1
|
Harimoto K, Nishio Y, Someya H, Sato T, Ito M, Takeuchi M. Anti-inflammatory actions of ripasudil ameliorate experimental autoimmune uveoretinitis in the acute phase. BMJ Open Ophthalmol 2025; 10:e001981. [PMID: 40021201 PMCID: PMC11873326 DOI: 10.1136/bmjophth-2024-001981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/08/2025] [Indexed: 03/03/2025] Open
Abstract
INTRODUCTION Rho-associated protein kinases (ROCKs) are a key regulator of T cell function, influencing a wide range of processes from activation to differentiation. Experimental autoimmune uveoretinitis (EAU) is an animal model of human non-infectious uveitis. This study aimed to evaluate the suppressive effects of ripasudil, a ROCK inhibitor, on ocular inflammation when administered from the onset of EAU and to elucidate the underlying mechanisms of its inhibitory effects. METHODS EAU was induced in wild-type C57BL/6 mice by immunisation with IRBP peptide. Ripasudil or its vehicle, PBS, was intraperitoneally administered daily starting from 8 days post-immunisation. Clinical and histopathological examinations and analysis of T cell activation state were conducted. In addition, T cell gene expression profiles in the relevant immune functions were identified using single-cell RNA sequencing (scRNA-seq). RESULTS The development of EAU was significantly attenuated and T cell activation and Th1 cell differentiation were significantly inhibited in mice with ripasudil (RIP-EAU) compared with mice with PBS (PBS-EAU), scRNA-seq using splenic T cells indicated that genes involved in the ROCK signalling pathway were highly expressed in low-differentiated Th1/Th17 cells, intermediate Th1 cells and differentiated Th1 cells. In addition, although differentiated Th1 and Th17 cells constituted similar proportions between PBS-EAU and RIP-EAU mice, RIP-EAU mice exhibited fewer low-differentiated Th1/Th17 cells and intermediate Th1 cells compared with PBS-EAU mice. CONCLUSION Ripasudil suppressed EAU when administered from the onset of the disease by inhibiting cells that strongly express genes involved in the ROCK signalling pathway and differentiate into Th1 cells.
Collapse
Affiliation(s)
- Kozo Harimoto
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yoshiaki Nishio
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hideaki Someya
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Tomohito Sato
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masataka Ito
- Developmental Anatomy and Regenerative Biology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
2
|
Thoota SK, Maddila S, Pindiprolu SKSS, Kohli SK, Matsa SK, Gumbi B, Venigalla L, Almutairi TM, Islam MS. Design, Synthesis, and Evaluation of Piperazine‐7‐Deazapurine Based Thiazolidone Derivatives as Novel ROCK Inhibitors. ChemistrySelect 2025; 10. [DOI: 10.1002/slct.202405783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
AbstractIn this research journey of exploring ROCK inhibitors, we synthesized a new series of substituted piperazine‐7‐deazapurine‐linked thiazolidone analogs (10a–s) via a five‐step process, and employing sophisticated molecular modeling techniques, optimized the crystal structures of ROCK1 and ROCK2 to evaluate the binding affinities of these compounds. The evaluation of ROCK inhibitory activity demonstrated generally low binding affinities across the series, as reflected in their pIC50 values. Significantly, compound 10h emerged as a potent inhibitor of ROCK1 with an impressive pIC50 value of 6.54. Similarly, compound 10q showed strong inhibitory effects on ROCK2, marked by a pIC50 value of 6.03. Notably compound 10k exhibited a balanced inhibitory on both ROCK isoforms with a pIC50 of 5.24 and 5.31 against ROCK1 and ROCK2 respectively, suggesting its viability for further exploration. This research provides significant insights into the structure activity relationships (SAR) of kinase inhibitors, paving the way for designing more targeted and efficacious therapeutic options for diseases involving ROCK kinases.
Collapse
Affiliation(s)
- Sandeep Kumar Thoota
- Department of Chemistry GITAM School of Sciences, GITAM University Visakhapatnam Andhra Pradesh India
| | - Suresh Maddila
- Department of Chemistry GITAM School of Sciences, GITAM University Visakhapatnam Andhra Pradesh India
- School of Chemistry & Physics University of KwaZulu‐Natal, Westville Campus Chiltern Hills Durban 4000 South Africa
| | | | - Sukhmeen Kaur Kohli
- Department of Earth and Climate Science Indian Institute of Science Education and Research (IISER) Tirupati Tirupati Andhra Pradesh 517507 India
| | | | - Bhekumuzi Gumbi
- School of Chemistry & Physics University of KwaZulu‐Natal, Westville Campus Chiltern Hills Durban 4000 South Africa
| | - Lalu Venigalla
- Department of Chemistry University of Houston Houstan Texas 77204 USA
| | - Tahani Mazyad Almutairi
- Department of Chemistry College of Science King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mohammad Shahidul Islam
- Department of Chemistry College of Science King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
3
|
Polopalli S, Saha A, Niri P, Kumar M, Das P, Kamboj DV, Chattopadhyay P. ROCK Inhibitors as an Alternative Therapy for Corneal Grafting: A Systematic Review. J Ocul Pharmacol Ther 2023; 39:585-599. [PMID: 37738326 DOI: 10.1089/jop.2023.0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Currently, corneal blindness is affecting >10 million individuals worldwide, and there is a significant unmet medical need because only 1.5% of transplantation needs are met globally due to a lack of high-quality grafts. In light of this global health disaster, researchers are developing corneal substitutes that can resemble the human cornea in vivo and replace human donor tissue. Thus, this review examines ROCK (Rho-associated coiled-coil containing protein kinases) inhibitors as a potential corneal wound-healing (CWH) therapy by reviewing the existing clinical and nonclinical findings. The systematic review was done from PubMed, Scopus, Web of Science, and Google Scholar for CWH, corneal injury, corneal endothelial wound healing, ROCK inhibitors, Fasudil, Netarsudil, Ripasudil, Y-27632, clinical trial, clinical study, case series, case reports, preclinical study, in vivo, and in vitro studies. After removing duplicates, all downloaded articles were examined. The literature search included the data till January 2023. This review summarized the results of ROCK inhibitors in clinical and preclinical trials. In a clinical trial, various ROCK inhibitors improved CWH in individuals with open-angle glaucoma, cataract, iris cyst, ocular hypertension, and other ocular diseases. ROCK inhibitors also improved ocular wound healing by increasing cell adhesion, migration, and proliferation in vitro and in vivo. ROCK inhibitors have antifibrotic, antiangiogenic, anti-inflammatory, and antiapoptotic characteristics in CWH, according to the existing research. ROCK inhibitors were effective topical treatments for corneal infections. Ripasudil, Y-27632, H-1152, Y-39983, and AMA0526 are a few new ROCK inhibitors that may help CWH and replace human donor tissue.
Collapse
Affiliation(s)
- Subramanyam Polopalli
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, India
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Pakter Niri
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, India
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Mohit Kumar
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, India
| | - Parikshit Das
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, India
| | - Dev Vrat Kamboj
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, India
| |
Collapse
|
4
|
Aykan SA, Xie H, Zheng Y, Chung DY, Kura S, Han Lai J, Erdogan TD, Morais A, Tamim I, Yagmur D, Ishikawa H, Arai K, Abbas Yaseen M, Boas DA, Sakadzic S, Ayata C. Rho-Kinase Inhibition Improves the Outcome of Focal Subcortical White Matter Lesions. Stroke 2022; 53:2369-2376. [PMID: 35656825 DOI: 10.1161/strokeaha.121.037358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Subcortical white matter lesions are exceedingly common in cerebral small vessel disease and lead to significant cumulative disability without an available treatment. Here, we tested a rho-kinase inhibitor on functional recovery after focal white matter injury. METHODS A focal corpus callosum lesion was induced by stereotactic injection of N5-(1-iminoethyl)-L-ornithine in mice. Fasudil (10 mg/kg) or vehicle was administered daily for 2 weeks, starting one day after lesion induction. Resting-state functional connectivity and grid walk performance were studied longitudinally, and lesion volumes were determined at one month. RESULTS Resting-state interhemispheric functional connectivity significantly recovered between days 1 and 14 in the fasudil group (P<0.001), despite worse initial connectivity loss than vehicle before treatment onset. Grid walk test revealed an increased number of foot faults in the vehicle group compared with baseline, which persisted for at least 4 weeks. In contrast, the fasudil arm did not show an increase in foot faults and had smaller lesions at 4 weeks. Immunohistochemical examination of reactive astrocytosis, synaptic density, and mature oligodendrocytes did not reveal a significant difference between treatment arms. CONCLUSIONS These data show that delayed fasudil posttreatment improves functional outcomes after a focal subcortical white matter lesion in mice. Future work will aim to elucidate the mechanisms.
Collapse
Affiliation(s)
- Sanem A Aykan
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Hongyu Xie
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.).,Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China (H.X.)
| | - Yi Zheng
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - David Y Chung
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.).,Stroke Service, Department of Neurology, Massachusetts General Hospital, Charlestown, MA. (C.A., D.Y.C.)
| | - Sreekanth Kura
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, MA (S.K., D.A.B.)
| | - James Han Lai
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Taylan D Erdogan
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Andreia Morais
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Isra Tamim
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Damla Yagmur
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown. (H.I., K.A.)
| | - Ken Arai
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown. (H.I., K.A.)
| | - M Abbas Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA. (D.A.B., M.A.Y., S.S.)
| | - David A Boas
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, MA (S.K., D.A.B.).,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA. (D.A.B., M.A.Y., S.S.)
| | - Sava Sakadzic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA. (D.A.B., M.A.Y., S.S.)
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.).,Stroke Service, Department of Neurology, Massachusetts General Hospital, Charlestown, MA. (C.A., D.Y.C.)
| |
Collapse
|
5
|
Pan W, Nagpal K, Suárez-Fueyo A, Ferretti A, Yoshida N, Tsokos MG, Tsokos GC. The Regulatory Subunit PPP2R2A of PP2A Enhances Th1 and Th17 Differentiation through Activation of the GEF-H1/RhoA/ROCK Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2021; 206:1719-1728. [PMID: 33762326 DOI: 10.4049/jimmunol.2001266] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/04/2021] [Indexed: 01/04/2023]
Abstract
Protein phosphatase 2A (PP2A) composed of a scaffold subunit, a catalytic subunit, and multiple regulatory subunits is a ubiquitously expressed serine/threonine phosphatase. We have previously shown that the PP2A catalytic subunit is increased in T cells from patients with systemic lupus erythematosus and promotes IL-17 production by enhancing the activity of Rho-associated kinase (ROCK) in T cells. However, the molecular mechanism whereby PP2A regulates ROCK activity is unknown. In this study, we show that the PP2A regulatory subunit PPP2R2A is increased in T cells from people with systemic lupus erythematosus and binds to, dephosphorylates, and activates the guanine nucleotide exchange factor GEF-H1 at Ser885, which in turn increases the levels of RhoA-GTP and the activity of ROCK in T cells. Genetic PPP2R2A deficiency in murine T cells reduced Th1 and Th17, but not regulatory T cell differentiation and mice with T cell-specific PPP2R2A deficiency displayed less autoimmunity when immunized with myelin oligodendrocyte glycoprotein peptide. Our studies indicate that PPP2R2A is the regulatory subunit that dictates the PP2A-directed enhanced Th1 and Th17 differentiation, and therefore, it represents a therapeutic target for pathologies linked to Th1 and Th17 cell expansion.
Collapse
Affiliation(s)
- Wenliang Pan
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Kamalpreet Nagpal
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Abel Suárez-Fueyo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Andrew Ferretti
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Nobuya Yoshida
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Maria G Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
6
|
ROCK inhibitors 4: Structure-activity relationship studies of 7-azaindole-based rho kinase (ROCK) inhibitors. Bioorg Med Chem Lett 2021; 33:127721. [DOI: 10.1016/j.bmcl.2020.127721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023]
|
7
|
Liu R, Li Y, Zhou H, Wang H, Liu D, Wang H, Wang Z. OIP5-AS1 facilitates Th17 differentiation and EAE severity by targeting miR-140-5p to regulate RhoA/ROCK2 signaling pathway. Life Sci 2021:119108. [PMID: 33515560 DOI: 10.1016/j.lfs.2021.119108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 01/04/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022]
Abstract
AIMS Multiple sclerosis (MS) is one of the commonest neurologic disorders globally. LncRNA OIP5-AS1 has been found to be implicated in the etiology of MS. This study was to explore the roles and molecular mechanisms of OIP5-AS1 in the development of MS. MATERIALS AND METHODS RT-qPCR assay was used to measure expressions of OIP5-AS1, miR-140-5p, IL-17A mRNA and RhoA mRNA. CD4+IL-17+ cell proportion was determined by flow cytometry. IL-17A secretion was examined by ELISA assay. Cell inflammatory infiltration and demyelination were assessed by histological analyses. The interaction between miR-140-5p and OIP5-AS1 or RhoA 3'UTR was validated by bioinformatical analysis and luciferase reporter assay. Western blot assay was performed to detect protein expressions of ROCK2 and RhoA. An experimental autoimmune encephalomyelitis (EAE) models was established to explore the role of OIP5-AS1 in MS in vivo. KEY FINDINGS OIP5-AS1 expression was enhanced in MS patients. Also, elevated OIP5-AS1 level was observed during T-helper 17 (Th17) differentiation. Moreover, OIP5-AS1 promoted Th17 differentiation in vitro and contributed to the development of EAE in vivo. Mechanical explorations revealed that OIP5-AS1 targeted miR-140-5p to regulate Th17 differentiation. Moreover, RhoA was a target of miR-140-5p and miR-140-5p inhibited the activation of RhoA/ROCK2 signaling. Also, RhoA upregulation abrogated the inhibitory effects of miR-140-5p on Th17 differentiation. SIGNIFICANCE OIP5-AS1 contributed to EAE development by targeting miR-140-5p/RhoA and activating RhoA/ROCK2 signaling pathway, shedding light on the roles and molecular mechanisms of OIP5-AS1 in the development of MS and providing some candidate targets for the diagnose and treatment of MS.
Collapse
Affiliation(s)
- Ruihua Liu
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China.
| | - Yan Li
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Haitao Zhou
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Hao Wang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Dequan Liu
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Huilin Wang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Zhenghua Wang
- Department of Laboratory, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| |
Collapse
|
8
|
Pastor-Fernández G, Mariblanca IR, Navarro MN. Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities. Cells 2020; 9:cells9092044. [PMID: 32906785 PMCID: PMC7563346 DOI: 10.3390/cells9092044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
The interleukin 23 (IL-23) is a key pro-inflammatory cytokine in the development of chronic inflammatory diseases, such as psoriasis, inflammatory bowel diseases, multiple sclerosis, or rheumatoid arthritis. The pathological consequences of excessive IL-23 signaling have been linked to its ability to promote the production of inflammatory mediators, such as IL-17, IL-22, granulocyte-macrophage colony-stimulating (GM-CSF), or the tumor necrosis factor (TNFα) by target populations, mainly Th17 and IL-17-secreting TCRγδ cells (Tγδ17). Due to their pivotal role in inflammatory diseases, IL-23 and its downstream effector molecules have emerged as attractive therapeutic targets, leading to the development of neutralizing antibodies against IL-23 and IL-17 that have shown efficacy in different inflammatory diseases. Despite the success of monoclonal antibodies, there are patients that show no response or partial response to these treatments. Thus, effective therapies for inflammatory diseases may require the combination of multiple immune-modulatory drugs to prevent disease progression and to improve quality of life. Alternative strategies aimed at inhibiting intracellular signaling cascades using small molecule inhibitors or interfering peptides have not been fully exploited in the context of IL-23-mediated diseases. In this review, we discuss the current knowledge about proximal signaling events triggered by IL-23 upon binding to its membrane receptor to bring to the spotlight new opportunities for therapeutic intervention in IL-23-mediated pathologies.
Collapse
|
9
|
de Sousa GR, Vieira GM, das Chagas PF, Pezuk JA, Brassesco MS. Should we keep rocking? Portraits from targeting Rho kinases in cancer. Pharmacol Res 2020; 160:105093. [PMID: 32726671 DOI: 10.1016/j.phrs.2020.105093] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Cancer targeted therapy, either alone or in combination with conventional chemotherapy, could allow the survival of patients with neoplasms currently considered incurable. In recent years, the dysregulation of the Rho-associated coiled-coil kinases (ROCK1 and ROCK2) has been associated with increased metastasis and poorer patient survival in several tumor types, and due to their essential roles in regulating the cytoskeleton, have gained popularity and progressively been researched as targets for the development of novel anti-cancer drugs. Nevertheless, in a pediatric scenario, the influence of both isoforms on prognosis remains a controversial issue. In this review, we summarize the functions of ROCKs, compile their roles in human cancer and their value as prognostic factors in both, adult and pediatric cancer. Moreover, we provide the up-to-date advances on their pharmacological inhibition in pre-clinical models and clinical trials. Alternatively, we highlight and discuss detrimental effects of ROCK inhibition provoked not only by the action on off-targets, but most importantly, by pro-survival effects on cancer stem cells, dormant cells, and circulating tumor cells, along with cell-context or microenvironment-dependent contradictory responses. Together these drawbacks represent a risk for cancer cell dissemination and metastasis after anti-ROCK intervention, a caveat that should concern scientists and clinicians.
Collapse
Affiliation(s)
| | | | | | | | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Brazil.
| |
Collapse
|
10
|
Álvarez-Salamero C, Castillo-González R, Pastor-Fernández G, Mariblanca IR, Pino J, Cibrian D, Navarro MN. IL-23 signaling regulation of pro-inflammatory T-cell migration uncovered by phosphoproteomics. PLoS Biol 2020; 18:e3000646. [PMID: 32203518 PMCID: PMC7117768 DOI: 10.1371/journal.pbio.3000646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2020] [Accepted: 02/28/2020] [Indexed: 01/22/2023] Open
Abstract
Interleukin 23 (IL-23) triggers pathogenic features in pro-inflammatory, IL-17-secreting T cells (Th17 and Tγδ17) that play a key role in the development of inflammatory diseases. However, the IL-23 signaling cascade remains largely undefined. Here, we used quantitative phosphoproteomics to characterize IL-23 signaling in primary murine Th17 cells. We quantified 6,888 phosphorylation sites in Th17 cells and found 168 phosphorylations regulated upon IL-23 stimulation. IL-23 increased the phosphorylation of the myosin regulatory light chain (RLC), an actomyosin contractibility marker, in Th17 and Tγδ17 cells. IL-23-induced RLC phosphorylation required Janus kinase 2 (JAK2) and Rho-associated protein kinase (ROCK) catalytic activity, and further study of the IL-23/ROCK connection revealed an unexpected role of IL-23 in the migration of Tγδ17 and Th17 cells through ROCK activation. In addition, pharmacological inhibition of ROCK reduced Tγδ17 recruitment to inflamed skin upon challenge with inflammatory agent Imiquimod. This work (i) provides new insights into phosphorylation networks that control Th17 cells, (ii) widely expands the current knowledge on IL-23 signaling, and (iii) contributes to the increasing list of immune cells subsets characterized by global phosphoproteomic approaches. Phosphoproteomics of interleukin-17-secreting T cells (Th17 cells) identifies more than 100 phosphorylation events in response to interleukin-23 stimulation, revealing increased phosphorylation of myosin regulatory light chain (RLC) and a role for an IL-23/ROCK pathway in controlling migration of Th17 and Tγδ17 cells.
Collapse
Affiliation(s)
- Candelas Álvarez-Salamero
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
- Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autonoma de Madrid, Madrid, Spain
| | - Raquel Castillo-González
- Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autonoma de Madrid, Madrid, Spain
| | - Gloria Pastor-Fernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Isabel R. Mariblanca
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Jesús Pino
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Danay Cibrian
- Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autonoma de Madrid, Madrid, Spain
| | - María N. Navarro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
- Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autonoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
11
|
Haploinsufficient Rock1+/- and Rock2+/- Mice Are Not Protected from Cardiac Inflammation and Postinflammatory Fibrosis in Experimental Autoimmune Myocarditis. Cells 2020; 9:cells9030700. [PMID: 32178482 PMCID: PMC7140701 DOI: 10.3390/cells9030700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
Progressive cardiac fibrosis is a common cause of heart failure. Rho-associated, coiled-coil-containing protein kinases (ROCKs) have been shown to enhance fibrotic processes in the heart and in other organs. In this study, using wild-type, Rock1+/− and Rock2+/− haploinsufficient mice and mouse model of experimental autoimmune myocarditis (EAM) we addressed the role of ROCK1 and ROCK2 in development of myocarditis and postinflammatory fibrosis. We found that myocarditis severity was comparable in wild-type, Rock1+/− and Rock2+/− mice at day 21 of EAM. During the acute stage of the disease, hearts of Rock1+/− mice showed unaffected numbers of CD11b+CD36+ macrophages, CD11b+CD36–Ly6GhiLy6chi neutrophils, CD11b+CD36–Ly6G–Ly6chi inflammatory monocytes, CD11b+CD36–Ly6G–Ly6c– monocytes, CD11b+SiglecF+ eosinophils, CD11b+CD11c+ inflammatory dendritic cells and type I collagen-producing fibroblasts. Isolated Rock1+/− cardiac fibroblasts treated with transforming growth factor-beta (TGF-β) showed attenuated Smad2 and extracellular signal-regulated kinase (Erk) phosphorylations that were associated with impaired upregulation of smooth muscle actin alpha (αSMA) protein. In contrast to cardiac fibroblasts, expanded Rock1+/− heart inflammatory myeloid cells showed unaffected Smad2 activation but enhanced Erk phosphorylation following TGF-β treatment. Rock1+/− inflammatory cells responded to TGF-β by a reduced transcriptional profibrotic response and failed to upregulate αSMA and fibronectin at the protein levels. Unexpectedly, in the EAM model wild-type, Rock1+/− and Rock2+/− mice developed a similar extent of cardiac fibrosis at day 40. In addition, hearts of the wild-type and Rock1+/− mice showed comparable levels of cardiac vimentin, periostin and αSMA. In conclusion, despite the fact that ROCK1 regulates TGF-β-dependent profibrotic response, neither ROCK1 nor ROCK2 is critically involved in the development of postinflammatory fibrosis in the EAM model.
Collapse
|
12
|
Wang J, Sui RX, Miao Q, Wang Q, Song LJ, Yu JZ, Li YH, Xiao BG, Ma CG. Effect of Fasudil on remyelination following cuprizone-induced demyelination. CNS Neurosci Ther 2019; 26:76-89. [PMID: 31124292 PMCID: PMC6930827 DOI: 10.1111/cns.13154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 01/24/2023] Open
Abstract
Background Multiple sclerosis is characterized by demyelination/remyelination, neuroinflammation, and neurodegeneration. Cuprizone (CPZ)‐induced toxic demyelination is an experimental animal model commonly used to study demyelination and remyelination in the central nervous system. Fasudil is one of the most thoroughly studied Rho kinase inhibitors. Methods Following CPZ exposure, the degree of demyelination in the brain of male C57BL/6 mice was assessed by Luxol fast blue, Black Gold II, myelin basic protein immunofluorescent staining, and Western blot. The effect of Fasudil on behavioral change was determined using elevated plus maze test and pole test. The possible mechanisms of Fasudil action were examined by immunohistochemistry, flow cytometry, ELISA, and dot blot. Results Fasudil improved behavioral abnormalities, inhibited microglia‐mediated neuroinflammation, and promoted astrocyte‐derived nerve growth factor and ciliary neurotrophic factor, which should contribute to protection and regeneration of oligodendrocytes. In addition, Fasudil inhibited the production of myelin oligodendrocyte glycoprotein antibody and the infiltration of peripheral CD4+ T cells and CD68+ macrophages, which appears to be related to the integrity of the blood‐brain barrier. Conclusion These results provide evidence for the therapeutic potential of Fasudil in CPZ‐induced demyelination. However, how Fasudil acts on microglia, astrocytes, and immune cells remains to be further explored.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, China
| | - Ruo-Xuan Sui
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Qiang Miao
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Jie-Zhong Yu
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Yan-Hua Li
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cun-Gen Ma
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, China.,The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, China.,Institute of Brain Science, Shanxi Datong University, Datong, China
| |
Collapse
|
13
|
Greathouse KM, Boros BD, Deslauriers JF, Henderson BW, Curtis KA, Gentry EG, Herskowitz JH. Distinct and complementary functions of rho kinase isoforms ROCK1 and ROCK2 in prefrontal cortex structural plasticity. Brain Struct Funct 2018; 223:4227-4241. [PMID: 30196430 PMCID: PMC6252131 DOI: 10.1007/s00429-018-1748-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022]
Abstract
Rho-associated protein kinases (ROCK) 1 and 2 are attractive drug targets for a range of neurologic disorders; however, a critical barrier to ROCK-based therapeutics is ambiguity over whether there are isoform-specific roles for ROCKs in neuronal structural plasticity. Here, we used a genetics approach to address this long-standing question by analyzing both male and female adult ROCK1+/- and ROCK2+/- mice compared to littermate controls. Individual pyramidal neurons in the medial prefrontal cortex (mPFC) were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and neuronal 3D reconstructions for morphometry analysis. Increased apical and basal dendritic length and intersections were observed in ROCK1+/- but not ROCK2+/- mice. Although dendritic spine densities were comparable among genotypes, apical spine length was decreased in ROCK1+/- but increased in ROCK2+/- mice. Spine head and neck diameter were reduced similarly in ROCK1+/- and ROCK2+/- mice; however, certain spine morphologic subclasses were more affected than others in a genotype-dependent manner. Biochemical analyses of ROCK substrates in synaptic fractions revealed that phosphorylation of LIM kinase and cofilin were reduced in ROCK1+/- and ROCK2+/- mice, while phosphorylation of myosin light chain was decreased exclusively in ROCK1+/- mice. Collectively, these observations implicate ROCK1 as a novel regulatory factor of neuronal dendritic structure and detail distinct and complementary roles of ROCKs in mPFC dendritic spine structure.
Collapse
Affiliation(s)
- Kelsey M Greathouse
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA
| | - Benjamin D Boros
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA
| | - Josue F Deslauriers
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA
| | - Benjamin W Henderson
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA
| | - Kendall A Curtis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA
| | - Erik G Gentry
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA
| | - Jeremy H Herskowitz
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA.
| |
Collapse
|
14
|
Dai K, Wang Y, Tai S, Ni H, Lian H, Yu Y, Liao W, Zheng C, Chen Q, Kuver A, Li J. Fasudil exerts a cardio-protective effect on mice with coxsackievirus B3-induced acute viral myocarditis. Cardiovasc Ther 2018; 36:e12477. [PMID: 30380183 DOI: 10.1111/1755-5922.12477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 11/30/2022] Open
Abstract
AIMS To investigate whether there exists a cardio-protective effect of Fasudil, a selective Rho kinase (ROCK) inhibitor, in an experimental murine model of acute viral myocarditis. METHODS Male BALB/c mice were randomly assigned to three groups: control, myocarditis treated with placebo and myocarditis treated with Fasudil (n = 40 animals per group). Myocarditis was established by intraperitoneal injection with coxsackievirus B3 (CVB3). Twenty-four hours after infection, Fasudil was intraperitoneally administered for 14 consecutive days. Twenty mice were randomly selected from each group to monitor a 14-day survival rate. On day 7 and day 14, eight surviving mice from each group were sacrificed and their hearts and blood were obtained to perform serological and histological examinations. Expression of ROCKs, IL-17, IL-1b, TNFα, RORgt, and Foxp3 were quantified with RT-PCR. Plasma levels of TNF alpha, IL-1 beta, and IL-17 were measured by ELISA. In addition, protein levels of IL-17 and ROCK2 in cardiac tissues were analyzed with Western blot. RESULTS Fasudil treatment significantly increased survival, attenuated myocardial necrotic lesions, reduced CVB3 replication and expression of ROCK2 and IL-17 in the infected hearts. This treatment also imposed a T-cell subpopulation shift, from Th17 to Treg, in cardiac tissues. CONCLUSIONS ROCK pathway inhibition was cardio-protective in viral myocarditis with increased survival, decreased viral replication, and inflammatory response. These findings suggest that Fasudil might be a potential therapeutic agent for patients with viral myocarditis.
Collapse
Affiliation(s)
- Kezhi Dai
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yaoyao Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sichao Tai
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huajing Ni
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hao Lian
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yan Yu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weifang Liao
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Cheng Zheng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qing Chen
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| | - Aarti Kuver
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jia Li
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Judge RA, Vasudevan A, Scott VE, Simler GH, Pratt SD, Namovic MT, Putman CB, Aguirre A, Stoll VS, Mamo M, Swann SI, Cassar SC, Faltynek CR, Kage KL, Boyce-Rustay JM, Hobson AD. Design of Aminobenzothiazole Inhibitors of Rho Kinases 1 and 2 by Using Protein Kinase A as a Structure Surrogate. Chembiochem 2018; 19:613-621. [PMID: 29314498 DOI: 10.1002/cbic.201700547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 11/11/2022]
Abstract
We describe the design, synthesis, and structure-activity relationships (SARs) of a series of 2-aminobenzothiazole inhibitors of Rho kinases (ROCKs) 1 and 2, which were optimized to low nanomolar potencies by use of protein kinase A (PKA) as a structure surrogate to guide compound design. A subset of these molecules also showed robust activity in a cell-based myosin phosphatase assay and in a mechanical hyperalgesia in vivo pain model.
Collapse
Affiliation(s)
- Russell A Judge
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Anil Vasudevan
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Victoria E Scott
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Gricelda H Simler
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| | - Steve D Pratt
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Marian T Namovic
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - C Brent Putman
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Ana Aguirre
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Vincent S Stoll
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Mulugeta Mamo
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA.,Current address: Novartis Institute for Biomedical Research, 4560 Horton Street, Emeryville, CA, 94608, USA
| | - Steven I Swann
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA.,Current address: Takeda Pharmaceuticals, 10410 Science Center Drive, San Diego, CA, 92121, USA
| | - Steven C Cassar
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | | | - Karen L Kage
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA.,Current address: Altor Bioscience, 2810 North Commerce Parkway, Miramar, FL, 33025, USA
| | - Janel M Boyce-Rustay
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA.,Current address: Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Adrian D Hobson
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| |
Collapse
|
16
|
Abdali NT, Yaseen AH, Said E, Ibrahim TM. Rho kinase inhibitor fasudil mitigates high-cholesterol diet-induced hypercholesterolemia and vascular damage. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:409-422. [DOI: 10.1007/s00210-017-1343-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/12/2017] [Indexed: 12/27/2022]
|
17
|
Li YH, Yu JW, Xi JY, Yu WB, Liu JC, Wang Q, Song LJ, Feng L, Yan YP, Zhang GX, Xiao BG, Ma CG. Fasudil Enhances Therapeutic Efficacy of Neural Stem Cells in the Mouse Model of MPTP-Induced Parkinson's Disease. Mol Neurobiol 2016; 54:5400-5413. [PMID: 27590141 DOI: 10.1007/s12035-016-0027-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/01/2016] [Indexed: 12/13/2022]
Abstract
Bone marrow-derived neural stem cells (NSCs) are ideal cells for cellular therapy because of their therapeutic potential for repairing and regenerating damaged neurons. However, the optimization of implanted cells and the improvement of microenvironment in the central nervous system (CNS) are still two critical elements for enhancing therapeutic effect. In the current study, we observed the combined therapeutic effect of NSCs with fasudil in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model and explored the possible cellular and molecular mechanisms. The results clearly show that combined treatment of NSCs with fasudil further improves motor capacity of PD mice, thus exerting double effect in treating MPTP-PD. The combined intervention more effectively protected dopaminergic (DA) neurons from loss in the substantia nigra pars compacta (SNpc), which may be associated with the increased number and survival of transplanted NSCs in the brain. Compared with the treatment of fasudil or NSCs alone, the combined intervention more effectively inhibited the activation and aggregation of microglia and astrocytes, displayed stronger anti-inflammatory and antioxidant effects, induced more neurotrophic factor NT-3, and affected the dynamic homeostasis of NMDA and AMPA receptors in MPTP-PD mice. Our study demonstrates that intranasal administration of NSCs, followed by fasudil administration, is a promising cell-based therapy for neuronal lesions.
Collapse
Affiliation(s)
- Yan-Hua Li
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, China
| | - Jing-Wen Yu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, China
| | - Jian-Yin Xi
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Wen-Bo Yu
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Jian-Chun Liu
- "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Qing Wang
- "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Li-Juan Song
- "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Ling Feng
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, China
| | - Ya-Ping Yan
- Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, 19107, PA, USA
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| | - Cun-Gen Ma
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, China.
- "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, China.
| |
Collapse
|
18
|
Ji X, Liu H, An C, Wang Y, Zhao H, Zhang Q, Li M, Qi F, Chen Z, Wang X, Wang L. You-Gui pills promote nerve regeneration by regulating netrin1, DCC and Rho family GTPases RhoA, Racl, Cdc42 in C57BL/6 mice with experimental autoimmune encephalomyelitis. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:123-133. [PMID: 27106785 DOI: 10.1016/j.jep.2016.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/14/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE You-Gui pills (YGPs) are an effective traditional Chinese formula being used clinically for the treatment of multiple sclerosis (MS). Previous studies demonstrated that YGPs exerted the potent neuroprotective effects in murine models of experimental autoimmune encephalomyelitis (EAE), which is an equivalent animal model for multiple sclerosis (MS). However, the mechanism of YGPs functions remained unclear. AIM OF THIS STUDY The aim of this study was to evaluate the therapeutic effect of YGPs in MOG35-55-induced EAE mice and to further elucidate the underlying molecular mechanism. METHODS Female C57BL/6 mice were divided into six groups, including the non-treated EAE model, prednisone acetate- and 1.2, 2.4 or 4.8g/kg YGPs-treated EAE groups, and a normal control group. The EAE model was established by injecting the mice subcutaneously with MOG35-55 antigen. The body weights were measured and the neurological functions were scored in each group. The pathology and morphology of the brain and spinal cord was examined. The expression of MAP-2 was detected by immunofluorescent staining. The levels of netrin1, DCC, RhoA, Rac1, and Cdc42 were assayed by immunohistochemistry, qRT-PCR and Western blot on day 40 post-immunization (PI). RESULTS YGPs treatments significantly reduced neurological function scores in EAE mice, where the inflammatory infiltration was reduced and the axon and myelin damage in both brain and spinal cord was alleviated. In the brain and spinal cord tissues, YGPs increased the expression of neuronal factors MAP-2, netrin1 and DCC. The expression of Rac1 and Cdc42 were increased, while RhoA was reduced following YGPs treatments. CONCLUSION Our results demonstrated that YGPs exhibited a neuroprotective effect on promoting nerve regeneration at the brain and spinal cord in EAE mice induced by MOG35-55. Netrin1, DCC and the Rho family GTPases of RhoA, Racl, Cdc42 were involved in mediating the effects of YGPs on nerve regeneration.
Collapse
MESH Headings
- Animals
- Brain/drug effects
- Brain/pathology
- Brain/ultrastructure
- DCC Receptor
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission
- Myelin-Oligodendrocyte Glycoprotein
- Nerve Growth Factors/genetics
- Nerve Growth Factors/metabolism
- Nerve Regeneration/drug effects
- Netrin-1
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Peptide Fragments
- Phytotherapy
- RNA, Messenger/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Spinal Cord/drug effects
- Spinal Cord/pathology
- Spinal Cord/ultrastructure
- Tablets
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- rho GTP-Binding Proteins/genetics
- rho GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Xiaomin Ji
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China
| | - Haolong Liu
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China
| | - Chen An
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China
| | - Yongqiang Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China
| | - Qiuxia Zhang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China
| | - Ming Li
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China
| | - Fang Qi
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China
| | - Zhenzhen Chen
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China
| | - Xiujuan Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China.
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
19
|
Li H, Zhang M, Wang CC, Li XL, Zhang P, Yue LT, Miao S, Dou YC, Li YB, Duan RS. ROCK inhibitor abolishes the antibody response in experimental autoimmune myasthenia gravis. Mol Cell Neurosci 2016; 74:106-13. [DOI: 10.1016/j.mcn.2016.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 04/18/2016] [Accepted: 05/06/2016] [Indexed: 02/08/2023] Open
|
20
|
Effect of a Rho Kinase Inhibitor on Cognitive Impairment Induced by Chronic Cerebral Hypoperfusion in Rats. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Affiliation(s)
- Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065;
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065;
| | - Chien-Huan Weng
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- Graduate Program in Biochemistry Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065;
| | - Cristina Rozo
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
| | - Woelsung Yi
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| |
Collapse
|
22
|
Feng Y, LoGrasso PV, Defert O, Li R. Rho Kinase (ROCK) Inhibitors and Their Therapeutic Potential. J Med Chem 2015; 59:2269-300. [PMID: 26486225 DOI: 10.1021/acs.jmedchem.5b00683] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rho kinases (ROCKs) belong to the serine-threonine family, the inhibition of which affects the function of many downstream substrates. As such, ROCK inhibitors have potential therapeutic applicability in a wide variety of pathological conditions including asthma, cancer, erectile dysfunction, glaucoma, insulin resistance, kidney failure, neuronal degeneration, and osteoporosis. To date, two ROCK inhibitors have been approved for clinical use in Japan (fasudil and ripasudil) and one in China (fasudil). In 1995 fasudil was approved for the treatment of cerebral vasospasm, and more recently, ripasudil was approved for the treatment of glaucoma in 2014. In this Perspective, we present a comprehensive review of the physiological and biological functions for ROCK, the properties and development of over 170 ROCK inhibitors as well as their therapeutic potential, the current status, and future considerations.
Collapse
Affiliation(s)
| | | | - Olivier Defert
- Amakem Therapeutics , Agoralaan A bis, 3590 Diepenbeek, Belgium
| | - Rongshi Li
- Center for Drug Discovery and Department of Pharmaceutical Sciences, College of Pharmacy, Cancer Genes and Molecular Regulation Program, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center , 986805 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
23
|
Xin YL, Yu JZ, Yang XW, Liu CY, Li YH, Feng L, Chai Z, Yang WF, Wang Q, Jiang WJ, Zhang GX, Xiao BG, Ma CG. FSD-C10: A more promising novel ROCK inhibitor than Fasudil for treatment of CNS autoimmunity. Biosci Rep 2015; 35:e00247. [PMID: 26223433 PMCID: PMC4721545 DOI: 10.1042/bsr20150032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/07/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022] Open
Abstract
Rho-Rho kinase (Rho-ROCK) triggers an intracellular signalling cascade that regulates cell survival, death, adhesion, migration, neurite outgrowth and retraction and influences the generation and development of several neurological disorders. Although Fasudil, a ROCK inhibitor, effectively suppressed encephalomyelitis (EAE), certain side effects may limit its clinical use. A novel and efficient ROCK inhibitor, FSD-C10, has been explored. In the present study, we present chemical synthesis and structure of FSD-C10, as well as the relationship between compound concentration and ROCK inhibition. We compared the inhibitory efficiency of ROCKI and ROCK II, the cell cytotoxicity, neurite outgrowth and dendritic formation, neurotrophic factors and vasodilation between Fasudil and FSD-C10. The results demonstrated that FSD-C10, like Fasudil, induced neurite outgrowth of neurons and dendritic formation of BV-2 microglia and enhanced the production of neurotrophic factor brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3). However, the cell cytotoxicity and vasodilation of FSD-C10 were relatively small compared with Fasudil. Although Fasudil inhibited both ROCK I and ROCK II, FSD-C10 more selectively suppressed ROCK II, but not ROCK I, which may be related to vasodilation insensitivity and animal mortality. Thus, FSD-C10 may be a safer and more promising novel ROCK inhibitor than Fasudil for the treatment of several neurological disorders.
Collapse
Affiliation(s)
- Yan-Le Xin
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China
| | - Jie-Zhong Yu
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China
| | - Xin-Wang Yang
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China
| | - Chun-Yun Liu
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China
| | - Yan-Hua Li
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China
| | - Ling Feng
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China
| | - Zhi Chai
- "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Wan-Fang Yang
- "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Qing Wang
- "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Wei-Jia Jiang
- "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, U.S.A
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
| | - Cun-Gen Ma
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| |
Collapse
|
24
|
Li YH, Yu JZ, Xin YL, Feng L, Chai Z, Liu JC, Zhang HZ, Zhang GX, Xiao BG, Ma CG. Protective effect of a novel Rho kinase inhibitor WAR-5 in experimental autoimmune encephalomyelitis by modulating inflammatory response and neurotrophic factors. Exp Mol Pathol 2015; 99:220-8. [PMID: 26112093 DOI: 10.1016/j.yexmp.2015.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/19/2015] [Indexed: 11/19/2022]
Abstract
The Rho-kinase (ROCK) inhibitor Fasudil has proven beneficial in experimental autoimmune encephalomyelitis (EAE). Given the small safety window of Fasudil, we are looking for novel ROCK inhibitors, which have similar or stronger effect on EAE with greater safety. In this study, we report that WAR-5, a Y-27632 derivative, alleviates the clinical symptoms, attenuates myelin damage and reduces CNS inflammatory responses in EAE C57BL/6 mice at an extent similar to Fasudil, while exhibits less vasodilator and adverse reaction in vivo. WAR-5 inhibits ROCK activity, and selectively suppresses the expression of ROCK II in spleen, brain and spinal cord of EAE mice, especially in spinal cord, accompanied by decreased expression of Nogo. WAR-5 also regulates the imbalance of Th1/Th17 T cells and regulatory T cells, inhibits inflammatory microenvironment induced with NF-κB-IL-1β pathway. Importantly, WAR-5 converts M1 toward M2 microglia/macrophages that are positively correlated with BDNF and NT-3 production. Taken together, WAR-5 exhibits therapeutic potential in EAE by more selectively inhibits ROCK II, with a greater safety than Fasudil, and is worthy of further clinical study to clarify its clinical value.
Collapse
MESH Headings
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology
- Amides/pharmacology
- Aminopyridines/pharmacology
- Animals
- Cytokines/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Enzyme-Linked Immunosorbent Assay
- Female
- Immunoblotting
- Immunoenzyme Techniques
- Inflammation/drug therapy
- Inflammation/immunology
- Inflammation/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Microglia/drug effects
- Microglia/immunology
- Microglia/metabolism
- Nerve Growth Factors/metabolism
- Piperidines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Pyridines/pharmacology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- rho-Associated Kinases/antagonists & inhibitors
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- Yan-hua Li
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China
| | - Jie-zhong Yu
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China
| | - Yan-le Xin
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China
| | - Ling Feng
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China
| | - Zhi Chai
- "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Jian-chun Liu
- "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Hong-zhen Zhang
- "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bao-guo Xiao
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China; Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200025, China.
| | - Cun-gen Ma
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China; "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China.
| |
Collapse
|
25
|
Hensel N, Rademacher S, Claus P. Chatting with the neighbors: crosstalk between Rho-kinase (ROCK) and other signaling pathways for treatment of neurological disorders. Front Neurosci 2015; 9:198. [PMID: 26082680 PMCID: PMC4451340 DOI: 10.3389/fnins.2015.00198] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/18/2015] [Indexed: 12/11/2022] Open
Abstract
ROCK inhibition has been largely applied as a strategy to treat neurodegenerative diseases (NDDs) and promising results have been obtained in the recent years. However, the underlying molecular and cellular mechanisms are not fully understood and different models have been proposed for neurodegenerative disorders. Here, we aim to review the current knowledge obtained for NDDs identifying common mechanisms as well as disease-specific models. In addition to the role of ROCK in different cell types such as neurons and microglia, we focus on the molecular signaling-pathways which mediate the beneficial effects of ROCK. Besides canonical ROCK signaling, modulation of neighboring pathways by non-canonical ROCK-crosstalk is a recurrent pattern in many NDD-model systems and has been suggested to mediate beneficial effects of ROCK-inhibition.
Collapse
Affiliation(s)
- Niko Hensel
- Hannover Medical School, Institute of Neuroanatomy Hannover, Germany ; Niedersachsen Research Network on Neuroinfectiology Hannover, Germany
| | - Sebastian Rademacher
- Hannover Medical School, Institute of Neuroanatomy Hannover, Germany ; Center for Systems Neuroscience Hannover, Germany
| | - Peter Claus
- Hannover Medical School, Institute of Neuroanatomy Hannover, Germany ; Niedersachsen Research Network on Neuroinfectiology Hannover, Germany ; Center for Systems Neuroscience Hannover, Germany
| |
Collapse
|
26
|
AAV.shRNA-mediated downregulation of ROCK2 attenuates degeneration of dopaminergic neurons in toxin-induced models of Parkinson's disease in vitro and in vivo. Neurobiol Dis 2015; 73:150-62. [DOI: 10.1016/j.nbd.2014.09.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 11/23/2022] Open
|
27
|
Selective oral ROCK2 inhibitor down-regulates IL-21 and IL-17 secretion in human T cells via STAT3-dependent mechanism. Proc Natl Acad Sci U S A 2014; 111:16814-9. [PMID: 25385601 DOI: 10.1073/pnas.1414189111] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rho-associated kinase 2 (ROCK2) regulates the secretion of proinflammatory cytokines and the development of autoimmunity in mice. Data from a phase 1 clinical trial demonstrate that oral administration of KD025, a selective ROCK2 inhibitor, to healthy human subjects down-regulates the ability of T cells to secrete IL-21 and IL-17 by 90% and 60%, respectively, but not IFN-γ in response to T-cell receptor stimulation in vitro. Pharmacological inhibition with KD025 or siRNA-mediated inhibition of ROCK2, but not ROCK1, significantly diminished STAT3 phosphorylation and binding to IL-17 and IL-21 promoters and reduced IFN regulatory factor 4 and nuclear hormone RAR-related orphan receptor γt protein levels in T cells derived from healthy subjects or rheumatoid arthritis patients. Simultaneously, treatment with KD025 also promotes the suppressive function of regulatory T cells through up-regulation of STAT5 phosphorylation and positive regulation of forkhead box p3 expression. The administration of KD025 in vivo down-regulates the progression of collagen-induced arthritis in mice via targeting of the Th17-mediated pathway. Thus, ROCK2 signaling appears to be instrumental in regulating the balance between proinflammatory and regulatory T-cell subsets. Targeting of ROCK2 in man may therefore restore disrupted immune homeostasis and have a role in the treatment of autoimmunity.
Collapse
|
28
|
Li YH, Yu JZ, Liu CY, Zhang H, Zhang HF, Yang WF, Li JL, Feng QJ, Feng L, Zhang GX, Xiao BG, Ma CG. Intranasal delivery of FSD-C10, a novel Rho kinase inhibitor, exhibits therapeutic potential in experimental autoimmune encephalomyelitis. Immunology 2014; 143:219-29. [PMID: 24749492 DOI: 10.1111/imm.12303] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/18/2014] [Accepted: 04/12/2014] [Indexed: 12/18/2022] Open
Abstract
Viewing multiple sclerosis (MS) as both neuroinflammation and neurodegeneration has major implications for therapy, with neuroprotection and neurorepair needed in addition to controlling neuroinflammation in the central nervous system (CNS). While Fasudil, an inhibitor of Rho kinase (ROCK), is known to suppress experimental autoimmune encephalomyelitis (EAE), an animal model of MS, it relies on multiple, short-term injections, with a narrow safety window. In this study, we explored the therapeutic effect of a novel ROCK inhibitor FSD-C10, a Fasudil derivative, on EAE. An important advantage of this derivative is that it can be used via non-injection routes; intranasal delivery is the preferred route because of its efficient CNS delivery and the much lower dose compared with oral delivery. Our results showed that intranasal delivery of FSD-C10 effectively ameliorated the clinical severity of EAE and CNS inflammatory infiltration and promoted neuroprotection. FSD-C10 effectively induced CNS production of the immunoregulatory cytokine interleukin-10 and boosted expression of nerve growth factor and brain-derived neurotrophic factor proteins, while inhibiting activation of p-nuclear factor-κB/p65 on astrocytes and production of multiple pro-inflammatory cytokines. In addition, FSD-C10 treatment effectively induced CD4(+) CD25(+) , CD4(+) FOXP3(+) regulatory T cells. Together, our results demonstrate that intranasal delivery of the novel ROCK inhibitor FSD-C10 has therapeutic potential in EAE, through mechanisms that possibly involve both inhibiting CNS inflammation and promoting neuroprotection.
Collapse
Affiliation(s)
- Yan-Hua Li
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu CY, Guo SD, Yu JZ, Li YH, Zhang H, Feng L, Chai Z, Yuan HJ, Yang WF, Feng QJ, Xiao BG, Ma CG. Fasudil mediates cell therapy of EAE by immunomodulating encephalomyelitic T cells and macrophages. Eur J Immunol 2014; 45:142-52. [PMID: 25287052 DOI: 10.1002/eji.201344429] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 08/28/2014] [Accepted: 09/29/2014] [Indexed: 01/05/2023]
Abstract
Although Fasudil has shown therapeutic potential in EAE mice, the mechanism of action are still not fully understood. Here, we examined the immunomodulatory effect of Fasudil on encephalitogenic mononuclear cells (MNCs), and tested the therapeutic potential of Fasudil-treated MNCs in active EAE. Fasudil inhibited expression of CCL20 on T cells and migration of T cells, decreased CD4(+) IFN-γ(+) and CD4(+) IL-17(+) T cells, but increased CD4(+) IL-10(+) and CD4(+) TGF-β(+) T cells. Fasudil reduced expression of CD16/32 and IL-12, while elevating expression of CD206, CD23, and IL-10. Fasudil also decreased levels of iNOS/NO, enhanced levels of Arg-1, and inhibited the TLR-4/NF-κB signaling and TNF-α, shifting M1 macrophage to M2 phenotype. These modulatory effects of Fasudil on T cells and macrophages were not altered by adding autoantigen MOG35-55 to the culture, i.e., autoantigen-independent. Further, we observed that, in vitro, Fasudil inhibited the capacity of encephalitogenic MNCs to adoptively transfer EAE and reduced TLR-4/p-NF-κB/p65 and inflammatory cytokines in spinal cords. Importantly, Fasudil-treated encephalitogenic MNCs exhibited therapeutic potential when injected into actively induced EAE mice. Together, our results not only provide evidence that Fasudil mediates the polarization of macrophages and the regulation of T cells, but also reveal a novel strategy for cell therapy in MS.
Collapse
Affiliation(s)
- Chun-Yun Liu
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fasudil regulates T cell responses through polarization of BV-2 cells in mice experimental autoimmune encephalomyelitis. Acta Pharmacol Sin 2014; 35:1428-38. [PMID: 25263338 DOI: 10.1038/aps.2014.68] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/22/2014] [Indexed: 01/22/2023]
Abstract
AIM Fasudil, a selective Rho kinase (ROCK) inhibitor, has been shown to alleviate the severity of experimental autoimmune encephalomyelitis (EAE) via attenuating demyelination and neuroinflammation. The aim of this study was to investigate the effects of fasudil on interactions between macrophages/microglia and T cells in a mice EAE model. METHODS Mouse BV-2 microglia were treated with IFN-γ and fasudil. Cell viability was detected with MTT assay. BV-2 microglia polarization was analyzed using flow cytometry. Cytokines and other proteins were detected with ELISA and Western blotting, respectively. Mice were immunized with MOG35-55 to induce EAE, and then treated with fasudil (40 mg/kg, ip) every other day from d 3 to d 27 pi. Encephalomyelitic T cells were prepared from the spleen of mice immunized with MOG35-55 on d 9 pi. RESULTS Treatment of mouse BV-2 microglia with fasudil (15 μg/mL) induced significant phenotype polarization and functional plasticity, shifting M1 to M2 polarization. When co-cultured with the encephalomyelitic T cells, fasudil-treated BV-2 microglia significantly inhibited the proliferation of antigen-reactive T cells, and down-regulated IL-17-expressing CD4(+) T cells and IL-17 production. Furthermore, fasudil-treated BV-2 microglia significantly up-regulated CD4(+)CD25(high) and CD4(+)IL-10(+) regulatory T cells (Tregs) and IL-10 production, suggesting that the encephalomyelitic T cells had converted to Tregs. In EAE mice, fasudil administration significantly decreased both CD11b(+)iNOS(+) and CD11b(+)TNF-α(+) M1 microglia, and increased CD11b(+)IL-10(+) M2 microglia. CONCLUSION Fasudil polarizes BV-2 microglia into M2 cells, which convert the encephalomyelitic T cells into Tregs in the mice EAE model.
Collapse
|
31
|
Fujita Y, Yamashita T. Axon growth inhibition by RhoA/ROCK in the central nervous system. Front Neurosci 2014; 8:338. [PMID: 25374504 PMCID: PMC4205828 DOI: 10.3389/fnins.2014.00338] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/06/2014] [Indexed: 12/31/2022] Open
Abstract
Rho kinase (ROCK) is a serine/threonine kinase and a downstream target of the small GTPase Rho. The RhoA/ROCK pathway is associated with various neuronal functions such as migration, dendrite development, and axonal extension. Evidence from animal studies reveals that RhoA/ROCK signaling is involved in various central nervous system (CNS) diseases, including optic nerve and spinal cord injuries, stroke, and neurodegenerative diseases. Given that RhoA/ROCK plays a critical role in the pathophysiology of CNS diseases, the development of therapeutic agents targeting this pathway is expected to contribute to the treatment of CNS diseases. The RhoA/ROCK pathway mediates the effects of myelin-associated axon growth inhibitors—Nogo, myelin-associated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgp), and repulsive guidance molecule (RGM). Blocking RhoA/ROCK signaling can reverse the inhibitory effects of these molecules on axon outgrowth, and promotes axonal sprouting and functional recovery in animal models of CNS injury. To date, several RhoA/ROCK inhibitors have been under development or in clinical trials as therapeutic agents for neurological disorders. In this review, we focus on the RhoA/ROCK signaling pathway in neurological disorders. We also discuss the potential therapeutic approaches of RhoA/ROCK inhibitors for various neurological disorders.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University Osaka, Japan ; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology Tokyo, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University Osaka, Japan ; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology Tokyo, Japan
| |
Collapse
|
32
|
Zhao YF, Zhang X, Ding ZB, Yang XW, Zhang H, Yu JZ, Li YH, Liu CY, Zhang Q, Zhang HZ, Ma CG, Xiao BG. The therapeutic potential of Rho kinase inhibitor fasudil derivative FaD-1 in experimental autoimmune encephalomyelitis. J Mol Neurosci 2014; 55:725-32. [PMID: 25223373 DOI: 10.1007/s12031-014-0411-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/20/2014] [Indexed: 12/12/2022]
Abstract
Although therapeutic potential of fasudil in EAE is promising, action mechanism and clinical limitations are still not fully understood and resolved. In this study, we observed the therapeutic potential of a novel Rho kinase (ROCK) inhibitor FaD-1, a fasudil derivative, and explored possible mechanism in MOG35-55-induced EAE. Experimental autoimmune encephalomyelitis (EAE) was induced by myelin oligodendrocyte glycoprotein (MOG35-55) immunization. The pathology of spinal cord was measured by immunohistochemistry and neurological impairment was evaluated using clinical scores. FaD-1, as a novel ROCK inhibitor, inhibited the expression of ROCK II that is mainly expressed in the CNS. We show here that FaD-1 ameliorates the neurological defects and the severity of MOG-induced EAE in mice, accompanied by the protection of demyelination and the inhibition of neuroinflammation in spinal cord of EAE. In addition, FaD-1 dampened TLR2 and TLR4 signaling as well as Th1 (IFN-γ) and Th17 (IL-17) responses in spinal cord of EAE. FaD-1 also prevented the expression of iNOS and production of inflammatory cytokine IL-1β, IL-6, and TNF-α which are specific markers for M1 inflammatory microglia/macrophages. This study highlights the therapeutic potential of FaD-1 as a ROCK inhibitor for the treatment of human autoimmune diseases with both inflammatory and autoimmune components.
Collapse
Affiliation(s)
- Yong-Fei Zhao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Biro M, Munoz MA, Weninger W. Targeting Rho-GTPases in immune cell migration and inflammation. Br J Pharmacol 2014; 171:5491-506. [PMID: 24571448 PMCID: PMC4282076 DOI: 10.1111/bph.12658] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 12/28/2022] Open
Abstract
Leukocytes are unmatched migrators capable of traversing barriers and tissues of remarkably varied structural composition. An effective immune response relies on the ability of its constituent cells to infiltrate target sites. Yet, unwarranted mobilization of immune cells can lead to inflammatory diseases and tissue damage ranging in severity from mild to life-threatening. The efficacy and plasticity of leukocyte migration is driven by the precise spatiotemporal regulation of the actin cytoskeleton. The small GTPases of the Rho family (Rho-GTPases), and their immediate downstream effector kinases, are key regulators of cellular actomyosin dynamics and are therefore considered prime pharmacological targets for stemming leukocyte motility in inflammatory disorders. This review describes advances in the development of small-molecule inhibitors aimed at modulating the Rho-GTPase-centric regulatory pathways governing motility, many of which stem from studies of cancer invasiveness. These inhibitors promise the advent of novel treatment options with high selectivity and potency against immune-mediated pathologies.
Collapse
Affiliation(s)
- Maté Biro
- Centenary Institute of Cancer Medicine and Cell Biology, Immune Imaging Program, Newtown, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
34
|
Pedraza CE, Taylor C, Pereira A, Seng M, Tham CS, Izrael M, Webb M. Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of rho-associated kinase. ASN Neuro 2014; 6:6/4/1759091414538134. [PMID: 25289646 PMCID: PMC4189421 DOI: 10.1177/1759091414538134] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In inflammatory demyelinating diseases such as multiple sclerosis (MS), myelin
degradation results in loss of axonal function and eventual axonal degeneration.
Differentiation of resident oligodendrocyte precursor cells (OPCs) leading to
remyelination of denuded axons occurs regularly in early stages of MS but halts as
the pathology transitions into progressive MS. Pharmacological potentiation of
endogenous OPC maturation and remyelination is now recognized as a promising
therapeutic approach for MS. In this study, we analyzed the effects of modulating the
Rho-A/Rho-associated kinase (ROCK) signaling pathway, by the use of selective
inhibitors of ROCK, on the transformation of OPCs into mature, myelinating
oligodendrocytes. Here we demonstrate, with the use of cellular cultures from rodent
and human origin, that ROCK inhibition in OPCs results in a significant generation of
branches and cell processes in early differentiation stages, followed by accelerated
production of myelin protein as an indication of advanced maturation. Furthermore,
inhibition of ROCK enhanced myelin formation in cocultures of human OPCs and neurons
and remyelination in rat cerebellar tissue explants previously demyelinated with
lysolecithin. Our findings indicate that by direct inhibition of this signaling
molecule, the OPC differentiation program is activated resulting in morphological and
functional cell maturation, myelin formation, and regeneration. Altogether, we show
evidence of modulation of the Rho-A/ROCK signaling pathway as a viable target for the
induction of remyelination in demyelinating pathologies.
Collapse
Affiliation(s)
- Carlos E Pedraza
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | | | - Albertina Pereira
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | - Michelle Seng
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | - Chui-Se Tham
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | | | - Michael Webb
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| |
Collapse
|
35
|
Tönges L, Günther R, Suhr M, Jansen J, Balck A, Saal KA, Barski E, Nientied T, Götz AA, Koch JC, Mueller BK, Weishaupt JH, Sereda MW, Hanisch UK, Bähr M, Lingor P. Rho kinase inhibition modulates microglia activation and improves survival in a model of amyotrophic lateral sclerosis. Glia 2013; 62:217-32. [DOI: 10.1002/glia.22601] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Lars Tönges
- Department of Neurology; University Medicine Göttingen; Robert-Koch-Str. 40 Göttingen Germany
| | - Rene Günther
- Department of Neurology; University Medicine Göttingen; Robert-Koch-Str. 40 Göttingen Germany
| | - Martin Suhr
- Department of Neurology; University Medicine Göttingen; Robert-Koch-Str. 40 Göttingen Germany
| | - Johannes Jansen
- Department of Neurology; University Medicine Göttingen; Robert-Koch-Str. 40 Göttingen Germany
| | - Alexander Balck
- Department of Neurology; University Medicine Göttingen; Robert-Koch-Str. 40 Göttingen Germany
| | - Kim-Ann Saal
- Department of Neurology; University Medicine Göttingen; Robert-Koch-Str. 40 Göttingen Germany
| | - Elisabeth Barski
- Department of Neurology; University Medicine Göttingen; Robert-Koch-Str. 40 Göttingen Germany
| | - Tobias Nientied
- Molecular and Translational Neurology, Max Planck Institute for Experimental Medicine; Hermann-Rein-Str. 3 Göttingen Germany
| | - Alexander A. Götz
- Institute of Neuropathology; University Medicine Göttingen; Robert-Koch-Str. 40 Göttingen Germany
| | - Jan-Christoph Koch
- Department of Neurology; University Medicine Göttingen; Robert-Koch-Str. 40 Göttingen Germany
| | - Bernhard K. Mueller
- AbbVie Deutschland GmbH & Co KG, Global Pharmaceutical Research & Development; Knollstrasse 50 Ludwigshafen Germany
| | - Jochen H. Weishaupt
- Department of Neurology; Ulm University; Albert-Einstein-Allee 11 Ulm Germany
| | - Michael W. Sereda
- Molecular and Translational Neurology, Max Planck Institute for Experimental Medicine; Hermann-Rein-Str. 3 Göttingen Germany
- Department of Clinical Neurophysiology; University Medicine Göttingen, Robert-Koch-Str. 40 Göttingen Germany
| | - Uwe-Karsten Hanisch
- Institute of Neuropathology; University Medicine Göttingen; Robert-Koch-Str. 40 Göttingen Germany
| | - Mathias Bähr
- Department of Neurology; University Medicine Göttingen; Robert-Koch-Str. 40 Göttingen Germany
- Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB); Göttingen Germany
| | - Paul Lingor
- Department of Neurology; University Medicine Göttingen; Robert-Koch-Str. 40 Göttingen Germany
- Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB); Göttingen Germany
| |
Collapse
|
36
|
Abstract
INTRODUCTION The Rho kinase/ROCK is critical in vital signal transduction pathways central to many essential cellular activities. Since ROCK possess multiple substrates, modulation of ROCK activity is useful for treatment of many diseases. AREAS COVERED Significant progress has been made in the development of ROCK inhibitors over the past two years (Jan 2012 to Aug 2013). Patent search in this review was based on FPO IP Research and Communities and Espacenet Patent Search. In this review, patent applications will be classified into four groups for discussions. The grouping is mainly based on structures or scaffolds (groups 1 and 2) and biological functions of ROCK inhibitors (groups 3 and 4). These four groups are i) ROCK inhibitors based on classical structural elements for ROCK inhibition; ii) ROCK inhibitors based on new scaffolds; iii) bis-functional ROCK inhibitors; and iv) novel applications of ROCK inhibitors. EXPERT OPINION Although currently only one ROCK inhibitor (fasudil) is used as a drug, more drugs based on ROCK inhibition are expected to be advanced into market in the near future. Several directions should be considered for future development of ROCK inhibitors, such as soft ROCK inhibitors, bis-functional ROCK inhibitors, ROCK2 isoform-selective inhibitors, and ROCK inhibitors as antiproliferation agents.
Collapse
Affiliation(s)
- Yangbo Feng
- Translational Research Institute, The Scripps Research Institute , Scripps Florida, #2A1, 130 Scripps Way, Jupiter, FL 33458 , USA +1 561 228 2201 ;
| | | |
Collapse
|
37
|
Challa P, Arnold JJ. Rho-kinase inhibitors offer a new approach in the treatment of glaucoma. Expert Opin Investig Drugs 2013; 23:81-95. [PMID: 24094075 DOI: 10.1517/13543784.2013.840288] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Primary open-angle glaucoma (POAG) is a leading cause for worldwide blindness and is characterized by progressive optic nerve damage. The etiology of POAG is unknown, but elevated intraocular pressure (IOP) and advanced age have been identified as risk factors. IOP reduction is the only known treatment for glaucoma. Recently, drugs that inhibit rho-associated protein kinase (ROCK) have been studied in animals and people for their ability to lower IOP and potentially treat POAG. ROCK inhibitors lower IOP through a trabecular mechanism and may represent a new therapeutic paradigm for the treatment of POAG. AREAS COVERED Exploring the place that ROCK inhibitors may occupy in our treatment of POAG requires a thorough understanding of pathophysiology and treatment. This article summarizes current research on the incidence, proposed etiologies and mechanisms of action for this drug class. ROCK inhibitor research is presented and considered in light of the current standard of pharmacologic care. EXPERT OPINION ROCK inhibitors alter the cell shape and extracellular matrix (ECM) of the trabecular meshwork. Preclinical studies demonstrate that these drugs have the potential to become a new therapy for glaucoma. However, ROCK inhibitors can affect multiple cell types, and their utility can be proven only after clinical studies in patients.
Collapse
Affiliation(s)
- Pratap Challa
- Duke University, Ophthalmology , 2351 Erwin Road, Durham 27710 , USA
| | | |
Collapse
|
38
|
Cui G, Zuo T, Zhao Q, Hu J, Jin P, Zhao H, Jing J, Zhu J, Chen H, Liu B, Hua F, Ye X. ROCK mediates the inflammatory response in thrombin induced microglia. Neurosci Lett 2013; 554:82-7. [PMID: 24021807 DOI: 10.1016/j.neulet.2013.08.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/25/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023]
Abstract
To investigate whether the ROCK pathway is involved in thrombin-induced microglial inflammatory response, thrombin-induced microglia were pretreated with the thrombin inhibitor argatroban or a ROCK inhibitor Y-27632. Microglial inflammatory response was evaluated by phagocytosis of fluorescein labeled latex beads analyses and inflammatory mediators' expression such as nitric oxide (NO) and tumor necrosis factor-alpha (TNF-а). Compared to non-induced microglia, thrombin-induced microglia show significantly enhanced phagocytotic capacity and increased ROCK, NO and TNF-а expression. Pretreatment of thrombin-induced microglia with argatroban or Y-27632 significantly decreased phagocytotic capacity and reduced ROCK, NO and TNF-α expression. Therefore, the ROCK pathway may play a vital role in the mechanisms by which thrombin induces microglia in the inflammatory response.
Collapse
Affiliation(s)
- Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Song Y, Chen X, Wang LY, Gao W, Zhu MJ. Rho kinase inhibitor fasudil protects against β-amyloid-induced hippocampal neurodegeneration in rats. CNS Neurosci Ther 2013; 19:603-10. [PMID: 23638992 DOI: 10.1111/cns.12116] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 03/17/2013] [Accepted: 03/19/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and Aβ-induced neuronal damage is the major pathology of AD. There is increasing evidence that neuroinflammation induced by Aβ is also involved in the pathogenesis of AD. Fasudil is a Rho kinase inhibitor and has been reported to have neuroprotective effects. In this study, the main purpose is to investigate whether fasudil has beneficial effects on cognitive impairment and neuronal toxicity induced by Aβ. METHODS AND RESULTS In the present study, intracerebroventricular injection of Aβ1-42 to rats resulted in marked cognitive impairment, severe neuronal damage, as well as increased IL-1β, tumor necrosis factor alpha (TNF-α) production, and NF-κB activation. Administration of fasudil significantly ameliorated the spatial learning and memory impairment, attenuated neuronal loss, and neuronal injury induced by Aβ1-42 . In addition, fasudil inhibited IL-1β and TNF-α production and NF-κB activation in the rat brain. CONCLUSIONS Fasudil can protect against Aβ-induced hippocampal neurodegeneration by suppressing inflammatory response, suggesting that fasudil might be a promising agent for the prevention and treatment of inflammation-related diseases, such as AD.
Collapse
Affiliation(s)
- Yun Song
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
40
|
Feng J, Zhang G, Hu X, Si Chen C, Qin X. Estrogen inhibits estrogen receptor α-mediated rho-kinase expression in experimental autoimmune encephalomyelitis rats. Synapse 2013; 67:399-406. [PMID: 23401288 DOI: 10.1002/syn.21650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Jinzhou Feng
- Department of Neurology; the First Affiliated Hospital of Chongqing Medical University; Chongqing; 400016; China
| | - Guanghui Zhang
- Department of Neurology; the First Affiliated Hospital of Henan University of Science and Technology; Luoyang; 471003; China
| | - Xiao Hu
- Department of Neurology; the Guizhou Provincial People's Hospital; Guizhou; 550002; China
| | - Cindy Si Chen
- Department of Medicine; Drexel University College of Medicine; Philadelphia; Pennsylvania; 19129
| | - Xinyue Qin
- Department of Neurology; the First Affiliated Hospital of Chongqing Medical University; Chongqing; 400016; China
| |
Collapse
|
41
|
Chen M, Liu A, Ouyang Y, Huang Y, Chao X, Pi R. Fasudil and its analogs: a new powerful weapon in the long war against central nervous system disorders? Expert Opin Investig Drugs 2013; 22:537-50. [DOI: 10.1517/13543784.2013.778242] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Liu C, Li Y, Yu J, Feng L, Hou S, Liu Y, Guo M, Xie Y, Meng J, Zhang H, Xiao B, Ma C. Targeting the shift from M1 to M2 macrophages in experimental autoimmune encephalomyelitis mice treated with fasudil. PLoS One 2013; 8:e54841. [PMID: 23418431 PMCID: PMC3572131 DOI: 10.1371/journal.pone.0054841] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/17/2012] [Indexed: 02/08/2023] Open
Abstract
We observed the therapeutic effect of Fasudil and explored its mechanisms in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Fasudil, a selective Rho kinase (ROCK) inhibitor, was injected intraperitoneally at 40 mg/kg/d in early and late stages of EAE induction. Fasudil ameliorated the clinical severity of EAE at different stages, and decreased the expression of ROCK-II in spleen, accompanied by an improvement in demyelination and inhibition of inflammatory cells. Fasudil mainly inhibited CD4+IL-17+ T cells in early treatment, but also elevated CD4+IL-10+ regulatory T cells and IL-10 production in late treatment. The treatment of Fasudil shifted inflammatory M1 to anti-inflammatory M2 macrophages in both early and late treatment, being shown by inhibiting CD16/32, iNOS, IL-12, TLR4 and CD40 and increasing CD206, Arg-1, IL-10 and CD14 in spleen. By using Western blot and immunohistochemistry, iNOS and Arg-1, as two most specific markers for M1 and M2, was inhibited or induced in splenic macrophages and spinal cords of EAE mice treated with Fasudil. In vitro experiments also indicate that Fasudil shifts M1 to M2 phenotype, which does not require the participation or auxiliary of other cells. The polarization of M2 macrophages was associated with the decrease of inflammatory cytokine IL-1β, TNF-α and MCP-1. These results demonstrate that Fasudil has therapeutic potential in EAE possibly through inducing the polarization of M2 macrophages and inhibiting inflammatory responses.
Collapse
Affiliation(s)
- Chunyun Liu
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Yanhua Li
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Jiezhong Yu
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Ling Feng
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Shaowei Hou
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Yueting Liu
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Mingfang Guo
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Yong Xie
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Jian Meng
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Haifei Zhang
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- * E-mail: (BX); (CM)
| | - Cungen Ma
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
- Department of Neurology, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
- * E-mail: (BX); (CM)
| |
Collapse
|
43
|
Chowdhury S, Chen YT, Fang X, Grant W, Pocas J, Cameron MD, Ruiz C, Lin L, Park H, Schröter T, Bannister TD, Lograsso PV, Feng Y. Amino acid derived quinazolines as Rock/PKA inhibitors. Bioorg Med Chem Lett 2013; 23:1592-9. [PMID: 23416002 DOI: 10.1016/j.bmcl.2013.01.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/14/2013] [Accepted: 01/22/2013] [Indexed: 01/19/2023]
Abstract
SAR and lead optimization studies for Rock inhibitors based on amino acid-derived quinazolines are described. Studies demonstrated that these amino acid derived quinazolinones were mainly pan-Rock (I & II) inhibitors. While selectivity against other kinases could be achieved, selectivity for most of these compounds against PKA was not achieved. This is distinct from Rock inhibitors based on non-amino acid derived quinazolinones, where high selectivity against PKA could be obtained.(22) The inhibitors presented here in some cases possessed sub-nanomolar inhibition of Rock, nanomolar potency in ppMLC cell based assays, low to fair cytochrome P-450 inhibition, and good human microsomal stability.
Collapse
Affiliation(s)
- Sarwat Chowdhury
- Medicinal Chemistry, Translational Research Institute, The Scripps Research Institute, 130 Scripps Way, 2A1, Jupiter, FL 33458, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Goodarzi M, Heyden YV, Funar-Timofei S. Towards better understanding of feature-selection or reduction techniques for Quantitative Structure–Activity Relationship models. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2012.09.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Lingor P, Koch JC, Tönges L, Bähr M. Axonal degeneration as a therapeutic target in the CNS. Cell Tissue Res 2012; 349:289-311. [PMID: 22392734 PMCID: PMC3375418 DOI: 10.1007/s00441-012-1362-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/02/2012] [Indexed: 12/15/2022]
Abstract
Degeneration of the axon is an important step in the pathomechanism of traumatic, inflammatory and degenerative neurological diseases. Increasing evidence suggests that axonal degeneration occurs early in the course of these diseases and therefore represents a promising target for future therapeutic strategies. We review the evidence for axonal destruction from pathological findings and animal models with particular emphasis on neurodegenerative and neurotraumatic disorders. We discuss the basic morphological and temporal modalities of axonal degeneration (acute, chronic and focal axonal degeneration and Wallerian degeneration). Based on the mechanistic concepts, we then delineate in detail the major molecular mechanisms that underlie the degenerative cascade, such as calcium influx, axonal transport, protein aggregation and autophagy. We finally concentrate on putative therapeutic targets based on the mechanistic prerequisites.
Collapse
Affiliation(s)
- Paul Lingor
- Department of Neurology, University Medicine Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | | | | | | |
Collapse
|
46
|
Tönges L, Koch JC, Bähr M, Lingor P. ROCKing Regeneration: Rho Kinase Inhibition as Molecular Target for Neurorestoration. Front Mol Neurosci 2011; 4:39. [PMID: 22065949 PMCID: PMC3207219 DOI: 10.3389/fnmol.2011.00039] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/16/2011] [Indexed: 12/31/2022] Open
Abstract
Regenerative failure in the CNS largely depends on pronounced growth inhibitory signaling and reduced cellular survival after a lesion stimulus. One key mediator of growth inhibitory signaling is Rho-associated kinase (ROCK), which has been shown to modulate growth cone stability by regulation of actin dynamics. Recently, there is accumulating evidence the ROCK also plays a deleterious role for cellular survival. In this manuscript we illustrate that ROCK is involved in a variety of intracellular signaling pathways that comprise far more than those involved in neurite growth inhibition alone. Although ROCK function is currently studied in many different disease contexts, our review focuses on neurorestorative approaches in the CNS, especially in models of neurotrauma. Promising strategies to target ROCK by pharmacological small molecule inhibitors and RNAi approaches are evaluated for their outcome on regenerative growth and cellular protection both in preclinical and in clinical studies.
Collapse
Affiliation(s)
- Lars Tönges
- Department of Neurology, University Medicine Göttingen Göttingen, Germany
| | | | | | | |
Collapse
|
47
|
Huang XN, Fu J, Wang WZ. The effects of fasudil on the permeability of the rat blood-brain barrier and blood-spinal cord barrier following experimental autoimmune encephalomyelitis. J Neuroimmunol 2011; 239:61-7. [PMID: 21978848 DOI: 10.1016/j.jneuroim.2011.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/24/2011] [Accepted: 08/19/2011] [Indexed: 11/29/2022]
Abstract
Dysfunction of the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) is a primary characteristic of multiple sclerosis (MS). We evaluated the protective effects of fasudil, a selective ROCK inhibitor, in a model of experimental autoimmune encephalomyelitis (EAE) that was induced by guinea-pig spinal cord. In addition, we studied the effects of fasudil on BBB and BSCB permeability. We found that fasudil partly alleviated EAE-dependent damage by decreasing BBB and BSCB permeability. These results provide rationale for the development of selective inhibitors of Rho kinase as a novel therapy for MS.
Collapse
Affiliation(s)
- X N Huang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | |
Collapse
|
48
|
Zhang X, Tao Y, Troiani L, Markovic-Plese S. Simvastatin inhibits IFN regulatory factor 4 expression and Th17 cell differentiation in CD4+ T cells derived from patients with multiple sclerosis. THE JOURNAL OF IMMUNOLOGY 2011; 187:3431-7. [PMID: 21856936 DOI: 10.4049/jimmunol.1100580] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Subsequent to the clinical trial of simvastatin in patients with relapsing remitting multiple sclerosis (RR MS), which demonstrated the ability of simvastatin to inhibit new inflammatory CNS lesion formation, the current in vitro study has characterized the mechanisms through which simvastatin inhibits Th17 cell differentiation. The anti-inflammatory effects of statins are mediated by the inhibition of isoprenylation, which ensures proper membrane insertion and function of proteins. Small GTPases, involved in multiple signal transduction pathways, are the key targets for isoprenylation. We report that simvastatin, one of the most hydrophobic statins with good CNS penetration, inhibited Th17 cell differentiation and IL-17A, IL-17F, IL-21, and IL-22 secretion in in vitro-differentiated naive CD4(+) T cells from RR MS patients. Simvastatin exerted a less prominent effect on the cells from healthy controls, as it inhibited only IL-17F secretion. The inhibition of Th17 cell differentiation was mediated via inhibition of IFN regulatory factor 4 (IRF4) expression, which was identified as a key transcription factor for human Th17 cell differentiation using both IRF4 gene knockdown and overexpression experiments. In studies addressing which isoprenylation pathway--geranylgeranylation or farnesylation--is inhibited by simvastatin, we demonstrated that the geranylgeranyl transferase inhibitor replicated the effect of simvastatin. Selective inhibition of geranylgeranylated RhoA-associated kinase replicated the effect of simvastatin on the inhibition of IRF4 expression and IL-17A, IL-17F, IL-21, and IL-22 secretion, presenting a promising new therapeutic approach for this disabling disease.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
49
|
Preventive and therapeutic effects of the selective Rho-kinase inhibitor fasudil on experimental autoimmune neuritis. J Neurol Sci 2011; 306:115-20. [DOI: 10.1016/j.jns.2011.03.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 02/14/2011] [Accepted: 03/18/2011] [Indexed: 11/22/2022]
|
50
|
Fagone P, Mangano K, Quattrocchi C, Motterlini R, Di Marco R, Magro G, Penacho N, Romao CC, Nicoletti F. Prevention of clinical and histological signs of proteolipid protein (PLP)-induced experimental allergic encephalomyelitis (EAE) in mice by the water-soluble carbon monoxide-releasing molecule (CORM)-A1. Clin Exp Immunol 2011; 163:368-74. [PMID: 21235533 DOI: 10.1111/j.1365-2249.2010.04303.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have evaluated the effects of the carbon monoxide-releasing molecule CORM-A1 [Na(2) (BH(3) CO(2) ); ALF421] on the development of relapsing-remitting experimental allergic encephalomyelitis (EAE) in SJL mice, an established model of multiple sclerosis (MS). The data show that the prolonged prophylactic administration of CORM-A1 improves the clinical and histopathological signs of EAE, as shown by a reduced cumulative score, shorter duration and a lower cumulative incidence of the disease as well as milder inflammatory infiltrations of the spinal cords. This study suggests that the use of CORM-A1 might represent a novel therapeutic strategy for the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- P Fagone
- Department of Biomedical Sciences, School of Medicine, University of Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|