1
|
Luukkonen PK. Subtypes of MASLD confer distinct clinical trajectories. J Hepatol 2025; 82:1138-1139. [PMID: 40102074 DOI: 10.1016/j.jhep.2025.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Affiliation(s)
- Panu K Luukkonen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland; Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
2
|
Guardamino Ojeda D, Yalcin Y, Pita-Juarez Y, Hakim A, Bhattarai S, Chen ZZ, Asara JM, Connelly MA, Miller MR, Lai M, Jiang ZG. VLDL lipidomics reveals hepatocellular lipidome changes in metabolic dysfunction-associated steatotic liver disease. Hepatol Commun 2025; 9:e0716. [PMID: 40408305 PMCID: PMC12106201 DOI: 10.1097/hc9.0000000000000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/20/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND The production of VLDL is one of the primary mechanisms through which liver cells regulate intracellular lipid homeostasis. We hypothesize that the disease characteristics of metabolic dysfunction-associated steatotic liver disease (MASLD) differentially impact VLDL lipid composition. This study comprehensively examines the relationship between VLDL-lipidome and MASLD histology and disease-associated genetics, aiming to define MASLD-related VLDL changes. METHODS We performed untargeted lipidomics on serum VLDL particles in a cohort of biopsy-proven MASLD patients to examine the relationship between VLDL-lipidome and MASLD disease features as well as MASLD-related genetic variants. RESULTS Among 1514 detected lipid species in VLDL, triglyceride (TG), phosphatidylcholine (PC), and ceramide (Cer) were the top classes. Moderate to severe hepatic steatosis was associated an increase in VLDL-TG, especially those with palmitic acid (C16:0). A unified acyl chain distribution analysis revealed that steatosis was associated with increases in TGs with saturated and monounsaturated fatty acyl chains, but decreases in polyunsaturated fatty acyl chains, a pattern that was not mirrored in acyl chains from VLDL-PC or VLDL-Cer. Lobular inflammation was associated with reductions in lipids with polyunsaturated acyl chains, particularly docosahexaenoic acid (C22:6). Meanwhile, patients with advanced liver fibrosis (stages 3-4) had reductions in VLDL-TGs with both saturated and polyunsaturated acyl chains and overall enrichment in Cer species. Furthermore, MASLD-associated genetic variants in PNPLA3, TM6SF2, GPAM, HSD17B13, and MTARC1 demonstrated distinct VLDL-lipidomic signatures in keeping with their biology in lipoprotein metabolism. CONCLUSIONS Hepatic steatosis and liver fibrosis in MASLD are associated with distinct VLDL-lipidomic signatures, respectively. This relationship is further modified by MASLD-genetics, suggesting a differential impact of pathogenic features on hepatocellular lipid homeostasis.
Collapse
Affiliation(s)
- David Guardamino Ojeda
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yusuf Yalcin
- Department of Internal Medicine, Steward Carney Hospital, Tufts University School of Medicine, Dorchester, Massachusetts, USA
| | - Yered Pita-Juarez
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron Hakim
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Susmita Bhattarai
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Zsu-Zsu Chen
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - John M. Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Michelle Lai
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Z. Gordon Jiang
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Rizo‐Roca D, Henderson JD, Zierath JR. Metabolomics in cardiometabolic diseases: Key biomarkers and therapeutic implications for insulin resistance and diabetes. J Intern Med 2025; 297:584-607. [PMID: 40289598 PMCID: PMC12087830 DOI: 10.1111/joim.20090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Cardiometabolic diseases-including Type 2 diabetes and obesity-remain leading causes of global mortality. Recent advancements in metabolomics have facilitated the identification of metabolites that are integral to the development of insulin resistance, a characteristic feature of cardiometabolic disease. Key metabolites, such as branched-chain amino acids (BCAAs), ceramides, glycine, and glutamine, have emerged as valuable biomarkers for early diagnosis, risk stratification, and potential therapeutic targets. Elevated BCAAs and ceramides are strongly associated with insulin resistance and Type 2 diabetes, whereas glycine exhibits an inverse relationship with insulin resistance, making it a promising therapeutic target. Metabolites involved in energy stress, including ketone bodies, lactate, and nicotinamide adenine dinucleotide (NAD⁺), regulate insulin sensitivity and metabolic health, with ketogenic diets and NAD⁺ precursor supplementation showing potential benefits. Additionally, the novel biomarker N-lactoyl-phenylalanine further underscores the complexity of metabolic regulation and its therapeutic potential. This review underscores the potential of metabolite-based diagnostics and precision medicine, which could enhance efforts in the prevention, diagnosis, and treatment of cardiometabolic diseases, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- David Rizo‐Roca
- Department of Physiology and Pharmacology, Integrative PhysiologyKarolinska InstitutetStockholmSweden
| | - John D. Henderson
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Juleen R. Zierath
- Department of Physiology and Pharmacology, Integrative PhysiologyKarolinska InstitutetStockholmSweden
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Molecular Medicine and Surgery, Integrative PhysiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
4
|
Jiang J, Gao Y, Wang J, Huang Y, Yang R, Zhang Y, Ma Y, Wen Y, Luo G, Zhang S, Cao Y, Yu M, Wang Q, Hu S, Wang K, Guo X, Gonzalez FJ, Liu Y, Liu H, Xie Q, Xie C. Hepatic sphingomyelin phosphodiesterase 3 promotes steatohepatitis by disrupting membrane sphingolipid metabolism. Cell Metab 2025; 37:1119-1136.e13. [PMID: 40015281 DOI: 10.1016/j.cmet.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/16/2024] [Accepted: 01/17/2025] [Indexed: 03/01/2025]
Abstract
Metabolic-dysfunction-associated steatohepatitis (MASH) remains a major health challenge. Herein, we identify sphingomyelin phosphodiesterase 3 (SMPD3) as a key driver of hepatic ceramide accumulation through increasing sphingomyelin hydrolysis at the cell membrane. Hepatocyte-specific Smpd3 gene disruption or pharmacological inhibition of SMPD3 alleviates MASH, whereas reintroducing SMPD3 reverses the resolution of MASH. Although healthy livers express low-level SMPD3, lipotoxicity-induced DNA damage suppresses sirtuin 1 (SIRT1), triggering an upregulation of SMPD3 during MASH. This disrupts membrane sphingomyelin-ceramide balance and promotes disease progression by enhancing caveolae-dependent lipid uptake and extracellular vesicle secretion from steatotic hepatocytes to exacerbate inflammation and fibrosis. Consequently, SMPD3 acts as a central hub integrating key MASH hallmarks. Notably, we discovered a bifunctional agent that simultaneously activates SIRT1 and inhibits SMPD3, which shows significant therapeutic potential in MASH treatment. These findings suggest that inhibition of hepatic SMPD3 restores membrane sphingolipid metabolism and holds great promise for developing novel MASH therapies.
Collapse
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yuqing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Lingang Laboratory, Shanghai 200444, China
| | - Yan Huang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Rong Yang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yongxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuandi Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingquan Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Gongkai Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shurui Zhang
- Lingang Laboratory, Shanghai 200444, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yutang Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Minjun Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinxue Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Shulei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kanglong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| |
Collapse
|
5
|
Pafili K, Zaharia OP, Strassburger K, Knebel B, Herder C, Huttasch M, Karusheva Y, Kabisch S, Strom A, Nowotny B, Szendroedi J, Roden M. PNPLA3 gene variation modulates diet-induced improvement in liver lipid content in type 2 diabetes. Clin Nutr 2025; 48:6-15. [PMID: 40090039 DOI: 10.1016/j.clnu.2025.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND&AIMS Lifestyle-induced weight reduction remains crucial for managing type 2 diabetes and steatotic liver disease, but its effectiveness varies. We postulated that the G allele in the rs738409 single nucleotide polymorphism within patatin-like phospholipase domain-containing protein 3 (PNPLA3), which associates with metabolic dysfunction-associated steatotic liver disease, also modulates diet-related metabolic effects. METHODS Participants with type 2 diabetes were randomized to 8-week hypocaloric diets (energy intake: -1,256 kJ/d of, <30 kcal% fat): high in cereal fiber and coffee excluding red meat (HF-RM + C; n = 16), or low in cereal fiber, devoid of coffee, but high in red meat (LF + RM-C; n = 15). Whole-body insulin sensitivity (M value) was assessed using [2H]glucose and hyperinsulinemic-normoglycemic clamps, hepatic lipid content (HCL) and body fat volumes by magnetic resonance spectroscopy/imaging before and after intervention. RESULTS Despite comparable weight loss, HCL decreased more in non-carriers (-65 %) than in G-allele carriers (-36 %) upon HF-RM + C diet (both p < 0.05 vs baseline and between groups), but only among non-carriers (-46 %, p < 0.05 vs baseline) upon LF + RM-C. Upon HF-RM + C diet, increase in insulin sensitivity was not different between carriers (+27 % p = 0.051 from baseline) and non-carriers (+21 %, p = 0.032 from baseline), p > 0.05 for between-group comparison. Upon LF + RM-C diet, both groups equally improved their whole-body insulin sensitivity (+42 % for non-carriers and +37 % for carriers, p < 0.05 vs baseline). Upon HF-RM + C diet, non-carriers decreased circulating interleukin-18 from baseline by -31 %, whereas, upon LF + RM-C diet, non-carriers decreased circulating anti-inflammatory interleukin-1 receptor antagonist levels by 14 % (both p < 0.05 vs baseline). CONCLUSIONS Humans with the PNPLA3 G-allele show modified dietary-induced effects on steatotic liver disease in type 2 diabetes despite body weight reduction. Registration at Clinicaltrials.gov, Identifier number: NCT01409330.
Collapse
Affiliation(s)
- Kalliopi Pafili
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Oana-Patricia Zaharia
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Klaus Strassburger
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
| | - Birgit Knebel
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
| | - Christian Herder
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Maximilian Huttasch
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Yanislava Karusheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
| | - Stefan Kabisch
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Department of Endocrinology and Metabolic Medicine, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Bettina Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany; Bayer AG, Research and Development Pharmaceuticals, Aprather Weg 42113 Wuppertal, Germany
| | - Julia Szendroedi
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Department for Internal Medicine I, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
6
|
Vilar-Gomez E, Gawrieh S, Vuppalanchi R, Kettler C, Pike F, Samala N, Chalasani N. PNPLA3 rs738409, environmental factors and liver-related mortality in the US population. J Hepatol 2025; 82:571-581. [PMID: 39389267 DOI: 10.1016/j.jhep.2024.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND & AIMS Little is known about the interplay between patatin-like phospholipase domain-containing protein 3 (PNPLA3 rs738409 C>G), environmental factors, and the risk of liver-related death. METHODS A total of 4,361 adults were selected from NHANES III, 1991-1994. All participants were linked to the National Death Index until 2019 (mean follow-up: 23.2 years). Liver-related death was the study outcome. Associations of PNPLA3, diet, light alcohol intake, smoking, and BMI (kg/m2) with liver-related death were examined using competing risk regression models. RESULTS The PNPLA3 G-allele was significantly associated with liver-related death (adjusted subhazard ratio [adj.sHR] 2.9, 95% CI 1.4-5.8). Light alcohol intake (adj.sHR 2.2, 95% CI 1.1-4.5), top quartiles of monounsaturated fat (adj.sHR 0.43, 95% CI 0.12-0.99) and cholesterol (adj.sHR 2.6, 95% CI 1.00-8.8), coffee intake ≥3 cups/day (adj.sHR 0.05, 95% CI 0.06-0.10), former/current smoking (adj.sHR 1.8, 95% CI 1.2-2.6), BMI (adj.sHR 1.1, 95% CI 1.03-1.2), and healthy eating index (adj.sHR 0.96, 95% CI 0.93-0.98) were associated with liver-related death. Joint effects between PNPLA3 and environmental factors showed that the risk of liver-related death was significantly increased in carriers of the G-allele with light alcohol intake (adj.sHR 3.7), higher consumption (top quartile) of cholesterol (adj.sHR 4.1), former (adj.sHR 4.3) or current (adj.sHR 3.5) smoking, or BMI ≥30 (adj.sHR 4.0) kg/m2. The effects of the G-allele on the risk of LRD were significantly attenuated in those with top quartile consumption of monounsaturated fat (adj.sHR 0.5) or coffee intake ≥3 cups/day (adj.sHR 0.09). Healthy eating index was inversely associated with liver-related death across all PNPLA3 genotypes (adj.sHR 0.94, 0.96, and 0.97 for CC, CG, and GG, respectively). CONCLUSIONS PNPLA3 is associated with liver-related death and this relationship is significantly modified by anthropometric and environmental factors. IMPACT AND IMPLICATIONS Light alcohol intake, dietary factors (healthy eating index, monounsaturated fat, cholesterol), coffee intake, smoking status, and BMI are independently associated with the risk of liver-related death. The increased inherited risk of liver-related death associated with PNPLA3 rs738409 appears to be attenuated by healthy eating index, monounsaturated fat, and coffee intake, and exacerbated by light alcohol intake, smoking, and BMI. Reducing harmful environmental exposures and increasing healthy eating habits may help mitigate the risk of liver-specific mortality even in those with high genetic risk.
Collapse
Affiliation(s)
- Eduardo Vilar-Gomez
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Samer Gawrieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Raj Vuppalanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Carla Kettler
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Francis Pike
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Niharika Samala
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
7
|
Yki-Järvinen H, Luukkonen PK. Function of PNPLA3 I148M-Lessons From In Vivo Studies in Humans. Liver Int 2025; 45:e70047. [PMID: 40052746 DOI: 10.1111/liv.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 05/13/2025]
Abstract
BACKGROUND AND AIMS Steatotic liver disease (SLD) associated with insulin resistance (IR) and the metabolic syndrome ('IR-SLD') increases the risk of liver disease, type 2 diabetes and cardiovascular disease (CVD). SLD associated with the PNPLA3 I148M variant ('PNPLA3-SLD') also predisposes individuals to liver disease but protects against type 2 diabetes and CVD. Although in real life the two causes of SLD commonly co-exist, the opposite effects of 'IR-SLD' and 'PNPLA3-SLD' on CVD and liver disease suggest their pathogenesis differs. METHODS AND RESULTS This review summarises human data comparing the effects of 'IR-SLD' and 'PNPLA3-SLD' on the human liver lipidome, hepatic handling of fatty acids, pathways of intrahepatocellular triglyceride synthesis, circulating lipids and lipoproteins and adipose tissue inflammation. We also discuss how steatosis in PNPLA3 I148M carriers leads to defects in mitochondrial function.
Collapse
Affiliation(s)
- Hannele Yki-Järvinen
- Department of Medicine, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Panu K Luukkonen
- Department of Medicine, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
8
|
Sehgal R, Jähnert M, Lazaratos M, Speckmann T, Schumacher F, Kleuser B, Ouni M, Jonas W, Schürmann A. Altered liver lipidome markedly overlaps with human plasma lipids at diabetes risk and reveals adipose-liver interaction. J Lipid Res 2025; 66:100767. [PMID: 40044043 PMCID: PMC11997378 DOI: 10.1016/j.jlr.2025.100767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Present study explores the role of liver lipidome in driving T2D-associated metabolic changes. Elevated liver triacylglycerols, reduced PUFAs, and 86 differentially abundant lipid species were identified in diabetes-prone mice. Of these altered lipid species, 82 markedly overlap with human plasma lipids associated with T2D/CVD risk. Pathway enrichment highlighted sphingolipid metabolism, however, only five of all genes involved in the pathway were differentially expressed in the liver. Interestingly, overlap with adipose tissue transcriptome was much higher (57 genes), pointing toward an active adipose-liver interaction. Next, the integration of liver lipidome and transcriptome identified strongly correlated lipid-gene networks highlighting ceramide [Cer(22:0)], dihydroceramide(24:1), and triacylglycerol(58:6) playing a central role in transcriptional regulation. Putative molecular targets of Cer(22:0) were altered (Cyp3a44, Tgf-β1) in primary mouse hepatocytes treated with Cer(22:0). Early alteration of liver lipidome markedly depends on adipose tissue expression pattern and provides substantial evidence linking early liver lipidome alterations and risk of T2D.
Collapse
Affiliation(s)
- Ratika Sehgal
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Michail Lazaratos
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Thilo Speckmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | | - Burkhard Kleuser
- Freie Universität Berlin, Institute of Pharmacy, Berlin, Germany
| | - Meriem Ouni
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
| |
Collapse
|
9
|
Mercurio G, Giacco A, Scopigno N, Vigliotti M, Goglia F, Cioffi F, Silvestri E. Mitochondria at the Crossroads: Linking the Mediterranean Diet to Metabolic Health and Non-Pharmacological Approaches to NAFLD. Nutrients 2025; 17:1214. [PMID: 40218971 PMCID: PMC11990101 DOI: 10.3390/nu17071214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing global health concern that is closely linked to metabolic syndrome, yet no approved pharmacological treatment exists. The Mediterranean diet (MD) emerged as a first-line dietary intervention for NAFLD, offering metabolic and hepatoprotective benefits. Now conceptualized as a complex chemical matrix rich in bioactive compounds, the MD exerts antioxidant and anti-inflammatory effects, improving insulin sensitivity and lipid metabolism. Mitochondria play a central role in NAFLD pathophysiology, influencing energy metabolism, oxidative stress, and lipid homeostasis. Emerging evidence suggests that the MD's bioactive compounds enhance mitochondrial function by modulating oxidative phosphorylation, biogenesis, and mitophagy. However, most research has focused on individual compounds rather than the MD as a whole, leaving gaps in understanding its collective impact as a complex dietary pattern. This narrative review explores how the MD and its bioactive compounds influence mitochondrial health in NAFLD, highlighting key pathways such as mitochondrial substrate control, dynamics, and energy efficiency. A literature search was conducted to identify relevant studies on the MD, mitochondria, and NAFLD. While the search was promising, our understanding remains incomplete, particularly when current knowledge is limited by the lack of mechanistic and comprehensive studies on the MD's holistic impact. Future research integrating cutting-edge experimental approaches is needed to elucidate the intricate diet-mitochondria interactions. A deeper understanding of how the MD influences mitochondrial health in NAFLD is essential for developing precision-targeted nutritional strategies that can effectively prevent and manage the disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elena Silvestri
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100 Benevento, Italy; (G.M.); (A.G.); (N.S.); (M.V.); (F.G.); (F.C.)
| |
Collapse
|
10
|
Huang DQ, Wong VWS, Rinella ME, Boursier J, Lazarus JV, Yki-Järvinen H, Loomba R. Metabolic dysfunction-associated steatotic liver disease in adults. Nat Rev Dis Primers 2025; 11:14. [PMID: 40050362 DOI: 10.1038/s41572-025-00599-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/09/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the umbrella term that comprises metabolic dysfunction-associated steatotic liver, or isolated hepatic steatosis, through to metabolic dysfunction-associated steatohepatitis, the progressive necroinflammatory disease form that can progress to fibrosis, cirrhosis and hepatocellular carcinoma. MASLD is estimated to affect more than one-third of adults worldwide. MASLD is closely associated with insulin resistance, obesity, gut microbial dysbiosis and genetic risk factors. The obesity epidemic and the growing prevalence of type 2 diabetes mellitus greatly contribute to the increasing burden of MASLD. The treatment and prevention of major metabolic comorbidities such as type 2 diabetes mellitus and obesity will probably slow the growth of MASLD. In 2023, the field decided on a new nomenclature and agreed on a set of research and action priorities, and in 2024, the US FDA approved the first drug, resmetirom, for the treatment of non-cirrhotic metabolic dysfunction-associated steatohepatitis with moderate to advanced fibrosis. Reliable, validated biomarkers that can replace histology for patient selection and primary end points in MASH trials will greatly accelerate the drug development process. Additionally, noninvasive tests that can reliably determine treatment response or predict response to therapy are warranted. Sustained efforts are required to combat the burden of MASLD by tackling metabolic risk factors, improving risk stratification and linkage to care, and increasing access to therapeutic agents and non-pharmaceutical interventions.
Collapse
Affiliation(s)
- Daniel Q Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Vincent W S Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Mary E Rinella
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Jerome Boursier
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Centre Hospitalier Universitaire d'Angers, Angers, France
- Laboratoire HIFIH, SFR ICAT 4208, Université d'Angers, Angers, France
| | - Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, San Diego, CA, USA.
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, USA.
| |
Collapse
|
11
|
Pascoa TC, Pike ACW, Tautermann CS, Chi G, Traub M, Quigley A, Chalk R, Štefanić S, Thamm S, Pautsch A, Carpenter EP, Schnapp G, Sauer DB. Structural basis of the mechanism and inhibition of a human ceramide synthase. Nat Struct Mol Biol 2025; 32:431-440. [PMID: 39528795 PMCID: PMC11919693 DOI: 10.1038/s41594-024-01414-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Ceramides are bioactive sphingolipids crucial for regulating cellular metabolism. Ceramides and dihydroceramides are synthesized by six ceramide synthase (CerS) enzymes, each with specificity for different acyl-CoA substrates. Ceramide with a 16-carbon acyl chain (C16 ceramide) has been implicated in obesity, insulin resistance and liver disease and the C16 ceramide-synthesizing CerS6 is regarded as an attractive drug target for obesity-associated disease. Despite their importance, the molecular mechanism underlying ceramide synthesis by CerS enzymes remains poorly understood. Here we report cryo-electron microscopy structures of human CerS6, capturing covalent intermediate and product-bound states. These structures, along with biochemical characterization, reveal that CerS catalysis proceeds through a ping-pong reaction mechanism involving a covalent acyl-enzyme intermediate. Notably, the product-bound structure was obtained upon reaction with the mycotoxin fumonisin B1, yielding insights into its inhibition of CerS. These results provide a framework for understanding CerS function, selectivity and inhibition and open routes for future drug discovery.
Collapse
Affiliation(s)
- Tomas C Pascoa
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Ashley C W Pike
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michael Traub
- Boehringer Ingelheim Pharma, GmbH & Co. KG, Biberach, Germany
| | - Andrew Quigley
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Membrane Protein Laboratory, Research Complex at Harwell, Diamond Light Source, Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Rod Chalk
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Saša Štefanić
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Zürich, Switzerland
- Nanobody Service Facility, University of Zürich, AgroVet-Strickhof, Lindau, Switzerland
| | - Sven Thamm
- Boehringer Ingelheim Pharma, GmbH & Co. KG, Biberach, Germany
| | | | - Elisabeth P Carpenter
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Gisela Schnapp
- Boehringer Ingelheim Pharma, GmbH & Co. KG, Biberach, Germany.
| | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Stefan N, Yki-Järvinen H, Neuschwander-Tetri BA. Metabolic dysfunction-associated steatotic liver disease: heterogeneous pathomechanisms and effectiveness of metabolism-based treatment. Lancet Diabetes Endocrinol 2025; 13:134-148. [PMID: 39681121 DOI: 10.1016/s2213-8587(24)00318-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 12/18/2024]
Abstract
The global epidemic of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing worldwide. People with MASLD can progress to cirrhosis and hepatocellular carcinoma and are at increased risk of developing type 2 diabetes, cardiovascular disease, chronic kidney disease, and extrahepatic cancers. Most people with MASLD die from cardiac-related causes. This outcome is attributed to the shared pathogenesis of MASLD and cardiometabolic diseases, involving unhealthy dietary habits, dysfunctional adipose tissue, insulin resistance, and subclinical inflammation. In addition, the steatotic and inflamed liver affects the vasculature and heart via increased glucose production and release of procoagulant factors, dyslipidaemia, and dysregulated release of hepatokines and microRNAs. However, there is substantial heterogeneity in the contributors to the pathophysiology of MASLD, which might influence its rate of progression, its relationship with cardiometabolic diseases, and the response to therapy. The most effective non-pharmacological treatment approaches for people with MASLD include weight loss. Paradoxically, some effective pharmacological approaches to improve liver health in people with MASLD are associated with no change in bodyweight or even with weight gain, and similar response heterogeneity has been observed for changes in cardiometabolic risk factors. In this Review, we address the heterogeneity of MASLD with respect to its pathogenesis, outcomes, and metabolism-based treatment responses. Although there is currently insufficient evidence for the implementation of precision medicine for risk prediction, prevention, and treatment of MASLD, we discuss whether knowledge about this heterogeneity might help achieving this goal in the future.
Collapse
Affiliation(s)
- Norbert Stefan
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany.
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | |
Collapse
|
13
|
Srnic N, Westcott F, Caney E, Hodson L. Dietary fat quantity and composition influence hepatic lipid metabolism and metabolic disease risk in humans. Dis Model Mech 2025; 18:dmm050878. [PMID: 39878508 PMCID: PMC11810042 DOI: 10.1242/dmm.050878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The excessive accumulation of intrahepatic triglyceride (IHTG) in the liver is a risk factor for metabolic diseases, including type 2 diabetes and cardiovascular disease. IHTG can excessively accumulate owing to imbalances in the delivery, synthesis, storage and disposal of fat to, in and from the liver. Although obesity is strongly associated with IHTG accumulation, emerging evidence suggests that the composition of dietary fat, in addition to its quantity, plays a role in mediating IHTG accumulation. Evidence from human cross-sectional and interventional studies indicates that diets enriched with saturated fat compared to other fat types and carbohydrates produce divergent effects on IHTG content. However, the mechanistic reasons for these observations remain unknown. Given the challenges of investigating such mechanisms in humans, cellular models are needed that can recapitulate human hepatocyte fatty acid metabolism. Here, we review what is known from human studies about how dietary fat, its quantity and composition contribute to IHTG accumulation. We also explore the effects of fatty acid composition on hepatocellular fat metabolism from data generated in cellular models to help explain the divergences observed in in vivo studies.
Collapse
Affiliation(s)
- Nikola Srnic
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Felix Westcott
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Eleanor Caney
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK
| |
Collapse
|
14
|
Imierska M, Zabielski P, Roszczyc-Owsiejczuk K, Pogodzińska K, Błachnio-Zabielska A. Impact of reduced hepatic ceramide levels in high-fat diet mice on glucose metabolism. J Nutr Biochem 2025; 135:109785. [PMID: 39427846 DOI: 10.1016/j.jnutbio.2024.109785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Dysregulation of insulin action in hepatocytes, common in obesity, significantly contributes to insulin resistance, type 2 diabetes, and metabolic syndrome. Previous research highlights ceramides' role in these conditions. This study explores the impact of ceramides by silencing the serine palmitoyltransferase (Sptlc2) gene, crucial for the initial ceramide biosynthesis, using hydrodynamic gene delivery. Male C57BL/6 mice were randomly divided into three groups: one on a low-fat diet (LFD) receiving scrambled shRNA plasmids, another on a high-fat diet (HFD) with scrambled shRNA plasmids, and a third on HFD with a plasmid targeting Sptlc2. Analyses included RT-PCR for gene expression, western blot for protein levels, and UHPLC/MS/MS for lipid profiling. Glucose metabolism was evaluated via oral glucose tolerance tests, homeostatic model assessment of insulin resistance, and glucose-6-phosphate analysis. Results showed that HFD induces insulin resistance by inhibiting insulin signaling and increasing active lipid levels in hepatocytes. Sptlc2 silencing reduced ceramide accumulation, improving insulin signaling and glucose metabolism. Notably, ceramide synthesis inhibition did not significantly affect other lipid levels, highlighting ceramide's critical role in hepatic insulin resistance.
Collapse
Affiliation(s)
- Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
| | - Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
15
|
Wang S, Jin Z, Wu B, Morris AJ, Deng P. Role of dietary and nutritional interventions in ceramide-associated diseases. J Lipid Res 2025; 66:100726. [PMID: 39667580 PMCID: PMC11754522 DOI: 10.1016/j.jlr.2024.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
Ceramides are important intermediates in sphingolipid metabolism and serve as signaling molecules with independent biological significance. Elevated cellular and circulating ceramide levels are consistently associated with pathological conditions including cardiometabolic diseases, neurological diseases, autoimmune diseases, and cancers. Although pharmacological inhibition of ceramide formation often protects against these diseases in animal models, pharmacological modulation of ceramides in humans remains impractical. Dietary interventions including the Mediterranean diet, lacto-ovo-vegetarian diet, calorie-restricted diet, restriction of dairy product consumption, and dietary supplementation with polyunsaturated fatty acids, dietary fibers, and polyphenols, all have beneficial effects on modulating ceramide levels. Mechanistic insights into these interventions are discussed. This article reviews the relationships between ceramides and disease pathogenesis, with a focus on dietary intervention as a viable strategy for lowering the concentration of circulating ceramides.
Collapse
Affiliation(s)
- Shengnan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zihui Jin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Biyu Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Andrew J Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Affairs Healthcare System, Little Rock, Arkansas, USA
| | - Pan Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
16
|
Misceo D, Mocciaro G, D'Amore S, Vacca M. Diverting hepatic lipid fluxes with lifestyles revision and pharmacological interventions as a strategy to tackle steatotic liver disease (SLD) and hepatocellular carcinoma (HCC). Nutr Metab (Lond) 2024; 21:112. [PMID: 39716321 DOI: 10.1186/s12986-024-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Steatotic liver disease (SLD) and Hepatocellular Carcinoma (HCC) are characterised by a substantial rewiring of lipid fluxes caused by systemic metabolic unbalances and/or disrupted intracellular metabolic pathways. SLD is a direct consequence of the interaction between genetic predisposition and a chronic positive energy balance affecting whole-body energy homeostasis and the function of metabolically-competent organs. In this review, we discuss how the impairment of the cross-talk between peripheral organs and the liver stalls glucose and lipid metabolism, leading to unbalances in hepatic lipid fluxes that promote hepatic fat accumulation. We also describe how prolonged metabolic stress builds up toxic lipid species in the liver, and how lipotoxicity and metabolic disturbances drive disease progression by promoting a chronic activation of wound healing, leading to fibrosis and HCC. Last, we provide a critical overview of current state of the art (pre-clinical and clinical evidence) regarding mechanisms of action and therapeutic efficacy of candidate SLD treatment options, and their potential to interfere with SLD/HCC pathophysiology by diverting lipids away from the liver therefore improving metabolic health.
Collapse
Affiliation(s)
- Davide Misceo
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gabriele Mocciaro
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK
| | - Simona D'Amore
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Clinica Medica "G. Baccelli", "Aldo Moro" University of Bari, 70124, Bari, Italy.
| | - Michele Vacca
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK.
| |
Collapse
|
17
|
Heymann CJF, Mak AL, Holleboom AG, Verheij J, Shiri-Sverdlov R, van Mil SWC, Tushuizen ME, Koek GH, Grefhorst A. The plasma lipidome varies with the severity of metabolic dysfunction-associated steatotic liver disease. Lipids Health Dis 2024; 23:402. [PMID: 39696394 DOI: 10.1186/s12944-024-02380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is closely associated with many aspects of disturbed metabolic health. MASLD encompasses a wide spectrum of liver diseases, ranging from isolated steatosis to metabolic dysfunction-associated steatohepatitis (MASH), up to fibrosis, cirrhosis, and ultimately hepatocellular carcinoma. Limited noninvasive diagnostic tools are currently available to distinguish the various stages of MASLD and as such liver biopsy remains the gold standard for MASLD diagnostics. We aimed to explore whether the plasma lipidome and its variations can serve as a biomarker for MASLD stages. METHODS We investigated the plasma lipidome of 7 MASLD-free subjects and 32 individuals with MASLD, of whom 11 had MASH based on biopsy scoring. RESULTS Compared with the MASLD-free subjects, individuals with MASLD had higher plasma concentrations of sphingolipids, glycerolipids, and glycerophospholipids. Only plasma concentrations of ceramide-1-phosphate C1P(d45:1) and phosphatidylcholine PC(O-36:3), PC(O-38:3), and PC(36:2) differed significantly between presence of MASH in individuals with MASLD. Of these lipids, the first three have a very low relative plasma abundance, thus only PC(36:2) might serve as a biomarker with higher plasma concentrations in MASLD individuals without MASH compared to those with MASH. CONCLUSIONS Plasma lipids hold promise as biomarkers of MASLD stages, whereas plasma PC(36:2) concentrations would be able to distinguish individuals with MASH from those with MASLD without MASH.
Collapse
Affiliation(s)
- Clément J F Heymann
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Anne Linde Mak
- Department of Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Saskia W C van Mil
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Maarten E Tushuizen
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ger H Koek
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Tan EY, Muthiah MD, Sanyal AJ. Metabolomics at the cutting edge of risk prediction of MASLD. Cell Rep Med 2024; 5:101853. [PMID: 39657668 PMCID: PMC11722125 DOI: 10.1016/j.xcrm.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/12/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health threat globally. Management of patients afflicted with MASLD and research in this domain are limited by the lack of robust well-established non-invasive biomarkers for diagnosis, prognostication, and monitoring. The circulating metabolome reflects both the systemic metabo-inflammatory milieu and changes in the liver in affected individuals. In this review we summarize the available literature on changes in the different components of the metabolome in MASLD with a focus on changes that are linked to the presence of underlying steatohepatitis, severity of disease activity, and fibrosis stage. We further summarize the existing literature around biomarker panels that are derived from interrogation of the metabolome. Their relevance to disease biology and utility in practice are also discussed. We further highlight potential direction for future studies particularly to ensure they are fit for purpose and suitable for widespread use.
Collapse
Affiliation(s)
- En Ying Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.
| | - Mark D Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
19
|
Carli F, Della Pepa G, Sabatini S, Vidal Puig A, Gastaldelli A. Lipid metabolism in MASLD and MASH: From mechanism to the clinic. JHEP Rep 2024; 6:101185. [PMID: 39583092 PMCID: PMC11582433 DOI: 10.1016/j.jhepr.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 11/26/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH) is recognised as a metabolic disease characterised by excess intrahepatic lipid accumulation due to lipid overflow and synthesis, alongside impaired oxidation and/or export of these lipids. But where do these lipids come from? The main pathways related to hepatic lipid accumulation are de novo lipogenesis and excess fatty acid transport to the liver (due to increased lipolysis, adipose tissue insulin resistance, as well as excess dietary fatty acid intake, in particular of saturated fatty acids). Not only triglycerides but also other lipids are secreted by the liver and are associated with a worse histological profile in MASH, as shown by lipidomics. Herein, we review the role of lipid metabolism in MASLD/MASH and discuss the impact of weight loss (diet, bariatric surgery, GLP-1RAs) or other pharmacological treatments (PPAR or THRβ agonists) on hepatic lipid metabolism, lipidomics, and the resolution of MASH.
Collapse
Affiliation(s)
- Fabrizia Carli
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Giuseppe Della Pepa
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Silvia Sabatini
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Antonio Vidal Puig
- Metabolic Research Laboratories, Medical Research Council Institute of Metabolic Science University of Cambridge, Cambridge CB2 0QQ UK
- Centro de Investigacion Principe Felipe Valencia 46012 Spain
- Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China
| | - Amalia Gastaldelli
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| |
Collapse
|
20
|
Lan T, Tacke F. Diagnostics and omics technologies for the detection and prediction of metabolic dysfunction-associated steatotic liver disease-related malignancies. Metabolism 2024; 161:156015. [PMID: 39216799 DOI: 10.1016/j.metabol.2024.156015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise, making it the leading etiology of chronic liver diseases and a prime cause of liver-related mortality. MASLD can progress into steatohepatitis (termed MASH), fibrosis, cirrhosis, and ultimately cancer. MASLD is associated with increased risks of hepatocellular carcinoma (HCC) and also extrahepatic malignancies, which can develop in both cirrhotic and non-cirrhotic patients, emphasizing the importance of identifying patients with MASLD at risk of developing MASLD-associated malignancies. However, the optimal screening, diagnostic, and risk stratification strategies for patients with MASLD at risk of cancer are still under debate. Individuals with MASH-associated cirrhosis are recommended to undergo surveillance for HCC (e.g. by ultrasound and biomarkers) every six months. No specific screening approaches for MASLD-related malignancies in non-cirrhotic cases are established to date. The rapidly developing omics technologies, including genetics, metabolomics, and proteomics, show great potential for discovering non-invasive markers to fulfill this unmet need. This review provides an overview on the incidence and mortality of MASLD-associated malignancies, current strategies for HCC screening, surveillance and diagnosis in patients with MASLD, and the evolving role of omics technologies in the discovery of non-invasive markers for the prediction and risk stratification of MASLD-associated HCC.
Collapse
Affiliation(s)
- Tian Lan
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany; Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
21
|
Januario E, Barakat A, Rajsundar A, Fatima Z, Nanda Palienkar V, Bullapur AV, Singh Brar S, Kharel P, Koyappathodi Machingal MM, Backosh A. A Comprehensive Review of Pathophysiological Link Between Non-alcoholic Fatty Liver Disease, Insulin Resistance, and Metabolic Syndrome. Cureus 2024; 16:e75677. [PMID: 39807459 PMCID: PMC11725408 DOI: 10.7759/cureus.75677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic condition characterized by hepatic steatosis in the absence of significant alcohol consumption and is increasingly recognized as the hepatic manifestation of metabolic syndrome (MetS). This review aims to explore the molecular mechanisms underlying the interaction between NAFLD, insulin resistance (IR), and MetS, with a focus on identifying therapeutic targets. A comprehensive review of existing literature on NAFLD, IR, and MetS was conducted. The review indicates that IR contributes to hepatic lipid accumulation through increased lipolysis, elevated free fatty acid flux, and impaired fatty acid oxidation, while MetS exacerbates the condition by promoting visceral adiposity, chronic inflammation, and impaired lipid metabolism. Additionally, dysbiosis and increased intestinal permeability in the gut-liver axis worsen IR, leading to a vicious cycle of metabolic dysfunction. In conclusion, addressing these interconnected pathways could enhance therapeutic strategies and reduce the burden of NAFLD-related complications.
Collapse
Affiliation(s)
| | - Aly Barakat
- Internal Medicine, Medway NHS Foundation Trust, Gillingham, GBR
| | | | - Zahra Fatima
- Medicine, Dr. VRK Women's Medical College, Aziznagar, IND
| | | | | | | | - Punam Kharel
- Medicine, Sir Salimullah Medical College, Dhaka, BGD
| | | | - Amena Backosh
- Orthopedics, Medway Maritime Hospital, Gillingham, GBR
| |
Collapse
|
22
|
Sookoian S, Rotman Y, Valenti L. Genetics of Metabolic Dysfunction-associated Steatotic Liver Disease: The State of the Art Update. Clin Gastroenterol Hepatol 2024; 22:2177-2187.e3. [PMID: 39094912 PMCID: PMC11512675 DOI: 10.1016/j.cgh.2024.05.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 08/04/2024]
Abstract
Recent advances in the genetics of metabolic dysfunction-associated steatotic liver disease (MASLD) are gradually revealing the mechanisms underlying the heterogeneity of the disease and have shown promising results in patient stratification. Genetic characterization of the disease has been rapidly developed using genome-wide association studies, exome-wide association studies, phenome-wide association studies, and whole exome sequencing. These advances have been powered by the increase in computational power, the development of new analytical algorithms, including some based on artificial intelligence, and the recruitment of large and well-phenotyped cohorts. This review presents an update on genetic studies that emphasize new biological insights from next-generation sequencing approaches. Additionally, we discuss innovative methods for discovering new genetic loci for MASLD, including rare variants. To comprehensively manage MASLD, it is important to stratify risks. Therefore, we present an update on phenome-wide association study associations, including extreme phenotypes. Additionally, we discuss whether polygenic risk scores and targeted sequencing are ready for clinical use. With particular focus on precision medicine, we introduce concepts such as the interplay between genetics and the environment in modulating genetic risk with lifestyle or standard therapies. A special chapter is dedicated to gene-based therapeutics. The limitations of approved pharmacological approaches are discussed, and the potential of gene-related mechanisms in therapeutic development is reviewed, including the decision to perform genetic testing in patients with MASLD.
Collapse
Affiliation(s)
- Silvia Sookoian
- Clinical and Molecular Hepatology. Translational Health Research Center (CENITRES). Maimónides University. Buenos Aires, Argentina
- Faculty of Health Science. Maimónides University. Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yaron Rotman
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luca Valenti
- Precision Medicine - Biological Resource Center, Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
23
|
Gancheva S, Roden M, Castera L. Diabetes as a risk factor for MASH progression. Diabetes Res Clin Pract 2024; 217:111846. [PMID: 39245423 DOI: 10.1016/j.diabres.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Non-alcoholic (now: metabolic) steatohepatitis (MASH) is the progressive inflammatory form of metabolic dysfunction-associated steatotic liver disease (MASLD), which often coexists and mutually interacts with type 2 diabetes (T2D), resulting in worse hepatic and cardiovascular outcomes. Understanding the intricate mechanisms of diabetes-related MASH progression is crucial for effective therapeutic strategies. This review delineates the multifaceted pathways involved in this interplay and explores potential therapeutic implications. The synergy between adipose tissue, gut microbiota, and hepatic alterations plays a pivotal role in disease progression. Adipose tissue dysfunction, particularly in the visceral depot, coupled with dysbiosis in the gut microbiota, exacerbates hepatic injury and insulin resistance. Hepatic lipid accumulation, oxidative stress, and endoplasmic reticulum stress further potentiate inflammation and fibrosis, contributing to disease severity. Dietary modification with weight reduction and exercise prove crucial in managing T2D-related MASH. Additionally, various well-known but also novel anti-hyperglycemic medications exhibit potential in reducing liver lipid content and, in some cases, improving MASH histology. Therapies targeting incretin receptors show promise in managing T2D-related MASH, while thyroid hormone receptor-β agonism has proven effective as a treatment of MASH and fibrosis.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Laurent Castera
- Department of Hepatology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France; Université Paris-Cité, INSERM UMR 1149, Centre de Recherche sur l'Inflammation Paris, Montmartre, Paris, France.
| |
Collapse
|
24
|
Neeland IJ, Lim S, Tchernof A, Gastaldelli A, Rangaswami J, Ndumele CE, Powell-Wiley TM, Després JP. Metabolic syndrome. Nat Rev Dis Primers 2024; 10:77. [PMID: 39420195 DOI: 10.1038/s41572-024-00563-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
The metabolic syndrome (MetS) is a multiplex modifiable risk factor for cardiovascular disease, type 2 diabetes mellitus and other health outcomes, and is a major challenge to clinical practice and public health. The rising global prevalence of MetS, driven by urbanization, sedentary lifestyles and dietary changes, underlines the urgency of addressing this syndrome. We explore the complex underlying mechanisms, including genetic predisposition, insulin resistance, accumulation of dysfunctional adipose tissue and ectopic lipids in abdominal obesity, systemic inflammation and dyslipidaemia, and how they contribute to the clinical manifestations of MetS. Diagnostic approaches vary but commonly focus on abdominal obesity (assessed using waist circumference), hyperglycaemia, dyslipidaemia and hypertension, highlighting the need for population-specific and phenotype-specific diagnostic strategies. Management of MetS prioritizes lifestyle modifications, such as healthy dietary patterns, physical activity and management of excess visceral and ectopic adiposity, as foundational interventions. We also discuss emerging therapies, including new pharmacological treatments and surgical options, providing a forward-looking perspective on MetS research and care. This Primer aims to inform clinicians, researchers and policymakers about MetS complexities, advocating for a cohesive, patient-centred management and prevention strategy. Emphasizing the multifactorial nature of MetS, this Primer calls for integrated public health efforts, personalized care and innovative research to address this escalating health issue.
Collapse
Affiliation(s)
- Ian J Neeland
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Division of Cardiovascular Medicine, University Hospitals Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.
| | - André Tchernof
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Québec, Canada
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Janani Rangaswami
- Division of Nephrology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chiadi E Ndumele
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tiffany M Powell-Wiley
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Jean-Pierre Després
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Québec, Canada.
- VITAM - Centre de recherche en santé durable, Centre intégré universitaire de santé et de services sociaux de la Capitale-Nationale, Québec, Québec, Canada.
| |
Collapse
|
25
|
Das S, Finney AC, Anand SK, Rohilla S, Liu Y, Pandey N, Ghrayeb A, Kumar D, Nunez K, Liu Z, Arias F, Zhao Y, Pearson-Gallion BH, McKinney MP, Richard KSE, Gomez-Vidal JA, Abdullah CS, Cockerham ED, Eniafe J, Yurochko AD, Magdy T, Pattillo CB, Kevil CG, Razani B, Bhuiyan MS, Seeley EH, Galliano GE, Wei B, Tan L, Mahmud I, Surakka I, Garcia-Barrio MT, Lorenzi PL, Gottlieb E, Salido E, Zhang J, Orr AW, Liu W, Diaz-Gavilan M, Chen YE, Dhanesha N, Thevenot PT, Cohen AJ, Yurdagul A, Rom O. Inhibition of hepatic oxalate overproduction ameliorates metabolic dysfunction-associated steatohepatitis. Nat Metab 2024; 6:1939-1962. [PMID: 39333384 PMCID: PMC11495999 DOI: 10.1038/s42255-024-01134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/28/2024] [Indexed: 09/29/2024]
Abstract
The incidence of metabolic dysfunction-associated steatohepatitis (MASH) is on the rise, and with limited pharmacological therapy available, identification of new metabolic targets is urgently needed. Oxalate is a terminal metabolite produced from glyoxylate by hepatic lactate dehydrogenase (LDHA). The liver-specific alanine-glyoxylate aminotransferase (AGXT) detoxifies glyoxylate, preventing oxalate accumulation. Here we show that AGXT is suppressed and LDHA is activated in livers from patients and mice with MASH, leading to oxalate overproduction. In turn, oxalate promotes steatosis in hepatocytes by inhibiting peroxisome proliferator-activated receptor-α (PPARα) transcription and fatty acid β-oxidation and induces monocyte chemotaxis via C-C motif chemokine ligand 2. In male mice with diet-induced MASH, targeting oxalate overproduction through hepatocyte-specific AGXT overexpression or pharmacological inhibition of LDHA potently lowers steatohepatitis and fibrosis by inducing PPARα-driven fatty acid β-oxidation and suppressing monocyte chemotaxis, nuclear factor-κB and transforming growth factor-β targets. These findings highlight hepatic oxalate overproduction as a target for the treatment of MASH.
Collapse
Grants
- R01 HL162294 NHLBI NIH HHS
- R00 HL150233 NHLBI NIH HHS
- R01 DK134011 NIDDK NIH HHS
- HL138139 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL145753 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL141155 NHLBI NIH HHS
- HL159871 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL134569 NHLBI NIH HHS
- R01 DK136685 NIDDK NIH HHS
- HL134569 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL153710 NHLBI NIH HHS
- HL139755 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL153710 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL159871 NHLBI NIH HHS
- P01 AI127335 NIAID NIH HHS
- DK136685 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- HL133497 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138139 NHLBI NIH HHS
- 24POST1196650 American Heart Association (American Heart Association, Inc.)
- HL141155 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL109946 NHLBI NIH HHS
- P20 GM134974 NIGMS NIH HHS
- K99 HL150233 NHLBI NIH HHS
- HL109946 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 19POST34380224 American Heart Association (American Heart Association, Inc.)
- 24POST1199805 American Heart Association (American Heart Association, Inc.)
- DK134011 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- R01 AI056077 NIAID NIH HHS
- 23POST1026505 American Heart Association (American Heart Association, Inc.)
- R01 HL158546 NHLBI NIH HHS
- HL145131 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 20CDA3560123 American Heart Association (American Heart Association, Inc.)
- AI127335 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- R00 HL145131 NHLBI NIH HHS
- R01 HL145753 NHLBI NIH HHS
- R01 HL139755 NHLBI NIH HHS
- HL145753-01S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL162294 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL150233 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL167758 NHLBI NIH HHS
- K99 HL145131 NHLBI NIH HHS
- HL145753-03S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL167758 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL172970 NHLBI NIH HHS
- P20GM134974 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL173972 NHLBI NIH HHS
- T32 HL155022 NHLBI NIH HHS
- R56 AI159672 NIAID NIH HHS
- R56-AI159672 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- DK131859 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- F31 DK131859 NIDDK NIH HHS
- R01 HL133497 NHLBI NIH HHS
- HL158546 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- RP190617 Cancer Prevention and Research Institute of Texas (Cancer Prevention Research Institute of Texas)
- U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
Collapse
Affiliation(s)
- Sandeep Das
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Sumati Rohilla
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Yuhao Liu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Nilesh Pandey
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Alia Ghrayeb
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Kelley Nunez
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Fabio Arias
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Granada, Spain
| | - Ying Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Brenna H Pearson-Gallion
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - M Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Koral S E Richard
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Jose A Gomez-Vidal
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Granada, Spain
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Elizabeth D Cockerham
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Joseph Eniafe
- Department of Microbiology and Immunology, Center of Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Center of Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Tarek Magdy
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Babak Razani
- Division of Cardiology and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Erin H Seeley
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | | | - Bo Wei
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Iqbal Mahmud
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ida Surakka
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eyal Gottlieb
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Salido
- Department of Pathology, Hospital Universitario de Canarias, Universidad de La Laguna, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Tenerife, Spain
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Monica Diaz-Gavilan
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Granada, Spain
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Paul T Thevenot
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Ari J Cohen
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
- Multi-Organ Transplant Institute, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| |
Collapse
|
26
|
Della Pepa G, Patrício BG, Carli F, Sabatini S, Astiarraga B, Ferrannini E, Camastra S, Gastaldelli A. GLP-1 Receptor Agonist Treatment Improves Fasting and Postprandial Lipidomic Profiles Independently of Diabetes and Weight Loss. Diabetes 2024; 73:1605-1614. [PMID: 38976482 DOI: 10.2337/db23-0972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Treatment with glucagon-like peptide 1 receptor agonists reduces liver steatosis and cardiometabolic risk (CMR). Few data are available on lipid metabolism, and no information is available on the postprandial lipidomic profile. Thus, we investigated how exenatide treatment changes lipid metabolism and composition during fasting and after a mixed-meal tolerance test (MMTT) in adults with severe obesity without diabetes. Thirty individuals (26 females and 4 males, 30-60 years old, BMI >40 kg/m2, HbA1c 5.76%) were assigned (1:1) to diet with exenatide 10 μg twice daily treatment (n = 15) or without treatment as control (n = 15) for 3 months. Fasting and postprandial lipidomic profile (by liquid chromatography quadrupole time-of-flight mass spectrometry) and fatty acid metabolism (following a 6-h MMTT/tracer study) and composition (by gas chromatography-mass spectrometry) were evaluated before and after treatment. Both groups had slight weight loss (-5.5% vs. -1.9%, exenatide vs. control; P = 0.052). During fasting, exenatide, compared with control, reduced some ceramides (CERs) and lysophosphatidylcholines (LPCs) previously associated with CMR, while relatively increasing unsaturated phospholipid species (phosphatidylcholine [PC], LPC) with protective effects on CMR, although concentrations of total lipid species were unchanged. During MMTT, both groups showed suppressed lipolysis equal to baseline, but exenatide significantly lowered free fatty acid clearance and postprandial triacyclglycerol (TAG) concentrations, particularly saturated TAGs with 44-54 carbons. Exenatide also reduced some postprandial CERs, PCs, and LPCs previously linked to CMR. These changes in lipidomic profile remained statistically significant after adjusting for weight loss. Exenatide improved fasting and postprandial lipidomic profiles associated with CMR mainly by reducing saturated postprandial TAGs and CERs independently of weight loss and diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
| | - Bárbara G Patrício
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
- Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Fabrizia Carli
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
| | - Silvia Sabatini
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
| | - Brenno Astiarraga
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Pere Virgili Institute for Health Research, Terragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ele Ferrannini
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Amalia Gastaldelli
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
- Sant'Anna School of Advanced Studies, Pisa, Italy
| |
Collapse
|
27
|
Westcott FA, Nagarajan SR, Parry SA, Savic D, Green CJ, Marjot T, Johnson E, Cornfield T, Mózes FE, O’Rourke P, Mendall J, Dearlove D, Fielding B, Smith K, Tomlinson JW, Hodson L. Dissociation between liver fat content and fasting metabolic markers of selective hepatic insulin resistance in humans. Eur J Endocrinol 2024; 191:463-472. [PMID: 39353069 PMCID: PMC11497584 DOI: 10.1093/ejendo/lvae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/16/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVE Fasting hyperglycemia and hypertriglyceridemia are characteristic of insulin resistance (IR) and rodent work has suggested this may be due to selective hepatic IR, defined by increased hepatic gluconeogenesis and de novo lipogenesis (DNL), but this has not been shown in humans. DESIGN Cross-sectional study in men and women across a range of adiposity. METHODS Medication-free participants (n = 177) were classified as normoinsulinemic (NI) or hyperinsulinemic (HI) and as having low (LF) or high (HF) liver fat content measured by magnetic resonance spectroscopy. Fractional gluconeogenesis (frGNG) and hepatic DNL were measured using stable isotope tracer methodology following an overnight fast. RESULTS Although HI and HF groups had higher fasting plasma glucose and triglyceride concentrations when compared to NI and LF groups respectively, there was no difference in frGNG. However, HF participants tended to have lower frGNG than LF participants. HI participants had higher DNL compared to NI participants but there was no difference observed between liver fat groups. CONCLUSIONS Taken together, we found no metabolic signature of selective hepatic IR in fasting humans. DNL may contribute to hypertriglyceridemia in individuals with HI but not those with HF. Glycogenolysis and systemic glucose clearance may have a larger contribution to fasting hyperglycemia than gluconeogenesis, especially in those with HF, and these pathways should be considered for therapeutic targeting.
Collapse
Affiliation(s)
- Felix A Westcott
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Shilpa R Nagarajan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Sion A Parry
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
- Aston Medical School, Aston University, Birmingham, B4 7ET, United Kingdom
| | - Dragana Savic
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Charlotte J Green
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Thomas Marjot
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Elspeth Johnson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Thomas Cornfield
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Ferenc E Mózes
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Paige O’Rourke
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Jessica Mendall
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - David Dearlove
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Barbara Fielding
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Kieran Smith
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
- OCDEM, National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, OX3 7LE, United Kingdom
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
- OCDEM, National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, OX3 7LE, United Kingdom
| |
Collapse
|
28
|
Fitzgerald VK, Lutsiv T, McGinley JN, Neil ES, Playdon MC, Thompson HJ. Common Bean Suppresses Hepatic Ceramide Metabolism in a Mouse Model of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:3196. [PMID: 39339796 PMCID: PMC11434909 DOI: 10.3390/nu16183196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD), a condition linked to the ongoing obesity pandemic, is rapidly increasing worldwide. In turn, its multifactorial etiology is consistently associated with low dietary quality. Changing dietary macronutrient and phytochemical quality via incorporating cooked common bean into an obesogenic diet formulation has measurable health benefits on the occurrence of both obesity and hepatic steatosis in C57BL/6 mice. Methods: A cohort of C57BL/6 mice were randomized into experimental diets containing multiple dietary concentrations of common bean. The primary endpoint of this study was comparing metabolomic analyses from liver and plasma of different treatment groups. Additionally, RNA sequencing and protein expression analysis via nanocapillary immunoelectrophoresis were used to elucidate signaling mediators involved. Results: Herein, global metabolomic profiling of liver and plasma identified sphingolipids as a lipid subcategory on which bean consumption exerted significant effects. Of note, C16 and C18 ceramides were significantly decreased in bean-fed animals. Hepatic RNAseq data revealed patterns of transcript expression of genes involved in sphingolipid metabolism that were consistent with metabolite profiles. Conclusions: Bean incorporation into an otherwise obesogenic diet induces effects on synthesis, biotransformation, and degradation of sphingolipids that inhibit the accumulation of ceramide species that exert pathological activity. These effects are consistent with a mechanistic role for altered sphingolipid metabolism in explaining how bean inhibits the development of MASLD.
Collapse
Affiliation(s)
- Vanessa K Fitzgerald
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Tymofiy Lutsiv
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - John N McGinley
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Elizabeth S Neil
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Mary C Playdon
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Henry J Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
29
|
Abozaid YJ, Ayada I, van Kleef LA, Goulding NJ, Williams-Nguyen JS, Kaplan RC, de Knegt RJ, Wagenknecht LE, Palmer ND, Timpson NJ, Norris JM, Ida Chen YD, Ikram MA, Brouwer WP, Ghanbari M. Plasma Circulating Metabolites Associated With Steatotic Liver Disease and Liver Enzymes: A Multiplatform Population-Based Study. GASTRO HEP ADVANCES 2024; 4:100551. [PMID: 39877862 PMCID: PMC11772964 DOI: 10.1016/j.gastha.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/09/2024] [Indexed: 01/31/2025]
Abstract
Background and Aims Steatotic liver disease (SLD) is the most common chronic liver disease strongly associated with metabolic dysfunction, but its pathogenesis remains incompletely understood. Exploring plasma circulating metabolites may help in elucidating underlying mechanisms and identifying new biomarkers for SLD. Methods We examined cross-sectionally the association between plasma metabolites and SLD as well as liver enzymes using data from 4 population-based cohort studies (Rotterdam study, Avon Longitudinal Study of Parents and Children, The Insulin Resistance Atherosclerosis Family Study, and Study of Latinos). Metabolites were assessed in the Nightingale platform (n = 225 metabolites) by nuclear magnetic resonance spectroscopy and in the Metabolon platform (n = 991 metabolites) by ultra-high-performance liquid chromatography-mass spectrometry. Serum levels of liver enzymes (alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transpeptidase) were measured and SLD was diagnosed by ultrasound or computed tomography scan. Logistic and linear regression models were performed per cohort and meta-analyzed. A false discovery rate < 0.05 was considered as significant threshold. Results Several metabolites were significantly associated with SLD and liver enzymes, of which 21 metabolites were associated with both traits. The most significant associations were observed with phenylalanine, triglycerides in (high-density lipoprotein, intermediate-density lipoprotein, and small low-density lipoprotein), fatty acid (FA) ratios of (18:2 linoleic acid-to-total FA, omega 6 FA-to-total FA, and polyunsaturated FA-to-total FA) from the Nightingale and glutamate and sphingomyelin from the Metabolon platform. Other associated metabolites were mainly involved in lipid, amino acid, carbohydrates, and peptide metabolism. Conclusion Our study indicates a landscape of circulating metabolites associated with SLD. The identified metabolites may contribute to a better understanding of the metabolic pathways underlying SLD and hold promising for potential biomarkers in early diagnosis and monitoring of the disease.
Collapse
Affiliation(s)
- Yasir J. Abozaid
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ibrahim Ayada
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Laurens A. van Kleef
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Neil J. Goulding
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jessica S. Williams-Nguyen
- Department of Medical Education and Clinical Sciences, Washington State University, Elson S. Floyd College of Medicine, Seattle, Washington
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Robert J. de Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lynne E. Wagenknecht
- Department of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Nicholas J. Timpson
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jill M. Norris
- Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem Pieter Brouwer
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Willis SA, Malaikah S, Bawden SJ, Sherry AP, Sargeant JA, Coull NA, Bradley CR, Rowlands A, Naim I, Ennequin G, Yates T, Waheed G, Gowland P, Stensel DJ, Webb DR, Davies MJ, Aithal GP, King JA. Greater hepatic lipid saturation is associated with impaired glycaemic regulation in men with metabolic dysfunction-associated steatotic liver disease but is not altered by 6 weeks of exercise training. Diabetes Obes Metab 2024; 26:4030-4042. [PMID: 38978184 DOI: 10.1111/dom.15755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
AIMS To examine the impact of impaired glycaemic regulation (IGR) and exercise training on hepatic lipid composition in men with metabolic dysfunction-associated steatotic liver disease (MASLD). MATERIALS AND METHODS In Part A (cross-sectional design), 40 men with MASLD (liver proton density fat fraction [PDFF] ≥5.56%) were recruited to one of two groups: (1) normal glycaemic regulation (NGR) group (glycated haemoglobin [HbA1c] < 42 mmol∙mol-1 [<6.0%]; n = 14) or (2) IGR group (HbA1c ≥ 42 mmol∙mol-1 [≥6.0%]; n = 26). In Part B (randomized controlled trial design), participants in the IGR group were randomized to one of two 6-week interventions: (1) exercise training (EX; 70%-75% maximum heart rate; four sessions/week; n = 13) or (2) non-exercise control (CON; n = 13). Saturated (SI; primary outcome), unsaturated (UI) and polyunsaturated (PUI) hepatic lipid indices were determined using proton magnetic resonance spectroscopy. Additional secondary outcomes included liver PDFF, HbA1c, fasting plasma glucose (FPG), homeostatic model assessment of insulin resistance (HOMA-IR), peak oxygen uptake (VO2 peak), and plasma cytokeratin-18 (CK18) M65, among others. RESULTS In Part A, hepatic SI was higher and hepatic UI was lower in the IGR versus the NGR group (p = 0.038), and this hepatic lipid profile was associated with higher HbA1c levels, FPG levels, HOMA-IR and plasma CK18 M65 levels (rs ≥0.320). In Part B, hepatic lipid composition and liver PDFF were unchanged after EX versus CON (p ≥ 0.257), while FPG was reduced and VO2 peak was increased (p ≤ 0.030). ΔVO2 peak was inversely associated with Δhepatic SI (r = -0.433) and positively associated with Δhepatic UI and Δhepatic PUI (r ≥ 0.433). CONCLUSIONS Impaired glycaemic regulation in MASLD is characterized by greater hepatic lipid saturation; however, this composition is not altered by 6 weeks of moderate-intensity exercise training.
Collapse
Affiliation(s)
- Scott A Willis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| | - Sundus Malaikah
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Stephen J Bawden
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Aron P Sherry
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jack A Sargeant
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Nicole A Coull
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Christopher R Bradley
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Alex Rowlands
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Iyad Naim
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Gaël Ennequin
- Laboratory of Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Université of Clermont Auvergne, Clermont-Ferrand, France
| | - Thomas Yates
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Ghazala Waheed
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - David R Webb
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Melanie J Davies
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - James A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| |
Collapse
|
31
|
Ji Y, Duan Y, Li Y, Lu Q, Liu D, Yang Y, Chang R, Tian J, Yao W, Yin J, Gao X. A long-acting FGF21 attenuates metabolic dysfunction-associated steatohepatitis-related fibrosis by modulating NR4A1-mediated Ly6C phenotypic switch in macrophages. Br J Pharmacol 2024; 181:2923-2946. [PMID: 38679486 DOI: 10.1111/bph.16378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE Because of the absence of effective therapies for metabolic dysfunction-associated steatohepatitis (MASH), there is a rising interest in fibroblast growth factor 21 (FGF21) analogues due to their potential anti-fibrotic activities in MASH treatment. PsTag-FGF21, a long-acting FGF21 analogue, has demonstrated promising therapeutic effects in several MASH mouse models. However, its efficacy and mechanism against MASH-related fibrosis remain less well defined, compared with the specific mechanisms through which FGF21 improves glucose and lipid metabolism. EXPERIMENTAL APPROACH The effectiveness of PsTag-FGF21 was evaluated in two MASH-fibrosis models. Co-culture systems involving macrophages and hepatic stellate cells (HSCs) were employed for further assessment. Hepatic macrophages were selectively depleted by administering liposome-encapsulated clodronate via tail vein injections. RNA sequencing and cytokine profiling were conducted to identify key factors involved in macrophage-HSC crosstalk. KEY RESULTS We first demonstrated the significant attenuation of hepatic fibrosis by PsTag-FGF21 in two MASH-fibrosis models. Furthermore, we highlighted the crucial role of macrophage phenotypic switch in PsTag-FGF21-induced HSC deactivation. FGF21 was demonstrated to regulate macrophages in a PsTag-FGF21-like manner. NR4A1, a nuclear factor which is notably down-regulated in human livers with MASH, was identified as a mediator responsible for PsTag-FGF21-induced phenotypic switch. Transcriptional control over insulin-like growth factor 1, a crucial factor in macrophage-HSC crosstalk, was exerted by the intrinsically disordered region domain of NR4A1. CONCLUSION AND IMPLICATIONS Our results have elucidated the previously unclear mechanisms through which PsTag-FGF21 treats MASH-related fibrosis and identified NR4A1 as a potential therapeutic target for fibrosis.
Collapse
Affiliation(s)
- Yue Ji
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yiliang Duan
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Li
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qingzhou Lu
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yifan Yang
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jing Tian
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jun Yin
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
32
|
Thiele M, Villesen IF, Niu L, Johansen S, Sulek K, Nishijima S, Espen LV, Keller M, Israelsen M, Suvitaival T, Zawadzki AD, Juel HB, Brol MJ, Stinson SE, Huang Y, Silva MCA, Kuhn M, Anastasiadou E, Leeming DJ, Karsdal M, Matthijnssens J, Arumugam M, Dalgaard LT, Legido-Quigley C, Mann M, Trebicka J, Bork P, Jensen LJ, Hansen T, Krag A. Opportunities and barriers in omics-based biomarker discovery for steatotic liver diseases. J Hepatol 2024; 81:345-359. [PMID: 38552880 DOI: 10.1016/j.jhep.2024.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 07/26/2024]
Abstract
The rising prevalence of liver diseases related to obesity and excessive use of alcohol is fuelling an increasing demand for accurate biomarkers aimed at community screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognostication and prediction of treatment efficacy. Breakthroughs in omics methodologies and the power of bioinformatics have created an excellent opportunity to apply technological advances to clinical needs, for instance in the development of precision biomarkers for personalised medicine. Via omics technologies, biological processes from the genes to circulating protein, as well as the microbiome - including bacteria, viruses and fungi, can be investigated on an axis. However, there are important barriers to omics-based biomarker discovery and validation, including the use of semi-quantitative measurements from untargeted platforms, which may exhibit high analytical, inter- and intra-individual variance. Standardising methods and the need to validate them across diverse populations presents a challenge, partly due to disease complexity and the dynamic nature of biomarker expression at different disease stages. Lack of validity causes lost opportunities when studies fail to provide the knowledge needed for regulatory approvals, all of which contributes to a delayed translation of these discoveries into clinical practice. While no omics-based biomarkers have matured to clinical implementation, the extent of data generated has enabled the hypothesis-free discovery of a plethora of candidate biomarkers that warrant further validation. To explore the many opportunities of omics technologies, hepatologists need detailed knowledge of commonalities and differences between the various omics layers, and both the barriers to and advantages of these approaches.
Collapse
Affiliation(s)
- Maja Thiele
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ida Falk Villesen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lili Niu
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stine Johansen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | | | - Suguru Nishijima
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lore Van Espen
- KU Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Marisa Keller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mads Israelsen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | | | - Helene Bæk Juel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Joseph Brol
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster Westfälische, Wilhelms-Universität Münster, Germany
| | - Sara Elizabeth Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Yun Huang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Maria Camilla Alvarez Silva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Diana Julie Leeming
- Fibrosis, Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Morten Karsdal
- Fibrosis, Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jonel Trebicka
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster Westfälische, Wilhelms-Universität Münster, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Aleksander Krag
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
33
|
Zhao Y, Peng Y, Wang M, Zhao Y, He Y, Zhang L, Liu J, Zheng S. Exposure to PM 2.5 and its constituents is associated with metabolic dysfunction-associated fatty liver disease: a cohort study in Northwest of China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:304. [PMID: 39002087 DOI: 10.1007/s10653-024-02071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/06/2024] [Indexed: 07/15/2024]
Abstract
Accumulating animal studies have demonstrated associations between ambient air pollution (AP) and metabolic dysfunction-associated fatty liver disease (MAFLD), but relevant epidemiological evidence is limited. We evaluated the association of long-term exposure to AP with the risk of incident MAFLD in Northwest China. The average AP concentration between baseline and follow-up was used to assess individual exposure levels. Cox proportional hazard models and restricted cubic spline functions (RCS) were used to estimate the association of PM2.5 and its constituents with the risk of MAFLD and the dose-response relationship. Quantile g-computation was used to assess the joint effects of mixed exposure to air pollutants on MAFLD and the weights of the various pollutants. We observed 1516 cases of new-onset MAFLD, with an incidence of 10.89%. Increased exposure to pollutants was significantly associated with increased odds of MAFLD, with hazard ratios (HRs) of 2.93 (95% CI: 1.22, 7.00), 2.86 (1.44, 5.66), 7.55 (3.39, 16.84), 4.83 (1.89, 12.38), 3.35 (1.35, 8.34), 1.89 (1.02, 1.62) for each interquartile range increase in PM2.5, SO42-, NO3-, NH4+, OM, and BC, respectively. Stratified analyses suggested that females, frequent exercisers and never-drinkers were more susceptible to MAFLD associated with ambient PM2.5 and its constituents. Mixed exposure to SO42-, NO3-, NH4+, OM and BC was associated with an increased risk of MAFLD, and the weight of BC had the strongest effect on MAFLD. Exposure to ambient PM2.5 and its constituents increased the risk of MAFLD.
Collapse
Affiliation(s)
- Yamin Zhao
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yindi Peng
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Minzhen Wang
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| | - Yanan Zhao
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yingqian He
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Lulu Zhang
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Liu
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Shan Zheng
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
34
|
Bril F, Kalavalapalli S, Lomonaco R, Frye R, Godinez Leiva E, Cusi K. Insulin resistance is an integral feature of MASLD even in the presence of PNPLA3 variants. JHEP Rep 2024; 6:101092. [PMID: 39022386 PMCID: PMC11252529 DOI: 10.1016/j.jhepr.2024.101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 07/20/2024] Open
Abstract
Background & Aims It has been postulated that carriers of PNPLA3 I148M (CG [Ile/Met] or GG [Met/Met]) develop metabolic dysfunction-associated steatotic liver disease (MASLD) in the absence of insulin resistance or metabolic syndrome. However, the relationship between insulin resistance and MASLD according to the PNPLA3 allele has not been carefully assessed. Methods A total of 204 participants were recruited and underwent PNPLA3 genotyping, an oral glucose tolerance test, liver proton magnetic resonance spectroscopy and percutaneous liver biopsy if diagnosed with MASLD. A subgroup of patients (n = 55) had an euglycemic hyperinsulinemic clamp with glucose tracer infusion. Results As expected, patients with the CG/GG genotype had worse intrahepatic triglyceride content and worse liver histology. However, regardless of PNPLA3 genotype, patients with a diagnosis of MASLD had severe whole-body insulin resistance (Matsuda index, an estimation of insulin resistance in glucose metabolic pathways) and fasting and postprandial adipose tissue insulin resistance (Adipo-IR index and free fatty acid suppression during the oral glucose tolerance test, respectively, as measures of insulin resistance in lipolytic metabolic pathways) compared to patients without MASLD. Moreover, for the same amount of liver fat accumulation, insulin resistance was similar in patients with genotypes CC vs. CG/GG. In multiple regression analyses, A1c and Adipo-IR were associated with the presence of MASLD and advanced liver fibrosis, independently of PNPLA3 genotype. Conclusions PNPLA3 variant carriers with MASLD are equally insulin resistant as non-carriers with MASLD at the level of the liver, muscle, and adipose tissue. This calls for reframing "PNPLA3 MASLD" as an insulin-resistant condition associated with increased hepatic susceptibility to metabolic insults, such as obesity or diabetes, wherein early identification and aggressive intervention are warranted to reverse metabolic dysfunction and prevent disease progression. Impact and implications It has been proposed that the PNPLA3 G allele is associated with the presence of metabolic dysfunction-associated steatotic liver disease (MASLD) in the absence of insulin resistance. However, our results suggest that regardless of PNPLA3 alleles, the presence of insulin resistance is necessary for the development of MASLD. This calls for reframing patients with "PNPLA3 MASLD" not as insulin sensitive, but on the contrary, as an insulin-resistant population with increased hepatic susceptibility to metabolic insults, such as obesity or diabetes.
Collapse
Affiliation(s)
- Fernando Bril
- Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham. 510 20 Street South, FOT 825A, 35233, Birmingham, AL, USA
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA. 1600 Archer Road, Room H2, 32610, Gainesville, FL, USA
| | - Srilaxmi Kalavalapalli
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA. 1600 Archer Road, Room H2, 32610, Gainesville, FL, USA
| | - Romina Lomonaco
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA. 1600 Archer Road, Room H2, 32610, Gainesville, FL, USA
| | - Reginald Frye
- Center for Pharmacogenomics, University of Florida, Gainesville, FL, USA; Currently at College of Pharmacy, University of Tennessee Health Science Center, USA
| | - Eddison Godinez Leiva
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA. 1600 Archer Road, Room H2, 32610, Gainesville, FL, USA
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA. 1600 Archer Road, Room H2, 32610, Gainesville, FL, USA
| |
Collapse
|
35
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
36
|
Ferenc K, Jarmakiewicz-Czaja S, Sokal-Dembowska A, Stasik K, Filip R. Common Denominator of MASLD and Some Non-Communicable Diseases. Curr Issues Mol Biol 2024; 46:6690-6709. [PMID: 39057041 PMCID: PMC11275402 DOI: 10.3390/cimb46070399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, steatohepatitis has been designated as metabolic dysfunction-associated steatohepatitis (MASLD). MASLD risk factors mainly include metabolic disorders but can also include genetic, epigenetic, and environmental factors. Disease entities such as obesity, diabetes, cardiovascular disease, and MASLD share similar pathomechanisms and risk factors. Moreover, a bidirectional relationship is observed between the occurrence of certain chronic diseases and MASLD. These conditions represent a global public health problem that is responsible for poor quality of life and high mortality. It seems that paying holistic attention to these problems will not only help increase the chances of reducing the incidence of these diseases but also assist in the prevention, treatment, and support of patients.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (K.F.)
| | - Sara Jarmakiewicz-Czaja
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Katarzyna Stasik
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (K.F.)
- IBD Unit, Department of Gastroenterology, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (K.F.)
- IBD Unit, Department of Gastroenterology, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
37
|
Li C, Liu Z, Wei W, Chen C, Zhang L, Wang Y, Zhou B, Liu L, Li X, Zhao C. Exploring the Regulatory Effect of LPJZ-658 on Copper Deficiency Combined with Sugar-Induced MASLD in Middle-Aged Mice Based on Multi-Omics Analysis. Nutrients 2024; 16:2010. [PMID: 38999758 PMCID: PMC11243161 DOI: 10.3390/nu16132010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/14/2024] Open
Abstract
Globally, metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease (NAFLD), is one of the most common liver disorders and is strongly associated with copper deficiency. To explore the potential effects and mechanisms of Lactiplantibacillus plantarum LPJZ-658, copper deficiency combined with a high-sugar diet-induced MASLD mouse model was utilized in this study. We fed 40-week-old (middle-aged) male C57BL/6 mice a copper-deficient and high-sugar diet for 16 weeks (CuDS), with supplementary LPJZ-658 for the last 6 weeks (CuDS + LPJZ-658). In this study, we measured body weight, liver weight, and serum biochemical markers. Lipid accumulation, histology, lipidomics, and sphingolipid metabolism-related enzyme expression were investigated to analyze liver function. Untargeted metabolomics was used to analyze the serum and the composition and abundance of intestinal flora. In addition, the correlation between differential liver lipid profiles, serum metabolites, and gut flora at the genus level was measured. The results show that LPJZ-658 significantly improves abnormal liver function and hepatic steatosis. The lipidomics analyses and metabolic pathway analysis identified sphingolipid, retinol, and glycerophospholipid metabolism as the most relevant metabolic pathways that characterized liver lipid dysregulation in the CuDS group. Consistently, RT-qPCR analyses revealed that the enzymes catalyzing sphingolipid metabolism that were significantly upregulated in the CuDS group were downregulated by the LPJZ-658 treatment. In addition, the serum metabolomics results indicated that the linoleic acid, taurine and hypotaurine, and ascorbate and aldarate metabolism pathways were associated with CuDS-induced MASLD. Notably, we found that treatment with LPJZ-658 partially reversed the changes in the differential serum metabolites. Finally, LPJZ-658 effectively regulated intestinal flora abnormalities and was significantly correlated with differential hepatic lipid species and serum metabolites. In conclusion, we elucidated the function and potential mechanisms of LPJZ-658 in alleviating copper deficiency combined with sugar-induced middle-aged MASLD and hope this will provide possible treatment strategies for improving MASLD.
Collapse
Affiliation(s)
- Chunhua Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Ziqi Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Chen Chen
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Lichun Zhang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Bo Zhou
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Changchun Veterinary Research Institute, Chinese Academy of Medical Sciences, Changchun 130122, China;
| | - Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Xiao Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Changchun Veterinary Research Institute, Chinese Academy of Medical Sciences, Changchun 130122, China;
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| |
Collapse
|
38
|
Ramos-Molina B, Rossell J, Pérez-Montes de Oca A, Pardina E, Genua I, Rojo-López MI, Julián MT, Alonso N, Julve J, Mauricio D. Therapeutic implications for sphingolipid metabolism in metabolic dysfunction-associated steatohepatitis. Front Endocrinol (Lausanne) 2024; 15:1400961. [PMID: 38962680 PMCID: PMC11220194 DOI: 10.3389/fendo.2024.1400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), a leading cause of chronic liver disease, has increased worldwide along with the epidemics of obesity and related dysmetabolic conditions characterized by impaired glucose metabolism and insulin signaling, such as type 2 diabetes mellitus (T2D). MASLD can be defined as an excessive accumulation of lipid droplets in hepatocytes that occurs when the hepatic lipid metabolism is totally surpassed. This metabolic lipid inflexibility constitutes a central node in the pathogenesis of MASLD and is frequently linked to the overproduction of lipotoxic species, increased cellular stress, and mitochondrial dysfunction. A compelling body of evidence suggests that the accumulation of lipid species derived from sphingolipid metabolism, such as ceramides, contributes significantly to the structural and functional tissue damage observed in more severe grades of MASLD by triggering inflammatory and fibrogenic mechanisms. In this context, MASLD can further progress to metabolic dysfunction-associated steatohepatitis (MASH), which represents the advanced form of MASLD, and hepatic fibrosis. In this review, we discuss the role of sphingolipid species as drivers of MASH and the mechanisms involved in the disease. In addition, given the absence of approved therapies and the limited options for treating MASH, we discuss the feasibility of therapeutic strategies to protect against MASH and other severe manifestations by modulating sphingolipid metabolism.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Group of Obesity, Diabetes & Metabolism, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Joana Rossell
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Eva Pardina
- Department de Biochemistry & Molecular Biology, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Idoia Genua
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Marina I. Rojo-López
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
| | - María Teresa Julián
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Núria Alonso
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Josep Julve
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Didac Mauricio
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Faculty of Medicine, University of Vic/Central University of Catalonia (UVIC/UCC), Vic, Spain
| |
Collapse
|
39
|
Qadri S, Yki-Järvinen H. Surveillance of the liver in type 2 diabetes: important but unfeasible? Diabetologia 2024; 67:961-973. [PMID: 38334817 PMCID: PMC11058902 DOI: 10.1007/s00125-024-06087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 02/10/2024]
Abstract
Fatty liver plays a pivotal role in the pathogenesis of the metabolic syndrome and type 2 diabetes. According to an updated classification, any individual with liver steatosis and one or more features of the metabolic syndrome, without excess alcohol consumption or other known causes of steatosis, has metabolic dysfunction-associated steatotic liver disease (MASLD). Up to 60-70% of all individuals with type 2 diabetes have MASLD. However, the prevalence of advanced liver fibrosis in type 2 diabetes remains uncertain, with reported estimates of 10-20% relying on imaging tests and likely overestimating the true prevalence. All stages of MASLD impact prognosis but fibrosis is the best predictor of all-cause and liver-related mortality risk. People with type 2 diabetes face a two- to threefold increase in the risk of liver-related death and hepatocellular carcinoma, with 1.3% progressing to severe liver disease over 7.7 years. Because reliable methods for detecting steatosis are lacking, MASLD mostly remains an incidental finding on imaging. Regardless, several medical societies advocate for universal screening of individuals with type 2 diabetes for advanced fibrosis. Proposed screening pathways involve annual calculation of the Fibrosis-4 (FIB-4) index, followed by a secondary test such as transient elastography (TE) for intermediate-to-high-risk individuals. However, owing to unsatisfactory biomarker specificity, these pathways are expected to channel approximately 40% of all individuals with type 2 diabetes to TE and 20% to tertiary care, with a false discovery rate of up to 80%, raising concerns about feasibility. There is thus an urgent need to develop more effective strategies for surveying the liver in type 2 diabetes. Nonetheless, weight loss through lifestyle changes, pharmacotherapy or bariatric surgery remains the cornerstone of management, proving highly effective not only for metabolic comorbidities but also for MASLD. Emerging evidence suggests that fibrosis biomarkers may serve as tools for risk-based targeting of weight-loss interventions and potentially for monitoring response to therapy.
Collapse
Affiliation(s)
- Sami Qadri
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| |
Collapse
|
40
|
Habib S. Metabolic dysfunction-associated steatotic liver disease heterogeneity: Need of subtyping. World J Gastrointest Pathophysiol 2024; 15:92791. [PMID: 38845820 PMCID: PMC11151879 DOI: 10.4291/wjgp.v15.i2.92791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/23/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a widespread global disease with significant health burden. Unhealthy lifestyle, obesity, diabetes mellitus (DM), insulin resistance, and genetics have been implicated in the pathogenesis of MASLD. A significant degree of heterogeneity exists among each of above-mentioned risk factors. Heterogeneity of these risk factors translates into the heterogeneity of MASLD. On the other hand, MASLD can itself lead to insulin resistance and DM. Such heterogeneity makes it difficult to assess the natural course of an individual with MASLD in clinical practice. At present MASLD is considered as one disease despite the variability of etiopathogenic processes, and we lack the consensus definitions of unique subtypes of MASLD. In this review, pathogenic processes of MASLD are discussed and a need of subtyping is recommended.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85716, United States
| |
Collapse
|
41
|
Janssen JAMJL. Overnutrition, Hyperinsulinemia and Ectopic Fat: It Is Time for A Paradigm Shift in the Management of Type 2 Diabetes. Int J Mol Sci 2024; 25:5488. [PMID: 38791525 PMCID: PMC11121669 DOI: 10.3390/ijms25105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The worldwide incidence of prediabetes/type 2 has continued to rise the last 40 years. In the same period, the mean daily energy intake has increased, and the quality of food has significantly changed. The chronic exposure of pancreatic β-cells to calorie excess (excessive energy intake) and food additives may increase pancreatic insulin secretion, decrease insulin pulses and/or reduce hepatic insulin clearance, thereby causing chronic hyperinsulinemia and peripheral insulin resistance. Chronic calorie excess and hyperinsulinemia may promote lipogenesis, inhibit lipolysis and increase lipid storage in adipocytes. In addition, calorie excess and hyperinsulinemia can induce insulin resistance and contribute to progressive and excessive ectopic fat accumulation in the liver and pancreas by the conversion of excess calories into fat. The personal fat threshold hypothesis proposes that in susceptible individuals, excessive ectopic fat accumulation may eventually lead to hepatic insulin receptor resistance, the loss of pancreatic insulin secretion, hyperglycemia and the development of frank type 2 diabetes. Thus, type 2 diabetes seems (partly) to be caused by hyperinsulinemia-induced excess ectopic fat accumulation in the liver and pancreas. Increasing evidence further shows that interventions (hypocaloric diet and/or bariatric surgery), which remove ectopic fat in the liver and pancreas by introducing a negative energy balance, can normalize insulin secretion and glucose tolerance and induce the sustained biochemical remission of type 2 diabetes. This pathophysiological insight may have major implications and may cause a paradigm shift in the management of type 2 diabetes: avoiding/reducing ectopic fat accumulation in the liver and pancreas may both be essential to prevent and cure type 2 diabetes.
Collapse
Affiliation(s)
- Joseph A M J L Janssen
- Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
42
|
Scoditti E, Sabatini S, Carli F, Gastaldelli A. Hepatic glucose metabolism in the steatotic liver. Nat Rev Gastroenterol Hepatol 2024; 21:319-334. [PMID: 38308003 DOI: 10.1038/s41575-023-00888-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
The liver is central in regulating glucose homeostasis, being the major contributor to endogenous glucose production and the greatest reserve of glucose as glycogen. It is both a target and regulator of the action of glucoregulatory hormones. Hepatic metabolic functions are altered in and contribute to the highly prevalent steatotic liver disease (SLD), including metabolic dysfunction-associated SLD (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). In this Review, we describe the dysregulation of hepatic glucose metabolism in MASLD and MASH and associated metabolic comorbidities, and how advances in techniques and models for the assessment of hepatic glucose fluxes in vivo have led to the identification of the mechanisms related to the alterations in glucose metabolism in MASLD and comorbidities. These fluxes can ultimately increase hepatic glucose production concomitantly with fat accumulation and alterations in the secretion and action of glucoregulatory hormones. No pharmacological treatment has yet been approved for MASLD or MASH, but some antihyperglycaemic drugs approved for treating type 2 diabetes have shown positive effects on hepatic glucose metabolism and hepatosteatosis. A deep understanding of how MASLD affects glucose metabolic fluxes and glucoregulatory hormones might assist in the early identification of at-risk individuals and the use or development of targeted therapies.
Collapse
Affiliation(s)
- Egeria Scoditti
- Institute of Clinical Physiology, National Research Council, Lecce, Italy
| | - Silvia Sabatini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| |
Collapse
|
43
|
Montero-Vallejo R, Maya-Miles D, Ampuero J, Martín F, Romero-Gómez M, Gallego-Durán R. Novel insights into metabolic-associated steatotic liver disease preclinical models. Liver Int 2024; 44:644-662. [PMID: 38291855 DOI: 10.1111/liv.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
Metabolic-associated steatotic liver disease (MASLD) encompasses a wide spectrum of metabolic conditions associated with an excess of fat accumulation in the liver, ranging from simple hepatic steatosis to cirrhosis and hepatocellular carcinoma. Finding appropriate tools to study its development and progression is essential to address essential unmet therapeutic and staging needs. This review discusses advantages and shortcomings of different dietary, chemical and genetic factors that can be used to mimic this disease and its progression in mice from a hepatic and metabolic point of view. Also, this review will highlight some additional factors and considerations that could have a strong impact on the outcomes of our model to end up providing recommendations and a checklist to facilitate the selection of the appropriate MASLD preclinical model based on clinical aims.
Collapse
Affiliation(s)
- Rocío Montero-Vallejo
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Douglas Maya-Miles
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Javier Ampuero
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Franz Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University Pablo Olavide-University of Seville-CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Rocío Gallego-Durán
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| |
Collapse
|
44
|
Ye X, He X, Hu Z, Zheng F, Huang X, Xie X, Chen F, Ou H, Qiu R. Metabolomic analysis identifies dysregulation of lipid metabolism in the immune clearance phase of chronic hepatitis B patients. J Pharm Biomed Anal 2024; 239:115900. [PMID: 38064772 DOI: 10.1016/j.jpba.2023.115900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
There is an accelerated progression of liver necroinflammation and fibrosis in the liver during the immune clearance (IC) phase of Chronic hepatitis B virus (HBV) infection, which are critical indicators of antiviral treatment for chronic hepatitis B (CHB) infection. This study applied serum metabolomics to identify the potential metabolite biomarkers for differential diagnosis between the CHB immune tolerance (IT) and Immune clearance (IC) phases. A liquid chromatography-mass spectrometry (LC-MS)-based approach was applied to evaluate and compared the serum metabolic profiles of 28 patients in IT phase and 33 patients in IC phase and appropriate statistical methods with MetaboAnalystR 2.0 R package to analyze those metabolites. The differential metabolites between IT and TC groups were classified and the top altered classification were lipids and lipid-like molecules and fatty acyls, clearly indicating that there were differences in the lipid metabolomic profile of HBV-infected patients with IT vs. IR phase. We identified the top 10 potential metabolite biomarkers for differential diagnosis between IT and IR. There were four lipid metabolites among them and the AUC of two of them, octadecadienoyl-sn-glycero-3-phosphocholine and 3-Cycloheptene-l-acetic acid, were 0.983 and 0.933. octadecadienoyl-sn-glycero-3-phosphocholine is Diacylglycerol (18:2n6/18:0) and 3-Cycloheptene-l-acetic acid is hydroxy fatty acids, both of which were associated with lipid metabolism. This study not only provides the potential metabolic biomarkers but also insight into the mechanism of CHB progression during IT clearance phase.
Collapse
Affiliation(s)
- Xiangyang Ye
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian, Fujian 351100, China; Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Xiongzhi He
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian, Fujian 351100, China
| | - Zhenting Hu
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian, Fujian 351100, China
| | - Fengfeng Zheng
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian, Fujian 351100, China
| | - Xiaogang Huang
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian, Fujian 351100, China
| | - Xuemei Xie
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian, Fujian 351100, China
| | - Feihua Chen
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian, Fujian 351100, China
| | - Hanbing Ou
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian, Fujian 351100, China
| | - Rongxian Qiu
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian, Fujian 351100, China.
| |
Collapse
|
45
|
Wang J, Wang D, Lu S, Hu Y, Ge Y, Qin X, Mo Y, Kan J, Li D, Zhang R, Liu Y, Zhang WS. Ceramide enhanced the hepatic glucagon response through regulation of CREB activity. Clin Nutr 2024; 43:366-378. [PMID: 38142481 DOI: 10.1016/j.clnu.2023.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND & AIMS Hyperglycemia is associated with lipid disorders in patients with diabetes. Ceramides are metabolites involved in sphingolipid metabolism that accumulate during lipid disorders and exert deleterious effects on glucose and lipid metabolism. However, the effects of ceramide on glucagon-mediated hepatic gluconeogenesis remain largely unknown. This study was designed to investigate the impact of ceramides on gluconeogenesis in the context of the hepatic glucagon response, with the aim of finding new pharmacological interventions for hyperglycemia in diabetes. METHODS Liquid chromatography-mass spectrometry was used to quantify ceramide content in the serum of patients with diabetes. Primary hepatocytes were isolated from male C57BL/6J mice to study the effects of ceramide on hepatic glucose production. Immunofluorescence staining was performed to view cAMP-responsive element-binding protein (CREB)- regulated transcription co-activator 2 (CRTC2) nuclear translocation in hepatocytes. Serine palmitoyl-transferase, long chain base subunit 2 (Sptlc2) knockdown mice were generated using an adeno-associated virus containing shRNA, and hepatic glucose production was assessed glucagon tolerance and pyruvate tolerance tests in mice fed a normal chow diet and high-fat diet. RESULTS Increased ceramide levels were observed in the serum of patients newly diagnosed with type 2 diabetes. De novo ceramide synthesis was activated in mice with metabolic disorders. Ceramide enhanced hepatic glucose production in primary hepatocytes. In contrast, genetic silencing of Sptlc2 prevented this process. Mechanistically, ceramides de-phosphorylate CRTC2 (Ser 171) and facilitate its translocation into the nucleus for CREB activation, thereby augmenting the hepatic glucagon response. Hepatic Sptlc2 silencing blocked ceramide generation in the liver and thus restrained the hepatic glucagon response in mice fed a normal chow diet and high-fat diet. CONCLUSIONS These data indicate that ceramide serves as an intracellular messenger that augments hepatic glucose production by regulating CRTC2/CREB activity in the context of the hepatic glucagon response, suggesting that CRTC2 phosphorylation might be a potential node for pharmacological interventions to restrain the hyperglycemic response during fasting in diabetes.
Collapse
Affiliation(s)
- Jizheng Wang
- Department of the Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China; Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Dan Wang
- Department of the Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China; Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shan Lu
- Maternity and Child Dept, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yifang Hu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yaoqi Ge
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiaoxuan Qin
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yanfei Mo
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jingbao Kan
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Dong Li
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Rihua Zhang
- Department of the Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Yun Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Wen-Song Zhang
- Department of the Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
46
|
Aggarwal H, Gautam J, Kumari D, Gupta SK, Bajpai S, Chaturvedi K, Kumar Y, Dikshit M. Comparative profiling of gut microbiota and metabolome in diet-induced obese and insulin-resistant C57BL/6J mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119643. [PMID: 37996062 DOI: 10.1016/j.bbamcr.2023.119643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Diet-based models are commonly used to investigate obesity and related disorders. We conducted a comparative profiling of three obesogenic diets HFD, high fat diet; HFHF, high fat high fructose diet; and HFCD, high fat choline deficient diet to assess their impact on the gut microbiome and metabolome. After 20 weeks, we analyzed the gut microbiota and metabolomes of liver, plasma, cecal, and fecal samples. Fecal and plasma bile acids (BAs) and fecal short-chain fatty acids (SCFAs) were also examined. Significant changes were observed in fecal and cecal metabolites, with increased Firmicutes and decreased Bacteroidetes in the HFD, HFHF, and HFCD-fed mice compared to chow and LFD (low fat diet)-fed mice. Most BAs were reduced in plasma and fecal samples of obese groups, except taurocholic acid, which increased in HFCD mice's plasma. SCFAs like acetate and butyrate significantly decreased in obesogenic diet groups, while propionic acid specifically decreased in the HFCD group. Pathway analysis revealed significant alterations in amino acid, carbohydrate metabolism, and nucleic acid biosynthesis pathways in obese mice. Surprisingly, even LFD-fed mice showed distinct changes in microbiome and metabolite profiles compared to the chow group. This study provides insights into gut microbiome dysbiosis and metabolite alterations induced by obesogenic and LFD diets in various tissues. These findings aid in selecting suitable diet models to study the role of the gut microbiome and metabolites in obesity and associated disorders, with potential implications for understanding similar pathologies in humans.
Collapse
Affiliation(s)
- Hobby Aggarwal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sneh Bajpai
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Kartikey Chaturvedi
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
47
|
Sasidharan K, Caddeo A, Jamialahmadi O, Noto FR, Tomasi M, Malvestiti F, Ciociola E, Tavaglione F, Mancina RM, Cherubini A, Bianco C, Mirarchi A, Männistö V, Pihlajamäki J, Kärjä V, Grimaudo S, Luukkonen PK, Qadri S, Yki-Järvinen H, Petta S, Manfrini S, Vespasiani-Gentilucci U, Bruni V, Valenti L, Romeo S. IL32 downregulation lowers triglycerides and type I collagen in di-lineage human primary liver organoids. Cell Rep Med 2024; 5:101352. [PMID: 38232700 PMCID: PMC10829727 DOI: 10.1016/j.xcrm.2023.101352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 09/26/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Steatotic liver disease (SLD) prevails as the most common chronic liver disease yet lack approved treatments due to incomplete understanding of pathogenesis. Recently, elevated hepatic and circulating interleukin 32 (IL-32) levels were found in individuals with severe SLD. However, the mechanistic link between IL-32 and intracellular triglyceride metabolism remains to be elucidated. We demonstrate in vitro that incubation with IL-32β protein leads to an increase in intracellular triglyceride synthesis, while downregulation of IL32 by small interfering RNA leads to lower triglyceride synthesis and secretion in organoids from human primary hepatocytes. This reduction requires the upregulation of Phospholipase A2 group IIA (PLA2G2A). Furthermore, downregulation of IL32 results in lower intracellular type I collagen levels in di-lineage human primary hepatic organoids. Finally, we identify a genetic variant of IL32 (rs76580947) associated with lower circulating IL-32 and protection against SLD measured by non-invasive tests. These data suggest that IL32 downregulation may be beneficial against SLD.
Collapse
Affiliation(s)
- Kavitha Sasidharan
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Andrea Caddeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Francesca Rita Noto
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Melissa Tomasi
- Precision Medicine Lab, Biological Resource Center Unit, Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Malvestiti
- Precision Medicine Lab, Biological Resource Center Unit, Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Ester Ciociola
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Federica Tavaglione
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Operative Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Rosellina M Mancina
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alessandro Cherubini
- Precision Medicine Lab, Biological Resource Center Unit, Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristiana Bianco
- Precision Medicine Lab, Biological Resource Center Unit, Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Mirarchi
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Clinical Nutrition and Obesity Centre, Kuopio University Hospital, Kuopio, Finland
| | - Vesa Kärjä
- Department of Pathology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Stefania Grimaudo
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Panu K Luukkonen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Sami Qadri
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Silvia Manfrini
- Operative Unit of Endocrinology and Diabetes, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Research Unit of Endocrinology and Diabetes, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Umberto Vespasiani-Gentilucci
- Operative Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Bruni
- Operative Unit of Bariatric Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Luca Valenti
- Precision Medicine Lab, Biological Resource Center Unit, Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
48
|
Zhao Y, Zhao H, Li L, Yu S, Liu M, Jiang L. Ceramide on the road to insulin resistance and immunometabolic disorders in transition dairy cows: driver or passenger? Front Immunol 2024; 14:1321597. [PMID: 38274826 PMCID: PMC10808295 DOI: 10.3389/fimmu.2023.1321597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Dairy cows must undergo profound metabolic and endocrine adaptations during their transition period to meet the nutrient requirements of the developing fetus, parturition, and the onset of lactation. Insulin resistance in extrahepatic tissues is a critical component of homeorhetic adaptations in periparturient dairy cows. However, due to increased energy demands at calving that are not followed by a concomitant increase in dry matter intake, body stores are mobilized, and the risk of metabolic disorders dramatically increases. Sphingolipid ceramides involved in multiple vital biological processes, such as proliferation, differentiation, apoptosis, and inflammation. Three typical pathways generate ceramide, and many factors contribute to its production as part of the cell's stress response. Based on lipidomic profiling, there has generally been an association between increased ceramide content and various disease outcomes in rodents. Emerging evidence shows that ceramides might play crucial roles in the adaptive metabolic alterations accompanying the initiation of lactation in dairy cows. A series of studies also revealed a negative association between circulating ceramides and systemic insulin sensitivity in dairy cows experiencing severe negative energy balance. Whether ceramide acts as a driver or passenger in the metabolic stress of periparturient dairy cows is an unknown but exciting topic. In the present review, we discuss the potential roles of ceramides in various metabolic dysfunctions and the impacts of their perturbations. We also discuss how this novel class of bioactive sphingolipids has drawn interest in extrahepatic tissue insulin resistance and immunometabolic disorders in transition dairy cows. We also discuss the possible use of ceramide as a new biomarker for predicting metabolic diseases in cows and highlight the remaining problems.
Collapse
Affiliation(s)
| | | | | | | | | | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
49
|
Yuan L, Verhoeven A, Blomberg N, van Eyk HJ, Bizino MB, Rensen PCN, Jazet IM, Lamb HJ, Rabelink TJ, Giera M, van den Berg BM. Ethnic Disparities in Lipid Metabolism and Clinical Outcomes between Dutch South Asians and Dutch White Caucasians with Type 2 Diabetes Mellitus. Metabolites 2024; 14:33. [PMID: 38248836 PMCID: PMC10819672 DOI: 10.3390/metabo14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) poses a higher risk for complications in South Asian individuals compared to other ethnic groups. To shed light on potential mediating factors, we investigated lipidomic changes in plasma of Dutch South Asians (DSA) and Dutch white Caucasians (DwC) with and without T2DM and explore their associations with clinical features. Using a targeted quantitative lipidomics platform, monitoring over 1000 lipids across 17 classes, along with 1H NMR based lipoprotein analysis, we studied 51 healthy participants (21 DSA, 30 DwC) and 92 T2DM patients (47 DSA, 45 DwC) from the MAGNetic resonance Assessment of VICTOza efficacy in the Regression of cardiovascular dysfunction in type 2 dIAbetes mellitus (MAGNA VICTORIA) study. This comprehensive mapping of the circulating lipidome allowed us to identify relevant lipid modules through unbiased weighted correlation network analysis, as well as disease and ethnicity related key mediatory lipids. Significant differences in lipidomic profiles, encompassing various lipid classes and species, were observed between T2DM patients and healthy controls in both the DSA and DwC populations. Our analyses revealed that healthy DSA, but not DwC, controls already exhibited a lipid profile prone to develop T2DM. Particularly, in DSA-T2DM patients, specific lipid changes correlated with clinical features, particularly diacylglycerols (DGs), showing significant associations with glycemic control and renal function. Our findings highlight an ethnic distinction in lipid modules influencing clinical outcomes in renal health. We discover distinctive ethnic disparities of the circulating lipidome and identify ethnicity-specific lipid markers. Jointly, our discoveries show great potential as personalized biomarkers for the assessment of glycemic control and renal function in DSA-T2DM individuals.
Collapse
Affiliation(s)
- Lushun Yuan
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.Y.); (P.C.N.R.); (T.J.R.)
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.V.); (N.B.); (M.G.)
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.V.); (N.B.); (M.G.)
| | - Huub J. van Eyk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (H.J.v.E.); (I.M.J.)
| | - Maurice B. Bizino
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.B.B.); (H.J.L.)
| | - Patrick C. N. Rensen
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.Y.); (P.C.N.R.); (T.J.R.)
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (H.J.v.E.); (I.M.J.)
| | - Ingrid M. Jazet
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (H.J.v.E.); (I.M.J.)
| | - Hildo J. Lamb
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.B.B.); (H.J.L.)
| | - Ton J. Rabelink
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.Y.); (P.C.N.R.); (T.J.R.)
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.V.); (N.B.); (M.G.)
| | - Bernard M. van den Berg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.Y.); (P.C.N.R.); (T.J.R.)
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
50
|
Worthmann A, Ridder J, Piel SYL, Evangelakos I, Musfeldt M, Voß H, O'Farrell M, Fischer AW, Adak S, Sundd M, Siffeti H, Haumann F, Kloth K, Bierhals T, Heine M, Pertzborn P, Pauly M, Scholz JJ, Kundu S, Fuh MM, Neu A, Tödter K, Hempel M, Knippschild U, Semenkovich CF, Schlüter H, Heeren J, Scheja L, Kubisch C, Schlein C. Fatty acid synthesis suppresses dietary polyunsaturated fatty acid use. Nat Commun 2024; 15:45. [PMID: 38167725 PMCID: PMC10762034 DOI: 10.1038/s41467-023-44364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Dietary polyunsaturated fatty acids (PUFA) are increasingly recognized for their health benefits, whereas a high production of endogenous fatty acids - a process called de novo lipogenesis (DNL) - is closely linked to metabolic diseases. Determinants of PUFA incorporation into complex lipids are insufficiently understood and may influence the onset and progression of metabolic diseases. Here we show that fatty acid synthase (FASN), the key enzyme of DNL, critically determines the use of dietary PUFA in mice and humans. Moreover, the combination of FASN inhibition and PUFA-supplementation decreases liver triacylglycerols (TAG) in mice fed with high-fat diet. Mechanistically, FASN inhibition causes higher PUFA uptake via the lysophosphatidylcholine transporter MFSD2A, and a diacylglycerol O-acyltransferase 2 (DGAT2)-dependent incorporation of PUFA into TAG. Overall, the outcome of PUFA supplementation may depend on the degree of endogenous DNL and combining PUFA supplementation and FASN inhibition might be a promising approach to target metabolic disease.
Collapse
Affiliation(s)
- Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julius Ridder
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sharlaine Y L Piel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ioannis Evangelakos
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melina Musfeldt
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Voß
- Section / Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marie O'Farrell
- Sagimet Biosciences Inc., 155 Bovet Rd., San Mateo, CA, 94402, USA
| | - Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Monica Sundd
- National Institute of Immunology, New Delhi, India
| | - Hasibullah Siffeti
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Haumann
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Kloth
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Pertzborn
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mira Pauly
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia-Josefine Scholz
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021 and Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, Goa, 403726, India
| | - Marceline M Fuh
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Neu
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Tödter
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, University Hospital Ulm, Ulm, Germany
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Hartmut Schlüter
- Section / Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Schlein
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|