1
|
Fogang B, Guillochon E, Kamaliddin C, Agbota G, Ezinmegnon S, Alao MJ, Deloron P, Bertin G, Claessens A. Detection of novel Plasmodium falciparum haplotypes under treatment pressure in paediatric severe malaria. Microb Genom 2025; 11:001386. [PMID: 40340804 PMCID: PMC12064853 DOI: 10.1099/mgen.0.001386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/26/2025] [Indexed: 05/10/2025] Open
Abstract
Background. In Africa, the clearance time for Plasmodium falciparum severe malaria varies significantly, likely due to the complexity of P. falciparum infections and the sequestration phenomenon exhibited by this parasite. This study aims to evaluate different methods to study the intra-host dynamics of polyclonal infections during parasite clearance under antimalarial treatment. Additionally, it seeks to determine the association between parasite clearance rate following artesunate or quinine treatment and the genetic complexity of P. falciparum in Beninese children with severe malaria.Methods. Sixty-five P. falciparum severe malaria individuals diagnosed by microscopy and treated with artesunate or quinine were sampled every 8 h for 24 h. Using whole-genome sequencing (WGS) data, we estimated the multiplicity of infection (MOI) with three algorithms (Fws, THE REAL McCOIL and RoH). We then characterized the P. falciparum genetic complexity in WGS-identified polyclonal infections using amplicon sequencing (AmpSeq) on DNA extracted from plasma and the red blood cell pellet.Results. AmpSeq demonstrated greater sensitivity in detecting multiple genomes within isolates compared to WGS methods. The MOI from AmpSeq was significantly higher in red blood cell pellets compared to plasma (2.4 vs. 1.8 distinct microhaplotypes per isolate). However, at parasitaemia over 1,000 parasites per microlitre, the same MOI was detected in both plasma and pellet samples in 85.4% of the isolates. We observed a high variability in parasite clearance rate among participants, but it was not associated with parasite MOI at diagnosis. Interestingly, in 60.9% of participants, previously undetected microhaplotypes appeared in circulation 16 h after treatment initiation.Conclusion. These findings demonstrate that combining different haplotyping techniques effectively determines parasite genetic complexity. Additionally, plasma can be effectively used for parasite genotyping at sufficient parasitaemia levels. The parasite clearance rate of severe malaria is independent of parasite MOI. However, genotyping a single blood sample upon hospital admission does not capture the full spectrum of parasite genotypes present in the infection.
Collapse
Affiliation(s)
- Balotin Fogang
- LPHI, CNRS, INSERM, University of Montpellier, Montpellier, France
| | | | | | - Gino Agbota
- Université Paris Cité, MERIT, IRD, Paris, France
- Institut de Recherche Clinique du Bénin (IRCB), Abomey-Calavi, Benin
| | - Sem Ezinmegnon
- Université Paris Cité, MERIT, IRD, Paris, France
- Institut de Recherche Clinique du Bénin (IRCB), Abomey-Calavi, Benin
| | - Maroufou Jules Alao
- Paediatric Department, Mother and Child University and Hospital Center (CHU-MEL), Cotonou, Benin
| | | | | | | |
Collapse
|
2
|
Harmonis JA, Kusuma SAF, Rukayadi Y, Hasanah AN. Exploring Biomarkers for Malaria: Advances in Early Detection and Asymptomatic Diagnosis. BIOSENSORS 2025; 15:106. [PMID: 39997008 PMCID: PMC11853453 DOI: 10.3390/bios15020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Malaria is a tropical disease caused by the Plasmodium parasite, which was responsible for 249 million cases worldwide in 2022. Malaria is currently diagnosed using RDTs, PCR-based methods, or blood smear microscopy. Ideal biomarkers have been identified for malaria, with the potential for improving treatment, diagnosis, and overall clinical outcomes. This review discusses the types of existing biomarkers and the opportunities for new biomarkers to be used as diagnostic components in detecting Plasmodium, including in terms of sensitivity, detection limit, specificity, and the species of Plasmodium that can be detected. Following a comparison, five main ideal malaria biomarkers were identified, namely HRP2, pLDH, hemozoin, aldolase, and pGDH. These biomarkers distinguished themselves markedly from the others in terms of specificity in Plasmodium detection, sensitivity in analysis, and the use of non-invasive samples. Several other biomarkers, such as CRP, Ang-1, Ang-2, and PCT, show potential for malaria detection in terms of their ability to differentiate disease severity, and the levels of these biomarkers can be determined in the body for comparison with malaria parasitemia. Of the five ideal biomarkers, hemozoin and aldolase can still be developed regarding the types of samples used and their sensitivity to different Plasmodium species. Further research on the biomarkers CRP, Ang-1, Ang-2, and PCT is still needed to evaluate their potential.
Collapse
Affiliation(s)
- Jacko Abiwaqash Harmonis
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia;
| | - Sri Agung Fitri Kusuma
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia;
| | - Yaya Rukayadi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia;
| |
Collapse
|
3
|
Orbán Á, Schumacher JJ, Mucza S, Strinic A, Molnár P, Babai R, Halbritter A, Vértessy BG, Karl S, Krohns S, Kézsmárki I. Magneto-optical assessment of Plasmodium parasite growth via hemozoin crystal size. Sci Rep 2024; 14:14318. [PMID: 38906910 PMCID: PMC11192761 DOI: 10.1038/s41598-024-60988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/30/2024] [Indexed: 06/23/2024] Open
Abstract
Hemozoin is a natural biomarker formed during the hemoglobin metabolism of Plasmodium parasites, the causative agents of malaria. The rotating-crystal magneto-optical detection (RMOD) has been developed for its rapid and sensitive detection both in cell cultures and patient samples. In the current article we demonstrate that, besides quantifying the overall concentration of hemozoin produced by the parasites, RMOD can also track the size distribution of the hemozoin crystals. We establish the relations between the magneto-optical signal, the mean parasite age and the median crystal size throughout one erythrocytic cycle of Plasmodium falciparum parasites, where the latter two are determined by optical and scanning electron microscopy, respectively. The significant correlation between the magneto-optical signal and the stage distribution of the parasites indicates that the RMOD method can be utilized for species-specific malaria diagnosis and for the quick assessment of drug efficacy.
Collapse
Affiliation(s)
- Ágnes Orbán
- Department of Physics, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary.
| | - Jan-Jonas Schumacher
- Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159, Augsburg, Germany
| | - Szilvia Mucza
- Department of Physics, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - Ana Strinic
- Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159, Augsburg, Germany
| | - Petra Molnár
- Malaria Research Laboratory, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Réka Babai
- Malaria Research Laboratory, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Applied Biotechnology and Food Sciences, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - András Halbritter
- Department of Physics, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - Beáta G Vértessy
- Malaria Research Laboratory, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Applied Biotechnology and Food Sciences, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - Stephan Karl
- Vector-Borne Diseases Unit, PNG Institute of Medical Research, Madang, Madang Province, 511, Papua New Guinea
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLS, Australia
| | - Stephan Krohns
- Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159, Augsburg, Germany
| | - István Kézsmárki
- Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159, Augsburg, Germany.
| |
Collapse
|
4
|
Ssemata AS, Nakitende AJ, Kizito S, Thomas MR, Islam S, Bangirana P, Nakasujja N, Yang Z, Yu Y, Tran TM, John CC, McHenry MS. Association of severe malaria with cognitive and behavioural outcomes in low- and middle-income countries: a meta-analysis and systematic review. Malar J 2023; 22:227. [PMID: 37537555 PMCID: PMC10401769 DOI: 10.1186/s12936-023-04653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Malaria affects 24 million children globally, resulting in nearly 500,000 child deaths annually in low- and middle-income countries (LMICs). Recent studies have provided evidence that severe malaria infection results in sustained impairment in cognition and behaviour among young children; however, a formal meta-analysis has not been published. The objective was to assess the association between severe malaria infection with cognitive and behavioural outcomes among children living in LMICs. METHODS Six online bibliographic databases were searched and reviewed in November 2022. Studies included involved children < 18 years of age living in LMICs with active or past severe malaria infection and measured cognitive and/or behaviour outcomes. The quality of studies was assessed. Definitions of severe malaria included cerebral malaria, severe malarial anaemia, and author-defined severe malaria. Results from all studies were qualitatively summarized. For studies with relevant data on attention, learning, memory, language, internalizing behaviour and externalizing behaviour, results were pooled and a meta-analysis was performed. A random-effects model was used across included cohorts, yielding a standardized mean difference between the severe malaria group and control group. RESULTS Out of 3,803 initial records meeting the search criteria, 24 studies were included in the review, with data from 14 studies eligible for meta-analysis inclusion. Studies across sub-Saharan Africa assessed 11 cohorts of children from pre-school to school age. Of all the studies, composite measures of cognition were the most affected areas of development. Overall, attention, memory, and behavioural problems were domains most commonly found to have lower scores in children with severe malaria. Meta-analysis revealed that children with severe malaria had worse scores compared to children without malaria in attention (standardized mean difference (SMD) -0.68, 95% CI -1.26 to -0.10), memory (SMD -0.52, 95% CI -0.99 to -0.06), and externalizing behavioural problems (SMD 0.45, 95% CI 0.13-0.78). CONCLUSION Severe malaria is associated with worse neuropsychological outcomes for children living in LMICs, specifically in attention, memory, and externalizing behaviours. More research is needed to identify the long-term implications of these findings. Further interventions are needed to prevent cognitive and behavioural problems after severe malaria infection. TRIAL REGISTRATION This systematic review was registered under PROSPERO: CRD42020154777.
Collapse
Affiliation(s)
- Andrew Sentoogo Ssemata
- Department of Psychiatry, School of Medicine, Makerere University, P. O. Box 7072, Kampala, Uganda.
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK.
| | | | - Simon Kizito
- Department of Mental Health and Community Psychology, School of Psychology, Makerere University, Kampala, Uganda
| | - Melissa R Thomas
- Richard M. Fairbanks School of Public Health, Indiana University-Purdue University, Indianapolis, USA
| | - Sumaiya Islam
- School of Medicine, City University of New York (CUNY), New York City, USA
- Mailman School of Public Health, Columbia University, New York City, USA
| | - Paul Bangirana
- Department of Psychiatry, School of Medicine, Makerere University, P. O. Box 7072, Kampala, Uganda
- Global Health Uganda, Kampala, Uganda
| | - Noeline Nakasujja
- Department of Psychiatry, School of Medicine, Makerere University, P. O. Box 7072, Kampala, Uganda
| | - Ziyi Yang
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, USA
| | - Yunpeng Yu
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, USA
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Megan S McHenry
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
5
|
Marreiros IM, Marques S, Parreira A, Mastrodomenico V, Mounce BC, Harris CT, Kafsack BF, Billker O, Zuzarte-Luís V, Mota MM. A non-canonical sensing pathway mediates Plasmodium adaptation to amino acid deficiency. Commun Biol 2023; 6:205. [PMID: 36810637 PMCID: PMC9942083 DOI: 10.1038/s42003-023-04566-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Eukaryotes have canonical pathways for responding to amino acid (AA) availability. Under AA-limiting conditions, the TOR complex is repressed, whereas the sensor kinase GCN2 is activated. While these pathways have been highly conserved throughout evolution, malaria parasites are a rare exception. Despite auxotrophic for most AA, Plasmodium does not have either a TOR complex nor the GCN2-downstream transcription factors. While Ile starvation has been shown to trigger eIF2α phosphorylation and a hibernation-like response, the overall mechanisms mediating detection and response to AA fluctuation in the absence of such pathways has remained elusive. Here we show that Plasmodium parasites rely on an efficient sensing pathway to respond to AA fluctuations. A phenotypic screen of kinase knockout mutant parasites identified nek4, eIK1 and eIK2-the last two clustering with the eukaryotic eIF2α kinases-as critical for Plasmodium to sense and respond to distinct AA-limiting conditions. Such AA-sensing pathway is temporally regulated at distinct life cycle stages, allowing parasites to actively fine-tune replication and development in response to AA availability. Collectively, our data disclose a set of heterogeneous responses to AA depletion in malaria parasites, mediated by a complex mechanism that is critical for modulating parasite growth and survival.
Collapse
Affiliation(s)
- Inês M. Marreiros
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Sofia Marques
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Parreira
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Vincent Mastrodomenico
- grid.164971.c0000 0001 1089 6558Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL USA
| | - Bryan C. Mounce
- grid.164971.c0000 0001 1089 6558Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL USA ,grid.164971.c0000 0001 1089 6558Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL USA
| | - Chantal T. Harris
- grid.5386.8000000041936877XDepartment of Microbiology and Immunology, Weill Cornell Medical College, New York, NY USA ,grid.5386.8000000041936877XImmunology & Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY USA
| | - Björn F. Kafsack
- grid.5386.8000000041936877XDepartment of Microbiology and Immunology, Weill Cornell Medical College, New York, NY USA
| | - Oliver Billker
- grid.12650.300000 0001 1034 3451Molecular Infection Medicine Sweden, Molecular Biology Department, Umeå University, Umeå, S-90187 Sweden
| | - Vanessa Zuzarte-Luís
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria M. Mota
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Akide Ndunge OB, Kilian N, Salman MM. Cerebral Malaria and Neuronal Implications of Plasmodium Falciparum Infection: From Mechanisms to Advanced Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202944. [PMID: 36300890 PMCID: PMC9798991 DOI: 10.1002/advs.202202944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Reorganization of host red blood cells by the malaria parasite Plasmodium falciparum enables their sequestration via attachment to the microvasculature. This artificially increases the dwelling time of the infected red blood cells within inner organs such as the brain, which can lead to cerebral malaria. Cerebral malaria is the deadliest complication patients infected with P. falciparum can experience and still remains a major public health concern despite effective antimalarial therapies. Here, the current understanding of the effect of P. falciparum cytoadherence and their secreted proteins on structural features of the human blood-brain barrier and their involvement in the pathogenesis of cerebral malaria are highlighted. Advanced 2D and 3D in vitro models are further assessed to study this devastating interaction between parasite and host. A better understanding of the molecular mechanisms leading to neuronal and cognitive deficits in cerebral malaria will be pivotal in devising new strategies to treat and prevent blood-brain barrier dysfunction and subsequent neurological damage in patients with cerebral malaria.
Collapse
Affiliation(s)
- Oscar Bate Akide Ndunge
- Department of Internal MedicineSection of Infectious DiseasesYale University School of Medicine300 Cedar StreetNew HavenCT06510USA
| | - Nicole Kilian
- Centre for Infectious Diseases, ParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| | - Mootaz M. Salman
- Department of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| |
Collapse
|
7
|
A member of the tryptophan-rich protein family is required for efficient sequestration of Plasmodium berghei schizonts. PLoS Pathog 2022; 18:e1010846. [PMID: 36126089 PMCID: PMC9524624 DOI: 10.1371/journal.ppat.1010846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/30/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Protein export and host membrane remodeling are crucial for multiple Plasmodium species to establish a niche in infected hosts. To better understand the contribution of these processes to successful parasite infection in vivo, we sought to find and characterize protein components of the intraerythrocytic Plasmodium berghei-induced membrane structures (IBIS) that form in the cytoplasm of infected erythrocytes. We identified proteins that immunoprecipitate with IBIS1, a signature member of the IBIS in P. berghei-infected erythrocytes. In parallel, we also report our data describing proteins that co-precipitate with the PTEX (Plasmodium translocon of exported proteins) component EXP2. To validate our findings, we examined the location of three candidate IBIS1-interactors that are conserved across multiple Plasmodium species, and we found they localized to IBIS in infected red blood cells and two further colocalized with IBIS1 in the liver-stage parasitophorous vacuole membrane. Successful gene deletion revealed that these two tryptophan-rich domain-containing proteins, termed here IPIS2 and IPIS3 (for intraerythrocytic Plasmodium-induced membrane structures), are required for efficient blood-stage growth. Erythrocytes infected with IPIS2-deficient schizonts in particular fail to bind CD36 as efficiently as wild-type P. berghei-infected cells and therefore fail to effectively sequester out of the circulating blood. Our findings support the idea that intra-erythrocytic membrane compartments are required across species for alterations of the host erythrocyte that facilitate interactions of infected cells with host tissues.
Collapse
|
8
|
Georgiadou A, Dunican C, Soro-Barrio P, Lee HJ, Kaforou M, Cunnington AJ. Comparative transcriptomic analysis reveals translationally relevant processes in mouse models of malaria. eLife 2022; 11:e70763. [PMID: 35006075 PMCID: PMC8747512 DOI: 10.7554/elife.70763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Recent initiatives to improve translation of findings from animal models to human disease have focussed on reproducibility but quantifying the relevance of animal models remains a challenge. Here, we use comparative transcriptomics of blood to evaluate the systemic host response and its concordance between humans with different clinical manifestations of malaria and five commonly used mouse models. Plasmodium yoelii 17XL infection of mice most closely reproduces the profile of gene expression changes seen in the major human severe malaria syndromes, accompanied by high parasite biomass, severe anemia, hyperlactatemia, and cerebral microvascular pathology. However, there is also considerable discordance of changes in gene expression between the different host species and across all models, indicating that the relevance of biological mechanisms of interest in each model should be assessed before conducting experiments. These data will aid the selection of appropriate models for translational malaria research, and the approach is generalizable to other disease models.
Collapse
Affiliation(s)
- Athina Georgiadou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Pablo Soro-Barrio
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
| | - Hyun Jae Lee
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
9
|
Mooney JP, DonVito SM, Jahateh M, Bittaye H, Keith M, Galloway LJ, Ndow M, Cunnington AJ, D'Alessandro U, Bottomley C, Riley EM. 'Bouncing Back' From Subclinical Malaria: Inflammation and Erythrocytosis After Resolution of P. falciparum Infection in Gambian Children. Front Immunol 2022; 13:780525. [PMID: 35154104 PMCID: PMC8831762 DOI: 10.3389/fimmu.2022.780525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Recent malaria is associated with an increased risk of systemic bacterial infection. The aetiology of this association is unclear but malaria-related haemolysis may be one contributory factor. To characterise the physiological consequences of persistent and recently resolved malaria infections and associated haemolysis, 1650 healthy Gambian children aged 8-15 years were screened for P. falciparum infection (by 18sRNA PCR) and/or anaemia (by haematocrit) at the end of the annual malaria transmission season (t1). P. falciparum-infected children and children with moderate or severe anaemia (haemoglobin concentration < 11g/dl) were age matched to healthy, uninfected, non-anaemic controls and screened again 2 months later (t2). Persistently infected children (PCR positive at t1 and t2) had stable parasite burdens and did not differ significantly haematologically or in terms of proinflammatory markers from healthy, uninfected children. However, among persistently infected children, IL-10 concentrations were positively correlated with parasite density suggesting a tolerogenic response to persistent infection. By contrast, children who naturally resolved their infections (positive at t1 and negative at t2) exhibited mild erythrocytosis and concentrations of pro-inflammatory markers were raised compared to other groups of children. These findings shed light on a 'resetting' and potential overshoot of the homeostatic haematological response following resolution of malaria infection. Interestingly, the majority of parameters tested were highly heterogeneous in uninfected children, suggesting that some may be harbouring cryptic malaria or other infections.
Collapse
Affiliation(s)
- Jason P Mooney
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sophia M DonVito
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Maimuna Jahateh
- Medical Research Council Unit in The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Haddy Bittaye
- Medical Research Council Unit in The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Marianne Keith
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lauren J Galloway
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Mortala Ndow
- Medical Research Council Unit in The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Umberto D'Alessandro
- Medical Research Council Unit in The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Christian Bottomley
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eleanor M Riley
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Alteration of Blood Lactate Levels in Severe Falciparum Malaria: A Systematic Review and Meta-Analysis. BIOLOGY 2021; 10:biology10111085. [PMID: 34827078 PMCID: PMC8614809 DOI: 10.3390/biology10111085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary Alteration of blood lactate levels in patients with severe falciparum malaria is well recognized. However, data on blood lactate in literatures were based on a limited number of participants. The present systematic review aimed to collate the blood lactate levels recorded in the literature and used a metaanalysis approach to pool the evidence in a larger sample size than that used in the individual studies to determine the trend. Results from this study will provide the pooled evidence of blood lactate levels in patients with severe malaria for further studies that identifying patients with a high risk of developing severe malaria or death. Abstract Metabolic acidosis in severe malaria usually occurs in the form of lactic acidosis. The present study aimed to collate articles from the literature that have reported blood lactate levels in patients with severe malaria and tested the hypothesis that blood lactate levels are elevated in patients with malaria compared to those with uncomplicated malaria. Moreover, the difference in lactate levels between patients who died and those who survived was estimated using a meta-analytic approach. Potentially relevant studies were searched for in PubMed, Web of Science, and Scopus. The quality of the included studies was assessed using the Jadad scale and strengthening the reporting of observational studies in epidemiology (STROBE). The pooled mean blood lactate in patients with severe malaria, the pooled weighted mean difference (WMD) of blood lactate between patients with severe malaria and those with uncomplicated malaria, and the pooled WMD and 95% CI of blood lactate between patients who died from and those who survived severe malaria were estimated using the random-effects model. Heterogeneity among the outcomes of the included studies was assessed using Cochran’s Q and I2 statistics. A meta-regression analysis was performed to identify the source(s) of heterogeneity of outcomes among the included studies. A subgroup analysis was further performed to separately analyze the outcomes stratified by the probable source(s) of heterogeneity. Publication bias was assessed by the visual inspection of the funnel plot asymmetry. Of 793 studies retrieved from the searches, 30 studies were included in qualitative and quantitative syntheses. The pooled mean lactate in patients with severe malaria was 5.04 mM (95% CI: 4.44–5.64; I2: 99.9%; n = 30,202 cases from 30 studies). The mean lactate in patients with severe malaria (1568 cases) was higher than in those with uncomplicated malaria (1693 cases) (p = 0.003; MD: 2.46; 95% CI: 0.85–4.07; I2: 100%; nine studies). The mean lactate in patients with severe malaria who died (272 cases) was higher than in those with severe malaria who survived (1370 cases) (p < 0.001; MD: 2.74; 95% CI: 1.74–3.75; I2: 95.8%; six studies). In conclusion, the present study showed a high mean difference in blood lactate level between patients with severe malaria and patients with uncomplicated malaria. In addition, there was a high mean difference in blood lactate level between patients with severe malaria who died compared to those with severe malaria who survived. Further studies are needed to investigate the prognostic value of blood lactate levels to identify patients who are at high risk of developing severe malaria or dying.
Collapse
|
11
|
Gnangnon B, Duraisingh MT, Buckee CO. Deconstructing the parasite multiplication rate of Plasmodium falciparum. Trends Parasitol 2021; 37:922-932. [PMID: 34119440 DOI: 10.1016/j.pt.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023]
Abstract
Epidemiological indicators describing population-level malaria transmission dynamics are widely used to guide policy recommendations. However, the determinants of malaria outcomes within individuals are still poorly understood. This conceptual gap partly reflects the fact that there are few indicators that robustly predict the trajectory of individual infections or clinical outcomes. The parasite multiplication rate (PMR) is a widely used indicator for the Plasmodium intraerythrocytic development cycle (IDC), for example, but its relationship to clinical outcomes is complex. Here, we review its calculation and use in P. falciparum malaria research, as well as the parasite and host factors that impact it. We also provide examples of metrics that can help to link within-host dynamics to malaria clinical outcomes when used alongside the PMR.
Collapse
Affiliation(s)
- Bénédicte Gnangnon
- Center for Communicable Diseases Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Immunology & Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Immunology & Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Caroline O Buckee
- Center for Communicable Diseases Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
12
|
Abstract
Lactic acidosis and hyperlactatemia are common metabolic disturbances in patients with severe malaria. Lactic acidosis causes physiological adverse effects, which can aggravate the outcome of malaria. Despite its clear association with mortality in malaria patients, the etiology of lactic acidosis is not completely understood. In this review, the possible contributors to lactic acidosis and hyperlactatemia in patients with malaria are discussed. Both increased lactate production and impaired lactate clearance may play a role in the pathogenesis of lactic acidosis. The increased lactate production is caused by several factors, including the metabolism of intraerythrocytic Plasmodium parasites, aerobic glycolysis by activated immune cells, and an increase in anaerobic glycolysis in hypoxic cells and tissues as a consequence of parasite sequestration and anemia. Impaired hepatic and renal lactate clearance, caused by underlying liver and kidney disease, might further aggravate hyperlactatemia. Multiple factors thus participate in the etiology of lactic acidosis in malaria, and further investigations are required to fully understand their relative contributions and the consequences of this major metabolic disturbance.
Collapse
Affiliation(s)
- Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Belgium
| | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Belgium
| |
Collapse
|
13
|
Wu X, Thylur RP, Dayanand KK, Punnath K, Norbury CC, Gowda DC. IL-4 Treatment Mitigates Experimental Cerebral Malaria by Reducing Parasitemia, Dampening Inflammation, and Lessening the Cytotoxicity of T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 206:118-131. [PMID: 33239419 DOI: 10.4049/jimmunol.2000779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Cytokine responses to malaria play important roles in both protective immunity development and pathogenesis. Although the roles of cytokines such as TNF-α, IL-12, IFN-γ, and IL-10 in immunity and pathogenesis to the blood stage malaria are largely known, the role of IL-4 remains less understood. IL-4 targets many cell types and induces multiple effects, including cell proliferation, gene expression, protection from apoptosis, and immune regulation. Accordingly, IL-4 has been exploited as a therapeutic for several inflammatory diseases. Malaria caused by Plasmodium falciparum manifests in many organ-specific fatal pathologies, including cerebral malaria (CM), driven by a high parasite load, leading to parasite sequestration in organs and consequent excessive inflammatory responses and endothelial damage. We investigated the therapeutic potential of IL-4 against fatal malaria in Plasmodium berghei ANKA-infected C57BL/6J mice, an experimental CM model. IL-4 treatment significantly reduced parasitemia, CM pathology, and mortality. The therapeutic effect of IL-4 is mediated through multiple mechanisms, including enhanced parasite clearance mediated by upregulation of phagocytic receptors and increased IgM production, and decreased brain inflammatory responses, including reduced chemokine (CXCL10) production, reduced chemokine receptor (CXCR3) and adhesion molecule (LFA-1) expression by T cells, and downregulation of cytotoxic T cell lytic potential. IL-4 treatment markedly reduced the infiltration of CD8+ T cells and brain pathology. STAT6, PI3K-Akt-NF-κB, and Src signaling mediated the cellular and molecular events that contributed to the IL-4-dependent decrease in parasitemia. Overall, our results provide mechanistic insights into how IL-4 treatment mitigates experimental CM and have implications in developing treatment strategies for organ-specific fatal malaria.
Collapse
Affiliation(s)
- Xianzhu Wu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Ramesh P Thylur
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Kiran K Dayanand
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Kishore Punnath
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Christopher C Norbury
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| |
Collapse
|
14
|
Mita-Mendoza NK, Magallon-Tejada A, Parmar P, Furtado R, Aldrich M, Saidi A, Taylor T, Smith J, Seydel K, Daily JP. Dimethyl fumarate reduces TNF and Plasmodium falciparum induced brain endothelium activation in vitro. Malar J 2020; 19:376. [PMID: 33087130 PMCID: PMC7579885 DOI: 10.1186/s12936-020-03447-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background Cerebral malaria (CM) is associated with morbidity and mortality despite the use of potent anti-malarial agents. Brain endothelial cell activation and dysfunction from oxidative and inflammatory host responses and products released by Plasmodium falciparum-infected erythrocytes (IE), are likely the major contributors to the encephalopathy, seizures, and brain swelling that are associated with CM. The development of adjunctive therapy to reduce the pathological consequences of host response pathways could improve outcomes. A potentially protective role of the nuclear factor E2-related factor 2 (NRF2) pathway, which serves as a therapeutic target in brain microvascular diseases and central nervous system (CNS) inflammatory diseases such as multiple sclerosis was tested to protect endothelial cells in an in vitro culture system subjected to tumour necrosis factor (TNF) or infected red blood cell exposure. NRF2 is a transcription factor that mediates anti-oxidant and anti-inflammatory responses. Methods To accurately reflect clinically relevant parasite biology a unique panel of parasite isolates derived from patients with stringently defined CM was developed. The effect of TNF and these parasite lines on primary human brain microvascular endothelial cell (HBMVEC) activation in an in vitro co-culture model was tested. HBMVEC activation was measured by cellular release of IL6 and nuclear translocation of NFκB. The transcriptional and functional effects of dimethyl fumarate (DMF), an FDA approved drug which induces the NRF2 pathway, on host and parasite induced HBMVEC activation was characterized. In addition, the effect of DMF on parasite binding to TNF stimulated HBMVEC in a semi-static binding assay was examined. Results Transcriptional profiling demonstrates that DMF upregulates the NRF2-Mediated Oxidative Stress Response, ErbB4 Signaling Pathway, Peroxisome Proliferator-activated Receptor (PPAR) Signaling and downregulates iNOS Signaling and the Neuroinflammation Signaling Pathway on TNF activated HBMVEC. The parasite lines derived from eight paediatric CM patients demonstrated increased binding to TNF activated HBMVEC and varied in their binding and activation of HBMVEC. Overall DMF reduced both TNF and CM derived parasite activation of HBMVEC. Conclusions These findings provide evidence that targeting the NRF2 pathway in TNF and parasite activated HBMVEC mediates multiple protective pathways and may represent a novel adjunctive therapy to improve infection outcomes in CM.
Collapse
Affiliation(s)
- Neida K Mita-Mendoza
- Department of Microbiology & Immunology and Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ariel Magallon-Tejada
- Seattle Biomedical Research Institute, Seattle, WA, USA.,Department of Research in Parasitology, Gorgas Memorial Research Institute for Health Studies, Panama City, Panama
| | - Priyanka Parmar
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Raquel Furtado
- Department of Microbiology & Immunology and Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Margaret Aldrich
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alex Saidi
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi
| | - Terrie Taylor
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Joe Smith
- Seattle Children's Research Institute, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| | - Karl Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Johanna P Daily
- Department of Microbiology & Immunology and Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, USA. .,Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
15
|
Mousa A, Al-Taiar A, Anstey NM, Badaut C, Barber BE, Bassat Q, Challenger JD, Cunnington AJ, Datta D, Drakeley C, Ghani AC, Gordeuk VR, Grigg MJ, Hugo P, John CC, Mayor A, Migot-Nabias F, Opoka RO, Pasvol G, Rees C, Reyburn H, Riley EM, Shah BN, Sitoe A, Sutherland CJ, Thuma PE, Unger SA, Viwami F, Walther M, Whitty CJM, William T, Okell LC. The impact of delayed treatment of uncomplicated P. falciparum malaria on progression to severe malaria: A systematic review and a pooled multicentre individual-patient meta-analysis. PLoS Med 2020; 17:e1003359. [PMID: 33075101 PMCID: PMC7571702 DOI: 10.1371/journal.pmed.1003359] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Delay in receiving treatment for uncomplicated malaria (UM) is often reported to increase the risk of developing severe malaria (SM), but access to treatment remains low in most high-burden areas. Understanding the contribution of treatment delay on progression to severe disease is critical to determine how quickly patients need to receive treatment and to quantify the impact of widely implemented treatment interventions, such as 'test-and-treat' policies administered by community health workers (CHWs). We conducted a pooled individual-participant meta-analysis to estimate the association between treatment delay and presenting with SM. METHODS AND FINDINGS A search using Ovid MEDLINE and Embase was initially conducted to identify studies on severe Plasmodium falciparum malaria that included information on treatment delay, such as fever duration (inception to 22nd September 2017). Studies identified included 5 case-control and 8 other observational clinical studies of SM and UM cases. Risk of bias was assessed using the Newcastle-Ottawa scale, and all studies were ranked as 'Good', scoring ≥7/10. Individual-patient data (IPD) were pooled from 13 studies of 3,989 (94.1% aged <15 years) SM patients and 5,780 (79.6% aged <15 years) UM cases in Benin, Malaysia, Mozambique, Tanzania, The Gambia, Uganda, Yemen, and Zambia. Definitions of SM were standardised across studies to compare treatment delay in patients with UM and different SM phenotypes using age-adjusted mixed-effects regression. The odds of any SM phenotype were significantly higher in children with longer delays between initial symptoms and arrival at the health facility (odds ratio [OR] = 1.33, 95% CI: 1.07-1.64 for a delay of >24 hours versus ≤24 hours; p = 0.009). Reported illness duration was a strong predictor of presenting with severe malarial anaemia (SMA) in children, with an OR of 2.79 (95% CI:1.92-4.06; p < 0.001) for a delay of 2-3 days and 5.46 (95% CI: 3.49-8.53; p < 0.001) for a delay of >7 days, compared with receiving treatment within 24 hours from symptom onset. We estimate that 42.8% of childhood SMA cases and 48.5% of adult SMA cases in the study areas would have been averted if all individuals were able to access treatment within the first day of symptom onset, if the association is fully causal. In studies specifically recording onset of nonsevere symptoms, long treatment delay was moderately associated with other SM phenotypes (OR [95% CI] >3 to ≤4 days versus ≤24 hours: cerebral malaria [CM] = 2.42 [1.24-4.72], p = 0.01; respiratory distress syndrome [RDS] = 4.09 [1.70-9.82], p = 0.002). In addition to unmeasured confounding, which is commonly present in observational studies, a key limitation is that many severe cases and deaths occur outside healthcare facilities in endemic countries, where the effect of delayed or no treatment is difficult to quantify. CONCLUSIONS Our results quantify the relationship between rapid access to treatment and reduced risk of severe disease, which was particularly strong for SMA. There was some evidence to suggest that progression to other severe phenotypes may also be prevented by prompt treatment, though the association was not as strong, which may be explained by potential selection bias, sample size issues, or a difference in underlying pathology. These findings may help assess the impact of interventions that improve access to treatment.
Collapse
Affiliation(s)
- Andria Mousa
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Abdullah Al-Taiar
- School of Community & Environmental Health, College of Health Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| | - Nicholas M. Anstey
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Cyril Badaut
- Unité de Biothérapie Infectieuse et Immunité, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
- Unité des Virus Emergents (UVE: Aix-Marseille Univ—IRD 190—Inserm 1207—IHU Méditerranée Infection), Marseille, France
| | - Bridget E. Barber
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Quique Bassat
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ICREA, Barcelona, Spain
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Joseph D. Challenger
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, United Kingdom
| | - Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Azra C. Ghani
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Victor R. Gordeuk
- Sickle Cell Center, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Matthew J. Grigg
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Pierre Hugo
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Chandy C. John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Robert O. Opoka
- Department of Paediatrics and Child Health, Makerere University School of Medicine, Kampala, Uganda
| | - Geoffrey Pasvol
- Imperial College London, Department of Life Sciences, London, United Kingdom
| | - Claire Rees
- Centre for Global Public Health, Institute of Population Health Sciences, Barts & The London School of Medicine & Dentistry, London, United Kingdom
| | - Hugh Reyburn
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Eleanor M. Riley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Binal N. Shah
- Sickle Cell Center, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Antonio Sitoe
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Colin J. Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Stefan A. Unger
- Department of Child Life and Health, University of Edinburgh, United Kingdom
- Department of Respiratory Medicine, Royal Hospital for Sick Children, Edinburgh, United Kingdom
| | - Firmine Viwami
- Institut de Recherche Clinique du Bénin (IRCB), Cotonou, Benin
| | - Michael Walther
- Medical Research Council Unit, Fajara, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Christopher J. M. Whitty
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Gleneagles Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Lucy C. Okell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Uyoga S, Wanjiku P, Rop JC, Makale J, Macharia AW, Nyutu GM, Shebe M, Awuondo KA, Mturi N, Woodrow CJ, Dondorp AM, Maitland K, Williams TN. Plasma Plasmodium falciparum Histidine-Rich Protein-2 concentrations in children with malaria infections of differing severity in Kilifi, Kenya. Clin Infect Dis 2020; 73:e2415-e2423. [PMID: 32772115 PMCID: PMC8492128 DOI: 10.1093/cid/ciaa1141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 11/13/2022] Open
Abstract
Background Most previous studies support a direct link between total parasite load and the clinical severity of Plasmodium falciparum malaria infections. Methods We estimated P. falciparum parasite loads in 3 groups of children with malaria infections of differing severity: (1) children with World Health Organization–defined severe malaria (n = 1544), (2) children admitted with malaria but without features of severity (n = 200), and (3) children in the community with asymptomatic parasitemia (n = 33). Results Peripheral parasitemias were highest in those with uncomplicated malaria (geometric mean [GM] parasite count, 111 064/μL; 95% confidence interval, CI, 86 798–141 819/μL), almost 3 times higher than in those with severe malaria (39 588/μL; 34 990–44 791/μL) and >100 times higher than in those with asymptomatic malaria (1092/μL; 523–2280/μL). However, the GM P. falciparum histidine-rich protein 2 (PfHRP2) values (95% CI) increased with severity, being 7 (4–12) ng/mL in asymptomatic malaria, 843 (655–1084) ng/mL in uncomplicated malaria, and 1369 (1244–1506) ng/mL in severe malaria. PfHRP2 concentrations were markedly lower in the subgroup of patients with severe malaria and concomitant invasive bacterial infections of blood or cerebrospinal fluid (GM concentration, 312 ng/mL; 95% CI, 175–557 ng/mL; P < .001) than in those without such infections (1439 ng/mL; 1307–1584; P < .001). Conclusions The clinical severity of malaria infections related strongly to the total burden of P. falciparum parasites. A quantitative test for plasma concentrations of PfHRP2 could be useful in identifying children at the greatest clinical risk and identifying critically ill children in whom malaria is not the primary cause.
Collapse
Affiliation(s)
- Sophie Uyoga
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Jesse C Rop
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | | | | | | | - Neema Mturi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Charles J Woodrow
- Mahidol-Oxford Research Unit,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health,Nuffield Department of Medicine,University of Oxford, UK
| | - Arjen M Dondorp
- Mahidol-Oxford Research Unit,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health,Nuffield Department of Medicine,University of Oxford, UK
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Department of Infectious Diseases, Imperial College, London, UK
| | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Department of Infectious Diseases, Imperial College, London, UK
| |
Collapse
|
17
|
Raja AI, Brickley EB, Taaffe J, Ton T, Zhao Z, Bock KW, Orr-Gonzalez S, Thomas ML, Lambert LE, Moore IN, Duffy PE. A primate model of severe malarial anaemia: a comparative pathogenesis study. Sci Rep 2019; 9:18965. [PMID: 31831787 PMCID: PMC6908728 DOI: 10.1038/s41598-019-55377-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/20/2019] [Indexed: 01/16/2023] Open
Abstract
Severe malarial anaemia (SMA) is the most common life-threatening complication of Plasmodium falciparum infection in African children. SMA is characterised by haemolysis and inadequate erythropoiesis, and is associated with dysregulated inflammatory responses and reduced complement regulatory protein levels (including CD35). However, a deeper mechanistic understanding of the pathogenesis requires improved animal models. In this comparative study of two closely related macaque species, we interrogated potential causal factors for their differential and temporal relationships to onset of SMA. We found that rhesus macaques inoculated with blood-stage Plasmodium coatneyi developed SMA within 2 weeks, with no other severe outcomes, whereas infected cynomolgus macaques experienced only mild/ moderate anaemia. The abrupt drop in haematocrit in rhesus was accompanied by consumption of haptoglobin (haemolysis) and poor reticulocyte production. Rhesus developed a greater inflammatory response than cynomolgus macaques, and had lower baseline levels of CD35 on red blood cells (RBCs) leading to a significant reduction in the proportion of CD35+ RBCs during infection. Overall, severe anaemia in rhesus macaques infected with P. coatneyi has similar features to SMA in children. Our comparisons are consistent with an association of low baseline CD35 levels on RBCs and of early inflammatory responses with the pathogenesis of SMA.
Collapse
Affiliation(s)
- Amber I Raja
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elizabeth B Brickley
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America.,Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jessica Taaffe
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Timmy Ton
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zhen Zhao
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America.,Weill Cornell Medicine, New York City, New York, United States of America
| | - Kevin W Bock
- Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sachy Orr-Gonzalez
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marvin L Thomas
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ian N Moore
- Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America.
| |
Collapse
|
18
|
Loiseau C, Cooper MM, Doolan DL. Deciphering host immunity to malaria using systems immunology. Immunol Rev 2019; 293:115-143. [PMID: 31608461 DOI: 10.1111/imr.12814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
A century of conceptual and technological advances in infectious disease research has changed the face of medicine. However, there remains a lack of effective interventions and a poor understanding of host immunity to the most significant and complex pathogens, including malaria. The development of successful interventions against such intractable diseases requires a comprehensive understanding of host-pathogen immune responses. A major advance of the past decade has been a paradigm switch in thinking from the contemporary reductionist (gene-by-gene or protein-by-protein) view to a more holistic (whole organism) view. Also, a recognition that host-pathogen immunity is composed of complex, dynamic interactions of cellular and molecular components and networks that cannot be represented by any individual component in isolation. Systems immunology integrates the field of immunology with omics technologies and computational sciences to comprehensively interrogate the immune response at a systems level. Herein, we describe the system immunology toolkit and report recent studies deploying systems-level approaches in the context of natural exposure to malaria or controlled human malaria infection. We contribute our perspective on the potential of systems immunity for the rational design and development of effective interventions to improve global public health.
Collapse
Affiliation(s)
- Claire Loiseau
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| |
Collapse
|
19
|
Modelling pathogen load dynamics to elucidate mechanistic determinants of host-Plasmodium falciparum interactions. Nat Microbiol 2019; 4:1592-1602. [PMID: 31209307 PMCID: PMC6708439 DOI: 10.1038/s41564-019-0474-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022]
Abstract
During infection, increasing pathogen load stimulates both protective and
harmful aspects of the host response. The dynamics of this interaction are hard
to quantify in humans, but doing so could improve understanding of mechanisms of
disease and protection. We sought to model the contributions of parasite
multiplication rate and host response to observed parasite load in individual
subjects with Plasmodium falciparum malaria, using only data
obtained at the time of clinical presentation, and then to identify their
mechanistic correlates. We predicted higher parasite multiplication rates and
lower host responsiveness in severe malaria cases, with severe anemia being more
insidious than cerebral malaria. We predicted that parasite growth-inhibition
was associated with platelet consumption, lower expression of
CXCL10 and type-1 interferon-associated genes, but
increased cathepsin G and matrix metallopeptidase 9 expression. We found that
cathepsin G and matrix metallopeptidase 9 directly inhibit parasite invasion
into erythrocytes. Parasite multiplication rate was associated with host iron
availability and higher complement factor H levels, lower expression of
gametocyte-associated genes but higher expression of translation-associated
genes in the parasite. Our findings demonstrate the potential of using explicit
modelling of pathogen load dynamics to deepen understanding of host-pathogen
interactions and identify mechanistic correlates of protection.
Collapse
|
20
|
Abstract
Background Previous studies have documented a spectrum of brain magnetic resonance imaging (MRI) abnormalities in patients with cerebral malaria, but little is known about the prevalence of such abnormalities in patients with non-cerebral malaria. The aim of this study was to assess the frequency of brain MRI findings in returning travellers with non-cerebral malaria. Methods A total of 17 inpatients with microscopically confirmed Plasmodium falciparum non-cerebral malaria underwent structural brain MRI at 3.0 Tesla, including susceptibility-weighted imaging (SWI). Presence of imaging findings was recorded and correlated with clinical findings and parasitaemia. Results Structural brain abnormalities included a hyperintense lesion of the splenium on T2-weighted imaging (n = 3) accompanied by visible diffusion restriction (n = 2). Isolated brain microhaemorrhage was detected in 3 patients. T2-hyperintense signal abnormalities of the white matter ranged from absent to diffuse (n = 10 had 0–5 lesions, n = 5 had 5–20 lesions and 2 patients had more than 50 lesions). Imaging findings were not associated with parasitaemia or HRP2 levels. Conclusion Brain MRI reveals a considerable frequency of T2-hyperintense splenial lesions in returning travellers with non-cerebral malaria, which appears to be independent of parasitaemia.
Collapse
|
21
|
Ecklu-Mensah G, Olsen RW, Bengtsson A, Ofori MF, Hviid L, Jensen ATR, Adams Y. Blood outgrowth endothelial cells (BOECs) as a novel tool for studying adhesion of Plasmodium falciparum-infected erythrocytes. PLoS One 2018; 13:e0204177. [PMID: 30300360 PMCID: PMC6177148 DOI: 10.1371/journal.pone.0204177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/03/2018] [Indexed: 11/19/2022] Open
Abstract
The lack of suitable animal models for the study of cytoadhesion of P. falciparum-infected erythrocytes (IEs) has necessitated in vitro studies employing a range of cell lines of either human tumour origin (e.g., BeWo and C32 cells) or non-human origin (e.g., CHO cells). Of the human cells available, many were isolated from adults, or derived from a pool of donors (e.g., HBEC-5i). Here we demonstrate, for the first time, the successful isolation of blood outgrowth endothelial cells (BOECs) from frozen stabilates of peripheral blood mononuclear cells obtained from small-volume peripheral blood samples from paediatric malaria patients. BOECs are a sub-population of human endothelial cells, found within the peripheral blood. We demonstrate that these cells express receptors such as Intercellular Adhesion Molecule 1 (ICAM-1/CD54), Endothelial Protein C Receptor (EPCR/CD201), platelet/endothelial cell adhesion molecule 1 (PECAM-1/CD31), Thrombomodulin (CD141), and support adhesion of P. falciparum IEs.
Collapse
Affiliation(s)
- Gertrude Ecklu-Mensah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- Centre for Medical Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca W. Olsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Bengtsson
- Centre for Medical Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael F. Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Anja T. R. Jensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
22
|
van Beek AE, Sarr I, Correa S, Nwakanma D, Brouwer MC, Wouters D, Secka F, Anderson STB, Conway DJ, Walther M, Levin M, Kuijpers TW, Cunnington AJ. Complement Factor H Levels Associate With Plasmodium falciparum Malaria Susceptibility and Severity. Open Forum Infect Dis 2018; 5:ofy166. [PMID: 30087905 PMCID: PMC6059171 DOI: 10.1093/ofid/ofy166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Plasmodium falciparum may evade complement-mediated host defense by hijacking complement Factor H (FH), a negative regulator of the alternative complement pathway. Plasma levels of FH vary between individuals and may therefore influence malaria susceptibility and severity. METHODS We measured convalescent FH plasma levels in 149 Gambian children who had recovered from uncomplicated or severe P. falciparum malaria and in 173 healthy control children. We compared FH plasma levels between children with malaria and healthy controls, and between children with severe (n = 82) and uncomplicated malaria (n = 67). We determined associations between FH plasma levels and laboratory features of severity and used multivariate analyses to examine associations with FH when accounting for other determinants of severity. RESULTS FH plasma levels differed significantly between controls, uncomplicated malaria cases, and severe malaria cases (mean [95% confidence interval], 257 [250 to 264], 288 [268 to 309], and 328 [313 to 344] µg/mL, respectively; analysis of variance P < .0001). FH plasma levels correlated with severity biomarkers, including lactate, parasitemia, and parasite density, but did not correlate with levels of PfHRP2, which represent the total body parasite load. Associations with severity and lactate remained significant when adjusting for age and parasite load. CONCLUSIONS Natural variation in FH plasma levels is associated with malaria susceptibility and severity. A prospective study will be needed to strengthen evidence for causation, but our findings suggest that interfering with FH binding by P. falciparum might be useful for malaria prevention or treatment.
Collapse
Affiliation(s)
- Anna E van Beek
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children’s Hospital, Academic Medical Centre, Amsterdam, the Netherlands
| | - Isatou Sarr
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine
| | - Simon Correa
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine
| | - Davis Nwakanma
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine
| | - Mieke C Brouwer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Fatou Secka
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine
| | - Suzanne T B Anderson
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine
| | - David J Conway
- Department of Pathogen and Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael Walther
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine
| | - Michael Levin
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children’s Hospital, Academic Medical Centre, Amsterdam, the Netherlands
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
23
|
Lee HJ, Georgiadou A, Walther M, Nwakanma D, Stewart LB, Levin M, Otto TD, Conway DJ, Coin LJ, Cunnington AJ. Integrated pathogen load and dual transcriptome analysis of systemic host-pathogen interactions in severe malaria. Sci Transl Med 2018; 10:eaar3619. [PMID: 29950443 PMCID: PMC6326353 DOI: 10.1126/scitranslmed.aar3619] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/31/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
The pathogenesis of infectious diseases depends on the interaction of host and pathogen. In Plasmodium falciparum malaria, host and parasite processes can be assessed by dual RNA sequencing of blood from infected patients. We performed dual transcriptome analyses on samples from 46 malaria-infected Gambian children to reveal mechanisms driving the systemic pathophysiology of severe malaria. Integrating these transcriptomic data with estimates of parasite load and detailed clinical information allowed consideration of potentially confounding effects due to differing leukocyte proportions in blood, parasite developmental stage, and whole-body pathogen load. We report hundreds of human and parasite genes differentially expressed between severe and uncomplicated malaria, with distinct profiles associated with coma, hyperlactatemia, and thrombocytopenia. High expression of neutrophil granule-related genes was consistently associated with all severe malaria phenotypes. We observed severity-associated variation in the expression of parasite genes, which determine cytoadhesion to vascular endothelium, rigidity of infected erythrocytes, and parasite growth rate. Up to 99% of human differential gene expression in severe malaria was driven by differences in parasite load, whereas parasite gene expression showed little association with parasite load. Coexpression analyses revealed interactions between human and P. falciparum, with prominent co-regulation of translation genes in severe malaria between host and parasite. Multivariate analyses suggested that increased expression of granulopoiesis and interferon-γ-related genes, together with inadequate suppression of type 1 interferon signaling, best explained severity of infection. These findings provide a framework for understanding the contributions of host and parasite to the pathogenesis of severe malaria and identifying new treatments.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Michael Walther
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Davis Nwakanma
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Lindsay B Stewart
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Michael Levin
- Section of Paediatrics, Imperial College, London W2 1PG, UK
| | - Thomas D Otto
- Wellcome Trust Sanger Centre, Hinxton, Cambridge CB10 1SA, UK
| | - David J Conway
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Lachlan J Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
24
|
Lee HJ, Georgiadou A, Otto TD, Levin M, Coin LJ, Conway DJ, Cunnington AJ. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions. Microbiol Mol Biol Rev 2018; 82:e00071-17. [PMID: 29695497 PMCID: PMC5968457 DOI: 10.1128/mmbr.00071-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | - Thomas D Otto
- Centre of Immunobiology, University of Glasgow, Glasgow, United Kingdom
| | - Michael Levin
- Section of Paediatrics, Imperial College, London, United Kingdom
| | - Lachlan J Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David J Conway
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
25
|
Mohon AN, Menard D, Alam MS, Perera K, Pillai DR. A Novel Single-Nucleotide Polymorphism Loop Mediated Isothermal Amplification Assay for Detection of Artemisinin-Resistant Plasmodium falciparum Malaria. Open Forum Infect Dis 2018; 5:ofy011. [PMID: 29707598 PMCID: PMC5912083 DOI: 10.1093/ofid/ofy011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/08/2018] [Indexed: 01/06/2023] Open
Abstract
Background Artemisinin-resistant malaria (ARM) remains a significant threat to malaria elimination. In the Greater Mekong subregion, the prevalence of ARM in certain regions has reached greater than 90%. Artemisinin-resistant malaria is clinically identified by delayed parasite clearance and has been associated with mutations in the propeller domain of the kelch 13 gene. C580Y is the most prevalent mutation. The detection of ARM currently relies on labor-intensive and time-consuming methods such as clinical phenotyping or in vitro susceptibility testing. Methods We developed a novel single-nucleotide polymorphism loop mediated isothermal amplification (SNP-LAMP) test method for the detection of the C580Y mutation using a novel primer design strategy. Results The SNP-LAMP was 90.0% sensitive (95% confidence interval [CI], 66.9-98.3) and 91.9% specific (95% CI, 82.6-96.7) without knowledge of the parasite load and was 100% sensitive (95% CI, 79.9-100) and 97.3% specific (95% CI, 89.7-99.5) when the parasitemia was within the assay dynamic range. Tests with potential application near-to-patient such as SNP-LAMP may be deployed in low- and middle-income and developed countries. Conclusions Single-nucleotide polymorphism LAMP can serve as a surveillance tool and guide treatment algorithms for ARM in a clinically relevant time frame, prevent unnecessary use of additional drugs that may drive additional resistance, and avoid longer treatment regimens that cause toxicity for the patient.
Collapse
Affiliation(s)
- Abu Naser Mohon
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Alberta, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Alberta, Canada
| | - Didier Menard
- Unité Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, France
| | - Mohammad Shafiul Alam
- Parasitology Laboratory, Centre for Vaccine Sciences, International Center for Diarrheal Disease Research, Mohakhali, Bangladesh
| | - Kevin Perera
- Department of Pathology and Laboratory Medicine, University of Calgary, Alberta, Canada.,Department of Biological Sciences, University of Calgary, Alberta, Canada
| | - Dylan R Pillai
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Alberta, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Alberta, Canada.,Department of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
26
|
Fonseca LL, Joyner CJ, Galinski MR, Voit EO. A model of Plasmodium vivax concealment based on Plasmodium cynomolgi infections in Macaca mulatta. Malar J 2017; 16:375. [PMID: 28923058 PMCID: PMC5608162 DOI: 10.1186/s12936-017-2008-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/02/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Plasmodium vivax can cause severe malaria. The total parasite biomass during infections is correlated with the severity of disease but not necessarily quantified accurately by microscopy. This finding has raised the question whether there could be sub-populations of parasites that are not observed in peripheral blood smears but continue to contribute to the increase in parasite numbers that drive pathogenesis. Non-human primate infection models utilizing the closely related simian malaria parasite Plasmodium cynomolgi hold the potential for quantifying the magnitude of possibly unobserved infected red blood cell (iRBC) populations and determining how the presence of this hidden reservoir correlates with disease severity. METHODS Time series data tracking the longitudinal development of parasitaemia in five Macaca mulatta infected with P. cynomolgi were used to design a computational model quantifying iRBCs that circulate in the blood versus those that are not detectable and are termed here as 'concealed'. This terminology is proposed to distinguish such observations from the deep vascular and widespread 'sequestration' of Plasmodium falciparum iRBCs, which is governed by distinctly different molecular mechanisms. RESULTS The computational model presented here clearly demonstrates that the observed growth data of iRBC populations are not consistent with the known biology and blood-stage cycle of P. cynomolgi. However, the discrepancies can be resolved when a sub-population of concealed iRBCs is taken into account. The model suggests that the early growth of a hidden parasite sub-population has the potential to drive disease. As an alternative, the data could be explained by the sequential release of merozoites from the liver over a number of days, but this scenario seems less likely. CONCLUSIONS Concealment of a non-circulating iRBC sub-population during P. cynomolgi infection of M. mulatta is an important aspect of this successful host-pathogen relationship. The data also support the likelihood that a sub-population of iRBCs of P. vivax has a comparable means to become withdrawn from the peripheral circulation. This inference has implications for understanding vivax biology and pathogenesis and stresses the importance of considering a concealed parasite reservoir with regard to vivax epidemiology and the quantification and treatment of P. vivax infections.
Collapse
Affiliation(s)
- Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Suite 2115, Atlanta, GA, 30332-2000, USA.,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA
| | - Chester J Joyner
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA.,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA
| | | | - Mary R Galinski
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA.,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA.,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Suite 2115, Atlanta, GA, 30332-2000, USA. .,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA.
| |
Collapse
|
27
|
Park GS, Opoka RO, Shabani E, Wypyszynski A, Hanisch B, John CC. Plasmodium falciparum Histidine-Rich Protein-2 Plasma Concentrations Are Higher in Retinopathy-Negative Cerebral Malaria Than in Severe Malarial Anemia. Open Forum Infect Dis 2017; 4:ofx151. [PMID: 28948179 PMCID: PMC5597884 DOI: 10.1093/ofid/ofx151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/14/2017] [Indexed: 11/14/2022] Open
Abstract
Background Malaria retinopathy has been proposed as marker of “true” cerebral malaria (CM), ie, coma due to Plasmodium falciparum vs coma due to other causes, with incidental P falciparum parasitemia. Plasma P falciparum histidine-rich protein-2 (PfHRP2) concentrations distinguish retinopathy-positive (RP) from retinopathy-negative (RN) CM but have not been compared between RN CM and other forms of severe malaria or asymptomatic parasitemia (AP). Methods We compared plasma PfHRP2 concentrations in 260 children with CM (247 examined for retinopathy), 228 children with severe malarial anemia (SMA), and 30 community children with AP. Results Plasmodium falciparum HRP2 concentrations were higher in children with RP CM than RN CM (P = .006), with an area under the receiver operating characteristic curve of 0.61 (95% confidence interval, 0.53–0.68). Plasmodium falciparum HRP2 concentrations and sequestered parasite biomass were higher in RN CM than SMA (both P < .03) or AP (both P < .001). Conclusions Plasmodium falciparum HRP2 concentrations are higher in children with RN CM than in children with SMA or AP, suggesting that P falciparum is involved in disease pathogenesis in children with CM. Plasmodium falciparum HRP2 concentrations may provide a more feasible and consistent assessment of the contribution of P falciparum to severe disease than malaria retinopathy.
Collapse
Affiliation(s)
- Gregory S Park
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis
| | - Robert O Opoka
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Estela Shabani
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis.,Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis
| | - Alexis Wypyszynski
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis
| | - Benjamin Hanisch
- Division of Pediatric Infectious Diseases, Children's National Medical Center, Washington, District of Columbia
| | - Chandy C John
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis.,Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis
| |
Collapse
|
28
|
Hempel C, Wang CW, Kurtzhals JAL, Staalsø T. Binding of Plasmodium falciparum to CD36 can be shielded by the glycocalyx. Malar J 2017; 16:193. [PMID: 28486940 PMCID: PMC5424350 DOI: 10.1186/s12936-017-1844-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Plasmodium falciparum-infected erythrocytes sequester in the microcirculation due to interaction between surface-expressed parasite proteins and endothelial receptors. Endothelial cells are covered in a carbohydrate-rich glycocalyx that shields against undesired leukocyte adhesion. It was investigated if the cellular glycocalyx affects the binding of P. falciparum-infected erythrocytes to CD36 in vitro. METHODS Glycocalyx growth was followed in vitro by using azido sugars and cationized ferritin detecting O-glycoproteins and negatively charged proteoglycans, respectively. P. falciparum (clone FCR3/IT) was selected on Chinese hamster ovary (CHO) cells transfected with human CD36. Cytoadhesion to CHO CD36 at 1-4 days after seeding was quantified by using a static binding assay. RESULTS The glycocalyx thickness of CHO cells increased during 4 days in culture as assessed by metabolic labelling of glycans with azido sugars and with electron microscopy studying the binding of cationized ferritin to cell surfaces. The functional importance of this process was addressed in binding assays by using CHO cells transfected with CD36. In parallel with the maturation of the glycocalyx, antibody-binding to CD36 was inhibited, despite stable expression of CD36. P. falciparum selected for CD36-binding recognized CD36 on CHO cells on the first day in culture, but the binding was lost after 2-4 days. CONCLUSION The endothelial glycocalyx affects parasite cytoadhesion in vitro, an effect that has previously been ignored. The previously reported loss of glycocalyx during experimental malaria may play an important role in the pathogenesis of malaria complications by allowing the close interaction between infected erythrocytes and endothelial receptors.
Collapse
Affiliation(s)
- Casper Hempel
- Department of Clinical Microbiology, Centre for Medical Parasitology, Copenhagen University Hospital, Copenhagen, Denmark. .,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Christian William Wang
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Jørgen Anders Lindholm Kurtzhals
- Department of Clinical Microbiology, Centre for Medical Parasitology, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Staalsø
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Argy N, Kendjo E, Augé-Courtoi C, Cojean S, Clain J, Houzé P, Thellier M, Hubert V, Deloron P, Houzé S. Influence of host factors and parasite biomass on the severity of imported Plasmodium falciparum malaria. PLoS One 2017; 12:e0175328. [PMID: 28410415 PMCID: PMC5391917 DOI: 10.1371/journal.pone.0175328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/23/2017] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES Imported malaria in France is characterized by various clinical manifestations observed in a heterogeneous population of patients such as travelers/expatriates and African migrants. In this population, host factors and parasite biomass associated with severe imported malaria are poorly known. METHODS From data collected by the Centre National de Référence du Paludisme, we identified epidemiological, demographic and biological features including parasite biomass and anti-plasmodial antibody levels (negative, positive and strongly positive serology) associated with different disease severity groups (very severe, moderately severe, and uncomplicated malaria) in 3 epidemiological groups (travelers/expatriates, first- and second-generation migrants). RESULTS Age, ethnicity, absence of prior infection with P. falciparum, antibody levels, plasma PfHRP2 levels, total and circulating parasite biomass were related to severe malaria onset. Sequestered parasite biomass tended to be increased in very severe malaria, and was strongly correlated to the antibody level of the host. CONCLUSIONS Prior exposure to P. falciparum is associated with high anti-plasmodial antibody levels which influence clinical presentation of imported malaria and its correlated circulating and sequestered parasite burden.
Collapse
Affiliation(s)
- Nicolas Argy
- Laboratoire de parasitologie, hôpital Bichat-Claude Bernard, APHP, Paris, France
- Centre National de Référence du Paludisme, hôpital Bichat-Claude Bernard, APHP, Paris, France
- Faculté de Pharmacie, Université Paris Descartes, COMUE Sorbonne Paris Cité, Paris, France
- UMR MERIT 216, Institut de recherche pour le développement, Paris, France
| | - Eric Kendjo
- Centre National de Référence du Paludisme, hôpital Bichat-Claude Bernard, APHP, Paris, France
| | - Claire Augé-Courtoi
- Faculté de Pharmacie, Université Paris Descartes, COMUE Sorbonne Paris Cité, Paris, France
- UMR MERIT 216, Institut de recherche pour le développement, Paris, France
| | - Sandrine Cojean
- Centre National de Référence du Paludisme, hôpital Bichat-Claude Bernard, APHP, Paris, France
| | - Jérôme Clain
- Centre National de Référence du Paludisme, hôpital Bichat-Claude Bernard, APHP, Paris, France
- Faculté de Pharmacie, Université Paris Descartes, COMUE Sorbonne Paris Cité, Paris, France
- UMR MERIT 216, Institut de recherche pour le développement, Paris, France
| | - Pascal Houzé
- Faculté de Pharmacie, Université Paris Descartes, COMUE Sorbonne Paris Cité, Paris, France
- Laboratoire de pharmacologie, hôpital Saint-Louis, APHP, Paris, France
| | - Marc Thellier
- Laboratoire de parasitologie, hôpital Pitié-Salpêtrière, APHP, Paris, France
- Faculté de Médecine, Université Pierre et Marie Curie, COMUE Sorbonne Paris Cité, Paris, France
| | - Veronique Hubert
- Centre National de Référence du Paludisme, hôpital Bichat-Claude Bernard, APHP, Paris, France
| | - Philippe Deloron
- Faculté de Pharmacie, Université Paris Descartes, COMUE Sorbonne Paris Cité, Paris, France
- UMR MERIT 216, Institut de recherche pour le développement, Paris, France
| | - Sandrine Houzé
- Laboratoire de parasitologie, hôpital Bichat-Claude Bernard, APHP, Paris, France
- Centre National de Référence du Paludisme, hôpital Bichat-Claude Bernard, APHP, Paris, France
- Faculté de Pharmacie, Université Paris Descartes, COMUE Sorbonne Paris Cité, Paris, France
- UMR MERIT 216, Institut de recherche pour le développement, Paris, France
| | | |
Collapse
|
30
|
Brand NR, Opoka RO, Hamre KES, John CC. Differing Causes of Lactic Acidosis and Deep Breathing in Cerebral Malaria and Severe Malarial Anemia May Explain Differences in Acidosis-Related Mortality. PLoS One 2016; 11:e0163728. [PMID: 27684745 PMCID: PMC5042445 DOI: 10.1371/journal.pone.0163728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 09/13/2016] [Indexed: 12/04/2022] Open
Abstract
Lactic acidosis (LA) is a marker for mortality in severe malaria, but the mechanisms that lead to LA in the different types of severe malaria and the extent to which LA-associated mortality differs by type of severe malaria are not well described. We assessed the frequency of LA in children admitted to Mulago Hospital, Kampala, Uganda with cerebral malaria (CM, n = 193) or severe malarial anemia (SMA, n = 216). LA was compared to mortality and measures of parasite biomass and sequestration (P. falciparum histidine-rich protein-2 (PfHRP2) concentration, platelet count), and to a measure of systemic tissue oxygen delivery (hemoglobin level). LA was more frequent in children with SMA than CM (SMA, 47.7%, CM, 34.2%, P = 0.006), but mortality was higher in children with CM (13.0%) than SMA (0.5%, P<0.0001). In CM, LA was associated with increased PfHRP2 concentration and decreased platelet count but was not associated with hemoglobin level. In contrast, in SMA, LA was associated with a decreased hemoglobin level, but was not associated with PfHRP2 concentration or platelet count. LA was related to mortality only in CM. In multivariable regression analysis of the effect PfHRP2 and hemoglobin levels on LA and DB, only PfHRP2 level increased risk of LA and DB in CM, while in SMA, elevated hemoglobin strongly decreased risk of LA and DB, and PfHRP2 level modestly increased risk of LA. The study findings suggest that LA in CM is due primarily to parasite sequestration, which currently has no effective adjunctive therapy, while LA in SMA is due primarily to anemia, which is rapidly corrected with blood transfusion. Differing etiologies of LA in CM and SMA may explain why LA is associated with mortality in CM but not SMA.
Collapse
Affiliation(s)
- Nathan R. Brand
- Columbia University College of Physicians and Surgeons, School of Medicine, New York, New York, United States of America
| | - Robert O. Opoka
- Makerere University, Department of Pediatrics, Kampala, Uganda
| | - Karen E. S. Hamre
- University of Minnesota, Department of Pediatrics, Minneapolis, Minnesota, United States of America
| | - Chandy C. John
- Indiana University, Department of Pediatrics, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
31
|
The endothelial protein C receptor rs867186-GG genotype is associated with increased soluble EPCR and could mediate protection against severe malaria. Sci Rep 2016; 6:27084. [PMID: 27255786 PMCID: PMC4891778 DOI: 10.1038/srep27084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/29/2016] [Indexed: 11/23/2022] Open
Abstract
The endothelial protein C receptor (EPCR) appears to play an important role in Plasmodium falciparum endothelial cell binding in severe malaria (SM). Despite consistent findings of elevated soluble EPCR (sEPCR) in other infectious diseases, field studies to date have provided conflicting data about the role of EPCR in SM. To better define this role, we performed genotyping for the rs867186-G variant, associated with increased sEPCR levels, and measured sEPCR levels in two prospective studies of Ugandan children designed to understand immunologic and genetic factors associated with neurocognitive deficits in SM including 551 SM children, 71 uncomplicated malaria (UM) and 172 healthy community children (CC). The rs867186-GG genotype was more frequent in CC (4.1%) than SM (0.6%, P = 0.002). The rs867186-G variant was associated with increased sEPCR levels and sEPCR was lower in children with SM than CC (P < 0.001). Among SM children, those who had a second SM episode showed a trend toward lower plasma sEPCR both at initial admission and at 6-month follow-up compared to those without repeated SM (P = 0.06 for both). The study findings support a role for sEPCR in severe malaria pathogenesis and emphasize a distinct role of sEPCR in malaria as compared to other infectious diseases.
Collapse
|
32
|
Chertow JH, Alkaitis MS, Nardone G, Ikeda AK, Cunnington AJ, Okebe J, Ebonyi AO, Njie M, Correa S, Jayasooriya S, Casals-Pascual C, Billker O, Conway DJ, Walther M, Ackerman H. Plasmodium Infection Is Associated with Impaired Hepatic Dimethylarginine Dimethylaminohydrolase Activity and Disruption of Nitric Oxide Synthase Inhibitor/Substrate Homeostasis. PLoS Pathog 2015; 11:e1005119. [PMID: 26407009 PMCID: PMC4583463 DOI: 10.1371/journal.ppat.1005119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/29/2015] [Indexed: 12/04/2022] Open
Abstract
Inhibition of nitric oxide (NO) signaling may contribute to pathological activation of the vascular endothelium during severe malaria infection. Dimethylarginine dimethylaminohydrolase (DDAH) regulates endothelial NO synthesis by maintaining homeostasis between asymmetric dimethylarginine (ADMA), an endogenous NO synthase (NOS) inhibitor, and arginine, the NOS substrate. We carried out a community-based case-control study of Gambian children to determine whether ADMA and arginine homeostasis is disrupted during severe or uncomplicated malaria infections. Circulating plasma levels of ADMA and arginine were determined at initial presentation and 28 days later. Plasma ADMA/arginine ratios were elevated in children with acute severe malaria compared to 28-day follow-up values and compared to children with uncomplicated malaria or healthy children (p<0.0001 for each comparison). To test the hypothesis that DDAH1 is inactivated during Plasmodium infection, we examined DDAH1 in a mouse model of severe malaria. Plasmodium berghei ANKA infection inactivated hepatic DDAH1 via a post-transcriptional mechanism as evidenced by stable mRNA transcript number, decreased DDAH1 protein concentration, decreased enzyme activity, elevated tissue ADMA, elevated ADMA/arginine ratio in plasma, and decreased whole blood nitrite concentration. Loss of hepatic DDAH1 activity and disruption of ADMA/arginine homeostasis may contribute to severe malaria pathogenesis by inhibiting NO synthesis. During a malaria infection, the vascular endothelium becomes more adhesive, permeable, and prone to trigger blood clotting. These changes help the parasite adhere to blood vessels, but endanger the host by obstructing blood flow through small vessels. Endothelial nitric oxide (NO) would normally counteract these pathological changes, but NO signalling is diminished malaria. NO synthesis is inhibited by asymmetric dimethylarginine (ADMA), a methylated derivative of arginine that is released during normal protein turnover. We found the ratio of ADMA to arginine to be elevated in Gambian children with severe malaria, a metabolic disturbance known to inhibit NO synthesis. ADMA was associated with markers of endothelial activation and impaired tissue perfusion. In parallel experiments using mice, the enzyme responsible for metabolizing ADMA, dimethylarginine dimethylaminohydrolase (DDAH), was inactivated after infection with a rodent malaria. Based on these studies, we propose that decreased metabolism of ADMA by DDAH might contribute to the elevated ADMA/arginine ratio observed during an acute episode of malaria. Strategies to preserve or increase DDAH activity might improve NO synthesis and help to prevent the vascular manifestations of severe malaria.
Collapse
Affiliation(s)
- Jessica H. Chertow
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Matthew S. Alkaitis
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington Oxford, United Kingdom
| | - Glenn Nardone
- Research Technology Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Allison K. Ikeda
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | | | | | | | | | | | | | | | - Oliver Billker
- Wellcome Trust Sanger Institute, Hinxton Cambridge, United Kingdom
| | - David J. Conway
- MRC Unit, Fajara, The Gambia
- London School of Hygiene and Tropical Medicine, Bloomsbury, London, United Kingdom
| | | | - Hans Ackerman
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
UNLABELLED Malaria is an infectious disease caused by parasites of several Plasmodium spp. Cerebral malaria (CM) is a common form of severe malaria resulting in nearly 700,000 deaths each year in Africa alone. At present, there is no adjunctive therapy for CM. Although the mechanisms underlying the pathogenesis of CM are incompletely understood, it is likely that both intrinsic features of the parasite and the human host's immune response contribute to disease. The kinase mammalian target of rapamycin (mTOR) is a central regulator of immune responses, and drugs that inhibit the mTOR pathway have been shown to be antiparasitic. In a mouse model of CM, experimental CM (ECM), we show that the mTOR inhibitor rapamycin protects against ECM when administered within the first 4 days of infection. Treatment with rapamycin increased survival, blocked breakdown of the blood-brain barrier and brain hemorrhaging, decreased the influx of both CD4(+) and CD8(+) T cells into the brain and the accumulation of parasitized red blood cells in the brain. Rapamycin induced marked transcriptional changes in the brains of infected mice, and analysis of transcription profiles predicted that rapamycin blocked leukocyte trafficking to and proliferation in the brain. Remarkably, animals were protected against ECM even though rapamycin treatment significantly increased the inflammatory response induced by infection in both the brain and spleen. These results open a new avenue for the development of highly selective adjunctive therapies for CM by targeting pathways that regulate host and parasite metabolism. IMPORTANCE Malaria is a highly prevalent infectious disease caused by parasites of several Plasmodium spp. Malaria is usually uncomplicated and resolves with time; however, in about 1% of cases, almost exclusively among young children, malaria becomes severe and life threatening, resulting in nearly 700,000 deaths each year in Africa alone. Among the most severe complications of Plasmodium falciparum infection is cerebral malaria with a fatality rate of 15 to 20%, despite treatment with antimalarial drugs. Cerebral malaria takes a second toll on African children, leaving survivors at high risk of debilitating neurological defects. At present, we have no effective adjunctive therapies for cerebral malaria, and developing such therapies would have a large impact on saving young lives in Africa. Here we report results that open a new avenue for the development of highly selective adjunctive therapies for cerebral malaria by targeting pathways that regulate host and parasite metabolism.
Collapse
|
34
|
Affiliation(s)
- Aubrey J. Cunnington
- Section of Paediatrics, Medical School Building, St Mary's Campus, Imperial College, Norfolk Place, London, United Kingdom
| |
Collapse
|
35
|
Barber BE, William T, Grigg MJ, Parameswaran U, Piera KA, Price RN, Yeo TW, Anstey NM. Parasite biomass-related inflammation, endothelial activation, microvascular dysfunction and disease severity in vivax malaria. PLoS Pathog 2015; 11:e1004558. [PMID: 25569250 PMCID: PMC4287532 DOI: 10.1371/journal.ppat.1004558] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 11/06/2014] [Indexed: 12/05/2022] Open
Abstract
Plasmodium vivax can cause severe malaria, however its pathogenesis is poorly understood. In contrast to P. falciparum, circulating vivax parasitemia is low, with minimal apparent sequestration in endothelium-lined microvasculature, and pathogenesis thought unrelated to parasite biomass. However, the relationships between vivax disease-severity and total parasite biomass, endothelial autocrine activation and microvascular dysfunction are unknown. We measured circulating parasitemia and markers of total parasite biomass (plasma parasite lactate dehydrogenase [pLDH] and PvLDH) in adults with severe (n = 9) and non-severe (n = 53) vivax malaria, and examined relationships with disease-severity, endothelial activation, and microvascular function. Healthy controls and adults with non-severe and severe falciparum malaria were enrolled for comparison. Median peripheral parasitemia, PvLDH and pLDH were 2.4-fold, 3.7-fold and 6.9-fold higher in severe compared to non-severe vivax malaria (p = 0.02, p = 0.02 and p = 0.015, respectively), suggesting that, as in falciparum malaria, peripheral P. vivax parasitemia underestimates total parasite biomass, particularly in severe disease. P. vivax schizonts were under-represented in peripheral blood. Severe vivax malaria was associated with increased angiopoietin-2 and impaired microvascular reactivity. Peripheral vivax parasitemia correlated with endothelial activation (angiopoietin-2, von-Willebrand-Factor [VWF], E-selectin), whereas markers of total vivax biomass correlated only with systemic inflammation (IL-6, IL-10). Activity of the VWF-cleaving-protease, ADAMTS13, was deficient in proportion to endothelial activation, IL-6, thrombocytopenia and vivax disease-severity, and associated with impaired microvascular reactivity in severe disease. Impaired microvascular reactivity correlated with lactate in severe vivax malaria. Findings suggest that tissue accumulation of P. vivax may occur, with the hidden biomass greatest in severe disease and capable of mediating systemic inflammatory pathology. The lack of association between total parasite biomass and endothelial activation is consistent with accumulation in parts of the circulation devoid of endothelium. Endothelial activation, associated with circulating parasites, and systemic inflammation may contribute to pathology in vivax malaria, with microvascular dysfunction likely contributing to impaired tissue perfusion.
Collapse
Affiliation(s)
- Bridget E. Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Infectious Diseases, Queen Elizabeth Hospital, Sabah, Malaysia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Department of Infectious Diseases, Queen Elizabeth Hospital, Sabah, Malaysia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Matthew J. Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Infectious Diseases, Queen Elizabeth Hospital, Sabah, Malaysia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Uma Parameswaran
- Department of Infectious Diseases, Queen Elizabeth Hospital, Sabah, Malaysia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Kim A. Piera
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Tsin W. Yeo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Insitute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Infectious Diseases, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| |
Collapse
|
36
|
Laothamatas J, Sammet CL, Golay X, Van Cauteren M, Lekprasert V, Tangpukdee N, Krudsood S, Leowattana W, Wilairatana P, Swaminathan SV, DeLaPaz RL, Brown TR, Looareesuwan S, Brittenham GM. Transient lesion in the splenium of the corpus callosum in acute uncomplicated falciparum malaria. Am J Trop Med Hyg 2014; 90:1117-1123. [PMID: 24615139 PMCID: PMC4047739 DOI: 10.4269/ajtmh.13-0665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/07/2014] [Indexed: 02/05/2023] Open
Abstract
Patients with acute uncomplicated Plasmodium falciparum malaria have no evident neurologic disorder, vital organ dysfunction, or other severe manifestations of infection. Nonetheless, parasitized erythrocytes cytoadhere to the endothelium throughout their microvasculature, especially within the brain. We aimed to determine if 3 Tesla magnetic resonance imaging studies could detect evidence of cerebral abnormalities in these patients. Within 24 hours of admission, initial magnetic resonance imaging examinations found a lesion with restricted water diffusion in the mid-portion of the splenium of the corpus callosum of 4 (40%) of 10 male patients. The four patients who had a splenial lesion initially had evidence of more severe hemolysis and thrombocytopenia than the six patients who had no apparent abnormality. Repeat studies four weeks later found no residua of the lesions and resolution of the hematologic differences. These observations provide evidence for acute cerebral injury in the absence of severe or cerebral malaria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Sornchai Looareesuwan
- Department of Radiology, Faculty of Medicine Ramathibodi Hospital, Bangkok, Thailand; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Institute of Neurology, University College London, London, United Kingdom; Philips Healthcare, Best, The Netherlands; The Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Departments of Radiology and Pediatrics and Medicine, Columbia University College of Physicians and Surgeons, New York, New York; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina
| | - Gary M. Brittenham
- Department of Radiology, Faculty of Medicine Ramathibodi Hospital, Bangkok, Thailand; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Institute of Neurology, University College London, London, United Kingdom; Philips Healthcare, Best, The Netherlands; The Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Departments of Radiology and Pediatrics and Medicine, Columbia University College of Physicians and Surgeons, New York, New York; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
37
|
Kotlyar S, Nteziyaremye J, Olupot-Olupot P, Akech SO, Moore CL, Maitland K. Spleen volume and clinical disease manifestations of severe Plasmodium falciparum malaria in African children. Trans R Soc Trop Med Hyg 2014; 108:283-9. [PMID: 24639372 PMCID: PMC5693319 DOI: 10.1093/trstmh/tru040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Plasmodium falciparum malaria is common in African children. Severe disease manifestations include severe malarial anemia (SMA) and cerebral malaria (CM). In vitro studies suggest that splenic sequestration is associated with SMA and protective against CM. We sought to characterize the relationship between ultrasonographically derived spleen volume (SV), clinical manifestations and outcome. METHODS We conducted a prospective observational study of severe malaria and SV in children aged 3 months to 12 years in Eastern Uganda. An SV normogram was generated from 186 healthy controls and adjusted for total body surface area (TBSA). Children with severe P. falciparum malaria were classified according to disease phenotype, and SV z-scores were compared for cases and controls to assess the degree of spleen enlargement. RESULTS One hundred and four children with severe malaria, median age 19.2 months, were enrolled; 54 were classified as having SMA and 15 with CM. Mortality was 27% in the CM group vs 1.9% in the SMA group. TBSA-adjusted SV z-scores were lower in children with CM compared to SMA (1.98 [95% CI 1.38-2.57] vs 2.73 [95% CI 2.41-3.04]; p=0.028). Mean SV z-scores were lower in children who died (1.20 [95% CI 0.14-2.25]) compared to survivors (2.58 [95% CI 2.35-2.81]); p=0.004. CONCLUSIONS SV is lower in CM compared to SMA. Severe malaria with no increase in SV z-score may be associated with mortality.
Collapse
Affiliation(s)
- Simon Kotlyar
- Division of Global Health, Department of Emergency Medicine, Yale University School of Medicine, 464 Congress Ave, Suite 260 New Haven, CT 06519, USA
- London School of Hygiene & Tropical Medicine, London, UK
| | | | | | - Samuel O. Akech
- Kilifi Clinical Trials Facility, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya
| | - Christopher L. Moore
- Division of Global Health, Department of Emergency Medicine, Yale University School of Medicine, 464 Congress Ave, Suite 260 New Haven, CT 06519, USA
| | - Kathryn Maitland
- Kilifi Clinical Trials Facility, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya
- Wellcome Trust Centre for Clinical Tropical Medicine, Department of Pediatrics, Faculty of Medicine, Imperial College, London, UK
| |
Collapse
|
38
|
Cunnington AJ, Riley EM, Walther M. Stuck in a rut? Reconsidering the role of parasite sequestration in severe malaria syndromes. Trends Parasitol 2013; 29:585-92. [PMID: 24210256 PMCID: PMC3880783 DOI: 10.1016/j.pt.2013.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 09/30/2013] [Accepted: 10/07/2013] [Indexed: 12/20/2022]
Abstract
Severe malaria defines individuals at increased risk of death from their infection. Proposed pathogenic mechanisms include parasite sequestration, inflammation, and endothelial dysfunction. Severe malaria is not a single entity, manifesting with distinct syndromes such as severe anemia, severe respiratory distress or coma, each characterized by differences in epidemiology, underlying biology, and risk of death. The relative contribution of the various pathogenic mechanisms may differ between syndromes, and this is supported by accumulating evidence, which challenges sequestration as the initiating event. Here we propose that high parasite biomass is the common initiating feature, but subtle variations in the interaction between the host and parasite exist, and understanding these differences may be crucial to improve outcomes in patients with severe malaria.
Collapse
|
39
|
|
40
|
Effect of mature blood-stage Plasmodium parasite sequestration on pathogen biomass in mathematical and in vivo models of malaria. Infect Immun 2013; 82:212-20. [PMID: 24144725 DOI: 10.1128/iai.00705-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parasite biomass and microvasculature obstruction are strongly associated with disease severity and death in Plasmodium falciparum-infected humans. This is related to sequestration of mature, blood-stage parasites (schizonts) in peripheral tissue. The prevailing view is that schizont sequestration leads to an increase in pathogen biomass, yet direct experimental data to support this are lacking. Here, we first studied parasite population dynamics in inbred wild-type (WT) mice infected with the rodent species of malaria, Plasmodium berghei ANKA. As is commonly reported, these mice became moribund due to large numbers of parasites in multiple tissues. We then studied infection dynamics in a genetically targeted line of mice, which displayed minimal tissue accumulation of parasites. We constructed a mathematical model of parasite biomass dynamics, incorporating schizont-specific host clearance, both with and without schizont sequestration. Combined use of mathematical and in vivo modeling indicated, first, that the slowing of parasite growth in the genetically targeted mice can be attributed to specific clearance of schizonts from the circulation and, second, that persistent parasite growth in WT mice can be explained solely as a result of schizont sequestration. Our work provides evidence that schizont sequestration could be a major biological process driving rapid, early increases in parasite biomass during blood-stage Plasmodium infection.
Collapse
|