1
|
Zhang Y, Ma T, Lu X, Hua H, Wu L, Chen Z. Mechanical mechanics-reclaiming a new battlefield for chronic liver disease. J Adv Res 2025:S2090-1232(25)00346-7. [PMID: 40379238 DOI: 10.1016/j.jare.2025.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/17/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND In the 21st century, significant breakthroughs have been made in the research of chronic liver disease. New biochemical markers of pathogenicity and corresponding drugs continue to emerge. However, current treatment strategies remain unsatisfactory due to complex pathological changes in the liver, including vascular dysfunction, myofibroblast-like transition, and local tissue necrosis in liver sinusoids. These challenges have created an urgent need for innovative, synergistic treatments. Mechanical mechanics is a growing field, with increasing evidence suggesting that mechanical signals play a role similar to that of biochemical markers. These signals influence response speed, conduction intensity, and functional diversity in regulating cell activities. AIM OF REVIEW This review summarizes the three main mechanical characteristics involved in the progression of "liver fibrosis-cirrhosis-hepatocellular carcinoma" and provides an in-depth interpretation of several mechanically-related targets. Finally, current and cutting-edge therapeutic strategies are proposed from a cellular perspective. Despite the many challenges that remain, this review is both relevant and significant.
Collapse
Affiliation(s)
- Yiheng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Tianle Ma
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - XingXing Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Haibing Hua
- Department of Gastroenterology, Jiangyin Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangyin 214400, China.
| | - Li Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhipeng Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Ulusan M, Erdogan MA, Simsek O, Dogan Z, Ciftci BB, Atalan G, Erbas O. Baricitinib Mitigates Methotrexate-Induced Liver Fibrosis Model via YAP Pathway. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:857. [PMID: 40428815 PMCID: PMC12113532 DOI: 10.3390/medicina61050857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/24/2025] [Accepted: 05/04/2025] [Indexed: 05/29/2025]
Abstract
Background and Objectives: Liver fibrosis, a chronic process caused by various pathogenic factors, including drug toxicity, metabolic disorders, and chronic inflammation, is associated with liver-related mortality rates worldwide. It has been established that methotrexate (MTX), a pharmaceutical agent utilised in the treatment of numerous diseases, induces hepatic fibrosis. Currently, there is still a paucity of clinically efficacious antifibrotic drugs for the management of hepatic fibrosis. Thus, the present research sought to evaluate the antifibrotic effects of baricitinib in a rat model of MTX-induced liver fibrosis through the yes-associated protein (YAP) pathway. Materials and Methods: A total of 36 Wistar rats were assigned to three groups (n = 12) randomly: a control group, an MTX-induced liver fibrosis group, and a baricitinib-treated group, which received 20 mg/kg/day of baricitinib following fibrosis induction. All treatments were administered for 10 days. Results: Biochemical analyses revealed significant increases in plasma alanine aminotransferase (ALT), cytokeratin-18 (CK-18), and malondialdehyde (MDA) levels, as well as liver transforming growth factor-beta (TGF-β), YAP1, and MDA levels, in the MTX-induced fibrosis group in comparison to the control group (p < 0.05). Notably, baricitinib addition significantly reduced these biomarkers (p < 0.05). A histopathological evaluation further confirmed a marked reduction in fibrosis, hepatic necrosis, and cellular infiltration in the baricitinib-treated group relative to the MTX-induced fibrosis group. Conclusions: Accordingly, our findings suggest that baricitinib mitigates MTX-induced liver fibrosis, potentially through its anti-inflammatory and antifibrotic effects mediated by the suppression of the YAP signalling pathway. These results highlight that baricitinib could be a potential treatment option for patients with liver fibrosis.
Collapse
Affiliation(s)
- Mehmet Ulusan
- Department of Internal Medicine, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur 15030, Turkey;
| | - Mumin Alper Erdogan
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir 35620, Turkey;
| | - Ozkan Simsek
- Department of Physiology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur 15030, Turkey
| | - Zafer Dogan
- Department of Surgery, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University, Tekirdag 59010, Turkey;
| | - Bertug Bekir Ciftci
- Department of Veterinary Surgery, Health Science Institute, Erciyes University, Kayseri 38280, Turkey;
| | - Gultekin Atalan
- Department of Surgery, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38280, Turkey;
| | - Oytun Erbas
- Faculty of Medicine, BAMER, Biruni University, Istanbul 34015, Turkey;
| |
Collapse
|
3
|
Chu Y, Yang S, Chen X. Fibroblast growth factor receptor signaling in metabolic dysfunction-associated fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther 2025; 269:108844. [PMID: 40113178 DOI: 10.1016/j.pharmthera.2025.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has emerged as a significant hepatic manifestation of metabolic syndrome, with its prevalence increasing globally alongside the epidemics of obesity and diabetes. MAFLD represents a continuum of liver damage, spanning from uncomplicated steatosis to metabolic dysfunction-associated steatohepatitis (MASH). This condition can advance to more severe outcomes, including fibrosis and cirrhosis. Fibroblast growth factor receptors (FGFRs) are a family of four receptor tyrosine kinases (FGFR1-4) that interact with both paracrine and endocrine fibroblast growth factors (FGFs). This interaction activates the phosphorylation of tyrosine kinase residues, thereby triggering downstream signaling pathways, including RAS-MAPK, JAK-STAT, PI3K-AKT, and PLCγ. In the context of MAFLD, paracrine FGF-FGFR signaling is predominantly biased toward the development of liver fibrosis and carcinogenesis. In contrast, endocrine FGF-FGFR signaling is primarily biased toward regulating the metabolism of bile acids, carbohydrates, lipids, and phosphate, as well as maintaining the overall balance of energy metabolism in the body. The interplay between these biased signaling pathways significantly influences the progression of MAFLD. This review explores the critical functions of FGFR signaling in MAFLD from three perspectives: first, it examines the primary roles of FGFRs relative to their structure; second, it summarizes FGFR signaling in hepatic lipid metabolism, elucidating mechanisms underlying the occurrence and progression of MAFLD; finally, it highlights recent advancements in drug development aimed at targeting FGFR signaling for the treatment of MAFLD and its associated diseases.
Collapse
Affiliation(s)
- Yi Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Su Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Ros-Tarraga P, Villanueva-Badenas E, Sanchez-Gonzalez E, Gallego-Ferrer G, Donato MT, Tolosa L. Challenges of in vitro modelling of liver fibrosis. Front Cell Dev Biol 2025; 13:1567916. [PMID: 40371390 PMCID: PMC12075197 DOI: 10.3389/fcell.2025.1567916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Liver fibrosis has been proposed as the most important predictive indicator affecting prognosis of patients with chronic liver disease. It is defined by an abnormal accumulation of extracellular matrix components that results from necrotic and inflammatory processes and eventually impairs organ function. With no approved therapy, comprehensive cellular models directly derived from patient's cells are necessary to understand the mechanisms behind fibrosis and the response to anti-fibrotic therapies. Primary human cells, human hepatic cell lines and human stem cells-derived hepatic stellate-like cells have been widely used for studying fibrosis pathogenesis. In this paper, we depict the cellular crosstalk and the role of extracellular matrix during fibrosis pathogenesis and summarize different in vitro models from simple monolayers to multicellular 3D cultures used to gain deeper mechanistic understanding of the disease and the therapeutic response, discussing their major advantages and disadvantages for liver fibrosis modelling.
Collapse
Affiliation(s)
- Patricia Ros-Tarraga
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Estela Villanueva-Badenas
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
- Faculty of Medicine and Dentistry, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Estela Sanchez-Gonzalez
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Valencia, Spain
| | - Gloria Gallego-Ferrer
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Valencia, Spain
| | - M. Teresa Donato
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
- Faculty of Medicine and Dentistry, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Carlos III Health Institute, Madrid, Spain
| | - Laia Tolosa
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Valencia, Spain
| |
Collapse
|
5
|
Ding K, Xie R, Han B, Zheng H, Tian T. Histone methyltransferase SMYD2 regulates the activation of hepatic stellate cells by activating TLR4 signaling. Sci Rep 2025; 15:13166. [PMID: 40240419 PMCID: PMC12003666 DOI: 10.1038/s41598-025-96699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Liver fibrosis represents a pathological outcome in the progression of chronic liver diseases, primarily driven by the activation of hepatic stellate cells (HSCs) induced by various chronic liver injury factors. Substantial evidence indicates that under inflammatory conditions, aberrant activation of HSCs leads to excessive deposition of extracellular matrix (ECM). Therefore, identifying novel molecular targets to inhibit HSCs activation and proliferation is of significant clinical importance for the prevention and treatment of liver fibrosis. SMYD2 (SET and MYND domain containing 2) is a histone methyltransferase primarily responsible for catalyzing the methylation of lysine 36 on histone H3 (H3K36). However, the specific role and mechanisms of SMYD2 in the progression of liver fibrosis remain poorly understood. Thus, this study aims to systematically investigate the molecular regulatory mechanisms of SMYD2 in the development of liver fibrosis. Our findings demonstrate that both SMYD2 and its catalytic product, H3K36me2, are significantly upregulated in carbon tetrachloride (CCl4)-induced liver fibrosis tissues in mice and during the spontaneous activation of primary mouse HSCs in vitro. Knockdown of SMYD2 expression significantly reduces H3K36me2 modification levels and effectively inhibits transforming growth factor-β1 (TGF-β1)-induced HSC activation. Further mechanistic studies reveal that the toll-like receptor 4 (TLR4) -nuclear factor kappa-B(NF-κB) signaling pathway is involved in this regulatory process, where Smyd2 positively regulates Tlr4 gene expression by modulating H3K36me2 modification levels. These findings suggest that SMYD2 may serve as a potential therapeutic target for liver fibrosis, warranting further exploration in subsequent clinical translational research.
Collapse
Affiliation(s)
- Kaize Ding
- Department of Assisted Reproductive, Guiyang Maternal and Child Health Care Hospital, Guiyang, Guizhou, China
| | - Rujia Xie
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bing Han
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huiling Zheng
- Department of Eugenic Genetics, Guiyang Maternal and Child Health Care Hospital, Guiyang, Guizhou, China.
| | - Tian Tian
- Department of Eugenic Genetics, Guiyang Maternal and Child Health Care Hospital, Guiyang, Guizhou, China.
| |
Collapse
|
6
|
Wang C, Felli E, Fallowfield JA, Dietrich CF, Rockey D, Hennig J, Teng GJ, Gracia-Sancho J, Qi X. Vasomics of the liver. Gut 2025:gutjnl-2024-334133. [PMID: 40044498 DOI: 10.1136/gutjnl-2024-334133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/07/2025] [Indexed: 03/09/2025]
Abstract
Chronic liver disease is a cluster of disorders associated with complex haemodynamic alterations, which is characterised by structural and functional disruptions of the intrahepatic and extrahepatic vasculature. 'Vasomics' is an emerging omics discipline that comprehensively analyses and models the vascular system by integrating pathophysiology of disease, biomechanics, medical imaging, computational science and artificial intelligence. Vasomics is further typified by its multidimensional, multiscale and high-throughput nature, which depends on the rapid and robust extraction of well-defined vascular phenotypes with clear clinical and/or biological interpretability. By leveraging multimodality medical imaging techniques, vascular functional assessments, pathological image evaluation, and related computational methods, integrated vasomics provides a deeper understanding of the associations between the vascular system and disease. This in turn reveals the crucial role of the vascular system in disease occurrence, progression and treatment responses, thereby supporting precision medicine approaches. Pathological vascular features have already demonstrated their key role in different clinical scenarios. Despite this, vasomics is yet to be widely recognised. Therefore, we furnished a comprehensive definition of vasomics providing a classification of existing hepatic vascular phenotypes into the following categories: anatomical, biomechanical, biochemical, pathophysiological and composite.
Collapse
Affiliation(s)
- Chengyan Wang
- State Key Laboratory of Digital Medical Engineering, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
- Shanghai Pudong Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | | | | | - Don Rockey
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jürgen Hennig
- Department of Radiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Baden-Württemberg, Germany
| | - Gao-Jun Teng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing, China
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Liver Vascular Biology Lab, Liver Unit IDIBAPS, Hospital Clínic Barcelona-CIBEREHD, Barcelona, Spain
| | - Xiaolong Qi
- State Key Laboratory of Digital Medical Engineering, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing, China
| |
Collapse
|
7
|
Ramírez-Quesada W, Alvarado-Tapias E, Shalaby S, Hernández-Gea V. Recompensation in Cirrhosis: Biomarkers and Strategies. Semin Liver Dis 2025; 45:129-143. [PMID: 40179966 DOI: 10.1055/a-2542-9930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The onset of decompensation in advanced chronic liver disease (ACLD) is a hallmark in natural history, with a poor prognosis and a significantly increased liver-related mortality. Etiological treatments for viral hepatitis or abstinence in cirrhosis due to alcohol abuse have demonstrated that some patients experience partial to complete clinical and analytical improvement, a stage termed "recompensation." Although recompensation is primarily defined clinically based on treatable etiologies, it is still evolving for conditions like metabolic dysfunction-associated steatotic liver disease (MASLD). Despite the need for specific biomarkers in hepatic recompensation, no biomarkers have been thoroughly studied in this context. Biomarkers identified in compensated ACLD (cACLD) following etiological treatment might be explored for recompensation. Although the pathophysiology mechanisms underlying the hepatic recompensation remain unclear, understanding the mechanism involved in cirrhosis decompensation could help identify potential targets for recompensation. This review provides an update on the hepatic recompensation concept, examines the existing data on invasive and non-invasive biomarkers, mainly in cACLD after cure, that could be raised in recompensation, and explores future therapeutic targets for the hepatic recompensation process.
Collapse
Affiliation(s)
- Wagner Ramírez-Quesada
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Medicina i Ciències de la Salut, Fundació de Recerca Clínic Barcelona (FRCB-IDIBAPS), Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-RareLiver), Universitat de Barcelona, Barcelona, Spain
| | - Edilmar Alvarado-Tapias
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Gastroenterology and Hepatology Department, Hospital Santa Creu i Sant Pau, Autonomus University of Barcelona, Barcelona, Spain
| | - Sarah Shalaby
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Medicina i Ciències de la Salut, Fundació de Recerca Clínic Barcelona (FRCB-IDIBAPS), Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-RareLiver), Universitat de Barcelona, Barcelona, Spain
| | - Virginia Hernández-Gea
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Medicina i Ciències de la Salut, Fundació de Recerca Clínic Barcelona (FRCB-IDIBAPS), Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-RareLiver), Universitat de Barcelona, Barcelona, Spain
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Cazac-Panaite GD, Lăcătușu CM, Grigorescu ED, Foșălău AB, Onofriescu A, Mihai BM. Innovative Drugs First Implemented in Type 2 Diabetes Mellitus and Obesity and Their Effects on Metabolic Dysfunction-Associated Steatohepatitis (MASH)-Related Fibrosis and Cirrhosis. J Clin Med 2025; 14:1042. [PMID: 40004572 PMCID: PMC11857078 DOI: 10.3390/jcm14041042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), a progressive liver disease frequently associated with metabolic disorders such as type 2 diabetes mellitus (T2DM) and obesity, has the potential to progress symptomatically to liver cirrhosis and, in some cases, hepatocellular carcinoma. Hence, an urgent need arises to identify and approve new therapeutic options to improve patient outcomes. Research efforts have focused on either developing dedicated molecules or repurposing drugs already approved for other conditions, such as metabolic diseases. Among the latter, antidiabetic and anti-obesity agents have received the most extensive attention, with pivotal trial results anticipated shortly. However, the primary focus underlying successful regulatory approvals is demonstrating a substantial efficacy in improving liver fibrosis and preventing or ameliorating cirrhosis, the key advanced outcomes within MASLD progression. Besides liver steatosis, the ideal therapeutic candidate should reduce inflammation and fibrosis effectively. Although some agents have shown promise in lowering MASLD-related parameters, evidence of their impact on fibrosis and cirrhosis remains limited. This review aims to evaluate whether antidiabetic and anti-obesity drugs can be safely and effectively used in MASLD-related advanced fibrosis or cirrhosis in patients with T2DM. Our paper discusses the molecules closest to regulatory approval and the expectation that they can address the unmet needs of this increasingly prevalent disease.
Collapse
Affiliation(s)
- Georgiana-Diana Cazac-Panaite
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Cristina-Mihaela Lăcătușu
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Elena-Daniela Grigorescu
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Adina-Bianca Foșălău
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Alina Onofriescu
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Bogdan-Mircea Mihai
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
9
|
Heldens A, Casteleyn C, Onghena L, Antwi M, Neyt S, Descamps B, Vanhove C, Verhelst X, Raevens S, Van Vlierberghe H, Devisscher L, De Bruyne R, Junien JL, Wettstein G, Geerts A, Lefere S. The pan-PPAR agonist lanifibranor reduces portal pressure independent of fibrosis reduction through the splanchnic vasculature. Biomed Pharmacother 2025; 183:117826. [PMID: 39805191 DOI: 10.1016/j.biopha.2025.117826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/22/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025] Open
Abstract
Portal hypertension (PH) can cause severe complications in patients with advanced chronic liver disease (aCLD). The pan-peroxisome proliferator-activated receptor (pan-PPAR) agonist lanifibranor reduces portal pressure in preclinical models of aCLD. Since the effect on PH might be secondary to fibrosis improvement, we investigated the effect of lanifibranor on PH, hepatic and splanchnic angiogenesis in mouse models of fibrotic and prehepatic non-fibrotic PH. Mice with fibrotic PH (common bile duct ligation; CBDL) and prehepatic PH (partial portal vein ligation; PPVL) received daily lanifibranor/vehicle for 14 or 7 days, respectively. Hemodynamics, serum, hepatic and mesenteric histology, and hepatic, mesenteric and liver sinusoidal endothelial cells (LSEC) gene expression levels were analyzed. Vascular corrosion casts of the venous mesenteric and hepatic vasculature were analyzed using scanning electron microscopy and µCT. Portal pressure was increased in CBDL mice. Lanifibranor treatment demonstrated a dose-dependent trend towards decreasing the elevated portal pressure, and reduced fibrosis. Hepatic mRNA levels of inflammatory, fibrotic and angiogenic markers were significantly downregulated in lanifibranor-treated CBDL mice. LSEC dysfunction was improved by lanifibranor. Compared to CBDL mice, portal pressure was more extensively elevated in PPVL mice, which was significantly reduced by lanifibranor. Superior mesenteric artery blood flow, which was increased in vehicle-treated PPVL mice, tended to decrease by lanifibranor. The expansion of the mesenteric vasculature and mesenteric protein level of angiogenetic markers in PPVL mice were reduced after lanifibranor. In conclusion, lanifibranor improves PH, independently from fibrosis reduction, potentially through reducing the venous mesenteric vasculature expansion and intrahepatic angiogenesis, and ameliorating LSEC function.
Collapse
Affiliation(s)
- Anneleen Heldens
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Christophe Casteleyn
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Ghent University, Ghent, Belgium
| | - Louis Onghena
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium; Department of Human Structure and Repair, Department of Gastrointestinal Surgery, Ghent University, Ghent, Belgium
| | - Milton Antwi
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium; Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology unit, Ghent University, Ghent, Belgium; Translational Nuclear Receptor Research, Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sara Neyt
- Department of Electronics and Information Systems, IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- Department of Electronics and Information Systems, IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- Department of Electronics and Information Systems, IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Xavier Verhelst
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Sarah Raevens
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Hans Van Vlierberghe
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Lindsey Devisscher
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium; Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology unit, Ghent University, Ghent, Belgium
| | - Ruth De Bruyne
- Department of Internal Medicine and Pediatrics, Pediatric Gastroenterology, Hepatology and Nutrition, Ghent University, Ghent, Belgium
| | | | | | - Anja Geerts
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Sander Lefere
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
10
|
Li Y, Zhu B, Shi K, Lu Y, Zeng X, Li Y, Zhang Q, Feng Y, Wang X. Advances in intrahepatic and extrahepatic vascular dysregulations in cirrhotic portal hypertension. Front Med (Lausanne) 2025; 12:1515400. [PMID: 39958826 PMCID: PMC11825794 DOI: 10.3389/fmed.2025.1515400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Cirrhotic portal hypertension, the most prevalent and clinically significant complication of liver cirrhosis, manifests as elevated portal venous pressure and is associated with severe complications. Although much research on the mechanisms of portal hypertension has focused on liver fibrosis, less attention has been given to the role of intrahepatic and extrahepatic vascular dysfunction, particularly with respect to extrahepatic vasculature. While the role of hepatic fibrosis in cirrhotic portal hypertension is undeniable, the underlying mechanisms involving intrahepatic and extrahepatic vasculature are highly complex. Sinusoidal capillarization and endothelial dysfunction contribute to increased intrahepatic vascular resistance. Hemodynamic changes in the extrahepatic circulation, including splanchnic vasodilation and hyperdynamic circulation, play a significant role in the development of portal hypertension. Additionally, therapeutic strategies targeting these vascular mechanisms are diverse, including improvement of sinusoidal microcirculation, therapies targeting hepatic stellate cells activation, and pharmacological modulation of systemic vascular tone. Therefore, in this review, we will discuss the vascular-related mechanisms and treatment progress of portal hypertension in cirrhosis to provide a new theoretical basis and practical guidance for clinical treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ying Feng
- Center for Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xianbo Wang
- Center for Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Porada M, Bułdak Ł. From Pathophysiology to Practice: Evolving Pharmacological Therapies, Clinical Complications, and Pharmacogenetic Considerations in Portal Hypertension. Metabolites 2025; 15:72. [PMID: 39997697 PMCID: PMC11857179 DOI: 10.3390/metabo15020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Portal hypertension is a major complication of chronic liver diseases, leading to serious issues such as esophageal variceal bleeding. The increase in portal vein pressure is driven by both an organic component and a functional component, including tonic contraction of hepatic stellate cells. These processes result in a pathological rise in intrahepatic vascular resistance, stemming from partial impairment of hepatic microcirculation, which is further exacerbated by abnormalities in extrahepatic vessels, including increased portal blood flow. Objectives: This review aims to provide a comprehensive overview of the evolving pharmacological therapies for portal hypertension, with consideration and discussion of pathophysiological mechanisms, clinical complications, and pharmacogenetic considerations, highlighting potential directions for future research. Methods: A review of recent literature was performed to evaluate current knowledge and potential therapeutic strategies in portal hypertension. Results: For over 35 years, non-selective beta-blockers have been the cornerstone therapy for portal hypertension by reducing portal vein inflow as an extrahepatic target, effectively preventing decompensation and variceal hemorrhages. However, since not all patients exhibit an adequate response to non-selective beta-blockers (NSBBs), and some may not tolerate NSBBs, alternative or adjunctive therapies that enhance the effects of NSBBs on portal pressure are being investigated in preclinical and early clinical studies. Conclusions: A better understanding of pharmacogenetic factors and pathophysiological mechanisms could lead to more individualized and effective treatments for portal hypertension. These insights highlight potential directions for future research.
Collapse
Affiliation(s)
- Michał Porada
- Students’ Scientific Society, Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| |
Collapse
|
12
|
Cheng JY, Shan GY, Wan H, Liu YY, Zhang YX, Shi WN, Li HJ. Hepatitis B virus-induced cirrhosis: Mechanisms, global variations, and treatment advances. World J Hepatol 2024; 16:1515-1523. [DOI: 10.4254/wjh.v16.i12.1515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
We focus on hepatitis B virus (HBV)-induced cirrhosis, global differences, and the evolution of antiviral treatment strategies. Chronic HBV (CHB) infection affects more than 250 million people globally, leading to cirrhosis and hepatocellular carcinoma. The aim of this article was to synthesize the current understanding of the pathophysiological mechanisms and clinical consequences of HBV-induced cirrhosis, and explore differences in disease progression between geographic regions. Disease progression varies across regions due to differences in HBV subtypes, transmission routes, and immune responses. The challenge of late diagnosis and treatment, particularly in resource-limited areas, highlights the urgency and importance of CHB service expansion. Modern nucleos(t)ide analogues, such as tenofovir and entecavir, have emerged as the main therapeutic regimens to improve clinical outcomes in patients by suppressing viral replication and attenuating liver fibrosis. However, drug resistance challenges highlight the need for ongoing research and personalized treatment strategies. This article highlights the mechanisms and impact of cirrhosis progression in the context of CHB infection, aiming to reduce the incidence of cirrhosis and its serious consequences, thereby improving the long-term health of CHB patients worldwide, especially in Africa.
Collapse
Affiliation(s)
- Jun-Ya Cheng
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130061, Jilin Province, China
| | - Guan-Yue Shan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Hui Wan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Yi-Ying Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Yu-Xin Zhang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Wen-Na Shi
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Hai-Jun Li
- Institute of Liver Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| |
Collapse
|
13
|
Luo S, Yang B, Xu H, Pan X, Chen X, Jue X, Liu S, Wan R, Tan Q, Yao Y, Chen X, Jiang J, Deng B, Li J. Lithospermic acid improves liver fibrosis through Piezo1-mediated oxidative stress and inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155974. [PMID: 39217657 DOI: 10.1016/j.phymed.2024.155974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Hepatic fibrosis is becoming an increasingly serious public health issue worldwide. Although liver transplantation is the only and definitive treatment for end-stage liver fibrosis, traditional Chinese medicine offers certain benefits in the treatment of advanced hepatic fibrosis. PURPOSE This study aims to explore the protective effect of lithospermic acid (LA), an extraction from Salvia miltiorrhiza (the roots of S. miltiorrhiza Bunge, known as Danshen in Chinese), on liver fibrosis and investigate its potential mechanisms. METHODS AND RESULTS Mice were treated with carbon tetrachloride (CCl4) via intraperitoneal injection for 4 weeks. LA was orally administered or colchicine (COL) was injected intraperitoneally for 3 weeks starting one week after the initial CCl4 injection. After the LA treatment, we observed a decrease in the fibrosis index and an improvement in liver function. Molecular docking results revealed that Piezo1 may be a potential pharmacological target of LA. The further experimental results showed that LA inhibited Piezo1 activation and expression in macrophages. Mechanistically, both Piezo1/Notch-mediated inflammation and oxidative stress regulated by the Piezo1/Ca2+ pathway were alleviated in fibrotic livers following LA treatment. Moreover, less oxidative stress and Notch activation were observed in the deficiency of macrophage Piezo1 (Piezo1ΔLysM) mice. In addition, Piezo1ΔLysM partially counteracted the pharmacological effects of LA on liver fibrosis. CONCLUSION In conclusion, our present study corroborated LA limits the progression of liver fibrosis by regulating Piezo1-mediated oxidative stress and inflammation. These results indicate that LA could be a potential medication for hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Shangfei Luo
- Innovation Research Center, Shandong University of Chinese Medicine, Jinan, 250307, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bo Yang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Honglin Xu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xianmei Pan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaoyu Jue
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Silin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Rentao Wan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiaorui Tan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Youfen Yao
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaoting Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jintao Jiang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bo Deng
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Jing Li
- Innovation Research Center, Shandong University of Chinese Medicine, Jinan, 250307, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
14
|
Pericàs JM, Anstee QM, Augustin S, Bataller R, Berzigotti A, Ciudin A, Francque S, Abraldes JG, Hernández-Gea V, Pons M, Reiberger T, Rowe IA, Rydqvist P, Schabel E, Tacke F, Tsochatzis EA, Genescà J. A roadmap for clinical trials in MASH-related compensated cirrhosis. Nat Rev Gastroenterol Hepatol 2024; 21:809-823. [PMID: 39020089 DOI: 10.1038/s41575-024-00955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/19/2024]
Abstract
Although metabolic dysfunction-associated steatohepatitis (MASH) is rapidly becoming a leading cause of cirrhosis worldwide, therapeutic options are limited and the number of clinical trials in MASH-related compensated cirrhosis is low as compared to those conducted in earlier disease stages. Moreover, designing clinical trials in MASH cirrhosis presents a series of challenges regarding the understanding and conceptualization of the natural history, regulatory considerations, inclusion criteria, recruitment, end points and trial duration, among others. The first international workshop on the state of the art and future direction of clinical trials in MASH-related compensated cirrhosis was held in April 2023 at Vall d'Hebron University Hospital in Barcelona (Spain) and was attended by a group of international experts on clinical trials from academia, regulatory agencies and industry, encompassing expertise in MASH, cirrhosis, portal hypertension, and regulatory affairs. The presented Roadmap summarizes important content of the workshop on current status, regulatory requirements and end points in MASH-related compensated cirrhosis clinical trials, exploring alternative study designs and highlighting the challenges that should be considered for upcoming studies on MASH cirrhosis.
Collapse
Affiliation(s)
- Juan M Pericàs
- Liver Unit, Division of Digestive Diseases, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Centros de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| | - Quentin M Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | | | - Ramón Bataller
- Liver Unit, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat Barcelona, Barcelona, Spain
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreea Ciudin
- Endocrinology and Nutrition Department, Morbid Obesity Unit Coordinator, Vall d'Hebron University Hospital, Barcelona, Spain
- Centros de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Juan G Abraldes
- Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, Canada
| | - Virginia Hernández-Gea
- Centros de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Liver Unit, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat Barcelona, Barcelona, Spain
| | - Mònica Pons
- Liver Unit, Division of Digestive Diseases, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ian A Rowe
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
| | - Peter Rydqvist
- Medical Department, Madrigal Pharmaceuticals, West Conshohocken, PA, USA
| | - Elmer Schabel
- Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Joan Genescà
- Liver Unit, Division of Digestive Diseases, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centros de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Zhang XY, Chen QJJ, Zhu F, Li M, Shang D. Dual peroxisome proliferator-activated receptor α/δ agonists: Hope for the treatment of alcohol-associated liver disease? World J Gastroenterol 2024; 30:4163-4167. [PMID: 39474402 PMCID: PMC11514538 DOI: 10.3748/wjg.v30.i37.4163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
In this letter, we review the article "Effects of elafibranor on liver fibrosis and gut barrier function in a mouse model of alcohol-associated liver disease". We focus specifically on the detrimental effects of alcohol-associated liver disease (ALD) on human health. Given its insidious onset and increasing incidence, increasing awareness of ALD can contribute to reducing the prevalence of liver diseases. ALD comprises a spectrum of several different disorders, including liver steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The pathogenesis of ALD is exceedingly complex. Previous studies have shown that peroxisome proliferator-activated receptors (PPARs) regulate lipid metabolism, glucose homeostasis and inflammatory responses within the organism. Additionally, their dysfunction is a major contributor to the progression of ALD. Elafibranor is an oral, dual PPARα and δ agonist. The effectiveness of elafibranor in the treatment of ALD remains unclear. In this letter, we emphasize the harm of ALD and the burden it places on society. Furthermore, we summarize the clinical management of all stages of ALD and present new insights into its pathogenesis and potential therapeutic targets. Additionally, we discuss the mechanisms of action of PPARα and δ agonists, the significance of their antifibrotic effects on ALD and future research directions.
Collapse
Affiliation(s)
- Xin-Yang Zhang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Qin-Jun-Jie Chen
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Feng Zhu
- Department of Vascular Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, Hubei Province, China
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Dan Shang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
16
|
Bandyopadhyay S, Samajdar SS, Chaudhuri S, Das S. An insight into the updated pharmacotherapy of metabolic-associated fatty liver disease (MAFLD) or metabolic dysfunction-associated steatohepatitis (MASH) in lean individuals: a review. Hosp Pract (1995) 2024:1-7. [PMID: 39356238 DOI: 10.1080/21548331.2024.2412513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/03/2024]
Abstract
Metabolic-associated fatty liver disease (MAFLD) or metabolic dysfunction-associated steatohepatitis (MASH) in lean individuals represents a distinctive subset of MASH. Current pharmacotherapies, for MASH as demonstrated in clinical trials, predominantly target obese patients with limited consideration for lean MASH. We aimed to systematically review the literature on the pharmacotherapy of lean MASH. We searched standard medical databases, such as PubMed, Embase, Scopus, Cochrane CENTRAL, and ClinicalTrials.gov to identify eligible studies published in English up to 31 December 2023 regarding the effect of pharmacological interventions in individuals with lean MASH. We have summarized the role of various drug classes including peroxisome proliferator-activated receptor agonists, glucagon-like peptide-1 receptor agonists, sodium-glucose cotransporter 2 inhibitors, vitamin E, farnesoid X receptor agonists, selective thyroid hormone receptor-β agonists, and selective cholesterol absorption inhibitors. Consequently, lifestyle interventions, encompassing dietary modifications, exercise, and weight loss particularly directed at visceral obesity or achieving a reduction in body weight are recommended for all non-obese individuals with MASH. A highlight on the only available treatment recommendation for lean MASH is also presented. The available evidence regarding the efficacy of various drugs for the treatment of lean MASH is limited. Conclusive evidence is warranted from clinical trials exclusively involving lean individuals with MASH.
Collapse
Affiliation(s)
| | - Shambo Samrat Samajdar
- Department of Clinical and Experimental Pharmacology, Calcutta School of Tropical Medicine, Kolkata, India
| | | | - Saibal Das
- Indian Council of Medical Research - Centre for Ageing and Mental Health, Kolkata, India
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Liu CJ, Seto WK, Yu ML. Dual-etiology MAFLD: the interactions between viral hepatitis B, viral hepatitis C, alcohol, and MAFLD. Hepatol Int 2024; 18:897-908. [PMID: 39115632 DOI: 10.1007/s12072-024-10699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/03/2024] [Indexed: 10/05/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) and viral hepatitis due to chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infection are common liver diseases worldwide. Excessive alcohol consumption and alcoholic liver disease (ALD) are also emerging health problems. Therefore, in clinical practice, we may encounter subjects with dual etiology of liver diseases such as coexisting MAFLD/HBV, MAFLD/HCV, and MAFLD/ALD. In this review, we summarize the epidemiology, clinical features, and mutual interactions of MAFLD with coexisting HBV, HCV, or ALD. The impact of MAFLD on the progression of liver diseases and treatment outcomes in patients with chronic viral hepatitis and the clinical questions to be addressed regarding dual MAFLD and ALD are also discussed.
Collapse
Affiliation(s)
- Chun-Jen Liu
- Hepatitis Research Center, National Taiwan University College of Medicine and, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Wai Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Pok Fu Lam, China.
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Center of Hepatitis Research, College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
18
|
Liu X, Liang Q, Wang Y, Xiong S, Yue R. Advances in the pharmacological mechanisms of berberine in the treatment of fibrosis. Front Pharmacol 2024; 15:1455058. [PMID: 39372209 PMCID: PMC11450235 DOI: 10.3389/fphar.2024.1455058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
The rising incidence of fibrosis poses a major threat to global public health, and the continuous exploration of natural products for the effective treatment of fibrotic diseases is crucial. Berberine (BBR), an isoquinoline alkaloid, is widely used clinically for its anti-inflammatory, anti-tumor and anti-fibrotic pharmacological effects. Until now, researchers have worked to explore the mechanisms of BBR for the treatment of fibrosis, and multiple studies have found that BBR attenuates fibrosis through different pathways such as TGF-β/Smad, AMPK, Nrf2, PPAR-γ, NF-κB, and Notch/snail axis. This review describes the anti-fibrotic mechanism of BBR and its derivatives, and the safety evaluation and toxicity studies of BBR. This provides important therapeutic clues and strategies for exploring new drugs for the treatment of fibrosis. Nevertheless, more studies, especially clinical studies, are still needed. We believe that with the continuous implementation of high-quality studies, significant progress will be made in the treatment of fibrosis.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qingzhi Liang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | | | - Shuai Xiong
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Shen D, Cai X, Hu J, Song S, Zhu Q, Ma H, Zhang Y, Ma R, Zhou P, Yang W, Hong J, Zhang D, Li N. Associating plasma aldosterone concentration with the prevalence of MAFLD in hypertensive patients: insights from a large-scale cross-sectional study. Front Endocrinol (Lausanne) 2024; 15:1451383. [PMID: 39363897 PMCID: PMC11446807 DOI: 10.3389/fendo.2024.1451383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Objective To explore the link between plasma aldosterone concentration (PAC) and the prevalence of metabolic dysfunction-related fatty liver disease (MAFLD) in hypertensive patients. Methods We analyzed data from 41,131 hospitalized patients from January 1, 2014, to December 31, 2023. Multivariate logistic regression models tested associations, with threshold, subgroup, and sensitivity analyses conducted to validate findings. Results For each 5-unit increase in PAC, the risk of MAFLD rose by 1.57 times, consistent even in the fully adjusted model. The odds ratios for the Q2, Q3, and Q4 groups compared to Q1 were 1.21, 2.12, and 3.14, respectively. A threshold effect was observed at 14 ng/dL, with subgroup and sensitivity analyses supporting these results. Conclusions This study reveals a significant positive association between elevated PAC levels and the prevalence of MAFLD in hypertensive patients. These findings underscore the imperative for further large-scale, prospective studies to validate and expand upon this correlation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Nanfang Li
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, China
| |
Collapse
|
20
|
Cai X, Zhang Q, Wang J, Miao Y, Sun Y, Xia Z, Zhang L, Yu Q, Jiang Z. Novel Dual PPAR δ/γ Partial Agonist Induces Hepatic Lipid Accumulation through Direct Binding and Inhibition of AKT1 Phosphorylation, Mediating CD36 Upregulation. Chem Res Toxicol 2024; 37:1574-1587. [PMID: 39235066 DOI: 10.1021/acs.chemrestox.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
ZLY06 is a dual agonist of peroxisome proliferator-activated receptor (PPAR) δ/γ, showing potential therapeutic effects on metabolic syndrome. However, our research has revealed that ZLY06 exhibits hepatotoxicity in normal C57BL/6J mice, though the precise mechanism remains unclear. This study aims to investigate the manifestations and mechanisms of ZLY06-induced hepatotoxicity. We administered ZLY06 via oral gavage to C57BL/6J mice (once daily for six weeks) and monitored various indicators to preliminarily explore its hepatotoxicity. Additionally, we further investigate the specific mechanisms of ZLY06-induced hepatotoxicity using PPAR inhibitors (GW9662 and GSK0660) and the Protein kinase B (AKT) activator (SC79). Results showed that ZLY06 led to increased serum ALP, ALT and AST, as well as elevated liver index and hepatic lipid levels. There was upregulation in the gene and protein expression of lipid metabolism-related molecules Acc, Scd1, Cd36, Fabp1 and Fabp2 in hepatocytes, with Cd36 showing the most significant change. Furthermore, cotreatment with SC79 significantly reduced ZLY06-induced hepatotoxicity in AML12 cells, evidenced by decreased intracellular TG levels and downregulation of CD36 expression. Specific knockdown of CD36 also mitigated ZLY06-induced hepatotoxicity. The study found that ZLY06 may bind to AKT1, inhibiting its phosphorylation activation, with the downregulation of p-AKT1 preceding the upregulation of CD36. In summary, ZLY06 mediates the upregulation of CD36 by potentially binding to and inhibiting the phosphorylation of AKT1, leading to hepatic lipid metabolism disorder and inducing liver toxicity.
Collapse
Affiliation(s)
- Xiaotong Cai
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qin Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jiwei Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuqing Sun
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ziyin Xia
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qinwei Yu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Center for Pharmacodynamics Research and Evaluation, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
21
|
Qin X, Liu J. Nanoformulations for the diagnosis and treatment of metabolic dysfunction-associated steatohepatitis. Acta Biomater 2024; 184:37-53. [PMID: 38879104 DOI: 10.1016/j.actbio.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive phase of metabolic dysfunction-associated steatotic liver disease (MASLD) that develops into irreversible liver cirrhosis and hepatocellular carcinoma, ultimately necessitating liver transplantation as the sole life-saving option. However, given the drawbacks of liver transplantation, including invasiveness, chronic immunosuppression, and a lack of donor livers, prompt diagnosis and effective treatment are indispensable. Due to the limitations of liver biopsy and conventional imaging modalities in diagnosing MASH, as well as the potential hazards associated with liver-protecting medicines, numerous nanoformulations have been created for MASH theranostics. Particularly, there has been significant study interest in artificial nanoparticles, natural biomaterials, and bionic nanoparticles that exhibit exceptional biocompatibility and bioavailability. In this review, we summarized extracellular vesicles (EVs)-based omics analysis and Fe3O4-based functional magnetic nanoparticles as magnetic resonance imaging (MRI) contrast agents for MASH diagnosis. Additionally, artificial nanoparticles such as organic and inorganic nanoparticles, as well as natural biomaterials such as cells and cell-derived EVs and bionic nanoparticles including cell membrane-coated nanoparticles, have also been reported for MASH treatment owing to their specific targeting and superior therapeutic effect. This review has the potential to stimulate advancements in nanoformulation fabrication techniques. By exploring their compatibility with cell biology, it could lead to the creation of innovative material systems for efficient theragnostic uses for MASH. STATEMENT OF SIGNIFICANCE: People with metabolic dysfunction-associated steatohepatitis (MASH) will progress to fibrosis, cirrhosis, or even liver cancer. It is imperative to establish effective theragnostic techniques to stop MASH from progressing into a lethal condition. In our review, we summarize the advancement of artificial, natural, and bionic nanoparticles applied in MASH theragnosis. Furthermore, the issues that need to be resolved for these cutting-edge techniques are summarized to realize a more significant clinical impact. We forecast the key fields that will advance further as nanotechnology and MASH research progress. Generally, our discovery has significant implications for the advancement of nanoformulation fabrication techniques, and their potential to be compatible with cell biology could lead to the creation of innovative materials systems for effective MASH theragnostic.
Collapse
Affiliation(s)
- Xueying Qin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China
| | - Jingjing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China.
| |
Collapse
|
22
|
Liu H, Yin G, Kohlhepp MS, Schumacher F, Hundertmark J, Hassan MIA, Heymann F, Puengel T, Kleuser B, Mosig AS, Tacke F, Guillot A. Dissecting Acute Drug-Induced Hepatotoxicity and Therapeutic Responses of Steatotic Liver Disease Using Primary Mouse Liver and Blood Cells in a Liver-On-A-Chip Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403516. [PMID: 38868948 PMCID: PMC11321671 DOI: 10.1002/advs.202403516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Indexed: 06/14/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is hallmarked by hepatic steatosis, cell injury, inflammation, and fibrosis. This study elaborates on a multicellular biochip-based liver sinusoid model to mimic MASLD pathomechanisms and investigate the therapeutic effects of drug candidates lanifibranor and resmetirom. Mouse liver primary hepatocytes, hepatic stellate cells, Kupffer cells, and endothelial cells are seeded in a dual-chamber biocompatible liver-on-a-chip (LoC). The LoC is then perfused with circulating immune cells (CICs). Acetaminophen (APAP) and free fatty acids (FFAs) treatment recapitulate acute drug-induced liver injury and MASLD, respectively. As a benchmark for the LoC, multiplex immunofluorescence on livers from APAP-injected and dietary MASLD-induced mice reveals characteristic changes on parenchymal and immune cell populations. APAP exposure induces cell death in the LoC, and increased inflammatory cytokine levels in the circulating perfusate. Under FFA stimulation, lipid accumulation, cellular damage, inflammatory secretome, and fibrogenesis are increased in the LoC, reflecting MASLD. Both injury conditions potentiate CIC migration from the perfusate to the LoC cellular layers. Lanifibranor prevents the onset of inflammation, while resmetirom decreases lipid accumulation in hepatocytes and increases the generation of FFA metabolites in the LoC. This study demonstrates the LoC potential for functional and molecular evaluation of liver disease drug candidates.
Collapse
Affiliation(s)
- Hanyang Liu
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Guo Yin
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Marlene Sophia Kohlhepp
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Fabian Schumacher
- Institute of PharmacyFreie Universität BerlinKönigin‐Luise‐Str. 2+414195BerlinGermany
| | - Jana Hundertmark
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | | | - Felix Heymann
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Tobias Puengel
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Burkhard Kleuser
- Institute of PharmacyFreie Universität BerlinKönigin‐Luise‐Str. 2+414195BerlinGermany
| | - Alexander Sandy Mosig
- Institute of Biochemistry IICenter for Sepsis Control and CareJena University Hospital07747JenaGermany
| | - Frank Tacke
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Adrien Guillot
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| |
Collapse
|
23
|
Zhou Z, Zheng X, Xie M, Lin Z, Du F, Shi X, Li R. Mice Hepatic Organoids for Modeling Nonalcoholic Fatty Liver Disease and Drug Response. Stem Cells Dev 2024; 33:387-398. [PMID: 38814825 DOI: 10.1089/scd.2024.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a serious disease. There are no specific drugs for it, in part because of the lack of effective models to aid drug development. However, it has been shown that three-dimensional organoid culture systems can reproduce the organ structure and maintain the gene expression profile of the original tissue. Therefore, we aimed to construct NAFLD models from liver organoids for pharmacological and mechanism studies. We successfully observed morphological changes in normal liver tissue in mouse liver organoids with positive albumin (ALB) expression and potential for differentiation toward hepatocyte-like cells. The mRNA expression of the hepatocyte markers ALB and hepatocyte nuclear factor 4 alpha increased after liver organoid differentiation. We observed free fatty acid (FFA)-induced lipid accumulation in organoids with significant increases in alanine aminotransferase, aspartate aminotransferase, total bilirubin, and triglyceride levels. Moreover, FFA-induced inflammatory cytokines (interleukin-6, tumor necrosis factor-α, and nitric oxide) and fibrosis indicators (collagen type I α1 and laminin α1) were also increased. In addition, RNA sequencing results showed that the expression of key genes [nucleotide oligomerization domain-like receptor (NLR) family apoptosis inhibitory protein, interferon regulatory factor (IRF) 3, and IRF7] involved in NAFLD metabolic abnormalities and insulin resistance in the NLR signaling pathway was altered after FFA induction of the liver organoids. Finally, we found that JC2-11 and lanifibranor limited the FFA-induced increase in oil-red lipid droplets, liver damage, inflammation, and liver fibrosis. In conclusion, tissue structure, gene expression, and the response of mouse liver organoids to drugs can partially mimic in vivo liver tissue. Liver organoids can successfully construct NAFLD models for drug discovery research.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiyan Zheng
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Maoyun Xie
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhiqun Lin
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Fei Du
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xianjie Shi
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ruixi Li
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
24
|
Du L, Wang X, Guo Y, Tao T, Wu H, Xu X, Zhang B, Chen T, Xu Q, Guo X. Altered lipid metabolism promoting cardiac fibrosis is mediated by CD34 + cell-derived FABP4 + fibroblasts. Exp Mol Med 2024; 56:1869-1886. [PMID: 39198543 PMCID: PMC11372182 DOI: 10.1038/s12276-024-01309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 09/01/2024] Open
Abstract
Hyperlipidemia and hypertension might play a role in cardiac fibrosis, in which a heterogeneous population of fibroblasts seems important. However, it is unknown whether CD34+ progenitor cells are involved in the pathogenesis of heart fibrosis. This study aimed to explore the mechanism of CD34+ cell differentiation in cardiac fibrosis during hyperlipidemia. Through the analysis of transcriptomes from 50,870 single cells extracted from mouse hearts and 76,851 single cells from human hearts, we have effectively demonstrated the evolving cellular landscape throughout cardiac fibrosis. Disturbances in lipid metabolism can accelerate the development of fibrosis. Through the integration of bone marrow transplantation models and lineage tracing, our study showed that hyperlipidemia can expedite the differentiation of non-bone marrow-derived CD34+ cells into fibroblasts, particularly FABP4+ fibroblasts, in response to angiotensin II. Interestingly, the partial depletion of CD34+ cells led to a notable reduction in triglycerides in the heart, mitigated fibrosis, and improved cardiac function. Furthermore, immunostaining of human heart tissue revealed colocalization of CD34+ cells and fibroblasts. Mechanistically, our investigation of single-cell RNA sequencing data through pseudotime analysis combined with in vitro cellular studies revealed the crucial role of the PPARγ/Akt/Gsk3β pathway in orchestrating the differentiation of CD34+ cells into FABP4+ fibroblasts. Through our study, we generated valuable insights into the cellular landscape of CD34+ cell-derived cells in the hypertrophic heart with hyperlipidemia, indicating that the differentiation of non-bone marrow-derived CD34+ cells into FABP4+ fibroblasts during this process accelerates lipid accumulation and promotes heart failure via the PPARγ/Akt/Gsk3β pathway.
Collapse
Affiliation(s)
- Luping Du
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyang Wang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Guo
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tingting Tao
- Department of Cardiovascular Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Wu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaodong Xu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bohuan Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Health care, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
25
|
Li R, Liu Z, Huang W, Guo Y, Xie C, Wu H, Liu J, Hong X, Wang X, Huang J, Cai M, Guo Z, Liang L, Lin L, Zhu K. Microbial-derived Urolithin A Targets GLS1 to Inhibit Glutaminolysis and Attenuate Cirrhotic Portal Hypertension. Cell Mol Gastroenterol Hepatol 2024; 18:101379. [PMID: 39038605 PMCID: PMC11386317 DOI: 10.1016/j.jcmgh.2024.101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND & AIMS Cirrhotic portal hypertension (CPH) is the leading cause of mortality in patients with cirrhosis. Over 50% of patients with CPH treated with current clinical pharmacotherapy still present variceal bleeding or sometimes death owing to insufficient reduction in portal pressure. Elevated intrahepatic vascular resistance (IHVR) plays a fundamental role in increasing portal pressure. Because of its potent effect in reducing portal pressure and maintaining normal portal inflow to preserve liver function, lowering the IHVR is acknowledged as an optimal anti-CPH strategy but without clinical drugs. We aimed to investigate the protective effect of microbial-derived Urolithin A (UroA) in IHVR and CPH. METHODS Carbon tetrachloride or bile duct ligation surgery was administered to mice to induce liver fibrosis and CPH. 16S rRNA gene sequencing was used for microbial analysis. Transcriptomics and metabolomics analyses were employed to study the host and cell responses. RESULTS UroA was remarkably deficient in patients with CPH and was negatively correlated with disease severity. UroA deficiency was also confirmed in CPH mice and was associated with a reduced abundance of UroA-producing bacterial strain (Lactobacillus murinus, L. murinus). Glutaminolysis of hepatic stellate cells (HSCs) was identified as a previously unrecognized target of UroA. UroA inhibited the activity of glutaminase1 to suppress glutaminolysis, which counteracted fibrogenesis and contraction of HSCs and ameliorated CPH by relieving IHVR. Supplementation with UroA or L. murinus effectively ameliorated CPH in mice. CONCLUSIONS We for the first time identify the deficiency of gut microbial metabolite UroA as an important cause of CPH. We demonstrate that UroA exerts an excellent anti-CPH effect by suppressing HSC glutaminolysis to lower the IHVR, which highlighted its great potential as a novel therapeutic agent for CPH.
Collapse
Affiliation(s)
- Rui Li
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhile Liu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wensou Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongjian Guo
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chan Xie
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongmei Wu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jianxin Liu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyang Hong
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaobin Wang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingjun Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingyue Cai
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhaoxiong Guo
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Licong Liang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
26
|
Qu J, Wang L, Li Y, Li X. Liver sinusoidal endothelial cell: An important yet often overlooked player in the liver fibrosis. Clin Mol Hepatol 2024; 30:303-325. [PMID: 38414375 PMCID: PMC11261236 DOI: 10.3350/cmh.2024.0022] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are liver-specific endothelial cells with the highest permeability than other mammalian endothelial cells, characterized by the presence of fenestrae on their surface, the absence of diaphragms and the lack of basement membrane. Located at the interface between blood and other liver cell types, LSECs mediate the exchange of substances between the blood and the Disse space, playing a crucial role in maintaining substance circulation and homeostasis of multicellular communication. As the initial responders to chronic liver injury, the abnormal LSEC activation not only changes their own physicochemical properties but also interrupts their communication with hepatic stellate cells and hepatocytes, which collectively aggravates the process of liver fibrosis. In this review, we have comprehensively updated the various pathways by which LSECs were involved in the initiation and aggravation of liver fibrosis, including but not limited to cellular phenotypic change, the induction of capillarization, decreased permeability and regulation of intercellular communications. Additionally, the intervention effects and latest regulatory mechanisms of anti-fibrotic drugs involved in each aspect have been summarized and discussed systematically. As we studied deeper into unraveling the intricate role of LSECs in the pathophysiology of liver fibrosis, we unveil a promising horizon that pave the way for enhanced patient outcomes.
Collapse
Affiliation(s)
- Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Le Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
27
|
Guixé-Muntet S, Quesada-Vázquez S, Gracia-Sancho J. Pathophysiology and therapeutic options for cirrhotic portal hypertension. Lancet Gastroenterol Hepatol 2024; 9:646-663. [PMID: 38642564 DOI: 10.1016/s2468-1253(23)00438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 04/22/2024]
Abstract
Portal hypertension represents the primary non-neoplastic complication of liver cirrhosis and has life-threatening consequences, such as oesophageal variceal bleeding, ascites, and hepatic encephalopathy. Portal hypertension occurs due to increased resistance of the cirrhotic liver vasculature to portal blood flow and is further aggravated by the hyperdynamic circulatory syndrome. Existing knowledge indicates that the profibrogenic phenotype acquired by sinusoidal cells is the initial factor leading to increased hepatic vascular tone and fibrosis, which cause increased vascular resistance and portal hypertension. Data also suggest that the phenotype of hepatic cells could be further impaired due to the altered mechanical properties of the cirrhotic liver itself, creating a deleterious cycle that worsens portal hypertension in the advanced stages of liver disease. In this Review, we discuss recent discoveries in the pathophysiology and treatment of cirrhotic portal hypertension, a condition with few pharmacological treatment options.
Collapse
Affiliation(s)
- Sergi Guixé-Muntet
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sergio Quesada-Vázquez
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Hospital Clínic de Barcelona, Barcelona, Spain; Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
28
|
He Q, He W, Dong H, Guo Y, Yuan G, Shi X, Wang D, Lu F. Role of liver sinusoidal endothelial cell in metabolic dysfunction-associated fatty liver disease. Cell Commun Signal 2024; 22:346. [PMID: 38943171 PMCID: PMC11214243 DOI: 10.1186/s12964-024-01720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells that represent the interface between blood cells on one side and hepatocytes on the other side. LSECs not only form a barrier within the hepatic sinus, but also play important physiological functions such as regulating hepatic vascular pressure, anti-inflammatory and anti-fibrotic. Pathologically, pathogenic factors can induce LSECs capillarization, that is, loss of fenestra and dysfunction, which are conducive to early steatosis, lay the foundation for the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), and accelerate metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. The unique localization, phenotype, and function of LSECs make them potential candidates for reducing liver injury, inflammation, and preventing or reversing fibrosis in the future.
Collapse
Affiliation(s)
- Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Hui Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Yuan
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
29
|
Mandal SK, Puri S, Kumar BK, Muzaffar-Ur-Rehman M, Sharma PK, Sankaranarayanan M, Deepa PR. Targeting lipid-sensing nuclear receptors PPAR (α, γ, β/δ): HTVS and molecular docking/dynamics analysis of pharmacological ligands as potential pan-PPAR agonists. Mol Divers 2024; 28:1423-1438. [PMID: 37280404 DOI: 10.1007/s11030-023-10666-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
The global prevalence of obesity-related systemic disorders, including non-alcoholic fatty liver disease (NAFLD), and cancers are rapidly rising. Several of these disorders involve peroxisome proliferator-activated receptors (PPARs) as one of the key cell signaling pathways. PPARs are nuclear receptors that play a central role in lipid metabolism and glucose homeostasis. They can activate or suppress the genes responsible for inflammation, adipogenesis, and energy balance, making them promising therapeutic targets for treating metabolic disorders. In this study, an attempt has been made to screen novel PPAR pan-agonists from the ZINC database targeting the three PPAR family of receptors (α, γ, β/δ), using molecular docking and molecular dynamics (MD) simulations. The top scoring five ligands with strong binding affinity against all the three PPAR isoforms were eprosartan, canagliflozin, pralatrexate, sacubitril, olaparib. The ADMET analysis was performed to assess the pharmacokinetic profile of the top 5 molecules. On the basis of ADMET analysis, the top ligand was subjected to MD simulations, and compared with lanifibranor (reference PPAR pan-agonist). Comparatively, the top-scoring ligand showed better protein-ligand complex (PLC) stability with all the PPARs (α, γ, β/δ). When experimentally tested in in vitro cell culture model of NAFLD, eprosartan showed dose dependent decrease in lipid accumulation and oxidative damage. These outcomes suggest potential PPAR pan-agonist molecules for further experimental validation and pharmacological development, towards treatment of PPAR-mediated metabolic disorders.
Collapse
Affiliation(s)
- Sumit Kumar Mandal
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 333 031, India
| | - Sonakshi Puri
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 333 031, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 333 031, India
| | - Mohammed Muzaffar-Ur-Rehman
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 333 031, India
| | - Pankaj Kumar Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 333 031, India
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 333 031, India
| | - P R Deepa
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 333 031, India.
| |
Collapse
|
30
|
Almohawes ZN, El-Kott A, Morsy K, Shati AA, El-Kenawy AE, Khalifa HS, Elsaid FG, Abd-Lateif AEKM, Abu-Zaiton A, Ebealy ER, Abdel-Daim MM, Ghanem RA, Abd-Ella EM. Salidroside inhibits insulin resistance and hepatic steatosis by downregulating miR-21 and subsequent activation of AMPK and upregulation of PPARα in the liver and muscles of high fat diet-fed rats. Arch Physiol Biochem 2024; 130:257-274. [PMID: 35061559 DOI: 10.1080/13813455.2021.2024578] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023]
Abstract
This study evaluated if salidroside (SAL) alleviates high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) by downregulating miR-21. Rats (n = 8/group) were treated for 12 weeks as normal diet (control/ND), ND + agmoir negative control (NC) (150 µg/kg), ND + SAL (300 mg/kg), HFD, HFD + SAL, HFD + compound C (an AMPK inhibitor) (200 ng/kg), HFD + SAL + NXT629 (a PPAR-α antagonist) (30 mg/kg), and HFD + SAL + miR-21 agomir (150 µg/kg). SAL improved glucose and insulin tolerance and preserved livers in HFD-fed rats. In ND and HFD-fed rats, SAL reduced levels of serum and hepatic lipids and the hepatic expression of SREBP1, SREBP2, fatty acid (FA) synthase, and HMGCOAR. It also activated hepatic Nrf2 and increased hepatic/muscular activity of AMPK and levels of PPARα. All effects afforded by SAL were prevented by CC, NXT629, and miR-21 agmoir. In conclusion, activation of AMPK and upregulation of PPARα mediate the anti-steatotic effect of SAL.
Collapse
Affiliation(s)
- Zakiah N Almohawes
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Attalla El-Kott
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Kareem Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, College of Science, Cairo University, Cairo, Egypt
| | - Ali A Shati
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ayman E El-Kenawy
- Pathology Department, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Heba S Khalifa
- Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Fahmy G Elsaid
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | | | - Eman R Ebealy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmaceutical Sciences Department, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Reham A Ghanem
- Oral Biology Department, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Eman M Abd-Ella
- Zoology Department, College of Science, Fayoum University, Fayoum, Egypt
- Biology Department, College of Science and Art, Al-Baha University, Al-Mandaq, Saudi Arabia
| |
Collapse
|
31
|
Xiao X, Liu H, Wan J, Yang P, Xu Z, Wang S, Guo Q, Chen S, Ye P, Wang S, Xia J. Single-cell sequencing reveals the impact of endothelial cell PIEZO1 expression on thoracic aortic aneurysm. J Mol Cell Cardiol 2024; 191:63-75. [PMID: 38718563 DOI: 10.1016/j.yjmcc.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Thoracic aortic aneurysm (TAA) is a severe vascular disease that threatens human life, characterized by focal dilatation of the entire aortic wall, with a diameter 1.5 times larger than normal. PIEZO1, a mechanosensitive cationic channel, monitors mechanical stimulations in the environment, transduces mechanical signals into electrical signals, and converts them into biological signals to activate intracellular signaling pathways. However, the role of PIEZO1 in TAA is still unclear. METHODS We analyzed a single-cell database to investigate the expression level of PIEZO1 in TAA. We constructed a conditional knockout mouse model of Piezo1 and used the PIEZO1 agonist Yoda1 to intervene in the TAA model mice established by co-administration of BAPN and ANG-II. Finally, we explored the effect of Yoda1 on TAA in vitro. RESULTS AND DISCUSSION We observed decreased PIEZO1 expression in TAA at both RNA and protein levels. Single-cell sequencing identified a specific reduction in Piezo1 expression in endothelial cells. Administration of PIEZO1 agonist Yoda1 prevented the formation of TAA. In PIEZO1 endothelial cell conditional knockout mice, Yoda1 inhibited TAA formation by interfering with PIEZO1. In vivo and in vitro experiments demonstrated that the effect of Yoda1 on endothelial cells involved macrophage infiltration, extracellular matrix degradation, and neovascularization. This study highlights the role of PIEZO1 in TAA and its potential as a therapeutic target, providing opportunities for clinical translation.
Collapse
Affiliation(s)
- Xiaoyue Xiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhao Wan
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiwen Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyue Xu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shilin Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Guo
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Ping Ye
- Department of Cardiovascular Medicine, Central Hospital of Wuhan, Wuhan, China.
| | - Sihua Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
32
|
Bradić I, Vujić N, Kuentzel KB, Habisch H, Pirchheim A, Akhmetshina A, Henderson JD, Madl T, Deshmukh AS, Kratky D. Lanifibranor Reduces Inflammation and Improves Dyslipidemia in Lysosomal Acid Lipase-Deficient Mice. GASTRO HEP ADVANCES 2024; 3:711-723. [PMID: 39280921 PMCID: PMC11401563 DOI: 10.1016/j.gastha.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/15/2024] [Indexed: 09/18/2024]
Abstract
Background and Aims Recent studies showed that patients suffering from lysosomal acid lipase deficiency (LAL-D) benefit from enzyme replacement therapy; however, liver histopathology improved in some but not all patients. We hypothesized that the pan-peroxisome proliferator-activated receptor agonist lanifibranor may have beneficial effects on liver inflammation in LAL knockout (Lal-/-) mice based on its promising results in alleviating liver inflammation in patients with metabolic dysfunction-associated steatohepatitis. Methods Female Lal-/- mice were daily gavaged with lanifibranor or vehicle for 21 days. The effects of the treatment were assessed by measuring body and organ weights, plasma lipids and lipoproteins, as well as hematological parameters, followed by liver proteomics and metabolomics. Results Lanifibranor treatment slightly altered organ weights without affecting the total body weight of Lal-/- mice. We observed major changes in the proteome, with multiple proteins related to lipid metabolism, peroxisomal, and mitochondrial activities being upregulated and inflammation-related proteins being downregulated in the livers of treated mice. Hepatic lipid levels and histology remained unaltered, whereas plasma triacylglycerol and total cholesterol levels were decreased and the lipoprotein profile of lanifibranor-treated Lal-/- mice improved. Conclusion Lanifibranor treatment positively affected liver inflammation and dyslipidemia in Lal-/- mice. These findings suggest the necessity of a further combined study of lanifibranor with enzyme replacement therapy in Lal-/- mice to improve the phenotype. Moreover, there is a compelling rationale for conducting clinical trials to assess the efficacy of lanifibranor as a potential treatment option for LAL-D in humans.
Collapse
Affiliation(s)
- Ivan Bradić
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Nemanja Vujić
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Katharina B Kuentzel
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Hansjörg Habisch
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Anita Pirchheim
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Alena Akhmetshina
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - John D Henderson
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Madl
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Dagmar Kratky
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
33
|
Wang C, Felli E, Selicean S, Nulan Y, Lozano JJ, Guixé-Muntet S, Bosch J, Berzigotti A, Gracia-Sancho J. Role of calcium integrin-binding protein 1 in the mechanobiology of the liver endothelium. J Cell Physiol 2024; 239:e31198. [PMID: 38451745 DOI: 10.1002/jcp.31198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 03/09/2024]
Abstract
Liver sinusoidal endothelial cells (LSECs) dysfunction is a key process in the development of chronic liver disease (CLD). Progressive scarring increases liver stiffness in a winch-like loop stimulating a dysfunctional liver cell phenotype. Cellular stretching is supported by biomechanically modulated molecular factors (BMMFs) that can translocate into the cytoplasm to support mechanotransduction through cytoskeleton remodeling and gene transcription. Currently, the molecular mechanisms of stiffness-induced LSECs dysfunction remain largely unclear. Here we propose calcium- and integrin-binding protein 1 (CIB1) as BMMF with crucial role in LSECs mechanobiology in CLD. CIB1 expression and translocation was characterized in healthy and cirrhotic human livers and in LSECs cultured on polyacrylamide gels with healthy and cirrhotic-like stiffnesses. Following the modulation of CIB1 with siRNA, the transcriptome was scrutinized to understand downstream effects of CIB1 downregulation. CIB1 expression is increased in LSECs in human cirrhosis. In vitro, CIB1 emerges as an endothelial BMMF. In human umbilical vein endothelial cells and LSECs, CIB1 expression and localization are modulated by stiffness-induced trafficking across the nuclear membrane. LSECs from cirrhotic liver tissue both in animal model and human disease exhibit an increased amount of CIB1 in cytoplasm. Knockdown of CIB1 in LSECs exposed to high stiffness improves LSECs phenotype by regulating the intracellular tension as well as the inflammatory response. Our results demonstrate that CIB1 is a key factor in sustaining cellular tension and stretching in response to high stiffness. CIB1 downregulation ameliorates LSECs dysfunction, enhancing their redifferentiation, and reducing the inflammatory response.
Collapse
Affiliation(s)
- Cong Wang
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Sonia Selicean
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yeliduosi Nulan
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Juan José Lozano
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
| | - Sergi Guixé-Muntet
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
| | - Jaume Bosch
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
| |
Collapse
|
34
|
Li X, Xu X, Tao S, Su Y, Wen L, Wang D, Liu J, Feng Q. Gut microbes combined with metabolomics reveal the protective effects of Qijia Rougan decoction against CCl 4-induced hepatic fibrosis. Front Pharmacol 2024; 15:1347120. [PMID: 38606180 PMCID: PMC11007057 DOI: 10.3389/fphar.2024.1347120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Background: The occurrence and development of Hepatic fibrosis (HF) are closely related to the gut microbial composition and alterations in host metabolism. Qijia Rougan decoction (QJ) is a traditional Chinese medicine compound utilized clinically for the treatment of HF with remarkable clinical efficacy. However, its effect on the gut microbiota and metabolite alterations is unknown. Therefore, our objective was to examine the impact of QJ on the gut microbiota and metabolism in Carbon tetrachloride (CCl4)-induced HF. Methods: 40% CCl4 was used to induce HF, followed by QJ administration for 6 weeks. Serum biochemical analyses, histopathology, immunohistochemistry, RT-PCR, 16S rRNA gene sequencing, and non-targeted metabolomics techniques were employed in this study to investigate the interventional effects of QJ on a CCl4-induced HF model in rats. Results: This study demonstrated that QJ could effectively ameliorate CCl4-induced hepatic inflammation and fibrosis. Moreover, QJ upregulated the expression of intestinal tight junction proteins (TJPs) and notably altered the abundance of some gut microbes, for example, 10 genera closely associated with HF-related indicators and TJPs. In addition, metabolomics found 37 key metabolites responded to QJ treatment and strongly associated with HF-related indices and TJPs. Furthermore, a tight relation between 10 genera and 37 metabolites was found post correlation analysis. Among them, Turicibacter, Faecalibaculum, Prevotellaceae UCG 001, and unclassified Peptococcaceae may serve as the core gut microbes of QJ that inhibit HF. Conclusion: These results suggest that QJ ameliorates hepatic inflammation and fibrosis, which may be achieved by improving intestinal tight junctions and modulating gut microbiota composition as well as modulating host metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Dong Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jibin Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quansheng Feng
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
35
|
Ji K, Zhang M, Du L, Wang J, Liu Y, Xu C, He N, Wang Q, Gu Y, Song H, Wang Y, Liu Q. Exploring the Role of Inulin in Targeting the Gut Microbiota: An Innovative Strategy for Alleviating Colonic Fibrosis Induced By Irradiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5710-5724. [PMID: 38457473 PMCID: PMC10958509 DOI: 10.1021/acs.jafc.3c03432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
The use of radiation therapy to treat pelvic and abdominal cancers can lead to the development of either acute or chronic radiation enteropathy. Radiation-induced chronic colonic fibrosis is a common gastrointestinal disorder resulting from the above radiation therapy. In this study, we establish the efficacy of inulin supplements in safeguarding against colonic fibrosis caused by irradiation therapy. Studies have demonstrated that inulin supplements enhance the proliferation of bacteria responsible to produce short-chain fatty acids (SCFAs) and elevate the levels of SCFAs in feces. In a mouse model of chronic radiation enteropathy, the transplantation of gut microbiota and its metabolites from feces of inulin-treated mice were found to reduce colonic fibrosis in validation experiments. Administering inulin-derived metabolites from gut microbiota led to a notable decrease in the expression of genes linked to fibrosis and collagen production in mouse embryonic fibroblast cell line NIH/3T3. In the cell line, inulin-derived metabolites also suppressed the expression of genes linked to the extracellular matrix synthesis pathway. The results indicate a novel and practical approach to safeguarding against chronic radiation-induced colonic fibrosis.
Collapse
Affiliation(s)
| | | | - Liqing Du
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Jinhan Wang
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Yang Liu
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Chang Xu
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Ningning He
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Qin Wang
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Yeqing Gu
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Huijuan Song
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Yan Wang
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Qiang Liu
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| |
Collapse
|
36
|
Petrenko O, Königshofer P, Brusilovskaya K, Hofer BS, Bareiner K, Simbrunner B, Jühling F, Baumert TF, Lupberger J, Trauner M, Kauschke SG, Pfisterer L, Simon E, Rendeiro AF, de Rooij LP, Schwabl P, Reiberger T. Transcriptomic signatures of progressive and regressive liver fibrosis and portal hypertension. iScience 2024; 27:109301. [PMID: 38469563 PMCID: PMC10926212 DOI: 10.1016/j.isci.2024.109301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/10/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Persistent liver injury triggers a fibrogenic program that causes pathologic remodeling of the hepatic microenvironment (i.e., liver fibrosis) and portal hypertension. The dynamics of gene regulation during liver disease progression and early regression remain understudied. Here, we generated hepatic transcriptome profiles in two well-established liver disease models at peak fibrosis and during spontaneous regression after the removal of the inducing agents. We linked the dynamics of key disease readouts, such as portal pressure, collagen area, and transaminase levels, to differentially expressed genes, enabling the identification of transcriptomic signatures of progressive vs. regressive liver fibrosis and portal hypertension. These candidate biomarkers (e.g., Tcf4, Mmp7, Trem2, Spp1, Scube1, Islr) were validated in RNA sequencing datasets of patients with cirrhosis and portal hypertension, and those cured from hepatitis C infection. Finally, deconvolution identified major cell types and suggested an association of macrophage and portal hepatocyte signatures with portal hypertension and fibrosis area.
Collapse
Affiliation(s)
- Oleksandr Petrenko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Philipp Königshofer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Ksenia Brusilovskaya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Benedikt S. Hofer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Katharina Bareiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Frank Jühling
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg 67000, France
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg 67000, France
- Service d’hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Joachim Lupberger
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg 67000, France
- Service d’hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Stefan G. Kauschke
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG, 88397 Biberach an der Riss, Germany
| | - Larissa Pfisterer
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG, 88397 Biberach an der Riss, Germany
| | - Eric Simon
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, 88397 Biberach an der Riss, Germany
| | - André F. Rendeiro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Laura P.M.H. de Rooij
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| |
Collapse
|
37
|
Yan M, Yao J, Xie Y, Jiang P, Yan J, Li X. Bioreactor-based stem cell therapy for liver fibrosis. Biofabrication 2024; 16:025028. [PMID: 38442726 DOI: 10.1088/1758-5090/ad304d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
Stem cell therapy, achieved using mesenchymal stem cells (MSCs), has been highlighted for the treatment of liver fibrosis. Infusion into the circulatory system is a traditional application of MSCs; however, this approach is limited by phenotypic drift, stem cell senescence, and vascular embolism. Maintaining the therapeutic phenotype of MSCs while avoiding adverse infusion-related reactions is the key to developing next-generation stem cell therapy technologies. Here, we propose a bioreactor-based MSCs therapy to avoid cell infusion. In this scheme, 5% liver fibrosis serum was used to induce the therapeutic phenotype of MSCs, and a fluid bioreactor carrying a co-culture system of hepatocytes and MSCs was constructed to produce the therapeutic medium. In a rat model of liver fibrosis, the therapeutic medium derived from the bioreactor significantly alleviated liver fibrosis. Therapeutic mechanisms include immune regulation, inhibition of hepatic stellate cell activation, establishment of hepatocyte homeostasis, and recovery of liver stem cell subsets. Overall, the bioreactor-based stem cell therapy (scheme) described here represents a promising new strategy for the treatment of liver fibrosis and will be beneficial for the development of 'cell-free' stem cell therapy.
Collapse
Affiliation(s)
- Mengchao Yan
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
- The Medical School, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jia Yao
- The Medical School, Lanzhou University, Lanzhou 730000, People's Republic of China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, People's Republic of China
| | - Ye Xie
- The Medical School, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Pan Jiang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Jun Yan
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
- The Medical School, Lanzhou University, Lanzhou 730000, People's Republic of China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, People's Republic of China
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
- The Medical School, Lanzhou University, Lanzhou 730000, People's Republic of China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, People's Republic of China
| |
Collapse
|
38
|
Kim H, Lee SK, Hong S, Park TS, Kim J, Kim S, Kim TM. Pan PPAR agonist stimulation of induced MSCs produces extracellular vesicles with enhanced renoprotective effect for acute kidney injury. Stem Cell Res Ther 2024; 15:9. [PMID: 38167146 PMCID: PMC10763307 DOI: 10.1186/s13287-023-03577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) has a complex pathophysiology and imposes serious health concerns worldwide. Extracellular vesicles (EVs) derived from induced mesenchymal stem cells (iMSCs) have been recognized as novel cell-free therapeutics for various inflammatory and degenerative disorders. In this study, we investigated whether iMSCs stimulated with a pan-peroxisome proliferator-activated receptor (PPAR) agonist could enhance the therapeutic efficacy of EVs against AKI. METHODS Human iMSCs were primed with or without lanifibranor, a PPAR agonist for 24 h, and EVs were collected after an additional 24 h. The basic characteristics of EVs were evaluated using cryo-transmission electron microscopy imaging, immunoblot detection of EV markers, nanoparticle tracking analysis, and localization in AKI kidneys. In vitro, the potential of the EVs to promote the growth and survival of HK-2 cells undergoing cisplatin-induced apoptosis and anti-inflammatory effects in M1-polarized THP-1 was compared. Subsequently, AKI was induced in BALB/c mice using cisplatin. After 8 and 24 h of cisplatin treatment, iMSC-EVs or pan-PPAR-iMSC-EVs were injected intravascularly. At 96 h after cisplatin administration, the renoprotective effects of iMSC-EVs or pan-PPAR-iMSC-EVs in inhibiting inflammation and apoptosis were compared using serum biochemistry, histology, immunohistochemistry, and gene expression analysis by qPCR. RESULTS Both EV types expressed EV markers and had typical EV morphology, and their localization in the renal tissue was confirmed. The proliferation and survival of HK-2 cells were higher in pan-PPAR-iMSC-EVs than those in iMSC-EVs. In M1-polarized THP-1 cells, the reduction in the mRNA expression of inflammatory cytokines was more significant in pan-PPAR-iMSC-EVs than that in iMSC-EVs. In the mouse model of cisplatin-induced AKI, pan-PPAR-iMSC-EVs markedly enhanced renoprotective effects compared to iMSC-EVs. Specifically, pan-PPAR-iMSC-EVs reduced tissue inflammation, immune cell infiltration, and apoptosis. Pan-PPAR-iMSC-EVs also increased renal capillary density. CONCLUSION Priming iMSCs with a PPAR agonist significantly improved the therapeutic potential of EVs by reducing inflammation and apoptosis. The reported strategy may contribute to the development of a novel cell-free option for AKI treatment. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Hongduk Kim
- Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, 25354, South Korea
| | - Seul Ki Lee
- Brexogen Research Center, Brexogen Inc., Songpa-gu, Seoul, 05855, South Korea
| | - Sungok Hong
- Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, 25354, South Korea
| | - Tae Sub Park
- Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, 25354, South Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang Daero 1447, Pyeongchang, Gangwon-do, 25354, South Korea
| | - Jimin Kim
- Brexogen Research Center, Brexogen Inc., Songpa-gu, Seoul, 05855, South Korea
| | - Soo Kim
- Brexogen Research Center, Brexogen Inc., Songpa-gu, Seoul, 05855, South Korea
| | - Tae Min Kim
- Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, 25354, South Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang Daero 1447, Pyeongchang, Gangwon-do, 25354, South Korea.
| |
Collapse
|
39
|
Caon E, Forlano R, Mullish BH, Manousou P, Rombouts K. Liver sinusoidal cells in the diagnosis and treatment of liver diseases: Role of hepatic stellate cells. SINUSOIDAL CELLS IN LIVER DISEASES 2024:513-532. [DOI: 10.1016/b978-0-323-95262-0.00025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Puengel T, Tacke F. Role of Kupffer cells and other immune cells. SINUSOIDAL CELLS IN LIVER DISEASES 2024:483-511. [DOI: 10.1016/b978-0-323-95262-0.00024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
41
|
Fernández-Iglesias A, Gracia-Sancho J. Role of liver sinusoidal endothelial cells in the diagnosis and treatment of liver diseases. SINUSOIDAL CELLS IN LIVER DISEASES 2024:467-481. [DOI: 10.1016/b978-0-323-95262-0.00023-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
42
|
Shakour N, Karami S, Iranshahi M, Butler AE, Sahebkar A. Antifibrotic effects of sodium-glucose cotransporter-2 inhibitors: A comprehensive review. Diabetes Metab Syndr 2024; 18:102934. [PMID: 38154403 DOI: 10.1016/j.dsx.2023.102934] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND AND AIMS Scar tissue accumulation in organs is the underlying cause of many fibrotic diseases. Due to the extensive array of organs affected, the long-term nature of fibrotic processes and the large number of people who suffer from the negative impact of these diseases, they constitute a serious health problem for modern medicine and a huge economic burden on society. Sodium-glucose cotransporter-2 inhibitors (SGLT2is) are a relatively new class of anti-diabetic pharmaceuticals that offer additional benefits over and above their glucose-lowering properties; these medications modulate a variety of diseases, including fibrosis. Herein, we have collated and analyzed all available research on SGLT2is and their effects on organ fibrosis, together with providing a proposed explanation as to the underlying mechanisms. METHODS PubMed, ScienceDirect, Google Scholar and Scopus were searched spanning the period from 2012 until April 2023 to find relevant articles describing the antifibrotic effects of SGLT2is. RESULTS The majority of reports have shown that SGLT2is are protective against lung, liver, heart and kidney fibrosis as well as arterial stiffness. According to the results of clinical trials and animal studies, many SGLT2 inhibitors are promising candidates for the treatment of fibrosis. Recent studies have demonstrated that SGLT2is affect an array of cellular processes, including hypoxia, inflammation, oxidative stress, the renin-angiotensin system and metabolic activities, all of which have been linked to fibrosis. CONCLUSION Extensive evidence indicates that SGLT2is are promising treatments for fibrosis, demonstrating protective effects in various organs and influencing key cellular processes linked to fibrosis.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Karami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
43
|
Kwanten W(WJ, Francque SM. The liver sinusoid in chronic liver disease: NAFLD and NASH. SINUSOIDAL CELLS IN LIVER DISEASES 2024:263-284. [DOI: 10.1016/b978-0-323-95262-0.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Fan HN, Zhao ZM, Huang K, Wang XN, Dai YK, Liu CH. Serum metabolomics characteristics and fatty-acid-related mechanism of cirrhosis with histological response in chronic hepatitis B. Front Pharmacol 2023; 14:1329266. [PMID: 38178856 PMCID: PMC10764421 DOI: 10.3389/fphar.2023.1329266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Background and aims: The serum metabolites changes in patients with hepatitis B virus (HBV)-related cirrhosis as progression. Peroxisome proliferator-activated receptor gamma (PPARγ) is closely related to lipid metabolism in cirrhotic liver. However, the relationship between fatty acids and the expression of hepatic PPARγ during cirrhosis regression remains unknown. In this study, we explored the serum metabolic characteristics and expression of PPARγ in patients with histological response to treatment with entecavir. Methods: Sixty patients with HBV-related cirrhosis were selected as the training cohort with thirty patients each in the regression (R) group and non-regression (NR) group based on their pathological changes after 48-week treatment with entecavir. Another 72 patients with HBV-related cirrhosis and treated with entecavir were collected as the validation cohort. All of the serum samples were tested using ultra-performance liquid chromatography coupled to tandem mass spectrometry. Data were processed through principal component analysis and orthogonal partial least square discriminant analysis. Hepatic PPARγ expression was observed using immunohistochemistry. The relationship between serum fatty acids and PPARγ was calculated using Pearson's or Spearman's correlation analysis. Results: A total of 189 metabolites were identified and 13 differential metabolites were screened. Compared to the non-regression group, the serum level of fatty acids was higher in the R group. At baseline, the expression of PPARγ in hepatic stellate cells was positively correlated with adrenic acid (r 2 = 0.451, p = 0.046). The expression of PPARγ in both groups increased after treatment, and the expression of PPARγ in the R group was restored in HSCs much more than that in the NR group (p = 0.042). The adrenic acid and arachidonic acid (AA) in the R group also upgraded more than the NR group after treatment (p = 0.037 and 0.014). Conclusion: Baseline serum differential metabolites, especially fatty acids, were identified in patients with HBV-related cirrhosis patients who achieved cirrhosis regression. Upregulation of adrenic acid and arachidonic acid in serum and re-expression of PPARγ in HSCs may play a crucial role in liver fibrosis improvement.
Collapse
Affiliation(s)
- Hai-Na Fan
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Min Zhao
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital, Shanghai, China
| | - Kai Huang
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital, Shanghai, China
| | - Xiao-Ning Wang
- Institute of Interdisciplinary Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-Kai Dai
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng-Hai Liu
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital, Shanghai, China
| |
Collapse
|
45
|
Mohammed OS, Attia HG, Mohamed BMSA, Elbaset MA, Fayed HM. Current investigations for liver fibrosis treatment: between repurposing the FDA-approved drugs and the other emerging approaches. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2023; 26:11808. [PMID: 38022905 PMCID: PMC10662312 DOI: 10.3389/jpps.2023.11808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Long-term liver injuries lead to hepatic fibrosis, often progressing into cirrhosis, liver failure, portal hypertension, and hepatocellular carcinoma. There is currently no effective therapy available for liver fibrosis. Thus, continuous investigations for anti-fibrotic therapy are ongoing. The main theme of anti-fibrotic investigation during recent years is the rationale-based selection of treatment molecules according to the current understanding of the pathology of the disease. The research efforts are mainly toward repurposing current FDA-approved drugs targeting etiological molecular factors involved in developing liver fibrosis. In parallel, investigations also focus on experimental small molecules with evidence to hinder or reverse the fibrosis. Natural compounds, immunological, and genetic approaches have shown significant encouraging effects. This review summarizes the efficacy and safety of current under-investigation antifibrosis medications targeting various molecular targets, as well as the properties of antifibrosis medications, mainly in phase II and III clinical trials.
Collapse
Affiliation(s)
- Omima S. Mohammed
- Department of Microbiology, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Hany G. Attia
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Bassim M. S. A. Mohamed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Marawan A. Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Hany M. Fayed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
46
|
Staels B, Butruille L, Francque S. Treating NASH by targeting peroxisome proliferator-activated receptors. J Hepatol 2023; 79:1302-1316. [PMID: 37459921 DOI: 10.1016/j.jhep.2023.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 07/02/2023] [Indexed: 09/15/2023]
Abstract
The pathophysiology of non-alcoholic steatohepatitis (NASH) encompasses a complex set of intra- and extrahepatic driving mechanisms, involving numerous metabolic, inflammatory, vascular and fibrogenic pathways. The peroxisome proliferator-activated receptors (PPARs) α, β/δ and γ belong to the nuclear receptor family of ligand-activated transcription factors. Activated PPARs modulate target tissue transcriptomic profiles, enabling the body's adaptation to changing nutritional, metabolic and inflammatory environments. PPARs hence regulate several pathways involved in NASH pathogenesis. Whereas single PPAR agonists exert robust anti-NASH activity in several preclinical models, their clinical effects on histological endpoints of NASH resolution and fibrosis regression appear more modest. Simultaneous activation of several PPAR isotypes across different organs and within-organ cell types, resulting in pleiotropic actions, enhances the therapeutic potential of PPAR agonists as pharmacological agents for NASH and NASH-related hepatic and extrahepatic morbidity, with some compounds having already shown clinical efficacy on histological endpoints.
Collapse
Affiliation(s)
- Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| | - Laura Butruille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sven Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, B-2650, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| |
Collapse
|
47
|
Abstract
Chronic liver diseases such as nonalcoholic fatty liver disease (NAFLD) or viral hepatitis are characterized by persistent inflammation and subsequent liver fibrosis. Liver fibrosis critically determines long-term morbidity (for example, cirrhosis or liver cancer) and mortality in NAFLD and nonalcoholic steatohepatitis (NASH). Inflammation represents the concerted response of various hepatic cell types to hepatocellular death and inflammatory signals, which are related to intrahepatic injury pathways or extrahepatic mediators from the gut-liver axis and the circulation. Single-cell technologies have revealed the heterogeneity of immune cell activation concerning disease states and the spatial organization within the liver, including resident and recruited macrophages, neutrophils as mediators of tissue repair, auto-aggressive features of T cells as well as various innate lymphoid cell and unconventional T cell populations. Inflammatory responses drive the activation of hepatic stellate cells (HSCs), and HSC subsets, in turn, modulate immune mechanisms via chemokines and cytokines or transdifferentiate into matrix-producing myofibroblasts. Current advances in understanding the pathogenesis of inflammation and fibrosis in the liver, mainly focused on NAFLD or NASH owing to the high unmet medical need, have led to the identification of several therapeutic targets. In this Review, we summarize the inflammatory mediators and cells in the diseased liver, fibrogenic pathways and their therapeutic implications.
Collapse
Affiliation(s)
- Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
48
|
Bala S, Zhuang Y, Nagesh PT, Catalano D, Zivny A, Wang Y, Xie J, Gao G, Szabo G. Therapeutic inhibition of miR-155 attenuates liver fibrosis via STAT3 signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:413-427. [PMID: 37547286 PMCID: PMC10403732 DOI: 10.1016/j.omtn.2023.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Most chronic liver diseases progress to liver fibrosis, which, when left untreated, can lead to cirrhosis and hepatocellular carcinoma. MicroRNA (miRNA)-targeted therapeutics have become attractive approaches to treat diseases. In this study, we investigated the therapeutic effect of miR-155 inhibition in the bile duct ligation (BDL) mouse model of liver fibrosis and evaluated the role of miR-155 in chronic liver fibrosis using miR-155-deficient (miR-155 knockout [KO]) mice. We found increased hepatic miR-155 expression in patients with cirrhosis and in the BDL- and CCl4-induced mouse models of liver fibrosis. Liver fibrosis was significantly reduced in miR-155 KO mice after CCl4 administration or BDL. To assess the therapeutic potential of miR-155 inhibition, we administered an rAAV8-anti-miR-155 tough decoy in vivo that significantly reduced liver damage and fibrosis in BDL. BDL-induced protein levels of transforming growth factor β (TGF-β), p-SMAD2/3, and p-STAT3 were attenuated in anti-miR-155-treated compared with control mice. Hepatic stellate cells from miR-155 KO mice showed attenuation in activation and mesenchymal marker expression. In vitro, miR-155 gain- and loss-of-function studies revealed that miR-155 regulates activation of stellate cells partly via STAT3 signaling. Our study suggests that miR-155 is the key regulator of liver fibrosis and might be a potential therapeutic target to attenuate fibrosis progression.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Yuan Zhuang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Adam Zivny
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Yanbo Wang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
49
|
Qi J, Li L, Yan X, Hua W, Zhou Z. Sappanone A Alleviates the Severity of Carbon Tetrachloride-Induced Liver Fibrosis in Mice. Antioxidants (Basel) 2023; 12:1718. [PMID: 37760020 PMCID: PMC10526100 DOI: 10.3390/antiox12091718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Liver fibrosis is a major challenge to global health because of its various complications, including cirrhosis and hepatocarcinoma, while no effective treatment is available for it. Sappanone A (SA) is a homoisoflavonoid extracted from the heartwood of Caesalpinia sappan Linn. with anti-inflammatory and antioxidant properties. However, the effects of SA on hepatic fibrosis remain unknown. This study aimed to investigate the protective effects of SA on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. To establish a liver fibrosis model, mice were treated intraperitoneally (i.p.) with CCl4 for 4 weeks. SA (25, 50, and 100 mg/kg body weight) was i.p. injected every other day during the same period. Our data indicated that SA decreased liver injury, fibrotic responses, and inflammation due to CCl4 exposure. Consistently, SA reduced oxidative stress and its-mediated hepatocyte death in fibrotic livers. Of note, SA could not directly affect the activation of hepatic stellate cells. Mechanistically, SA treatment lessened oxidative stress-triggered cell death in hepatocytes after CCl4 exposure. SA down-regulated the expression of M1 macrophage polarization markers (CD86 and iNOS) and up-regulated the expression of M2 macrophage polarization markers (CD163, IL-10, and Arg1) in livers and macrophages. Meanwhile, SA induced the activation of peroxisome proliferator-activated receptor gamma (PPARγ). However, decreased inflammatory responses and the trend of M2 macrophage polarization provided by SA were substantially abolished by SR202 (a PPARγ inhibitor) treatment in macrophages. Additionally, SA treatment promoted fibrosis regression. Taken together, our findings revealed that treatment with SA alleviated CCl4-induced fibrotic liver in mice through suppression of oxidative stress-mediated hepatocyte death and promotion of M2 macrophage polarization via PPARγ. Thus, SA might pave the way for a new hepatoprotective agent to treat liver fibrosis.
Collapse
Affiliation(s)
- Jing Qi
- Department of Biochemistry and Molecular Biology, The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, University Town, Fuzhou 350122, China;
| | - Lanqian Li
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (L.L.); (W.H.)
| | - Xueqing Yan
- Department of Biochemistry and Molecular Biology, The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, University Town, Fuzhou 350122, China;
| | - Wenxi Hua
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (L.L.); (W.H.)
- Diagnostic Pathology Center, Fujian Medical University, Fuzhou 350122, China
| | - Zixiong Zhou
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (L.L.); (W.H.)
- Diagnostic Pathology Center, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
50
|
Fligor SC, Tsikis ST, Hirsch TI, Pan A, Moskowitzova K, Rincon-Cruz L, Whitlock AE, Mitchell PD, Nedder AP, Gura KM, Fraser DA, Puder M. A Medium-Chain Fatty Acid Analogue Prevents Intestinal Failure-Associated Liver Disease in Preterm Yorkshire Piglets. Gastroenterology 2023; 165:733-745.e9. [PMID: 37263310 PMCID: PMC10527514 DOI: 10.1053/j.gastro.2023.05.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND & AIMS At least 20%-30% of patients with intestinal failure receiving long-term parenteral nutrition will develop intestinal failure-associated liver disease (IFALD), for which there are few therapeutic options. SEFA-6179 is a first-in-class structurally engineered medium-chain fatty acid analogue that acts through GPR84, PPARα, and PPARγ agonism. We hypothesized that SEFA-6179 would prevent biochemical and histologic liver injury in a preterm piglet model of IFALD. METHODS Preterm Yorkshire piglets were delivered by cesarean section, and parenteral nutrition was provided for 14 days via implanted central venous catheters. Animals were treated with either medium-chain triglyceride vehicle control or SEFA-6179. RESULTS Compared to medium-chain triglyceride vehicle at day of life 15, SEFA-6179 prevented biochemical cholestasis (direct bilirubin: 1.9 vs <0.2 mg/dL, P = .01; total bilirubin: 2.7 vs 0.4 mg/dL, P = .02; gamma glutamyl transferase: 172 vs 30 U/L, P = .01). SEFA-6179 also prevented steatosis (45.6 vs 13.9 mg triglycerides/g liver tissue, P = .009), reduced bile duct proliferation (1.6% vs 0.5% area cytokeratin 7 positive, P = .009), and reduced fibrosis assessed by a masked pathologist (median Ishak score: 3 vs 1, P = 0.007). RNA sequencing of liver tissue demonstrated that SEFA-6179 broadly impacted inflammatory, metabolic, and fibrotic pathways, consistent with its in vitro receptor activity (GPR84/PPARα/PPARγ agonist). CONCLUSIONS In a preterm piglet model of IFALD, SEFA-6179 treatment prevented biochemical cholestasis and steatosis and reduced bile duct proliferation and fibrosis. SEFA-6179 is a promising first-in-class therapy for the prevention and treatment of IFALD that will be investigated in an upcoming phase II clinical trial.
Collapse
Affiliation(s)
- Scott C Fligor
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Savas T Tsikis
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Thomas I Hirsch
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Amy Pan
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts
| | - Kamila Moskowitzova
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Lorena Rincon-Cruz
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Ashlyn E Whitlock
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Paul D Mitchell
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, Massachusetts
| | - Arthur P Nedder
- Animal Resources Children's Hospital, Boston Children's Hospital, Boston, Massachusetts
| | - Kathleen M Gura
- Harvard Medical School, Boston, Massachusetts; Department of Pharmacy and the Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Massachusetts
| | | | - Mark Puder
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|