1
|
Birtele M, Lancaster M, Quadrato G. Modelling human brain development and disease with organoids. Nat Rev Mol Cell Biol 2025; 26:389-412. [PMID: 39668188 DOI: 10.1038/s41580-024-00804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Organoids are systems derived from pluripotent stem cells at the interface between traditional monolayer cultures and in vivo animal models. The structural and functional characteristics of organoids enable the modelling of early stages of brain development in a physiologically relevant 3D environment. Moreover, organoids constitute a tool with which to analyse how individual genetic variation contributes to the susceptibility and progression of neurodevelopmental disorders. This Roadmap article describes the features of brain organoids, focusing on the neocortex, and their advantages and limitations - in comparison with other model systems - for the study of brain development, evolution and disease. We highlight avenues for enhancing the physiological relevance of brain organoids by integrating bioengineering techniques and unbiased high-throughput analyses, and discuss future applications. As organoids advance in mimicking human brain functions, we address the ethical and societal implications of this technology.
Collapse
Affiliation(s)
- Marcella Birtele
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Madeline Lancaster
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Giorgia Quadrato
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Ouaidat S, Bellapianta A, Ammer-Pickhardt F, Taghipour T, Bolz M, Salti A. Exploring organoid and assembloid technologies: a focus on retina and brain. Expert Rev Mol Med 2025; 27:e14. [PMID: 40145178 PMCID: PMC12011387 DOI: 10.1017/erm.2025.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/21/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND The recent emergence of three-dimensional organoids and their utilization as in vitro disease models confirmed the complexities behind organ-specific functions and unravelled the importance of establishing suitable human models for various applications. Also, in light of persistent challenges associated with their use, researchers have been striving to establish more advanced structures (i.e. assembloids) that can help address the limitations presented in the current organoids. METHODS In this review, we discuss the distinct organoid types that are available to date, with a special focus on retinal and brain organoids, and highlight their importance in disease modelling. RESULTS We refer to published research to explore the extent to which retinal and brain organoids can serve as potential alternatives to organ/cell transplants and direct our attention to the topic of photostimulation in retinal organoids. Additionally, we discuss the advantages of incorporating microfluidics and organ-on-a-chip devices for boosting retinal organoid performance. The challenges of organoids leading to the subsequent development of assembloid fusion models are also presented. CONCLUSION In conclusion, organoid technology has laid the foundation for generating upgraded models that not only better replicate in vivo systems but also allow for a deeper comprehension of disease pathophysiology.
Collapse
Affiliation(s)
- Sara Ouaidat
- Research Group Cellular and Molecular Ophthalmology, University Clinic for Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Alessandro Bellapianta
- Research Group Cellular and Molecular Ophthalmology, University Clinic for Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Franziska Ammer-Pickhardt
- Research Group Cellular and Molecular Ophthalmology, University Clinic for Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
- Department of Biosciences & Medical Biology, Paris-Lodron-University of Salzburg (PLUS), Salzburg, Austria
| | - Tara Taghipour
- Research Group Cellular and Molecular Ophthalmology, University Clinic for Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Matthias Bolz
- Research Group Cellular and Molecular Ophthalmology, University Clinic for Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Ahmad Salti
- Research Group Cellular and Molecular Ophthalmology, University Clinic for Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
3
|
Coughlin CN, King NMP, McEwan E. Brain Organoid Research in a Post-Dobbs World. Ethics Hum Res 2025; 47:41-47. [PMID: 40084679 DOI: 10.1002/eahr.60017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The creation and study of brain organoids may hold significant promise for understanding brain functions, disorders, and diseases. This research may also raise novel considerations and ethical concerns, but it has significant public and professional support when thoughtfully undertaken. Current legislative and judicial restrictions on abortion and pronouncements about fetal personhood could, however, have a surprisingly broad and unintended reach, even conceivably restricting the development and use of brain organoids and other biomedical and bioengineered research tools. Brain organoid research thus may constitute a cautionary tale about the risks of performative policy-making.
Collapse
Affiliation(s)
- Christine N Coughlin
- Professor of law at Wake Forest University School of Law and a core faculty member in the Wake Forest Center for Bioethics, Health & Society
| | - Nancy M P King
- Professor emeritus in the Department of Social Sciences & Health Policy at Wake Forest University School of Medicine
| | - Emily McEwan
- Graduate student in translational and health system science at the Wake Forest University School of Medicine
| |
Collapse
|
4
|
Vazquez C, Negatu SG, Bannerman CD, Sriram S, Ming GL, Jurado KA. Antiviral immunity within neural stem cells distinguishes Enterovirus-D68 strain differences in forebrain organoids. J Neuroinflammation 2024; 21:288. [PMID: 39501367 PMCID: PMC11539839 DOI: 10.1186/s12974-024-03275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Neural stem cells have intact innate immune responses that protect them from virus infection and cell death. Yet, viruses can antagonize such responses to establish neuropathogenesis. Using a forebrain organoid model system at two developmental time points, we identified that neural stem cells, in particular radial glia, are basally primed to respond to virus infection by upregulating several antiviral interferon-stimulated genes. Infection of these organoids with a neuropathogenic Enterovirus-D68 strain, demonstrated the ability of this virus to impede immune activation by blocking interferon responses. Together, our data highlight immune gene signatures present in different types of neural stem cells and differential viral capacity to block neural-specific immune induction.
Collapse
Affiliation(s)
- Christine Vazquez
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Seble G Negatu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Carl D Bannerman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sowmya Sriram
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kellie A Jurado
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Zhang SY, Casanova JL. Genetic defects of brain immunity in childhood herpes simplex encephalitis. Nature 2024; 635:563-573. [PMID: 39567785 PMCID: PMC11822754 DOI: 10.1038/s41586-024-08119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/25/2024] [Indexed: 11/22/2024]
Abstract
Herpes simplex virus 1 (HSV-1) encephalitis (HSE) is the most common sporadic viral encephalitis in humans. It is life-threatening and has a first peak of incidence in childhood, during primary infection. Children with HSE are not particularly prone to other infections, including HSV-1 infections of tissues other than the brain. About 8-10% of childhood cases are due to monogenic inborn errors of 19 genes, two-thirds of which are recessive, and most of which display incomplete clinical penetrance. Childhood HSE can therefore be sporadic but genetic, enabling new diagnostic and therapeutic approaches. In this Review, we examine essential cellular and molecular mechanisms of cell-intrinsic antiviral immunity in the brain that are disrupted in individuals with HSE. These mechanisms include both known (such as mutations in the TLR3 pathway) and previously unknown (such as the TMEFF1 restriction factor) antiviral pathways, which may be dependent (for example, IFNAR1) or independent (for example, through RIPK3) of type I interferons. They operate in cortical or brainstem neurons, and underlie forebrain and brainstem infections, respectively. Conversely, the most severe inborn errors of leukocytes, including a complete lack of myeloid and/or lymphoid blood cells, do not underlie HSE. Thus congenital defects in intrinsic immunity in brain-resident neurons that underlie HSE broaden natural host defences against HSV-1 from the leukocytes of the immune system to other cells in the organism.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- Howard Hughes Medical Institute, New York, NY, USA.
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France.
| |
Collapse
|
6
|
Li M, Yuan Y, Hou Z, Hao S, Jin L, Wang B. Human brain organoid: trends, evolution, and remaining challenges. Neural Regen Res 2024; 19:2387-2399. [PMID: 38526275 PMCID: PMC11090441 DOI: 10.4103/1673-5374.390972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/26/2023] [Accepted: 10/28/2023] [Indexed: 03/26/2024] Open
Abstract
Advanced brain organoids provide promising platforms for deciphering the cellular and molecular processes of human neural development and diseases. Although various studies and reviews have described developments and advancements in brain organoids, few studies have comprehensively summarized and analyzed the global trends in this area of neuroscience. To identify and further facilitate the development of cerebral organoids, we utilized bibliometrics and visualization methods to analyze the global trends and evolution of brain organoids in the last 10 years. First, annual publications, countries/regions, organizations, journals, authors, co-citations, and keywords relating to brain organoids were identified. The hotspots in this field were also systematically identified. Subsequently, current applications for brain organoids in neuroscience, including human neural development, neural disorders, infectious diseases, regenerative medicine, drug discovery, and toxicity assessment studies, are comprehensively discussed. Towards that end, several considerations regarding the current challenges in brain organoid research and future strategies to advance neuroscience will be presented to further promote their application in neurological research.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zongkun Hou
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
7
|
Govaerts J, Van Breedam E, De Beuckeleer S, Goethals C, D'Incal CP, Di Stefano J, Van Calster S, Buyle-Huybrecht T, Boeren M, De Reu H, Paludan SR, Thiry M, Lebrun M, Sadzot-Delvaux C, Motaln H, Rogelj B, Van Weyenbergh J, De Vos WH, Vanden Berghe W, Ogunjimi B, Delputte P, Ponsaerts P. Varicella-zoster virus recapitulates its immune evasive behaviour in matured hiPSC-derived neurospheroids. Front Immunol 2024; 15:1458967. [PMID: 39351233 PMCID: PMC11439716 DOI: 10.3389/fimmu.2024.1458967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
Varicella-zoster virus (VZV) encephalitis and meningitis are potential central nervous system (CNS) complications following primary VZV infection or reactivation. With Type-I interferon (IFN) signalling being an important first line cellular defence mechanism against VZV infection by the peripheral tissues, we here investigated the triggering of innate immune responses in a human neural-like environment. For this, we established and characterised 5-month matured hiPSC-derived neurospheroids (NSPHs) containing neurons and astrocytes. Subsequently, NSPHs were infected with reporter strains of VZV (VZVeGFP-ORF23) or Sendai virus (SeVeGFP), with the latter serving as an immune-activating positive control. Live cell and immunocytochemical analyses demonstrated VZVeGFP-ORF23 infection throughout the NSPHs, while SeVeGFP infection was limited to the outer NSPH border. Next, NanoString digital transcriptomics revealed that SeVeGFP-infected NSPHs activated a clear Type-I IFN response, while this was not the case in VZVeGFP-ORF23-infected NSPHs. Moreover, the latter displayed a strong suppression of genes related to IFN signalling and antigen presentation, as further demonstrated by suppression of IL-6 and CXCL10 production, failure to upregulate Type-I IFN activated anti-viral proteins (Mx1, IFIT2 and ISG15), as well as reduced expression of CD74, a key-protein in the MHC class II antigen presentation pathway. Finally, even though VZVeGFP-ORF23-infection seems to be immunologically ignored in NSPHs, its presence does result in the formation of stress granules upon long-term infection, as well as disruption of cellular integrity within the infected NSPHs. Concluding, in this study we demonstrate that 5-month matured hiPSC-derived NSPHs display functional innate immune reactivity towards SeV infection, and have the capacity to recapitulate the strong immune evasive behaviour towards VZV.
Collapse
Affiliation(s)
- Jonas Govaerts
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Elise Van Breedam
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Sarah De Beuckeleer
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Laboratory of Cell Biology and Histology, Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Charlotte Goethals
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Claudio Peter D'Incal
- Cell Death Signaling - Epigenetics Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Julia Di Stefano
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Siebe Van Calster
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Tamariche Buyle-Huybrecht
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Marlies Boeren
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Flow Cytometry and Cell Sorting Core Facility (FACSUA), University of Antwerp, Antwerp, Belgium
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marc Thiry
- Laboratory of Cell and Tissue Biology, GIGA-Neurosciences, Cell Biology L3, University of Liège, Liege, Belgium
| | - Marielle Lebrun
- Laboratory of Virology and Immunology, GIGA-Infection, Inflammation and Immunity, University of Liège, Liège, Belgium
| | - Catherine Sadzot-Delvaux
- Laboratory of Virology and Immunology, GIGA-Infection, Inflammation and Immunity, University of Liège, Liège, Belgium
| | - Helena Motaln
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Wim Vanden Berghe
- Cell Death Signaling - Epigenetics Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium
- Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- Infla-Med, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Flow Cytometry and Cell Sorting Core Facility (FACSUA), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Chen X, Yan Y, Liu Z, Yang S, Li W, Wang Z, Wang M, Guo J, Li Z, Zhu W, Yang J, Yin J, Dai Q, Li Y, Wang C, Zhao L, Yang X, Guo X, Leng L, Xu J, Obukhov AG, Cao R, Zhong W. In vitro and in vivo inhibition of the host TRPC4 channel attenuates Zika virus infection. EMBO Mol Med 2024; 16:1817-1839. [PMID: 39009885 PMCID: PMC11319825 DOI: 10.1038/s44321-024-00103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
Zika virus (ZIKV) infection may lead to severe neurological consequences, including seizures, and early infancy death. However, the involved mechanisms are still largely unknown. TRPC channels play an important role in regulating nervous system excitability and are implicated in seizure development. We investigated whether TRPCs might be involved in the pathogenesis of ZIKV infection. We found that ZIKV infection increases TRPC4 expression in host cells via the interaction between the ZIKV-NS3 protein and CaMKII, enhancing TRPC4-mediated calcium influx. Pharmacological inhibition of CaMKII decreased both pCREB and TRPC4 protein levels, whereas the suppression of either TRPC4 or CaMKII improved the survival rate of ZIKV-infected cells and reduced viral protein production, likely by impeding the replication phase of the viral life cycle. TRPC4 or CaMKII inhibitors also reduced seizures and increased the survival of ZIKV-infected neonatal mice and blocked the spread of ZIKV in brain organoids derived from human-induced pluripotent stem cells. These findings suggest that targeting CaMKII or TRPC4 may offer a promising approach for developing novel anti-ZIKV therapies, capable of preventing ZIKV-associated seizures and death.
Collapse
Affiliation(s)
- Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, 710072, Xi'an, Shanxi, China
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yunzheng Yan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhiqiang Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shaokang Yang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhuang Wang
- Institute of Medical Research, Northwestern Polytechnical University, 710072, Xi'an, Shanxi, China
| | - Mengyuan Wang
- Institute of Medical Research, Northwestern Polytechnical University, 710072, Xi'an, Shanxi, China
| | - Juan Guo
- Institute of Medical Research, Northwestern Polytechnical University, 710072, Xi'an, Shanxi, China
| | - Zhenyang Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Weiyan Zhu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jingjing Yang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Jiye Yin
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qingsong Dai
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuexiang Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Cui Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lei Zhao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaotong Yang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaojia Guo
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ling Leng
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxi Xu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shanxi, China
| | - Alexander G Obukhov
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
9
|
Patel D, Shetty S, Acha C, Pantoja IEM, Zhao A, George D, Gracias DH. Microinstrumentation for Brain Organoids. Adv Healthc Mater 2024; 13:e2302456. [PMID: 38217546 DOI: 10.1002/adhm.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/10/2023] [Indexed: 01/15/2024]
Abstract
Brain organoids are three-dimensional aggregates of self-organized differentiated stem cells that mimic the structure and function of human brain regions. Organoids bridge the gaps between conventional drug screening models such as planar mammalian cell culture, animal studies, and clinical trials. They can revolutionize the fields of developmental biology, neuroscience, toxicology, and computer engineering. Conventional microinstrumentation for conventional cellular engineering, such as planar microfluidic chips; microelectrode arrays (MEAs); and optical, magnetic, and acoustic techniques, has limitations when applied to three-dimensional (3D) organoids, primarily due to their limits with inherently two-dimensional geometry and interfacing. Hence, there is an urgent need to develop new instrumentation compatible with live cell culture techniques and with scalable 3D formats relevant to organoids. This review discusses conventional planar approaches and emerging 3D microinstrumentation necessary for advanced organoid-machine interfaces. Specifically, this article surveys recently developed microinstrumentation, including 3D printed and curved microfluidics, 3D and fast-scan optical techniques, buckling and self-folding MEAs, 3D interfaces for electrochemical measurements, and 3D spatially controllable magnetic and acoustic technologies relevant to two-way information transfer with brain organoids. This article highlights key challenges that must be addressed for robust organoid culture and reliable 3D spatiotemporal information transfer.
Collapse
Affiliation(s)
- Devan Patel
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Saniya Shetty
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chris Acha
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Itzy E Morales Pantoja
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alice Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
10
|
Smirnova L, Hartung T. The Promise and Potential of Brain Organoids. Adv Healthc Mater 2024; 13:e2302745. [PMID: 38252094 DOI: 10.1002/adhm.202302745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Brain organoids are 3D in vitro culture systems derived from human pluripotent stem cells that self-organize to model features of the (developing) human brain. This review examines the techniques behind organoid generation, their current and potential applications, and future directions for the field. Brain organoids possess complex architecture containing various neural cell types, synapses, and myelination. They have been utilized for toxicology testing, disease modeling, infection studies, personalized medicine, and gene-environment interaction studies. An emerging concept termed Organoid Intelligence (OI) combines organoids with artificial intelligence systems to generate learning and memory, with the goals of modeling cognition and enabling biological computing applications. Brain organoids allow neuroscience studies not previously achievable with traditional techniques, and have the potential to transform disease modeling, drug development, and the understanding of human brain development and disorders. The aspirational vision of OI parallels the origins of artificial intelligence, and efforts are underway to map a roadmap toward its realization. In summary, brain organoids constitute a disruptive technology that is rapidly advancing and gaining traction across multiple disciplines.
Collapse
Affiliation(s)
- Lena Smirnova
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, 615 N Wolfe St, Baltimore, MD, 21205, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, 615 N Wolfe St, Baltimore, MD, 21205, USA
- CAAT-Europe, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, BW, Germany
| |
Collapse
|
11
|
Shen Q, Zhou YH, Zhou YQ. A prospects tool in virus research: Analyzing the applications of organoids in virus studies. Acta Trop 2024; 254:107182. [PMID: 38479469 DOI: 10.1016/j.actatropica.2024.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 04/28/2024]
Abstract
Organoids have emerged as a powerful tool for understanding the biology of the respiratory, digestive, nervous as well as urinary system, investigating infections, and developing new therapies. This article reviews recent progress in the development of organoid and advancements in virus research. The potential applications of these models in studying virul infections, pathogenesis, and antiviral drug discovery are discussed.
Collapse
Affiliation(s)
- Qi Shen
- Institute of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 20036, China; Institute of Microbiology Laboratory, Shanghai Institute of Preventive Medicine, Shanghai 20036, China
| | - Yu-Han Zhou
- College of Public Health, Jilin University, Changchun 130021, China
| | - Yan-Qiu Zhou
- Institute of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 20036, China; Institute of Microbiology Laboratory, Shanghai Institute of Preventive Medicine, Shanghai 20036, China.
| |
Collapse
|
12
|
Hu H, Wang C, Tao R, Liu B, Peng D, Chen Y, Zhang W. Evidences of neurological injury caused by COVID-19 from glioma tissues and glioma organoids. CNS Neurosci Ther 2024; 30:e14822. [PMID: 38923860 PMCID: PMC11199819 DOI: 10.1111/cns.14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Despite the extensive neurological symptoms induced by COVID-19 and the identification of SARS-CoV-2 in post-mortem brain samples from COVID-19 patients months after death, the precise mechanisms of SARS-CoV-2 invasion into the central nervous system remain unclear due to the lack of research models. METHODS We collected glioma tissue samples from glioma patients who had a recent history of COVID-19 and examined the presence of the SARS-CoV-2 spike protein. Subsequently, spatial transcriptomic analyses were conducted on normal brain tissues, glioma tissues, and glioma tissues from glioma patients with recent COVID-19 history. Additionally, single-cell sequencing data from both glioma tissues and glioma organoids were collected and analyzed. Glioma organoids were utilized to evaluate the efficacy of potential COVID-19 blocking agents. RESULTS Glioma tissues from glioma patients with recent COVID-19 history exhibited the presence of the SARS-CoV-2 spike protein. Differences between glioma tissues from glioma patients who had a recent history of COVID-19 and healthy brain tissues primarily manifested in neuronal cells. Notably, neuronal cells within glioma tissues of COVID-19 history demonstrated heightened susceptibility to Alzheimer's disease, depression, and synaptic dysfunction, indicative of neuronal aberrations. Expressions of SARS-CoV-2 entry factors were confirmed in both glioma tissues and glioma organoids. Moreover, glioma organoids were susceptible to pseudo-SARS-CoV-2 infection and the infections could be partly blocked by the potential COVID-19 drugs. CONCLUSIONS Gliomas had inherent traits that render them susceptible to SARS-CoV-2 infection, leading to their representability of COVID-19 neurological symptoms. This established a biological foundation for the rationality and feasibility of utilization of glioma organoids as research and blocking drug testing model in SARS-CoV-2 infection within the central nervous system.
Collapse
Affiliation(s)
- Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Center of Brain Tumor, Beijing Institute for Brain DisordersBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Chinese Glioma Genome Atlas Network (CGGA)BeijingChina
| | - Chen Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Center of Brain Tumor, Beijing Institute for Brain DisordersBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Chinese Glioma Genome Atlas Network (CGGA)BeijingChina
| | - Rui Tao
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Center of Brain Tumor, Beijing Institute for Brain DisordersBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Chinese Glioma Genome Atlas Network (CGGA)BeijingChina
| | - Bohan Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Center of Brain Tumor, Beijing Institute for Brain DisordersBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Chinese Glioma Genome Atlas Network (CGGA)BeijingChina
| | - Dazhao Peng
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Center of Brain Tumor, Beijing Institute for Brain DisordersBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Chinese Glioma Genome Atlas Network (CGGA)BeijingChina
| | - Yankun Chen
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Center of Brain Tumor, Beijing Institute for Brain DisordersBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Chinese Glioma Genome Atlas Network (CGGA)BeijingChina
| | - Wei Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Center of Brain Tumor, Beijing Institute for Brain DisordersBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Chinese Glioma Genome Atlas Network (CGGA)BeijingChina
| |
Collapse
|
13
|
Giorgi C, Lombardozzi G, Ammannito F, Scenna MS, Maceroni E, Quintiliani M, d’Angelo M, Cimini A, Castelli V. Brain Organoids: A Game-Changer for Drug Testing. Pharmaceutics 2024; 16:443. [PMID: 38675104 PMCID: PMC11054008 DOI: 10.3390/pharmaceutics16040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Neurological disorders are the second cause of death and the leading cause of disability worldwide. Unfortunately, no cure exists for these disorders, but the actual therapies are only able to ameliorate people's quality of life. Thus, there is an urgent need to test potential therapeutic approaches. Brain organoids are a possible valuable tool in the study of the brain, due to their ability to reproduce different brain regions and maturation stages; they can be used also as a tool for disease modelling and target identification of neurological disorders. Recently, brain organoids have been used in drug-screening processes, even if there are several limitations to overcome. This review focuses on the description of brain organoid development and drug-screening processes, discussing the advantages, challenges, and limitations of the use of organoids in modeling neurological diseases. We also highlighted the potential of testing novel therapeutic approaches. Finally, we examine the challenges and future directions to improve the drug-screening process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Annamaria Cimini
- Department of Life, Health and Environmental Science, University of L’Aquila, 67100 L’Aquila, Italy; (C.G.); (G.L.); (F.A.); (M.S.S.); (E.M.); (M.Q.); (M.d.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Science, University of L’Aquila, 67100 L’Aquila, Italy; (C.G.); (G.L.); (F.A.); (M.S.S.); (E.M.); (M.Q.); (M.d.)
| |
Collapse
|
14
|
Abstract
Brain development in humans is achieved through precise spatiotemporal genetic control, the mechanisms of which remain largely elusive. Recently, integration of technological advances in human stem cell-based modelling with genome editing has emerged as a powerful platform to establish causative links between genotypes and phenotypes directly in the human system. Here, we review our current knowledge of complex genetic regulation of each key step of human brain development through the lens of evolutionary specialization and neurodevelopmental disorders and highlight the use of human stem cell-derived 2D cultures and 3D brain organoids to investigate human-enriched features and disease mechanisms. We also discuss opportunities and challenges of integrating new technologies to reveal the genetic architecture of human brain development and disorders.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Michalski C, Wen Z. Leveraging iPSC technology to assess neuro-immune interactions in neurological and psychiatric disorders. Front Psychiatry 2023; 14:1291115. [PMID: 38025464 PMCID: PMC10672983 DOI: 10.3389/fpsyt.2023.1291115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Communication between the immune and the nervous system is essential for human brain development and homeostasis. Disruption of this intricately regulated crosstalk can lead to neurodevelopmental, psychiatric, or neurodegenerative disorders. While animal models have been essential in characterizing the role of neuroimmunity in development and disease, they come with inherent limitations due to species specific differences, particularly with regard to microglia, the major subset of brain resident immune cells. The advent of induced pluripotent stem cell (iPSC) technology now allows the development of clinically relevant models of the central nervous system that adequately reflect human genetic architecture. This article will review recent publications that have leveraged iPSC technology to assess neuro-immune interactions. First, we will discuss the role of environmental stressors such as neurotropic viruses or pro-inflammatory cytokines on neuronal and glial function. Next, we will review how iPSC models can be used to study genetic risk factors in neurological and psychiatric disorders. Lastly, we will evaluate current challenges and future potential for iPSC models in the field of neuroimmunity.
Collapse
Affiliation(s)
- Christina Michalski
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
16
|
Pun FW, Ozerov IV, Zhavoronkov A. AI-powered therapeutic target discovery. Trends Pharmacol Sci 2023; 44:561-572. [PMID: 37479540 DOI: 10.1016/j.tips.2023.06.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/23/2023]
Abstract
Disease modeling and target identification are the most crucial initial steps in drug discovery, and influence the probability of success at every step of drug development. Traditional target identification is a time-consuming process that takes years to decades and usually starts in an academic setting. Given its advantages of analyzing large datasets and intricate biological networks, artificial intelligence (AI) is playing a growing role in modern drug target identification. We review recent advances in target discovery, focusing on breakthroughs in AI-driven therapeutic target exploration. We also discuss the importance of striking a balance between novelty and confidence in target selection. An increasing number of AI-identified targets are being validated through experiments and several AI-derived drugs are entering clinical trials; we highlight current limitations and potential pathways for moving forward.
Collapse
Affiliation(s)
- Frank W Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong
| | - Ivan V Ozerov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong
| | - Alex Zhavoronkov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong; Insilico Medicine MENA, 6F IRENA Building, Abu Dhabi, United Arab Emirates; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
17
|
Barreras P, Pamies D, Hartung T, Pardo CA. Human brain microphysiological systems in the study of neuroinfectious disorders. Exp Neurol 2023; 365:114409. [PMID: 37061175 PMCID: PMC10205672 DOI: 10.1016/j.expneurol.2023.114409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Microphysiological systems (MPS) are 2D or 3D multicellular constructs able to mimic tissue microenvironments. The latest models encompass a range of techniques, including co-culturing of various cell types, utilization of scaffolds and extracellular matrix materials, perfusion systems, 3D culture methods, 3D bioprinting, organ-on-a-chip technology, and examination of tissue structures. Several human brain 3D cultures or brain MPS (BMPS) have emerged in the last decade. These organoids or spheroids are 3D culture systems derived from induced pluripotent cells or embryonic stem cells that contain neuronal and glial populations and recapitulate structural and physiological aspects of the human brain. BMPS have been introduced recently in the study and modeling of neuroinfectious diseases and have proven to be useful in establishing neurotropism of viral infections, cell-pathogen interactions needed for infection, assessing cytopathological effects, genomic and proteomic profiles, and screening therapeutic compounds. Here we review the different methodologies of organoids used in neuroinfectious diseases including spheroids, guided and unguided protocols as well as microglia and blood-brain barrier containing models, their specific applications, and limitations. The review provides an overview of the models existing for specific infections including Zika, Dengue, JC virus, Japanese encephalitis, measles, herpes, SARS-CoV2, and influenza viruses among others, and provide useful concepts in the modeling of disease and antiviral agent screening.
Collapse
Affiliation(s)
- Paula Barreras
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - David Pamies
- Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland; Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA; CAAT-Europe, University of Konstanz, Germany
| | - Carlos A Pardo
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
18
|
Silva-Pedrosa R, Salgado AJ, Ferreira PE. Revolutionizing Disease Modeling: The Emergence of Organoids in Cellular Systems. Cells 2023; 12:930. [PMID: 36980271 PMCID: PMC10047824 DOI: 10.3390/cells12060930] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Cellular models have created opportunities to explore the characteristics of human diseases through well-established protocols, while avoiding the ethical restrictions associated with post-mortem studies and the costs associated with researching animal models. The capability of cell reprogramming, such as induced pluripotent stem cells (iPSCs) technology, solved the complications associated with human embryonic stem cells (hESC) usage. Moreover, iPSCs made significant contributions for human medicine, such as in diagnosis, therapeutic and regenerative medicine. The two-dimensional (2D) models allowed for monolayer cellular culture in vitro; however, they were surpassed by the three-dimensional (3D) cell culture system. The 3D cell culture provides higher cell-cell contact and a multi-layered cell culture, which more closely respects cellular morphology and polarity. It is more tightly able to resemble conditions in vivo and a closer approach to the architecture of human tissues, such as human organoids. Organoids are 3D cellular structures that mimic the architecture and function of native tissues. They are generated in vitro from stem cells or differentiated cells, such as epithelial or neural cells, and are used to study organ development, disease modeling, and drug discovery. Organoids have become a powerful tool for understanding the cellular and molecular mechanisms underlying human physiology, providing new insights into the pathogenesis of cancer, metabolic diseases, and brain disorders. Although organoid technology is up-and-coming, it also has some limitations that require improvements.
Collapse
Affiliation(s)
- Rita Silva-Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
19
|
D’Aiuto L, Caldwell JK, Wallace CT, Grams TR, Wesesky MA, Wood JA, Watkins SC, Kinchington PR, Bloom DC, Nimgaonkar VL. The Impaired Neurodevelopment of Human Neural Rosettes in HSV-1-Infected Early Brain Organoids. Cells 2022; 11:3539. [PMID: 36428968 PMCID: PMC9688774 DOI: 10.3390/cells11223539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Intrauterine infections during pregnancy by herpes simplex virus (HSV) can cause significant neurodevelopmental deficits in the unborn/newborn, but clinical studies of pathogenesis are challenging, and while animal models can model some aspects of disease, in vitro studies of human neural cells provide a critical platform for more mechanistic studies. We utilized a reductionist approach to model neurodevelopmental outcomes of HSV-1 infection of neural rosettes, which represent the in vitro equivalent of differentiating neural tubes. Specifically, we employed early-stage brain organoids (ES-organoids) composed of human induced pluripotent stem cells (hiPSCs)-derived neural rosettes to investigate aspects of the potential neuropathological effects induced by the HSV-1 infections on neurodevelopment. To allow for the long-term differentiation of ES-organoids, viral infections were performed in the presence of the antiviral drug acyclovir (ACV). Despite the antiviral treatment, HSV-1 infection caused organizational changes in neural rosettes, loss of structural integrity of infected ES-organoids, and neuronal alterations. The inability of ACV to prevent neurodegeneration was associated with the generation of ACV-resistant mutants during the interaction of HSV-1 with differentiating neural precursor cells (NPCs). This study models the effects of HSV-1 infection on the neuronal differentiation of NPCs and suggests that this environment may allow for accelerated development of ACV-resistance.
Collapse
Affiliation(s)
- Leonardo D’Aiuto
- Western Psychiatric Institute and Clinic, Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Jill K. Caldwell
- Western Psychiatric Institute and Clinic, Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Callen T. Wallace
- Department of Cell Biology, School of Medicine, University of Pittsburgh, 3500 Terrace Street, S362 Biomedical Science Tower (South), Pittsburgh, PA 15261, USA
| | - Tristan R. Grams
- Academic Research Building, Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, R2-231, Gainesville, FL 32610, USA
| | - Maribeth A. Wesesky
- Western Psychiatric Institute and Clinic, Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Joel A. Wood
- Western Psychiatric Institute and Clinic, Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Simon C. Watkins
- Department of Cell Biology, School of Medicine, University of Pittsburgh, 3500 Terrace Street, S362 Biomedical Science Tower (South), Pittsburgh, PA 15261, USA
| | - Paul R. Kinchington
- Department of Ophthalmology, University of Pittsburgh, Suite 820, Eye & Ear Building, 203 Lothrop Street, Pittsburgh, PA 15213, USA
- Department of Molecular Genetics and Microbiology, School of Medicine, University of Pittsburgh, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - David C. Bloom
- Academic Research Building, Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, R2-231, Gainesville, FL 32610, USA
| | - Vishwajit L. Nimgaonkar
- Western Psychiatric Institute and Clinic, Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
20
|
Corsini NS, Knoblich JA. Human organoids: New strategies and methods for analyzing human development and disease. Cell 2022; 185:2756-2769. [PMID: 35868278 DOI: 10.1016/j.cell.2022.06.051] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/06/2023]
Abstract
For decades, insight into fundamental principles of human biology and disease has been obtained primarily by experiments in animal models. While this has allowed researchers to understand many human biological processes in great detail, some developmental and disease mechanisms have proven difficult to study due to inherent species differences. The advent of organoid technology more than 10 years ago has established laboratory-grown organ tissues as an additional model system to recapitulate human-specific aspects of biology. The use of human 3D organoids, as well as other advances in single-cell technologies, has revealed unprecedented insights into human biology and disease mechanisms, especially those that distinguish humans from other species. This review highlights novel advances in organoid biology with a focus on how organoid technology has generated a better understanding of human-specific processes in development and disease.
Collapse
Affiliation(s)
- Nina S Corsini
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Juergen A Knoblich
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria; Medical University of Vienna, Department of Neurology, Vienna, Austria.
| |
Collapse
|
21
|
Gumbs SBH, Berdenis van Berlekom A, Kübler R, Schipper PJ, Gharu L, Boks MP, Ormel PR, Wensing AMJ, de Witte LD, Nijhuis M. Characterization of HIV-1 Infection in Microglia-Containing Human Cerebral Organoids. Viruses 2022; 14:v14040829. [PMID: 35458559 PMCID: PMC9032670 DOI: 10.3390/v14040829] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022] Open
Abstract
The achievement of an HIV cure is dependent on the eradication or permanent silencing of HIV-latent viral reservoirs, including the understudied central nervous system (CNS) reservoir. This requires a deep understanding of the molecular mechanisms of HIV’s entry into the CNS, latency establishment, persistence, and reversal. Therefore, representative CNS culture models that reflect the intercellular dynamics and pathophysiology of the human brain are urgently needed in order to study the CNS viral reservoir and HIV-induced neuropathogenesis. In this study, we characterized a human cerebral organoid model in which microglia grow intrinsically as a CNS culture model to study HIV infection in the CNS. We demonstrated that both cerebral organoids and isolated organoid-derived microglia (oMG), infected with replication-competent HIVbal reporter viruses, support productive HIV infection via the CCR5 co-receptor. Productive HIV infection was only observed in microglial cells. Fluorescence analysis revealed microglia as the only HIV target cell. Susceptibility to HIV infection was dependent on the co-expression of microglia-specific markers and the CD4 and CCR5 HIV receptors. Altogether, this model will be a valuable tool within the HIV research community to study HIV–CNS interactions, the underlying mechanisms of HIV-associated neurological disorders (HAND), and the efficacy of new therapeutic and curative strategies on the CNS viral reservoir.
Collapse
Affiliation(s)
- Stephanie B. H. Gumbs
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.B.H.G.); (R.K.); (P.J.S.); (L.G.); (A.M.J.W.)
| | - Amber Berdenis van Berlekom
- Department of Psychiatry, University Medical Center Utrect Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands; (A.B.v.B.); (M.P.B.); (P.R.O.); (L.D.d.W.)
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Raphael Kübler
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.B.H.G.); (R.K.); (P.J.S.); (L.G.); (A.M.J.W.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pauline J. Schipper
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.B.H.G.); (R.K.); (P.J.S.); (L.G.); (A.M.J.W.)
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.B.H.G.); (R.K.); (P.J.S.); (L.G.); (A.M.J.W.)
| | - Marco P. Boks
- Department of Psychiatry, University Medical Center Utrect Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands; (A.B.v.B.); (M.P.B.); (P.R.O.); (L.D.d.W.)
| | - Paul R. Ormel
- Department of Psychiatry, University Medical Center Utrect Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands; (A.B.v.B.); (M.P.B.); (P.R.O.); (L.D.d.W.)
| | - Annemarie M. J. Wensing
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.B.H.G.); (R.K.); (P.J.S.); (L.G.); (A.M.J.W.)
| | - Lot D. de Witte
- Department of Psychiatry, University Medical Center Utrect Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands; (A.B.v.B.); (M.P.B.); (P.R.O.); (L.D.d.W.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.B.H.G.); (R.K.); (P.J.S.); (L.G.); (A.M.J.W.)
- Correspondence:
| |
Collapse
|
22
|
Depla JA, Mulder LA, de Sá RV, Wartel M, Sridhar A, Evers MM, Wolthers KC, Pajkrt D. Human Brain Organoids as Models for Central Nervous System Viral Infection. Viruses 2022; 14:v14030634. [PMID: 35337041 PMCID: PMC8948955 DOI: 10.3390/v14030634] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Pathogenesis of viral infections of the central nervous system (CNS) is poorly understood, and this is partly due to the limitations of currently used preclinical models. Brain organoid models can overcome some of these limitations, as they are generated from human derived stem cells, differentiated in three dimensions (3D), and can mimic human neurodevelopmental characteristics. Therefore, brain organoids have been increasingly used as brain models in research on various viruses, such as Zika virus, severe acute respiratory syndrome coronavirus 2, human cytomegalovirus, and herpes simplex virus. Brain organoids allow for the study of viral tropism, the effect of infection on organoid function, size, and cytoarchitecture, as well as innate immune response; therefore, they provide valuable insight into the pathogenesis of neurotropic viral infections and testing of antivirals in a physiological model. In this review, we summarize the results of studies on viral CNS infection in brain organoids, and we demonstrate the broad application and benefits of using a human 3D model in virology research. At the same time, we describe the limitations of the studies in brain organoids, such as the heterogeneity in organoid generation protocols and age at infection, which result in differences in results between studies, as well as the lack of microglia and a blood brain barrier.
Collapse
Affiliation(s)
- Josse A. Depla
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.A.M.); (A.S.); (K.C.W.); (D.P.)
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- UniQure Biopharma B.V., Department of Research & Development, Paasheuvelweg 25A, 1105 BE Amsterdam, The Netherlands; (R.V.d.S.); (M.W.); (M.M.E.)
- Correspondence:
| | - Lance A. Mulder
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.A.M.); (A.S.); (K.C.W.); (D.P.)
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Renata Vieira de Sá
- UniQure Biopharma B.V., Department of Research & Development, Paasheuvelweg 25A, 1105 BE Amsterdam, The Netherlands; (R.V.d.S.); (M.W.); (M.M.E.)
| | - Morgane Wartel
- UniQure Biopharma B.V., Department of Research & Development, Paasheuvelweg 25A, 1105 BE Amsterdam, The Netherlands; (R.V.d.S.); (M.W.); (M.M.E.)
| | - Adithya Sridhar
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.A.M.); (A.S.); (K.C.W.); (D.P.)
| | - Melvin M. Evers
- UniQure Biopharma B.V., Department of Research & Development, Paasheuvelweg 25A, 1105 BE Amsterdam, The Netherlands; (R.V.d.S.); (M.W.); (M.M.E.)
| | - Katja C. Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.A.M.); (A.S.); (K.C.W.); (D.P.)
| | - Dasja Pajkrt
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.A.M.); (A.S.); (K.C.W.); (D.P.)
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
23
|
Pak C, Sun Y. Organoids: expanding applications enabled by emerging technologies. J Mol Biol 2021; 434:167411. [PMID: 34933020 DOI: 10.1016/j.jmb.2021.167411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- ChangHui Pak
- Department of Biochemistry & Molecular Biology, UMass Amherst, 01003
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, UMass Amherst, 01003
| |
Collapse
|
24
|
Bennett ML, Song H, Ming GL. Microglia modulate neurodevelopment in human neuroimmune organoids. Cell Stem Cell 2021; 28:2035-2036. [PMID: 34861141 DOI: 10.1016/j.stem.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dissecting contributions of microglia to human brain development and disease pathogenesis requires modeling interactions between these microglia and their local environment. In this issue of Cell Stem Cell, Popova et al. (2021) propose a transcriptomic "microglia report card" and create a neuroimmune organoid to model complex interactions involving human microglia.
Collapse
Affiliation(s)
- Mariko L Bennett
- Department of Pediatrics, Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|