1
|
Balaji SK, Balasundarasekar B, Khuwaja WM, Dolan KM, Dong X. Antimicrobial Peptide Signaling in Skin Diseases. JID INNOVATIONS 2025; 5:100354. [PMID: 40104692 PMCID: PMC11914806 DOI: 10.1016/j.xjidi.2025.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 03/20/2025] Open
Abstract
Antimicrobial peptides (AMPs) are important innate immune molecules at microbe-host interfaces. The biophysical properties of AMPs that facilitate direct killing of microbes have been extensively reviewed. In this article, we focus on how AMPs perform immunomodulatory functions through interaction with host receptors on epithelial, immune, and neuronal cell types. We summarize the current knowledge of known AMPs in the skin, the receptors that respond to AMPs, and the downstream intracellular signaling pathways. In the end, we discuss the roles of AMP signaling systems in skin diseases.
Collapse
Affiliation(s)
- Sharan Kumar Balaji
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | | | - Waris Muhammad Khuwaja
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Keean Michael Dolan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Xintong Dong
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
2
|
Huang C, Li W, Shen C, Jiang B, Zhang K, Li X, Zhong W, Li Z, Chen Z, Chen C, Jian X, Liu X, Huang H, Yang L, Yu B. YAP1 facilitates the pathogenesis of psoriasis via modulating keratinocyte proliferation and inflammation. Cell Death Dis 2025; 16:186. [PMID: 40108109 PMCID: PMC11923178 DOI: 10.1038/s41419-025-07521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Psoriasis is an autoinflammatory skin disease characterized by the abnormal activation of epidermal keratinocytes. The Hippo-YAP pathway is an evolutionarily conserved pathway that plays important roles in organ size control and tumorigenesis. Recently, accumulating evidence demonstrated that YAP1, the core downstream component of Hippo-YAP pathway, was up-regulated in psoriasis patients, suggesting its possible role in psoriasis development. However, its precise function and mechanism in psoriasis pathogenesis are still not well-clarified. In the present study, we confirmed the up-regulation of YAP1 in psoriasis keratinocytes by measuring its expression in psoriatic patient skins, psoriatic-like cellular model, and IMQ-induced mouse model. Further functional studies showed that YAP1 promoted keratinocyte proliferation and inflammation in vitro. Meanwhile, VP, a selective YAP1 antagonist, inhibited keratinocyte proliferation and inflammatory factor production in a dose-dependent way. Moreover, intradermal injection of si-Yap1 or VP hindered psoriasis development by impeding epidermal hyperplasia and relieving systemic inflammatory response in the IMQ-induced mouse model. Therefore, our findings suggest that YAP1 plays a crucial role in psoriasis pathogenesis through modulating keratinocyte activation and may serve as a novel target for the treatment of psoriasis.
Collapse
Affiliation(s)
- Cong Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
| | - Wenting Li
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- The Digestive and Reproductive System Cancers Precise Prevention Engineering Research Center of Jiangsu Province, Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai' an, Jiangsu, China
| | - Changbing Shen
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Bin Jiang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Kaoyuan Zhang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiahong Li
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Weilong Zhong
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Zizhuo Li
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Zhenzhen Chen
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Chaofeng Chen
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xingling Jian
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiaoming Liu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Haiyan Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Lili Yang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Bo Yu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
| |
Collapse
|
3
|
Saavedra-Almarza J, Malgue F, García-Gómez M, Gouët S, Edwards N, Palma V, Rosemblatt M, Sauma D. Unveiling the role of resident memory T cells in psoriasis. J Leukoc Biol 2025; 117:qiae254. [PMID: 39689031 DOI: 10.1093/jleuko/qiae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by periods of remission and relapse. In this pathology, keratinocytes, dendritic cells, and different subpopulations of T cells are critical to developing psoriatic lesions. Although current treatments can reduce symptoms, they reappear in previously injured areas months after stopping treatment. Evidence has pointed out that besides T-helper 17 cells, other T-cell subsets may be involved in relapses. This review focuses on the leading evidence linking resident memory T cells and P2X7 receptor to psoriasis' pathogenesis and their role in this pathology. Finally, we discuss some of the most widely used experimental murine models and novel strategies to investigate further the role of resident memory T cells in psoriasis.
Collapse
Affiliation(s)
- Juan Saavedra-Almarza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Felipe Malgue
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Moira García-Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Solange Gouët
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Natalie Edwards
- Laboratory of Stem Cells and Developmental Biology, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Mario Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Centro Ciencia & Vida, Av. del Valle Norte 725, Huechuraba, Santiago, Chile
- Faculty of Medicine and Science, Universidad San Sebastián, Lota 2465, Providencia, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Centro Ciencia & Vida, Av. del Valle Norte 725, Huechuraba, Santiago, Chile
| |
Collapse
|
4
|
Zhang P, Wang J, Miao J, Zhu P. The dual role of tissue regulatory T cells in tissue repair: return to homeostasis or fibrosis. Front Immunol 2025; 16:1560578. [PMID: 40114929 PMCID: PMC11922884 DOI: 10.3389/fimmu.2025.1560578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Tissue resident regulatory T cells (tissue Tregs) are vital for maintaining immune homeostasis and controlling inflammation. They aid in repairing damaged tissues and influencing the progression of fibrosis. However, despite extensive research on how tissue Tregs interact with immune and non-immune cells during tissue repair, their pro- and anti-fibrotic effects in chronic tissue injury remain unclear. Understanding how tissue Tregs interact with various cell types, as well as their roles in chronic injury and fibrosis, is crucial for uncovering the mechanisms behind these conditions. In this review, we describe the roles of tissue Tregs in repair and fibrosis across different tissues and explore potential strategies for regulating tissue homeostasis. These insights hold promise for providing new perspectives and approaches for the treatment of irreversible fibrotic diseases.
Collapse
Affiliation(s)
| | | | - Jinlin Miao
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ping Zhu
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
5
|
Tang S, Hu H, Liu X, Liao Y, Zhang K, Wang Z, Zhou F, Shi X, Chen X. Osteopontin promotes keratinocyte proliferation by G0/G1 cell cycle arrest in psoriasis. Arch Dermatol Res 2025; 317:519. [PMID: 40035859 DOI: 10.1007/s00403-025-04008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
Psoriasis is a chronic inflammatory dermatological disorder that is featured by the abnormal activation of epidermal keratinocytes. Osteopontin (OPN) is a multifunctional phosphoprotein upregulated in psoriasis. OPN levels in the skin of psoriasis patients and healthy subjects were assessed by immunohistochemistry. To evaluate the potential role of OPN in keratinocyte proliferation, the knockdown model of OPN was constructed using OPN siRNA. The proliferative activity of HaCaT cells was assessed via the CCK-8 and EdU cell proliferation assays. The cell cycle and apoptosis were analyzed using flow cytometry. Western blot assay was conducted in order to investigate the expression levels of cyclins, CDKs, and apoptosis-associated proteins. OPN expression was increased in the epidermis of psoriasis lesions and OPN knockdown inhibited the proliferation of keratinocytes. OPN affected keratinocyte proliferation by G0/G1 cell cycle arrest and promoted their apoptosis, which involved the regulation of cyclins (Cyclin D1 and Cyclin A2), cyclin-dependent kinases (CDK2 and CDK4), and apoptosis proteins (Bim, Bcl-2, and Caspase-3) in keratinocytes. OPN expression was significantly higher in keratinocytes of psoriasis lesions. OPN knockdown inhibited the keratinocyte proliferation, arrested the G0/G1 cell cycle, and promoted apoptosis. This suggests that OPN may provide a new mechanism for the proliferation of keratinocytes in psoriasis.
Collapse
Affiliation(s)
- Siyi Tang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Hao Hu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xiaojuan Liu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yan Liao
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Kaoyuan Zhang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Zhifu Wang
- Yunnan Lucheng Judicial Appraisal Center, Chuxiong Xizhi Testing Technology Company Limited, Chuxiong, 675000, Yunnan, China
| | - Fenli Zhou
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xin Shi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xiaofan Chen
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.
| |
Collapse
|
6
|
Zhu S, Cheng L, Chen T, Liu X, Zhang C, Aji A, Guo W, Zhu J, Chu Y, Guo D, Li F. Bergapten Ameliorates Psoriatic Skin Lesions and IL-17A-Induced Activation of the NF-κB Signaling Pathway via the Downregulation of CYP1B1. Phytother Res 2025; 39:661-675. [PMID: 39638770 DOI: 10.1002/ptr.8399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024]
Abstract
Bergapten (BP) is a plant-derived furocoumarin that has a wide range of pharmacological effects. BP serves as a candidate amplifier in phototherapy against skin inflammation, such as psoriasis and atopic dermatitis. However, the anti-inflammatory role of BP remains elusive. We utilized IL-17A-stimulated keratinocyte line and imiquimod-challenged BALB/c mice to imitate psoriasis-like inflammation. Inflammatory phenotypes were determined by expressions of inflammatory genes and cytokines, histopathological changes and activities of nuclear factor-κB (NF-κB) pathway. An RNA-seq analysis of rodent skin was performed to explore possible mechanism lying behind. SiRNAs and antagonist (TMS) against cytochrome P450 family 1 subfamily B member 1 (CYP1B1) were subsequently used to determine the role of CYP1B1 in psoriasis pathogenesis in vitro and in vivo. Overexpression of CYP1B1 with lentivirus further validate therapeutic effect of BP. BP significantly suppressed activation of the NF-κB pathway by inhibiting p65 phosphorylation and improved the inflammatory phenotype both in vitro and in vivo. We revealed the key role of CYP1B1 in regulating the activation of the NF-κB signaling pathway. Knock-down with siRNAs significantly reduce the expression of inflammatory genes and cytokines. An intraperitoneal injection of TMS partially remediated IMQ-induced inflammation, mainly in terms of skin thickness. Overexpression of Cyp1b1 led to increased expression of the CYP1B1 protein and rescued the therapeutic effect of BP in vitro. This study revealed that BP suppressed expression of Cyp1b1 in keratinocytes and inhibited the activation of NF-κB signaling pathway by blocking the phosphorylation of p65.
Collapse
Affiliation(s)
- Shengjie Zhu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linyan Cheng
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Teng Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Abudula Aji
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wanjun Guo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianyong Zhu
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongjie Guo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fulun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Sisto M, Lisi S. Updates on Inflammatory Molecular Pathways Mediated by ADAM17 in Autoimmunity. Cells 2024; 13:2092. [PMID: 39768182 PMCID: PMC11674862 DOI: 10.3390/cells13242092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
ADAM17 is a member of the disintegrin and metalloproteinase (ADAM) family of transmembrane proteases with immunoregulatory activity in multiple signaling pathways. The functional ADAM17 is involved in the shedding of the ectodomain characterizing many substrates belonging to growth factors, cytokines, receptors, and adhesion molecules. The ADAM17-dependent pathways are known to be crucial in tumor development and progression and in the modulation of many pathological and physiological processes. In the last decade, ADAM17 was considered the driver of several autoimmune pathologies, and numerous substrate-mediated signal transduction pathways were identified. However, the discoveries made to date have led researchers to try to clarify the multiple mechanisms in which ADAM17 is involved and to identify any molecular gaps between the different transductional cascades. In this review, we summarize the most recent updates on the multiple regulatory activities of ADAM17, focusing on reported data in the field of autoimmunity.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 1, I-70124 Bari, Italy;
| | | |
Collapse
|
8
|
Pankratova MD, Riabinin AA, Butova EA, Selivanovskiy AV, Morgun EI, Ulianov SV, Vorotelyak EA, Kalabusheva EP. YAP/TAZ Signalling Controls Epidermal Keratinocyte Fate. Int J Mol Sci 2024; 25:12903. [PMID: 39684613 DOI: 10.3390/ijms252312903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The paralogues Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) control cell proliferation and cell fate determination from embryogenesis to ageing. In the skin epidermis, these proteins are involved in both homeostatic cell renewal and injury-induced regeneration and also drive carcinogenesis and other pathologies. YAP and TAZ are usually considered downstream of the Hippo pathway. However, they are the central integrating link for the signalling microenvironment since they are involved in the interplay with signalling cascades induced by growth factors, cytokines, and physical parameters of the extracellular matrix. In this review, we summarise the evidence on how YAP and TAZ are activated in epidermal keratinocytes; how YAP/TAZ-mediated signalling cooperates with other signalling molecules at the plasma membrane, cytoplasmic, and nuclear levels; and how YAP/TAZ ultimately controls transcription programmes, defining epidermal cell fate.
Collapse
Affiliation(s)
- Maria D Pankratova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Andrei A Riabinin
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta A Butova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Arseniy V Selivanovskiy
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena I Morgun
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Sergey V Ulianov
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ekaterina A Vorotelyak
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina P Kalabusheva
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
9
|
Yu Z, Tang X, Chen Z, Hu Y, Zhang S, Guo C, Gu J, Shi Y, Gong Y. Role of ADAM10/17-Mediated Cleavage of LAG3 in the Impairment of Immunosuppression in Psoriasis. J Invest Dermatol 2024:S0022-202X(24)02948-8. [PMID: 39571889 DOI: 10.1016/j.jid.2024.10.606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 12/25/2024]
Abstract
Despite extensive research on immune activation regulatory mechanisms, studies on immune suppression in psoriasis are limited. LAG3, a newly identified immune checkpoint, plays a crucial role in modulating immune responses and maintaining T-regulatory cell function. However, its involvement in psoriasis is unclear. We show that psoriasis is associated with reduced LAG3 expression in CD4 T cells and T-regulatory cells. Further analysis revealed that the decline in LAG3 levels was linked to ADAM10/17-mediated proteolytic cleavage, which was upregulated in psoriasis. Clinical utilization of the IL-17A antagonist secukinumab, along with the in vivo and in vitro IL-17A-induced models, supported the potential of IL-17A to induce ADAM10/17 expression and trigger LAG3 cleavage. Through the Jurkat cell model, IL-17A was found to regulate ADAM10/17 expression by activating FOXM1. In addition, treatment with the ADAM10/17 inhibitor GW280264X showed ameliorative effects on psoriasis-like mouse models and lipopolysaccharide-induced inflammation. Collectively, the findings of this study uncover the immune regulatory role of the ADAM10/17-LAG3 axis in psoriasis and highlight the therapeutic potential of targeting ADAM10/17 for psoriasis treatment.
Collapse
Affiliation(s)
- Zengyang Yu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China; Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xinyi Tang
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China; Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Zeyu Chen
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China; Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yifan Hu
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China; Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shuqin Zhang
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China; Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chunyuan Guo
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China; Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jun Gu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China; Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yuling Shi
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China; Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| | - Yu Gong
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China; Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
10
|
Qiu H, Liu J, Wu Q, Ong H, Zhang Y, Huang X, Yuan T, Zheng R, Deng H, Wang W, Kong W, Wang X, Wang D, Yang Q. An in vitro study of the impact of IL-17A and IL-22 on ciliogenesis in nasal polyps epithelium via the Hippo-YAP pathway. J Allergy Clin Immunol 2024; 154:1180-1194. [PMID: 39033934 DOI: 10.1016/j.jaci.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Cilia loss and impaired motile ciliary functions are among the typical pathological features of chronic rhinosinusitis with nasal polyps (CRSwNP). IL17A and IL22 are the canonical cytokines of type 3 inflammation, exhibiting similar functional effects on epithelial cells. In this study, we sought to examine the effects of IL17A and IL22 on ciliated cells and investigate the potential involvement of Hippo-YAP signaling in their influence on ciliogenesis. METHODS We assessed both the mRNA and protein expression levels of IL17A and IL22 in nasal tissues obtained from patients with CRSwNP and compared them to those from healthy controls. To further explore the impact of IL17A and IL22, we established a primary human nasal epithelial cell model using different concentrations (2 ng/mL, 10 ng/mL, 50 ng/mL) for a duration of 28 days in an air-liquid interface culture. Additionally, we employed the inhibitor verteporfin to investigate whether IL17A and IL22 exert their effects on ciliated cells via the Hippo-YAP pathway. RESULTS The mRNA and protein levels of IL17A and IL22 in CRSwNP were significantly higher than those in healthy controls, revealing a robust correlation between IL17A and IL22. YAP was highly expressed in the nucleus of ciliated cells in CRSwNP and displayed a positive correlation with clinical symptoms. Both IL17A and IL22 were found to reduce the number of ciliated cells. IL17A, but not IL22, suppressed ciliogenesis by disrupting the proper development and docking of the basal body of ciliated cells, resulting in motile ciliary dysfunctions. Furthermore, the expression of YAP within the nucleus of ciliated cells gradually declined as these cells reached the final stage of differentiation. However, this process was obstructed by IL17A only. YAP inhibitors, such as verteporfin, markedly reversed the effects of IL17A by increasing the proportion of ciliated cells, suppressing nuclear YAP expression in these cells, and enhancing ciliary beating frequency. CONCLUSIONS Both IL17A and IL22 are overexpressed in nasal epithelium of CRSwNP, which is associated with the impairment of epithelial cell differentiation. Furthermore, IL17A has been shown to exert a disruptive effect on morphogenesis of motile cilia via activation of YAP.
Collapse
Affiliation(s)
- Huijun Qiu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qingwu Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hsiaohui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yana Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuekun Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tian Yuan
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiyi Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weihao Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weifeng Kong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinyue Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Deyun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Qintai Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
11
|
Tu Y, Gu H, Li N, Sun D, Yang Z, He L. Identification of Key Genes Related to Immune-Lipid Metabolism in Skin Barrier Damage and Analysis of Immune Infiltration. Inflammation 2024:10.1007/s10753-024-02174-4. [PMID: 39465470 DOI: 10.1007/s10753-024-02174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Several physical and chemical factors regulate skin barrier function. Skin barrier dysfunction causes many inflammatory skin diseases, such as atopic dermatitis and psoriasis. Activation of the immune response may lead to damage to the epidermal barrier. Abnormal lipid metabolism is defined as abnormally high or low values of plasma lipid components such as plasma cholesterol and triglycerides. The mouse skin barrier damage model was used for RNA sequencing. Bioinformatics analysis and validation were performed. Differently expressed genes (DEGs) related to immune and lipid metabolism were screened by differentially expressed gene analysis, and the enriched biological processes and pathways of these genes were identified by GO-KEGG. The interactions between DEGs were confirmed by constructing a PPI network. GSEA, transcription factor regulatory network, and immune infiltration analyses were performed for the 10 genes. Expression validation was performed by public datasets. The expression of key genes in mouse skin tissue was detected by qPCR. The expression of differentially expressed immune cell markers in the skin was detected by immunofluorescence. Based on the trans epidermal water loss (TEWL) score, the expression of key genes was detected by qPCR before skin barrier injury, at 4h and 7d, and at recovery from injury. Il17a, Il6, Tnf, Itgam, and Cxcl1 were immune-related key genes. Pla2g2f, Ptgs2, Plb1, Pla2g3, and Pla2g2d were key genes for lipid metabolism. Database validation and experimental results revealed that the expression trends of these genes were consistent with our analyses. The research value of these genes has been demonstrated through mouse datasets and experimental validation, and future therapeutic approaches may be able to mitigate the disease by targeting these genes to modulate the function of the skin barrier.
Collapse
Affiliation(s)
- Ying Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, No. 295 XiChang Road, KunMing, 650032, China
| | - Hua Gu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, No. 295 XiChang Road, KunMing, 650032, China
| | - Na Li
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, No. 295 XiChang Road, KunMing, 650032, China
| | - Dongjie Sun
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, No. 295 XiChang Road, KunMing, 650032, China
| | - Zhenghui Yang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, No. 295 XiChang Road, KunMing, 650032, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, No. 295 XiChang Road, KunMing, 650032, China.
| |
Collapse
|
12
|
Nathan S, Wang Y, D'ambrosio M, Paul R, Lyu H, Delic D, Bretschneider T, Falana K, Li L, Vijayaraj P. Comparative transcriptomic analysis validates iPSC derived in-vitro progressive fibrosis model as a screening tool for drug discovery and development in systemic sclerosis. Sci Rep 2024; 14:24428. [PMID: 39424619 PMCID: PMC11489818 DOI: 10.1038/s41598-024-74610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy, immune dysregulation, and systemic fibrosis. Research on SSc has been hindered largely by lack of relevant models to study the progressive nature of the disease and to recapitulate the cell plasticity that is observed in this disease context. Generation of models for fibrotic disease using pluripotent stem cells is important for recapitulating the heterogeneity of the fibrotic tissue and are a potential platform for screening anti-fibrotic drugs. We previously reported a novel in-vitro model for fibrosis using induced pluripotent stem cell-derived mesenchymal cells (iSCAR). Here we report the generation of a "scar-like phenotype" when iPSC derived mesenchymal cells are cultured on hydrogel that mimicks a wound healing/scarring response (iSCAR). First, we performed RNA sequencing (RNA-seq) based transcriptome profiling of iSCAR culture at 48 h and 13 days to characterize early and latestage scarring phenotypes. The next generation RNA-seq of these iSCAR culture at different timepoints detected expression 92% of early "scar associated" genes and 85% late "scar associated" genes, respectively. Comparative transcriptomic analysis of a gene level SSc compendium matrix to the iSCAR wound associated model revealed genes common in both data sets. Early scar formation genes showed biological processes of hypoxia (27.5%), vascular development (13.7%) and glycolysis (27.5), while late scar formation showed genes associated with senescence (22.6%). Next we show the effects of two different antifibrotic compounds to validate the utility of the model as a screening tool to study early and late-stagelate-stage fibrosis. An autotaxin inhibitor was used to validate the iSCAR late stage fibrotic model (iSCAR-T) and an antifibrotic tool screening compound of unknown mechanism (EX00015097) was used to study and validate both early (iSCAR-P) and late-stage (iSCAR-T) fibrosis in the iSCAR model.
Collapse
Affiliation(s)
- Shyam Nathan
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Yifei Wang
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Matthew D'ambrosio
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Reeba Paul
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Huimin Lyu
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Denis Delic
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Tom Bretschneider
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Kimberly Falana
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Li Li
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA.
| | - Preethi Vijayaraj
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA.
| |
Collapse
|
13
|
Guillaume P, Rupp T, Froget G, Goineau S. Evaluation of Clobetasol and Tacrolimus Treatments in an Imiquimod-Induced Psoriasis Rat Model. Int J Mol Sci 2024; 25:9254. [PMID: 39273201 PMCID: PMC11395139 DOI: 10.3390/ijms25179254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disorder characterized by keratinocyte hyperproliferation, inflammation, and aberrant differentiation. Imiquimod-induced psoriasis in rodent models has been widely used to study the pathogenesis of the disease and evaluate potential therapeutic interventions. In this study, we investigated the efficacy of two commonly used treatments, Clobetasol and Tacrolimus, in ameliorating psoriatic symptoms in an Imiquimod-induced psoriasis Wistar rat model. Interestingly, rat models are poorly evaluated in the literature despite rats displaying several advantages in evaluating pharmacological substances. Psoriasis-like skin lesions were induced by topical application of Imiquimod cream on shaved dorsal skin for seven consecutive days. Following induction, rats in the treatment groups received either a Clobetasol or Tacrolimus ointment once daily for one week, while the control group did not receive any application. Disease severity was assessed using clinical scoring, histological examination, and measurement of proinflammatory cytokine levels. Both Clobetasol and Tacrolimus treatments significantly reduced psoriatic lesion severity compared to the control group. Clinical scoring revealed a decrease in erythema, scaling, transepidermal water loss, and thickness of skin lesions in both treatment groups with a more marked effect with Clobetasol. Histological analysis demonstrated reduced epidermal hyperplasia in treated animals compared to controls. Furthermore, Clobetasol led to a significant reduction in the expression levels of the interleukin-17 (IL-17a and IL-17f) proinflammatory cytokines in lesioned skin. Overall, our findings demonstrated the therapeutic efficacy of both Clobetasol and, in a modest manner, Tacrolimus in attenuating Imiquimod-induced psoriasis-like symptoms in a rat model. These results support the clinical use of these agents in the management of psoriasis and mitigating psoriatic inflammation. They also provide insights into the use of rats as a relevant species for the Imiquimod-induced psoriasis model.
Collapse
Affiliation(s)
| | - Tristan Rupp
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France
| | | | - Sonia Goineau
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France
| |
Collapse
|
14
|
Shi L, Du X, Wang B, Zhang G. CircAKR1B10 interacts with EIF4A3 to stabilize AURKA and promotes IL-22-induced proliferation, migration and invasion in keratinocytes. Arch Dermatol Res 2024; 316:561. [PMID: 39177716 DOI: 10.1007/s00403-024-03302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Circular RNAs (circRNAs) are demonstrated to be involved in psoriasis progression. CircRNAs can act as RNA-binding protein (RBP) sponges. Here, we investigated the action of circAKR1B10 in psoriasis, and explored the potential proteins interacted with circAKR1B10. Levels of genes and proteins were assayed by qRT-PCR and western blotting analyses. Keratinocytes in functional groups were treated with interleukin (IL)-22. Functional analysis were conducted using MTT, 5-ethynyl-2'-deoxyuridine (EdU), and transwell assays, respectively. Interaction analysis among circAKR1B10, Eukaryotic initiation factor 4 A-III (EIF4A3) and Aurora Kinase A (AURKA) was conducted using bioinformatics analysis, RNA pull-down assay, and RNA immunoprecipitation (RIP) assay. CircAKR1B10 was highly expressed in psoriasis patients and IL-22-induced keratinocytes. Functionally, knockdown of circAKR1B10 abolished IL-22-induced proliferation, migration and invasion in keratinocytes. AURKA expression was also higher in psoriasis patients and IL-22-induced keratinocytes, and was negatively correlated with circAKR1B10 expression. Moreover, AURKA silencing reduced the proliferative, migratory and invasive abilities of IL-22-induced keratinocytes. Mechanistically, circAKR1B10 interacted with EIF4A3 protein to stabilize and regulate AURKA expression. CircAKR1B10 contributes to IL-22-induced proliferation, migration and invasion in keratinocytes via up-regulating AURKA expression through interacting with EIF4A3 protein.
Collapse
Affiliation(s)
- Liping Shi
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050031, China
- Hebei Provincial Innovation Center of Dermatology and Medical Cosmetology Technology, No.89 Donggang Road, Yuhua District, Shijiazhuang City, Hebei Province, China
| | - Xiaoqing Du
- Department of Dermatology, Bethune International Peace Hospital, Shijiazhuang City, Hebei Province, 050000, China
| | - Bin Wang
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050031, China
- Hebei Provincial Innovation Center of Dermatology and Medical Cosmetology Technology, No.89 Donggang Road, Yuhua District, Shijiazhuang City, Hebei Province, China
| | - Guoqiang Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050031, China.
- Hebei Provincial Innovation Center of Dermatology and Medical Cosmetology Technology, No.89 Donggang Road, Yuhua District, Shijiazhuang City, Hebei Province, China.
| |
Collapse
|
15
|
Li T, Gao S, Wei Y, Wu G, Feng Y, Wang Y, Jiang X, Kuang H, Han W. Combined untargeted metabolomics and network pharmacology approaches to reveal the therapeutic role of withanolide B in psoriasis. J Pharm Biomed Anal 2024; 245:116163. [PMID: 38657365 DOI: 10.1016/j.jpba.2024.116163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Psoriasis is a refractory inflammatory skin disorder in which keratinocyte hyperproliferation is a crucial pathogenic factor. Up to now, it is commonly acknowledged that psoriasis has a tight connection with metabolic disorders. Withanolides from Datura metel L. (DML) have been proved to possess anti-inflammatory and anti-proliferative properties in multiple diseases including psoriasis. Withanolide B (WB) is one of the abundant molecular components in DML. However, existing experimental studies regarding the potential effects and mechanisms of WB on psoriasis still remain lacking. Present study aimed to integrate network pharmacology and untargeted metabolomics strategies to investigate the therapeutic effects and mechanisms of WB on metabolic disorders in psoriasis. In our study, we observed that WB might effectively improve the symptoms of psoriasis and alleviate the epidermal hyperplasia in imiquimod (IMQ)-induced psoriasis-like mice. Both network pharmacology and untargeted metabolomics results suggested that arachidonic acid metabolism and arginine and proline metabolism pathways were linked to the treatment of psoriasis with WB. Meanwhile, we also found that WB may affect the expression of regulated enzymes 5-lipoxygenase (5-LOX), 12-LOX, ornithine decarboxylase 1 (ODC1) and arginase 1 (ARG1) in the arachidonic acid metabolism and arginine and proline metabolism pathways. In summary, this paper showed the potential metabolic mechanisms of WB against psoriasis and suggested that WB would have greater potential in psoriasis treatment.
Collapse
Affiliation(s)
- Tingting Li
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou 545005, China; Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Traditional Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Si Gao
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou 545005, China
| | - Yundong Wei
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou 545005, China
| | - Gang Wu
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou 545005, China
| | - Yiping Feng
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou 545005, China
| | - Yanyan Wang
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou 545005, China
| | - Xudong Jiang
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou 545005, China.
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Traditional Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin 150040, China.
| | - Wei Han
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No.4 Dong-qing Road, Huaxi District, Guiyang 550025, China; Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Traditional Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin 150040, China.
| |
Collapse
|
16
|
Strakosha M, Vega-Mendoza D, Kane J, Jain A, Sun L, Rockowitz S, Elkins M, Miyake K, Chou J, Karasuyama H, Geha RS, Leyva-Castillo JM. Basophils Play a Protective Role in the Recovery of Skin Barrier Function from Mechanical Injury in Mice. J Invest Dermatol 2024; 144:1784-1797.e4. [PMID: 38286187 PMCID: PMC11260541 DOI: 10.1016/j.jid.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 01/31/2024]
Abstract
Physical trauma disrupts skin barrier function. How the skin barrier recovers is not fully understood. We evaluated in mice the mechanism of skin barrier recovery after mechanical injury inflicted by tape stripping. Tape stripping disrupted skin barrier function as evidenced by increased transepidermal water loss. We show that tape stripping induces IL-1-, IL-23-, and TCRγδ+-dependent upregulation of cutaneous Il17a and Il22 expression. We demonstrate that IL-17A and IL-22 induce epidermal hyperplasia, promote neutrophil recruitment, and delay skin barrier function recovery. Neutrophil depletion improved the recovery of skin barrier function and decreased epidermal hyperplasia. Single-cell RNA sequencing and flow cytometry analysis of skin cells revealed basophil infiltration into tape-stripped skin. Basophil depletion upregulated Il17a expression, increased neutrophil infiltration, and delayed skin barrier recovery. Comparative analysis of genes differentially expressed in tape-stripped skin of basophil-depleted mice and Il17a-/- mice indicated that basophils counteract the effects of IL-17A on the expression of epidermal and lipid metabolism genes important for skin barrier integrity. Our results demonstrate that basophils play a protective role by downregulating Il17a expression after mechanical skin injury, thereby counteracting the adverse effect of IL-17A on skin barrier function recovery, and suggest interventions to accelerate this recovery.
Collapse
Affiliation(s)
- Maria Strakosha
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniela Vega-Mendoza
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Kane
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashish Jain
- Research Computing, Information Technology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Liang Sun
- Research Computing, Information Technology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Shira Rockowitz
- Research Computing, Information Technology, Boston Children's Hospital, Boston, Massachusetts, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Megan Elkins
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Janet Chou
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Raif S Geha
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Juan-Manuel Leyva-Castillo
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
17
|
Zhou Y, Lv D, Wei W, Zhou T, Tang S, Yang F, Zhang J, Jiang L, Xia X, Jiang Y, Chen Q, Yue Y, Feng X. Type 17 immune response promotes oral epithelial cell proliferation in periodontitis. Arch Oral Biol 2024; 164:106005. [PMID: 38781743 DOI: 10.1016/j.archoralbio.2024.106005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVES This study aims to investigate the effects of type 17 immune response on the proliferation of oral epithelial cells in periodontitis. DESIGN A time-dependent ligature induced periodontitis mouse model was utilized to explore gingival hyperplasia and the infiltration of interleukin 17A (IL-17A) positive cells. Immunohistochemistry and flow cytometry were employed to determine the localization and expression of IL-17A in the ligature induced periodontitis model. A pre-existing single-cell RNA sequencing dataset, comparing individuals affected by periodontitis with healthy counterparts, was reanalyzed to evaluate IL-17A expression levels. We examined proliferation markers, including proliferating cell nuclear antigen (PCNA), signal transducer and activator of transcription (STAT3), Yes-associated protein (YAP), and c-JUN, in the gingival and tongue epithelium of the periodontitis model. An anti-IL-17A agent was administered daily to observe proliferative changes in the oral mucosa within the periodontitis model. Cell number quantification, immunofluorescence, and western blot analyses were performed to assess the proliferative responses of human normal oral keratinocytes to IL-17A treatment in vitro. RESULTS The ligature induced periodontitis model exhibited a marked infiltration of IL-17A-positive cells, alongside significant increase in thickness of the gingival and tongue epithelium. IL-17A triggers the proliferation of human normal oral keratinocytes, accompanied by upregulation of PCNA, STAT3, YAP, and c-JUN. The administration of an anti-IL-17A agent attenuated the proliferation in oral mucosa. CONCLUSIONS These findings indicate that type 17 immune response, in response to periodontitis, facilitates the proliferation of oral epithelial cells, thus highlighting its crucial role in maintaining the oral epithelial barrier.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Die Lv
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Weideng Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shijie Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiuge Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lanxin Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qianming Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, Zhejiang 310006, China
| | - Yuan Yue
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
18
|
Jiang J, Shao X, Liu W, Wang M, Li Q, Wang M, Xiao Y, Li K, Liang H, Wang N, Xu X, Wu Y, Gao X, Xie Q, Xiang X, Liu W, Wu W, Yang L, Gu ZZ, Chen J, Lei M. The mechano-chemical circuit in fibroblasts and dendritic cells drives basal cell proliferation in psoriasis. Cell Rep 2024; 43:114513. [PMID: 39003736 DOI: 10.1016/j.celrep.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/13/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Psoriasis is an intractable immune-mediated disorder that disrupts the skin barrier. While studies have dissected the mechanism by which immune cells directly regulate epidermal cell proliferation, the involvement of dermal fibroblasts in the progression of psoriasis remains unclear. Here, we identified that signals from dendritic cells (DCs) that migrate to the dermal-epidermal junction region enhance dermal stiffness by increasing extracellular matrix (ECM) expression, which further promotes basal epidermal cell hyperproliferation. We analyzed cell-cell interactions and observed stronger interactions between DCs and fibroblasts than between DCs and epidermal cells. Using single-cell RNA (scRNA) sequencing, spatial transcriptomics, immunostaining, and stiffness measurement, we found that DC-secreted LGALS9 can be received by CD44+ dermal fibroblasts, leading to increased ECM expression that creates a stiffer dermal environment. By employing mouse psoriasis and skin organoid models, we discovered a mechano-chemical signaling pathway that originates from DCs, extends to dermal fibroblasts, and ultimately enhances basal cell proliferation in psoriatic skin.
Collapse
Affiliation(s)
- Jingwei Jiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xinyi Shao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Weiwei Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Mengyue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Miaomiao Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yang Xiao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ke Li
- Shenzhen Accompany Technology Co., Ltd, Shenzhen 518000, China
| | - Huan Liang
- Shenzhen Accompany Technology Co., Ltd, Shenzhen 518000, China
| | - Nian'ou Wang
- Shenzhen Accompany Technology Co., Ltd, Shenzhen 518000, China
| | - Xuegang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xinghua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Qiaoli Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xiao Xiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wang Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhong-Ze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China.
| | - Mingxing Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
19
|
Alsabbagh MM. Cytokines in psoriasis: From pathogenesis to targeted therapy. Hum Immunol 2024; 85:110814. [PMID: 38768527 DOI: 10.1016/j.humimm.2024.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Psoriasis is a multifactorial disease that affects 0.84% of the global population and it can be associated with disabling comorbidities. As patients present with thick scaly lesions, psoriasis was long believed to be a disorder of keratinocytes. Psoriasis is now understood to be the outcome of the interaction between immunological and environmental factors in individuals with genetic predisposition. While it was initially thought to be solely mediated by cytokines of type-1 immunity, namely interferon-γ, interleukin-2, and interleukin-12 because it responds very well to cyclosporine, a reversible IL-2 inhibitor; the discovery of Th-17 cells advanced the understanding of the disease and helped the development of biological therapy. This article aims to provide a comprehensive review of the role of cytokines in psoriasis, highlighting areas of controversy and identifying the connection between cytokine imbalance and disease manifestations. It also presents the approved targeted treatments for psoriasis and those currently under investigation.
Collapse
Affiliation(s)
- Manahel Mahmood Alsabbagh
- Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders and Department of Molecular Medicine, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
20
|
Yang D, Peng M, Fu F, Zhao W, Zhang B. Diosmetin ameliorates psoriasis-associated inflammation and keratinocyte hyperproliferation by modulation of PGC-1α / YAP signaling pathway. Int Immunopharmacol 2024; 134:112248. [PMID: 38749332 DOI: 10.1016/j.intimp.2024.112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Psoriasis, characterized by aberrant epidermal keratinocyte proliferation and differentiation, is a chronic inflammatory immune-related skin disease. Diosmetin (Dios), derived from citrus fruits, exhibits anti-inflammatory and anti-proliferative properties. In this study, IL-17A-induced HaCaT cell model and Imiquimod (IMQ)-induced mouse model were utilized to investigate the effects of Dios against psoriasis. The morphology and biomarkers of psoriasis were regarded as the preliminary evaluation including PASI score, skin thickness, H&E staining, EdU staining and inflammatory factors. Transcriptomics analysis revealed PGC-1α as a key target for Dios in ameliorating psoriasis. Specifically, Dios, through PGC-1α, suppressed YAP-mediated proliferation and inflammatory responses in psoriatic keratinocytes. In conclusion, Dios shows promise in psoriasis treatment and holds potential for development as targeted medications for application in psoriasis.
Collapse
Affiliation(s)
- Dailin Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Mingwei Peng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Fengping Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Wenjuan Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China.
| |
Collapse
|
21
|
Song J, Kim HK, Cho H, Yoon SJ, Lim J, Lee K, Hwang ES. TAZ deficiency exacerbates psoriatic pathogenesis by increasing the histamine-releasing factor. Cell Biosci 2024; 14:60. [PMID: 38734624 PMCID: PMC11088771 DOI: 10.1186/s13578-024-01246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Transcriptional coactivator with PDZ-biding motif (TAZ) is widely expressed in most tissues and interacts with several transcription factors to regulate cell proliferation, differentiation, and death, thereby influencing organ development and size control. However, very little is known about the function of TAZ in the immune system and its association with inflammatory skin diseases, so we investigated the role of TAZ in the pathogenesis of psoriasis. RESULTS Interestingly, TAZ was expressed in mast cells associated, particularly in lysosomes, and co-localized with histamine-releasing factor (HRF). TAZ deficiency promoted mast cell maturation and increased HRF expression and secretion by mast cells. The upregulation of HRF in TAZ deficiency was not due to increased transcription but to protein stabilization, and TAZ restoration into TAZ-deficient cells reduced HRF protein. Interestingly, imiquimod (IMQ)-induced psoriasis, in which HRF serves as a major pro-inflammatory factor, was more severe in TAZ KO mice than in WT control. HRF expression and secretion were increased by IMQ treatment and were more pronounced in TAZ KO mice treated with IMQ. CONCLUSIONS Thus, as HRF expression was stabilized in TAZ KO mice, psoriatic pathogenesis progressed more rapidly, indicating that TAZ plays an important role in preventing psoriasis by regulating HRF protein stability.
Collapse
Affiliation(s)
- Jiseo Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Hyunsoo Cho
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Suh Jin Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Jihae Lim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Kyunglim Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
22
|
Zhao M, Yin N, Yang R, Li S, Zhang S, Faiola F. Understanding the effects of per- and polyfluoroalkyl substances on early skin development: Role of ciliogenesis inhibition and altered microtubule dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169702. [PMID: 38163615 DOI: 10.1016/j.scitotenv.2023.169702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of highly stable chemicals, widely used in everyday products, and widespread in the environment, even in pregnant women. While epidemiological studies have linked prenatal exposure to PFAS with atopic dermatitis in children, little is known about their toxic effects on skin development, especially during the embryonic stage. In this study, we utilized human embryonic stem cells to generate non-neural ectoderm (NNE) cells and exposed them to six PFAS (perfluorooctanoic acid (PFOA), undecafluorohexanoic acid (PFHxA), heptafluorobutyric acid (PFBA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorobutyric acid (PFBS)) during the differentiation process to assess their toxicity to early skin development. Our results showed that PFOS altered the spindle-like morphology of NNE cells to a pebble-like morphology, and disrupted several NNE markers, including KRT16, SMYD1, and WISP1. The six PFAS had a high potential to cause hypohidrotic ectodermal dysplasia (HED) by disrupting the expression levels of HED-relevant genes. Transcriptomic analysis revealed that PFOS treatment produced the highest number (1156) of differentially expressed genes (DEGs) among the six PFAS, including the keratinocyte-related genes KRT6A, KRT17, KRT18, KRT24, KRT40, and KRT81. Additionally, we found that PFOS treatment disturbed several signaling pathways that are involved in regulating skin cell fate decisions and differentiation, including TGF-β, NOTCH, Hedgehog, and Hippo signaling pathways. Interestingly, we discovered that PFOS inhibited, by partially interfering with the expression of cytoskeleton-related genes, the ciliogenesis of NNE cells, which is crucial for the intercellular transduction of the above-mentioned signaling pathways. Overall, our study suggests that PFAS can inhibit ciliogenesis and hamper the transduction of important signaling pathways, leading potential congenital skin diseases. It sheds light on the underlying mechanisms of early embryonic skin developmental toxicity and provides an explanation for the epidemiological data on PFAS. ENVIRONMENTAL IMPLICATION: We employed a model based on human embryonic stem cells to demonstrate that PFOS has the potential to elevate the risk of hypohidrotic ectodermal dysplasia. This is achieved by targeting cilia, inhibiting ciliogenesis, and subsequently disrupting crucial signaling pathways like TGF-β, NOTCH, Hedgehog, and Hippo, during the early phases of embryonic skin development. Our study highlights the dangers and potential impacts of six PFAS pollutants on human skin development. Additionally, we emphasize the importance of closely considering PFHxA, PFBA, PFHxS, and PFBS, as they have shown the capacity to modify gene expression levels, albeit to a lesser degree.
Collapse
Affiliation(s)
- Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Romashin D, Rusanov A, Arzumanian V, Varshaver A, Poverennaya E, Vakhrushev I, Netrusov A, Luzgina N. Exploring the Functions of Mutant p53 through TP53 Knockout in HaCaT Keratinocytes. Curr Issues Mol Biol 2024; 46:1451-1466. [PMID: 38392212 PMCID: PMC10887868 DOI: 10.3390/cimb46020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Approximately 50% of tumors carry mutations in TP53; thus, evaluation of the features of mutant p53 is crucial to understanding the mechanisms underlying cell transformation and tumor progression. HaCaT keratinocytes represent a valuable model for research in this area since they are considered normal, although they bear two gain-of-function mutations in TP53. In the present study, transcriptomic and proteomic profiling were employed to examine the functions of mutant p53 and to investigate the impact of its complete abolishment. Our findings indicate that CRISPR-mediated TP53 knockout results in significant changes at the transcriptomic and proteomic levels. The knockout of TP53 significantly increased the migration rate and altered the expression of genes associated with invasion, migration, and EMT but suppressed the epidermal differentiation program. These outcomes suggest that, despite being dysfunctional, p53 may still possess oncosuppressive functions. However, despite being considered normal keratinocytes, HaCaT cells exhibit oncogenic properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alexander Netrusov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Faculty of Biology and Biotechnology, HSE University, Moscow 101000, Russia
| | | |
Collapse
|
24
|
Chen Z, Dragan M, Sun P, Haensel D, Vu R, Cui L, Shi Y, Dai X. An AhR-Ovol1-Id1 regulatory axis in keratinocytes promotes skin homeostasis against atopic dermatitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577821. [PMID: 38352592 PMCID: PMC10862726 DOI: 10.1101/2024.01.29.577821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Skin is our outer permeability and immune defense barrier against myriad external assaults. Aryl hydrocarbon receptor (AhR) senses environmental factors and regulates barrier robustness and immune homeostasis. AhR agonist is in clinical trial for atopic dermatitis (AD) treatment, but the underlying mechanism of action remains ill-defined. Here we report OVOL1/Ovol1 as a conserved and direct transcriptional target of AhR in epidermal keratinocytes. We show that OVOL1/Ovol1 impacts AhR regulation of keratinocyte gene expression, and Ovol1 deletion in keratinocytes hampers AhR's barrier promotion function and worsens AD-like inflammation. Mechanistically, we identify Ovol1's direct downstream targets genome-wide, and provide in vivo evidence for Id1's critical role in barrier maintenance and disease suppression. Furthermore, our findings reveal an IL-1/dermal γδT cell axis exacerbating both type 2 and type 3 immune responses downstream of barrier perturbation in Ovol1 -deficient AD skin. Finally, we present data suggesting the clinical relevance of OVOL1 and ID1 function in human AD. Our study highlights a keratinocyte-intrinsic AhR-Ovol1-Id1 regulatory axis that promotes both epidermal and immune homeostasis against AD-like inflammation, implicating new therapeutic targets for AD.
Collapse
|
25
|
Li Y, Wu Q. KRT6A Inhibits IL-1β-Mediated Pyroptosis of Keratinocytes via Blocking IL-17 Signaling. Crit Rev Eukaryot Gene Expr 2024; 34:1-11. [PMID: 38505868 DOI: 10.1615/critreveukaryotgeneexpr.2023050039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Keratin 6A (KRT6A) is involved in the pathogenesis of various skin diseases. However, the reports on the roles of KRT6A in atopic dermatitis (AD) are limited. This study aimed to investigate the potentials of KRT6A in AD. mRNA levels were detected by RT-PCR. Cytokine release was determined by ELISA. Protein expression was determined using Western blot. Cell viability was determined by CCK-8. Cytotoxicity was detected by LDH assay. Cell death was determined by TUNEL. The pyroptosis of keratinocytes was detected using flow cytometry. We found that KRT6A was overexpressed in AD patients. Moreover, KRT6A was stimulated after exposed to proinflammatory cytokines. Overexpressed KRT6A suppressed inflammatory response, while KRT6A knockdown exerted the opposite effects. Overexpressed KRT6A suppressed inflammation-induced pyroptosis of keratinocytes. Additionally, KRT6A negatively regulated interleukin-17a (IL-17a) expression, blocking IL-17 signaling. IL-17a overexpression antagonized the effects of KRT6A and promoted pyroptosis of keratinocytes. In conclusion, KRT6A exerted protective functions in AD via regulating IL-17 signaling. This KRT6A/IL-17 may be a novel target for AD.
Collapse
Affiliation(s)
- Yuan Li
- Department of Dermatology, Union Jiangbei Hospital Huazhong University of Science and Technology (Caidian District People's Hospital of Wuhan), Wuhan City, Hubei Province 430100, China
| | - Qi Wu
- Wuhan Jiangxia District Traditional Chinese Medicine Hospital
| |
Collapse
|
26
|
Kong H, Han JJ, Gorbachev D, Zhang XA. Role of the Hippo pathway in autoimmune diseases. Exp Gerontol 2024; 185:112336. [PMID: 38042379 DOI: 10.1016/j.exger.2023.112336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
The immune system is an important defense against diseases, and it is essential to maintain the homeostasis of the body's internal environment. Under normal physiological conditions, the steady state of the immune system should be sustained to play normal immune response and immune function. Exploring the molecular mechanism of maintaining immune homeostasis under physiological and pathological conditions will provides understanding of the pathogenesis of autoimmune diseases, infections, metabolic disorders, and tumors, as well as new ideas and molecular targets for the prevention and treatment of these diseases. Hippo signaling pathway can not only regulate immune cells such as macrophages, T cells and dendritic cells, but also interact with immune-related signaling pathways such as NF-kB signaling pathway, TGF-β signaling pathway and Toll-like receptor signaling pathway, so as to resist the internal environment disorder caused by the invasion of exogenous pathogenic microorganisms and maintain the internal environment stability and physiological balance of the body. Hippo signaling pathway is also involved in the pathological process of immune system-related diseases such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. Hippo pathway is closely related to organ development, stem cell biology, regeneration, and tumor biology. It affects cell differentiation by participating in extracellular and intracellular physiological signal reactions, sensing cell environment, and coordinating cell reactions. This pathway is crucial in maintaining immune homeostasis. This review summarizes the mechanism of Hippo pathway in different immune cells and some autoimmune diseases and the interaction between different immune signaling pathways and Hippo signaling pathway. It aims to explore the role of Hippo in autoimmune diseases and provide theoretical and practical basis for the treatment of autoimmune diseases through Hippo signaling pathway.
Collapse
Affiliation(s)
- Hui Kong
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Juan-Juan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | | | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China.
| |
Collapse
|
27
|
Brembilla NC, Boehncke WH. Revisiting the interleukin 17 family of cytokines in psoriasis: pathogenesis and potential targets for innovative therapies. Front Immunol 2023; 14:1186455. [PMID: 37283755 PMCID: PMC10239979 DOI: 10.3389/fimmu.2023.1186455] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease, associated with substantial comorbidity. TH17 lymphocytes, differentiating under the influence of dendritic cell-derived IL-23, and mediating their effects via IL-17A, are believed to be central effector cells in psoriasis. This concept is underlined by the unprecedented efficacy of therapeutics targeting this pathogenetic axis. In recent years, numerous observations made it necessary to revisit and refine this simple "linear" pathogenetic model. It became evident that IL-23 independent cells exist that produce IL-17A, that IL-17 homologues may exhibit synergistic biological effects, and that the blockade of IL-17A alone is clinically less effective compared to the inhibition of several IL-17 homologues. In this review, we will summarize the current knowledge around IL-17A and its five currently known homologues, namely IL-17B, IL-17C, IL-17D, IL-17E (also known as IL-25) and IL-17F, in relation to skin inflammation in general and psoriasis in particular. We will also re-visit the above-mentioned observations and integrate them into a more comprehensive pathogenetic model. This may help to appreciate current as well as developing anti-psoriatic therapies and to prioritize the selection of future drugs' mode(s) of action.
Collapse
Affiliation(s)
| | - Wolf-Henning Boehncke
- Divison of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
28
|
Zhang Q, Luo T, Yuan D, Liu J, Fu Y, Yuan J. Qilongtian ameliorate bleomycin-induced pulmonary fibrosis in mice via inhibiting IL-17 signal pathway. Sci Rep 2023; 13:6002. [PMID: 37045911 PMCID: PMC10092933 DOI: 10.1038/s41598-023-31439-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/11/2023] [Indexed: 04/14/2023] Open
Abstract
Pulmonary fibrosis (PF) is a special type of pulmonary parenchymal disease, with chronic, progressive, fibrosis, and high mortality. There is a lack of safe, effective, and affordable treatment methods. Qilongtian (QLT) is a traditional Chinese prescription that is composed of Panax notoginseng, Earthworm, and Rhodiola, and shows the remarkable clinical curative effect of PF. However, the mechanism of QLT remains to be clarified. Therefore, we studied the effectivity of QLT in treating Bleomycin (BLM) induced PF mice. 36 C57BL/6 J mice were randomized into the control group, the model group, the low-, medium- and high-dose QLT group, and Pirfenidone group. After establishing a model of pulmonary fibrosis in mice, the control and model groups were infused with a normal saline solution, and the delivery group was infused with QLT. Pulmonary function in the mice from each group was detected. Pulmonary tissue morphologies and collagen deposition were stained by HE and Masson. The content of hydroxyproline (HYP) was detected by alkaline hydrolysis and the mRNA and protein expression of related genes in pulmonary tissues were detected by using q-PCR, ELISA, and Western blot. Our studies have shown that QLT significantly reduced the inflammatory injury, hydroxy-proline content, and collagen deposition of pulmonary tissue in BLM-induced PF mice and down-regulated the cytokine related to inflammation and fibrosis and PF expression on the mRNA and protein level in PF mice. To identify the mechanism of QLT, the Transcriptome was measured and the IL-17 signal pathway was screened out for further research. Further studies indicated that QLT reduced the mRNAs and protein levels of interleukin 17 (IL-17), c-c motif chemokine ligand 12 (CCL12), c-x-c motif chemokine ligand 5 (CXCL5), fos-like antigen 1 (FOSL1), matrix metalloproteinase-9 (MMP9), and amphiregulin (AREG), which are inflammation and fibrosis-related genes in the IL-17 signal pathway. The results indicated that the potential mechanism for QLT in the prevention of PF progression was by inhibiting inflammation resulting in the IL-17 signal pathway. Our study provides the novel scientific basis of QLT and represents new therapeutics for PF in clinical.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China.
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Ting Luo
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Dezheng Yuan
- Yunnan University of Chinese Medicine, Kunming, 650500, China
- The third Affiliated Hospital of Yunnan University of Chinese Medicine: Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650500, China
| | - Jing Liu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
- The third Affiliated Hospital of Yunnan University of Chinese Medicine: Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650500, China
| | - Yi Fu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
- The third Affiliated Hospital of Yunnan University of Chinese Medicine: Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650500, China
| | - Jiali Yuan
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
29
|
Jia X, He L, Yang Z. Recent advances in the role of Yes-associated protein in dermatosis. Skin Res Technol 2023; 29:e13285. [PMID: 36973973 PMCID: PMC10155855 DOI: 10.1111/srt.13285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 03/04/2023]
Abstract
BACKGROUND Dermatosis is a general term for diseases of the skin and skin appendages including scleroderma, psoriasis, bullous disease, atopic dermatitis, basal cell carcinoma, squamous cell carcinoma, and melanoma. These diseases affect millions of individuals globally and are a serious public health concern. However, the pathogenesis of skin diseases is not fully understood, and treatments are not optimal. Yes-associated protein (YAP) is a transcriptional coactivator that plays a role in the regulation of gene transcription and signal transduction. AIMS To study the role of Yes-associated protein in skin diseases. MATERIALS AND METHODS The present review summarizes recent advances in our understanding of the role of YAP in skin diseases, current treatments that target YAP, and potential avenues for novel therapies. RESULTS Abnormal YAP expression has been implicated in occurrence and development of dermatosis. YAP regulates the cell homeostasis, proliferation, differentiation, apoptosis, angiopoiesis, and epithelial-to-mesenchymal transition, among other processes. As well as, it serves as a potential target in many biological processes for treating dermatosis. CONCLUSIONS The effects of YAP on the skin are complex and require multidimensional investigational approaches. YAP functions as an oncoprotein that can promote the occurrence and development of cancer, but there is currently limited information on the therapeutic potential of YAP inhibition for cancer treatment. Additional studies are also needed to clarify the role of YAP in the development and maturation of dermal fibroblasts; skin barrier function, homeostasis, aging, and melanin production; and dermatosis.
Collapse
Affiliation(s)
- Xiaorong Jia
- Department of DermatologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Li He
- Department of DermatologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Zhi Yang
- Department of DermatologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
| |
Collapse
|
30
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
31
|
Bioinformatics Identification of Ferroptosis-Associated Biomarkers and Therapeutic Compounds in Psoriasis. JOURNAL OF ONCOLOGY 2022; 2022:3818216. [PMID: 36276287 PMCID: PMC9581596 DOI: 10.1155/2022/3818216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
Purpose. Psoriasis is closely linked to ferroptosis. This study aimed to identify potential ferroptosis-associated genes in psoriasis using bioinformatics. Methods. Data from the GSE30999 dataset was downloaded from the Gene Expression Omnibus (GEO), and the ferroptosis-associated genes were retrieved from FerrDb. The differentially expressed ferroptosis-associated genes were identified using Venn diagrams. Subsequently, a network of protein-protein interactions (PPIs) between psoriasis targets and ferroptosis-associated genes was constructed based on the STRING database and analyzed by Cytoscape software. The Metascape portal conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Moreover, the expression of ferroptosis-related genes was verified in the GSE13355 dataset. Finally, the verified genes were used to predict the therapeutic drugs for psoriasis using the DGIdb/CMap database. SwissDock was used to examine ligand docking, and UCSF Chimera displayed the results visually. Results. Among 85 pairs of psoriasis lesion (LS) and no-lesion (NL) samples from patients, 19 ferroptosis-associated genes were found to be differentially expressed (3 upregulated genes and 16 downregulated genes). Based on the PPI results, these ferroptosis-associated genes interact with each other. The GO and KEGG enrichment analysis of differentially expressed ferroptosis-related genes indicated several enriched terms related to the oxidative stress response. The GSE13355 dataset verified the results of the bioinformatics analysis obtained from the GSE30999 dataset regarding SLC7A5, SLC7A11, and CHAC1. Psoriasis-related compounds corresponding to SLC7A5 and SLC7A11 were also identified, including Melphalan, Quisqualate, Riluzole, and Sulfasalazine. Conclusion. We identified 3 differentially expressed ferroptosis-related genes through bioinformatics analysis. SLC7A5, SLC7A11, and CHAC1 may affect the development of psoriasis by regulating ferroptosis. These results open new avenues in understanding the treatment of psoriasis.
Collapse
|
32
|
Xu J, Li J. Construction of a three commitment points for S phase entry cell cycle model and immune-related ceRNA network to explore novel therapeutic options for psoriasis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:13483-13525. [PMID: 36654055 DOI: 10.3934/mbe.2022630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
While competing endogenous RNAs (ceRNAs) play pivotal roles in various diseases, the proliferation and differentiation of keratinocytes are becoming a research focus in psoriasis. Therefore, the three commitment points for S phase entry (CP1-3) cell cycle model has pointed to a new research direction in these areas. However, it is unclear what role ceRNA regulatory mechanisms play in the interaction between keratinocytes and the immune system in psoriasis. In addition, the ceRNA network-based screening of potential therapeutic agents for psoriasis has not been explored. Therefore, we used multiple bioinformatics approaches to construct a ceRNA network for psoriasis, identified CTGF as the hub gene, and constructed a ceRNA subnetwork, after which validation datasets authenticated the results' accuracy. Subsequently, we used multiple online databases and the single-sample gene-set enrichment analysis algorithm, including the CP1-3 cell cycle model, to explore the mechanisms accounting for the increased proliferation and differentiation of keratinocytes and the possible roles of the ceRNA subnetwork in psoriasis. Next, we performed cell cycle and cell trajectory analyses based on a single-cell RNA-seq dataset of psoriatic skin biopsies. We also used weighted gene co-expression network analysis and single-gene batch correlation analysis-based gene set enrichment analysis to explore the functions of CTGF. Finally, we used the Connectivity Map to identify MS-275 (entinostat) as a novel treatment for psoriasis, SwissTargetPrediction to predict drug targets, and molecular docking to investigate the minimum binding energy and binding sites of the drug to target proteins.
Collapse
Affiliation(s)
- Jingxi Xu
- North Sichuan Medical College, Nanchong 637000, China
- Department of Rheumatology and Immunology, The First People's Hospital of Yibin, Yibin 644000, China
| | - Jiangtao Li
- Department of Rheumatology and Immunology, The First People's Hospital of Yibin, Yibin 644000, China
| |
Collapse
|
33
|
Shutova MS, Boehncke WH. Mechanotransduction in Skin Inflammation. Cells 2022; 11:2026. [PMID: 35805110 PMCID: PMC9265324 DOI: 10.3390/cells11132026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
In the process of mechanotransduction, the cells in the body perceive and interpret mechanical stimuli to maintain tissue homeostasis and respond to the environmental changes. Increasing evidence points towards dysregulated mechanotransduction as a pathologically relevant factor in human diseases, including inflammatory conditions. Skin is the organ that constantly undergoes considerable mechanical stresses, and the ability of mechanical factors to provoke inflammatory processes in the skin has long been known, with the Koebner phenomenon being an example. However, the molecular mechanisms and key factors linking mechanotransduction and cutaneous inflammation remain understudied. In this review, we outline the key players in the tissue's mechanical homeostasis, the available data, and the gaps in our current understanding of their aberrant regulation in chronic cutaneous inflammation. We mainly focus on psoriasis as one of the most studied skin inflammatory diseases; we also discuss mechanotransduction in the context of skin fibrosis as a result of chronic inflammation. Even though the role of mechanotransduction in inflammation of the simple epithelia of internal organs is being actively studied, we conclude that the mechanoregulation in the stratified epidermis of the skin requires more attention in future translational research.
Collapse
Affiliation(s)
- Maria S. Shutova
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland;
- Department of Dermatology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland;
- Department of Dermatology, Geneva University Hospitals, 1211 Geneva, Switzerland
| |
Collapse
|