1
|
Qin LN, Yu YF, Ma L, Yu R. Intestinal bacteria-derived extracellular vesicles in metabolic dysfunction-associated steatotic liver disease: From mechanisms to therapeutics. Mol Cells 2025; 48:100216. [PMID: 40239896 DOI: 10.1016/j.mocell.2025.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive disease that affects the health of approximately one-third of the world's population. It is the primary cause of end-stage liver disease, liver malignancy, and liver transplantation, resulting in a great medical burden. No medications have yet been approved by the US Food and Drug Administration for treating MASLD without liver inflammation or scarring. Therefore, the development of specific drugs to treat MASLD remains a key task in the ongoing research objective. Extracellular vesicles (EVs) play an important role in the communication between organs, tissues, and cells. Recent studies have found that intestinal microbiota are closely related to the pathogenesis and progression of MASLD. EVs produced by bacteria (BEVs) play an indispensable role in this process. Thus, this study provides a new direction for MASLD treatment. However, the mechanism by which BEVs affect MASLD remains unclear. Therefore, this study investigated the influence and function of intestinal microbiota in MASLD. Additionally, we focus on the research progress of BEVs in recent years and explain the relationship between BEVs and MASLD from the perspectives of glucose and lipid metabolism, immune responses, and intestinal homeostasis. Finally, we summarized the potential therapeutic value of BEVs and EVs from other sources, such as adipocytes, immunocytes, stem cells, and plants.
Collapse
Affiliation(s)
- Li-Na Qin
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yun-Feng Yu
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lie Ma
- Department of Reproductive Medicine, The Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Rong Yu
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China; College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
2
|
Ströhle G, Goodrum R, Li H. An Extracellular Vesicle (EV) Paper Strip for Rapid and Convenient Estimation of EV Concentration. BIOSENSORS 2025; 15:294. [PMID: 40422033 DOI: 10.3390/bios15050294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/23/2025] [Accepted: 05/04/2025] [Indexed: 05/28/2025]
Abstract
Extracellular vesicles (EVs) have emerged as promising biomarkers and therapeutic agents, yet their quantification remains technically challenging due to the limitations of conventional methods. Here, a low-cost, fluorescence-based, paper-strip immunoassay is presented for rapid and semi-quantitative estimation of EV concentration, inspired by pH strips. The assay utilizes nitrocellulose membranes functionalized with capture antibodies (anti-CD63, CD9, CD81) and fluorescent dye (ExoBrite™) for EV detection. Systematic optimization of assay parameters-including dye application sequence, incubation time, antibody configuration, and dye concentration-revealed that labeling EVs with dye and incubating on the nitrocellulose paper strips for 20 min yielded the strongest and most reproducible signal. A 200× dilution of ExoBrite™ dye was determined to provide the best balance between sensitivity and specificity. A standard curve generated through twofold serial dilution of EVs from ovarian cancer cell culture medium confirmed a positive, concentration-dependent fluorescence response, establishing a usable dynamic range. Compared to existing technologies, this platform enables fast, simple-to-implement EV quantification using minimal sample volume and equipment. The simplicity and scalability of the method offer strong potential for use in clinical diagnostics and EV research applications.
Collapse
Affiliation(s)
- Gisela Ströhle
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Rebecca Goodrum
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Huiyan Li
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
3
|
Geng Y, Luo K, Stam J, Oosterhuis D, Gorter AR, van den Heuvel M, Crescitelli R, de Meijer VE, Wolters JC, Olinga P. Characterization of Extracellular Vesicles Derived From Human Precision-Cut Liver Slices in Metabolic Dysfunction-Associated Steatotic Liver Disease. JOURNAL OF EXTRACELLULAR BIOLOGY 2025; 4:e70043. [PMID: 40313415 PMCID: PMC12042696 DOI: 10.1002/jex2.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/30/2025] [Accepted: 02/28/2025] [Indexed: 05/03/2025]
Abstract
Extracellular vesicles (EVs) are cell-produced, membrane-surrounded vesicles that harbour the biological features of donor cells. In the current study, we are the first to isolate and characterize EVs isolated from human precision-cut liver slices (PCLS), obtained from both healthy and metabolic dysfunction-associated steatohepatitis (MASH) cirrhotic livers. PCLS derived from patients can faithfully represent disease conditions in humans. EVs were isolated from human PCLS after incubating in normal medium or modified medium that mimics the pathophysiological environment of metabolic dysfunction associated liver disease (MASLD). MASH PCLS produced higher amounts of EVs compared to healthy PCLS (p < 0.001). Mass spectrometry revealed that around 300 proteins were significantly different in EVs derived from MASH PCLS versus healthy PCLS (FDR < 0.05), irrespective of the type of medium. Significantly changed EV proteins were largely involved in signalling receptor binding function and showed potential in promoting fibrosis. In the liver, these ligand-associated receptors are highly expressed in hepatic stellate cells, and the MASH EVs functionally promoted the activation of hepatic stellate cells. Furthermore, the amounts of EpCAM and ITGA3 in EVs were positively associated with the progression of MASLD, which suggests the use of liver-derived EVs as potential biomarkers for MASLD. Characterization of EVs derived from human PCLS may assist future studies in investigating the pathogenesis and identifying liver-specific EVs as biomarkers of MASLD.
Collapse
Affiliation(s)
- Yana Geng
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
| | - Ke Luo
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
| | - Janine Stam
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
- Department of Analytical Biochemistry, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
| | - Alan R. Gorter
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
| | - Marius van den Heuvel
- Division of Pathology, Department of Pathology and Medical BiologyUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Rossella Crescitelli
- Department of Surgery, Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational Medicine, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGöteborgSweden
| | - Vincent E. de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery & Liver TransplantationUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Justina C. Wolters
- Department of PediatricsUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
4
|
Yu M, Zheng C, Wang X, Peng R, Lu G, Zhang J. Phosphatidylserine induce thrombotic tendency and liver damage in obstructive jaundice. BMC Gastroenterol 2025; 25:146. [PMID: 40050731 PMCID: PMC11884107 DOI: 10.1186/s12876-025-03739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/27/2025] [Indexed: 03/10/2025] Open
Abstract
INTRODUCTION Hypercoagulability contributes to the majority of deaths and organ failure associated with obstructive jaundice (OJ). However, the exact mechanism of the coagulopathy in OJ remains elusive. Our objectives were to demonstrate whether phosphatidylserine (PS) exposure on blood cells (BCs), microparticles (MPs), and endothelial cells (ECs) can account for the hypercoagulability and liver damage in OJ patients. METHODS We evaluated OJ patients at two time point, which before (Day 0) and 7 days (Day 7) after the endoscopic retrograde cholangiopancreatography procedure (ERCP), and compared with healthy controls. Lactadherin was used to quantify PS exposure on BCs, MPs and ECs. Human umbilical vein endothelial cells (HUVECs) were incubated with serum of OJ patients and the expression of PS were evaluated. Meanwhile, healthy BCs and HUVECs were treated with 0, 25, 50 or 100µM unconjugated bilirubin (UCB) and PS exposure on cells were evaluated. Procoagulant activity was evaluated by purified coagulation complex assays, clotting time, and fibrin turbidity. In addition, we established a cholestatic mouse model by bile duct ligation to determine the potential role of PS in intrahepatic coagulation and liver damage. RESULTS Using flow cytometry, we found that OJ patients exhibited elevated levels of PS + BCs and associated MPs compared to the controls. Furthermore, the number of PS + BCs and MPs in patients at Day 0 were significantly higher than in patients at Day 7. Similarly, we observed markedly elevated PS exposure on HUVECs cultured with serum from patients at Day 0 versus serum from patients at Day 7. In vitro assays, PS exposure on BCs and HUVECs progressively increased with the concentration of UCB. Moreover, PS + BCs and MPs contributed to greatly shortened coagulation time and markedly enhanced coagulation factor Xa, thrombin, and fibrin generation. This procoagulant activity could be blocked approximately 80%, by the addition of lactadherin. Moreover, cholestatic mice exhibited significantly increased levels of liver tissue necrosis, fibrin deposition, and thrombophilia compared to sham mice. The enhanced intrahepatic coagulation and liver injury could be reversed by inhibiting PS with lactadherin. CONCLUSIONS These results highlight the pathogenic activity of PS + cells and MPs in promoting a prothrombotic environment and liver damage in OJ. As such, lactadherin, a PS blockade, may be a viable therapeutic strategy for treating such patients.
Collapse
Affiliation(s)
- Muxin Yu
- Department of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Chuwei Zheng
- Department of Gastroenterology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Xiaoguang Wang
- Department of Hepatic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Rong Peng
- Department of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Guoming Lu
- Department of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Jinming Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
5
|
Valainathan SR, Xie Q, Arroyo V, Rautou P. Prognosis algorithms for acute decompensation of cirrhosis and ACLF. Liver Int 2025; 45:e15927. [PMID: 38591751 PMCID: PMC11815611 DOI: 10.1111/liv.15927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Accurate prediction of survival in patients with cirrhosis is crucial, as patients who are unlikely to survive in the short-term need to be oriented to liver transplantation and to novel therapeutic approaches. Patients with acute decompensation of cirrhosis without or with organ dysfunction/failure, the so-called acute-on-chronic liver failure (ACLF), have a particularly high short-term mortality. Recognizing the specificity of this clinical situation, dedicated classifications and scores have been developed over the last 15 years, including variables (e.g. organ failures and systemic inflammation) not part of the formerly available cirrhosis severity scores, namely Child-Pugh score or MELD. For patients with acute decompensation of cirrhosis, it led to the development of a dedicated score, the Clif-C-AD score, independently validated. For more severe patients, three different scoring systems have been proposed, by European, Asian and North American societies namely Clif-C-ACLF, AARC score and NASCELD-ACLF respectively. These scores have been validated, and are widely used across the world. The differences and similarities between these scores, as well as their validation and limitations are discussed here. Even if these scores and classifications have been a step forward in favouring homogeneity between studies, and in helping making decisions for individual patients, their predictive value for mortality can still be improved as their area under the ROC curve does not exceed .8. Novel scores including biomarkers reflecting the pathophysiology of acute decompensation of cirrhosis might help reach that goal.
Collapse
Affiliation(s)
- Shantha R. Valainathan
- Université Paris‐Cité, Inserm, Centre de recherche sur l'inflammation, UMR 1149ParisFrance
- AP‐HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE‐LIVERClichyFrance
- Service de Réanimation polyvalente Centre hospitalier Victor DupouyArgenteuilFrance
| | - Qing Xie
- Department of Infectious DiseasesRuijin Hospital Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Vicente Arroyo
- European Foundation for Study of Chronic Liver Failure, EF‐ClifBarcelonaSpain
| | - Pierre‐Emmanuel Rautou
- Université Paris‐Cité, Inserm, Centre de recherche sur l'inflammation, UMR 1149ParisFrance
- AP‐HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE‐LIVERClichyFrance
| |
Collapse
|
6
|
Ju Y, Watson J, Wang JJ, Yen YT, Gevorkian L, Chen Z, Tu KH, Salumbides B, Phung A, Zhao C, Kim H, Ji YR, Zhang RY, Lee J, Gong J, Scher K, You S, Chen JF, Tseng HR, Zhu Y, Posadas EM. B7-H3-liquid biopsy for the characterization and monitoring of the dynamic biology of prostate cancer. Drug Resist Updat 2025; 79:101207. [PMID: 39914189 DOI: 10.1016/j.drup.2025.101207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/23/2024] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND B7-H3 is a promising target for cancer therapy, notably in prostate cancer (PCa), particularly in metastatic, castration-resistant PCa (mCRPC). With the development of B7-H3-targeted therapies, there is a need for a rapid, reliable, and cost-effective method to detect and monitor B7-H3 expression. Leveraging their abundance and stability, we developed a liquid biopsy assay using extracellular vesicles (EVs) for this purpose. METHODS B7-H3+ EVs were isolated using a B7-H3 antibody-mediated, click chemistry-based enrichment method. Antibodies were conjugated to methyltetrazine-grafted microbeads. EVs were isolated from 100 µL of plasma from metastatic, castration-sensitive PCa (mCSPC) (n = 43) and mCRPC (n = 103) patients and quantified using RT-qPCR of ACTB. Measurements were compared with the patient's disease status over time. RESULTS The assay detected higher B7-H3+ EVs in mCRPC than mCSPC and increased when mCSPC transitioned to mCRPC. Elevated B7-H3+ EVs were associated with lower overall survival (Hazard ratio (HR) 2.19, p = 0.01). In patients with serial plasma samples, B7-H3+ EV levels reflected treatment response and disease progression. CONCLUSIONS This B7-H3+ EV assay represents a significant advancement in utilizing tumor-derived EVs for a non-invasive, quantitative, and consistent real-time measurement of B7-H3. This assay warrants further development as a companion diagnostic for B7-H3 targeted therapies in PCa and other conditions.
Collapse
Affiliation(s)
- Yong Ju
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Joshua Watson
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Jasmine J Wang
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Ying-Tzu Yen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Lilit Gevorkian
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Zijing Chen
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Kai Han Tu
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Brenda Salumbides
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Aaron Phung
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Chen Zhao
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Hyoyong Kim
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - You-Ren Ji
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Ryan Y Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Junseok Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Jun Gong
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Kevin Scher
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Sungyong You
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Urology, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA; Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles 90048, USA.
| | - Jie-Fu Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Edwin M Posadas
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Urology, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA.
| |
Collapse
|
7
|
Mittal A, Jakhmola VR, Baweja S. Bioengineered extracellular vesicles: The path to precision medicine in liver diseases. LIVER RESEARCH (BEIJING, CHINA) 2025; 9:17-28. [PMID: 40206438 PMCID: PMC11977285 DOI: 10.1016/j.livres.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 04/11/2025]
Abstract
Extracellular vesicles (EVs) are membrane-bound entities secreted by each cell, categorized as, exosomes, microvesicles or apoptotic bodies based on their size and biogenesis. They serve as promising vectors for drug delivery due to their capacity to carry diverse molecular signatures reflective of their cell of origin. EV research has significantly advanced since their serendipitous discovery, with recent studies focusing on their roles in various diseases and their potential for targeted therapy. In liver diseases, EVs are particularly promising for precision medicine, providing diagnostic and therapeutic potential in conditions such as metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, hepatocellular carcinoma, alcoholic liver disease, liver fibrosis, and acute liver failure. Despite challenges in isolation and characterization, engineered EVs have shown efficacy in delivering therapeutic agents with improved targeting and reduced side effects. As research progresses, EVs hold great promise to revolutionize precision medicine in liver diseases, offering targeted, efficient, and versatile therapeutic options. In this review, we summarize various techniques for loading EVs with therapeutic cargo including both passive and active methods, and the potential of bioengineered EVs loaded with various molecules, such as miRNAs, proteins, and anti-inflammatory drugs in ameliorating clinical pathologies of liver diseases.
Collapse
Affiliation(s)
| | | | - Sukriti Baweja
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
8
|
Büdeyri I, Guckelberger O, Oppermann E, Roy D, Sliwinski S, Becker F, Struecker B, Vogl TJ, Pascher A, Bechstein WO, Lorentzen A, Heikenwalder M, Juratli MA. Ezrin Polarization as a Diagnostic Marker for Circulating Tumor Cells in Hepatocellular Carcinoma. Cells 2024; 14:6. [PMID: 39791707 PMCID: PMC11720075 DOI: 10.3390/cells14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third leading cause of cancer-related death worldwide, with no precise method for early detection. Circulating tumor cells (CTCs) expressing the dynamic polarity of the cytoskeletal membrane protein, ezrin, have been proposed to play a crucial role in tumor progression and metastasis. This study investigated the diagnostic and prognostic potential of polarized circulating tumor cells (p-CTCs) in HCC patients. CTCs were isolated from the peripheral blood of 20 HCC patients and 18 patients with nonmalignant liver disease (NMLD) via an OncoQuick® kit and immunostained with Ezrin-Alexa Fluor 488®, CD146-PE, and CD45-APC. A fluorescence microscopy was then performed for analysis. The HCC group exhibited significantly higher levels of p-CTCs, with median values of 0.56 p-CTCs/mL, compared to 0.02 p-CTCs/mL (p = 0.03) in the NMLD group. CTCs were detected in 95% of the HCC patients, with a sensitivity of 95% and specificity of 89%. p-CTCs were present in 75% of the HCC patients, with a sensitivity of 75% and a specificity of 94%. Higher p-CTC counts were associated with the significantly longer overall survival in HCC patients (p = 0.05). These findings suggest that p-CTCs could serve as valuable diagnostic and prognostic markers for HCC. The incorporation of p-CTCs into diagnostic strategies could enhance therapeutic decision-making and improve patient outcomes.
Collapse
Affiliation(s)
- Ibrahim Büdeyri
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany; (I.B.)
| | - Olaf Guckelberger
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany; (I.B.)
| | - Elsie Oppermann
- Department of General, Visceral and Transplant Surgery, Frankfurt University Hospital, 60596 Frankfurt, Germany
| | - Dhruvajyoti Roy
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Svenja Sliwinski
- Department of General, Visceral and Transplant Surgery, Frankfurt University Hospital, 60596 Frankfurt, Germany
| | - Felix Becker
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany; (I.B.)
| | - Benjamin Struecker
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany; (I.B.)
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, Frankfurt University Hospital, Goethe University, 60596 Frankfurt, Germany
| | - Andreas Pascher
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany; (I.B.)
| | - Wolf O. Bechstein
- Department of General, Visceral and Transplant Surgery, Frankfurt University Hospital, 60596 Frankfurt, Germany
| | - Anna Lorentzen
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mazen A. Juratli
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany; (I.B.)
| |
Collapse
|
9
|
Washington AM, Kostallari E. Extracellular Vesicles and Micro-RNAs in Liver Disease. Semin Liver Dis 2024. [PMID: 39626790 DOI: 10.1055/a-2494-2233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Progression of liver disease is dependent on intercellular signaling, including those mediated by extracellular vesicles (EVs). Within these EVs, microRNAs (miRNAs) are packaged to selectively silence gene expression in recipient cells for upregulating or downregulating a specific pathway. Injured hepatocytes secrete EV-associated miRNAs which can be taken up by liver sinusoidal endothelial cells, immune cells, hepatic stellate cells, and other cell types. In addition, these recipient cells will secrete their own EV-associated miRNAs to propagate a response throughout the tissue and the circulation. In this review, we comment on the implications of EV-miRNAs in the progression of alcohol-associated liver disease, metabolic dysfunction-associated steatohepatitis, viral and parasitic infections, liver fibrosis, and liver malignancies. We summarize how circulating miRNAs can be used as biomarkers and the potential of utilizing EVs and miRNAs as therapeutic methods to treat liver disease.
Collapse
Affiliation(s)
- Alexander M Washington
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Shi C, Hu S, Liu S, Jia X, Feng Y. Emerging role of exosomes during the pathogenesis of viral hepatitis, non-alcoholic steatohepatitis and alcoholic hepatitis. Hum Cell 2024; 38:26. [PMID: 39630211 DOI: 10.1007/s13577-024-01158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/24/2024] [Indexed: 01/07/2025]
Abstract
Extracellular vesicles (EVs) refer to a diverse range of membranous vesicles that are secreted by various cell types, they can be categorized into two primary subgroups: exosomes and microvesicles. Specifically, exosomes constitute a nanosized subset of EVs characterized by their intact lipid bilayer and diameters ranging from 30 to 150 nm. These vesicles play a crucial role in intercellular communication by transporting a diverse array of biomolecules, which act as cargoes for this communication process. Exosomes have demonstrated significant implications in a wide range of biologic processes and pathologic conditions, including immunity, development, cancer, neurodegenerative diseases, and liver diseases. Liver diseases significantly contribute to the global burden of morbidity and mortality, yet their pathogenesis remains complex and effective therapies are relatively scarce. Emerging evidence suggests that exosomes play a modulatory role in the pathogenesis of liver diseases, including viral hepatitis, non-alcoholic steatohepatitis (NASH), and alcoholic hepatitis (AH). These findings bolster our confidence in the potential of exosomes as biomarkers and therapeutic tools for the diagnosis and treatment of liver diseases. In this comprehensive review, we offer a straightforward overview of exosomes and summarize the current understanding of their role in the pathogenesis of liver diseases. This provides a foundation for novel diagnostic and therapeutic approaches in the treatment of liver diseases.
Collapse
Affiliation(s)
- Congjian Shi
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Shen Liu
- Department of Pharmacy, Linquan County People's Hospital, Fuyang, 236400, Anhui, China
| | - Xiaodi Jia
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yubin Feng
- Department of Pharmacy, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, 230001, Anhui, China.
| |
Collapse
|
11
|
Wang J, Qiu Y, Yang L, Wang J, He J, Tang C, Yang Z, Hong W, Yang B, He Q, Weng Q. Preserving mitochondrial homeostasis protects against drug-induced liver injury via inducing OPTN (optineurin)-dependent Mitophagy. Autophagy 2024; 20:2677-2696. [PMID: 39099169 PMCID: PMC11587843 DOI: 10.1080/15548627.2024.2384348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024] Open
Abstract
Disruption of mitochondrial function is observed in multiple drug-induced liver injuries (DILIs), a significant global health threat. However, how the mitochondrial dysfunction occurs and whether maintain mitochondrial homeostasis is beneficial for DILIs remains unclear. Here, we show that defective mitophagy by OPTN (optineurin) ablation causes disrupted mitochondrial homeostasis and aggravates hepatocytes necrosis in DILIs, while OPTN overexpression protects against DILI depending on its mitophagic function. Notably, mass spectrometry analysis identifies a new mitochondrial substrate, GCDH (glutaryl-CoA dehydrogenase), which can be selectively recruited by OPTN for mitophagic degradation, and a new cofactor, VCP (valosin containing protein) that interacts with OPTN to stabilize BECN1 during phagophore assembly, thus boosting OPTN-mediated mitophagy initiation to clear damaged mitochondria and preserve mitochondrial homeostasis in DILIs. Then, the accumulation of OPTN in different DILIs is further validated with a protective effect, and pyridoxine is screened and established to alleviate DILIs by inducing OPTN-mediated mitophagy. Collectively, our findings uncover a dual role of OPTN in mitophagy initiation and implicate the preservation of mitochondrial homeostasis via inducing OPTN-mediated mitophagy as a potential therapeutic approach for DILIs.Abbreviation: AILI: acetaminophen-induced liver injury; ALS: amyotrophic lateral sclerosis; APAP: acetaminophen; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CHX: cycloheximide; Co-IP: co-immunoprecipitation; DILI: drug-induced liver injury; FL: full length; GCDH: glutaryl-CoA dehydrogenase; GOT1/AST: glutamic-oxaloacetic transaminase 1; GO: gene ontology; GSEA: gene set enrichment analysis; GPT/ALT: glutamic - pyruvic transaminase; INH: isoniazid; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MMP: mitochondrial membrane potential; MST: microscale thermophoresis; MT-CO2/COX-II: mitochondrially encoded cytochrome c oxidase II; OPTN: optineurin; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; TSN: toosendanin; VCP: valosin containing protein, WIPI2: WD repeat domain, phosphoinositide interacting 2.
Collapse
Affiliation(s)
- Jiajia Wang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Yueping Qiu
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lijun Yang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jie He
- Department of infectious diseases, The First People’s Hospital Affiliated to Huzhou Normal College, Huzhou, Zhejiang, China
| | - Chengwu Tang
- Department of infectious diseases, The First People’s Hospital Affiliated to Huzhou Normal College, Huzhou, Zhejiang, China
| | - Zhaoxu Yang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wenxiang Hong
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
- Taizhou Institute of Zhejiang University, Zhejiang University, Taizhou, China
| |
Collapse
|
12
|
Chen Y, Wu Y, Sun H, Zhang H, Tang D, Yuan T, Chen C, Huang W, Zhou X, Wu H, Xu S, Liu W, Jiao Y, Yang L, Li Q, Yan H, Yu W. Human liver progenitor-like cells-derived extracellular vesicles promote liver regeneration during acute liver failure. Cell Biol Toxicol 2024; 40:106. [PMID: 39604571 PMCID: PMC11602810 DOI: 10.1007/s10565-024-09954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Hepatocyte-derived liver progenitor-like cells (HepLPCs) exhibit a remarkable capacity to support liver function by detoxifying ammonia, promoting native liver regeneration, and suppressing inflammation, which leads to improvements in the recovery and survival of animals with acute liver failure (ALF). However, the mechanism through which HepLPCs promote liver regeneration is unclear. Here, we isolated HepLPC-derived extracellular vesicles (HepLPC-EVs) from conditioned media and performed microRNA sequencing analysis. Our results showed HepLPC-EVs promoted liver regeneration in mice with carbon tetrachloride or acetaminophen induced ALF. Cell cycle progression and proliferation of primary human hepatocytes were promoted after coculture with HepLPC-EVs. Exosomal miRNA sequencing confirmed that HepLPC-EVs were enriched with miR-183-5p, which played an essential role in ameliorating ALF. Mechanistically, HepLPC-derived exosomal miR-183-5p negatively regulated the expression of the target gene FoxO1, activated the Akt/GSK3β/β-catenin signaling pathway, and thereby promoted liver regeneration and restoration of normal liver function. These results indicate that during ALF, HepLPC-Exos mediate liver regeneration mainly through a paracrine exosome-dependent mechanism and these effects accelerate liver regeneration and lead to the restoration of normal liver function.
Collapse
Affiliation(s)
- Yi Chen
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Yuling Wu
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Hanyong Sun
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Hongdan Zhang
- Celliver Biotechnology Co. Ltd., Shanghai, 200120, China
| | - Dan Tang
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Tianjie Yuan
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Caiyang Chen
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Weijian Huang
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Xu Zhou
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Hongping Wu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, 200438, China
| | - Saihong Xu
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Wenming Liu
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Yingfu Jiao
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Liqun Yang
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Qigen Li
- Department of Organ Transplantation, the Second Affiliated Hospital of Nanchang University, Nanchang, 330200, China.
| | - Hexin Yan
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China.
- Celliver Biotechnology Co. Ltd., Shanghai, 200120, China.
| | - Weifeng Yu
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China.
| |
Collapse
|
13
|
Yang Y, Lv M, Xu Q, Wang X, Fang Z. Extracellular Vesicles in Idiopathic Pulmonary Fibrosis: Pathogenesis, Biomarkers and Innovative Therapeutic Strategies. Int J Nanomedicine 2024; 19:12593-12614. [PMID: 39619058 PMCID: PMC11606342 DOI: 10.2147/ijn.s491335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/16/2024] [Indexed: 12/13/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible interstitial lung disease caused by aberrant deposition of extracellular matrix in the lungs with significant morbidity and mortality. The therapeutic choices for IPF remain limited. Extracellular vesicles (EVs), as messengers for intercellular communication, are cell-secreted lipid bilayer nanoscale particles found in body fluids, and regulate the epithelial phenotype and profibrotic signaling pathways by transporting bioactive cargo to recipients in the pathogenesis of IPF. Furthermore, an increasing number of studies suggests that EVs derived from stem cells can be employed as a cell-free therapeutic approach for IPF, given their intrinsic tissue-homing capabilities and regeneration characteristics. This review highlights new sights of EVs in the pathogenesis of IPF, their potential as diagnostic and prognostic biomarkers, and prospects as novel drug delivery systems and next-generation therapeutics against IPF. Notably, bringing engineering strategies to EVs holds great promise for enhancing the therapeutic effect of anti-pulmonary fibrosis and promoting clinical transformation.
Collapse
Affiliation(s)
- Yibao Yang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Mengen Lv
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Qing Xu
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Xiaojuan Wang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Zhujun Fang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| |
Collapse
|
14
|
Tao X, Chen C, Liu M. The Role of Extracellular Vesicles in Liver Fibrosis: Friends or Foes? Biomedicines 2024; 12:2665. [PMID: 39767572 PMCID: PMC11726879 DOI: 10.3390/biomedicines12122665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 01/16/2025] Open
Abstract
Liver fibrosis represents a common pathway in the progression of various chronic liver diseases towards cirrhosis and liver failure. Extracellular vesicles (EVs) are membrane-enclosed particles secreted by diverse cell types, including exosomes, microvesicles, apoptotic vesicles, and the recently identified migrasomes. These vesicles can be taken up by recipient cells, thereby modulating their function through the transport of cargo molecules. EVs facilitate intercellular communication and play a significant role in the development of liver fibrosis. Moreover, the detection of EVs in various body fluids offers sensitive diagnostic tools for assessing liver fibrosis. Additionally, EVs may serve as therapeutic targets, potential therapeutic agents, and drug delivery vehicles. This article reviews recent advances in the field of EVs concerning liver fibrosis and related diseases, with a particular focus on the potential role of the newly discovered migrasomes in intracellular crosstalk within the liver.
Collapse
Affiliation(s)
- Xiang Tao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Can Chen
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
15
|
Hong S, Su Z, Zhang Y, Hu G, Zhang Q, Ji Z, Wang L, Yu S, Zhu X, Yuan F, Jia G. Exosomal miRNAs as Participators of Hexavalent Chromium-Induced Genotoxicity and Immunotoxicity: A Two-Stage Population Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39565106 DOI: 10.1021/acs.est.4c06411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Genotoxic and immunosuppressive characteristics are central to the carcinogenic profile of hexavalent chromium [Cr(VI)], with dysregulation of circulating exosomal miRNA potentially acting as oncogenes or tumor suppressors or participating in the carcinogenic landscape of heavy metals through immunomodulation. In this two-stage epidemiological investigation, we unveiled for the first time the perturbations of exosomal miRNAs among individuals exposed to Cr(VI), alongside their significant correlations with biomarkers of genetic injury (γ-H2AX positivity in circulating lymphocytes and the urinary 8-OHdG levels) and immunological indicators (immunosuppressive PD-1 expression), which was supported by validation in an external cohort. Employing a support vector machine model, we discerned that exosomal miRNAs, particularly miR-4467, miR-345-5p, miR-144-3p, and miR-206, exhibited a remarkable capacity to delineate the genetic damage stratum within the population with high precision, and the target genes predicted of these miRNAs further elucidated their intricate regulatory interplay with the effector biomarkers. Additionally, employing a Bayesian mediation framework, we observed the intermediary function of miR-4467 in the nexus between chromium exposure and the escalation of urinary 8-OHdG levels (mediation effect: 0.47, P < 0.05). Although our findings suggested a link between extracellular miRNAs and immunosuppressive biomarkers, this association did not achieve validation in the external cohort, possibly due to population heterogeneity. Collectively, this study advanced our understanding of the epigenetic orchestration of health hazards of Cr(VI) by exosomal miRNAs, shedding light on their expression signatures and their intricate interplay with Cr(VI)-induced genetic and immunological perturbations, thus providing novel perspectives on the toxic pathways of heavy metals.
Collapse
Affiliation(s)
- Shiyi Hong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Zekang Su
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Guiping Hu
- School of Engineering Medicine and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100083, China
| | - Qiaojian Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Zhiqiang Ji
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Li Wang
- Department of Toxicology, School of Public Health, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Shanfa Yu
- Henan Institute for Occupational Medicine, Zhengzhou City, Henan Province 450052, China
| | - Xiaojun Zhu
- National Center for Occupational Safety and Health, Beijing 102308, China
| | - Fang Yuan
- Department of Occupational Health and Radiological Health, Chongqing Centers for Disease Control and Prevention, Chongqing 400042, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| |
Collapse
|
16
|
Egerer M, Schuch K, Schöler D, Artusa F, Püngel T, Holtman TM, Loosen SH, Demir M, Wree A, Luedde T, Tacke F, Roderburg C, Mohr R. Extracellular Vesicles May Predict Response to Atezolizumab Plus Bevacizumab in Patients with Advanced Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:3651. [PMID: 39518089 PMCID: PMC11545167 DOI: 10.3390/cancers16213651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND AIMS Treatment with atezolizumab and bevacizumab has been approved as one of the standards of care for patients with advanced hepatocellular carcinoma (HCC). The median overall survival (OS) upon available treatments still remains below 2 years, urgently suggesting better stratification tools to identify ideal candidates for this treatment and potentially allowing personalized approaches. In this study, we evaluated the potential role of extracellular vesicles (EVs) as a novel biomarker in patients receiving atezolizumab and bevacizumab for HCC. METHODS We characterized EVs in 212 longitudinal serum samples from an observational cohort of 53 individuals with advanced HCC, who started therapy with atezolizumab plus bevacizumab at our center between January 2020 and March 2022. RESULTS In our cohort, the overall efficacy of atezolizumab and bevacizumab was comparable to previously published phase III data. We detected significantly smaller EVs in treatment responders, while enlarged EVs were associated with significantly decreased efficacy of atezolizumab and bevacizumab in terms of OS. A decrease in vesicle size during immunotherapy was related to a longer progression-free survival (PFS). A univariate Cox regression analysis including various clinicopathological parameters (e.g., tumor stage, markers of inflammation, organ dysfunction, or tumor markers) revealed vesicle size as an independent prognostic marker in HCC patients receiving atezolizumab and bevacizumab. Moreover, higher vesicle concentrations and lower zeta potentials were identified as a positive prognostic factor throughout treatment. CONCLUSIONS Distinct EV characteristics such as vesicle size, concentration, and zeta potential represent promising novel biomarkers in patients with advanced HCC receiving atezolizumab and bevacizumab, potentially helping to identify optimal candidates for checkpoint inhibitor-based treatments.
Collapse
Affiliation(s)
- Mara Egerer
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité–Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (M.E.); (F.A.); (T.P.); (T.M.H.); (M.D.); (A.W.); (F.T.)
| | - Kathrin Schuch
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (K.S.); (D.S.); (S.H.L.); (T.L.); (C.R.)
| | - David Schöler
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (K.S.); (D.S.); (S.H.L.); (T.L.); (C.R.)
| | - Fabian Artusa
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité–Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (M.E.); (F.A.); (T.P.); (T.M.H.); (M.D.); (A.W.); (F.T.)
| | - Tobias Püngel
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité–Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (M.E.); (F.A.); (T.P.); (T.M.H.); (M.D.); (A.W.); (F.T.)
- Berlin Institute of Health, 10178 Berlin, Germany
| | - Theresa Maria Holtman
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité–Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (M.E.); (F.A.); (T.P.); (T.M.H.); (M.D.); (A.W.); (F.T.)
| | - Sven H. Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (K.S.); (D.S.); (S.H.L.); (T.L.); (C.R.)
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité–Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (M.E.); (F.A.); (T.P.); (T.M.H.); (M.D.); (A.W.); (F.T.)
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité–Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (M.E.); (F.A.); (T.P.); (T.M.H.); (M.D.); (A.W.); (F.T.)
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (K.S.); (D.S.); (S.H.L.); (T.L.); (C.R.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité–Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (M.E.); (F.A.); (T.P.); (T.M.H.); (M.D.); (A.W.); (F.T.)
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (K.S.); (D.S.); (S.H.L.); (T.L.); (C.R.)
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité–Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (M.E.); (F.A.); (T.P.); (T.M.H.); (M.D.); (A.W.); (F.T.)
| |
Collapse
|
17
|
Liu M, Wen Y. Point-of-care testing for early-stage liver cancer diagnosis and personalized medicine: Biomarkers, current technologies and perspectives. Heliyon 2024; 10:e38444. [PMID: 39397977 PMCID: PMC11470528 DOI: 10.1016/j.heliyon.2024.e38444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Liver cancer is a highly prevalent and lethal form of cancer worldwide. In the absence of early diagnosis, treatment options for this disease are severely restricted. Recent advancements in genomics and bioinformatics have facilitated the discovery of a multitude of novel biomarkers that accurately depict an individual's disease diagnosis, progression, and treatment response. Leveraging these breakthroughs, personalized medicine employs an individual's biomarker profile to enable early detection of liver cancer and inform decisions regarding treatment selection, dosage determination, and prognosis assessment. The current lack of readily applicable, timely, and economically viable tools for biomarker analysis has hindered the incorporation of personalized medicine into regular clinical procedures. Over the past decade, significant advancements have been achieved in the field of molecular point-of-care testing (POCT) and amplification techniques, leading to substantial improvements in the diagnosis of liver cancer and the implementation of precision medicine. Instrument-free PCR technology or plasma PCR technology can shorten the complex procedure of in vitro detection of nucleic acid-based biomarkers. Also, compared to traditional ELISA, various nanomaterials modified with monoclonal antibodies to target proteins for recognition, capture, and detection have improved the efficiency of protein-based biomarker detection. These advances have reduced the time and cost of clinical detection of early-stage hepatocellular carcinoma and improved the efficiency of timely diagnosis and survival of suspected patients while reducing unnecessary testing costs and procedures. This review aims to provide a comprehensive overview of the current and emerging biomarkers employed in the early detection of liver cancer, as well as the advancements in point-of-care molecular testing technology and platforms. The primary objective is to assess their potential in facilitating the implementation of personalized medicine. This review ultimately revealed that the diagnosis of early-stage hepatocellular carcinoma not only requires sensitive biomarkers, but its various modifications and changes during the progression of cirrhosis to early-stage hepatocellular carcinoma will be a greater focus of our attention in the future. The rapid development of POCT has facilitated the opportunity to readily detect liver cancer in the general population in the future, and the integration of multi-pathway multiplexing and intelligent algorithms has improved the sensitivity and accuracy of early liver cancer biomarker detection. It is expected that the integration of point-of-care technology will be instrumental in the widespread adoption of personalized medicine in the foreseeable future.
Collapse
Affiliation(s)
- Mengxiang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Yanrong Wen
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
18
|
Liu YG, Jiang ST, Zhang JW, Zheng H, Zhang L, Zhao HT, Sang XT, Xu YY, Lu X. Role of extracellular vesicle-associated proteins in the progression, diagnosis, and treatment of hepatocellular carcinoma. Cell Biosci 2024; 14:113. [PMID: 39227992 PMCID: PMC11373138 DOI: 10.1186/s13578-024-01294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, characterized by difficulties in early diagnosis, prone to distant metastasis, and high recurrence rates following surgery. Extracellular vesicles (EVs) are a class of cell-derived particles, including exosomes, characterized by a phospholipid bilayer. They serve as effective carriers for intercellular communication cargo, including proteins and nucleic acids, and are widely involved in tumor progression. They are being explored as potential tumor biomarkers and novel therapeutic avenues. We provide a brief overview of the biogenesis and characteristics of EVs to better understand their classification standards. The focus of this review is on the research progress of EV-associated proteins in the field of HCC. EV-associated proteins are involved in tumor growth and regulation in HCC, participate in intercellular communication within the tumor microenvironment (TME), and are implicated in events including angiogenesis and epithelial-mesenchymal transition (EMT) during tumor metastasis. In addition, EV-associated proteins show promising diagnostic efficacy for HCC. For the treatment of HCC, they also demonstrate significant potential including enhancing the efficacy of tumor vaccines, and as targeting cargo anchors. Facing current challenges, we propose the future directions of research in this field. Above all, research on EV-associated proteins offers the potential to enhance our comprehension of HCC and offer novel insights for developing new treatment strategies.
Collapse
Affiliation(s)
- Yao-Ge Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Shi-Tao Jiang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jun-Wei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Han Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Lei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hai-Tao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yi-Yao Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
19
|
Luo XY, Ying SQ, Cao Y, Jin Y, Jin F, Zheng CX, Sui BD. Liver-based inter-organ communication: A disease perspective. Life Sci 2024; 351:122824. [PMID: 38862061 DOI: 10.1016/j.lfs.2024.122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
Inter-organ communication through hormones, cytokines and extracellular vesicles (EVs) has emerged to contribute to the physiological states and pathological processes of the human body. Notably, the liver coordinates multiple tissues and organs to maintain homeostasis and maximize energy utilization, with the underlying mechanisms being unraveled in recent studies. Particularly, liver-derived EVs have been found to play a key role in regulating health and disease. As an endocrine organ, the liver has also been found to perform functions via the secretion of hepatokines. Investigating the multi-organ communication centered on the liver, especially in the manner of EVs and hepatokines, is of great importance to the diagnosis and treatment of liver-related diseases. This review summarizes the crosstalk between the liver and distant organs, including the brain, the bone, the adipose tissue and the intestine in noticeable situations. The discussion of these contents will add to a new dimension of organismal homeostasis and shed light on novel theranostics of pathologies.
Collapse
Affiliation(s)
- Xin-Yan Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Si-Qi Ying
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yuan Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
20
|
Gong T, Zhang X, Liu X, Ye Y, Tian Z, Yin S, Zhang M, Tang J, Liu Y. Exosomal Tenascin-C primes macrophage pyroptosis amplifying aberrant inflammation during sepsis-induced acute lung injury. Transl Res 2024; 270:66-80. [PMID: 38604333 DOI: 10.1016/j.trsl.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Sepsis-induced acute lung injury (ALI) is a serious complication of sepsis and the predominant cause of death. Exosomes released by lung tissue cells critically influence the progression of ALI during sepsis by modulating the inflammatory microenvironment. However, the molecular mechanisms by which exosome-mediated intercellular signaling exacerbates ALI in septic infection remain undefined. Our study found increased levels of exosomal Tenascin-C (TNC) in the plasma of both patients and mice with ALI, showing a strong association with disease progression. By integrating exosomal proteomics with transcriptome sequencing and experimental validation, we elucidated that LPS induce unresolved endoplasmic reticulum stress (ERs) in alveolar epithelial cells (AECs), ultimately leading to the release of exosomal TNC through the activation of PERK-eIF2α and the transcription factor CHOP. In the sepsis mouse model with TNC knockout, we noted a marked reduction in macrophage pyroptosis. Our detailed investigations found that exosomal TNC binds to TLR4 on macrophages, resulting in an augmented production of ROS, subsequent mitochondrial damage, activation of the NF-κB signaling pathway, and induction of DNA damage response. These interconnected events culminate in macrophage pyroptosis, thereby amplifying the release of inflammatory cytokines. Our findings demonstrate that exosomal Tenascin-C, released from AECs under unresolved ER stress, exacerbates acute lung injury by intensifying sepsis-associated inflammatory responses. This research provides new insights into the complex cellular interactions underlying sepsis-induced ALI.
Collapse
Affiliation(s)
- Ting Gong
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Xuedi Zhang
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaolei Liu
- Department of Anaesthetics, Affiliated Hospital of Guangdong Medical University, No.57 People Avenue South, Zhanjiang, 524001, Guangdong, China
| | - Yinfeng Ye
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhiyuan Tian
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shuang Yin
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Min Zhang
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jing Tang
- Department of Anaesthetics, Affiliated Hospital of Guangdong Medical University, No.57 People Avenue South, Zhanjiang, 524001, Guangdong, China.
| | - Youtan Liu
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, No.1333, Xinhu Road, Baoan District, Shenzhen 518110, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Yang X, Qiu K, Jiang Y, Huang Y, Zhang Y, Liao Y. Metabolic Crosstalk between Liver and Brain: From Diseases to Mechanisms. Int J Mol Sci 2024; 25:7621. [PMID: 39062868 PMCID: PMC11277155 DOI: 10.3390/ijms25147621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Multiple organs and tissues coordinate to respond to dietary and environmental challenges. It is interorgan crosstalk that contributes to systemic metabolic homeostasis. The liver and brain, as key metabolic organs, have their unique dialogue to transmit metabolic messages. The interconnected pathogenesis of liver and brain is implicated in numerous metabolic and neurodegenerative disorders. Recent insights have positioned the liver not only as a central metabolic hub but also as an endocrine organ, capable of secreting hepatokines that transmit metabolic signals throughout the body via the bloodstream. Metabolites from the liver or gut microbiota also facilitate a complex dialogue between liver and brain. In parallel to humoral factors, the neural pathways, particularly the hypothalamic nuclei and autonomic nervous system, are pivotal in modulating the bilateral metabolic interplay between the cerebral and hepatic compartments. The term "liver-brain axis" vividly portrays this interaction. At the end of this review, we summarize cutting-edge technical advancements that have enabled the observation and manipulation of these signals, including genetic engineering, molecular tracing, and delivery technologies. These innovations are paving the way for a deeper understanding of the liver-brain axis and its role in metabolic homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
22
|
Campello E, Zanetto A, Radu CM, Toffanin S, Shalaby S, Gavasso S, Rizzo S, Perin N, Angeli P, Burra P, Senzolo M, Simioni P. Profiling plasma alterations of extracellular vesicles in patients with acutely decompensated cirrhosis and bacterial infection. Liver Int 2024; 44:1610-1623. [PMID: 38517208 DOI: 10.1111/liv.15889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Extracellular vesicles (EVs) modulate inflammation, coagulation and vascular homeostasis in decompensated cirrhosis. AIM To characterize the profile of plasmatic EVs in patients with decompensated cirrhosis and bacterial infections and evaluate the association between EVs and the development of hemostatic complications. METHODS We measured the levels of EVs using high-sensitivity flow cytometry and phospholipid-dependent clotting time (PPL) in a prospective cohort of hospitalized patients with acutely decompensated cirrhosis with versus without bacterial infections. A separate cohort of patients with bacterial infections without cirrhosis was also enrolled. We measured endothelium-, tissue factor (TF)-bearing, platelet- and leukocyte-derived EVs. In patients with infections, EVs were reassessed upon resolution of infection. Bleeding and thrombotic complications were recorded during 1-year follow-up. RESULTS Eighty patients with decompensated cirrhosis were recruited (40 each with and without bacterial infections). Electron microscopy confirmed the presence of plasma EVs. Despite no difference in total EVs and PPL, patients with cirrhosis and infection had significantly higher TF+ EVs, P-Selectin+ EVs (activated platelet-derived), CD14+ EVs (monocyte/macrophages derived) and CD14+ TF+ EVs versus those with cirrhosis without infection. Upon infection resolution, levels of these EVs returned to those without infection. Patients with infections showed a significant association between reduced P-Selectin+ EVs and bleeding complications (HR 8.0 [95%CI 1.3-48.1]), whereas high levels of leukocyte-derived EVs (CD45+) and CD14+ EVs were significantly associated with thrombotic complications (HR 16.4 [95%CI 1.7-160] and 10.9 [95%CI 1.13-106], respectively). Results were confirmed in a validation cohort. CONCLUSION Bacterial infections are associated with particular alterations of plasma EVs profile in decompensated cirrhosis. Bacterial infections trigger the release of EVs originating from various cell types, which may tip the precarious hemostatic balance of patients with acutely decompensated cirrhosis towards hyper- or hypocoagulability.
Collapse
Affiliation(s)
- Elena Campello
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Alberto Zanetto
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Claudia M Radu
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Serena Toffanin
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Sarah Shalaby
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Sabrina Gavasso
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Stefania Rizzo
- Cardiovascular Pathology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, Padova, Italy
| | - Nicola Perin
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Paolo Angeli
- Unit of Internal Medicine and Hepatology, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Patrizia Burra
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Marco Senzolo
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Paolo Simioni
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Department of Medicine, Padova University Hospital, Padova, Italy
| |
Collapse
|
23
|
Duan J, Huang Z, Qin S, Li B, Zhang Z, Liu R, Wang K, Nice EC, Jiang J, Huang C. Oxidative stress induces extracellular vesicle release by upregulation of HEXB to facilitate tumour growth in experimental hepatocellular carcinoma. J Extracell Vesicles 2024; 13:e12468. [PMID: 38944674 PMCID: PMC11214608 DOI: 10.1002/jev2.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024] Open
Abstract
Extracellular vesicles (EVs) play a crucial role in triggering tumour-aggressive behaviours. However, the energetic process by which tumour cells produce EVs remains poorly understood. Here, we demonstrate the involvement of β-hexosaminidase B (HEXB) in mediating EV release in response to oxidative stress, thereby promoting the development of hepatocellular carcinoma (HCC). Mechanistically, reactive oxygen species (ROS) stimulate the nuclear translocation of transcription factor EB (TFEB), leading to the upregulation of both HEXB and its antisense lncRNA HEXB-AS. HEXB-AS can bind HEXB to form a protein/RNA complex, which elevates the protein stability of HEXB. The stabilized HEXB interacts with lysosome-associated membrane glycoprotein 1 (LAMP1), disrupting lysosome-multivesicular body (MVB) fusion, which protects EVs from degradation. Knockdown of HEXB efficiently inhibits EV release and curbs HCC growth both in vitro and in vivo. Moreover, targeting HEXB by M-31850 significantly inhibits HCC growth, especially when combined with GW4869, an inhibitor of exosome release. Our results underscore the critical role of HEXB as a modulator that promotes EV release during HCC development.
Collapse
Affiliation(s)
- Jiufei Duan
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduP.R. China
| | - Zhao Huang
- West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduP.R. China
| | - Siyuan Qin
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduP.R. China
| | - Bowen Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduP.R. China
| | - Zhe Zhang
- MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanP.R. China
| | - Kui Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduP.R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduP.R. China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduP.R. China
| |
Collapse
|
24
|
Stawarska A, Bamburowicz-Klimkowska M, Runden-Pran E, Dusinska M, Cimpan MR, Rios-Mondragon I, Grudzinski IP. Extracellular Vesicles as Next-Generation Diagnostics and Advanced Therapy Medicinal Products. Int J Mol Sci 2024; 25:6533. [PMID: 38928240 PMCID: PMC11204223 DOI: 10.3390/ijms25126533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Extracellular vesicles (EVs) hold great promise for clinical application as new diagnostic and therapeutic modalities. This paper describes major GMP-based upstream and downstream manufacturing processes for EV large-scale production, also focusing on post-processing technologies such as surface bioengineering and uploading studies to yield novel EV-based diagnostics and advanced therapy medicinal products. This paper also focuses on the quality, safety, and efficacy issues of the bioengineered EV drug candidates before first-in-human studies. Because clinical trials involving extracellular vesicles are on the global rise, this paper encompasses different clinical studies registered on clinical-trial register platforms, with varying levels of advancement, highlighting the growing interest in EV-related clinical programs. Navigating the regulatory affairs of EVs poses real challenges, and obtaining marketing authorization for EV-based medicines remains complex due to the lack of specific regulatory guidelines for such novel products. This paper discusses the state-of-the-art regulatory knowledge to date on EV-based diagnostics and medicinal products, highlighting further research and global regulatory needs for the safe and reliable implementation of bioengineered EVs as diagnostic and therapeutic tools in clinical settings. Post-marketing pharmacovigilance for EV-based medicinal products is also presented, mainly addressing such topics as risk assessment and risk management.
Collapse
Affiliation(s)
- Agnieszka Stawarska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland; (M.B.-K.); (I.P.G.)
| | - Magdalena Bamburowicz-Klimkowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland; (M.B.-K.); (I.P.G.)
| | - Elise Runden-Pran
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (M.D.)
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (M.D.)
| | - Mihaela Roxana Cimpan
- Biomaterials—Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien Str. 19, 5009 Bergen, Norway; (M.R.C.); (I.R.-M.)
| | - Ivan Rios-Mondragon
- Biomaterials—Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien Str. 19, 5009 Bergen, Norway; (M.R.C.); (I.R.-M.)
| | - Ireneusz P. Grudzinski
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland; (M.B.-K.); (I.P.G.)
| |
Collapse
|
25
|
Yang S, Sun Y, Yan C. Recent advances in the use of extracellular vesicles from adipose-derived stem cells for regenerative medical therapeutics. J Nanobiotechnology 2024; 22:316. [PMID: 38844939 PMCID: PMC11157933 DOI: 10.1186/s12951-024-02603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs) isolated from adipose tissue. They possess remarkable properties, including multipotency, self-renewal, and easy clinical availability. ADSCs are also capable of promoting tissue regeneration through the secretion of various cytokines, factors, and extracellular vesicles (EVs). ADSC-derived EVs (ADSC-EVs) act as intercellular signaling mediators that encapsulate a range of biomolecules. These EVs have been found to mediate the therapeutic activities of donor cells by promoting the proliferation and migration of effector cells, facilitating angiogenesis, modulating immunity, and performing other specific functions in different tissues. Compared to the donor cells themselves, ADSC-EVs offer advantages such as fewer safety concerns and more convenient transportation and storage for clinical application. As a result, these EVs have received significant attention as cell-free therapeutic agents with potential future application in regenerative medicine. In this review, we focus on recent research progress regarding regenerative medical use of ADSC-EVs across various medical conditions, including wound healing, chronic limb ischemia, angiogenesis, myocardial infarction, diabetic nephropathy, fat graft survival, bone regeneration, cartilage regeneration, tendinopathy and tendon healing, peripheral nerve regeneration, and acute lung injury, among others. We also discuss the underlying mechanisms responsible for inducing these therapeutic effects. We believe that deciphering the biological properties, therapeutic effects, and underlying mechanisms associated with ADSC-EVs will provide a foundation for developing a novel therapeutic approach in regenerative medicine.
Collapse
Affiliation(s)
- Song Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People's Republic of China.
| | - Chenchen Yan
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People's Republic of China
| |
Collapse
|
26
|
Wu X, Niu J, Shi Y. Exosomes target HBV-host interactions to remodel the hepatic immune microenvironment. J Nanobiotechnology 2024; 22:315. [PMID: 38840207 PMCID: PMC11151510 DOI: 10.1186/s12951-024-02544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Chronic hepatitis B poses a significant global burden, modulating immune cells, leading to chronic inflammation and long-term damage. Due to its hepatotropism, the hepatitis B virus (HBV) cannot infect other cells. The mechanisms underlying the intercellular communication among different liver cells in HBV-infected individuals and the immune microenvironment imbalance remain elusive. Exosomes, as important intercellular communication and cargo transportation tools between HBV-infected hepatocytes and immune cells, have been shown to assist in HBV cargo transportation and regulate the immune microenvironment. However, the role of exosomes in hepatitis B has only gradually received attention in recent years. Minimal literature has systematically elaborated on the role of exosomes in reshaping the immune microenvironment of the liver. This review unfolds sequentially based on the biological processes of exosomes: exosomes' biogenesis, release, transport, uptake by recipient cells, and their impact on recipient cells. We delineate how HBV influences the biogenesis of exosomes, utilizing exosomal covert transmission, and reshapes the hepatic immune microenvironment. And based on the characteristics and functions of exosomes, potential applications of exosomes in hepatitis B are summarized and predicted.
Collapse
Affiliation(s)
- Xiaojing Wu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Junqi Niu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Ying Shi
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
27
|
Peruhova M, Banova-Chakarova S, Miteva DG, Velikova T. Genetic screening of liver cancer: State of the art. World J Hepatol 2024; 16:716-730. [PMID: 38818292 PMCID: PMC11135278 DOI: 10.4254/wjh.v16.i5.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Liver cancer, primarily hepatocellular carcinoma, remains a global health challenge with rising incidence and limited therapeutic options. Genetic factors play a pivotal role in the development and progression of liver cancer. This state-of-the-art paper provides a comprehensive review of the current landscape of genetic screening strategies for liver cancer. We discuss the genetic underpinnings of liver cancer, emphasizing the critical role of risk-associated genetic variants, somatic mutations, and epigenetic alterations. We also explore the intricate interplay between environmental factors and genetics, highlighting how genetic screening can aid in risk stratification and early detection via using liquid biopsy, and advancements in high-throughput sequencing technologies. By synthesizing the latest research findings, we aim to provide a comprehensive overview of the state-of-the-art genetic screening methods for liver cancer, shedding light on their potential to revolutionize early detection, risk assessment, and targeted therapies in the fight against this devastating disease.
Collapse
Affiliation(s)
- Milena Peruhova
- Department of Gastroenterology, University Hospital "Heart and Brain", Burgas 8000, Bulgaria
| | - Sonya Banova-Chakarova
- Department of Gastroenterology, University Hospital "Heart and Brain", Burgas 8000, Bulgaria.
| | - Dimitrina Georgieva Miteva
- Department of Genetics, Faculty of Biology, Sofia University" St. Kliment Ohridski, Sofia 1164, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
28
|
Zertuche-Martínez C, Velázquez-Enríquez JM, González-García K, Baltiérrez-Hoyos R, Carrasco-Torres G, García-Román R, Romero-Díaz RI, Pérez-Hernández JL, Muriel P, Villa-Treviño S, Arellanes-Robledo J, Vásquez-Garzón VR. Identification of ABCC3 and its isoforms as potential biomarker in hepatocellular carcinoma. Toxicol Mech Methods 2024; 34:398-407. [PMID: 38083799 DOI: 10.1080/15376516.2023.2294475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Liver diseases preceding the occurrence of hepatocellular carcinoma (HCC) play a crucial role in the progression and establishment of HCC, a malignancy ranked as the third deadliest cancer worldwide. Late diagnosis, alongside ineffective treatment, leads patients to a poor survival rate. This scenario argues for seeking novel alternatives for detecting liver alterations preceding the early occurrence of HCC. Experimental studies have reported that ABCC3 protein increases within HCC tumors but not in adjacent tissue. Therefore, we analyzed ABCC3 expression in public databases and investigated the presence of ABCC3 and its isoforms in plasma, urine and its release in extracellular vesicles (EVs) cargo from patients bearing cirrhosis and HCC. The UALCAN and GEPIA databases were used to analyze the expression of ABCC3 in HCC. The results were validated in a case-control study including 41 individuals bearing cirrhosis and HCC, and the levels of ABCC3 in plasma and urine samples, as well as EVs, were analyzed by ELISA and western blot. Our data showed that ABCC3 expression was higher in HCC tissues than in normal tissues and correlated with HCC grade and stage. ABCC3 protein levels were highly increased in both plasma and urine and correlated with liver disease progression and severity. The isoforms MRP3A and MRP3B of ABCC3 were significantly increased in both EVs and plasma/urine of patients bearing HCC. ABCC3 expression gradually increases in HCC tissues, and its protein levels are increased in both plasma and urine of patients with cirrhosis and HCC. MRP3A and MRP3B isoforms have the potential to be prognostic biomarkers of HCC.
Collapse
Affiliation(s)
- Cecilia Zertuche-Martínez
- Faculty of Medicine and Surgery, Laboratory of Fibrosis and Cancer, 'Benito Juarez' Autonomous University of Oaxaca-UABJO, Oaxaca, Mexico
| | - Juan Manuel Velázquez-Enríquez
- Faculty of Medicine and Surgery, Laboratory of Fibrosis and Cancer, 'Benito Juarez' Autonomous University of Oaxaca-UABJO, Oaxaca, Mexico
| | - Karina González-García
- Faculty of Medicine and Surgery, Laboratory of Fibrosis and Cancer, 'Benito Juarez' Autonomous University of Oaxaca-UABJO, Oaxaca, Mexico
| | - Rafael Baltiérrez-Hoyos
- CONACYT-Faculty of Medicine and Surgery, Autonomous University "Benito Juarez" of Oaxaca-UABJO, Oaxaca, Mexico
| | - Gabriela Carrasco-Torres
- Centre for Research in Applied Science and Advanced Technology, Morelos Unit, National Polytechnic Institute, Atlacholoaya, Mexico
| | | | | | | | - Pablo Muriel
- Department of Pharmacology, Laboratory of Experimental Hepatology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City, Mexico
| | - Saúl Villa-Treviño
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City, Mexico
| | - Jaime Arellanes-Robledo
- CONACYT-Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, Mexico City, Mexico
| | | |
Collapse
|
29
|
Li X, Liu Y, Fan Y, Tian G, Shen B, Zhang S, Fu X, He W, Tao X, Ding X, Li X, Ding S. Advanced Nanoencapsulation-Enabled Ultrasensitive Analysis: Unraveling Tumor Extracellular Vesicle Subpopulations for Differential Diagnosis of Hepatocellular Carcinoma via DNA Cascade Reactions. ACS NANO 2024; 18:11389-11403. [PMID: 38628141 DOI: 10.1021/acsnano.4c01310] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Tumor-derived extracellular vesicles (tEVs) hold immense promise as potential biomarkers for the precise diagnosis of hepatocellular carcinoma (HCC). However, their clinical translation is hampered by their inherent characteristics, such as small size and high heterogeneity and complex environment, including non-EV particles and normal cell-derived EVs, which prolong separation procedures and compromise detection accuracy. In this study, we devised a DNA cascade reaction-triggered individual EV nanoencapsulation (DCR-IEVN) strategy to achieve the ultrasensitive and specific detection of tEV subpopulations via routine flow cytometry in a one-pot, one-step fashion. DCR-IEVN enables the direct and selective packaging of multiple tEV subpopulations in clinical serum samples into flower-like particles exceeding 600 nm. This approach bypasses the need for EV isolation, effectively reducing interference from non-EV particles and nontumor EVs. Compared with conventional analytical technologies, DCR-IEVN exhibits superior efficacy in diagnosing HCC owing to its high selectivity for tEVs. Integration of machine learning algorithms with DCR-IEVN resulted in differential diagnosis accuracy of 96.7% for the training cohort (n = 120) and 93.3% for the validation cohort (n = 30), effectively distinguishing HCC, cirrhosis, and healthy donors. This strategy offers a streamlined workflow and rapid assay completion and requires only small-volume serum samples and routine clinical devices, facilitating the clinical translation of tEV-based tumor diagnosis.
Collapse
Affiliation(s)
- Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuanjie Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yunpeng Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400016, China
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan 646000, China
| | - Bo Shen
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400016, China
| | - Songzhi Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuhuai Fu
- Department of Clinical Laboratory, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute, Chongqing 400030, China
| | - Wen He
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xingyu Tao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaojuan Ding
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinmin Li
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
30
|
Arrè V, Mastrogiacomo R, Balestra F, Serino G, Viti F, Rizzi F, Curri ML, Giannelli G, Depalo N, Scavo MP. Unveiling the Potential of Extracellular Vesicles as Biomarkers and Therapeutic Nanotools for Gastrointestinal Diseases. Pharmaceutics 2024; 16:567. [PMID: 38675228 PMCID: PMC11055174 DOI: 10.3390/pharmaceutics16040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular vesicles (EVs), acting as inherent nanocarriers adept at transporting a range of different biological molecules such as proteins, lipids, and genetic material, exhibit diverse functions within the gastroenteric tract. In states of normal health, they participate in the upkeep of systemic and organ homeostasis. Conversely, in pathological conditions, they significantly contribute to the pathogenesis of gastrointestinal diseases (GIDs). Isolating EVs from patients' biofluids facilitates the discovery of new biomarkers that have the potential to offer a rapid, cost-effective, and non-invasive method for diagnosing and prognosing specific GIDs. Furthermore, EVs demonstrate considerable therapeutic potential as naturally targeted physiological carriers for the intercellular delivery of therapeutic cargo molecules or as nanoscale tools engineered specifically to regulate physio-pathological conditions or disease progression. Their attributes including safety, high permeability, stability, biocompatibility, low immunogenicity, and homing/tropism capabilities contribute to their promising clinical therapeutic applications. This review will delve into various examples of EVs serving as biomarkers or nanocarriers for therapeutic cargo in the context of GIDs, highlighting their clinical potential for both functional and structural gastrointestinal conditions. The versatile and advantageous properties of EVs position them as promising candidates for innovative therapeutic strategies in advancing personalized medicine approaches tailored to the gastroenteric tract, addressing both functional and structural GIDs.
Collapse
Affiliation(s)
- Valentina Arrè
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Rita Mastrogiacomo
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy; (R.M.); (M.L.C.)
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Francesco Balestra
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Grazia Serino
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Federica Viti
- Institute of Biophysics—National Research Council (IBF-CNR), Via De Marini 6, 16149 Genova, Italy;
| | - Federica Rizzi
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Maria Lucia Curri
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy; (R.M.); (M.L.C.)
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Maria Principia Scavo
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| |
Collapse
|
31
|
Xu J, Zhao Y, Chen Z, Wei L. Clinical Application of Different Liquid Biopsy Components in Hepatocellular Carcinoma. J Pers Med 2024; 14:420. [PMID: 38673047 PMCID: PMC11051574 DOI: 10.3390/jpm14040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, usually occurring in the background of chronic liver disease. HCC lethality rate is in the third highest place in the world. Patients with HCC have concealed early symptoms and possess a high-level of heterogeneity. Once diagnosed, most of the tumors are in advanced stages and have a poor prognosis. The sensitivity and specificity of existing detection modalities and protocols are suboptimal. HCC calls for more sophisticated and individualized therapeutic regimens. Liquid biopsy is non-invasive, repeatable, unaffected by location, and can be monitored dynamically. It has emerged as a useable aid in achieving precision malignant tumor treatment. Circulating tumor cells (CTCs), circulating nucleic acids, exosomes and tumor-educated platelets are the commonest components of a liquid biopsy. It possesses the theoretical ability to conquer the high heterogeneity and the difficulty of early detection for HCC patients. In this review, we summarize the common enrichment techniques and the clinical applications in HCC for different liquid biopsy components. Tumor recurrence after HCC-related liver transplantation is more insidious and difficult to treat. The clinical use of liquid biopsy in HCC-related liver transplantation is also summarized in this review.
Collapse
Affiliation(s)
| | | | | | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China; (J.X.); (Y.Z.); (Z.C.)
| |
Collapse
|
32
|
Xu W, Mo W, Han D, Dai W, Xu X, Li J, Xu X. Hepatocyte-derived exosomes deliver the lncRNA CYTOR to hepatic stellate cells and promote liver fibrosis. J Cell Mol Med 2024; 28:e18234. [PMID: 38520214 PMCID: PMC10960169 DOI: 10.1111/jcmm.18234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
Liver fibrosis is characterized by the activation and transformation of hepatic stellate cells (HSCs) induced by various injury factors. The degree of liver fibrosis can be significantly improved, but persistent injury factors present a significant therapeutic challenge. Hepatocytes are the most important parenchymal cell type in the liver. In this study, we explored the molecular mechanisms by which damaged liver cells activate HSCs through extracellular vesicles. We established a coculture model of LO2 and LX2 and validated its exosomal transmission activity. Subsequently, differentially expressed long noncoding RNAs (lncRNAs) were screened through RNA sequencing and their mechanisms of action as competing endogenous RNAs (ceRNAs) further confirmed using biological methods, such as FISH and luciferase assays. Damaged liver cells induced activation of LX2 and upregulation of liver fibrosis-related markers. Exosomes extracted and identified from the supernatant fraction contained differentially expressed lncRNA cytoskeleton regulator RNA (CYTOR) that competed with microRNA-125 (miR-125) for binding to glial cell line-derived neurotrophic factor (GDNF) in HSCs, in turn, promoting LX2 activation. MiR-125 could target and regulate both CYTOR and GDNF and vice versa, as verified using the luciferase assay. In an in vivo model, damaged liver extracellular vesicles induced the formation of liver fibrosis. Notably, downregulation of CYTOR within extracellular vesicles effectively inhibited liver fibrosis. The lncRNA CYTOR in exosomes of damaged liver cells is upregulated and modulates the expression of downstream GDNF through activity as a ceRNA, providing an effective mechanism for activation of HSCs.
Collapse
Affiliation(s)
- Wenqiang Xu
- Department of GastroenterologyShidong Hospital of Shanghai, School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| | - Wenhui Mo
- Department of GastroenterologyShidong Hospital of Shanghai, School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| | - Dengyu Han
- Department of GastroenterologyShidong Hospital of Shanghai, School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| | - Weiqi Dai
- Department of GastroenterologyShidong Hospital of Shanghai, School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| | - Xiaorong Xu
- Department of GastroenterologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghaiChina
| | - Jingjing Li
- Department of GastroenterologyShidong Hospital of Shanghai, School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| | - Xuanfu Xu
- Department of GastroenterologyShidong Hospital of Shanghai, School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| |
Collapse
|
33
|
Juratli MA, Pollmann NS, Oppermann E, Mohr A, Roy D, Schnitzbauer A, Michalik S, Vogl T, Stoecklein NH, Houben P, Katou S, Becker F, Hoelzen JP, Andreou A, Pascher A, Bechstein WO, Struecker B. Extracellular vesicles as potential biomarkers for diagnosis and recurrence detection of hepatocellular carcinoma. Sci Rep 2024; 14:5322. [PMID: 38438456 PMCID: PMC10912302 DOI: 10.1038/s41598-024-55888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/28/2024] [Indexed: 03/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and a leading cause of cancer-related deaths worldwide. However, current diagnostic tools are often invasive and technically limited. In the last decade, non-invasive liquid biopsies have transformed the field of clinical oncology, showcasing the potential of various liquid-biopsy derived analytes, including extracellular vesicles (EVs), to diagnose and monitor HCC progression and metastatic spreading, serving as promising novel biomarkers. A prospective single-center cohort study including 37 HCC patients and 20 patients with non-malignant liver disease (NMLD), as a control group, was conducted. Serum EVs of both groups were analyzed before and after liver surgery. The study utilized microbead-based magnetic particle sorting and flow cytometry to detect 37 characteristic surface proteins of EVs. Furthermore, HCC patients who experienced tumor recurrence (R-HCC) within 12 months after surgery were compared to HCC patients without recurrence (NR-HCC). EVs of R-HCC patients (n = 12/20) showed significantly lower levels of CD31 compared to EVs of NR-HCC patients (p = 0.0033). EVs of NMLD-group showed significantly higher expressions of CD41b than EVs of HCC group (p = 0.0286). The study determined significant short-term changes in CD19 dynamics in EVs of the NMLD-group, with preoperative values being significantly higher than postoperative values (p = 0.0065). This finding of our pilot study suggests EVs could play a role as potential targets for the development of diagnostic and therapeutic approaches for the early and non-invasive detection of HCC recurrence. Further, more in-depth analysis of the specific EV markers are needed to corroborate their potential role as diagnostic and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Mazen A Juratli
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany.
- Department of General, Transplant and Thorax Surgery, Frankfurt University Hospital, Goethe University, VisceralFrankfurt, Germany.
| | - Nicola S Pollmann
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany
| | - Elsie Oppermann
- Department of General, Transplant and Thorax Surgery, Frankfurt University Hospital, Goethe University, VisceralFrankfurt, Germany
| | - Annika Mohr
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany
| | - Dhruvajyoti Roy
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andreas Schnitzbauer
- Department of General, Transplant and Thorax Surgery, Frankfurt University Hospital, Goethe University, VisceralFrankfurt, Germany
| | - Sabine Michalik
- Department of Diagnostic and Interventional Radiology, Frankfurt University Hospital, Goethe University, Frankfurt, Germany
| | - Thomas Vogl
- Department of Diagnostic and Interventional Radiology, Frankfurt University Hospital, Goethe University, Frankfurt, Germany
| | - Nikolas H Stoecklein
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Philipp Houben
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany
| | - Shadi Katou
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany
| | - Felix Becker
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany
| | - Jens Peter Hoelzen
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany
| | - Andreas Andreou
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany
| | - Andreas Pascher
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany
| | - Wolf O Bechstein
- Department of General, Transplant and Thorax Surgery, Frankfurt University Hospital, Goethe University, VisceralFrankfurt, Germany
| | - Benjamin Struecker
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany
| |
Collapse
|
34
|
Sun Z, Sun Z, Liu J, Gao X, Jiao L, Zhao Q, Chu Y, Wang X, Deng G, Cai L. Engineered Extracellular Vesicles Expressing Siglec-10 Camouflaged AIE Photosensitizer to Reprogram Macrophages to Active M1 Phenotype and Present Tumor-Associated Antigens for Photodynamic Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307147. [PMID: 37941517 DOI: 10.1002/smll.202307147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/15/2023] [Indexed: 11/10/2023]
Abstract
Cancer immunotherapy has attracted considerable attention due to its advantages of persistence, targeting, and ability to kill tumor cells. However, the efficacy of tumor immunotherapy in practical applications is limited by tumor heterogeneity and complex tumor immunosuppressive microenvironments in which abundant of M2 macrophages and immune checkpoints (ICs) are present. Herein, two type-I aggregation-induced emission (AIE)-active photosensitizers with various reactive oxygen species (ROS)-generating efficiencies are designed and synthesized. Engineered extracellular vesicles (EVs) that express ICs Siglec-10 are first obtained from 4T1 tumor cells. The engineered EVs are then fused with the AIE photosensitizer-loaded lipidic nanosystem to form SEx@Fc-NPs. The ROS generated by the inner type-I AIE photosensitizer of the SEx@Fc-NPs through photodynamic therapy (PDT) can convert M2 macrophages into M1 macrophages to improve tumor immunosuppressive microenvironment. The outer EV-antigens that carry 4T1 tumor-associated antigens directly stimulate dendritic cells maturation to activate different types of tumor-specific T cells in overcoming tumor heterogeneity. In addition, blocking Siglec-10 reversed macrophage exhaustion for enhanced antitumor ability. This study presents that a combination of PDT, immune checkpoints, and EV-antigens can greatly improve the efficiency of tumor immunotherapy and is expected to serve as an emerging strategy to improve tumor immunosuppressive microenvironment and overcome immune escape.
Collapse
Affiliation(s)
- Zhihong Sun
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
- Queen Mary School, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhuokai Sun
- Queen Mary School, Nanchang University, Nanchang, 330031, P. R. China
| | - Jie Liu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Xiaohan Gao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Liping Jiao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Qi Zhao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Yongli Chu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Xiaozhong Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330031, P. R. China
- School of Public Health, Nanchang University, Nanchang, 330031, P. R. China
| | - Guanjun Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, 518024, P. R. China
| |
Collapse
|
35
|
Meng Y, Sun J, Zhang G. Harnessing the power of goat milk-derived extracellular vesicles for medical breakthroughs: A review. Int J Biol Macromol 2024; 262:130044. [PMID: 38340922 DOI: 10.1016/j.ijbiomac.2024.130044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Research into goat milk-derived extracellular vesicles (GMVs) has grown in popularity in recent years owing to their potential uses in several sectors, including medicine. GMVs are tiny, lipid-bound structures that cells secrete and use to transport bioactive substances like proteins, lipids, and nucleic acids. They may be extracted from different body fluids, including blood, urine, and milk, and have been found to play crucial roles in cell-to-cell communication. GMVs are a promising field of study with applications in preventing and treating various disorders. Their immune-modulating properties, for instance, have been investigated, and they have shown promise in treating autoimmune illnesses and cancer. They may be loaded with therapeutic compounds and directed to particular cells or tissues, but they have also been studied for their potential use as drug-delivery vehicles. Goat milk extracellular vesicles are an intriguing study topic with many possible benefits. Although more study is required to thoroughly understand their functioning and prospective applications, they provide a promising path for creating novel medical treatments and technology.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| |
Collapse
|
36
|
Fu L, Guldiken N, Remih K, Karl AS, Preisinger C, Strnad P. Serum/Plasma Proteome in Non-Malignant Liver Disease. Int J Mol Sci 2024; 25:2008. [PMID: 38396688 PMCID: PMC10889128 DOI: 10.3390/ijms25042008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The liver is the central metabolic organ and produces 85-90% of the proteins found in plasma. Accordingly, the plasma proteome is an attractive source of liver disease biomarkers that reflects the different cell types present in this organ, as well as the processes such as responses to acute and chronic injury or the formation of an extracellular matrix. In the first part, we summarize the biomarkers routinely used in clinical evaluations and their biological relevance in the different stages of non-malignant liver disease. Later, we describe the current proteomic approaches, including mass spectrometry and affinity-based techniques, that allow a more comprehensive assessment of the liver function but also require complex data processing. The many approaches of analysis and interpretation and their potential caveats are delineated. While these advances hold the promise to transform our understanding of liver diseases and support the development and validation of new liver-related drugs, an interdisciplinary collaboration is needed.
Collapse
Affiliation(s)
- Lei Fu
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Nurdan Guldiken
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Katharina Remih
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Anna Sophie Karl
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Pavel Strnad
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| |
Collapse
|
37
|
Liao Y, Zhang Z, Ouyang L, Mi B, Liu G. Engineered Extracellular Vesicles in Wound Healing: Design, Paradigms, and Clinical Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307058. [PMID: 37806763 DOI: 10.1002/smll.202307058] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Indexed: 10/10/2023]
Abstract
The severe quality of life and economic burden imposed by non-healing skin wounds, infection risks, and treatment costs are affecting millions of patients worldwide. To mitigate these challenges, scientists are relentlessly seeking effective treatment measures. In recent years, extracellular vesicles (EVs) have emerged as a promising cell-free therapy strategy, attracting extensive attention from researchers. EVs mediate intercellular communication, possessing excellent biocompatibility and stability. These features make EVs a potential tool for treating a plethora of diseases, including those related to wound repair. However, there is a growing focus on the engineering of EVs to overcome inherent limitations such as low production, relatively fixed content, and targeting capabilities of natural EVs. This engineering could improve both the effectiveness and specificity of EVs in wound repair treatments. In light of this, the present review will introduce the latest progress in the design methods and experimental paradigms of engineered EVs applied in wound repair. Furthermore, it will comprehensively analyze the current clinical research status and prospects of engineered EVs within this field.
Collapse
Affiliation(s)
- Yuheng Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhenhe Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Lizhi Ouyang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| |
Collapse
|
38
|
Deumer J, Schürmann R, Gaál A, Varga Z, Bettin B, van der Pol E, Nieuwland R, Ojeda D, Sikora A, Bartczak D, Goenaga-Infante H, Noireaux J, Khakpour M, Korpelainen V, Gollwitzer C. Traceable characterization of hollow organosilica beads as potential reference materials for extracellular vesicle measurements with optical techniques. DISCOVER NANO 2024; 19:14. [PMID: 38252361 PMCID: PMC10810315 DOI: 10.1186/s11671-024-03956-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
The concentration of cell-type specific extracellular vesicles (EVs) is a promising biomarker for various diseases. However, concentrations of EVs measured by optical techniques such as flow cytometry (FCM) or particle tracking analysis (PTA) in clinical practice are incomparable. To allow reliable and comparable concentration measurements suitable reference materials (RMs) and SI-traceable (SI-International system of units) methods are required. Hollow organosilica beads (HOBs) are promising RM candidates for concentration measurements of EVs based on light scattering, as the shape, low refractive index, and number concentration of HOBs are comparable to EVs of the respective size range that can be detected with current optical instrumentation. Here, we present traceable methods for measuring the particle size distribution of four HOB types in the size range between 200 and 500 nm by small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM), as well as the number concentration by single-particle inductively coupled plasma mass spectrometry (spICP-MS). Based on the size and shape results, traceable reference values were obtained to additionally determine the refractive index of the shell of the HOB samples by FCM. Furthermore, the estimated refractive indexes of the HOBs plausibly agree with the refractive indexes of EVs of corresponding size. Due to their narrow size distribution and their similar shape, and low refractive index, all HOB samples studied are suitable RM candidates for calibration of the measured sample volume by optical methods within the photon wavelength range used, and thus for calibration of number concentration measurements of EVs in the size range indicated. This was confirmed as the number concentration values obtained by PTA and two independent flow cytometric measurements agreed with the concentration reference values obtained by two independent spICP-MS measurements within the calculated uncertainty limits.
Collapse
Grants
- 18HLT01 METVES II project, which received funding from the EMPIR program, co-funded by the participating states, and from the European Union's Horizon 2020 research and innovation program
- KP2021-EGA-31 János Bolyai Research Fellowship of the Hungarian Academy of Sciences and the funding from the National Research, Development and Innovation Office, Hungary (NKFIH)
- 2020-1.1.2-PIACI-KFI-2020-00021 János Bolyai Research Fellowship of the Hungarian Academy of Sciences and the funding from the National Research, Development and Innovation Office, Hungary (NKFIH)
- VIDI 19724 Dutch Research Council (NWO)
- METVES II project, which received funding from the EMPIR program, co-funded by the participating states, and from the European Union’s Horizon 2020 research and innovation program
- Physikalisch-Technische Bundesanstalt (PTB) (4254)
Collapse
Affiliation(s)
- Jérôme Deumer
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587, Berlin, Germany.
| | - Robin Schürmann
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587, Berlin, Germany
| | - Anikó Gaál
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary
| | - Britta Bettin
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Vesicle Center, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Edwin van der Pol
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Vesicle Center, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Vesicle Center, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - David Ojeda
- National Measurement Laboratory, LGC Limited, Teddington, TW11 0LY, UK
| | - Aneta Sikora
- National Measurement Laboratory, LGC Limited, Teddington, TW11 0LY, UK
| | - Dorota Bartczak
- National Measurement Laboratory, LGC Limited, Teddington, TW11 0LY, UK
| | | | - Johanna Noireaux
- Department of Climate Change and Environment, Laboratoire National de Métrologie et d'Essais, 1, Rue Gaston Boissier, 75724, Paris, France
| | - Mahrad Khakpour
- National Metrology Institute, VTT MIKES, Tekniikantie 1, FI-02150 , Espoo, Finland
| | - Virpi Korpelainen
- National Metrology Institute, VTT MIKES, Tekniikantie 1, FI-02150 , Espoo, Finland
| | | |
Collapse
|
39
|
Zhang J, Ma B, Wang Z, Chen Y, Li C, Dong Y. Extracellular vesicle therapy for obesity-induced NAFLD: a comprehensive review of current evidence. Cell Commun Signal 2024; 22:18. [PMID: 38195552 PMCID: PMC10775587 DOI: 10.1186/s12964-023-01292-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/22/2023] [Indexed: 01/11/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) as a chronic disease especially in Western countries, is still a tough question in the clinical therapy. With the rising prevalence of various chronic diseases, liver transplantation is expected to be the most common therapy after the next 10 years. However, there is still no approved drug for NAFLD, and targeted therapy for NAFLD is urgent. Exosomes as a kind of extracellular vesicle are cell-derived nanovesicles, which play an essential role in intercellular communication. Due to complex cell-cell interactions in the liver, exosomes as therapeutic drugs or drug delivery vesicles may be involved in physiological or pathological processes in NAFLD. Compared with other nanomaterials, exosomes as a cell-free therapy, are not dependent on cell number limitation, which means can be administered safely in high doses. Apart from this, exosomes with the advantages of being low-toxic, high stability, and low-immunological are chosen for targeted therapy for many diseases. In this review, firstly we introduced the extracellular vesicles, including the biogenesis, composition, isolation and characterization, and fundamental function of extracellular vesicles. And then we discussed the modification of extracellular vesicles, cargo packing, and artificial exosomes. Finally, the extracellular vesicles for the therapies of NAFLD are summarized. Moreover, we highlight therapeutic approaches using exosomes in the clinical treatment of NAFLD, which provide valuable insights into targeting NAFLD in the clinical setting.
Collapse
Affiliation(s)
- Jiali Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Baochen Ma
- China Animal Husbandry Group, Beijing, 100070, China
| | - Zixu Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yaoxing Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chengzhong Li
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, People's Republic of China
| | - Yulan Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
40
|
Puengel T, Tacke F. Role of Kupffer cells and other immune cells. SINUSOIDAL CELLS IN LIVER DISEASES 2024:483-511. [DOI: 10.1016/b978-0-323-95262-0.00024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
41
|
Koksal AR, Ekmen N, Aydin Y, Nunez K, Sandow T, Delk M, Moehlen M, Thevenot P, Cohen A, Dash S. A Single-Step Immunocapture Assay to Quantify HCC Exosomes Using the Highly Sensitive Fluorescence Nanoparticle-Tracking Analysis. J Hepatocell Carcinoma 2023; 10:1935-1954. [PMID: 37936599 PMCID: PMC10627088 DOI: 10.2147/jhc.s423043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/07/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Extracellular vesicles could serve as a non-invasive biomarker for early cancer detection. However, limited methods to quantitate cancer-derived vesicles in the native state remain a significant barrier to clinical translation. Aim This research aims to develop a rapid, one-step immunoaffinity approach to quantify HCC exosomes directly from a small serum volume. Methods HCC-derived exosomes in the serum were captured using fluorescent phycoerythrin (PE)-conjugated antibodies targeted to GPC3 and alpha-fetoprotein (AFP). Total and HCC-specific exosomes were then quantified in culture supernatant or patient-derived serums using fluorescence nanoparticle tracking analysis (F-NTA). The performance of HCC exosome quantification in the serum was compared with the tumor size determined by MRI. Results Initially we tested the detection limits of the F-NTA using synthetic fluorescent and non-fluorescent beads. The assay showed an acceptable sensitivity with a detection range of 104-108 particles/mL. Additionally, the combination of immunocapture followed by size-exclusion column purification allows the isolation of smaller-size EVs and quantification by F-NTA. Our assay demonstrated that HCC cell culture releases a significantly higher quantity of GPC3 or GPC3+AFP positive EVs (100-200 particles/cell) compared to non-HCC culture (10-40 particles/cell) (p<0.01 and p<0.05 respectively). The F-NTA enables absolute counting of HCC-specific exosomes in the clinical samples with preserved biological immunoreactivity. The performance of F-NTA was clinically validated in serum from patients ± cirrhosis and with confirmed HCC. F-NTA quantification data show selective enrichment of AFP and GPC3 positive EVs in HCC serum compared to malignancy-free cirrhosis (AUC values for GPC3, AFP, and GPC3/AFP were found 0.79, 0.71, and 0.72 respectively). The MRI-confirmed patient cohort indicated that there was a positive correlation between total tumor size and GPC3-positive exosome concentration (r:0.78 and p<0.001). Conclusion We developed an immunocapture assay that can be used for simultaneous isolation and quantification of HCC-derived exosomes from a small serum volume with high accuracy.
Collapse
Affiliation(s)
- Ali Riza Koksal
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Nergiz Ekmen
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Yucel Aydin
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Kelley Nunez
- Department of Gastroenterology and Hepatology, Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
| | - Tyler Sandow
- Department of Radiology, Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
| | - Molly Delk
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Martin Moehlen
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Paul Thevenot
- Department of Gastroenterology and Hepatology, Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
| | - Ari Cohen
- Department of Gastroenterology and Hepatology, Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
- Multi-Organ Transplant Institute, Ochsner Health, New Orleans, LA, USA
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| |
Collapse
|
42
|
Li F, Yan T, Wang S, Wen X. Exosome-associated miRNA-99a-5p targeting BMPR2 promotes hepatocyte apoptosis during the process of hepatic fibrosis. Clin Exp Med 2023; 23:4021-4031. [PMID: 37354366 DOI: 10.1007/s10238-023-01122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Liver fibrosis is a serious stage of chronic liver injury. Inhibition of hepatic stellate cells activation and hepatocytes apoptosis is important measures in the treatment of liver fibrosis. Studies have shown that exosomes are involved in regulating the information transmission between cells, but there are few studies on the interaction between exosomes from HSC and hepatocytes. This study screened miRNAs with significant differences related to liver fibrosis in the database. Then, we activated HSC applying transforming growth factor β1 (TGF-β1) and collected exosomes. The expression of miRNA in HSC-derived exosomes was verified by quantitative real-time PCR (qRT-PCR). The results of cell function test showed that HSC-derived exocrine miRNA-99a-5p could inhibit hepatocytes proliferation and promote hepatocytes apoptosis. Conversely, inhibition of miRNA-99a-5p can promote hepatocytes proliferation and inhibit apoptosis. Target gene prediction and luciferase assay show that miRNA can specifically bind to BMPR2 site sequence. In addition, we also detected the expression of BMPR2 and apoptosis-related protein by qRT-PCR and Western blot (WB). In conclusion, this study demonstrates that HSC-derived exocrine miRNA-99a-5p can promote hepatocytes apoptosis and participate in the process of liver fibrosis by targeting BMPR2. Our findings highlight the therapeutic potential of HSC-derived exocrine miRNA-99a-5p in hepatic fibrosis.
Collapse
Affiliation(s)
- Feng Li
- Department of Clinical Laboratory, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan, China.
| | - Tengfei Yan
- Baoding First Central Hospital, Baoding, 071000, Heibei, China
| | - Shunlan Wang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Xiaohong Wen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China.
| |
Collapse
|
43
|
Srinivas AN, Suresh D, Kaur S, Kumar DP. The promise of small particles: extracellular vesicles as biomarkers in liver pathology. J Physiol 2023; 601:4953-4971. [PMID: 35708653 DOI: 10.1113/jp283074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoscopic packages that are heterogeneous and bona fide players in hepatic physiology and pathology as they are involved in intercellular communication. EVs carrying bioactive cargoes rich in lipids, proteins or nucleic acids are implicated in the onset and progression of liver diseases. Liver pathology using liver biopsy has been assessed for several intricate conditions such as viral hepatitis, alcoholic and non-alcoholic fatty liver disease, hepatic malignancies and drug-induced liver injury. The lacunae, however, lie in early diagnosis and timely treatment of the above conditions, underscoring the need for non-invasive, accurate diagnostic tools that could replace the gold standard method of tissue biopsy. In this regard, EVs have emerged as promising candidates that could serve as potential biomarkers. In the last two decades, EVs, owing to their multifaceted charm in bringing out cell-free therapeutic responses and the ability of their cargoes to be applied to novel biomarkers, have drawn the great attention of researchers with the advancement and clinical application of liquid biopsy. In this review, we recapitulate the role of EVs and provide insights into the promising role of these small packages as biomarkers in liver pathology.
Collapse
Affiliation(s)
- Akshatha N Srinivas
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Diwakar Suresh
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Divya P Kumar
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
44
|
Trifylli EM, Kriebardis AG, Koustas E, Papadopoulos N, Vasileiadi S, Fortis SP, Tzounakas VL, Anastasiadi AT, Sarantis P, Papageorgiou EG, Tsagarakis A, Aloizos G, Manolakopoulos S, Deutsch M. The Arising Role of Extracellular Vesicles in Cholangiocarcinoma: A Rundown of the Current Knowledge Regarding Diagnostic and Therapeutic Approaches. Int J Mol Sci 2023; 24:15563. [PMID: 37958547 PMCID: PMC10649642 DOI: 10.3390/ijms242115563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Cholangiocarcinomas (CCAs) constitute a heterogeneous group of highly malignant epithelial tumors arising from the biliary tree. This cluster of malignant tumors includes three distinct entities, the intrahepatic, perihilar, and distal CCAs, which are characterized by different epidemiological and molecular backgrounds, as well as prognosis and therapeutic approaches. The higher incidence of CCA over the last decades, the late diagnostic time that contributes to a high mortality and poor prognosis, as well as its chemoresistance, intensified the efforts of the scientific community for the development of novel diagnostic tools and therapeutic approaches. Extracellular vesicles (EVs) comprise highly heterogenic, multi-sized, membrane-enclosed nanostructures that are secreted by a large variety of cells via different routes of biogenesis. Their role in intercellular communication via their cargo that potentially contributes to disease development and progression, as well as their prospect as diagnostic biomarkers and therapeutic tools, has become the focus of interest of several current studies for several diseases, including CCA. The aim of this review is to give a rundown of the current knowledge regarding the emerging role of EVs in cholangiocarcinogenesis and their future perspectives as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Eleni-Myrto Trifylli
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Evangelos Koustas
- Oncology Department, General Hospital Evangelismos, 10676 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Military Hospital, 115 27 Athens, Greece;
| | - Sofia Vasileiadi
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (V.L.T.); (A.T.A.)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (V.L.T.); (A.T.A.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Ariadne Tsagarakis
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
| | - Spilios Manolakopoulos
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Melanie Deutsch
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| |
Collapse
|
45
|
Elkrief L, Ganne-Carrié N, Manceau H, Tanguy M, Valainathan SR, Riescher-Tuczkiewicz A, Biquard L, Barget N, Chaffaut C, Louvet A, Paradis V, Ziol M, Bæk R, Jørgensen MM, Van Niel G, Coly PM, Hammoutène A, Dujardin F, Peoc'h K, Poynard T, Chevret S, Rautou PE. Hepatocyte-derived biomarkers predict liver-related events at 2 years in Child-Pugh class A alcohol-related cirrhosis. J Hepatol 2023; 79:910-923. [PMID: 37302582 DOI: 10.1016/j.jhep.2023.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 04/25/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND & AIMS In patients with compensated alcohol-related cirrhosis, reliable prognostic biomarkers are lacking. Keratin-18 and hepatocyte-derived large extracellular vesicle (lEV) concentrations reflect disease activity, but their ability to predict liver-related events is unknown. METHODS We measured plasma keratin-18 and hepatocyte lEV concentrations in 500 patients with Child-Pugh class A alcohol-related cirrhosis. The ability of these hepatocyte-derived biomarkers, alone or combined with model for end-stage liver disease (MELD) and FibroTest scores, to predict liver-related events at 2 years was analyzed, taking into account the alcohol consumption at inclusion and during follow-up. RESULTS Keratin-18 and hepatocyte lEV concentrations increased with alcohol consumption. In patients without active alcohol consumption at enrollment (n = 419), keratin-18 concentration predicted liver-related events at 2 years, independently of FibroTest and MELD. Patients with both keratin-18 concentrations >285 U/L and FibroTest >0.74 had a 24% cumulative incidence of liver-related events at 2 years, vs. 5% to 14% in other groups of patients. Similar results were obtained when combining keratin-18 concentrations >285 U/L with MELD >10. In patients with active alcohol consumption at enrollment (n = 81), hepatocyte lEVs predicted liver-related events at 2 years, independently of FibroTest and MELD. Patients with both hepatocyte lEV concentrations >50 U/L and FibroTest >0.74 had a 62% cumulative incidence of liver-related events at 2 years, vs. 8% to 13% in other groups of patients. Combining hepatocyte lEV concentrations >50 U/L with MELD >10 had a lower discriminative ability. Similar results were obtained when using decompensation of cirrhosis, defined according to Baveno VII criteria, as an endpoint. CONCLUSION In patients with Child-Pugh class A alcohol-related cirrhosis, combining hepatocyte-derived biomarkers with FibroTest or MELD scores identifies patients at high risk of liver-related events, and could be used for risk stratification and patient selection in clinical trials. IMPACT AND IMPLICATIONS In patients with compensated alcohol-related cirrhosis, reliable predictors of outcome are lacking. In patients with Child-Pugh class A alcohol-related cirrhosis, combining hepatocyte-derived biomarkers (keratin-18 and hepatocyte-large extracellular vesicles) with FibroTest or MELD scores identifies those at high risk of liver-related events at 2 years. The identified patients at high risk of liver-related events are the target-of-choice population for intensive surveillance (e.g., referral to tertiary care centers; intensive control of risk factors) and inclusion in clinical trials.
Collapse
Affiliation(s)
- Laure Elkrief
- Université Paris-Cité, Inserm, Centre de Recherche sur l'inflammation, UMR 1149, Paris, France; Service d'hépato-gastroentérologie, Hôpital Trousseau, CHRU de Tours and Faculté de médecine de Tours, France
| | - Nathalie Ganne-Carrié
- AP-HP, Service d'Hépatologie, Hôpital Avicenne, Bobigny, France; Sorbonne Paris Nord, UFR SMBH, Bobigny, France; INSERM UMR 1138, Centre des Cordeliers, Université Paris-Cité, Paris, France
| | - Hana Manceau
- Université Paris-Cité, Inserm, Centre de Recherche sur l'inflammation, UMR 1149, Paris, France; AP-HP, Hôpital Beaujon, Service de Biochimie et Biologie Moléculaire, Paris, France
| | - Marion Tanguy
- Université Paris-Cité, Inserm, Centre de Recherche sur l'inflammation, UMR 1149, Paris, France
| | - Shantha Ram Valainathan
- Université Paris-Cité, Inserm, Centre de Recherche sur l'inflammation, UMR 1149, Paris, France; AP-HP, Service d'Hépatologie, Hôpital Beaujon, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Clichy, France
| | | | - Louise Biquard
- Université Paris-Cité, Inserm, Centre de Recherche sur l'inflammation, UMR 1149, Paris, France
| | - Nathalie Barget
- APHP, Centre de Ressources Biologiques (BB0033-00027) des Hôpitaux Universitaires Paris-Seine-Saint-Denis, Bobigny, France
| | - Cendrine Chaffaut
- Service de Biostatistique et Information Médicale, Hôpital Saint-Louis, AP-HP and Inserm, UMR-1153, ECSTRRA Team, Paris, France
| | - Alexandre Louvet
- Service d'Hépato-gastroentérologie, Hôpital Huriez, CHRU de Lille, France
| | - Valérie Paradis
- Université Paris-Cité, Inserm, Centre de Recherche sur l'inflammation, UMR 1149, Paris, France; AP-HP, Hôpital Beaujon, Service d'anatomopathologie, DMU DIGEST, Clichy, France
| | - Marianne Ziol
- Sorbonne Paris Nord, UFR SMBH, Bobigny, France; AP-HP, Service d'anatomopathologie, Hôpital Avicenne, Bobigny, France
| | - Rikke Bæk
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Guillaume Van Niel
- Institute for Psychiatry and Neurosciences of Paris, Hopital Saint-Anne, Université de Paris, Institut National de la Santé et de la Recherche Médicale, U1266, Paris, France
| | - Pierre-Michael Coly
- Institute for Psychiatry and Neurosciences of Paris, Hopital Saint-Anne, Université de Paris, Institut National de la Santé et de la Recherche Médicale, U1266, Paris, France
| | - Adel Hammoutène
- Université Paris-Cité, Inserm, Centre de Recherche sur l'inflammation, UMR 1149, Paris, France
| | - Fanny Dujardin
- Service d'anatomopathologie, Hôpital Trousseau, CHRU de Tours, France
| | - Katell Peoc'h
- INSERM UMR 1138, Centre des Cordeliers, Université Paris-Cité, Paris, France
| | - Thierry Poynard
- Biopredictive, Paris, France; Sorbonne University, Paris, France
| | - Sylvie Chevret
- Service de Biostatistique et Information Médicale, Hôpital Saint-Louis, AP-HP and Inserm, UMR-1153, ECSTRRA Team, Paris, France
| | - Pierre-Emmanuel Rautou
- Université Paris-Cité, Inserm, Centre de Recherche sur l'inflammation, UMR 1149, Paris, France; AP-HP, Service d'Hépatologie, Hôpital Beaujon, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Clichy, France.
| |
Collapse
|
46
|
Chen L, Zhang N, Huang Y, Zhang Q, Fang Y, Fu J, Yuan Y, Chen L, Chen X, Xu Z, Li Y, Izawa H, Xiang C. Multiple Dimensions of using Mesenchymal Stem Cells for Treating Liver Diseases: From Bench to Beside. Stem Cell Rev Rep 2023; 19:2192-2224. [PMID: 37498509 DOI: 10.1007/s12015-023-10583-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Liver diseases impose a huge burden worldwide. Although hepatocyte transplantation has long been considered as a potential strategy for treating liver diseases, its clinical implementation has created some obvious limitations. As an alternative strategy, cell therapy, particularly mesenchymal stem cell (MSC) transplantation, is widely used in treating different liver diseases, including acute liver disease, acute-on-chronic liver failure, hepatitis B/C virus, autoimmune hepatitis, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, alcoholic liver disease, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Here, we summarize the status of MSC transplantation in treating liver diseases, focusing on the therapeutic mechanisms, including differentiation into hepatocyte-like cells, immunomodulating function with a variety of immune cells, paracrine effects via the secretion of various cytokines and extracellular vesicles, and facilitation of homing and engraftment. Some improved perspectives and current challenges are also addressed. In summary, MSCs have great potential in the treatment of liver diseases based on their multi-faceted characteristics, and more accurate mechanisms and novel therapeutic strategies stemming from MSCs will facilitate clinical practice.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yuqi Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Jiamin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Lu Chen
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Xin Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, People's Republic of China
| | - Zhenyu Xu
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Hiromi Izawa
- Jingugaien Woman Life Clinic, Jingu-Gaien 3-39-5 2F, Shibuya-Ku, Tokyo, Japan
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
47
|
Manea I, Iacob R, Iacob S, Cerban R, Dima S, Oniscu G, Popescu I, Gheorghe L. Liquid biopsy for early detection of hepatocellular carcinoma. Front Med (Lausanne) 2023; 10:1218705. [PMID: 37809326 PMCID: PMC10556479 DOI: 10.3389/fmed.2023.1218705] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly prevalent and lethal cancer globally. Over 90% of HCC cases arise in the context of liver cirrhosis, and the severity of the underlying liver disease or advanced tumor stage at diagnosis significantly limits treatment options. Early diagnosis is crucial, and all guidelines stress the importance of screening protocols for HCC early detection as a public health objective. As serum biomarkers are not optimal for early diagnosis, liquid biopsy has emerged as a promising tool for diagnosis, prognostication, and patients' stratification for personalized therapy in various solid tumors, including HCC. While circulating tumor cells (CTCs) are better suited for personalized therapy and prognosis, cell-free DNA (cfDNA) and extracellular vesicle-based technologies show potential for early diagnosis, HCC screening, and surveillance protocols. Evaluating the added value of liquid biopsy genetic and epigenetic biomarkers for HCC screening is a key goal in translational research. Somatic mutations commonly found in HCC can be investigated in cfDNA and plasma exosomes as genetic biomarkers. Unique methylation patterns in cfDNA or cfDNA fragmentome features have been suggested as innovative tools for early HCC detection. Likewise, extracellular vesicle cargo biomarkers such as miRNAs and long non-coding RNAs may serve as potential biomarkers for early HCC detection. This review will explore recent findings on the utility of liquid biopsy for early HCC diagnosis. Combining liquid biopsy methods with traditional serological biomarkers could improve the overall diagnostic accuracy for early HCC detection.
Collapse
Affiliation(s)
- Ioana Manea
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Razvan Iacob
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Speranta Iacob
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Razvan Cerban
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Dima
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Gabriel Oniscu
- Transplant Division, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Irinel Popescu
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Liliana Gheorghe
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
48
|
Picca A, Guerra F, Calvani R, Coelho-Júnior HJ, Landi F, Bucci C, Marzetti E. Mitochondrial-Derived Vesicles: The Good, the Bad, and the Ugly. Int J Mol Sci 2023; 24:13835. [PMID: 37762138 PMCID: PMC10531235 DOI: 10.3390/ijms241813835] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Mitophagy is crucial for maintaining mitochondrial quality. However, its assessment in vivo is challenging. The endosomal-lysosomal system is a more accessible pathway through which subtypes of extracellular vesicles (EVs), which also contain mitochondrial constituents, are released for disposal. The inclusion of mitochondrial components into EVs occurs in the setting of mild mitochondrial damage and during impairment of lysosomal function. By releasing mitochondrial-derived vesicles (MDVs), cells limit the unload of mitochondrial damage-associated molecular patterns with proinflammatory activity. Both positive and negative effects of EVs on recipient cells have been described. Whether this is due to the production of EVs other than those containing mitochondria, such as MDVs, holding specific biological functions is currently unknown. Evidence on the existence of different MDV subtypes has been produced. However, their characterization is not always pursued, which would be relevant to exploring the dynamics of mitochondrial quality control in health and disease. Furthermore, MDV classification may be instrumental in understanding their biological roles and promoting their implementation as biomarkers in clinical studies.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy;
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (F.L.); (E.M.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (C.B.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (F.L.); (E.M.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Hélio José Coelho-Júnior
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (F.L.); (E.M.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (C.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (F.L.); (E.M.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
49
|
Kuebler WM, William N, Post M, Acker JP, McVey MJ. Extracellular vesicles: effectors of transfusion-related acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L327-L341. [PMID: 37310760 DOI: 10.1152/ajplung.00040.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Respiratory transfusion reactions represent some of the most severe adverse reactions related to receiving blood products. Of those, transfusion-related acute lung injury (TRALI) is associated with elevated morbidity and mortality. TRALI is characterized by severe lung injury associated with inflammation, pulmonary neutrophil infiltration, lung barrier leak, and increased interstitial and airspace edema that cause respiratory failure. Presently, there are few means of detecting TRALI beyond clinical definitions based on physical examination and vital signs or preventing/treating TRALI beyond supportive care with oxygen and positive pressure ventilation. Mechanistically, TRALI is thought to be mediated by the culmination of two successive proinflammatory hits, which typically comprise a recipient factor (1st hit-e.g., systemic inflammatory conditions) and a donor factor (2nd hit-e.g., blood products containing pathogenic antibodies or bioactive lipids). An emerging concept in TRALI research is the contribution of extracellular vesicles (EVs) in mediating the first and/or second hit in TRALI. EVs are small, subcellular, membrane-bound vesicles that circulate in donor and recipient blood. Injurious EVs may be released by immune or vascular cells during inflammation, by infectious bacteria, or in blood products during storage, and can target the lung upon systemic dissemination. This review assesses emerging concepts such as how EVs: 1) mediate TRALI, 2) represent targets for therapeutic intervention to prevent or treat TRALI, and 3) serve as biochemical biomarkers facilitating TRALI diagnosis and detection in at-risk patients.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany
- Keenan Research Centre, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Nishaka William
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin Post
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jason P Acker
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Mark J McVey
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Deltombe M, van Pesch V. Exosomal profiling should be used to monitor disease activity in MS patients: No. Mult Scler 2023; 29:1206-1207. [PMID: 37676045 DOI: 10.1177/13524585231195859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Affiliation(s)
- Matthieu Deltombe
- Laboratory of Neurochemistry, Institute of Neuroscience, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent van Pesch
- Laboratory of Neurochemistry, Institute of Neuroscience, Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|