1
|
Navaeiseddighi Z, Schmit T, Wang Z, Ahamed N, Hasan SS, Guo K, Combs C, Khan N. The vaccine dosing effect overcomes the reduced immunogenic potential and in vivo efficacy of 33F pneumococcal serotype. Vaccine 2025; 54:126983. [PMID: 40056805 DOI: 10.1016/j.vaccine.2025.126983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/10/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Serotype 33F is an emerging Streptococcus pneumoniae (Spn) serotype associated with asymptomatic nasopharyngeal (NP) colonization and invasive pneumococcal disease (IPD). Serotype 33F is a component in the advanced version of the pneumococcal conjugate vaccine 15 (PCV 15) formulation. However, in the murine vaccination model, serotype 33F exhibits reduced immunogenicity, correlating with reduced protection against 33F. To investigate if the reduced immunogenic potential of serotype 33F can be overcome by optimizing the vaccine dosing, we immunized C57BL/6 mice with a range of CRM197 conjugated monovalent 33F dosages, i.e., 0.04 - -0.32 μg. Our data show the dose-dependent differences in 33F vaccine responses with a higher immunization dose (0.32 μg) producing significantly higher levels of serum antibody responses, correlating with enhanced in vivo protection against Spn bacterial colonization. Our findings suggest that higher immunization dosing can overcome the inherently reduced immunogenicity of emerging 33F Spn serotype.
Collapse
Affiliation(s)
| | - Taylor Schmit
- Dept of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA; Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Naseem Ahamed
- Dept of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Syed Shafat Hasan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Kai Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Colin Combs
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Nadeem Khan
- Dept of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA; Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
2
|
Ntim OK, Donkor ES. Molecular Epidemiology of Streptococcus pneumoniae Serotype 1: A Systematic Review of Circulating Clones and Clonal Clusters. Int J Mol Sci 2025; 26:2266. [PMID: 40076900 PMCID: PMC11900055 DOI: 10.3390/ijms26052266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 03/14/2025] Open
Abstract
Streptococcus pneumoniae serotype 1 is one of the most prevalent serotypes commonly associated with invasive pneumococcal disease cases and outbreaks worldwide. Several sequence types of this serotype have been identified globally, including those exhibiting both high virulence potential and antimicrobial resistance profiles. This systematic review presents the global distribution of clones of pneumococcal serotype 1, describing their circulating patterns in various regions in the world. A database search was conducted in Google Scholar, PubMed, Scopus, ScienceDirect, and Web of Science using keywords related to Streptococcus pneumoniae serotype 1. The inclusion criteria entailed peer-reviewed studies published in English describing the utilization of at least one molecular genotyping tool to identify S. pneumoniae serotype 1 clones based on their sequence types. Data extracted were managed and analyzed using Microsoft Excel 365 (Version 2108). Forty-three studies were finally included in the systematic review. A total of 103 MLST serotype 1 sequence types were identified in 48 countries. These clones were widely reported to be associated with invasive pneumococcal diseases. Globally, ST217 and ST306 clonal complexes (CC217 and CC306) were the predominant lineages of serotype 1 sequence types, exhibiting distinct continental distribution patterns. CC217, characterized by ST217, ST303, ST612, ST618, and ST3081, was predominant in Africa and Asia. ST306 clonal complex, which is grouped into ST306, ST304, and ST227 were mostly found in Europe, Oceania, North America, and some countries in South America. ST615 was predominant in Chile, Peru, and Argentina. The hypervirulence nature of serotype 1, coupled with its complex genetic diversity, poses a significant public health threat. Our findings emphasize the need for enhanced surveillance and targeted interventions to mitigate the spread of these hypervirulent clones, ultimately informing evidence-based strategies for disease prevention and control.
Collapse
Affiliation(s)
| | - Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra P.O. Box KB 4236, Ghana
| |
Collapse
|
3
|
Naik VV, Chakraborty S, Jayanna K, Shaw T. The enigmatic voyage of pneumococcal carriage: Unraveling the risk factors in pediatric populations -- A scoping review. Indian J Med Microbiol 2025; 54:100808. [PMID: 39956439 DOI: 10.1016/j.ijmmb.2025.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/11/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Pneumococcal infections are a major cause of morbidity and mortality globally, especially among children in low- and middle-income countries (LMICs). Although considerable research has been done on the frequency of pneumococcal infections and their risk factors, there are still many unanswered questions. The objective of this study is to offer fresh perspectives through systematic literature review on the shifting prevalence of and associated risk factors for pneumococcal colonization. METHODS A systematic search of literature from January 2012 to December 2023 was conducted using PubMed and Scopus, with keywords related to Streptococcus pneumoniae colonization and risk factors, and references were manually screened. RESULTS Studies from 41 different countries are included in the evaluation, which focuses on pediatrics patients who are most vulnerable to pneumococcal infections. The most frequent risk variables for pneumococcal colonization were having siblings, daycare centers, passive smoking, household characteristics, age, comorbidities, and vaccination status. The frequency of pneumococcal colonization was greatest among LMICs, which may be related to inadequate pneumococcal vaccination programs, densely populated areas, and a lack of knowledge about basic sanitation and hygiene. CONCLUSION The study emphasizes how crucial it is to monitor serotype prevalence to direct vaccination campaigns in these regions. For creating efficient pneumococcal disease prevention and control strategies, it is essential to understand the risk factors connected to pneumococcal colonization. The review highlights the value of vaccination campaigns in lowering the prevalence of pneumococcal illness, to completely understand the relationship between immunization, serotype colonization, and the risk of pneumococcal colonization, more study is required especially in LIC and LMIC region.
Collapse
Affiliation(s)
- Vaishnavi Vishram Naik
- Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India.
| | | | - Krishnamurthy Jayanna
- Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India.
| | - Tushar Shaw
- Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India.
| |
Collapse
|
4
|
Primon-Barros M, Varela FH, Polese-Bonatto M, Sartor ITS, Azevedo TR, de David CN, Tonini ML, Stein RT, Scotta MC, Dias CAG. High prevalence of 19A pneumococcal serotype carriage during the COVID-19 pandemic in Brazil. Braz J Infect Dis 2024; 28:104467. [PMID: 39577042 PMCID: PMC11616489 DOI: 10.1016/j.bjid.2024.104467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/07/2024] [Accepted: 11/03/2024] [Indexed: 11/24/2024] Open
Abstract
INTRODUCTION Streptococcus pneumoniae colonization patterns are influenced by host and environmental factors, which may be related to Invasive Pneumococcal Disease (IPD). Interestingly, COVID-19 pandemic witnessed a decline in the incidence of IPDs. Investigations with diligent data collection on the prevalence of nasopharyngeal colonization and associated serotypes during this unique period can yield novel insights. The aim of the current study was to assess the prevalence of S. pneumoniae carriage among children and adults who have sought care at emergency departments with suspected COVID-19. METHODS In this cross-sectional study, adults and children presenting with signs and symptoms likely associated with COVID-19 in two outpatient clinics in Southern Brazil were invited to participate. RT-PCR with a comprehensive molecular panel for pneumococcal identification of the 21 most prevalent serotypes in Latin America was performed on all enrolled subjects. Prevalence of pneumococcal carriage was assessed in the age groups (< 2, ≥ 2-5, ≥ 5-11, ≥ 11-18, ≥ 18-60, ≥ 60). RESULTS A total of 1644 subjects were included in the study. Pneumococcal carriage was detected by PCR testing in 14.9% (245/1,644), and serotype identification occurred in 42.0% (103/245) of the participants, with a total frequency of 111. The most frequent serotype identified was 19A (25.2%, n = 28/111), followed by 6C/6D (17.1%, n = 19/111), and 23A (11.7%, n = 13/111), also highlighting the high frequency of non-vaccine serotypes found across all age groups. DISCUSSION 19A serotype, as well other most frequent serotypes identified are not covered by the PCV-10 in a community setting where PCV-10 is widely available. This finding reinforces the need for continuous surveillance to determine the impact of pneumococcal vaccination and guide public health decision-making. High 19A serotype prevalence is critical in the decision-making process for electing the best options for pneumococcal conjugate vaccines.
Collapse
Affiliation(s)
- Muriel Primon-Barros
- Moinhos de Vento Hospital, Porto Alegre, RS, Brazil; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | | | | | | | | | | | - Maiko Luis Tonini
- Coordenação Geral de Vigilância de Tuberculose, Micoses Endêmicas e Micobactérias Não Tuberculosas; Departamento de HIV/AIDS, Tuberculose, Hepatites Virais e IST/Secretaria de Vigilância em Saúde e Meio Ambiente; Ministério da Saúde (CGTM/DATHI/SVSA/MS), Brasília, DF, Brazil
| | - Renato T Stein
- Moinhos de Vento Hospital, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul (PUC-RS), Escola de Medicina, Porto Alegre, RS, Brazil
| | - Marcelo Comerlato Scotta
- Moinhos de Vento Hospital, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul (PUC-RS), Escola de Medicina, Porto Alegre, RS, Brazil.
| | | |
Collapse
|
5
|
Urban BC, Gonçalves ANA, Loukov D, Passos FM, Reiné J, Gonzalez-Dias P, Solórzano C, Mitsi E, Nikolaou E, O'Connor D, Collins AM, Adler H, Pollard A, Rylance J, Gordon SB, Jochems SP, Nakaya HI, Ferreira DM. Inflammation of the nasal mucosa is associated with susceptibility to experimental pneumococcal challenge in older adults. Mucosal Immunol 2024; 17:973-989. [PMID: 38950826 PMCID: PMC11464406 DOI: 10.1016/j.mucimm.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Streptococcus pneumoniae colonization in the upper respiratory tract is linked to pneumococcal disease development, predominantly affecting young children and older adults. As the global population ages and comorbidities increase, there is a heightened concern about this infection. We investigated the immunological responses of older adults to pneumococcal-controlled human infection by analyzing the cellular composition and gene expression in the nasal mucosa. Our comparative analysis with data from a concurrent study in younger adults revealed distinct gene expression patterns in older individuals susceptible to colonization, highlighted by neutrophil activation and elevated levels of CXCL9 and CXCL10. Unlike younger adults challenged with pneumococcus, older adults did not show recruitment of monocytes into the nasal mucosa following nasal colonization. However, older adults who were protected from colonization showed increased degranulation of cluster of differentiation 8+ T cells, both before and after pneumococcal challenge. These findings suggest age-associated cellular changes, in particular enhanced mucosal inflammation, that may predispose older adults to pneumococcal colonization.
Collapse
Affiliation(s)
- Britta C Urban
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - André N A Gonçalves
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Dessi Loukov
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Fernando M Passos
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jesús Reiné
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Patrícia Gonzalez-Dias
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Carla Solórzano
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Elena Mitsi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Elissavet Nikolaou
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Infection, Immunity and Global Health, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrea M Collins
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; University Hospital Aintree, Liverpool University Hospitals Trust, Liverpool, UK
| | - Hugh Adler
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Andrew Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jamie Rylance
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stephen B Gordon
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi-Liverpool-Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Simon P Jochems
- Leiden University Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Helder I Nakaya
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela M Ferreira
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
6
|
Mitsi E, Nikolaou E, Goncalves A, Blizard A, Hill H, Farrar M, Hyder-Wright A, Akeju O, Hamilton J, Howard A, Elterish F, Solorzano C, Robinson R, Reiné J, Collins AM, Gordon SB, Moxon RE, Weiser JN, Bogaert D, Ferreira DM. RSV and rhinovirus increase pneumococcal carriage acquisition and density, whereas nasal inflammation is associated with bacterial shedding. Cell Host Microbe 2024; 32:1608-1620.e4. [PMID: 39181126 DOI: 10.1016/j.chom.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/14/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
Epidemiological studies report the impact of co-infection with pneumococcus and respiratory viruses upon disease rates and outcomes, but their effect on pneumococcal carriage acquisition and bacterial load is scarcely described. Here, we assess this by combining natural viral infection with controlled human pneumococcal infection in 581 healthy adults screened for upper respiratory tract viral infection before intranasal pneumococcal challenge. Across all adults, respiratory syncytial virus (RSV) and rhinovirus asymptomatic infection confer a substantial increase in secondary infection with pneumococcus. RSV also has a major impact on pneumococcal density up to 9 days post challenge. We also study rates and kinetics of bacterial shedding through the nose and oral route in a subset. High levels of pneumococcal colonization density and nasal inflammation are strongly correlated with increased odds of nasal shedding as opposed to cough shedding. Protection against respiratory viral infections and control of pneumococcal density may contribute to preventing pneumococcal disease and reducing bacterial spread.
Collapse
Affiliation(s)
- Elena Mitsi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| | - Elissavet Nikolaou
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Andre Goncalves
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Annie Blizard
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Helen Hill
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Madlen Farrar
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Angela Hyder-Wright
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Oluwasefunmi Akeju
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Josh Hamilton
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ashleigh Howard
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Filora Elterish
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Carla Solorzano
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ryan Robinson
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jesus Reiné
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Andrea M Collins
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Stephen B Gordon
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; Malawi Liverpool Wellcome-Trust Programme, Queen Elizabeth Central Hospital Campus, P.O. Box 30096, Blantyre, Malawi
| | - Richard E Moxon
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Debby Bogaert
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, the Netherlands
| | - Daniela M Ferreira
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| |
Collapse
|
7
|
Lozada J, Gómez JO, Serrano-Mayorga CC, Viñán Garcés AE, Enciso V, Mendez-Castillo L, Acosta-González A, Bustos IG, Fuentes YV, Ibáñez-Prada ED, Crispin AM, Delgado-Cañaveral MC, Morales Celis LM, Jaimes D, Turner P, Reyes LF. Streptococcus pneumoniae as a colonizing agent of the Nasopharynx - Oropharynx in adults: A systematic review and meta-analysis. Vaccine 2024; 42:2747-2757. [PMID: 38514352 DOI: 10.1016/j.vaccine.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Streptococcus pneumoniae (Spn) is a commensal pathogen that usually colonizes the upper respiratory tract of children. Likewise, Spn colonization has been considered a critical factor in the development of pneumococcal invasive disease. However, Spn prevalence in adults remains unclear. This study performs a systematic review and meta-analysis to explore the prevalence of Spn Nasopharynx - Oropharynx Colonization (NOC) in adults. METHODS A Systematic review of scientific databases was utilized to identify eligible studies that follow strict selection criteria. Subsequently, a meta-analysis was conducted to establish NOC prevalence in adults (≥18 years old). The heterogeneity and sensitivity analyses were assessed using the microorganism identification technique, sample type, and age subgroups. RESULTS Initial selection includes 69 studies, with 37 selected for the meta-analysis, involving 23,724 individuals. The overall prevalence (95 % CI) of Spn NOC among adults was 6 % (5-9). The subgroup analysis revealed that young adults (YA), 18-64 years old, had a prevalence of 10 %, whereas older adults (OA), ≥65 years old, had a prevalence of 2 %. The identification of Spn NOC may vary depending on the method of diagnosis used. High heterogeneity (I2 > 90 %) was observed but diminished to 70 % when the analysis was restricted to oropharyngeal swabs as an identification method. Furthermore, heterogeneity decreased to 58 % when exclusively employing traditional culture as the identification method. CONCLUSIONS This study found a low prevalence of Spn NOC in adults. Notably, the prevalence of Spn NOC was higher in younger adults than in older adults. It is essential to highlight a significant heterogeneity among studies, which indicates there is no standardized method of Spn NOC identification.
Collapse
Affiliation(s)
- Julián Lozada
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia; Bioscience PhD, Engineering School, Universidad de La Sabana, Chía, Colombia
| | - Juan Olivella Gómez
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia; Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Cristian C Serrano-Mayorga
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia; Bioscience PhD, Engineering School, Universidad de La Sabana, Chía, Colombia; Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - André Emilio Viñán Garcés
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia; Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Valeria Enciso
- School of Medicine, Universidad de La Sabana, Chía, Colombia
| | | | - Alejandro Acosta-González
- Bioscience PhD, Engineering School, Universidad de La Sabana, Chía, Colombia; Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Ingrid G Bustos
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Bioscience PhD, Engineering School, Universidad de La Sabana, Chía, Colombia
| | - Yuli V Fuentes
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia
| | - Elsa D Ibáñez-Prada
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia; Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Ana M Crispin
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | | | | | - Diego Jaimes
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia
| | - Paul Turner
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Luis Felipe Reyes
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia; Pandemic Sciences Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Elias C, Nunes MC, Saadatian-Elahi M. Epidemiology of community-acquired pneumonia caused by S treptococcus pneumoniae in older adults: a narrative review. Curr Opin Infect Dis 2024; 37:144-153. [PMID: 38323404 DOI: 10.1097/qco.0000000000001005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
PURPOSE OF REVIEW This review covers updated perspectives on different aspects of pneumococcal community-acquired pneumonia (pCAP), including the epidemiology, clinical presentation, risk factors, antibiotic treatment, and existing preventive strategies in older adults. RECENT FINDINGS pCAP remains the most prevalent condition among lower respiratory tract infections in the older adults according to Global Burden of Diseases 2019. Older adults can display atypical symptoms such as confusion, general clinical deterioration, new onset of and exacerbation of underlying illness that might trigger clinical suspicion of pCAP. Older adults with pCAP often experience increased disease severity and a higher risk of pulmonary complications compared with younger individuals, owing to age-related changes in immunity and a higher prevalence of comorbidities. Vaccination stands fundamental for prevention, emphasizing the need for effective immunization strategies, specifically tailored for older adults. There is a pressing need to reinforce efforts aimed at boosting pneumococcal vaccination rates. SUMMARY Despite a high morbidity and mortality, the burden of pCAP, in particular hospital admission and occurrence of invasive infections, among the elderly population is not sufficiently documented. This review findings emphasize the substantial burden of pCAP in this vulnerable population, driven by factors such as advancing age and underlying comorbidities. The emergence of antibiotic-resistant pneumococcal strains further complicates treatment decisions and highlights the importance of tailored approaches for managing pCAP in older adults.
Collapse
Affiliation(s)
- Christelle Elias
- Service d'Hygiène, Epidémiologie, Infectiovigilance et Prévention, Hospices Civils de Lyon
- Équipe Santé Publique, Epidémiologie et Eco-évolution des Maladies Infectieuses (PHE ID), Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon
| | - Marta C Nunes
- Équipe Santé Publique, Epidémiologie et Eco-évolution des Maladies Infectieuses (PHE ID), Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon
- Center of Excellence in Respiratory Pathogens (CERP), Hospices Civils de Lyon, Lyon, France
- South African Medical Research Council, Vaccines & Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mitra Saadatian-Elahi
- Service d'Hygiène, Epidémiologie, Infectiovigilance et Prévention, Hospices Civils de Lyon
- Équipe Santé Publique, Epidémiologie et Eco-évolution des Maladies Infectieuses (PHE ID), Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon
| |
Collapse
|
9
|
Flem E, Mouawad C, Palmu AA, Platt H, Johnson KD, McIntosh ED, Abadi J, Buchwald UK, Feemster K. Indirect protection in adults ≥18 years of age from pediatric pneumococcal vaccination: a review. Expert Rev Vaccines 2024; 23:997-1010. [PMID: 39435466 DOI: 10.1080/14760584.2024.2416229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Infant immunization programs using pneumococcal conjugate vaccines (PCVs) have reduced the rates of pneumococcal disease through direct vaccine-induced protection in vaccinated children and through indirect protection in non-vaccinated children and adults. AREAS COVERED This review summarizes current evidence on the indirect protection of adults conferred by pediatric pneumococcal vaccination, including the impact on invasive pneumococcal disease (IPD) incidence and mortality, pneumonia admissions, and nasopharyngeal carriage prevalence. Factors affecting indirect protection against IPD are also discussed. EXPERT OPINION Pediatric immunization with PCVs has substantially decreased vaccine-serotype IPD and pneumonia through indirect protection in both older (≥65 years of age) and younger adults, including those with underlying medical conditions. However, serotype replacement by non-vaccine serotypes, the persistence of some vaccine serotypes, and divergence of serotypes between children and adults have limited the impact of pediatric PCV programs on adult populations. Designing complementary vaccines that leverage indirect protection from pediatric immunization and target the most prevalent adult serotypes may be a preferred strategy to maximize the public health impact of pneumococcal vaccination.
Collapse
Affiliation(s)
- Elmira Flem
- Global Medical and Scientific Affairs, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | - Celine Mouawad
- Global Medical and Scientific Affairs, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | - Arto A Palmu
- Real World Evidence, FVR - Finnish Vaccine Research, Tampere, Finland
| | - Heather Platt
- Clinical Research, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | - Kelly D Johnson
- Value & Implementation, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | - E David McIntosh
- Global Medical and Scientific Affairs, Merck Research Laboratories, MSD, (UK) Limited, London, UK
| | - Jacobo Abadi
- Global Medical and Scientific Affairs, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | - Ulrike K Buchwald
- Clinical Research, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | - Kristen Feemster
- Global Medical and Scientific Affairs, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
10
|
Kobayashi M, Pilishvili T, Farrar JL, Leidner AJ, Gierke R, Prasad N, Moro P, Campos-Outcalt D, Morgan RL, Long SS, Poehling KA, Cohen AL. Pneumococcal Vaccine for Adults Aged ≥19 Years: Recommendations of the Advisory Committee on Immunization Practices, United States, 2023. MMWR Recomm Rep 2023; 72:1-39. [PMID: 37669242 PMCID: PMC10495181 DOI: 10.15585/mmwr.rr7203a1] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
This report compiles and summarizes all published recommendations from CDC’s Advisory Committee on Immunization Practices (ACIP) for use of pneumococcal vaccines in adults aged ≥19 years in the United States. This report also includes updated and new clinical guidance for implementation from CDC Before 2021, ACIP recommended 23-valent pneumococcal polysaccharide vaccine (PPSV23) alone (up to 2 doses), or both a single dose of 13-valent pneumococcal conjugate vaccine (PCV13) in combination with 1–3 doses of PPSV23 in series (PCV13 followed by PPSV23), for use in U.S. adults depending on age and underlying risk for pneumococcal disease. In 2021, two new pneumococcal conjugate vaccines (PCVs), a 15-valent and a 20-valent PCV (PCV15 and PCV20), were licensed for use in U.S. adults aged ≥18 years by the Food and Drug Administration ACIP recommendations specify the use of either PCV20 alone or PCV15 in series with PPSV23 for all adults aged ≥65 years and for adults aged 19–64 years with certain underlying medical conditions or other risk factors who have not received a PCV or whose vaccination history is unknown. In addition, ACIP recommends use of either a single dose of PCV20 or ≥1 dose of PPSV23 for adults who have started their pneumococcal vaccine series with PCV13 but have not received all recommended PPSV23 doses. Shared clinical decision-making is recommended regarding use of a supplemental PCV20 dose for adults aged ≥65 years who have completed their recommended vaccine series with both PCV13 and PPSV23 Updated and new clinical guidance for implementation from CDC includes the recommendation for use of PCV15 or PCV20 for adults who have received PPSV23 but have not received any PCV dose. The report also includes clinical guidance for adults who have received 7-valent PCV (PCV7) only and adults who are hematopoietic stem cell transplant recipients
Collapse
|
11
|
Tinggaard M, Slotved HC, Petersen RF, Hovmand N, Benfield T. Decreased Pneumococcal Carriage Among Older Adults in Denmark During the COVID-19 Lockdown. Open Forum Infect Dis 2023; 10:ofad365. [PMID: 37559754 PMCID: PMC10407463 DOI: 10.1093/ofid/ofad365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023] Open
Abstract
Background COVID-19 containment measures reduced the burden of invasive pneumococcal disease. Data on pneumococcal carriage rates among adults during the pandemic are scarce. Methods Naso- and oropharyngeal swabs and questionnaires were collected during January 2019 to December 2021 from adults ≥64 years of age. Carriage was determined by lytA/piaB PCR. Results A total of 1556 participants provided paired naso- and oropharyngeal swabs. Their median age was 74 years (IQR, 70-79). Streptococcus pneumoniae DNA was detected in 146 (9.4%) oropharyngeal swabs and 34 (2.2%) nasopharyngeal. The carriage rate decreased from 12.9% (95% CI, 10.1%-16.1%, n = 66/511) prelockdown (January 2019-February 2020) to 4.2% (95% CI, 2.0%-7.5%, n = 10/240) during lockdown (March 2020-February 2021) and increased to 12.1% (95% CI, 9.8%-14.7%, n = 87/719) with the reopening of society (March 2021-December 2021; P = .0009). Conclusions Pneumococcal carriage prevalence declined significantly during pandemic mitigation measures and rebounded to prepandemic levels as measures were lifted.
Collapse
Affiliation(s)
- Michaela Tinggaard
- Department of Infectious Diseases, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark
| | - Hans-Christian Slotved
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Randi Føns Petersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Nichlas Hovmand
- Department of Infectious Diseases, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Teixeira R, Kossyvaki V, Galvez P, Méndez C. Pneumococcal Serotype Evolution and Burden in European Adults in the Last Decade: A Systematic Review. Microorganisms 2023; 11:1376. [PMID: 37374878 DOI: 10.3390/microorganisms11061376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Pneumococcal disease is a major cause of morbidity/mortality worldwide, and vaccination is an important measure in its prevention. Despite European children being vaccinated with pneumococcal conjugate vaccines (PCVs), pneumococcal infections are still a major cause of morbidity/mortality in adults with risk conditions and their vaccination might be an important prevention strategy. New PCVs have been approved, but information is lacking on their potential impact in European adults. In our review, we searched PubMed, MEDLINE, and Embase for studies on the additional PCV20 serotypes (concerning incidence, prevalence, disease severity, lethality, and antimicrobial resistance) in European adults, between January 2010 and April 2022, having included 118 articles and data from 33 countries. We found that these serotypes have become more prevalent in both invasive and non-invasive pneumococcal disease (IPD and NIPD), representing a significant proportion of cases (serotypes 8, 12F, 22F) and more serious disease and/or lethality (10A, 11A, 15B, 22F), showing antimicrobial resistance (11A, 15B, 33F), and/or affecting more vulnerable individuals such as the elderly, immunocompromised patients, and those with comorbidities (8, 10A, 11A, 15B, 22F). The relevance of pneumococcal adult carriers (11A, 15B, 22F, and 8) was also identified. Altogether, our data showed an increase in the additional PCV20 serotypes' prevalence, accounting for a proportion of approximately 60% of all pneumococcal isolates in IPD in European adults since 2018/2019. Data suggest that adults, as older and/or more vulnerable patients, would benefit from vaccination with higher-coverage PCVs, and that PCV20 may address an unmet medical need.
Collapse
Affiliation(s)
- Rita Teixeira
- Vaccines and Antivirals Department, Pfizer Portugal, 1300-477 Lisbon, Portugal
| | | | - Paulina Galvez
- Vaccines and Antivirals Department, Pfizer Spain, 28108 Madrid, Spain
| | - Cristina Méndez
- Vaccines and Antivirals Department, Pfizer Spain, 28108 Madrid, Spain
| |
Collapse
|
13
|
Carrim M, Tempia S, Thindwa D, Martinson NA, Kahn K, Flasche S, Hellferscee O, Treurnicht FK, McMorrow ML, Moyes J, Mkhencele T, Mathunjwa A, Kleynhans J, Lebina L, Mothlaoleng K, Wafawanaka F, Gómez-Olivé FX, Cohen C, von Gottberg A, Wolter N, for the PHIRST group. Unmasking Pneumococcal Carriage in a High Human Immunodeficiency Virus (HIV) Prevalence Population in two Community Cohorts in South Africa, 2016-2018: The PHIRST Study. Clin Infect Dis 2023; 76:e710-e717. [PMID: 35717655 PMCID: PMC10169447 DOI: 10.1093/cid/ciac499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Longitudinal pneumococcus colonization data in high human immunodeficiency virus (HIV) prevalence settings following pneumococcal conjugate vaccine introduction are limited. METHODS In 327 randomly selected households, 1684 individuals were enrolled and followed-up for 6 to 10 months during 2016 through 2018 from 2 communities. Nasopharyngeal swabs were collected twice weekly and tested for pneumococcus using quantitative lytA real-time polymerase chain reaction. A Markov model was fitted to the data to define the start and end of an episode of colonization. We assessed factors associated with colonization using logistic regression. RESULTS During the study period, 98% (1655/1684) of participants were colonized with pneumococcus at least once. Younger age (<5 years: adjusted odds ratio [aOR], 14.1; 95% confidence [CI], 1.8-111.3, and 5-24 years: aOR, 4.8, 95% CI, 1.9-11.9, compared with 25-44 years) and HIV infection (aOR, 10.1; 95% CI, 1.3-77.1) were associated with increased odds of colonization. Children aged <5 years had fewer colonization episodes (median, 9) than individuals ≥5 years (median, 18; P < .001) but had a longer episode duration (<5 years: 35.5 days; interquartile range, 17-88) vs. ≥5 years: 5.5 days (4-12). High pneumococcal loads were associated with age (<1 year: aOR 25.4; 95% CI, 7.4-87.6; 1-4 years: aOR 13.5, 95% CI 8.3-22.9; 5-14 years: aOR 3.1, 95% CI, 2.1-4.4 vs. 45-65 year old patients) and HIV infection (aOR 1.7; 95% CI 1.2-2.4). CONCLUSIONS We observed high levels of pneumococcus colonization across all age groups. Children and people with HIV were more likely to be colonized and had higher pneumococcal loads. Carriage duration decreased with age highlighting that children remain important in pneumococcal transmission.
Collapse
Affiliation(s)
- Maimuna Carrim
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stefano Tempia
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Influenza Program, Centers for Disease Control and Prevention, Pretoria, South Africa
- MassGenics, Duluth, Georgia, USA
| | - Deus Thindwa
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Neil A Martinson
- Perinatal HIV Research Unit, MRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, University of the Witwatersrand, Johannesburg, South Africa
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University Center for TB Research, Baltimore, Maryland, USA
| | - Kathleen Kahn
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Stefan Flasche
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Orienka Hellferscee
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Florette K Treurnicht
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Virology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Meredith L McMorrow
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Influenza Program, Centers for Disease Control and Prevention, Pretoria, South Africa
| | - Jocelyn Moyes
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thulisa Mkhencele
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Azwifarwi Mathunjwa
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Jackie Kleynhans
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Limakatso Lebina
- Perinatal HIV Research Unit, MRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, University of the Witwatersrand, Johannesburg, South Africa
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Katlego Mothlaoleng
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Perinatal HIV Research Unit, MRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, University of the Witwatersrand, Johannesburg, South Africa
| | - Floidy Wafawanaka
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg, South Africa
| | - Francesc Xavier Gómez-Olivé
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicole Wolter
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
14
|
Heerfordt CK, Eklöf J, Sivapalan P, Ingebrigtsen TS, Biering-Sørensen T, Harboe ZB, Koefod Petersen J, Andersen CØ, Boel JB, Bock AK, Mathioudakis AG, Hurst JR, Kolekar S, Johansson SL, Bangsborg JM, Jarløv JO, Dessau RB, Laursen CB, Perch M, Jensen JUS. Inhaled Corticosteroids in Patients with Chronic Obstructive Pulmonary Disease and Risk of Acquiring Streptococcus pneumoniae Infection. A Multiregional Epidemiological Study. Int J Chron Obstruct Pulmon Dis 2023; 18:373-384. [PMID: 36974273 PMCID: PMC10039661 DOI: 10.2147/copd.s386518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/02/2023] [Indexed: 03/29/2023] Open
Abstract
Background Inhaled corticosteroids (ICS) are associated with an increased risk of clinical pneumonia among patients with chronic obstructive pulmonary disease (COPD). It is unknown whether the risk of microbiologically verified pneumonia such as pneumococcal pneumonia is increased in ICS users. Methods The study population consists of all COPD patients followed in outpatient clinics in eastern Denmark during 2010-2017. ICS use was categorized into four categories based on accumulated use. A Cox proportional hazard regression model was used adjusting for age, body mass index, sex, airflow limitation, use of oral corticosteroids, smoking, and year of cohort entry. A propensity score matched analysis was performed for sensitivity analyses. Findings A total of 21,438 patients were included. Five hundred and eighty-two (2.6%) patients acquired a positive lower airway tract sample with S. pneumoniae during follow-up. In the multivariable analysis ICS-use was associated with a dose-dependent risk of S. pneumoniae as follows: low ICS dose: HR 1.11, 95% CI 0.84 to 1.45, p = 0.5; moderate ICS dose: HR 1.47, 95% CI 1.13 to 1.90, p = 0.004; high ICS dose: HR 1.77, 95% CI 1.38 to 2.29, p < 0.0001, compared to no ICS use. Sensitivity analyses confirmed these results. Interpretation Use of ICS in patients with severe COPD was associated with an increased and dose-dependent risk of acquiring S. pneumoniae, but only for moderate and high dose. Caution should be taken when administering high dose of ICS to patients with COPD. Low dose of ICS seemed not to carry this risk.
Collapse
Affiliation(s)
- Christian Kjer Heerfordt
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital Herlev and Gentofte Hospital, Hellerup, Denmark
- Correspondence: Christian Kjer Heerfordt, Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital Herlev and Gentofte Hospital, Hellerup, Denmark, Tel +4523303431, Email
| | - Josefin Eklöf
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital Herlev and Gentofte Hospital, Hellerup, Denmark
| | - Pradeesh Sivapalan
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital Herlev and Gentofte Hospital, Hellerup, Denmark
| | - Truls Sylvan Ingebrigtsen
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital Herlev and Gentofte Hospital, Hellerup, Denmark
| | - Tor Biering-Sørensen
- Department of Cardiology, Herlev and Gentofte Hospital, Cardiovascular Non-Invasive Imaging Research Laboratory, University of Copenhagen, Copenhagen, Denmark
- Faculty of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zitta Barrella Harboe
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital, North Zealand, Denmark
| | - Jesper Koefod Petersen
- Department of Respiratory Medicine, Zealand University Hospital Naestved, Naestved, Denmark
- Department of Pulmonary Medicine, Zealand University Hospital, Roskilde, Denmark
| | | | - Jonas Bredtoft Boel
- Department of Clinical Microbiology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Anne Kathrine Bock
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Alexander G Mathioudakis
- The North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - John R Hurst
- UCL Respiratory, University College London, London, UK
| | - Shailesh Kolekar
- Department of Pulmonary Medicine, Zealand University Hospital, Roskilde, Denmark
| | | | - Jette Marie Bangsborg
- Department of Clinical Microbiology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Jens Otto Jarløv
- Department of Clinical Microbiology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Ram Benny Dessau
- Department of Clinical Microbiology, Zealand University Hospital, Slagelse Hospital, Slagelse, Denmark
| | - Christian Borbjerg Laursen
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark
- Institute for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Michael Perch
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Section for Lung Transplantation, Rigshospitalet, Copenhagen, Denmark
| | - Jens-Ulrik Stæhr Jensen
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital Herlev and Gentofte Hospital, Hellerup, Denmark
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- PERSIMUNE & CHIP: Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Reta O, Daka D. Nasopharyngeal Carriage Rate of Streptococcus pneumoniae, Related Risk Factors, and Antibiotic Susceptibility Among Inmates in Hawassa Central Prison Institute: Hawassa, Sidama National Region, Ethiopia. Health Serv Res Manag Epidemiol 2023; 10:23333928231186687. [PMID: 37457872 PMCID: PMC10338666 DOI: 10.1177/23333928231186687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Background The bacterium Streptococcus pneumoniae commonly causes severe bacterial illnesses in both children and adults. S. pneumoniae is the most fatal bacterial pathogen, causing 50% of the deaths from lower respiratory infections in people of all ages. Objectives This study was aimed to determine a nasopharyngeal carriage rate of S. pneumoniae, related risk factors, and antibiotic susceptibility among prisoners in Hawassa Central Prison Institute Hawassa, Ethiopia. Methods From July to August 2021, a cross-sectional investigation was carried out in Hawassa prison. All randomly chosen adult volunteers were a part of the study. In this study, about 330 different people were included. Within 3 h of collection, the swab specimen was inoculated onto 5% sheep blood agar; the inoculated medium was then incubated for 18-24 h at 35-37 °C in a CO2-enriched environment. Following incubation, the S. pneumoniae colonies were suspected, but the usual colony shape, alpha-hemolysis, Gram staining, optochin susceptibility, and bile solubility test allowed for confirmation. Antimicrobial susceptibility testing was carried out in accordance with the Clinical and Laboratory Standards Institute's guidelines. Results Overall carriage rate of S. pneumoniae among adult individuals were 41 (12.7%). The carriage rate of S. pneumoniae was affected by age classes that 39-48 years (OR = 4.82, 95%CI = 1.49-15.56, p = .009), 49-58 years (OR = 5.27, 95%CI = 1.27-21.89, p = .022), and greater than 58 years (OR = 4.36, 95%CI = 1.13-16.90, p = .033); cigarette smoking (OR = 3.41, 95%CI = 1.16-10.01, p = .026); and sharing beds (OR = 3.91, 95%CI = 1.27-12.07, p = .018). The majority of the isolates are susceptible for clindamycin (87.8%) and resistant for chloramphenicol (56%). Multidrug resistance was observed in 36.7%. Conclusions The overall carriage rate of S. pneumoniae was 12.7%. Age, cigarette smoking, and sharing beds in the same prison room had a substantial impact on this nasopharyngeal carriage rate. Chloramphenicol (56%), erythromycin (41.5%), tetracycline (39%), and co-trimoxazole (34.1%) resistance were seen in the majority of S. pneumoniae isolates. Early detection, hygiene maintenance, and appropriate treatment are necessary.
Collapse
Affiliation(s)
- Oute Reta
- College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Deresse Daka
- College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| |
Collapse
|
16
|
Platt MP, Lin YH, Penix T, Wiscovitch-Russo R, Vashee I, Mares CA, Rosch JW, Yu Y, Gonzalez-Juarbe N. A multiomics analysis of direct interkingdom dynamics between influenza A virus and Streptococcus pneumoniae uncovers host-independent changes to bacterial virulence fitness. PLoS Pathog 2022; 18:e1011020. [PMID: 36542660 PMCID: PMC9815659 DOI: 10.1371/journal.ppat.1011020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/05/2023] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND For almost a century, it has been recognized that influenza A virus (IAV) infection can promote the development of secondary bacterial infections (SBI) mainly caused by Streptococcus pneumoniae (Spn). Recent observations have shown that IAV is able to directly bind to the surface of Spn. To gain a foundational understanding of how direct IAV-Spn interaction alters bacterial biological fitness we employed combinatorial multiomic and molecular approaches. RESULTS Here we show IAV significantly remodels the global transcriptome, proteome and phosphoproteome profiles of Spn independently of host effectors. We identified Spn surface proteins that interact with IAV proteins (hemagglutinin, nucleoprotein, and neuraminidase). In addition, IAV was found to directly modulate expression of Spn virulence determinants such as pneumococcal surface protein A, pneumolysin, and factors associated with antimicrobial resistance among many others. Metabolic pathways were significantly altered leading to changes in Spn growth rate. IAV was also found to drive Spn capsule shedding and the release of pneumococcal surface proteins. Released proteins were found to be involved in evasion of innate immune responses and actively reduced human complement hemolytic and opsonizing activity. IAV also led to phosphorylation changes in Spn proteins associated with metabolism and bacterial virulence. Validation of proteomic data showed significant changes in Spn galactose and glucose metabolism. Furthermore, supplementation with galactose rescued bacterial growth and promoted bacterial invasion, while glucose supplementation led to enhanced pneumolysin production and lung cell apoptosis. CONCLUSIONS Here we demonstrate that IAV can directly modulate Spn biology without the requirement of host effectors and support the notion that inter-kingdom interactions between human viruses and commensal pathobionts can promote bacterial pathogenesis and microbiome dysbiosis.
Collapse
Affiliation(s)
- Maryann P. Platt
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Yi-Han Lin
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Trevor Penix
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Rosana Wiscovitch-Russo
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Isha Vashee
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Chris A. Mares
- Department of Life Sciences, Texas A&M University-San Antonio, Texas, United States of America
| | - Jason W. Rosch
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yanbao Yu
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| |
Collapse
|
17
|
Palmer CS, Kimmey JM. Neutrophil Recruitment in Pneumococcal Pneumonia. Front Cell Infect Microbiol 2022; 12:894644. [PMID: 35646729 PMCID: PMC9136017 DOI: 10.3389/fcimb.2022.894644] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/18/2022] [Indexed: 01/19/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is the primary agent of community-acquired pneumonia. Neutrophils are innate immune cells that are essential for bacterial clearance during pneumococcal pneumonia but can also do harm to host tissue. Neutrophil migration in pneumococcal pneumonia is therefore a major determinant of host disease outcomes. During Spn infection, detection of the bacterium leads to an increase in proinflammatory signals and subsequent expression of integrins and ligands on both the neutrophil as well as endothelial and epithelial cells. These integrins and ligands mediate the tethering and migration of the neutrophil from the bloodstream to the site of infection. A gradient of host-derived and bacterial-derived chemoattractants contribute to targeted movement of neutrophils. During pneumococcal pneumonia, neutrophils are rapidly recruited to the pulmonary space, but studies show that some of the canonical neutrophil migratory machinery is dispensable. Investigation of neutrophil migration is necessary for us to understand the dynamics of pneumococcal infection. Here, we summarize what is known about the pathways that lead to migration of the neutrophil from the capillaries to the lung during pneumococcal infection.
Collapse
Affiliation(s)
| | - Jacqueline M. Kimmey
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
18
|
Ganaie F, Branche AR, Peasley M, Rosch JW, Nahm MH. Oral streptococci expressing pneumococci-like cross-reactive capsule types can affect WHO recommended pneumococcal carriage procedure. Clin Infect Dis 2021; 75:647-656. [PMID: 34891152 DOI: 10.1093/cid/ciab1003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Carriage studies are fundamental to assess the effects of pneumococcal vaccines. Since a large proportion of oral streptococci carry homologs of pneumococcal genes, nonculture-based detection and serotyping of upper respiratory tract (URT) samples can be problematic. Herein, we investigated if culture-free molecular methods could differentiate pneumococci from oral streptococci carried by adults in URT. METHODS Paired nasopharyngeal (NP) and oropharyngeal (OP) samples were collected from 100 older adults twice a month for one year. Extracts from the combined NP+OP samples (n=2400) were subjected to lytA real-time PCR. Positive samples were subjected to pure culture isolation followed by species confirmation using multiple approaches. Multibead assay and whole-genome sequencing were used for serotyping. RESULTS lytA-PCR was positive in 301 combined NP+OP extracts, 20 of which grew probable pneumococcal-like colonies based on colony morphology and biochemical tests. Multiple approaches confirmed that four isolates were S. pneumoniae, three were S. psuedopneumoniae, and thirteen were S. mitis. Eight nonpneumococcal strains carried pneumococcus-like cps loci (size: ~18 to 25 kb) that showed >70% of nucleotide identity with their pneumococcal counterparts. While investigating the antigenic profile, we found some S. mitis strains (P066 and P107) reacted with both serotype-specific polyclonal (Type 39 and FS17b) and monoclonal (Hyp10AG1 and Hyp17FM1) antisera, whereas some strains (P063 and P074) reacted only with polyclonal antisera (Type 5 and FS35a). CONCLUSION The extensive capsular overlap suggests that pneumococcal vaccines could reduce carriage of oral streptococci expressing cross-reactive capsules. Further, direct use of culture-free PCR-based methods in URT samples has limited usefulness for carriage studies.
Collapse
Affiliation(s)
- Feroze Ganaie
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Angela R Branche
- Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Michael Peasley
- Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Moon H Nahm
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
Nikolaou E, German EL, Blizard A, Howard A, Hitchins L, Chen T, Chadwick J, Pojar S, Mitsi E, Solórzano C, Sunny S, Dunne F, Gritzfeld JF, Adler H, Hinds J, Gould KA, Rylance J, Collins AM, Gordon SB, Ferreira DM. The nose is the best niche for detection of experimental pneumococcal colonisation in adults of all ages, using nasal wash. Sci Rep 2021; 11:18279. [PMID: 34521967 PMCID: PMC8440778 DOI: 10.1038/s41598-021-97807-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
Previous studies have suggested that the pneumococcal niche changes from the nasopharynx to the oral cavity with age. We use an Experimental Human Pneumococcal Challenge model to investigate pneumococcal colonisation in different anatomical niches with age. Healthy adults (n = 112) were intranasally inoculated with Streptococcus pneumoniae serotype 6B (Spn6B) and were categorised as young 18-55 years (n = 57) or older > 55 years (n = 55). Colonisation status (frequency and density) was determined by multiplex qPCR targeting the lytA and cpsA-6A/B genes in both raw and culture-enriched nasal wash and oropharyngeal swab samples collected at 2-, 7- and 14-days post-exposure. For older adults, raw and culture-enriched saliva samples were also assessed. 64% of NW samples and 54% of OPS samples were positive for Spn6B in young adults, compared to 35% of NW samples, 24% of OPS samples and 6% of saliva samples in older adults. Many colonisation events were only detected in culture-enriched samples. Experimental colonisation was detected in 72% of young adults by NW and 63% by OPS. In older adults, this was 51% by NW, 36% by OPS and 9% by saliva. The nose, as assessed by nasal wash, is the best niche for detection of experimental pneumococcal colonisation in both young and older adults.
Collapse
Affiliation(s)
- Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.
| | - Esther L German
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.
| | - Annie Blizard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Ashleigh Howard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Lisa Hitchins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Tao Chen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Jim Chadwick
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Elena Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Carla Solórzano
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Syba Sunny
- Medical Microbiology, Royal Liverpool University Hospital, Liverpool, UK
| | - Felicity Dunne
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.,Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Jenna F Gritzfeld
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.,Institute of Life Course and Medical Sciences, University of Liverpool, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Hugh Adler
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Jason Hinds
- Infection and Immunity Research Institute, St George's University London, London, UK
| | - Katherine A Gould
- Infection and Immunity Research Institute, St George's University London, London, UK
| | - Jamie Rylance
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Andrea M Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.,College of Medicine, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| |
Collapse
|
20
|
A Murine Model for Enhancement of Streptococcus pneumoniae Pathogenicity upon Viral Infection and Advanced Age. Infect Immun 2021; 89:e0047120. [PMID: 34031128 DOI: 10.1128/iai.00471-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) resides asymptomatically in the nasopharynx (NP) but can progress from benign colonizer to lethal pulmonary or systemic pathogen. Both viral infection and aging are risk factors for serious pneumococcal infections. Previous work established a murine model that featured the movement of pneumococcus from the nasopharynx to the lung upon nasopharyngeal inoculation with influenza A virus (IAV) but did not fully recapitulate the severe disease associated with human coinfection. We built upon this model by first establishing pneumococcal nasopharyngeal colonization, then inoculating both the nasopharynx and lungs with IAV. In young (2-month-old) mice, coinfection triggered bacterial dispersal from the nasopharynx into the lungs, pulmonary inflammation, disease, and mortality in a fraction of mice. In aged mice (18 to 24 months), coinfection resulted in earlier and more severe disease. Aging was not associated with greater bacterial burdens but rather with more rapid pulmonary inflammation and damage. Both aging and IAV infection led to inefficient bacterial killing by neutrophils ex vivo. Conversely, aging and pneumococcal colonization also blunted alpha interferon (IFN-α) production and increased pulmonary IAV burden. Thus, in this multistep model, IAV promotes pneumococcal pathogenicity by modifying bacterial behavior in the nasopharynx, diminishing neutrophil function, and enhancing bacterial growth in the lung, while pneumococci increase IAV burden, likely by compromising a key antiviral response. Thus, this model provides a means to elucidate factors, such as age and coinfection, that promote the evolution of S. pneumoniae from asymptomatic colonizer to invasive pathogen, as well as to investigate consequences of this transition on antiviral defense.
Collapse
|
21
|
Weight CM, Jochems SP, Adler H, Ferreira DM, Brown JS, Heyderman RS. Insights Into the Effects of Mucosal Epithelial and Innate Immune Dysfunction in Older People on Host Interactions With Streptococcus pneumoniae. Front Cell Infect Microbiol 2021; 11:651474. [PMID: 34113578 PMCID: PMC8185287 DOI: 10.3389/fcimb.2021.651474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
In humans, nasopharyngeal carriage of Streptococcus pneumoniae is common and although primarily asymptomatic, is a pre-requisite for pneumonia and invasive pneumococcal disease (IPD). Together, these kill over 500,000 people over the age of 70 years worldwide every year. Pneumococcal conjugate vaccines have been largely successful in reducing IPD in young children and have had considerable indirect impact in protection of older people in industrialized country settings (herd immunity). However, serotype replacement continues to threaten vulnerable populations, particularly older people in whom direct vaccine efficacy is reduced. The early control of pneumococcal colonization at the mucosal surface is mediated through a complex array of epithelial and innate immune cell interactions. Older people often display a state of chronic inflammation, which is associated with an increased mortality risk and has been termed 'Inflammageing'. In this review, we discuss the contribution of an altered microbiome, the impact of inflammageing on human epithelial and innate immunity to S. pneumoniae, and how the resulting dysregulation may affect the outcome of pneumococcal infection in older individuals. We describe the impact of the pneumococcal vaccine and highlight potential research approaches which may improve our understanding of respiratory mucosal immunity during pneumococcal colonization in older individuals.
Collapse
Affiliation(s)
- Caroline M. Weight
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Simon P. Jochems
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Hugh Adler
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Daniela M. Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jeremy S. Brown
- Respiratory Medicine, University College London, London, United Kingdom
| | - Robert S. Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
22
|
Gessner BD, Isturiz R, Snow V, Grant LR, Theilacker C, Jodar L. The rationale for use of clinically defined outcomes in assessing the impact of pneumococcal conjugate vaccines against pneumonia. Expert Rev Vaccines 2021; 20:269-280. [PMID: 33602035 DOI: 10.1080/14760584.2021.1889376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction: When evaluating the public health value of adult pneumococcal conjugate vaccine (PCV) for pneumonia, regulatory agencies and vaccine technical committees (VTCs) emphasize vaccine serotype (VT), radiologically confirmed community-acquired pneumonia (CAP) to the exclusion of clinically defined pneumonia and thus may underestimate PCV's public health value.Areas covered: We review the critiques that have been raised to using clinically defined pneumonia as a complement to VT-CAP in evaluating the public health value of adult PCVs.Expert opinion: PCV13 efficacies for preventing hospitalized CAP ranged from 6% to 11% and for a combination of primary and secondary care from 4% to 12%, with relatively high associated rate reductions. These efficacy values are larger than estimated from multiplying PCV13 efficacy against vaccine-type CAP by the proportion of CAP identified as vaccine-type through tests, such as a serotype-specific urinary antigen detection assay. Current understanding of pneumococcal epidemiology and limitations of diagnostic tests suggest the efficacy values for clinically defined outcomes are plausible and potentially generalizable. Regulatory agencies and VTCs have accepted clinically defined outcomes for assessing pediatric vaccines and - while additional studies assessing adult clinical CAP VE are needed - they might consider existing data when evaluating adult PCV use.
Collapse
|
23
|
Adler H, German EL, Mitsi E, Nikolaou E, Pojar S, Hales C, Robinson R, Connor V, Hill H, Hyder-Wright AD, Lazarova L, Lowe C, Smith EL, Wheeler I, Zaidi SR, Jochems SP, Loukov D, Reiné J, Solórzano-Gonzalez C, de Gorguette d'Argoeuves P, Jones T, Goldblatt D, Chen T, Aston SJ, French N, Collins AM, Gordon SB, Ferreira DM, Rylance J. Experimental Human Pneumococcal Colonization in Older Adults Is Feasible and Safe, Not Immunogenic. Am J Respir Crit Care Med 2021; 203:604-613. [PMID: 32941735 DOI: 10.1164/rccm.202004-1483oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Pneumococcal colonization is key to the pathogenesis of invasive disease but is also immunogenic in young adults, protecting against recolonization. Colonization is rarely detected in older adults, despite high rates of pneumococcal disease.Objectives: To establish experimental human pneumococcal colonization in healthy adults aged 50-84 years, to measure the immune response to pneumococcal challenge, and to assess the protective effect of prior colonization against autologous strain rechallenge.Methods: Sixty-four participants were inoculated with Streptococcus pneumoniae (serotype 6B; 80,000 cfu in each nostril). Colonization was determined by bacterial culture of nasal wash, and humoral immune responses were assessed by anticapsular and antiprotein IgG concentrations.Measurements and Main Results: Experimental colonization was established in 39% of participants (25/64) with no adverse events. Colonization occurred in 47% (9/19) of participants aged 50-59 compared with 21% (3/14) in those aged ≥70 years. Previous pneumococcal polysaccharide vaccination did not protect against colonization. Colonization did not confer serotype-specific immune boosting, with a geometric mean titer (95% confidence interval) of 2.7 μg/ml (1.9-3.8) before the challenge versus 3.0 (1.9-4.7) 4 weeks after colonization (P = 0.53). Furthermore, pneumococcal challenge without colonization led to a drop in specific antibody concentrations from 2.8 μg/ml (2.0-3.9) to 2.2 μg/ml (1.6-3.0) after the challenge (P = 0.006). Antiprotein antibody concentrations increased after successful colonization. Rechallenge with the same strain after a median of 8.5 months (interquartile range, 6.7-10.1) led to recolonization in 5/16 (31%).Conclusions: In older adults, experimental pneumococcal colonization is feasible and safe but demonstrates different immunological outcomes compared with younger adults in previous studies.
Collapse
Affiliation(s)
- Hugh Adler
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Esther L German
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elena Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Caz Hales
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Rachel Robinson
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Victoria Connor
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Helen Hill
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Angela D Hyder-Wright
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom.,Clinical Research Network, North West Coast, United Kingdom
| | - Lepa Lazarova
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Catherine Lowe
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Emma L Smith
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - India Wheeler
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Seher R Zaidi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Simon P Jochems
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Dessi Loukov
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jesús Reiné
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Carla Solórzano-Gonzalez
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Tessa Jones
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David Goldblatt
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Tao Chen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stephen J Aston
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Neil French
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Andrea M Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom.,Aintree University Hospital, Liverpool, United Kingdom; and
| | - Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jamie Rylance
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom.,Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi
| |
Collapse
|
24
|
Iovino F, Henriques-Normark B. Experimental Model for Studies of Pneumococcal Colonization in Older Adults. Am J Respir Crit Care Med 2021; 203:539-540. [PMID: 33075234 PMCID: PMC7924567 DOI: 10.1164/rccm.202009-3681ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Federico Iovino
- Department of Microbiology, Tumor and Cell Biology Karolinska Institute Stockholm, Sweden and
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology Karolinska Institute Stockholm, Sweden and
- Karolinska University Hospital Stockholm, Sweden
| |
Collapse
|
25
|
AMRITHA G, MEENAKSHI N, ALICE PEACE SELVABAI R, SHANMUGAM PRIYADARSHINI, JAYARAMAN PERUMAL. A comparative profile of oropharyngeal colonization of Streptococcus pneumoniae and Hemophilus influenzae among HealthCare Workers (HCW) in a tertiary care hospital and non-healthcare individuals. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2020; 61:E379-E385. [PMID: 33150226 PMCID: PMC7595066 DOI: 10.15167/2421-4248/jpmh2020.61.3.1479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/03/2020] [Indexed: 11/16/2022]
Abstract
Introduction Streptococcus pneumoniae and Hemophilus influenzae are two major bacterial human pathogens responsible for causing both acute respiratory tract and life threatening invasive infections. Oropharyngeal carriage of these isolates can lead to its transmission frequently in healthcare settings between patients and HealthCare workers (HCW) and also common among population living in crowded communities resulting in serious invasive infections. Furthermore, awareness about preventive measures including appropriate vaccination against these bacterial infections, oropharyngeal carrier status, prevalent serotypes and the antimicrobial susceptibility pattern these bacterial strains among HCW and Non-HCW in the community in India remains inadequate. Therefore the current study is aimed to understand the prevalence of oropharyngeal carrier status, prevalent serotypes and antimicrobial susceptibility profile of these organisms among HCW and non-HCW. Methods A total of 200 oropharyngeal swabs were collected from HealthCare Workers and 200 from Non-Health care individuals of age 18 to 70. Antimicrobial susceptibility profile was studied for Pneumococci and H. influenzae. Specific serotypes for the carrier isolates of Pneumococci were identified using primers appropriate to the prevalent serotypes by multiplex PCR. Results About 30% of the HCW were colonized with S.pneumoniae and H. influenzae (P ≤ 0.0001). Out of which 19% of them were S.pneumoniae and 11% were H. influenzae. A total of 23% of the Non-HCW was colonized with S. pneumoniae and H. influenzae. Out of which 16% had pneumococcal carriage and 7% had H. influenzae. Individuals in the age group 56-70 years had significantly a greater prevalence rate when compared to young people (P = 0.0014). Thus in this study 30% of the HCW and 23% of the Non-HCW were colonized with S. pneumoniae and H. influenzae. Both Pneumococci and H. influenzae showed 100% susceptibility to Penicillin and other cephalosporins. However, Pneumococcal isolates from HCW showed better susceptibility towards erythromycin & clindamycin whereas isolates from Non- HCW showed better susceptibility towards ofloxacin and tetracycline. Serotypes detected in our study include 19F, 3, 1 and 5. Conclusions The present study gives a greater prevalence rate of S.pneumoniae and H. influenzae among HCW when compared to Non-HCW. This will definitely increase horizontal spread of infections and further accelerate the occupational risk. Increased carrier state prevalence among old age group underscores the importance of vaccination among these individuals.
Collapse
Affiliation(s)
- G.N AMRITHA
- MBBS, Chettinad Hospital and Research Institute, Kancheepuram, India
| | - N MEENAKSHI
- Department of Respiratory and Thoracic Medicine, Chettinad Hospital and Research Institute, Kancheepuram, India
| | - R ALICE PEACE SELVABAI
- Department of Microbiology, Chettinad Hospital and Research Institute, Kancheepuram, India
- Correspondence: Alice Peace Selvabai R, Chettinad Hospital and Research Institute, Kelambakkam 603103 - Tel.: 7401098441 - E-mail:
| | | | | |
Collapse
|
26
|
Miellet WR, van Veldhuizen J, Nicolaie MA, Mariman R, Bootsma HJ, Bosch T, Rots NY, Sanders EAM, van Beek J, Trzciński K. Influenza-like Illness Exacerbates Pneumococcal Carriage in Older Adults. Clin Infect Dis 2020; 73:e2680-e2689. [PMID: 33124669 DOI: 10.1093/cid/ciaa1551] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In older adults pneumococcal disease is strongly associated with respiratory viral infections, but the impact of viruses on Streptococcus pneumoniae carriage prevalence and load remains poorly understood. Here, we investigated the effects of influenza-like illness (ILI) on pneumococcal carriage in community-dwelling older adults. METHODS We investigated the presence of pneumococcal DNA in saliva samples collected in the 2014/2015 influenza season from 232 individuals aged ≥60 years at ILI-onset, followed by sampling 2-3 weeks and 7-9 weeks after the first sample. We also sampled 194 age-matched controls twice 2-3 weeks apart. Pneumococcal DNA was detected with quantitative-PCRs targeting piaB and lytA genes in raw and in culture-enriched saliva. Bacterial and pneumococcal abundances were determined in raw saliva with 16S and piaB quantification. RESULTS The prevalence of pneumococcus-positive samples was highest at onset of ILI (18% or 42/232) and lowest among controls (13% or 26/194, and 11% or 22/194, at the first and second sampling moment, respectively), though these differences were not significant. Pneumococcal carriage was associated with exposure to young children (OR:2.71, 95%CI 1.51-5.02, p<0.001), and among asymptomatic controls with presence of rhinovirus infection (OR:4.23; 95%CI 1.16-14.22, p<0.05). When compared with carriers among controls, pneumococcal absolute abundances were significantly higher at onset of ILI (p<0.01), and remained elevated beyond recovery from ILI (p<0.05). Finally, pneumococcal abundances were highest in carriage events newly-detected after ILI-onset (estimated geometric mean 1.21E -5, 95%CI 2.48E -7-2.41E -5, compared with pre-existing carriage). CONCLUSIONS ILI exacerbates pneumococcal colonization of the airways in older adults, and this effect persists beyond recovery from ILI.
Collapse
Affiliation(s)
- Willem R Miellet
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, The Netherlands
| | - Janieke van Veldhuizen
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Mioara A Nicolaie
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Centre for Nutrition, Prevention and Care, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rob Mariman
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Hester J Bootsma
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Thijs Bosch
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Nynke Y Rots
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elisabeth A M Sanders
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, The Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, The Netherlands
| |
Collapse
|