1
|
Trovato M, Bunina D, Yildiz U, Fernandez-Novel Marx N, Uckelmann M, Levina V, Perez Y, Janeva A, Garcia BA, Davidovich C, Zaugg JB, Noh KM. Histone H3.3 lysine 9 and 27 control repressive chromatin at cryptic enhancers and bivalent promoters. Nat Commun 2024; 15:7557. [PMID: 39214979 PMCID: PMC11364623 DOI: 10.1038/s41467-024-51785-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Histone modifications are associated with distinct transcriptional states, but it is unclear whether they instruct gene expression. To investigate this, we mutate histone H3.3 K9 and K27 residues in mouse embryonic stem cells (mESCs). Here, we find that H3.3K9 is essential for controlling specific distal intergenic regions and for proper H3K27me3 deposition at promoters. The H3.3K9A mutation resulted in decreased H3K9me3 at regions encompassing endogenous retroviruses and induced a gain of H3K27ac and nascent transcription. These changes in the chromatin environment unleash cryptic enhancers, resulting in the activation of distinctive transcriptional programs and culminating in protein expression normally restricted to specialized immune cell types. The H3.3K27A mutant disrupts the deposition and spreading of the repressive H3K27me3 mark, particularly impacting bivalent genes with higher basal levels of H3.3 at promoters. Therefore, H3.3K9 and K27 crucially orchestrate repressive chromatin states at cis-regulatory elements and bivalent promoters, respectively, and instruct proper transcription in mESCs.
Collapse
Affiliation(s)
- Matteo Trovato
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Daria Bunina
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Umut Yildiz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | | | - Michael Uckelmann
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, and EMBL-Australia, Clayton, VIC, Australia
| | - Vita Levina
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, and EMBL-Australia, Clayton, VIC, Australia
| | - Yekaterina Perez
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ana Janeva
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, and EMBL-Australia, Clayton, VIC, Australia
| | - Judith B Zaugg
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Kyung-Min Noh
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| |
Collapse
|
2
|
Hai Q, Han J, Wells S, Smith JD. Efficient Method to Differentiate Mouse Embryonic Stem Cells into Macrophages in vitro. Bio Protoc 2022; 12:e4318. [PMID: 35284603 PMCID: PMC8855084 DOI: 10.21769/bioprotoc.4318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 07/27/2023] Open
Abstract
Macrophages are key cells in the innate immune system and play a role in a variety of diseases. However, macrophages are terminally differentiated and difficult to manipulate genetically via transfection or through CRISPR-Cas9 gene editing. To overcome this limitation, we provide a simplified protocol for the generation of mouse embryonic stem cells-derived macrophages (ESDM). Thus, genetic manipulation can be performed using embryonic stem cells, selecting for the desired changes, and finally producing macrophages to study the effects of the previous genetic manipulation. These studies can contribute to many areas of research, including atherosclerosis and inflammation. Production of ESDM has been previously achieved using embryoid body (EB) intermediates. Here, we optimized the EB method using a simplified medium, reducing the number of recombinant proteins and medium recipes required. Our EB-based differentiation protocol consists of three stages: 1) floating EB formation; 2) adherence of EBs and release of floating macrophage progenitors; and, 3) terminal differentiation of harvested macrophage progenitors. The advantages of this protocol include achieving independent floating EBs in stage 1 by using a rocker within the tissue culture incubator, as well as the exclusion of small EBs and cell clusters when harvesting macrophage progenitors via cell filtration.
Collapse
Affiliation(s)
- Qimin Hai
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Juying Han
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sophia Wells
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jonathan D. Smith
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
3
|
Meek S, Watson T, Eory L, McFarlane G, Wynne FJ, McCleary S, Dunn LEM, Charlton EM, Craig C, Shih B, Regan T, Taylor R, Sutherland L, Gossner A, Chintoan-Uta C, Fletcher S, Beard PM, Hassan MA, Grey F, Hope JC, Stevens MP, Nowak-Imialek M, Niemann H, Ross PJ, Tait-Burkard C, Brown SM, Lefevre L, Thomson G, McColl BW, Lawrence AB, Archibald AL, Steinbach F, Crooke HR, Gao X, Liu P, Burdon T. Stem cell-derived porcine macrophages as a new platform for studying host-pathogen interactions. BMC Biol 2022; 20:14. [PMID: 35027054 PMCID: PMC8759257 DOI: 10.1186/s12915-021-01217-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Infectious diseases of farmed and wild animals pose a recurrent threat to food security and human health. The macrophage, a key component of the innate immune system, is the first line of defence against many infectious agents and plays a major role in shaping the adaptive immune response. However, this phagocyte is a target and host for many pathogens. Understanding the molecular basis of interactions between macrophages and pathogens is therefore crucial for the development of effective strategies to combat important infectious diseases. RESULTS We explored how porcine pluripotent stem cells (PSCs) can provide a limitless in vitro supply of genetically and experimentally tractable macrophages. Porcine PSC-derived macrophages (PSCdMs) exhibited molecular and functional characteristics of ex vivo primary macrophages and were productively infected by pig pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV), two of the most economically important and devastating viruses in pig farming. Moreover, porcine PSCdMs were readily amenable to genetic modification by CRISPR/Cas9 gene editing applied either in parental stem cells or directly in the macrophages by lentiviral vector transduction. CONCLUSIONS We show that porcine PSCdMs exhibit key macrophage characteristics, including infection by a range of commercially relevant pig pathogens. In addition, genetic engineering of PSCs and PSCdMs affords new opportunities for functional analysis of macrophage biology in an important livestock species. PSCs and differentiated derivatives should therefore represent a useful and ethical experimental platform to investigate the genetic and molecular basis of host-pathogen interactions in pigs, and also have wider applications in livestock.
Collapse
Affiliation(s)
- Stephen Meek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.
| | - Tom Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Lel Eory
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Gus McFarlane
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Felicity J Wynne
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, UK
| | - Stephen McCleary
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, UK
| | | | - Emily M Charlton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Chloe Craig
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Barbara Shih
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Tim Regan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Ryan Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Linda Sutherland
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Anton Gossner
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Cosmin Chintoan-Uta
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Sarah Fletcher
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Philippa M Beard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
- The Pirbright Institute, Pirbright, Surrey, UK
| | - Musa A Hassan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Finn Grey
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Jayne C Hope
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Monika Nowak-Imialek
- First Department of Medicine, Cardiology, Klinikum rechts der Isar - Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Heiner Niemann
- Gastroenterology, Hepatology and Endocrinology Department, Hannover Medical School, Carl Neuberg Str 1, 30625, Hannover, Germany
| | - Pablo J Ross
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA, 95616, USA
| | - Christine Tait-Burkard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Sarah M Brown
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Lucas Lefevre
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh Medical School, The Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Gerard Thomson
- Centre for Clinical Brain Sciences, University of Edinburgh, Department of Clinical Neurosciences, NHS Lothian, Edinburgh, UK
| | - Barry W McColl
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh Medical School, The Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Alistair B Lawrence
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
- Scotland's Rural College (SRUC), West Mains Road, Edinburgh, EH9 3RG, UK
| | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, UK
| | - Helen R Crooke
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, UK
| | - Xuefei Gao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Pentao Liu
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Translational Stem Cell Biology, Science Park, Hong Kong, China
| | - Tom Burdon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.
| |
Collapse
|
4
|
Ritchey B, Hai Q, Han J, Barnard J, Smith JD. Genetic variant in 3' untranslated region of the mouse pycard gene regulates inflammasome activity. eLife 2021; 10:e68203. [PMID: 34197316 PMCID: PMC8248980 DOI: 10.7554/elife.68203] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Quantitative trait locus mapping for interleukin-1β release after inflammasome priming and activation was performed on bone-marrow-derived macrophages (BMDM) from an AKRxDBA/2 mouse strain intercross. The strongest associated locus mapped very close to the Pycard gene on chromosome 7, which codes for the inflammasome adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC). The DBA/2 and AKR Pycard genes only differ at a single-nucleotide polymorphism (SNP) in their 3' untranslated region (UTR). DBA/2 vs. AKR BMDM had increased levels of Pycard mRNA expression and ASC protein, and increased inflammasome speck formation, which was associated with increased Pycard mRNA stability without an increased transcription rate. CRISPR/Cas9 gene editing was performed on DBA/2 embryonic stem cells to change the Pycard 3'UTR SNP from the DBA/2 to the AKR allele. This single base change significantly reduced Pycard expression and inflammasome activity after cells were differentiated into macrophages due to reduced Pycard mRNA stability.
Collapse
Affiliation(s)
- Brian Ritchey
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Qimin Hai
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Juying Han
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - John Barnard
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Jonathan D Smith
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve UniversityClevelandUnited States
| |
Collapse
|
5
|
Pridans C, Irvine KM, Davis GM, Lefevre L, Bush SJ, Hume DA. Transcriptomic Analysis of Rat Macrophages. Front Immunol 2021; 11:594594. [PMID: 33633725 PMCID: PMC7902030 DOI: 10.3389/fimmu.2020.594594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat is widely used as a model for human diseases. Many of these diseases involve monocytes and tissue macrophages in different states of activation. Whilst methods for in vitro differentiation of mouse macrophages from embryonic stem cells (ESC) and bone marrow (BM) are well established, these are lacking for the rat. The gene expression profiles of rat macrophages have also not been characterised to the same extent as mouse. We have established the methodology for production of rat ESC-derived macrophages and compared their gene expression profiles to macrophages obtained from the lung and peritoneal cavity and those differentiated from BM and blood monocytes. We determined the gene signature of Kupffer cells in the liver using rats deficient in macrophage colony stimulating factor receptor (CSF1R). We also examined the response of BM-derived macrophages to lipopolysaccharide (LPS). The results indicate that many, but not all, tissue-specific adaptations observed in mice are conserved in the rat. Importantly, we show that unlike mice, rat macrophages express the CSF1R ligand, colony stimulating factor 1 (CSF1).
Collapse
Affiliation(s)
- Clare Pridans
- Centre for Inflammation Research, University of Edinburgh Centre for Inflammation Research, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M. Irvine
- Mater Research Institute Mater Research Institute – University of Queensland, Brisbane, QLD, Australia
| | - Gemma M. Davis
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Lucas Lefevre
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, University of Oxford, Headington, United Kingdom
| | - David A. Hume
- Mater Research Institute Mater Research Institute – University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Quarta A, Meese T, Pieters Z, Van Breedam E, Le Blon D, Van Broeckhoven J, Hendrix S, Goossens H, Hens N, Berneman Z, Van Nieuwerburgh F, Ponsaerts P. Murine induced pluripotent stem cell-derived neuroimmune cell culture models emphasize opposite immune-effector functions of interleukin 13-primed microglia and macrophages in terms of neuroimmune toxicity. Glia 2020; 69:326-345. [PMID: 32865285 DOI: 10.1002/glia.23899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
Cellular models of induced pluripotent stem cell (iPSC)-derived microglia and macrophages are an emerging toolbox to investigate neuroinflammation in vitro. We previously demonstrated that murine iPSC-microglia and iPSC-macrophages display phenotypical activation properties highly comparable to microglia and macrophages in vivo. Here we extended the characterization of iPSC-microglia and iPSC-macrophages with the analysis of their transcriptome profile. Next, these cellular models were employed to evaluate neuroimmune toxicity in vitro and to investigate the immune-modulatory properties of interleukin 13 (IL13), a cytokine known for its ability to protect against neuroinflammation-induced pathology by modulating microglia and macrophage activation. iPSC-microglia and iPSC-macrophages, in co-culture with astrocyte-committed neural stem cells (NSC), were (pre)treated with IL13 and stimulated with lipopolysaccharide (LPS) and interferon γ (IFNγ), to assess how IL13 modulates their inflammatory response. Additionally, the use of luciferase-expressing NSC (Luc-NSC) allowed real-time monitoring of immune-mediated neurotoxicity. Despite the known anti-inflammatory properties of IL13, iPSC-microglia primed with IL13 before LPS + IFNγ stimulation significantly increased NO secretion. This was associated with a marked reduction of the luminescence signal produced by Luc-NSC. Interestingly, we observed that IL13 signaling has a divergent functional outcome in microglia as compared to macrophages, as for the latter no major alterations in NO release and Luc-NSC viability were observed upon IL13 (pre)treatment. Finally, the striking IL13-induced upregulation of NO secretion by microglia under pro-inflammatory conditions was confirmed in vivo, where intracerebral delivery of IL13 increased inducible nitric oxide synthase mRNA expression. Concluding, we applied iPSC-derived neuroimmune cell culture models to identify distinct neuroimmune (toxicity) responses of microglia and macrophages to IL13-based immune modulation.
Collapse
Affiliation(s)
- Alessandra Quarta
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Tim Meese
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Zoë Pieters
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium.,Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), Data Science Institute, Hasselt University, Hasselt, Belgium.,Centre for Health Economics Research and Modelling Infectious Diseases, University of Antwerp, Antwerp, Belgium
| | - Elise Van Breedam
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Debbie Le Blon
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sven Hendrix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Herman Goossens
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Niel Hens
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium.,Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), Data Science Institute, Hasselt University, Hasselt, Belgium.,Centre for Health Economics Research and Modelling Infectious Diseases, University of Antwerp, Antwerp, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
Quarta A, Le Blon D, D'aes T, Pieters Z, Hamzei Taj S, Miró-Mur F, Luyckx E, Van Breedam E, Daans J, Goossens H, Dewilde S, Hens N, Pasque V, Planas AM, Hoehn M, Berneman Z, Ponsaerts P. Murine iPSC-derived microglia and macrophage cell culture models recapitulate distinct phenotypical and functional properties of classical and alternative neuro-immune polarisation. Brain Behav Immun 2019; 82:406-421. [PMID: 31525508 DOI: 10.1016/j.bbi.2019.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022] Open
Abstract
The establishment and validation of reliable induced pluripotent stem cell (iPSC)-derived in vitro models to study microglia and monocyte/macrophage immune function holds great potential for fundamental and translational neuro-immunology research. In this study, we first demonstrate that ramified CX3CR1+ iPSC-microglia (cultured within a neural environment) and round-shaped CX3CR1- iPSC-macrophages can easily be differentiated from newly established murine CX3CR1eGFP/+CCR2RFP/+ iPSC lines. Furthermore, we show that obtained murine iPSC-microglia and iPSC-macrophages are distinct cell populations, even though iPSC-macrophages may upregulate CX3CR1 expression when cultured within a neural environment. Next, we characterized the phenotypical and functional properties of murine iPSC-microglia and iPSC-macrophages following classical and alternative immune polarisation. While iPSC-macrophages could easily be triggered to adopt a classically-activated or alternatively-activated phenotype following, respectively, lipopolysaccharide + interferon γ or interleukin 13 (IL13) stimulation, iPSC-microglia and iPSC-macrophages cultured within a neural environment displayed a more moderate activation profile as characterised by the absence of MHCII expression upon classical immune polarisation and the absence of Ym1 expression upon alternative immune polarisation. Finally, extending our preceding in vivo studies, this striking phenotypical divergence was also observed for resident microglia and infiltrating monocytes within highly inflammatory cortical lesions in CX3CR1eGFP/+CCR2RFP/+ mice subjected to middle cerebral arterial occlusion (MCAO) stroke and following IL13-mediated therapeutic intervention thereon. In conclusion, our study demonstrates that the applied murine iPSC-microglia and iPSC-macrophage culture models are able to recapitulate in vivo microglia and monocyte/macrophage ontogeny and corresponding phenotypical/functional properties upon classical and alternative immune polarisation, and therefore represent a valuable in vitro platform to further study and modulate microglia and (infiltrating) monocyte immune responses under neuro-inflammatory conditions within a neural environment.
Collapse
Affiliation(s)
- Alessandra Quarta
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium; Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Debbie Le Blon
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium; Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Tine D'aes
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium; Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Zoë Pieters
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium; Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Belgium; Centre for Health Economics Research and Modelling Infectious Diseases, University of Antwerp, Belgium
| | - Somayyeh Hamzei Taj
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Francesc Miró-Mur
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Evi Luyckx
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium; Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium; Protein Chemistry, Proteomics and Epigenetic Signaling, University of Antwerp, Antwerp, Belgium
| | - Elise Van Breedam
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium; Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Jasmijn Daans
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium; Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Sylvia Dewilde
- Protein Chemistry, Proteomics and Epigenetic Signaling, University of Antwerp, Antwerp, Belgium
| | - Niel Hens
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium; Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Belgium; Centre for Health Economics Research and Modelling Infectious Diseases, University of Antwerp, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Cancer Institute, KU Leuven - University of Leuven, Belgium
| | - Anna M Planas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany; Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Zwi Berneman
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium; Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium; Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
8
|
Haider M, Dambuza IM, Asamaphan P, Stappers M, Reid D, Yamasaki S, Brown GD, Gow NAR, Erwig LP. The pattern recognition receptors dectin-2, mincle, and FcRγ impact the dynamics of phagocytosis of Candida, Saccharomyces, Malassezia, and Mucor species. PLoS One 2019; 14:e0220867. [PMID: 31393930 PMCID: PMC6687134 DOI: 10.1371/journal.pone.0220867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/24/2019] [Indexed: 01/15/2023] Open
Abstract
Phagocytosis is a receptor-mediated process critical to innate immune clearance of pathogens. It proceeds in a regulated sequence of stages: (a) migration of phagocytes towards pathogens, (b) recognition of PAMPs and binding through PRRs, (c) engulfment and internalisation into phagosomes, (d) phagosome maturation, and (e) killing of pathogen or host cells. However, little is known about the role that individual receptors play in these discrete stages in the recognition of fungal cells. In a previous study, we found that dectin-2 deficiency impacted some but not all stages of macrophage-mediated phagocytosis of Candida glabrata. Because the C-type lectin receptor dectin-2 critically requires coupling to the FcRγ chain for signalling, we hypothesised that this coupling may be important for regulating phagocytosis of fungal cargo. We therefore examined how deficiency in FcRγ itself or two receptors to which it couples (dectin-2 and mincle) impacts phagocytosis of six fungal organisms representing three different fungal taxa. Our data show that deficiency in these proteins impairs murine bone marrow-derived macrophage migration, engulfment, and phagosome maturation, but not macrophage survival. Therefore, FcRγ engagement with selective C-type lectin receptors (CLRs) critically affects the spatio-temporal dynamics of fungal phagocytosis.
Collapse
Affiliation(s)
- Mohammed Haider
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Ivy M. Dambuza
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Patawee Asamaphan
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Mark Stappers
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Delyth Reid
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Neil A. R. Gow
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Lars P. Erwig
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
9
|
Kim HS, Tan Y, Ma W, Merkurjev D, Destici E, Ma Q, Suter T, Ohgi K, Friedman M, Skowronska-Krawczyk D, Rosenfeld MG. Pluripotency factors functionally premark cell-type-restricted enhancers in ES cells. Nature 2018; 556:510-514. [PMID: 29670286 PMCID: PMC6021123 DOI: 10.1038/s41586-018-0048-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 03/05/2018] [Indexed: 12/14/2022]
Abstract
Enhancers for embryonic stem (ES) cell-expressed genes and lineage-determining factors are characterized by conventional marks of enhancer activation in ES cells1-3, but it remains unclear whether enhancers destined to regulate cell-type-restricted transcription units might also have distinct signatures in ES cells. Here we show that cell-type-restricted enhancers are 'premarked' and activated as transcription units by the binding of one or two ES cell transcription factors, although they do not exhibit traditional enhancer epigenetic marks in ES cells, thus uncovering the initial temporal origins of cell-type-restricted enhancers. This premarking is required for future cell-type-restricted enhancer activity in the differentiated cells, with the strength of the ES cell signature being functionally important for the subsequent robustness of cell-type-restricted enhancer activation. We have experimentally validated this model in macrophage-restricted enhancers and neural precursor cell (NPC)-restricted enhancers using ES cell-derived macrophages or NPCs, edited to contain specific ES cell transcription factor motif deletions. DNA hydroxyl-methylation of enhancers in ES cells, determined by ES cell transcription factors, may serve as a potential molecular memory for subsequent enhancer activation in mature macrophages. These findings suggest that the massive repertoire of cell-type-restricted enhancers are essentially hierarchically and obligatorily premarked by binding of a defining ES cell transcription factor in ES cells, dictating the robustness of enhancer activation in mature cells.
Collapse
Affiliation(s)
- Hong Sook Kim
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Yuliang Tan
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wubin Ma
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daria Merkurjev
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eugin Destici
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Qi Ma
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tom Suter
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kenneth Ohgi
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Meyer Friedman
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Dorota Skowronska-Krawczyk
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA
- Shiley Eye Institute, Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Del Amo C, Borau C, Movilla N, Asín J, García-Aznar JM. Quantifying 3D chemotaxis in microfluidic-based chips with step gradients of collagen hydrogel concentrations. Integr Biol (Camb) 2017; 9:339-349. [PMID: 28300261 DOI: 10.1039/c7ib00022g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cell migration is an essential process involved in crucial stages of tissue formation, regeneration or immune function as well as in pathological processes including tumor development or metastasis. During the last few years, the effect of gradients of soluble molecules on cell migration has been widely studied, and complex systems have been used to analyze cell behavior under simultaneous mechano-chemical stimuli. Most of these chemotactic assays have, however, focused on specific substrates in 2D. The aim of the present work is to develop a novel microfluidic-based chip that allows the long-term chemoattractant effect of growth factors (GFs) on 3D cell migration to be studied, while also providing the possibility to analyze the influence of the interface generated between different adjacent hydrogels. Namely, 1.5, 2, 2.5 and 4 mg ml-1 concentrations of collagen type I were alternatively combined with 5, 10 or 50 ng ml-1 concentrations of PDGF and VEGF (as a negative control). To achieve this goal, we have designed a new microfluidic device including three adjacent chambers to introduce hydrogels that allow the generation of a collagen concentration step gradient. This versatile and simple platform was tested by using dermal human fibroblasts embedded in 3D collagen matrices. Images taken over a week were processed to quantify the number of cells in each zone. We found, in terms of cell distribution, that the presence of PDGF, especially in small concentrations, was a strong chemoattractant for dermal human fibroblasts across the gels regardless of their collagen concentration and step gradient direction, whereas the effects of VEGF or collagen step gradient concentrations alone were negligible.
Collapse
Affiliation(s)
- C Del Amo
- Aragón Institute of Engineering Research (I3A), Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain.
| | | | | | | | | |
Collapse
|
11
|
Takata K, Kozaki T, Lee CZW, Thion MS, Otsuka M, Lim S, Utami KH, Fidan K, Park DS, Malleret B, Chakarov S, See P, Low D, Low G, Garcia-Miralles M, Zeng R, Zhang J, Goh CC, Gul A, Hubert S, Lee B, Chen J, Low I, Shadan NB, Lum J, Wei TS, Mok E, Kawanishi S, Kitamura Y, Larbi A, Poidinger M, Renia L, Ng LG, Wolf Y, Jung S, Önder T, Newell E, Huber T, Ashihara E, Garel S, Pouladi MA, Ginhoux F. Induced-Pluripotent-Stem-Cell-Derived Primitive Macrophages Provide a Platform for Modeling Tissue-Resident Macrophage Differentiation and Function. Immunity 2017; 47:183-198.e6. [PMID: 28723550 DOI: 10.1016/j.immuni.2017.06.017] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/18/2017] [Accepted: 06/26/2017] [Indexed: 12/14/2022]
Abstract
Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies.
Collapse
Affiliation(s)
- Kazuyuki Takata
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Tatsuya Kozaki
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Christopher Zhe Wei Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Morgane Sonia Thion
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'ENS (IBENS), INSERM, U1024, CNRS, UMR8197, F-75005 Paris, France
| | - Masayuki Otsuka
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Shawn Lim
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Kagistia Hana Utami
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Kerem Fidan
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Dong Shin Park
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore 117545, Singapore
| | - Svetoslav Chakarov
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Peter See
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Donovan Low
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Gillian Low
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Marta Garcia-Miralles
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Ruizhu Zeng
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Jinqiu Zhang
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Chi Ching Goh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Ahmet Gul
- Faculty of Medicine, Istanbul University, Istanbul 34093, Turkey
| | - Sandra Hubert
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Ivy Low
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Nurhidaya Binte Shadan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Josephine Lum
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Tay Seok Wei
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Esther Mok
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Shohei Kawanishi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yoshihisa Kitamura
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Anis Larbi
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Michael Poidinger
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Yochai Wolf
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamer Önder
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Evan Newell
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Tara Huber
- Stem Cell and Developmental Biology Department, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Sonia Garel
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'ENS (IBENS), INSERM, U1024, CNRS, UMR8197, F-75005 Paris, France
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore 138648, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore.
| |
Collapse
|
12
|
Sin YY, Price PR, Ballantyne LL, Funk CD. Proof-of-Concept Gene Editing for the Murine Model of Inducible Arginase-1 Deficiency. Sci Rep 2017; 7:2585. [PMID: 28566761 PMCID: PMC5451454 DOI: 10.1038/s41598-017-02927-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
Arginase-1 deficiency in humans is a rare genetic disorder of metabolism resulting from a loss of arginase-1, leading to impaired ureagenesis, hyperargininemia and neurological deficits. Previously, we generated a tamoxifen-inducible arginase-1 deficient mouse model harboring a deletion of Arg1 exons 7 and 8 that leads to similar biochemical defects, along with a wasting phenotype and death within two weeks. Here, we report a strategy utilizing the Clustered, Regularly Interspaced, Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system in conjunction with piggyBac technology to target and reincorporate exons 7 and 8 at the specific Arg1 locus in attempts to restore the function of arginase-1 in induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iHLCs) and macrophages in vitro. While successful gene targeted repair was achieved, minimal urea cycle function was observed in the targeted iHLCs compared to adult hepatocytes likely due to inadequate maturation of the cells. On the other hand, iPSC-derived macrophages expressed substantial amounts of "repaired" arginase. Our studies provide proof-of-concept for gene-editing at the Arg1 locus and highlight the challenges that lie ahead to restore sufficient liver-based urea cycle function in patients with urea cycle disorders.
Collapse
Affiliation(s)
- Yuan Yan Sin
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Phillipe R Price
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Laurel L Ballantyne
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Colin D Funk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
13
|
Nandi A, Bishayi B. CCR-2 neutralization augments murine fresh BMC activation by Staphylococcus aureus via two distinct mechanisms: at the level of ROS production and cytokine response. Innate Immun 2017; 23:345-372. [PMID: 28409543 DOI: 10.1177/1753425917697806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CCR-2 signaling regulates recruitment of monocytes from the bone marrow into the bloodstream and then to sites of infection. We sought to determine whether CCL-2/CCR-2 signaling is involved in the killing of Staphylococcus aureus by murine bone marrow cells (BMCs). The intermittent link of reactive oxygen species (ROS)-NF-κB/p38-MAPK-mediated CCL-2 production in CCR-2 signaling prompted us to determine whether neutralization of CCR-2 augments the response of murine fresh BMCs (FBMCs) after S. aureus infection. It was observed that anti-CCR-2 Ab-treated FBMCs released fewer ROS on encountering S. aureus infection than CCR-2 non-neutralized FBMCs, also correlating with reduced killing of S. aureus in CCR-2 neutralized FBMCs. Staphylococcal catalase and SOD were also found to play a role in protecting S. aureus from the ROS-mediated killing of FBMC. S. aureus infection of CCR-2 intact FBMCs pre-treated with either NF-κB or p-38-MAPK blocker induced less CCL-2, suggesting that NF-κB or p-38-MAPK is required for CCL-2 production by FBMCs. Moreover, blocking of CCR-2 along with NF-κB or p-38-MAPK resulted in elevated CCL-2 production and reduced CCR-2 expression. Inhibition of CCR-2 impairs the response of murine BMCs to S. aureus infection by attenuation ROS production and modulating the cytokine response.
Collapse
Affiliation(s)
- Ajeya Nandi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, West Bengal, India
| |
Collapse
|
14
|
Haideri SS, McKinnon AC, Taylor AH, Kirkwood P, Starkey Lewis PJ, O’Duibhir E, Vernay B, Forbes S, Forrester LM. Injection of embryonic stem cell derived macrophages ameliorates fibrosis in a murine model of liver injury. NPJ Regen Med 2017; 2:14. [PMID: 29302350 PMCID: PMC5677947 DOI: 10.1038/s41536-017-0017-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/27/2017] [Accepted: 04/02/2017] [Indexed: 12/18/2022] Open
Abstract
Chronic liver injury can be caused by viral hepatitis, alcohol, obesity, and metabolic disorders resulting in fibrosis, hepatic scarring, and cirrhosis. Novel therapies are urgently required and previous work has demonstrated that treatment with bone marrow derived macrophages can improve liver regeneration and reduce fibrosis in a murine model of hepatic injury and fibrosis. Here, we describe a protocol whereby pure populations of therapeutic macrophages can be produced in vitro from murine embryonic stem cells on a large scale. Embryonic stem cell derived macrophages display comparable morphology and cell surface markers to bone marrow derived macrophages but our novel imaging technique revealed that their phagocytic index was significantly lower. Differences were also observed in their response to classical induction protocols with embryonic stem cell derived macrophages having a reduced response to lipopolysaccharide and interferon gamma and an enhanced response to IL4 compared to bone marrow derived macrophages. When their therapeutic potential was assessed in a murine, carbon tetrachloride-induced injury and fibrosis model, embryonic stem cell derived macrophages significantly reduced the amount of hepatic fibrosis to 50% of controls, down-regulated the number of fibrogenic myofibroblasts and activated liver progenitor cells. To our knowledge, this is the first study that demonstrates a therapeutic effect of macrophages derived in vitro from pluripotent stem cells in a model of liver injury. We also found that embryonic stem cell derived macrophages repopulated the Kupffer cell compartment of clodronate-treated mice more efficiently than bone marrow derived macrophages, and expressed comparatively lower levels of Myb and Ccr2, indicating that their phenotype is more comparable to tissue-resident rather than monocyte-derived macrophages.
Collapse
Affiliation(s)
- Sharmin S. Haideri
- 0000 0004 1936 7988grid.4305.2Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive,, Edinburgh, EH16 4UU UK
| | - Alison C. McKinnon
- 0000 0004 1936 7988grid.4305.2Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive,, Edinburgh, EH16 4UU UK
| | - A. Helen Taylor
- 0000 0004 1936 7988grid.4305.2Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive,, Edinburgh, EH16 4UU UK
| | - Phoebe Kirkwood
- 0000 0004 1936 7988grid.4305.2Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive,, Edinburgh, EH16 4UU UK
| | - Philip J. Starkey Lewis
- 0000 0004 1936 7988grid.4305.2Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive,, Edinburgh, EH16 4UU UK
| | - Eoghan O’Duibhir
- 0000 0004 1936 7988grid.4305.2Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive,, Edinburgh, EH16 4UU UK
| | - Bertrand Vernay
- 0000 0004 1936 7988grid.4305.2Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive,, Edinburgh, EH16 4UU UK
| | - Stuart Forbes
- 0000 0004 1936 7988grid.4305.2Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive,, Edinburgh, EH16 4UU UK
| | - Lesley M. Forrester
- 0000 0004 1936 7988grid.4305.2Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive,, Edinburgh, EH16 4UU UK
| |
Collapse
|
15
|
Mucci A, Kunkiel J, Suzuki T, Brennig S, Glage S, Kühnel MP, Ackermann M, Happle C, Kuhn A, Schambach A, Trapnell BC, Hansen G, Moritz T, Lachmann N. Murine iPSC-Derived Macrophages as a Tool for Disease Modeling of Hereditary Pulmonary Alveolar Proteinosis due to Csf2rb Deficiency. Stem Cell Reports 2016; 7:292-305. [PMID: 27453007 PMCID: PMC4982988 DOI: 10.1016/j.stemcr.2016.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) represent an innovative source for the standardized in vitro generation of macrophages (Mφ). We here describe a robust and efficient protocol to obtain mature and functional Mφ from healthy as well as disease-specific murine iPSCs. With regard to morphology, surface phenotype, and function, our iPSC-derived Mφ (iPSC-Mφ) closely resemble their counterparts generated in vitro from bone marrow cells. Moreover, when we investigated the feasibility of our differentiation system to serve as a model for rare congenital diseases associated with Mφ malfunction, we were able to faithfully recapitulate the pathognomonic defects in GM-CSF signaling and Mφ function present in hereditary pulmonary alveolar proteinosis (herPAP). Thus, our studies may help to overcome the limitations placed on research into certain rare disease entities by the lack of an adequate supply of disease-specific primary cells, and may aid the development of novel therapeutic approaches for herPAP patients.
Collapse
Affiliation(s)
- Adele Mucci
- Research Group Reprogramming and Gene Therapy, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany; Junior Research Group Translational Hematology of Congenital Diseases, Cluster of Excellence REBIRTH, Hannover Medical School, Carl-Neuberg-Street 1, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jessica Kunkiel
- Research Group Reprogramming and Gene Therapy, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Takuji Suzuki
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sebastian Brennig
- Research Group Reprogramming and Gene Therapy, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany; Junior Research Group Translational Hematology of Congenital Diseases, Cluster of Excellence REBIRTH, Hannover Medical School, Carl-Neuberg-Street 1, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Silke Glage
- Institute of Laboratory Animal Science and Central Animal Facility, Hannover Medical School, 30625 Hannover, Germany
| | - Mark P Kühnel
- Department of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
| | - Mania Ackermann
- Research Group Reprogramming and Gene Therapy, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany; Junior Research Group Translational Hematology of Congenital Diseases, Cluster of Excellence REBIRTH, Hannover Medical School, Carl-Neuberg-Street 1, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Alexandra Kuhn
- Research Group Reprogramming and Gene Therapy, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Thomas Moritz
- Research Group Reprogramming and Gene Therapy, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- Junior Research Group Translational Hematology of Congenital Diseases, Cluster of Excellence REBIRTH, Hannover Medical School, Carl-Neuberg-Street 1, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
16
|
Yeung ATY, Hale C, Xia J, Tate PH, Goulding D, Keane JA, Mukhopadhyay S, Forrester L, Billker O, Skarnes WC, Hancock REW, Dougan G. Conditional-ready mouse embryonic stem cell derived macrophages enable the study of essential genes in macrophage function. Sci Rep 2015; 5:8908. [PMID: 25752829 PMCID: PMC4354151 DOI: 10.1038/srep08908] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/10/2015] [Indexed: 11/09/2022] Open
Abstract
The ability to differentiate genetically modified mouse embryonic stem (ES) cells into functional macrophages provides a potentially attractive resource to study host-pathogen interactions without the need for animal experimentation. This is particularly useful in instances where the gene of interest is essential and a knockout mouse is not available. Here we differentiated mouse ES cells into macrophages in vitro and showed, through a combination of flow cytometry, microscopic imaging, and RNA-Seq, that ES cell-derived macrophages responded to S. Typhimurium, in a comparable manner to mouse bone marrow derived macrophages. We constructed a homozygous mutant mouse ES cell line in the Traf2 gene that is known to play a role in tumour necrosis factor-α signalling but has not been studied for its role in infections or response to Toll-like receptor agonists. Interestingly, traf2-deficient macrophages produced reduced levels of inflammatory cytokines in response to lipopolysaccharide (LPS) or flagellin stimulation and exhibited increased susceptibility to S. Typhimurium infection.
Collapse
Affiliation(s)
- A. T. Y. Yeung
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - C. Hale
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - J. Xia
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - P. H. Tate
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - D. Goulding
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - J. A. Keane
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - S. Mukhopadhyay
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - L. Forrester
- University of Edinburgh/MRC Centre for Regenerative Medicine, Edinburgh, United Kingdom
| | - O. Billker
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - W. C. Skarnes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - R. E. W. Hancock
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - G. Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
17
|
Tarunina M, Hernandez D, Johnson CJ, Rybtsov S, Ramathas V, Jeyakumar M, Watson T, Hook L, Medvinsky A, Mason C, Choo Y. Directed differentiation of embryonic stem cells using a bead-based combinatorial screening method. PLoS One 2014; 9:e104301. [PMID: 25251366 PMCID: PMC4174505 DOI: 10.1371/journal.pone.0104301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/07/2014] [Indexed: 01/25/2023] Open
Abstract
We have developed a rapid, bead-based combinatorial screening method to determine optimal combinations of variables that direct stem cell differentiation to produce known or novel cell types having pre-determined characteristics. Here we describe three experiments comprising stepwise exposure of mouse or human embryonic cells to 10,000 combinations of serum-free differentiation media, through which we discovered multiple novel, efficient and robust protocols to generate a number of specific hematopoietic and neural lineages. We further demonstrate that the technology can be used to optimize existing protocols in order to substitute costly growth factors with bioactive small molecules and/or increase cell yield, and to identify in vitro conditions for the production of rare developmental intermediates such as an embryonic lymphoid progenitor cell that has not previously been reported.
Collapse
Affiliation(s)
- Marina Tarunina
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Diana Hernandez
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
- Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | | | - Stanislav Rybtsov
- MRC Centre for Regenerative Medicine/Institute of Stem cell Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Vidya Ramathas
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | | | - Thomas Watson
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Lilian Hook
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Alexander Medvinsky
- MRC Centre for Regenerative Medicine/Institute of Stem cell Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Chris Mason
- Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Yen Choo
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
- Progenitor Labs Ltd, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| |
Collapse
|
18
|
Wong TW, Jelinek DF. Purification of functional eosinophils from human bone marrow. J Immunol Methods 2012; 387:130-9. [PMID: 23085531 DOI: 10.1016/j.jim.2012.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 10/27/2022]
Abstract
Eosinophils are granulocytic leukocytes that are best known for their involvement in host immune defense and pathologic states. More recently, they have also been shown to play a role in regulation of murine plasma cell homeostasis in the bone marrow, which prompted our investigation of human bone marrow eosinophils. However, effective methods to isolate eosinophils from human bone marrow thereby allowing comparisons with circulating eosinophils have not yet been described. Herein we describe the development of a novel, cost effective protocol for the purification of eosinophils from human bone marrow that allows us to obtain bone marrow eosinophils of near 100% purity after an 8-day culture system. Furthermore, we demonstrate that bone marrow eosinophils have characteristics similar to blood eosinophils, including the expression of IL-5Rα, the presence of eosinophil-specific granules, and similar activation kinetics upon phorbol myristate acetate and high-dose IL-5 stimulation. While migratory responses toward the chemokine CXCL12 differed between purified bone marrow and freshly isolated blood eosinophils, migratory responses were similar upon comparison of bone marrow eosinophils with blood eosinophils cultured ex vivo for 8 days prior to assay. Interestingly, a concurrent upregulation of CXCR4 expression was not observed in these cultured blood eosinophils. Taken together, we have overcome the existing challenges to the study of bone marrow eosinophils through our novel strategy for cell purification and have thus enabled future investigations of these cells and their role(s) in human health and disease.
Collapse
Affiliation(s)
- Tina W Wong
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, United States
| | | |
Collapse
|