how the gut microbiome and the liver evolve throughout life. We also provide insights on current and future strategies to target the gut microbiome in the context of hepatology research.
Collapse
Affiliation(s)
- Joana I Almeida
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Miguel F Tenreiro
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Lucía Martinez-Santamaria
- Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Sara Guerrero-Aspizua
- Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCIII), Madrid, Spain
| | - Javier P Gisbert
- Gastroenterology Department. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Paula M Alves
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Margarida Serra
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Pedro M Baptista
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Fundación ARAID, Zaragoza, Spain.
| |
Collapse
|
34
|
Xie Z, Bai Y, Chen G, Dong W, Peng Y, Xu W, Sun Y, Zeng X, Liu Z. Immunomodulatory activity of polysaccharides from the mycelium of Aspergillus cristatus, isolated from Fuzhuan brick tea, associated with the regulation of intestinal barrier function and gut microbiota. Food Res Int 2022; 152:110901. [DOI: 10.1016/j.foodres.2021.110901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
|
35
|
Zheng Z, Wang B. The Gut-Liver Axis in Health and Disease: The Role of Gut Microbiota-Derived Signals in Liver Injury and Regeneration. Front Immunol 2021; 12:775526. [PMID: 34956204 PMCID: PMC8703161 DOI: 10.3389/fimmu.2021.775526] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Diverse liver diseases undergo a similar pathophysiological process in which liver regeneration follows a liver injury. Given the important role of the gut-liver axis in health and diseases, the role of gut microbiota-derived signals in liver injury and regeneration has attracted much attention. It has been observed that the composition of gut microbiota dynamically changes in the process of liver regeneration after partial hepatectomy, and gut microbiota modulation by antibiotics or probiotics affects both liver injury and regeneration. Mechanically, through the portal vein, the liver is constantly exposed to gut microbial components and metabolites, which have immense effects on the immunity and metabolism of the host. Emerging data demonstrate that gut-derived lipopolysaccharide, gut microbiota-associated bile acids, and other bacterial metabolites, such as short-chain fatty acids and tryptophan metabolites, may play multifaceted roles in liver injury and regeneration. In this perspective, we provide an overview of the possible molecular mechanisms by which gut microbiota-derived signals modulate liver injury and regeneration, highlighting the potential roles of gut microbiota in the development of gut microbiota-based therapies to alleviate liver injury and promote liver regeneration.
Collapse
Affiliation(s)
- Zhipeng Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baohong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Abstract
Type 2 diabetes (T2D) is an independent risk factor for acute ischemic stroke (AIS), but the underlying mechanisms remain elusive. Because the gut microbiota plays a causal role in both T2D and AIS, we wondered whether gut dysbiosis in T2D aggravates stroke progression. We recruited 35 T2D, 90 AIS, 60 AIS with T2D (AIS_T2D) patients, and 55 healthy controls and found that AIS and T2D had an additive effect on AIS_T2D patient gut dysbiosis by exhibiting the largest difference from the heathy controls. In addition, we found that the degree of gut dysbiosis associated with T2D was positively correlated with the National Institutes of Health Stroke Scale (NIHSS), modified Rankin score (mRS), and Essen stroke risk score in patients with AIS, including AIS and AIS_T2D patients. Compared with mice colonized with gut microbiota from healthy controls poststroke modeling, germfree (GF) mice colonized with gut microbiota from T2D patients showed exacerbated cerebral injury and impaired gut barrier function. Specifically, exacerbated brain injury and gut barrier dysfunction in T2D-treated GF mice were significantly associated with a reduction in short-chain fatty acid (SCFA)-producing bacteria. Our study showed that T2D and AIS have an additive effect on AIS_T2D patient gut microbiota dysbiosis. T2D-associated gut microbiota dysbiosis is associated with stroke severity in AIS patients and aggravates stroke progression in mice. IMPORTANCE We demonstrated an additive effect of type 2 diabetes (T2D) and acute ischemic stroke (AIS) on AIS with T2D (AIS_T2D) patient gut microbiota dysbiosis, and gut dysbiosis associated with T2D was positively correlated with stroke severity in AIS patients. Through animal experiments, we found that cerebral injury was exacerbated by fecal microbiota transplantation from T2D patients compared with that from healthy controls, which was associated with a reduction in short-chain fatty acid (SCFA)-producing bacteria. This study provided a novel view that links T2D and AIS through gut microbial dysbiosis.
Collapse
|
37
|
Jiang B, Yuan G, Wu J, Wu Q, Li L, Jiang P. Prevotella copri ameliorates cholestasis and liver fibrosis in primary sclerosing cholangitis by enhancing the FXR signalling pathway. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166320. [PMID: 34896545 DOI: 10.1016/j.bbadis.2021.166320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by bile duct inflammation, fibrosis, bile acid (BA) metabolism disorders and gut microbiota dysbiosis. At present, the aetiology and pathogenesis of PSC are not clear, and there is no specific or effective treatment available. Therefore, new research perspectives are needed to explore effective methods to treat PSC and improve symptoms. The intestinal microbiota of patients with PSC is known to be significantly different from that of healthy people. By comparing differentially abundant bacterial genera in PSC patients, it was found that the abundance of Prevotella copri (P. copri) was significantly decreased, suggesting that this species may have a protective effect against PSC disease. Therefore, comprehensively exploring the role and possible function of P. copri in the disease process is worthwhile. In this study, a PSC mouse model was established by feeding mice a customized diet supplemented with 0.1% (w/w) 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) for one week, and the abundance of P. copri was confirmed to be decreased in this model. Previous studies in patients and animal models have demonstrated that gut microbiota intervention is an acceptable treatment for some diseases. We found that intervention with P. copri could significantly improve cholestasis and liver fibrosis by enhancing the FXR-related signalling pathway in PSC mice. Together, through the overall effect of P. copri on intestinal microbiota structure and its association with BAs, we speculate that P. copri intervention might be as potential biological treatment of PSC.
Collapse
Affiliation(s)
- Baorong Jiang
- Center for Global Health, School of Public Health, Nanjing Medical, University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Gehui Yuan
- Center for Global Health, School of Public Health, Nanjing Medical, University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Jialin Wu
- Center for Global Health, School of Public Health, Nanjing Medical, University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical, University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical, University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China.
| | - Ping Jiang
- Center for Global Health, School of Public Health, Nanjing Medical, University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China.
| |
Collapse
|
38
|
Guzzardi MA, La Rosa F, Campani D, Cacciato Insilla A, De Sena V, Panetta D, Brunetto MR, Bonino F, Collado MC, Iozzo P. Maturation of the Visceral (Gut-Adipose-Liver) Network in Response to the Weaning Reaction versus Adult Age and Impact of Maternal High-Fat Diet. Nutrients 2021; 13:3438. [PMID: 34684436 PMCID: PMC8541006 DOI: 10.3390/nu13103438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 01/01/2023] Open
Abstract
Metabolic-associated fatty liver disease is a major cause of chronic pathologies, of which maternal obesity is a frequent risk factor. Gut wall and microbiota, visceral fat, and liver form a pre-systemic network for substrates and pro-inflammatory factors entering the body, undergoing accelerated maturation in early-life when the weaning reaction, i.e., a transitory inflammatory condition, affects lifelong health. We aimed to characterize organ metabolism in the above network, in relation to weaning reaction and maternal obesity. Weaning or 6-months-old offspring of high-fat-diet and normal-diet fed dams underwent in vivo imaging of pre-/post-systemic glucose uptake and tissue radiodensity in the liver, visceral fat, and intestine, a liver histology, and microbiota and metabolic pathway analyses. Weaning mice showed the dominance of gut Clostridia and Bacteroidia members, overexpressing pathways of tissue replication and inflammation; adulthood increased proneness to steatohepatitis, and Desulfovibrio and RF39 bacteria, and lipopolysaccharide, bile acid, glycosaminoglycan, and sphingolipid metabolic pathways. In vivo imaging could track organ maturation, liver inflammation, and protective responses. A maternal high-fat diet amplified the weaning reaction, elevating liver glucose uptake, triglyceride levels, and steatohepatitis susceptibility along the lifespan. The visceral network establishes a balance between metabolism and inflammation, with clear imaging biomarkers, and crucial modulation in the weaning time window.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (M.A.G.); (F.L.R.); (V.D.S.); (D.P.)
| | - Federica La Rosa
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (M.A.G.); (F.L.R.); (V.D.S.); (D.P.)
| | - Daniela Campani
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, Division of Pathology, Pisa University Hospital, 56124 Pisa, Italy; (D.C.); (A.C.I.)
| | - Andrea Cacciato Insilla
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, Division of Pathology, Pisa University Hospital, 56124 Pisa, Italy; (D.C.); (A.C.I.)
| | - Vincenzo De Sena
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (M.A.G.); (F.L.R.); (V.D.S.); (D.P.)
| | - Daniele Panetta
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (M.A.G.); (F.L.R.); (V.D.S.); (D.P.)
| | - Maurizia Rossana Brunetto
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy;
- Department of Medical Specialties and Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Pisa University Hospital, 56124 Pisa, Italy
- Institute of Biostructure and Bioimaging (IBB), National Research Council (CNR), 80145 Napoli, Italy;
| | - Ferruccio Bonino
- Institute of Biostructure and Bioimaging (IBB), National Research Council (CNR), 80145 Napoli, Italy;
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46980 Valencia, Spain;
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (M.A.G.); (F.L.R.); (V.D.S.); (D.P.)
| |
Collapse
|
39
|
Luo L, Chen Q, Yang L, Zhang Z, Xu J, Gou D. MSCs Therapy Reverse the Gut Microbiota in Hypoxia-Induced Pulmonary Hypertension Mice. Front Physiol 2021; 12:712139. [PMID: 34531759 PMCID: PMC8438532 DOI: 10.3389/fphys.2021.712139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cell (MSC) therapy is a promising therapeutic approach based on its strong effect on pulmonary hypertension (PH) in rats. However, the detailed mechanism of MSC therapy remains unknown. Alterations in the gut microbiota were found in both type 1 pulmonary arterial hypertension patients and hypoxia/SU5416- or monocrotaline (MCT)-induced PH rats. However, whether the therapeutic mechanism of MSCs is associated with the gut microbiota is poorly understood. Here, we found that gut microbiota homeostasis was disrupted in hypoxia-induced PH mice due to the increased Firmicutes-to-Bacteroidetes (F/B) ratio; enhanced abundances of harmful Marinifilaceae, Helicobacteraceae, and Lactobacillaceae; and decreased abundances of beneficial Bacteroidaceae, Prevotellaceae, Tannerellaceae, and Lachnospiraceae. Unexpectedly, reverses of the increase in disease-associated microbiota and decrease in anti-inflammatory and immunomodulatory functional microbiota were observed in the MSC-treated group. We also identified harmful Erysipelotrichaceae, Alphaproteobacteria, Christensenella timonensis, Coriobacteriales, and Rhodospirillales that may serve as gut microbiota biomarkers of hypoxia-induced PH mice. Micrococcaales, Nesterenkonia, Anaerotruncus, and Tyzzerella may serve as gut microbiota biomarkers of MSC-treated mice. In summary, MSC treatment suppresses hypoxia-induced pulmonary hypertension in mice, and alterated gut microbiota may play a role in the development and progression of PH. The mechanism of MSC therapy is associated with various metabolic pathways of the gut microbiota in hypoxia model PH mice.
Collapse
Affiliation(s)
- Lingjie Luo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Vascular Disease Research Center, Carson International Cancer Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Qinhua Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Vascular Disease Research Center, Carson International Cancer Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Lei Yang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Vascular Disease Research Center, Carson International Cancer Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhenxia Zhang
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Jihong Xu
- Department of Anesthesiology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Vascular Disease Research Center, Carson International Cancer Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
40
|
Gomez MV, Dutta M, Suvorov A, Shi X, Gu H, Mani S, Yue Cui J. Early Life Exposure to Environmental Contaminants (BDE-47, TBBPA, and BPS) Produced Persistent Alterations in Fecal Microbiome in Adult Male Mice. Toxicol Sci 2021; 179:14-30. [PMID: 33078840 DOI: 10.1093/toxsci/kfaa161] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The gut microbiome is a pivotal player in toxicological responses. We investigated the effects of maternal exposure to 3 human health-relevant toxicants (BDE-47, tetrabromobisphenol [TBBPA], and bisphenol S [BPS]) on the composition and metabolite levels (bile acids [BAs] and short-chain fatty acids [SCFAs]) of the gut microbiome in adult pups. CD-1 mouse dams were orally exposed to vehicle (corn oil, 10 ml/kg), BDE-47 (0.2 mg/kg), TBBPA (0.2 mg/kg), or BPS (0.2 mg/kg) once daily from gestational day 8 to the end of lactation (postnatal day 21). 16S rRNA sequencing and targeted metabolomics were performed in feces of 20-week-old adult male pups (n = 14 - 23/group). Host gene expression and BA levels were quantified in liver. BPS had the most prominent effect on the beta-diversity of the fecal microbiome compared with TBPPA and BDE-47 (QIIME). Seventy-three taxa were persistently altered by at least 1 chemical, and 12 taxa were commonly regulated by all chemicals (most of which were from the Clostridia class and were decreased). The most distinct microbial biomarkers were S24-7 for BDE-47, Rikenellaceae for TBBPA, and Lactobacillus for BPS (LefSe). The community-wide contributions to the shift in microbial pathways were predicted using FishTaco. Consistent with FishTaco predictions, BDE-47 persistently increased fecal and hepatic BAs within the 12α hydroxylation pathway, corresponding to an up-regulation with the hepatic BA-synthetic enzyme Cyp7a1. Fecal BAs were also persistently up-regulated by TBBPA and BPS (liquid chromatography-mass spectrometry). TBBPA increased propionic acid and succinate, whereas BPS decreased acetic acid (gas chromatography-mass spectrometry). There was a general trend in the hepatic down-regulation of proinflammatory cytokines and the oxidative stress sensor target gene (Nqo1), and a decrease in G6Pdx (the deficiency of which leads to dyslipidemia). In conclusion, maternal exposure to these toxicants persistently modified the gut-liver axis, which may produce an immune-suppressive and dyslipidemia-prone signature later in life.
Collapse
Affiliation(s)
- Matthew V Gomez
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Alexander Suvorov
- Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Xiaojian Shi
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Sridhar Mani
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
41
|
Administration of Lactobacillus reuteri Combined with Clostridium butyricum Attenuates Cisplatin-Induced Renal Damage by Gut Microbiota Reconstitution, Increasing Butyric Acid Production, and Suppressing Renal Inflammation. Nutrients 2021; 13:nu13082792. [PMID: 34444952 PMCID: PMC8402234 DOI: 10.3390/nu13082792] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023] Open
Abstract
Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus reuteri and Clostridium butyricum (LCs) had a protective effect on cisplatin-induced nephrotoxicity through reconstruction of gut microbiota. Wistar rats were given different treatments: control, cisplatin (Cis), cisplatin + C. butyricum and L. reuteri (Cis+LCs), and C. butyricum and L. reuteri (LCs). We observed that cisplatin-treated rats supplemented with LCs exhibited significantly decreased renal inflammation (KIM-1, F4/80, and MPO), oxidative stress, fibrosis (collagen IV, fibronectin, and a-SMA), apoptosis, concentration of blood endotoxin and indoxyl sulfate, and increased fecal butyric acid production compared with those without supplementation. In addition, LCs improved the cisplatin-induced microbiome dysbiosis by maintaining a healthy gut microbiota structure and diversity; depleting Escherichia-Shigella and the Enterobacteriaceae family; and enriching probiotic Bifidobacterium, Ruminococcaceae, Ruminiclostridium_9, and Oscillibacter. Moreover, the LCs intervention alleviated the cisplatin-induced intestinal epithelial barrier impairment. This study indicated LCs probiotic serves as a mediator of the gut–kidney axis in cisplatin-induced nephrotoxicity to restore the intestinal microbiota composition, thereby suppressing uremic toxin production and enhancing butyrate production. Furthermore, the renoprotective effect of LCs is partially mediated by increasing the anti-inflammatory effects and maintaining the integrity of the intestinal barrier.
Collapse
|
42
|
Liu J, Hao W, He Z, Kwek E, Zhu H, Ma N, Ma KY, Chen ZY. Blueberry and cranberry anthocyanin extracts reduce bodyweight and modulate gut microbiota in C57BL/6 J mice fed with a high-fat diet. Eur J Nutr 2021; 60:2735-2746. [PMID: 33392758 DOI: 10.1007/s00394-020-02446-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/12/2020] [Indexed: 01/23/2023]
Abstract
PURPOSE Blueberry and cranberry are rich in anthocyanins. The present study was to investigate the effects of anthocyanin extracts from blueberry and cranberry on body weight and gut microbiota. METHODS C57BL/6 J Mice were divided into six groups (n = 9 each) fed one of six diets namely low-fat diet (LFD), high-fat diet (HFD), HFD with the addition of 1% blueberry extract (BL), 2% blueberry extract (BH), 1% cranberry extract (CL), and 2% cranberry extract (CH), respectively. RESULTS Feeding BL and BH diets significantly decreased body weight gain by 20-23%, total adipose tissue weight by 18-20%, and total liver lipids by 16-18% compared with feeding HFD. Feeding CH diet but not CL diet reduced the body weight by 27%, accompanied by a significant reduction of total plasma cholesterol by 25% and tumor necrosis factor alpha (TNF-α) by 38%. The metagenomic analysis showed that the supplementation of blueberry and cranberry anthocyanin extracts reduced plasma lipopolysaccharide concentration, accompanied by a reduction in the relative abundance of Rikenella and Rikenellaceae. Dietary supplementation of berry anthocyanin extracts promoted the growth of Lachnoclostridium, Roseburia, and Clostridium_innocuum_group in genus level, leading to a greater production of fecal short-chain fatty acids (SCFA). CONCLUSIONS It was concluded that both berry anthocyanins could manage the body weight and favorably modulate the gut microbiota at least in mice.
Collapse
Affiliation(s)
- Jianhui Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Wangjun Hao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Zouyan He
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Erika Kwek
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Hanyue Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Ning Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Ka Ying Ma
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China.
| |
Collapse
|
43
|
Tan LY, Yeo XY, Bae HG, Lee DPS, Ho RC, Kim JE, Jo DG, Jung S. Association of Gut Microbiome Dysbiosis with Neurodegeneration: Can Gut Microbe-Modifying Diet Prevent or Alleviate the Symptoms of Neurodegenerative Diseases? Life (Basel) 2021; 11:698. [PMID: 34357070 PMCID: PMC8305650 DOI: 10.3390/life11070698] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
The central nervous system was classically perceived as anatomically and functionally independent from the other visceral organs. But in recent decades, compelling evidence has led the scientific community to place a greater emphasis on the role of gut microbes on the brain. Pathological observations and early gastrointestinal symptoms highlighted that gut dysbiosis likely precedes the onset of cognitive deficits in Alzheimer's disease (AD) and Parkinson's disease (PD) patients. The delicate balance in the number and functions of pathogenic microbes and alternative probiotic populations is critical in the modulation of systemic inflammation and neuronal health. However, there is limited success in restoring healthy microbial biodiversity in AD and PD patients with general probiotics interventions and fecal microbial therapies. Fortunately, the gut microflora is susceptible to long-term extrinsic influences such as lifestyle and dietary choices, providing opportunities for treatment through comparatively individual-specific control of human behavior. In this review, we examine the impact of restrictive diets on the gut microbiome populations associated with AD and PD. The overall evidence presented supports that gut dysbiosis is a plausible prelude to disease onset, and early dietary interventions are likely beneficial for the prevention and treatment of progressive neurodegenerative diseases.
Collapse
Affiliation(s)
- Li Yang Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (L.Y.T.); (X.Y.Y.)
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Xin Yi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (L.Y.T.); (X.Y.Y.)
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Han-Gyu Bae
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Delia Pei Shan Lee
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore;
| | - Roger C. Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Jung Eun Kim
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore;
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (L.Y.T.); (X.Y.Y.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
44
|
Shao Y, Jiang Y, Li H, Zhang F, Hu Z, Zheng S. Characteristics of mouse intestinal microbiota during acute liver injury and repair following 50% partial hepatectomy. Exp Ther Med 2021; 22:953. [PMID: 34335895 PMCID: PMC8290421 DOI: 10.3892/etm.2021.10385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Dysbiosis of the gut microbiota has important roles in various diseases and pathological states of the host. However, the changes of the gut microbiota during partial hepatectomy (PH)-induced acute liver injury have so far remained elusive. The present study investigated the gut microbiome and its related pathways following PH-induced acute liver injury. A total of 50 male C57/BL6 mice were divided into a normal control (NC), sham-operation and liver resection (LR) group (50% PH). Samples were collected at 3 and 14 days post-operation to obtain specimens for the Sham3, Sham14, LR3 and LR14 groups (10 mice/group). Specimens of NC group (n=10) were obtained at the same time as those of Sham3 group. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined using an automatic chemical analyzer and the gut microbiota was assessed by 16S ribosomal RNA gene sequencing of small intestinal contents. The serum levels of ALT and AST in the LR3 group were significantly increased, while those in the LR14 group were decreased again to near-normal levels. In the LR3 group, the operational taxonomic units, species richness (Chao1) and species diversity (Shannon and Simpson indices) were decreased, although without any significant difference. Furthermore, in the LR3 group, significant Cyanobacteria enrichment and Fusobacteria depletion compared with the NC and Sham3 groups was observed, while in the LR14 group, a significant depletion of the abundance of Verrucomicrobia, Chloroflexi and Deferribacteres compared to the LR3 group was obtained. The abundance of Firmicutes was increased in the LR3 group and decreased again in the LR14 group. However, the abundance of Bacteroidetes and Actinobacteria decreased in the LR3 group and increased again in the LR14 group. The alterations of the gut microbiota at the genus level were also revealed, as significant increases in Chloroplast, Curvibacter, Pelomonas, Ruminococcaceae UCG-005 and Blautia and a sharp decrease in Akkermansia and Eubacterium coprostanoligenes were caused by acute liver injury. Furthermore, functional metagenome prediction was performed by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States based on the Greengenes database, revealing alterations in signal transduction, transcription and cell motility, as well as metabolism of amino acids, lipids, glucose, cofactors and terpenoids, and xenobiotics pathways. An improved understanding of the structural and functional changes of the gut microbiota following 50% PH-induced acute liver injury and repair may provide novel strategies for the recovery of hosts undergoing hepatectomy.
Collapse
Affiliation(s)
- Yi Shao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yuancong Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Hui Li
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, P.R. China
| | - Feng Zhang
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhenhua Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
45
|
Hao Y, Liao X, Wang X, Lao S, Liao W. The biological regulatory activities of Flammulina velutipes polysaccharide in mice intestinal microbiota, immune repertoire and heart transcriptome. Int J Biol Macromol 2021; 185:582-591. [PMID: 34216660 DOI: 10.1016/j.ijbiomac.2021.06.175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 01/21/2023]
Abstract
The effects of a novel Flammulina velutipes polysaccharide (FVP) on intestinal microbiota, immune repertoire and heart transcriptome were investigated in this study. The results showed that FVP treatment could effectively regulate the abundance of colonic microbiota. And FVP exhibited obvious immunoregulatory effect by influencing V gene and J gene fragments usage on TCRα chain. The usage frequency of TRBV1, TRBJ1-6 and TRBJ1-5 were significantly altered, and 41 V-J pairs were identified with obvious difference after FVP treatment. Furthermore, the mRNA of mice heart was analyzed by transcriptome assay. Total 525 genes and 1587 mRNA were significantly changed after FVP treatment. KEGG annotation indicated that the up-regulated mRNA was enriched in 17 pathways including adherens junction, mTOR signaling pathway, insulin signaling pathway, mitophagy, tight junction, PPAR signaling pathway and TNF signaling pathway, etc. Meanwhile, the down-regulated mRNA was gathered in AMPK signaling pathway, metabolism of xenobiotics by cytochrome P450, apelin signaling pathway, PPAR signaling pathway, PI3K-Akt signaling pathway, insulin signaling pathway, cardiac muscle contraction, adrenergic signaling in cardiomyocytes, Fc gamma R-mediated phagocytosis, etc. The great potential exhibited by FVP could make it an ideal candidate as complementary medicine or functional food for promotion of health.
Collapse
Affiliation(s)
- Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaoshan Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiangdong Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shenghui Lao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
46
|
Diamante G, Cely I, Zamora Z, Ding J, Blencowe M, Lang J, Bline A, Singh M, Lusis AJ, Yang X. Systems toxicogenomics of prenatal low-dose BPA exposure on liver metabolic pathways, gut microbiota, and metabolic health in mice. ENVIRONMENT INTERNATIONAL 2021; 146:106260. [PMID: 33221593 PMCID: PMC7775895 DOI: 10.1016/j.envint.2020.106260] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 05/06/2023]
Abstract
Bisphenol A (BPA) is an industrial plasticizer widely found in consumer products, and exposure to BPA during early development has been associated with the prevalence of various cardiometabolic diseases including obesity, metabolic syndrome, type 2 diabetes, and cardiovascular diseases. To elucidate the molecular perturbations underlying the connection of low-dose prenatal BPA exposure to cardiometabolic diseases, we conducted a multi-dimensional systems biology study assessing the liver transcriptome, gut microbial community, and diverse metabolic phenotypes in both male and female mouse offspring exposed to 5 μg/kg/day BPA during gestation. Prenatal exposure to low-dose BPA not only significantly affected liver genes involved in oxidative phosphorylation, PPAR signaling and fatty acid metabolism, but also affected the gut microbial composition in an age- and sex-dependent manner. Bacteria such as those belonging to the S24-7 and Lachnospiraceae families were correlated with offspring phenotypes, differentially expressed liver metabolic genes such as Acadl and Dgat1, and key drivers identified in our gene network modeling such as Malat1 and Apoa2. This multiomics study provides insight into the relationship between gut bacteria and host liver genes that could contribute to cardiometabolic disease risks upon low-dose BPA exposure.
Collapse
Affiliation(s)
- Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Zacary Zamora
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jessica Ding
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jennifer Lang
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA (UCLA), Los Angeles, CA 90095, USA
| | - Abigail Bline
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Maya Singh
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA (UCLA), Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
47
|
Micó-Carnero M, Rojano-Alfonso C, Álvarez-Mercado AI, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Effects of Gut Metabolites and Microbiota in Healthy and Marginal Livers Submitted to Surgery. Int J Mol Sci 2020; 22:44. [PMID: 33375200 PMCID: PMC7793124 DOI: 10.3390/ijms22010044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Microbiota is defined as the collection of microorganisms within the gastrointestinal ecosystem. These microbes are strongly implicated in the stimulation of immune responses. An unbalanced microbiota, termed dysbiosis, is related to the development of several liver diseases. The bidirectional relationship between the gut, its microbiota and the liver is referred to as the gut-liver axis. The translocation of bacterial products from the intestine to the liver induces inflammation in different cell types such as Kupffer cells, and a fibrotic response in hepatic stellate cells, resulting in deleterious effects on hepatocytes. Moreover, ischemia-reperfusion injury, a consequence of liver surgery, alters the microbiota profile, affecting inflammation, the immune response and even liver regeneration. Microbiota also seems to play an important role in post-operative outcomes (i.e., liver transplantation or liver resection). Nonetheless, studies to determine changes in the gut microbial populations produced during and after surgery, and affecting liver function and regeneration are scarce. In the present review we analyze and discuss the preclinical and clinical studies reported in the literature focused on the evaluation of alterations in microbiota and its products as well as their effects on post-operative outcomes in hepatic surgery.
Collapse
Affiliation(s)
- Marc Micó-Carnero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Carlos Rojano-Alfonso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Ana Isabel Álvarez-Mercado
- Departamento de Bioquímica y Biología Molecular II, Escuela de Farmacia, Universidad de Granada, 18071 Granada, Spain;
- Institut of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory IDIBAPS, 03036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| |
Collapse
|
48
|
Zhu C, Dong B, Sun L, Wang Y, Chen S. Cell Sources and Influencing Factors of Liver Regeneration: A Review. Med Sci Monit 2020; 26:e929129. [PMID: 33311428 PMCID: PMC7747472 DOI: 10.12659/msm.929129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver regeneration (LR) is a set of complicated mechanisms between cells and molecules in which the processes of initiation, maintenance, and termination of liver repair are regulated. Although LR has been studied extensively, there are still numerous challenges in gaining its full understanding. Cells for LR have a wide range of sources and the feature of plasticity, and regeneration patterns are not the same under different conditions. Many patients undergoing partial hepatectomy develop cirrhosis or steatosis. The changes of LR in these cases are not clear. Many types of cells participate in LR. Hepatocytes, biliary epithelial cells, hepatic progenitor cells, and human liver stem cells can serve as the cell sources for LR. However, different types and degrees of damage trigger the response from the most suitable cells. Exploring the cell sources of LR is of great significance for accelerating recovery of liver function under different pathological patterns and developing a cell therapy strategy to cope with the shortage of donors for liver transplantation. In clinical practice, the background of the liver influences regeneration. Fibrosis and steatosis create different LR microenvironments and signal molecule interaction patterns. In addition, factors such as partial hepatectomy, aging, platelets, nerves, hormones, bile acids, and gut microbiota are widely involved in this process. Understanding the influencing factors of LR has practical value for individualized treatment of patients with liver diseases. In this review, we have summarized recent studies and proposed our views. We discuss cell sources and the influential factors on LR to help in solving clinical problems.
Collapse
Affiliation(s)
- Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland).,Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Bingzi Dong
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Leqi Sun
- Department of Oncological Medical Services, Institute of Health Sciences, Tokushima University of Graduate School, Tokushima City, Tokushima, Japan
| | - Yixiu Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Shuhai Chen
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University of Graduate School, Tokushima City, Tokushima, Japan
| |
Collapse
|
49
|
Lee JE, Lee SM, Jung J. Integrated omics analysis unraveled the microbiome-mediated effects of Yijin-Tang on hepatosteatosis and insulin resistance in obese mouse. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153354. [PMID: 32992082 DOI: 10.1016/j.phymed.2020.153354] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/28/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Gut microbiota play important roles in insulin homeostasis and the pathogenesis of non-alcoholic fatty liver diseases (NAFLD). Yijin-Tang (YJT), a traditional Korean and Chinese medicine, is used in the treatment of gastrointestinal diseases and obesity-related disorders such as insulin resistance (IR) and NAFLD. PURPOSE Our aim was to identify the microbiome-mediated effects of YJT on IR and associated NAFLD by integrating metagenomics and hepatic lipid profile. METHODS C57BL/6J mice were fed a normal chow diet (NC) or high-fat/high-cholesterol (HFHC) diet with or without YJT treatment. Hepatic lipid profiles were analyzed using liquid chromatography/mass spectrometry, and the composition of gut microbiota was investigated using 16S rRNA sequencing. Then, hepatic lipid profiles, gut microbiome, and inflammatory marker data were integrated using multivariate analysis and bioinformatics tools. RESULTS YJT improved NAFLD, and 39 hepatic lipid metabolites were altered by YJT in a dose-dependent manner. YJT also altered the gut microbiome composition in HFHC-fed mice. In particular, Faecalibaculum rodentium and Bacteroides acidifaciens were altered by YJT in a dose-dependent manner. Also, we found significant correlation among hepatic phosphatidylglycerol metabolites, F. rodentium, and γδ-T cells. Moreover, interleukin (IL)-17, which is secreted by the γδ-T cell when it recognizes lipid antigens, were elevated in HFHC mice and decreased by YJT treatment. In addition, YJT increased the relative abundance of B. acidifaciens in NC or HFHC-fed mice, which is a gut microbiota that mediates anti-obesity and anti-diabetic effects by modulating the gut environment. We also confirmed that YJT ameliorated the gut tight junctions and increased short chain fatty acid (SCFA) levels in the intestine, which resulted in improved IR. CONCLUSION These data demonstrated that gut microbiome and hepatic lipid profiles are regulated by YJT, which improved the IR and NAFLD in mice with diet-induced obesity.
Collapse
Affiliation(s)
- Jung-Eun Lee
- Clinical Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-Gu 34054, Daejeon, Republic of Korea.
| | - So Min Lee
- Non-clinical Collaboration Team, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-Gu 34054, Daejeon, Republic of Korea.
| | - Jeeyoun Jung
- Clinical Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-Gu 34054, Daejeon, Republic of Korea.
| |
Collapse
|
50
|
Liang Q, Zhang M, Hu Y, Zhang W, Zhu P, Chen Y, Xue P, Li Q, Wang K. Gut Microbiome Contributes to Liver Fibrosis Impact on T Cell Receptor Immune Repertoire. Front Microbiol 2020; 11:571847. [PMID: 33329430 PMCID: PMC7729130 DOI: 10.3389/fmicb.2020.571847] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota (GM) modifies the intrahepatic immune microenvironment, but the underlying mechanisms remain poorly understood. Liver fibrosis-associated imprinting is predicted to be reflected in GM. This study investigated the link between GM and the intrahepatic T cell receptor (TCR) immune repertoire (IR), and whether GM modulates the intrahepatic immune microenvironment via TCR IR during liver fibrosis. We analyzed the correlation between GM and TCR IR during liver fibrogenesis. Accordingly, 16S rRNA gene sequencing (16S-seq) and bulk immune repertoire sequencing (IR-seq) were performed to characterize GM and intrahepatic TCR IR. Fecal microbial transplant (FMT) and TCRβ knockout (TcrbKO) mouse models were employed to determine the biological link between GM and TCR IR in liver fibrosis. We found that GM and intrahepatic TCR IR are highly correlated, with both showing reduced diversity and centralized distribution during liver fibrosis. The restoration of normal intestinal microbiota may reshape intrahepatic TCR IR and delay liver fibrosis. Interestingly, TCR IR ablation abrogated the impact of GM on liver fibrogenesis. Furthermore, GM modulated hepatic stellate cell (HSC) activation via TCR IR-mediated intrahepatic immune milieu. Our study demonstrates that GM, which exhibits cross-talk with the intrahepatic TCR IR, influences the intrahepatic immune microenvironment and liver fibrosis progression.
Collapse
Affiliation(s)
- Qing Liang
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Meina Zhang
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Yudi Hu
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Zhang
- Department of Pathology, The 971 Hospital of People's Liberation Army Navy, Qingdao, China
| | - Ping Zhu
- Department of Gynecology and Obstetrics, The 971 Hospital of People's Liberation Army Navy, Qingdao, China
| | - Yujie Chen
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Pengxin Xue
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Qiyuan Li
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Kejia Wang
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|