1
|
Lisi S, Malerba F, Quaranta P, Florio R, Vitaloni O, Monaca E, Bruni Ercole B, Bitonti AR, Del Perugia O, Mignanelli M, Perrera P, Sabbatella R, Raimondi F, Piazza CR, Moles A, Alfano C, Pistello M, Cattaneo A. Selection and characterization of human scFvs targeting the SARS-CoV-2 nucleocapsid protein isolated from antibody libraries of COVID-19 patients. Sci Rep 2024; 14:15864. [PMID: 38982108 PMCID: PMC11233501 DOI: 10.1038/s41598-024-66558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
In 2019, the novel SARS-CoV-2 coronavirus emerged in China, causing the pneumonia named COVID-19. At the beginning, all research efforts were focused on the spike (S) glycoprotein. However, it became evident that the nucleocapsid (N) protein is pivotal in viral replication, genome packaging and evasion of the immune system, is highly immunogenic, which makes it another compelling target for antibody development alongside the spike protein. This study focused on the construction of single chain fragments variable (scFvs) libraries from SARS-CoV-2-infected patients to establish a valuable, immortalized and extensive antibodies source. We used the Intracellular Antibody Capture Technology to select a panel of scFvs against the SARS-CoV-2 N protein. The whole panel of scFv was expressed and characterized both as intrabodies and recombinant proteins. ScFvs were then divided into 2 subgroups: those that exhibited high binding activity to N protein when expressed in yeast or in mammalian cells as intrabodies, and those purified as recombinant proteins, displaying affinity for recombinant N protein in the nanomolar range. This panel of scFvs against the N protein represents a novel platform for research and potential diagnostic applications.
Collapse
Affiliation(s)
- Simonetta Lisi
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126, Pisa, Italy
| | - Francesca Malerba
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, 00161, Rome, Italy
| | - Paola Quaranta
- Retrovirus Centre, Department of Translational Research, University of Pisa, 56126, Pisa, Italy
- Virology Operative Unit, Pisa University Hospital, 56124, Pisa, Italy
| | - Rita Florio
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, 00161, Rome, Italy
| | - Ottavia Vitaloni
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126, Pisa, Italy
| | - Elisa Monaca
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90133, Palermo, Italy
| | - Bruno Bruni Ercole
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, 00161, Rome, Italy
| | | | - Olga Del Perugia
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126, Pisa, Italy
| | | | - Paola Perrera
- Retrovirus Centre, Department of Translational Research, University of Pisa, 56126, Pisa, Italy
| | - Raffaele Sabbatella
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90133, Palermo, Italy
| | | | - Carmen Rita Piazza
- Retrovirus Centre, Department of Translational Research, University of Pisa, 56126, Pisa, Italy
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Anna Moles
- Genomnia Srl, 20091, Bresso, MI, Italy
- Institute of Biochemistry and Cell Biology, CNR, 80131, Napoli, Italy
| | - Caterina Alfano
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90133, Palermo, Italy
| | - Mauro Pistello
- Retrovirus Centre, Department of Translational Research, University of Pisa, 56126, Pisa, Italy
- Virology Operative Unit, Pisa University Hospital, 56124, Pisa, Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126, Pisa, Italy.
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, 00161, Rome, Italy.
| |
Collapse
|
2
|
Lisi S, Trovato M, Vitaloni O, Fantini M, Chirichella M, Tognini P, Cornuti S, Costa M, Groth M, Cattaneo A. Acetylation-Specific Interference by Anti-Histone H3K9ac Intrabody Results in Precise Modulation of Gene Expression. Int J Mol Sci 2022; 23:ijms23168892. [PMID: 36012156 PMCID: PMC9408029 DOI: 10.3390/ijms23168892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Among Histone post-translational modifications (PTMs), lysine acetylation plays a pivotal role in the epigenetic regulation of gene expression, mediated by chromatin modifying enzymes. Due to their activity in physiology and pathology, several chemical compounds have been developed to inhibit the function of these proteins. However, the pleiotropy of these classes of proteins represents a weakness of epigenetic drugs. Ideally, a new generation of epigenetic drugs should target with molecular precision individual acetylated lysines on the target protein. We exploit a PTM-directed interference, based on an intrabody (scFv-58F) that selectively binds acetylated lysine 9 of histone H3 (H3K9ac), to test the hypothesis that targeting H3K9ac yields more specific effects than inhibiting the corresponding HAT enzyme that installs that PTM. In yeast scFv-58F modulates, gene expression in a more specific way, compared to two well-established HAT inhibitors. This PTM-specific interference modulated expression of genes involved in ribosome biogenesis and function. In mammalian cells, the scFv-58F induces exclusive changes in the H3K9ac-dependent expression of specific genes. These results suggest the H3K9ac-specific intrabody as the founder of a new class of molecules to directly target histone PTMs, inverting the paradigm from inhibiting the writer enzyme to acting on the PTM.
Collapse
Affiliation(s)
- Simonetta Lisi
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Matteo Trovato
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | | | - Marco Fantini
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
| | | | - Paola Tognini
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Sara Cornuti
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Mario Costa
- Institute of Neurosciences, Consiglio Nazionale Delle Ricerche, 56124 Pisa, Italy
| | - Marco Groth
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
- Correspondence: ; Tel.: +39-050-509320
| |
Collapse
|
3
|
Barakat S, Berksöz M, Zahedimaram P, Piepoli S, Erman B. Nanobodies as molecular imaging probes. Free Radic Biol Med 2022; 182:260-275. [PMID: 35240292 DOI: 10.1016/j.freeradbiomed.2022.02.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Camelidae derived single-domain antibodies (sdAbs), commonly known as nanobodies (Nbs), are the smallest antibody fragments with full antigen-binding capacity. Owing to their desirable properties such as small size, high specificity, strong affinity, excellent stability, and modularity, nanobodies are on their way to overtake conventional antibodies in terms of popularity. To date, a broad range of nanobodies have been generated against different molecular targets with applications spanning basic research, diagnostics, and therapeutics. In the field of molecular imaging, nanobody-based probes have emerged as a powerful tool. Radioactive or fluorescently labeled nanobodies are now used to detect and track many targets in different biological systems using imaging techniques. In this review, we provide an overview of the use of nanobodies as molecular probes. Additionally, we discuss current techniques for the generation, conjugation, and intracellular delivery of nanobodies.
Collapse
Affiliation(s)
- Sarah Barakat
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Melike Berksöz
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Pegah Zahedimaram
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Sofia Piepoli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| | - Batu Erman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
4
|
Gilodi M, Lisi S, F. Dudás E, Fantini M, Puglisi R, Louka A, Marcatili P, Cattaneo A, Pastore A. Selection and Modelling of a New Single-Domain Intrabody Against TDP-43. Front Mol Biosci 2022; 8:773234. [PMID: 35237655 PMCID: PMC8884700 DOI: 10.3389/fmolb.2021.773234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder associated to deteriorating motor and cognitive functions, and short survival. The disease is caused by neuronal death which results in progressive muscle wasting and weakness, ultimately leading to lethal respiratory failure. The misbehaviour of a specific protein, TDP-43, which aggregates and becomes toxic in ALS patient’s neurons, is supposed to be one of the causes. TDP-43 is a DNA/RNA-binding protein involved in several functions related to nucleic acid metabolism. Sequestration of TDP-43 aggregates is a possible therapeutic strategy that could alleviate or block pathology. Here, we describe the selection and characterization of a new intracellular antibody (intrabody) against TDP-43 from a llama nanobody library. The structure of the selected intrabody was predicted in silico and the model was used to suggest mutations that enabled to improve its expression yield, facilitating its experimental validation. We showed how coupling experimental methodologies with in silico design may allow us to obtain an antibody able to recognize the RNA binding regions of TDP-43. Our findings illustrate a strategy for the mitigation of TDP-43 proteinopathy in ALS and provide a potential new tool for diagnostics.
Collapse
Affiliation(s)
- Martina Gilodi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Dementia Research Institute at King’s College London, The Wohl Institute, London, United Kingdom
| | - Simonetta Lisi
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, Pisa, Italy
| | - Erika F. Dudás
- Dementia Research Institute at King’s College London, The Wohl Institute, London, United Kingdom
| | - Marco Fantini
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, Pisa, Italy
| | - Rita Puglisi
- Dementia Research Institute at King’s College London, The Wohl Institute, London, United Kingdom
| | - Alexandra Louka
- Dementia Research Institute at King’s College London, The Wohl Institute, London, United Kingdom
| | - Paolo Marcatili
- Department of Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, Pisa, Italy
- *Correspondence: Annalisa Pastore, ; Antonino Cattaneo,
| | - Annalisa Pastore
- Dementia Research Institute at King’s College London, The Wohl Institute, London, United Kingdom
- *Correspondence: Annalisa Pastore, ; Antonino Cattaneo,
| |
Collapse
|
5
|
Canning P, Bataille C, Bery N, Milhas S, Hayes A, Raynaud F, Miller A, Rabbitts T. Competitive SPR using an intracellular anti-LMO2 antibody identifies novel LMO2-interacting compounds. J Immunol Methods 2021; 494:113051. [PMID: 33794223 PMCID: PMC8208243 DOI: 10.1016/j.jim.2021.113051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/10/2021] [Accepted: 03/26/2021] [Indexed: 01/13/2023]
Abstract
The use of intracellular antibodies as templates to derive surrogate compounds is an important objective because intracellular antibodies can be employed initially for target validation in pre-clinical assays and subsequently employed in compound library screens. LMO2 is a T cell oncogenic protein activated in the majority of T cell acute leukaemias. We have used an inhibitory intracellular antibody fragment as a competitor in a small molecule library screen using competitive surface plasmon resonance (cSPR) to identify compounds that bind to LMO2. We selected four compounds that bind to LMO2 but not when the anti-LMO2 intracellular antibody fragment is bound to it. These findings further illustrate the value of intracellular antibodies in the initial stages of drug discovery campaigns and more generally antibodies, or antibody fragments, can be the starting point for chemical compound development as surrogates of the antibody combining site.
Collapse
Affiliation(s)
- Peter Canning
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Carole Bataille
- Chemistry Research Laboratory, 12 Mansfield Rd, Oxford OX1 3TA, UK
| | - Nicolas Bery
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Sabine Milhas
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Angela Hayes
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Florence Raynaud
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Ami Miller
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Terry Rabbitts
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK.
| |
Collapse
|
6
|
Cattaneo A, Chirichella M. Targeting the Post-translational Proteome with Intrabodies. Trends Biotechnol 2018; 37:578-591. [PMID: 30577991 DOI: 10.1016/j.tibtech.2018.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
The complexity of the proteome exceeds that of the genome. Post-translational modifications (PTMs) and conformational changes of proteins trigger new molecular interactions whose systematic elucidation is hampered by the lack of specific tools. PTMs are particularly relevant for epigenetic regulation of gene expression; a field of translational interest. However, state-of-the-art inhibitors used in epigenetic studies and therapies target modifier enzymes such as acetylases and deacetylases, rather than a single PTM protein per se. The systematic development of anti-PTM intrabodies, which allow targeting of intracellular proteins in the context of living cells, will help reaching a new level of precision and specificity in the description of epigenetics, paving the way to new therapeutic opportunities.
Collapse
Affiliation(s)
- Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, 7 - 56126 Pisa, Italy.
| | - Michele Chirichella
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, 7 - 56126 Pisa, Italy; Current address: Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| |
Collapse
|
7
|
Nguyen TD, Nagamune T, Kawahara M. A Suicide Switch Directly Eliminates Intracellular scFv Oligomers in the Cytoplasm of Mammalian Cells. Biotechnol J 2018; 14:e1800350. [PMID: 30171736 DOI: 10.1002/biot.201800350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/25/2018] [Indexed: 11/10/2022]
Abstract
As intracellular antibodies (intrabodies) are highly promising tools for drug discovery, an innovative antibody screening platform in mammalian cells was previously developed by a single-chain Fv (scFv)-c-kit growth sensor, which successfully selected rabies nucleoprotein and phosphoprotein-specific intrabodies from a synthetic scFv library. Since the scFv-c-kit growth sensor releases a growth signal after forming oligomers due to binding to an oligomeric antigen, it is critical to use a library which does not contain self-oligomeric scFvs to avoid the off-target signal of the growth sensor. Here, a novel method to eliminate self-oligomeric scFvs directly in the cytoplasm of mammalian cells is presented. A suicide switch by fusing an scFv with a cell-death signaling domain to eliminate scFv oligomers is developed. It is found that among four cell-death signaling domains, a suicide switch by fusing scFv with Fas-associated death domain (FADD) can selectively reduce oligomeric scFvs. Furthermore, the library after eliminating scFv oligomers results in higher efficiency in the intrabody selection platform with a growth sensor. Collectively, the scFv-FADD suicide switch can be applied to eliminate oligomeric scFvs from a library, which can consequently improve the quality of intracellular scFv libraries and accelerate the discovery of intrabodies in the future.
Collapse
Affiliation(s)
- Thuy Duong Nguyen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Teruyuki Nagamune
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masahiro Kawahara
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
8
|
Recent advances in the selection and identification of antigen-specific nanobodies. Mol Immunol 2018; 96:37-47. [PMID: 29477934 DOI: 10.1016/j.molimm.2018.02.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/12/2018] [Accepted: 02/18/2018] [Indexed: 01/21/2023]
Abstract
Nanobodies represent the next-generation antibody-derived biologics with significant advances over conventional antibodies. Several rapid and robust techniques for isolating highly specific nanobodies have been developed. Antigen specific nanobodies are selected from constructed nanobody libraries, which can be classified into 3 main types: immune library, naïve library, and semisynthetic/synthetic library. The immune library is the most widely used strategy for nanobody screening. Target specific nanobodies are highly enriched in immune libraries than in non-immune libraries; however, it is largely limited by the natural antigenicity of antigens. The naïve library is thus developed. Despite the lack of somatic maturation, protein engineering can be employed to significantly increase the affinities of selected binders. However, a substantial amount of blood samples collected from a large number of individual animals is a prerequisite to ensure the diversity of the naïve library. With this issue considered, the semisynthetic/synthetic library may be a promising path toward obtaining a limitless source of nanobodies against a variety of antigens without the need of animals. In this review, we summarize the state-of-the-art screening technologies with different libraries. The approaches presented here can further boost the diverse applications of nanobodies in biomedicine and biotechnology.
Collapse
|
9
|
Baudisch B, Pfort I, Sorge E, Conrad U. Nanobody-Directed Specific Degradation of Proteins by the 26S-Proteasome in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:130. [PMID: 29479361 PMCID: PMC5811635 DOI: 10.3389/fpls.2018.00130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/23/2018] [Indexed: 05/18/2023]
Abstract
Here, we present data showing the directed degradation of target proteins recognized by a specific nanobody in transgenic plants. Green fluorescent protein was depleted by a chimeric nanobody fused to a distinct F-box domain, which enables protein degradation via the ubiquitin proteasome pathway. This technique could thus be used to knock out other proteins of interest in planta using specific, high-affinity binding proteins.
Collapse
|
10
|
A novel intracellular antibody against the E6 oncoprotein impairs growth of human papillomavirus 16-positive tumor cells in mouse models. Oncotarget 2017; 7:15539-53. [PMID: 26788990 PMCID: PMC4941259 DOI: 10.18632/oncotarget.6925] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Single-chain variable fragments (scFvs) expressed as “intracellular antibodies” (intrabodies) can target intracellular antigens to hamper their function efficaciously and specifically. Here we use an intrabody targeting the E6 oncoprotein of Human papillomavirus 16 (HPV16) to address the issue of a non-invasive therapy for HPV cancer patients. A scFv against the HPV16 E6 was selected by Intracellular Antibody Capture Technology and expressed as I7nuc in the nucleus of HPV16-positive SiHa, HPV-negative C33A and 293T cells. Colocalization of I7nuc and recombinant E6 was observed in different cell compartments, obtaining evidence of E6 delocalization ascribable to I7nuc. In SiHa cells, I7nuc expressed by pLNCX retroviral vector was able to partially inhibit degradation of the main E6 target p53, and induced p53 accumulation in nucleus. When analyzing in vitro activity on cell proliferation and survival, I7nuc was able to decrease growth inducing late apoptosis and necrosis of SiHa cells. Finally, I7nuc antitumor activity was demonstrated in two pre-clinical models of HPV tumors. C57BL/6 mice were injected subcutaneously with HPV16-positive TC-1 or C3 tumor cells, infected with pLNCX retroviral vector expressing or non-expressing I7nuc. All the mice injected with I7nuc-expressing cells showed a clear delay in tumor onset; 60% and 40% of mice receiving TC-1 and C3 cells, respectively, remained tumor-free for 17 weeks of follow-up, whereas 100% of the controls were tumor-bearing 20 days post-inoculum. Our data support the therapeutic potential of E6-targeted I7nuc against HPV tumors.
Collapse
|
11
|
Fantini M, Pandolfini L, Lisi S, Chirichella M, Arisi I, Terrigno M, Goracci M, Cremisi F, Cattaneo A. Assessment of antibody library diversity through next generation sequencing and technical error compensation. PLoS One 2017; 12:e0177574. [PMID: 28505201 PMCID: PMC5432181 DOI: 10.1371/journal.pone.0177574] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/28/2017] [Indexed: 12/30/2022] Open
Abstract
Antibody libraries are important resources to derive antibodies to be used for a wide range of applications, from structural and functional studies to intracellular protein interference studies to developing new diagnostics and therapeutics. Whatever the goal, the key parameter for an antibody library is its complexity (also known as diversity), i.e. the number of distinct elements in the collection, which directly reflects the probability of finding in the library an antibody against a given antigen, of sufficiently high affinity. Quantitative evaluation of antibody library complexity and quality has been for a long time inadequately addressed, due to the high similarity and length of the sequences of the library. Complexity was usually inferred by the transformation efficiency and tested either by fingerprinting and/or sequencing of a few hundred random library elements. Inferring complexity from such a small sampling is, however, very rudimental and gives limited information about the real diversity, because complexity does not scale linearly with sample size. Next-generation sequencing (NGS) has opened new ways to tackle the antibody library complexity quality assessment. However, much remains to be done to fully exploit the potential of NGS for the quantitative analysis of antibody repertoires and to overcome current limitations. To obtain a more reliable antibody library complexity estimate here we show a new, PCR-free, NGS approach to sequence antibody libraries on Illumina platform, coupled to a new bioinformatic analysis and software (Diversity Estimator of Antibody Library, DEAL) that allows to reliably estimate the complexity, taking in consideration the sequencing error.
Collapse
Affiliation(s)
- Marco Fantini
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | | | - Simonetta Lisi
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | | | - Ivan Arisi
- European Brain Research Institute, Roma, Italy
| | - Marco Terrigno
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | | | | | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
- European Brain Research Institute, Roma, Italy
- * E-mail:
| |
Collapse
|
12
|
Abstract
Ectopically expressed intracellular recombinant antibodies, or intrabodies, are powerful tools to visualize proteins and study their function in fixed or living cells. However, many intrabodies are insoluble and aggregate in the reducing environment of the cytosol. To solve this problem, we describe an approach based on GFP-tagged intrabodies. In this protocol, the GFP is used both as a folding-reporter to select correctly folded intrabodies and as a fluorescent tag to localize the scFv and its associated antigen in eukaryotic cells. Starting from a scFv gene cloned in a retroviral vector, we describe retrovirus production, cell line transduction, and soluble intrabody characterization by microscopy and FACS analysis.
Collapse
|
13
|
Post-translational selective intracellular silencing of acetylated proteins with de novo selected intrabodies. Nat Methods 2017; 14:279-282. [DOI: 10.1038/nmeth.4144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/30/2016] [Indexed: 01/03/2023]
|
14
|
Leenheer D, ten Dijke P, Hipolito CJ. A current perspective on applications of macrocyclic-peptide-based high-affinity ligands. Biopolymers 2016; 106:889-900. [PMID: 27352774 PMCID: PMC5132055 DOI: 10.1002/bip.22900] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/24/2016] [Accepted: 05/31/2016] [Indexed: 01/05/2023]
Abstract
Monoclonal antibodies can bind with high affinity and high selectivity to their targets. As a tool in therapeutics or diagnostics, however, their large size (∼150 kDa) reduces penetration into tissue and prevents passive cellular uptake. To overcome these and other problems, minimized protein scaffolds have been chosen or engineered, with care taken to not compromise binding affinity or specificity. An alternate approach is to begin with a minimal non-antibody scaffold and select functional ligands from a de novo library. We will discuss the structure, production, applications, strengths, and weaknesses of several classes of antibody-derived ligands, that is, antibodies, intrabodies, and nanobodies, and nonantibody-derived ligands, that is, monobodies, affibodies, and macrocyclic peptides. In particular, this review is focussed on macrocyclic peptides produced by the Random non-standard Peptides Integrated Discovery (RaPID) system that are small in size (typically ∼2 kDa), but are able to perform tasks typically handled by larger proteinaceous ligands.
Collapse
Affiliation(s)
- Daniël Leenheer
- Ph.D. Program in Human Biology, School of Integrative and Global MajorsUniversity of TsukubaTsukubaIbarakiJapan
| | - Peter ten Dijke
- Leiden University Medical Center, Department of Molecular Cell BiologyLeidenSouth HollandThe Netherlands
- Cancer Signaling, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of TsukubaTsukubaIbarakiJapan
| | - Christopher John Hipolito
- Cancer Signaling, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of TsukubaTsukubaIbarakiJapan
| |
Collapse
|
15
|
Marschall ALJ, Dübel S, Böldicke T. Specific in vivo knockdown of protein function by intrabodies. MAbs 2015; 7:1010-35. [PMID: 26252565 PMCID: PMC4966517 DOI: 10.1080/19420862.2015.1076601] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/02/2023] Open
Abstract
Intracellular antibodies (intrabodies) are recombinant antibody fragments that bind to target proteins expressed inside of the same living cell producing the antibodies. The molecules are commonly used to study the function of the target proteins (i.e., their antigens). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals, and complements knockdown techniques such as RNAi, miRNA and small molecule inhibitors, by-passing various limitations and disadvantages of these methods. The advantages of intrabodies include very high specificity for the target, the possibility to knock down several protein isoforms by one intrabody and targeting of specific splice variants or even post-translational modifications. Different types of intrabodies must be designed to target proteins at different locations, typically either in the cytoplasm, in the nucleus or in the endoplasmic reticulum (ER). Most straightforward is the use of intrabodies retained in the ER (ER intrabodies) to knock down the function of proteins passing the ER, which disturbs the function of members of the membrane or plasma proteomes. More effort is needed to functionally knock down cytoplasmic or nuclear proteins because in this case antibodies need to provide an inhibitory effect and must be able to fold in the reducing milieu of the cytoplasm. In this review, we present a broad overview of intrabody technology, as well as applications both of ER and cytoplasmic intrabodies, which have yielded valuable insights in the biology of many targets relevant for drug development, including α-synuclein, TAU, BCR-ABL, ErbB-2, EGFR, HIV gp120, CCR5, IL-2, IL-6, β-amyloid protein and p75NTR. Strategies for the generation of intrabodies and various designs of their applications are also reviewed.
Collapse
Affiliation(s)
- Andrea LJ Marschall
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics; Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics; Braunschweig, Germany
| | - Thomas Böldicke
- Helmholtz Centre for Infection Research, Recombinant Protein Expression/Intrabody Unit, Helmholtz Centre for Infection Research; Braunschweig, Germany
| |
Collapse
|
16
|
Conformational targeting of intracellular Aβ oligomers demonstrates their pathological oligomerization inside the endoplasmic reticulum. Nat Commun 2014; 5:3867. [PMID: 24861166 PMCID: PMC4050278 DOI: 10.1038/ncomms4867] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/10/2014] [Indexed: 01/18/2023] Open
Abstract
Aβ oligomers (AβOs) are crucially involved in Alzheimer’s Disease (AD). However, the lack of selective approaches for targeting these polymorphic Aβ assemblies represents a major hurdle in understanding their biosynthesis, traffic and actions in living cells. Here, we established a subcellularly localized conformational-selective interference (CSI) approach, based on the expression of a recombinant antibody fragment against AβOs in the endoplasmic reticulum (ER). By CSI, we can control extra- and intracellular pools of AβOs produced in an AD-relevant cell model, without interfering with the maturation and processing of the Aβ precursor protein. The anti-AβOs intrabody selectively intercepts critical AβO conformers in the ER, modulating their assembly and controlling their actions in pathways of cellular homeostasis and synaptic signalling. Our results demonstrate that intracellular Aβ undergoes pathological oligomerization through critical conformations formed inside the ER. This establishes intracellular AβOs as key targets for AD treatment and presents CSI as a potential targeting strategy. Intracellular Aß oligomers have been linked to Alzheimer’s disease but details about their biosynthesis and function have been hard to obtain due to the lack of selective approaches for targeting them. Here, Meli et al. develop a strategy using recombinant antibodies to target Aß oligomers in the endoplasmic reticulum of cells, and perform mechanistic studies in cellular models of the disease.
Collapse
|
17
|
Chiusaroli R, Visentini M, Galimberti C, Casseler C, Mennuni L, Covaceuszach S, Lanza M, Ugolini G, Caselli G, Rovati LC, Visintin M. Targeting of ADAMTS5's ancillary domain with the recombinant mAb CRB0017 ameliorates disease progression in a spontaneous murine model of osteoarthritis. Osteoarthritis Cartilage 2013; 21:1807-10. [PMID: 23954517 DOI: 10.1016/j.joca.2013.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/01/2013] [Accepted: 08/07/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE ADAMTS5 (aggrecanase-2) has been demonstrated to be crucial in the development of osteoarthritis (OA), by use of several mouse mutants carrying either truncated, catalytically inactive enzymes or aggrecanase-resistant mutant aggrecan. We have selected recombinant monoclonal antibodies directed against ADAMTS5, by using Intracellular Antibody Capture Technology (IACT). CRB0017 revealed very high affinity for the enzyme in Biacore analyses and very good specificity in a panel of binding assays. Therefore, we tested CRB0017 in a relevant spontaneous OA model, the STR/ort mouse. DESIGN STR/ort male mice were recruited at 5 months of age, and treated intra-articularly in each knee with CRB0017 1.2 μg, CRB0017 12 μg, or vehicle. After 6 weeks, the intra-articular administration of CRB0017 was repeated with the same doses. After 3 months from recruitment, the animals were sacrificed and the femorotibial joints processed for histology and scored in a blind fashion according to both Mankin's and the OARSI methods. RESULTS AND CONCLUSIONS All histological scores were significantly decreased in the CRB0017 12 μg/knee group compared to vehicle, while administration of CRB0017 1.2 μg was associated with a trend to a decrease in the same parameters. Therefore, CRB0017 administered twice in 3 months could modify the course of OA in the STR/ort mouse, by delaying cartilage breakdown as assessed histologically. The procedure of blind scoring of the histological samples clearly showed that knee intra-articular administration of CRB0017, an anti-ADAMTS5 antibody, dose-dependently improved disease progression in a relevant animal model of OA.
Collapse
Affiliation(s)
- R Chiusaroli
- R&D Division, Rottapharm S.p.A., 20900 Monza, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Immunosympathectomy as the first phenotypic knockout with antibodies. Proc Natl Acad Sci U S A 2013; 110:4877-85. [PMID: 23515328 DOI: 10.1073/pnas.1217586110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In a PNAS Classic Article published in 1960, Rita Levi-Montalcini offered formal and conclusive proof that endogenous NGF was responsible for the survival of sympathetic neurons in vivo. Thus ended an experimental tour de force lasting a decade, starting with the demonstration that a humoral factor, produced from a tumor transplanted in a chicken embryo, was responsible for stimulating outgrowth of nerve fibers from sympathetic and sensory neurons. From a more general methodological point of view, this work provided a breakthrough in the quest to achieve targeted loss of function and experimentally validate the function of biological molecules. Finally, this work provided an example of the ablation of a specific neuronal subpopulation in an otherwise intact nervous system, an immunological knife of unsurpassed effectiveness and precision. The novelty and the importance of the PNAS Classic Article is discussed here, collocating it within the context of the particular moment of the NGF discovery saga, of Rita Levi-Montalcini's scientific and academic career, and of the general scientific context of those years. This seminal work, involving the use of antibodies for phenotypic knockout in vivo, planted seeds that were to bear new fruit many years later with the advent of monoclonal antibodies and recombinant antibody technologies.
Collapse
|
19
|
Pellis M, Pardon E, Zolghadr K, Rothbauer U, Vincke C, Kinne J, Dierynck I, Hertogs K, Leonhardt H, Messens J, Muyldermans S, Conrath K. A bacterial-two-hybrid selection system for one-step isolation of intracellularly functional Nanobodies. Arch Biochem Biophys 2012; 526:114-23. [PMID: 22583807 DOI: 10.1016/j.abb.2012.04.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
Camel single-domain antibody fragments or Nanobodies, are practical in a wide range of applications. Their unique biochemical and biophysical properties permit an intracellular expression and antigen targeting. The availability of an efficient intracellular selection step would immediately identify the best intracellularly performing functional antibody fragments. Therefore, we assessed a bacterial-two-hybrid system to retrieve such Nanobodies. With GFP as an antigen we demonstrate that antigen-specific Nanobodies of sub-micromolar affinity and stability above 30 kJ/mol, at a titer of 10(-4) can be retrieved in a single-step selection. This was further proven practically by the successful recovery from an 'immune' library of multiple stable, antigen-specific Nanobodies of good affinity for HIV-1 integrase or nucleoside hydrolase. The sequence diversity, intrinsic domain stability, antigen-specificity and affinity of these binders compare favorably to those that were retrieved in parallel by phage display pannings.
Collapse
Affiliation(s)
- Mireille Pellis
- Laboratory Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Paoletti F, Malerba F, Konarev PV, Visintin M, Scardigli R, Fasulo L, Lamba D, Svergun DI, Cattaneo A. Direct intracellular selection and biochemical characterization of a recombinant anti-proNGF single chain antibody fragment. Arch Biochem Biophys 2012; 522:26-36. [PMID: 22516657 DOI: 10.1016/j.abb.2012.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/30/2012] [Accepted: 04/03/2012] [Indexed: 01/06/2023]
Abstract
proNGF, the precursor of the neurotrophin NGF, is widely expressed in central and peripheral nervous system. Its physiological functions are still largely unknown, although it emerged from studies in the last decade that proNGF has additional and distinct functions with respect to NGF, besides acting chaperone-like for NGF folding during its biogenesis. The regulation of proNGF/NGF ratio represents a crucial process for homeostasis of brain and other tissues, and understanding the molecular aspects of these differences is important. We report the selection and characterization of a recombinant monoclonal anti-proNGF antibody in single chain Fv fragment (scFv) format. The selection exploited the Intracellular Antibody Capture Technology (IACT), starting from a naïve mouse SPLINT (Single Pot Library of INTracellular antibodies) library. This antibody (scFv FPro10) was expressed recombinantly in Escherichia coli, was proven to be highly soluble and stable, and thoroughly characterized from the biochemical-biophysical point of view. scFv FPro10 displays high affinity and specificity for proNGF, showing no cross-reactivity with other pro-neurotrophins. A structural model was obtained by SAXS. scFv FPro10 represents a new tool to be exploited for the selective immunoanalysis of proNGF, both in vitro and in vivo, and might help in understanding the molecular function of proNGF in neurodegeneration.
Collapse
Affiliation(s)
- Francesca Paoletti
- EBRI-European Brain Research Institute, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Laver JD, Ancevicius K, Sollazzo P, Westwood JT, Sidhu SS, Lipshitz HD, Smibert CA. Synthetic antibodies as tools to probe RNA-binding protein function. MOLECULAR BIOSYSTEMS 2012; 8:1650-7. [PMID: 22481296 DOI: 10.1039/c2mb00007e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNA-binding proteins (RBPs) have essential roles in post-transcriptional regulation of gene expression. They bind sequence elements in specific mRNAs and control their splicing, transport, localization, translation, and stability. A complete understanding of RBP function requires identification of the target RNAs that an RBP regulates, the mechanisms by which the RBP regulates these targets, and the biological consequences for the cell in which these transactions occur. Antibodies are key tools in such studies: first, mRNA targets of RBPs can be identified by co-immunoprecipitation of RBPs with their associated RNAs followed by microarray analysis or sequencing; second, partner proteins can be identified by immunoprecipitation of the RBP followed by mass spectrometry; third, the mechanisms and functions of RBPs can be inferred from loss-of-function studies employing antibodies that block RBP-RNA interactions. One potentially powerful approach to making antibodies for such studies is the generation of synthetic antibodies using phage display, which involves in vitro selection using a human-designed antibody library to generate antibodies that recognize a target protein. Using two well-characterized Drosophila RNA-binding proteins, Staufen and Smaug, for proof-of-principle, we demonstrate that synthetic antibodies can be generated and used either to perform RNA-coimmunoprecipitations (RIPs) to identify RBP-bound mRNAs, or to block RBP-RNA interactions. Given that synthetic antibody selection protocols are amenable to high-throughput antibody production, these results demonstrate that synthetic antibodies can be powerful tools for genome-wide studies of RBP function.
Collapse
Affiliation(s)
- John D Laver
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Guglielmi L, Denis V, Vezzio-Vié N, Bec N, Dariavach P, Larroque C, Martineau P. Selection for intrabody solubility in mammalian cells using GFP fusions. Protein Eng Des Sel 2011; 24:873-81. [PMID: 21997307 DOI: 10.1093/protein/gzr049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Single-chain antibody fragments (scFv) expressed in the cytoplasm of mammalian cells, also called intrabodies, have many applications in functional proteomics. These applications are, however, limited by the aggregation-prone behaviour of many intrabodies. We show here that two scFv with highly homologous sequences and comparable soluble expression levels in Escherichia coli cytoplasm have different behaviours in mammalian cells. When over-expressed, one of the scFv aggregates in the cytoplasm whereas the second one is soluble and active. When expressed at low levels, using a retroviral vector, as a fusion with the green fluorescent protein (GFP) the former does not form aggregates and is degraded, resulting in weakly fluorescent cells, whereas the latter is expressed as a soluble protein, resulting in strongly fluorescent cells. These data suggest that the GFP signal can be used to evaluate the soluble expression of intrabodies in mammalian cells. When applied to a subset of an E.coli-optimised intrabody library, we showed that the population of GFP+ cells contains indeed soluble mammalian intrabodies. Altogether, our data demonstrate that the requirements for soluble intrabody expression are different in E.coli and mammalian cells, and that intrabody libraries can be directly optimised in human cells using a simple GFP-based assay.
Collapse
Affiliation(s)
- Laurence Guglielmi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier F-34298, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Tanaka T, Sewell H, Waters S, Phillips SEV, Rabbitts TH. Single domain intracellular antibodies from diverse libraries: emphasizing dual functions of LMO2 protein interactions using a single VH domain. J Biol Chem 2011; 286:3707-16. [PMID: 20980262 PMCID: PMC3030373 DOI: 10.1074/jbc.m110.188193] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Indexed: 11/06/2022] Open
Abstract
Interfering intracellular antibodies are valuable for biological studies as drug surrogates and as potential macromolecular drugs per se. Their application is still limited because of the difficulty of acquisition of functional intracellular antibodies. We describe the use of the new intracellular antibody capture procedure (IAC(3)) to facilitate direct isolation of functional single domain antibody fragments using four independent target molecules (LMO2, TP53, CRAF1, and Hoxa9) from a set of diverse libraries. Initially, these have variability in only one of the three antigen-binding CDR regions of VH or VL and first round single domains are affinity matured by iterative randomization of the two other CDRs and reselection. We highlight the approach using a single domain binding to LMO2 protein. Our results show that interfering with LMO2 protein function demonstrates a role specifically in erythroid differentiation, confirm a necessary and sufficient function for LMO2 as a cancer therapy target in T-cell neoplasia and allowed for the first time production of soluble recombinant LMO2 protein by co-expression with intracellular domain antibodies. Co-crystallization of LMO2 and the anti-LMO2 VH protein was successful. These results demonstrate that this third generation IAC(3) offers a robust toolbox for various biomedical applications and consolidates functional features of the LMO2 protein complex, which includes the importance of Lmo2-Ldb1 protein interaction.
Collapse
Affiliation(s)
- Tomoyuki Tanaka
- From the Leeds Institute of Molecular Medicine, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom and
| | - Helen Sewell
- From the Leeds Institute of Molecular Medicine, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom and
| | - Simon Waters
- From the Leeds Institute of Molecular Medicine, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom and
| | - Simon E. V. Phillips
- Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0FA, United Kingdom
| | - Terence H. Rabbitts
- From the Leeds Institute of Molecular Medicine, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom and
| |
Collapse
|
24
|
Vielemeyer O, Nizak C, Jimenez AJ, Echard A, Goud B, Camonis J, Rain JC, Perez F. Characterization of single chain antibody targets through yeast two hybrid. BMC Biotechnol 2010; 10:59. [PMID: 20727208 PMCID: PMC2936416 DOI: 10.1186/1472-6750-10-59] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/22/2010] [Indexed: 05/12/2023] Open
Abstract
Background Due to their unique ability to bind their targets with high fidelity, antibodies are used widely not only in biomedical research, but also in many clinical applications. Recombinant antibodies, including single chain variable fragments (scFv), are gaining momentum because they allow powerful in vitro selection and manipulation without loss of function. Regardless of the ultimate application or type of antibody used, precise understanding of the interaction between the antibody's binding site and its specific target epitope(s) is of great importance. However, such data is frequently difficult to obtain. Results We describe an approach that allows detailed characterization of a given antibody's target(s) using the yeast two-hybrid system. Several recombinant scFv were used as bait and screened against highly complex cDNA libraries. Systematic sequencing of all retained clones and statistical analysis allowed efficient ranking of the prey fragments. Multiple alignment of the obtained cDNA fragments provided a selected interacting domain (SID), efficiently narrowing the epitope-containing region. Interactions between antibodies and their respective targets were characterized for several scFv. For AA2 and ROF7, two conformation-specific sensors that exclusively bind the activated forms of the small GTPases Rab6 and Rab1 respectively, only fragments expressing the entire target protein's core region were retained. This strongly suggested interaction with a non-linear epitope. For two other scFv, TA10 and SF9, which recognize the large proteins giantin and non-muscle myosin IIA, respectively, precise antibody-binding regions within the target were defined. Finally, for some antibodies, secondary targets within and across species could be revealed. Conclusions Our method, utilizing the yeast two-hybrid technology and scFv as bait, is a simple yet powerful approach for the detailed characterization of antibody targets. It allows precise domain mapping for linear epitopes, confirmation of non-linear epitopes for conformational sensors, and detection of secondary binding partners. This approach may thus prove to be an elegant and rapid method for the target characterization of newly obtained scFv antibodies. It may be considered prior to any research application and particularly before any use of such recombinant antibodies in clinical medicine.
Collapse
Affiliation(s)
- Ole Vielemeyer
- Institut Curie-Research Center, 26 rue d'Ulm, Paris cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pérez-Martínez D, Tanaka T, Rabbitts TH. Intracellular antibodies and cancer: new technologies offer therapeutic opportunities. Bioessays 2010; 32:589-98. [PMID: 20544739 DOI: 10.1002/bies.201000009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since the realisation that the antigen-binding regions of antibodies, the variable (V) regions, can be uncoupled from the rest of the molecule to create fragments that recognise and abrogate particular protein functions in cells, the use of antibody fragments inside cells has become an important tool in bioscience. Diverse libraries of antibody fragments plus in vivo screening can be used to isolate single chain variable fragments comprising VH and VL segments or single V-region domains. Some of these are interfering antibody fragments that compete with protein-protein interactions, providing lead molecules for drug interactions that until now have been considered difficult or undruggable. It may be possible to deliver or express antibody fragments in target cells as macrodrugs per se. In future incarnations of intracellular antibodies, however, the structural information of the interaction interface of target and antibody fragment should facilitate development of binding site mimics as small drug-like molecules. This is a new dawn for intracellular antibody fragments both as macrodrugs and as precursors of drugs to treat human diseases and should finally lead to the removal of the epithet of the 'undruggable' protein-protein interactions.
Collapse
Affiliation(s)
- David Pérez-Martínez
- Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, Section of Experimental Therapeutics, St. James's University Hospital, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
26
|
Vernet E, Lundberg E, Friedman M, Rigamonti N, Klausing S, Nygren PÅ, Gräslund T. Affibody-mediated retention of the epidermal growth factor receptor in the secretory compartments leads to inhibition of phosphorylation in the kinase domain. N Biotechnol 2009; 25:417-23. [DOI: 10.1016/j.nbt.2009.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/30/2009] [Accepted: 02/03/2009] [Indexed: 01/22/2023]
|
27
|
Meli G, Visintin M, Cannistraci I, Cattaneo A. Direct in Vivo Intracellular Selection of Conformation-sensitive Antibody Domains Targeting Alzheimer's Amyloid-β Oligomers. J Mol Biol 2009; 387:584-606. [DOI: 10.1016/j.jmb.2009.01.061] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/27/2009] [Accepted: 01/28/2009] [Indexed: 12/21/2022]
|
28
|
Strebe N, Guse A, Schüngel M, Schirrmann T, Hafner M, Jostock T, Hust M, Müller W, Dübel S. Functional knockdown of VCAM-1 at the posttranslational level with ER retained antibodies. J Immunol Methods 2008; 341:30-40. [PMID: 19038261 DOI: 10.1016/j.jim.2008.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 09/01/2008] [Accepted: 10/22/2008] [Indexed: 11/28/2022]
Abstract
Vascular cell adhesion molecule 1 (VCAM-1) is involved in the recruitment of leukocytes to inflammatory sites. In this study we present the first functional knockdown of VCAM-1 using an ER retained antibody construct. We generated a knockdown construct encoding the VCAM-1 specific single chain variable fragment scFv6C7.1 fused to the C-terminal ER retention sequence KDEL. HEK-293:VCAM-YFP cells stably expressing a VCAM-YFP fusion protein were transiently transfected with the knockdown construct and showed down-regulation of surface VCAM-1. Knockdown efficiency of the system is time-dependent due to used transient transfection of the intrabody construct. Furthermore, intrabody mediated knockdown of HEK-293:VCAM-YFP cells also impaired cell-cell interaction with Jurkat cells that are endogenously expressing VLA-4, the physiological partner of VCAM-1. Posttranslational knockdown with ER retained antibodies seems to be a promising technique, as shown here for VCAM-1.
Collapse
Affiliation(s)
- N Strebe
- Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The current paradigm for managing infectious diseases has targeted unique processes or enzymes within pathogens. A serious disadvantage of this pathogen-directed drug targeting strategy has been the development of microbial drug resistance and consequent resurgence of once-contained infectious diseases. A new drug discovery paradigm has therefore emerged focusing on identifying and targeting host factors essential for pathogen entry, survival, and replication. Innovative strategies combining genome-wide computational biology, genomics, proteomics, and traditional forward and reverse genetics have identified host-pathogen interactions and host functions critical for the establishment of infection. Chemogenomics and chemical genetics have allowed rapid identification of new and existing licensed drugs with antimicrobial activity. Although most host-directed drug targeting studies have focused on viral infections, they have provided a proof of concept for similar approaches to bacterial and parasite infections. Future therapies may combine conventional targeting of microbial virulence factors, together with host-directed drug therapy and augmentation of protective host factors, to efficiently eliminate the invading pathogen.
Collapse
Affiliation(s)
- Anita Schwegmann
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town and The International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.
| | | |
Collapse
|
30
|
Lam TC, Chun RKM, Li KK, To CH. Application of proteomic technology in eye research: a mini review. Clin Exp Optom 2008; 91:23-33. [PMID: 18045249 DOI: 10.1111/j.1444-0938.2007.00194.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proteomics is a rapidly growing research area for the study of the protein cognate of genomic data. This review gives a brief overview of the modern proteomic technology. In addition to general applications of proteomics, we highlight its contribution to studying the physiology of different ocular tissues. We also summarise the published proteomic literature in the broad context of ophthalmic diseases, such as cataract, age-related maculopathy, diabetic retinopathy, glaucoma and myopia. The proteomic technology is a useful research tool and it will continue to advance our understanding of a variety of molecular processes in ocular tissues and diseases.
Collapse
Affiliation(s)
- Thomas C Lam
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | | | | |
Collapse
|
31
|
Villani ME, Morea V, Consalvi V, Chiaraluce R, Desiderio A, Benvenuto E, Donini M. Humanization of a highly stable single-chain antibody by structure-based antigen-binding site grafting. Mol Immunol 2008; 45:2474-85. [PMID: 18313757 DOI: 10.1016/j.molimm.2008.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/11/2008] [Accepted: 01/11/2008] [Indexed: 11/20/2022]
Abstract
The murine single-chain variable fragment F8 (scFv(F8)) is endowed with high intrinsic thermodynamic stability and can be functionally expressed in the reducing environment of both prokaryotic and eukaryotic cytoplasm. The stability and intracellular functionality of this molecule can be ascribed mostly to its framework regions and are essentially independent of the specific sequence and structure of the supported antigen-binding site. Therefore, the scFv(F8) represents a suitable scaffold to construct stable scFv chimeric molecules against different antigens by in vitro evolution or antigen-binding site grafting. Thanks to the favourable pharmacokinetic properties associated to a high thermodynamic stability of antibody fragments, such scFv(F8) variants may be exploited for a wide range of biomedical applications, from in vivo diagnosis to therapy, as well as to interfere with the function of intracellular proteins and pathogens, and for functional genomics studies. However, the potential immunogenicity of the murine framework regions represents a limitation for their exploitation in therapeutic applications. To overcome this limitation, we humanized a derivative of the scFv(F8), the anti-lysozyme scFv(11E), which is endowed with even higher thermodynamic stability than the parent antibody. The humanization was carried out by substituting the framework residues differing from closely related V(H) and V(L) domains of human origin with their human counterparts. Site-directed mutagenesis generated the fully humanized product and four intermediate scFvs, which were analyzed for protein expression and antigen binding. We found that the substitution Tyr 90-->Phe in the V(H) domain dramatically reduced the bacterial expression of all mutants. The back-mutation of Phe H90 to Tyr led to the final humanized variant named scFv(H5)H90Tyr. This molecule comprises humanized V(H) and V(L) framework regions and is endowed with HEL-binding affinity, stability in human serum and functionality under reducing conditions comparable to the murine cognate antibody. Consequently, the humanized scFv(H5)H90Tyr represents a suitable scaffold onto which new specificities towards antigens of therapeutic interest can be engineered for biomedical applications.
Collapse
Affiliation(s)
- Maria Elena Villani
- Dipartimento BAS, Sezione Genetica e Genomica Vegetale, C.R. Casaccia, Via Anguillarese 301, I-00123 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Validation of a stable recombinant antibodies repertoire for the direct selection of functional intracellular reagents. J Immunol Methods 2008; 329:11-20. [DOI: 10.1016/j.jim.2007.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 08/28/2007] [Accepted: 09/05/2007] [Indexed: 11/19/2022]
|
33
|
Philibert P, Stoessel A, Wang W, Sibler AP, Bec N, Larroque C, Saven JG, Courtête J, Weiss E, Martineau P. A focused antibody library for selecting scFvs expressed at high levels in the cytoplasm. BMC Biotechnol 2007; 7:81. [PMID: 18034894 PMCID: PMC2241821 DOI: 10.1186/1472-6750-7-81] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 11/22/2007] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Intrabodies are defined as antibody molecules which are ectopically expressed inside the cell. Such intrabodies can be used to visualize or inhibit the targeted antigen in living cells. However, most antibody fragments cannot be used as intrabodies because they do not fold under the reducing conditions of the cell cytosol and nucleus. RESULTS We describe the construction and validation of a large synthetic human single chain antibody fragment library based on a unique framework and optimized for cytoplasmic expression. Focusing the library by mimicking the natural diversity of CDR3 loops ensured that the scFvs were fully human and functional. We show that the library is highly diverse and functional since it has been possible to isolate by phage-display several strong binders against the five proteins tested in this study, the Syk and Aurora-A protein kinases, the alphabeta tubulin dimer, the papillomavirus E6 protein and the core histones. Some of the selected scFvs are expressed at an exceptional high level in the bacterial cytoplasm, allowing the purification of 1 mg of active scFv from only 20 ml of culture. Finally, we show that after three rounds of selection against core histones, more than half of the selected scFvs were active when expressed in vivo in human cells since they were essentially localized in the nucleus. CONCLUSION This new library is a promising tool not only for an easy and large-scale selection of functional intrabodies but also for the isolation of highly expressed scFvs that could be used in numerous biotechnological and therapeutic applications.
Collapse
Affiliation(s)
- Pascal Philibert
- CNRS, UMR5160, CRLC, 15, av, Charles Flahault, BP14491, 34093, Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zacchi P, Dreosti E, Visintin M, Moretto-Zita M, Marchionni I, Cannistraci I, Kasap Z, Betz H, Cattaneo A, Cherubini E. Gephyrin selective intrabodies as a new strategy for studying inhibitory receptor clustering. J Mol Neurosci 2007; 34:141-8. [PMID: 18008186 PMCID: PMC2758390 DOI: 10.1007/s12031-007-9018-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 10/10/2007] [Indexed: 11/24/2022]
Abstract
The microtubule-binding protein gephyrin is known to play a pivotal role in targeting and clustering postsynaptic inhibitory receptors. Here, the Intracellular Antibodies Capture Technology (IATC) was used to select two single-chain antibody fragments or intrabodies, which, fused to nuclear localization signals (NLS), were able to efficiently and selectively remove gephyrin from glycine receptor (GlyR) clusters. Co-transfection of NLS-tagged individual intrabodies with gephyrin-enhanced green fluorescent protein (EGFP) in HEK 293 cells revealed a partial relocalization of gephyrin aggregates onto the nucleus or in the perinuclear area. When expressed in cultured neurons, these intrabodies caused a significant reduction in the number of immunoreactive GlyR clusters, which was associated with a decrease in the peak amplitude of glycine-evoked whole cell currents as assessed with electrophysiological experiments. Hampering protein function at a posttranslational level may represent an attractive alternative for interfering with gephyrin function in a more spatially localized manner.
Collapse
Affiliation(s)
- Paola Zacchi
- Neuroscience Programme, International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gannot G, Tangrea MA, Erickson HS, Pinto PA, Hewitt SM, Chuaqui RF, Gillespie JW, Emmert-Buck MR. Layered peptide array for multiplex immunohistochemistry. J Mol Diagn 2007; 9:297-304. [PMID: 17591928 PMCID: PMC1899424 DOI: 10.2353/jmoldx.2007.060143] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Layered peptide array is a new methodology for multiplex molecular measurements from two-dimensional life science platforms. The technology can be used in several different configurations depending on the needs of the investigator. Described here is an indirect layered peptide array (iLPA) that is capable of measuring proteins on a solid surface, such as target antigens on a tissue section. A prototype iLPA system was developed and subsequently examined for reproducibility and specificity and then compared with standard immunohistochemistry. Semiquantitative, multiplex proteomic analysis of histological sections was achieved with up to 20 membranes. The experimental variability was 18%. Overall, the data suggest that iLPA technology will be a relatively simple and inexpensive method for molecular measurements from tissue sections.
Collapse
Affiliation(s)
- Gallya Gannot
- Pathogenetics Unit, Advanced Technology Center, Laboratory of Pathology and Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4605, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Goenaga AL, Zhou Y, Legay C, Bougherara H, Huang L, Liu B, Drummond DC, Kirpotin DB, Auclair C, Marks JD, Poul MA. Identification and characterization of tumor antigens by using antibody phage display and intrabody strategies. Mol Immunol 2007; 44:3777-88. [PMID: 17498801 PMCID: PMC2739904 DOI: 10.1016/j.molimm.2007.03.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 03/27/2007] [Accepted: 03/29/2007] [Indexed: 01/13/2023]
Abstract
To generate a panel of antibodies binding human breast cancers, a human single chain Fv phage display library was selected for rapid internalization into the SK-BR-3 breast cancer cell line. Thirteen unique antibodies were identified within the 55 cell binding antibodies studied, all of them showing specific staining of tumor cells compare to normal epithelial cells. Two of the antibodies bound the ErbB2 oncogene while 6 bound the tumor marker transferrin receptor (TfR). By developing a scFv immunoprecipitation method, we were able to use LC-MS/MS to identify the antigen bound by one of the antibodies (3GA5) as FPRP (prostaglandin F2alpha receptor-regulatory protein)/EWI-F/CD9P-1 (CD9 partner 1) an Ig superfamily member that has been described to interact directly with CD9 and CD81 tetraspanins and to be overexpressed in adherent cancer cell lines. Although the 3GA5 scFv had no direct anti-proliferative effect, intracellular expression of the scFv was able to knockdown CD9P-1 expression and could be used to further define the role of the tetraspanin system in proliferation and metastasis. Moreover, the 3GA5 scFv was rapidly internalized into breast tumor cells and could have potential for the targeted delivery of cytotoxic agents to breast cancers. This study is the proof of principle that the direct selection of phage antibody libraries on tumor cells can effectively lead to the identification and functional characterization of relevant tumor markers.
Collapse
Affiliation(s)
- Anne-Laure Goenaga
- Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), UMR CNRS 8113, 61 avenue du Président Wilson, 94235 Cachan Cedex, FRANCE
- Departments of Anesthesia and Pharmaceutical Chemistry, University of California, San Francisco, Rm. 3C-38, San Francisco General Hospital, 1001 Potrero Avenue, San Francisco, CA, 94110, USA
| | - Yu Zhou
- Departments of Anesthesia and Pharmaceutical Chemistry, University of California, San Francisco, Rm. 3C-38, San Francisco General Hospital, 1001 Potrero Avenue, San Francisco, CA, 94110, USA
| | - Christine Legay
- Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), UMR CNRS 8113, 61 avenue du Président Wilson, 94235 Cachan Cedex, FRANCE
| | - Houcine Bougherara
- Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), UMR CNRS 8113, 61 avenue du Président Wilson, 94235 Cachan Cedex, FRANCE
| | - Lan Huang
- Departments of Developmental & Cell Biology and Physiology & Biophysics. University of California, Irvine, Irvine, CA 92697-4560
| | - Bin Liu
- Departments of Anesthesia and Pharmaceutical Chemistry, University of California, San Francisco, Rm. 3C-38, San Francisco General Hospital, 1001 Potrero Avenue, San Francisco, CA, 94110, USA
| | - Daryl C. Drummond
- Hermes Biosciences, 61 Airport Blvd., Suite D, South San Francisco, CA, 94080, USA
| | - Dmitri B. Kirpotin
- Hermes Biosciences, 61 Airport Blvd., Suite D, South San Francisco, CA, 94080, USA
| | - Christian Auclair
- Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), UMR CNRS 8113, 61 avenue du Président Wilson, 94235 Cachan Cedex, FRANCE
| | - James D. Marks
- Departments of Anesthesia and Pharmaceutical Chemistry, University of California, San Francisco, Rm. 3C-38, San Francisco General Hospital, 1001 Potrero Avenue, San Francisco, CA, 94110, USA
| | - Marie-Alix Poul
- Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), UMR CNRS 8113, 61 avenue du Président Wilson, 94235 Cachan Cedex, FRANCE
| |
Collapse
|
37
|
Binz HK, Plückthun A. Engineered proteins as specific binding reagents. Curr Opin Biotechnol 2007; 16:459-69. [PMID: 16005204 DOI: 10.1016/j.copbio.2005.06.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 06/10/2005] [Accepted: 06/24/2005] [Indexed: 11/20/2022]
Abstract
Over the past 30 years, monoclonal antibodies have become the standard binding proteins and currently find applications in research, diagnostics and therapy. Yet, monoclonal antibodies now face strong competition from synthetic antibody libraries in combination with powerful library selection technologies. More recently, an increased understanding of other natural binding proteins together with advances in protein engineering, selection and evolution technologies has also triggered the exploration of numerous other protein architectures for the generation of designed binding molecules. Valuable protein-binding scaffolds have been obtained and represent promising alternatives to antibodies for biotechnological and, potentially, clinical applications.
Collapse
Affiliation(s)
- H Kaspar Binz
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | |
Collapse
|
38
|
Affiliation(s)
- Sachdev S Sidhu
- Department of Protein Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | |
Collapse
|
39
|
Abstract
During the past decade several display methods and other library screening techniques have been developed for isolating monoclonal antibodies (mAbs) from large collections of recombinant antibody fragments. These technologies are now widely exploited to build human antibodies with high affinity and specificity. Clever antibody library designs and selection concepts are now able to identify mAb leads with virtually any specificity. Innovative strategies enable directed evolution of binding sites with ultra-high affinity, high stability and increased potency, sometimes to a level that cannot be achieved by immunization. Automation of the technology is making it possible to identify hundreds of different antibody leads to a single therapeutic target. With the first antibody of this new generation, adalimumab (Humira, a human IgG1 specific for human tumor necrosis factor (TNF)), already approved for therapy and with many more in clinical trials, these recombinant antibody technologies will provide a solid basis for the discovery of antibody-based biopharmaceuticals, diagnostics and research reagents for decades to come.
Collapse
|
40
|
Stocks M. Intrabodies as drug discovery tools and therapeutics. Curr Opin Chem Biol 2005; 9:359-65. [PMID: 15979379 DOI: 10.1016/j.cbpa.2005.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 06/15/2005] [Indexed: 10/25/2022]
Abstract
Within the biomedical and pharmaceutical communities there is an ongoing need to find new technologies that can be used to elucidate disease mechanisms and provide novel therapeutics. Antibodies are arguably the most powerful tools in biomedical research, and antibodies specific for extracellular or cell-surface targets are currently the fastest growing class of new therapeutic molecules. However, the majority of potential therapeutic targets are intracellular, and antibodies cannot readily be leveraged against such molecules, in the context of a viable cell or organism, because of the inability of most antibodies to form stable structures in an intracellular environment. Advances in recent years, in particular the development of intracellular screening protocols and the definition of antibody structures that retain their antigen-binding function in an intracellular context, have allowed the robust isolation of a subset of antibodies that can function in an intracellular environment. These antibodies, generally referred to as intrabodies, have immense potential in the process of drug development and may ultimately become therapeutic entities in their own right.
Collapse
|
41
|
Binz HK, Amstutz P, Plückthun A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 2005; 23:1257-68. [PMID: 16211069 DOI: 10.1038/nbt1127] [Citation(s) in RCA: 502] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Not all adaptive immune systems use the immunoglobulin fold as the basis for specific recognition molecules: sea lampreys, for example, have evolved an adaptive immune system that is based on leucine-rich repeat proteins. Additionally, many other proteins, not necessarily involved in adaptive immunity, mediate specific high-affinity interactions. Such alternatives to immunoglobulins represent attractive starting points for the design of novel binding molecules for research and clinical applications. Indeed, through progress and increased experience in library design and selection technologies, gained not least from working with synthetic antibody libraries, researchers have now exploited many of these novel scaffolds as tailor-made affinity reagents. Significant progress has been made not only in the basic science of generating specific binding molecules, but also in applications of the selected binders in laboratory procedures, proteomics, diagnostics and therapy. Challenges ahead include identifying applications where these novel proteins can not only be an alternative, but can enable approaches so far deemed technically impossible, and delineate those therapeutic applications commensurate with the molecular properties of the respective proteins.
Collapse
Affiliation(s)
- H Kaspar Binz
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | |
Collapse
|
42
|
Vascotto F, Visintin M, Cattaneo A, Burrone OR. Design and selection of an intrabody library produced de-novo for the non-structural protein NSP5 of rotavirus. J Immunol Methods 2005; 301:31-40. [PMID: 15907924 DOI: 10.1016/j.jim.2005.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 02/24/2005] [Accepted: 03/10/2005] [Indexed: 11/22/2022]
Abstract
Intracellular antibodies or intrabodies have great potential in protein knockout strategies for intracellular antigens. We applied the Intracellular Antibody Capture Technology for the direct selection in yeast of a mouse scFv library (V(L)-V(H) format) constructed from animals immunised with recombinant non-structural protein NSP5 of Rotavirus. We selected five different intracellular antibodies (ICAbs), which specifically recognize Delta2, an NSP5 deletion mutant used as bait. The anti-NSP5 ICAbs were well expressed both in yeast and mammalian cells as cytoplasmic or nuclear-tagged forms. By immunofluorescence and co-immunoprecipitation assays we characterised the intracellular interaction of the five anti-NSP5 ICAbs with the co-expressed antigens.
Collapse
Affiliation(s)
- Fulvia Vascotto
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy
| | | | | | | |
Collapse
|
43
|
Sibler AP, Courtête J, Muller CD, Zeder-Lutz G, Weiss E. Extended half-life upon binding of destabilized intrabodies allows specific detection of antigen in mammalian cells. FEBS J 2005; 272:2878-91. [PMID: 15943819 DOI: 10.1111/j.1742-4658.2005.04709.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ectopic expression of antibody fragments inside mammalian cells (intrabodies) is a challenging approach for probing and modulating target activities. We previously described the shuttling activity of intracellularly expressed Escherichia coli beta-galactosidase conferred by the single-chain Fv (scFv) fragment 13R4 equipped with nuclear import/export signals. Here, by appending to scFvs the proteolytic PEST signal sequence (a protein region rich in proline, glutamic acid, serine and threonine) of mouse ornithine decarboxylase, we tested whether short-lived or destabilized intrabodies could affect the steady-state level of target by redirecting it to the proteasomes. In the absence of antigen, the half-life of the modified scFv 13R4, relative to untagged molecules, was considerably reduced in vivo. However, after coexpression with either cytoplasmic or nuclear antigen, the destabilized 13R4 fragments were readily maintained in the cell and strictly colocalized with beta-galactosidase. Analysis of destabilized site-directed mutants, that were as soluble as 13R4 in the intracellular context, demonstrated that binding to antigen was essential for survival under these conditions. This unique property allowed specific detection of beta-galactosidase, even when expressed at low level in stably transformed cells, and permitted isolation by flow cytometry from a transfected cell mixture of those living cells specifically labeled with bound intrabody. Altogether, we show that PEST-tagged intrabodies of sufficient affinity and solubility are powerful tools for imaging the presence and likely the dynamics of protein antigens that are resistant to proteasomal degradation in animal cells.
Collapse
Affiliation(s)
- Annie-Paule Sibler
- UMR 700, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | | | | | | | | |
Collapse
|
44
|
Amstutz P, Binz HK, Parizek P, Stumpp MT, Kohl A, Grütter MG, Forrer P, Plückthun A. Intracellular Kinase Inhibitors Selected from Combinatorial Libraries of Designed Ankyrin Repeat Proteins. J Biol Chem 2005; 280:24715-22. [PMID: 15851475 DOI: 10.1074/jbc.m501746200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The specific intracellular inhibition of protein activity at the protein level allows the determination of protein function in the cellular context. We demonstrate here the use of designed ankyrin repeat proteins as tailor-made intracellular kinase inhibitors. The target was aminoglycoside phosphotransferase (3')-IIIa (APH), which mediates resistance to aminoglycoside antibiotics in pathogenic bacteria and shares structural homology with eukaryotic protein kinases. Combining a selection and screening approach, we isolated 198 potential APH inhibitors from highly diverse combinatorial libraries of designed ankyrin repeat proteins. A detailed analysis of several inhibitors revealed that they bind APH with high specificity and with affinities down to the subnanomolar range. In vitro, the most potent inhibitors showed complete enzyme inhibition, and in vivo, a phenotype comparable with the gene knockout was observed, fully restoring antibiotic sensitivity in resistant bacteria. These results underline the great potential of designed ankyrin repeat proteins for modulation of intracellular protein function.
Collapse
Affiliation(s)
- Patrick Amstutz
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Villani ME, Roggero P, Bitti O, Benvenuto E, Franconi R. Immunomodulation of cucumber mosaic virus infection by intrabodies selected in vitro from a stable single-framework phage display library. PLANT MOLECULAR BIOLOGY 2005; 58:305-16. [PMID: 16021397 DOI: 10.1007/s11103-005-4091-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 03/18/2005] [Indexed: 05/03/2023]
Abstract
Immunomodulation by the ectopic expression of intracellular antibodies ('intrabodies') has a great potential for interfering with physiological or pathological functions in vivo in a highly specific manner. One of the major obstacles of this technology is the inability of most antibodies to properly fold and function in the reducing environment of the cytoplasm, which prevents the formation of essential disulfide bonds. We wished to assess the intracellular performance of antibodies derived from a semi-synthetic single-chain variable fragment (scFv) phage display library ('F8 library') built on a thermodynamically stable single-framework scaffold. To this purpose, we chose to modulate the infection of a pandemic plant pathogen, the cucumber mosaic virus (CMV). After in vitro 'biopanning' on immobilized virions, two scFvs were biochemically characterized, showing high affinity toward the antigen. They were transiently expressed at high yields as soluble molecules in the cytoplasm of Nicotiana benthamiana plants. Subsequently, they were expressed in the cytoplasm of transgenic tomato plants. Challenge with high viral dose showed that both scFvs were able to elicit a phenotypic effect and led to the identification of a transgenic line fully resistant to infection. In these plants, the scFv binds the virus in the inoculated leaves preventing viral long distance movement. This work represents the first demonstration that the 'F8 library' can be directly screened in vitro to rapidly isolate antigen-specific scFvs that act as effective intrabodies in vivo. These antibodies represent powerful tools to interfere with several intracellular targets, modulating pathogen infectivity and/or cellular metabolism.
Collapse
Affiliation(s)
- Maria Elena Villani
- ENEA, Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, UTS BIOTEC, Sezione Genetica e Genomica Vegetale, C.R. Casaccia, P.O. Box 2400, I-00100 Roma, Italy
| | | | | | | | | |
Collapse
|
46
|
Lipman NS, Jackson LR, Trudel LJ, Weis-Garcia F. Monoclonal Versus Polyclonal Antibodies: Distinguishing Characteristics, Applications, and Information Resources. ILAR J 2005; 46:258-68. [PMID: 15953833 DOI: 10.1093/ilar.46.3.258] [Citation(s) in RCA: 365] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antibodies are host proteins that comprise one of the principal effectors of the adaptive immune system. Their utility has been harnessed as they have been and continue to be used extensively as a diagnostic and research reagent. They are also becoming an important therapeutic tool in the clinician's armamentarium to treat disease. Antibodies are utilized for analysis, purification, and enrichment, and to mediate or modulate physiological responses. This overview of the structure and function of polyclonal and monoclonal antibodies describes features that distinguish one from the other. A limited review of their use as specific research, diagnostic, and therapeutic reagents and a list of printed and electronic resources that can be utilized to garner additional information on these topics are also included.
Collapse
Affiliation(s)
- Neil S Lipman
- Research Animal Resource Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | |
Collapse
|