1
|
Karmaker S, Rosales PD, Tirumuruhan B, Viravalli A, Boehnke N. More than a delivery system: the evolving role of lipid-based nanoparticles. NANOSCALE 2025; 17:11864-11893. [PMID: 40293317 DOI: 10.1039/d4nr04508d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Lipid-based nanoparticles, including liposomes and lipid nanoparticles (LNPs), make up an important class of drug delivery systems. Their modularity enables encapsulation of a wide range of therapeutic cargoes, their ease of functionalization allows for incorporation of targeting motifs and anti-fouling coatings, and their scalability facilitates rapid translation to the clinic. While the discovery and early understanding of lipid-based nanoparticles is heavily rooted in biology, formulation development has largely focused on materials properties, such as how liposome and lipid nanoparticle composition can be altered to maximize drug loading, stability and circulation. To achieve targeted delivery and enable improved accumulation of therapeutics at target tissues or disease sites, emphasis is typically placed on the use of external modifications, such as peptide, protein, and polymer motifs. However, these approaches can increase the complexity of the nanocarrier and complicate scale up. In this review, we focus on how our understanding of lipid structure and function in biological contexts can be used to design intrinsically functional and targeted nanocarriers. We highlight formulation-based strategies, such as the incorporation of bioactive lipids, that have been used to modulate liposome and lipid nanoparticle properties and improve their functionality while retaining simple nanocarrier designs. We also highlight classes of naturally occurring lipids, their functions, and how they have been incorporated into lipid-based nanoparticles. We will additionally position these approaches into the historical context of both liposome and LNP development.
Collapse
Affiliation(s)
- Senjuti Karmaker
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Plinio D Rosales
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Barath Tirumuruhan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Amartya Viravalli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Natalie Boehnke
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Zhu L, Tang Z, Jiang W, Dong Y, Li X, Huang K, Wu T, Xu L, Guo W, Gu Y. Cholesterol biosynthesis induced by radiotherapy inhibits cGAS-STING activation and contributes to colorectal cancer treatment resistance. Exp Mol Med 2025:10.1038/s12276-025-01457-6. [PMID: 40355720 DOI: 10.1038/s12276-025-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/04/2025] [Accepted: 03/10/2025] [Indexed: 05/14/2025] Open
Abstract
Radiotherapy-induced DNA damage can lead to apoptotic cell death and trigger an anti-tumor immune response via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, which senses cytoplasmic double-stranded DNA. However, radiotherapy resistance poses a significant challenge in treating cancers, including colorectal cancer (CRC). Understanding the mechanisms underlying this resistance is crucial for developing effective therapies. Here we report that radiotherapy enhances cholesterol synthesis, which subsequently inhibits the cGAS-STING pathway, leading to radiotherapy resistance. Mechanistically, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) levels increase rapidly in response to radiation, resulting in increased cholesterol synthesis. This increased cholesterol sequesters STING in the endoplasmic reticulum, hindering its activation and downstream interferon signaling. Elevated HMGCR and cholesterol levels correlate with poor prognosis and reduced response to radiation therapy in patients with CRC. Importantly, pharmacological inactivation of HMGCR significantly enhanced radiotherapy responsiveness in animal models, dependent on cGAS-STING signaling-mediated anti-tumor responses. Our findings reveal that radiotherapy-induced cholesterol inhibits cGAS-STING signaling, facilitating tumor immune escape. Therefore, combining statins with radiotherapy represents a promising therapeutic strategy for treating CRC.
Collapse
Affiliation(s)
- Lijun Zhu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, The First Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zhaohui Tang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Life Science, Nanjing University, Nanjing, China
| | - Wen Jiang
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, The First Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yuwen Dong
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, The First Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaofei Li
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, The First Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Kai Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Life Science, Nanjing University, Nanjing, China
| | - Tiancong Wu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Lingyan Xu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, The First Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Life Science, Nanjing University, Nanjing, China.
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, The First Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Mehnert SA, Lee KJ, McLuckey SA. Enthalpies and Entropies of Activation for sn-1/ sn-2 Acyl Chain Loss in Glycerophospholipid Anions via Dipolar DC Kinetics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:1041-1051. [PMID: 40173190 DOI: 10.1021/jasms.4c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Glycerophospholipids (GPs) have been observed to prefer losing a particular fatty acyl chain over the other, with the preference for the chain in either the sn-1 or sn-2 position being different between various GP classes. It has been assumed that the sn preference results from the entropic favorability of the transition state conformation; however, this has not been measured previously. Here, we demonstrate the application of our previously established collision-based activation method to GP fragmentation. The method utilizes a dipolar direct current (DDC) potential across a pair of opposing rods to force ions out of the center of the ion trap, causing them to undergo radio frequency (RF) heating by absorbing power from the trapping RF field. We confirmed that the previous assumption holds for some species studied here, wherein the ΔH‡ values were nearly identical and the ΔS‡ values showed greater differences between the sn positions. However, some species and ion types seem to be more driven by ΔH‡. Additionally, the loss of the fatty acyl chains as neutrals rather than ions should also be considered if one is to thoroughly weigh which chain is indeed the preferred loss, as including all forms of acyl chain loss results in an overall favorability for the acyl chain in the sn-2 position to be lost. The driving force behind these different losses seems to be a mixture of entropic and enthalpic reasons, with the identity and presence of the headgroup playing an important role in the observed fragmentation and the measured activation parameters.
Collapse
Affiliation(s)
- Samantha A Mehnert
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47906-2084, United States
| | - Katherine J Lee
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47906-2084, United States
| | - Scott A McLuckey
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47906-2084, United States
| |
Collapse
|
4
|
Kay EJ, Zanivan S. The tumor microenvironment is an ecosystem sustained by metabolic interactions. Cell Rep 2025; 44:115432. [PMID: 40088447 DOI: 10.1016/j.celrep.2025.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/09/2024] [Accepted: 02/24/2025] [Indexed: 03/17/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) and immune cells make up two major components of the tumor microenvironment (TME), contributing to an ecosystem that can either support or restrain cancer progression. Metabolism is a key regulator of the TME, providing a means for cells to communicate with and influence each other, modulating tumor progression and anti-tumor immunity. Cells of the TME can metabolically interact directly through metabolite secretion and consumption or by influencing other aspects of the TME that, in turn, stimulate metabolic rewiring in target cells. Recent advances in understanding the subtypes and plasticity of cells in the TME both open up new avenues and create challenges for metabolically targeting the TME to hamper tumor growth and improve response to therapy. This perspective explores ways in which the CAF and immune components of the TME could metabolically influence each other, based on current knowledge of their metabolic states, interactions, and subpopulations.
Collapse
Affiliation(s)
- Emily Jane Kay
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK.
| | - Sara Zanivan
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Zhong S, Yang YN, Huo JX, Sun YQ, Zhao H, Dong XT, Feng JY, Zhao J, Wu CM, Li YG. Cyanidin-3-rutinoside from Mori Fructus ameliorates dyslipidemia via modulating gut microbiota and lipid metabolism pathway. J Nutr Biochem 2025; 137:109834. [PMID: 39694116 DOI: 10.1016/j.jnutbio.2024.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Dyslipidemia is responsible for pathologies of cardiovascular diseases and gut microbiota plays an essential role in lipid metabolism. Dietary supplementation is an important supplement to medicine in management of dyslipidemia. Mori Fructus is a popular Asia medical food with various pharmacological benefits including anti-hyperlipidemia. Cyanidin-3-rutinoside (C3R) is the main anthocyanin component in Mori Fructus, but the lipid-lowering effect and underlying mechanism of Mori Fructus-derived C3R remains unknown. In this study, we assessed the beneficial effect of Mori Fructus-derived C3R in HFD-induced hyperlipidemic mice and investigated its potential mechanism through 16S rRNA-based metagenomics and transcriptomics analysis. Our results showed that C3R from Mori Fructus significantly decreased serum lipid levels and attenuated hepatic damage induced by HFD. Analysis of the gut microbiota revealed that C3R altered the specific gut micorbiota but not changed its diversity. Among changed genera, Family_XIII_UCG-001 was significantly enriched by C3R, and it was positively associated with HDL-c, but negatively related with TC, TG, LDL-c, insulin and body weight. Transcriptomic analysis showed that C3R activates the lipid metabolism related pathways including MAPK signaling pathway, Rap1 signaling pathway, Ras signaling pathway and PI3K-Akt signaling pathway. Additionally, correlation analysis unraveled that C3R-enriched Family_XIII_UCG-001 was negatively associated with C3R-inhibited genes of Camk2a, Eef1a2, Gad1, Kif5a and Sv2b, which further positively related with TC, TG, LDL-c, insulin and body weight, but negatively associated with HDL-c. In sum, C3R may inhibit expression of immune-related genes by enriching the Family_XIII_UCG-001 genus, further ameliorating lipid metabolism disorders in HFD-challenged mice. This study provides an optional strategy for the daily management of dyslipidemia.
Collapse
Affiliation(s)
- Shi Zhong
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ya-Nan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin-Xi Huo
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yu-Qing Sun
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hui Zhao
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China; College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xin-Tian Dong
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China; College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jia-Yi Feng
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China; College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jin Zhao
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Chong-Ming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - You-Gui Li
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
6
|
Lin Z, Zhu L, Dong Y, Yun J, Zhi Y, Zhang W, Sun Y, Jiang Y, Liu S, Fan L, Li Y, Guo S. Integrated Analysis of WES and scRNA-Seq Data Reveals the Genetic Basis of Immune Dysregulation in Unexplained Recurrent Pregnancy Loss. J Clin Lab Anal 2025; 39:e70011. [PMID: 40066928 PMCID: PMC11937169 DOI: 10.1002/jcla.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/15/2024] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
OBJECTIVE This study aimed to identify genetic variants and their functional consequences underlying Unexplained Recurrent Pregnancy Loss (uRPL) through comprehensive genomic and transcriptomic analyses. METHODS We recruited 13 Chinese uRPL patients and performed Whole Exome Sequencing (WES) on chorionic villi samples from miscarriage tissues. Additionally, we conducted an integrative analysis using single-cell RNA sequencing data from decidual immune cells to examine expression patterns. RESULTS WES analysis pinpointed variants in the four MUC genes (MUC4, MUC6, MUC16, and MUC17), six lipid metabolism genes in immune cells (ABCA4, ABCA7, ABCB5, ABCC8, ADGRV1, and ANK3), and two structural genes (PIEZO1 and PKD1), whose variants impair mucosal barriers and lipid homeostasis, thereby leading to immune dysregulation and contributing to uRPL. To delve deeper into the effects of these genetic variants on cellular expression patterns, we undertook an integrative analysis using a single-cell dataset from decidual immune cells in uRPL cases. We observed significant dysregulation of lipid metabolism within immune cells, reduced heat shock protein expression, and enhanced chemokine signaling in uRPL samples, indicating a pro-inflammatory state. CONCLUSIONS In summary, our study reveals a complex interplay between genetic variants and immune cell dysfunctions in uRPL, emphasizing the role of identified genetic variants in driving pro-inflammatory states. These findings provide a comprehensive view of the molecular mechanisms underlying uRPL, opening paths for novel therapeutic interventions and improved clinical management.
Collapse
Affiliation(s)
- Zhao‐Jing Lin
- Department of Cell Biology, Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
- Department of AnesthesiologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Lei Zhu
- Department of Obstetrics and GynecologyOrdos Central HospitalOrdosChina
| | - Yi Dong
- Department of Cell Biology, Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Jiao Yun
- Department of Obstetrics and GynecologyOrdos Central HospitalOrdosChina
| | - Ya‐Nan Zhi
- Department of Reproductive GeneticsHeBei General HospitalShiJiaZhuangChina
| | - Wei Zhang
- Department of Obstetrics and GynecologyOrdos Central HospitalOrdosChina
| | - Yan‐Mei Sun
- Department of Reproductive GeneticsHeBei General HospitalShiJiaZhuangChina
| | - Yu‐Jie Jiang
- Department of Computer ScienceWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Shu Liu
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Liang‐Liang Fan
- Department of Cell Biology, Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Ya‐Li Li
- Department of Reproductive GeneticsHeBei General HospitalShiJiaZhuangChina
| | - Shuai Guo
- Department of Cell Biology, Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| |
Collapse
|
7
|
Liu Y, Zhao Y, Zhou C, Zhu H, Pan J, Fu J, Huang H, Lin H, Jin L. Immune imbalance in the pre-ovulatory follicular microenvironment of overweight and obese women during IVF. J Ovarian Res 2025; 18:23. [PMID: 39910676 PMCID: PMC11796254 DOI: 10.1186/s13048-025-01606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Overweight and obesity can induce an inflammatory milieu in the oocyte microenvironment and are closely associated with reduced assisted reproductive outcomes. OBJECTIVE How are immune cells, cytokines and lipid profiles altered in the pre-ovulatory microenvironment of overweight and obese women? METHODS 32 women undergoing in vitro fertilization (IVF) were included, with 14 overweight or obese (OW) and 18 normal weight (NW) participants. Serum was collected before ovulation induction, follicular fluid (FF) and aspirates were obtained during oocyte retrieval for flow cytometry, cytokines, hormone, and lipid profiles measurement. Clinical outcomes were recorded through a one-year follow-up. RESULTS The percentage of T cells in the pre-ovulatory follicular microenvironment, especially CD4+ T cells, increased significantly in the OW group, which positively related with BMI. Notably, type 2 cytokine IL4 and IL13 transcription level in OW group had significantly increased, while the type 1 cytokine IFNG only showed a non-statistically significant upward trend. Lipid profiles were screened, revealing no difference between the two groups, however, levels were higher in serum compared to FF. Additionally, the concentration gradient of TG between serum and FF was 22-fold in OW group (2.92 ± 3.66 vs. 0.13 ± 0.03), which was significantly higher than the 12-fold gradient observed in NW group (1.72 ± 0.95 vs. 0.14 ± 0.08). Furthermore, day 3 high quality embryos rate is negatively associated with BMI and exhibits a decreasing trend in OW group. CONCLUSION Overweight and obesity can disrupt immune hemostasis in the pre-ovulatory follicular microenvironment, potentially leading to adverse effects on assisted reproductive outcomes.
Collapse
Affiliation(s)
- Yang Liu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - Yiran Zhao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - Chengliang Zhou
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200003, China
| | - Hong Zhu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - Jiexue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - Jing Fu
- Shanghai JiAi Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, (No. 2019RU056), Shanghai, 200030, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 311399, China
| | - Hui Lin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
| | - Li Jin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
- Shanghai JiAi Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
8
|
Xu C, Xu Y, Ma J, Wang G. Mendelian randomization and mediation examination of the immune cell-mediated link between sphingomyelin and stroke. J Stroke Cerebrovasc Dis 2025; 34:108205. [PMID: 39706358 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/18/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
OBJECTIVE The study established a direct link between stroke and sphingomyelin. The precise biology underlying this connection is yet unknown, though. As a result, we decided to investigate the potential causal relationship between Sphingomyelin and genetic vulnerability to stroke, as well as the potential mediating function that immune cells may play in this process, using Mendelian randomization (MR) approaches. METHODS A published genome-wide association study (GWAS) dataset of European populations served as the foundation for the MR Study. The inverse variance weighting (IVW) model is the main technique. Four additional statistical techniques (MR Egger, Weighted median, Simple mode, and Weighted mode) were also employed to enhance the verification process. Reverse MR Analysis was utilized to reinforce the findings, and heterogeneity and horizontal pleipotency were assessed. Additionally, this study looked into potential immune cell mediating roles in the causal link between sphingomyelin and stroke using two-step MR techniques. RESULT The IVW metod's results indicated that sphingomyelin genetic susceptibility was linked to a high risk of stroke (OR = 1.045 [95 %CI, 1.004-1.087; P = 0.031). Additionally, the statistical result of SSC-A on CD8br and stroke was IVW [P = 0.007, OR(95 % CI) 1.020 (1.005-1.034)], which was proportionate to the increased risk of stroke. A lower incidence of stroke IVW is linked to CD45 on CD8br [P = 0.004, OR(95 % CI) 0.993 (0.988-0.998)]. Furthermore, our results imply that SSC-A on CD8br and CD45 on CD8br contribute to the causative relationship between sphingomyelin and stroke. The percentages of conciliation are 5.38 %, 22.7 %, 33.5 %), and 0.000999, 0.0152, 0.0132, respectively. CONCLUSION We confirmed the effect of sphingomyelin on stroke and conducted in-depth studies. SSC-A on CD8br and CD45 on CD8br is latent stroke mediators associated with sphingomyelin. Through two-step mediated Mendelian randomization analysis, we provide new insights into the etiology and treatment of stroke.
Collapse
Affiliation(s)
- Cong Xu
- School of Clinical Medicine, Dali University, Dali, Yunnan 671000, PR China
| | - Yonghong Xu
- Department of General Surgery, Banan Hospital Affiliated to Chongqing Medical University, Banan, Chongqing 401320, PR China
| | - Jianglei Ma
- School of Clinical Medicine, Dali University, Dali, Yunnan 671000, PR China
| | - Guangming Wang
- School of Clinical Medicine, Dali University, Dali, Yunnan 671000, PR China; Center of Genetic Testing, The First Affiliated Hospital of Dali University, Dali 671000, PR China.
| |
Collapse
|
9
|
Mattingly JR, Wu A, York AG. Regulation of Adaptive Immunity by Lipid Post-translational Modifications. Immune Netw 2025; 25:e11. [PMID: 40078786 PMCID: PMC11896658 DOI: 10.4110/in.2025.25.e11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 03/14/2025] Open
Abstract
The burgeoning field of immunometabolism highlights the interdependence between metabolic programs and efficacious immune responses. The current understanding that cellular metabolic remodeling is necessary for a competent adaptive immune response, along with acutely sensitive methodologies such as high-performance liquid chromatography/mass spectrometry and advanced proteomics, have ushered in a renaissance of lipid- and metabolic-based scientific inquiries. One facet of recent interest examines how lipids function as post-translational modifications (PTMs) and their resulting effects on adaptive immune responses. The goal of this review is to establish a fundamental understanding of these protein modifications and highlight recent findings that underscore the importance of continued investigation into lipids as PTMs.
Collapse
Affiliation(s)
- Jonathan R. Mattingly
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Aimee Wu
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Autumn G. York
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Fonseca TAH, Von Rekowski CP, Araújo R, Oliveira MC, Justino GC, Bento L, Calado CRC. Comparison of two metabolomics-platforms to discover biomarkers in critically ill patients from serum analysis. Comput Biol Med 2025; 184:109393. [PMID: 39549530 DOI: 10.1016/j.compbiomed.2024.109393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/08/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Serum metabolome analysis is essential for identifying disease biomarkers and predicting patient outcomes in precision medicine. Thus, this study aims to compare Ultra-High Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS) with Fourier Transform Infrared (FTIR) spectroscopy in acquiring the serum metabolome of critically ill patients, associated with invasive mechanical ventilation (IMV), and predicting death. Three groups of 8 patients were considered. Group A did not require IMV and survived hospitalization, while Groups B and C required IMV. Group C patients died a median of 5 days after sample harvest. Good prediction models were achieved when comparing groups A to B and B to C using both platforms' data, with UHPLC-HRMS showing 8-17 % higher accuracies (≥83 %). However, developing predictive models using metabolite sets was not feasible when comparing unbalanced populations, i.e., Groups A and B combined to Group C. Alternatively, FTIR-spectroscopy enabled the development of a model with 83 % accuracy. Overall, UHPLC-HRMS data yields more robust prediction models when comparing homogenous populations, potentially enhancing understanding of metabolic mechanisms and improving patient therapy adjustments. FTIR-spectroscopy is more suitable for unbalanced populations. Its simplicity, speed, cost-effectiveness, and high-throughput operation make it ideal for large-scale studies and clinical translation in complex populations.
Collapse
Affiliation(s)
- Tiago A H Fonseca
- NMS - NOVA Medical School, FCM - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria 130, 1169-056, Lisbon, Portugal; ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007, Lisbon, Portugal; CHRC - Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082, Lisbon, Portugal.
| | - Cristiana P Von Rekowski
- NMS - NOVA Medical School, FCM - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria 130, 1169-056, Lisbon, Portugal; ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007, Lisbon, Portugal; CHRC - Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082, Lisbon, Portugal.
| | - Rúben Araújo
- NMS - NOVA Medical School, FCM - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria 130, 1169-056, Lisbon, Portugal; ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007, Lisbon, Portugal; CHRC - Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082, Lisbon, Portugal.
| | - M Conceição Oliveira
- Centro de Química Estrutural - Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.
| | - Gonçalo C Justino
- Centro de Química Estrutural - Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.
| | - Luís Bento
- Intensive Care Department, ULSSJ - Unidade Local de Saúde de São José, Rua José António Serrano, 1150-199, Lisbon, Portugal; Integrated Pathophysiological Mechanisms, CHRC - Comprehensive Health Research Centre, NMS - NOVA Medical School, FCM - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056, Lisbon, Portugal.
| | - Cecília R C Calado
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007, Lisbon, Portugal; IBB-Institute for Bioengineering and Biosciences, The Associate Laboratory Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
11
|
Aden D, Sureka N, Zaheer S, Chaurasia JK, Zaheer S. Metabolic Reprogramming in Cancer: Implications for Immunosuppressive Microenvironment. Immunology 2025; 174:30-72. [PMID: 39462179 DOI: 10.1111/imm.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
12
|
Liu Y, Qin J, Li X, Wu G. Oxysterols in tumor immune microenvironment (TIME). J Steroid Biochem Mol Biol 2025; 245:106634. [PMID: 39551164 DOI: 10.1016/j.jsbmb.2024.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Oxysterols are compounds generated through oxidative reactions involving cholesterol and other steroid molecules. They play a crucial role in the tumor immune microenvironment by interacting with molecules such as the cell membrane receptor EBI2 and nuclear receptors like LXR and PXR. This interaction regulates immune cell signaling pathways, affecting proliferation, apoptosis, migration, and invasion in tumor-related processes. Activating these receptors alters the function and behavior of immune cells-such as macrophages, T cells, and dendritic cells-within the tumor microenvironment, thus promoting or inhibiting tumor development. Certain oxidized steroids can increase both the number and activation of infiltrating T cells, synergizing with anti-PD-1 to enhance anti-tumor efficacy. An in-depth study of the biological mechanisms of oxidized sterols will not only enhance our understanding of the complexity of the tumor immune microenvironment but may also reveal new therapeutic targets, providing innovative strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuanxin Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Jie Qin
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
13
|
Singer M, Hamdy R, Ghonaim JH, Husseiny MI. Metabolic Imbalance in Immune Cells in Relation to Metabolic Disorders, Cancer, and Infections. METABOLIC DYNAMICS IN HOST-MICROBE INTERACTION 2025:187-218. [DOI: 10.1007/978-981-96-1305-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
|
14
|
Anand PK. From fat to fire: The lipid-inflammasome connection. Immunol Rev 2025; 329:e13403. [PMID: 39327931 PMCID: PMC11744241 DOI: 10.1111/imr.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Inflammasomes are multiprotein complexes that play a crucial role in regulating immune responses by governing the activation of Caspase-1, the secretion of pro-inflammatory cytokines, and the induction of inflammatory cell death, pyroptosis. The inflammasomes are pivotal in effective host defense against a range of pathogens. Yet, overt activation of inflammasome signaling can be detrimental. The most well-studied NLRP3 inflammasome has the ability to detect a variety of stimuli including pathogen-associated molecular patterns, environmental irritants, and endogenous stimuli released from dying cells. Additionally, NLRP3 acts as a key sensor of cellular homeostasis and can be activated by disturbances in diverse metabolic pathways. Consequently, NLRP3 is considered a key player linking metabolic dysregulation to numerous inflammatory disorders such as gout, diabetes, and atherosclerosis. Recently, compelling studies have highlighted a connection between lipids and the regulation of NLRP3 inflammasome. Lipids are integral to cellular processes that serve not only in maintaining the structural integrity and subcellular compartmentalization, but also in contributing to physiological equilibrium. Certain lipid species are known to define NLRP3 subcellular localization, therefore directly influencing the site of inflammasome assembly and activation. For instance, phosphatidylinositol 4-phosphate plays a crucial role in NLRP3 localization to the trans Golgi network. Moreover, new evidence has demonstrated the roles of lipid biosynthesis and trafficking in activation of the NLRP3 inflammasome. This review summarizes and discusses these emerging and varied roles of lipid metabolism in inflammasome activation. A deeper understanding of lipid-inflammasome interactions may open new avenues for therapeutic interventions to prevent or treat chronic inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Paras K. Anand
- Department of Infectious Disease, Faculty of MedicineImperial College LondonLondonUK
| |
Collapse
|
15
|
Topham B, Hock B, Phillips E, Wiggins G, Currie M. The Role of Innate Priming in Modifying Tumor-associated Macrophage Phenotype. FRONT BIOSCI-LANDMRK 2024; 29:418. [PMID: 39735978 DOI: 10.31083/j.fbl2912418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 12/31/2024]
Abstract
Tumor-associated macrophages (TAMs) are innate immune cells that exert far reaching influence over the tumor microenvironment (TME). Depending on cues within the local environment, TAMs may promote tumor angiogenesis, cancer cell invasion and immunosuppression, or, alternatively, inhibit tumor progression via neoantigen presentation, tumoricidal reactive oxygen species generation and pro-inflammatory cytokine secretion. Therefore, TAMs have a pivotal role in determining tumor progression and response to therapy. TAM phenotypes are driven by cytokines and physical cues produced by tumor cells, adipocytes, fibroblasts, pericytes, immune cells, and other cells within the TME. Research has shown that TAMs can be primed by environmental stimuli, adding another layer of complexity to the environmental context that determines TAM phenotype. Innate priming is a functional consequence of metabolic and epigenetic reprogramming of innate cells by a primary stimulant, resulting in altered cellular response to future secondary stimulation. Innate priming offers a novel target for development of cancer immunotherapy and improved prognosis of disease, but also raises the risk of exacerbating existing inflammatory pathologies. This review will discuss the mechanisms underlying innate priming including metabolic and epigenetic modification, its relevance to TAMs and tumor progression, and possible clinical implications for cancer treatment.
Collapse
Affiliation(s)
- Ben Topham
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand
| | - Barry Hock
- Haematology Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand
| | - George Wiggins
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand
| | - Margaret Currie
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand
| |
Collapse
|
16
|
Ortega MA, Fraile-Martinez O, García-Montero C, Diaz-Pedrero R, Lopez-Gonzalez L, Monserrat J, Barrena-Blázquez S, Alvarez-Mon MA, Lahera G, Alvarez-Mon M. Understanding immune system dysfunction and its context in mood disorders: psychoneuroimmunoendocrinology and clinical interventions. Mil Med Res 2024; 11:80. [PMID: 39681901 DOI: 10.1186/s40779-024-00577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2024] [Indexed: 12/18/2024] Open
Abstract
Mood disorders include a set of psychiatric manifestations of increasing prevalence in our society, being mainly represented by major depressive disorder (MDD) and bipolar disorder (BD). The etiopathogenesis of mood disorders is extremely complex, with a wide spectrum of biological, psychological, and sociocultural factors being responsible for their appearance and development. In this sense, immune system dysfunction represents a key mechanism in the onset and pathophysiology of mood disorders, worsening mainly the central nervous system (neuroinflammation) and the periphery of the body (systemic inflammation). However, these alterations cannot be understood separately, but as part of a complex picture in which different factors and systems interact with each other. Psychoneuroimmunoendocrinology (PNIE) is the area responsible for studying the relationship between these elements and the impact of mind-body integration, placing the immune system as part of a whole. Thus, the dysfunction of the immune system is capable of influencing and activating different mechanisms that promote disruption of the psyche, damage to the nervous system, alterations to the endocrine and metabolic systems, and disruption of the microbiota and intestinal ecosystem, as well as of other organs and, in turn, all these mechanisms are responsible for inducing and enhancing the immune dysfunction. Similarly, the clinical approach to these patients is usually multidisciplinary, and the therapeutic arsenal includes different pharmacological (for example, antidepressants, antipsychotics, and lithium) and non-pharmacological (i.e., psychotherapy, lifestyle, and electroconvulsive therapy) treatments. These interventions also modulate the immune system and other elements of the PNIE in these patients, which may be interesting to understand the therapeutic success or failure of these approaches. In this sense, this review aims to delve into the relationship between immune dysfunction and mood disorders and their integration in the complex context of PNIE. Likewise, an attempt will be made to explore the effects on the immune system of different strategies available in the clinical approach to these patients, in order to identify the mechanisms described and their possible uses as biomarkers.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806, Alcalá de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806, Alcalá de Henares, Spain
| |
Collapse
|
17
|
Iliou A, Argyropoulou OD, Palamidas DA, Karagiannakou M, Benaki D, Tsezou KI, Vlachoyiannopoulos PG, Mikros E, Tzioufas AG. NMR-based metabolomics in giant cell arteritis and polymyalgia rheumatica sequential sera differentiates active and inactive disease. Rheumatology (Oxford) 2024; 63:3360-3369. [PMID: 37935429 DOI: 10.1093/rheumatology/kead590] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
OBJECTIVES GCA is an inflammatory disease following a chronic, relapsing course. The metabolic alterations related to the intense inflammatory process during the active phase and the rapid impact of steroid treatment remain unknown. This study aims to investigate the serum metabolome in active and inactive disease states. METHODS A total of 110 serum samples from 50 patients (33 GCA and 17 PMR) at three time points-0 (V1: active disease), 1 and 6 months (V2 and V3: remission)-of treatment with glucocorticoids (GCs) were subjected to NMR-based metabolomic analysis. Multi- and univariate statistical analyses were utilized to unveil metabolome alterations following treatment. RESULTS Distinct metabolic profiles were identified between activity and remission, independent of disease type. N-acetylglycoproteins and cholines of bound phospholipids emerged as predictive markers of disease activity. Altered levels of 4 of the 21 small molecules were also observed, including increased levels of phenylalanine and decreased glutamine, alanine and creatinine in active disease. Metabolic fingerprinting discriminated GCA from PMR in remission. GCA and PMR patients exhibited characteristic lipid alterations as a response and/or adverse effect of GC treatment. Correlation analysis showed that several identified biomarkers were further associated with acute phase reactants, CRP and ESR. CONCLUSION The NMR profile of serum metabolome could identify and propose sensitive biomarkers of inflammation. Metabolome alterations, following GC treatment, could provide predictors for future steroid-induced side effects.
Collapse
Affiliation(s)
- Aikaterini Iliou
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ourania D Argyropoulou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris-Anastasios Palamidas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Research Institute for Systemic Autoimmune Rheumatic Diseases (RISARD), Athens, Greece
| | - Marianna Karagiannakou
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Benaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina-Ismini Tsezou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Pharmagnose S.A., Inofyta, Greece
| | - Panayiotis G Vlachoyiannopoulos
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Research Institute for Systemic Autoimmune Rheumatic Diseases (RISARD), Athens, Greece
| | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- Pharmagnose S.A., Inofyta, Greece
- Pharma - Informatics Unit, Athena Research and Innovation Center in Information Communication & Knowledge Technologies, Marousi, Greece
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Research Institute for Systemic Autoimmune Rheumatic Diseases (RISARD), Athens, Greece
- Center of Stratified Medicine in Autoimmune and Rheumatic Diseases, Biomedical Research Foundation Academy of Athens, Athens, Greece
| |
Collapse
|
18
|
Morris I, Vrieling F, Bouwman A, Stienstra R, Kalkhoven E. Lipid accumulation in adipose tissue-resident iNKT cells contributes to an inflammatory phenotype. Adipocyte 2024; 13:2421750. [PMID: 39484712 PMCID: PMC11540091 DOI: 10.1080/21623945.2024.2421750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Reciprocal communication between adipocytes and immune cells is essential to maintain optimal adipose tissue (AT) functionality. Amongst others, adipocytes directly interact with invariant NKT cells (iNKT cells), which in turn secrete various cytokines. A lipid-rich microenvironment, as observed in obesity, skews this adipocyte-driven cytokine output towards a more inflammatory output. Whether a lipid-rich microenvironment also affects iNKT cells directly, however, is unknown. Here, we show that primary mouse iNKT cells isolated from AT can accumulate lipids in lipid droplets (LDs), more so than liver- and spleen-resident iNKT cells. Furthermore, a lipid-rich microenvironment increased the production of the proinflammatory cytokine IFNγ. Next, to an indirect, adipocyte-mediated cue, iNKT cells can directly respond to environmental lipid changes, supporting a potential role as nutrient sensors.
Collapse
Affiliation(s)
- Imogen Morris
- Ce nter for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Frank Vrieling
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Annemieke Bouwman
- Ce nter for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eric Kalkhoven
- Ce nter for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
19
|
Błażewicz A, Wojnicka J, Grabrucker AM, Sosnowski P, Trzpil A, Kozub-Pędrak A, Szałaj K, Szmagara A, Grywalska E, Skórzyńska-Dziduszko K. Preliminary investigations of plasma lipidome and selenium levels in adults with treated hypothyroidism and in healthy individuals without selenium deficiency. Sci Rep 2024; 14:29140. [PMID: 39587337 PMCID: PMC11589578 DOI: 10.1038/s41598-024-80862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024] Open
Abstract
The present preliminary study aimed to provide a targeted lipidomic analysis of Hashimoto (HT) and non-HT patients with well-controlled hypothyroidism as well as in healthy adults, and is the first to demonstrate the association of several components of the human lipidome with hypothyroidism in relation to the total plasma selenium content. All the patients and age-, sex-, and BMI-matched healthy controls met the very strict qualification criteria. Se levels were analyzed by ICP-MS, and lipidome studies were conducted using TQ-LC/MS. The 40 acylcarnitines, 90 glycerophospholipids, and 15 sphingomyelins were identified and quantified. PCaaC26:0 and PCaaC40:1 were negatively correlated with Se concentrations. Other lipids that were negatively correlated with Se concentrations but did not present significant differences between the three groups in the Kruskal-Wallis ANOVA test were PCaaC32:0, PCaeC30:0, PCaeC36:5, SMC18:0, and SM C18:1. In the multiple linear regression analyses, Se levels showed negative relationship, whereas different phosphatidylcholines: PCaaC24:0, PCaaC26:0, PCaeC30:1, PCaeC34:0, PCaeC36:4, PCaeC42:0 were positively associated with the presence of (H). Different lipidome components were identified in healthy and hypothyroid patients regardless of the cause of that condition. Studies on larger populations are needed to determine cause-and-effect relations and the potential mechanisms underlying these associations.
Collapse
Affiliation(s)
- Anna Błażewicz
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Chair of Biomedical Sciences, Medical University of Lublin, 1 Chodźki Street, 20-093, Lublin, Poland.
- Department of Biological Sciences, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Julia Wojnicka
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Chair of Biomedical Sciences, Medical University of Lublin, 1 Chodźki Street, 20-093, Lublin, Poland
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, V94 T9PX, Ireland
- Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, V94 T9PX, Ireland
| | - Piotr Sosnowski
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Alicja Trzpil
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Anna Kozub-Pędrak
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Klaudia Szałaj
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Agnieszka Szmagara
- Faculty of Medicine, Institute of Biological Sciences, Department of Chemistry, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708, Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093, Lublin, Poland
| | | |
Collapse
|
20
|
Pacheco Sanchez G, Lopez M, Velez LM, Tamburini I, Ujagar N, Ayala J, Robles GD, Choi H, Arriola J, Kapadia R, Zonderman AB, Evans MK, Jang C, Seldin MM, Nicholas DA. Comparative analysis of White and African American groups reveals unique lipid and inflammatory features of diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.13.24317202. [PMID: 39606357 PMCID: PMC11601720 DOI: 10.1101/2024.11.13.24317202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Importance African Americans have a higher prevalence of Type 2 Diabetes (T2D) compared to White groups. T2D is a health disparity clinically characterized by dysregulation of lipids and chronic inflammation. However, how the relationships among biological and sociological predictors of T2D drive this disparity remains to be addressed. Objective To determine characteristic plasma lipids and systemic inflammatory biomarkers contributing to diabetes presentation between White and African American groups. Design We performed a cross-sectional retrospective cohort study using pre-existing demographic and clinical data from two diverse studies: Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) and AllofUs. From HANDLS (N=40), we used information from wave 1 (2004). From AllofUs (N=17,339), we used data from the Registered Tier Dataset v7, available in the AllofUs researcher workbench. Setting HANDLS is a population-based cohort study involving 3720 participants in the Baltimore area supported by the Intramural Research Program of the National Institute on Aging. HANDLS is a longitudinal study designed to understand the sources of persistent health disparities in overall longevity and chronic disease in White and African American individuals. The AllofUs study is an NIH funded multicenter study consisting of patient-level data from 331,382 individuals from 35 hospitals in the United States aimed at sampling one million or more people living in the United States to provide a collection of broadly accessible data. Participants The HANDLS subcohort participants (N=40) were divided into four groups equally distributed by race, sex, and diabetes status. Groups were also matched by age, body mass index, and poverty status. The analysis pipeline consisted of evaluating the significance of the variables race and disease status using the 2-way ANOVA test and post-ANOVA comparisons using Fisher LSD test, reporting unadjusted p-values. Additionally, unsupervised (PCA) and supervised (OPLS-DA) clustering analysis was performed to determine putative biological drivers of variability and main immunological and metabolic features characterizing diabetes in White and African American groups from HANDLS. Major clinical findings were validated in a large cohort of White and African American groups with T2D in the AllofUS research study (N=17,339). AllofUs groups were of similar range in age and BMI as HANDLS. Furthermore, a linear regression model was built adjusting for age and BMI to determine differences in clinical findings between White and African American groups with T2D. Main Outcomes and Measures Primary outcomes using a HANDLS subcohort (N=40) were clinical parameters related to diabetes, plasma lipids determined by lipidomics and measured by mass spectrometry, and cytokine profiling using a customized panel of 52 cytokines and growth factors measured by Luminex. Outcomes evaluated in the AllofUs study (N=17,339) were clinical: cholesterol to HDL ratio, triglycerides, fasting glucose, insulin, and hemoglobin A1C. Results In the HANDLS subcohort, White individuals with diabetes had elevated cholesterol to HDL ratio (mean difference -1.869, p =0.0053 ) , high-sensitivity C-reactive protein (mean difference -9.135, p =0.0040), and clusters of systemic triglycerides measured by lipidomics, compared to White individuals without diabetes. These clinical markers of dyslipidemia (cholesterol to HDL ratio and triglycerides) and inflammation (hs-CRP) were not significantly elevated in diabetes in African Americans from the HANDLS subcohort. These results persisted even when controlling for statin use. Diabetes in White individuals in the HANDLS cohort was characterized by a marked elevation in plasma lipids, while an inflammatory status characterized by Th17-cytokines was predominant in the African American group from the HANDLS subcohort. We validated the key findings of elevated triglycerides and cholesterol to HDL ratio in White individuals with T2D in a sample (N=17,339) of the AllofUs study. Conclusions and Relevance Our results show that diabetes can manifest with healthy lipid profiles, particularly in these cohorts of African Americans. This study suggests that Th17-inflammation associated with diabetes is characteristic of African Americans, while a more classic inflammation is distinctive of White individuals from HANDLS cohort. Further, clinical markers of dyslipidemia seem to characterize diabetes presentation only in White groups, and not in African Americans.
Collapse
|
21
|
Błażewicz A, Kiełbus M, Skórzyńska-Dziduszko K, Grabrucker AM, Jonklaas J, Sosnowski P, Trzpil A, Kozub-Pędrak A, Szmagara A, Wojnicka J, Grywalska E, Almeida A. Application of Human Plasma Targeted Lipidomics and Analysis of Toxic Elements to Capture the Metabolic Complexities of Hypothyroidism. Molecules 2024; 29:5169. [PMID: 39519809 PMCID: PMC11547455 DOI: 10.3390/molecules29215169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Hypothyroidism (HT) affects millions worldwide and can lead to various lipid disorders. The metabolic complexity and the influence of toxic elements in autoimmune and non-autoimmune HT subtypes are not fully understood. This study aimed to investigate the relationships between plasma lipidome, toxic elements, and clinical classifications of HT in unexposed individuals. METHODS Samples were collected from 120 adults assigned to a study group with Hashimoto's disease and non-autoimmune HT, and a healthy control group. Quantification of 145 pre-defined lipids was performed by using triple quadrupole tandem mass spectrometry (TQ MS/MS) in multiple reactions monitoring (MRM) mode via positive electrospray ionization (ESI). Levels of toxic elements were determined using inductively coupled plasma mass spectrometry (ICP-MS). RESULTS Significant associations between altered levels of several components of the plasma lipidome and Al, Cd, Ni, As, and Pb with HT were found. We show metabolic differences in lysophosphatidylcholines (LPC) and phosphatidylcholines (PC) between HT and controls, with distinct predicted activation patterns for lysolecithin acyltransferase and phospholipase A2. CONCLUSIONS There are significant changes in the lipidome profiles of healthy subjects compared to euthyroid HT patients treated with L-thyroxine, which are related to the type of hypothyroidism and non-occupational exposure to toxic elements.
Collapse
Affiliation(s)
- Anna Błażewicz
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Chair of Biomedical Sciences, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Michał Kiełbus
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | | | - Andreas M. Grabrucker
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| | - Jacqueline Jonklaas
- Division of Endocrinology, Georgetown University, Washington, DC 20007, USA;
| | - Piotr Sosnowski
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (P.S.); (A.T.); (A.K.-P.)
| | - Alicja Trzpil
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (P.S.); (A.T.); (A.K.-P.)
| | - Anna Kozub-Pędrak
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (P.S.); (A.T.); (A.K.-P.)
| | - Agnieszka Szmagara
- Department of Chemistry, Faculty of Medicine, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland;
| | - Julia Wojnicka
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Chair of Biomedical Sciences, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland;
| | - Agostinho Almeida
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, 50-313 Porto, Portugal
| |
Collapse
|
22
|
Ben-Aicha S, Anwar M, Vilahur G, Martino F, Kyriazis PG, de Winter N, Punjabi PP, Angelini GD, Sattler S, Emanueli C. Small Extracellular Vesicles in the Pericardium Modulate Macrophage Immunophenotype in Coronary Artery Disease. JACC Basic Transl Sci 2024; 9:1057-1072. [PMID: 39444932 PMCID: PMC11494395 DOI: 10.1016/j.jacbts.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 10/25/2024]
Abstract
Coronary artery disease (CAD) is a major health issue. This study focused on pericardial macrophages and small extracellular vesicles (sEVs) in CAD. The macrophages in CAD patients showed reduced expression of protective markers and unchanged levels of proinflammatory receptors. Similar changes were observed in buffy-coat-derived macrophages when stimulated with CAD pericardial fluid-derived sEVs. The sEV contained miRNA-6516-5p, which inhibited CD36 and affected macrophage lipid uptake. These findings indicate that sEV-mediated miRNA actions contribute to the decrease in protective pericardial macrophages in CAD.
Collapse
Affiliation(s)
- Soumaya Ben-Aicha
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Maryam Anwar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Fabiana Martino
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Panagiotis G. Kyriazis
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Hammersmith Hospital, Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Natasha de Winter
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Prakash P. Punjabi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Gianni D. Angelini
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Hammersmith Hospital, Imperial College Healthcare National Health Service Trust, London, United Kingdom
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Pharmacology, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Zhang Z, Yu Z, Liang D, Song K, Kong X, He M, Liao X, Huang Z, Kang A, Bai R, Ren Y. Roles of lipid droplets and related proteins in metabolic diseases. Lipids Health Dis 2024; 23:218. [PMID: 39030618 PMCID: PMC11264848 DOI: 10.1186/s12944-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Lipid droplets (LDs), which are active organelles, derive from the monolayer membrane of the endoplasmic reticulum and encapsulate neutral lipids internally. LD-associated proteins like RAB, those in the PLIN family, and those in the CIDE family participate in LD formation and development, and they are active players in various diseases, organelles, and metabolic processes (i.e., obesity, non-alcoholic fatty liver disease, and autophagy). Our synthesis on existing research includes insights from the formation of LDs to their mechanisms of action, to provide an overview needed for advancing research into metabolic diseases and lipid metabolism.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ming He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
| | - Xinxin Liao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziyan Huang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Rubing Bai
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, China.
| |
Collapse
|
24
|
Iperi C, Fernández-Ochoa Á, Pers JO, Barturen G, Alarcón-Riquelme M, Quirantes-Piné R, Borrás-Linares I, Segura-Carretero A, Cornec D, Bordron A, Jamin C. Integration of multi-omics analysis reveals metabolic alterations of B lymphocytes in systemic lupus erythematosus. Clin Immunol 2024; 264:110243. [PMID: 38735509 DOI: 10.1016/j.clim.2024.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE To link changes in the B-cell transcriptome from systemic lupus erythematosus (SLE) patients with those in their macroenvironment, including cellular and fluidic components. METHODS Analysis was performed on 363 patients and 508 controls, encompassing transcriptomics, metabolomics, and clinical data. B-cell and whole-blood transcriptomes were analysed using DESeq and GSEA. Plasma and urine metabolomics peak changes were quantified and annotated using Ceu Mass Mediator database. Common sources of variation were identified using MOFA integration analysis. RESULTS Cellular macroenvironment was enriched in cytokines, stress responses, lipidic synthesis/mobility pathways and nucleotide degradation. B cells shared these pathways, except nucleotide degradation diverted to nucleotide salvage pathway, and distinct glycosylation, LPA receptors and Schlafen proteins. CONCLUSIONS B cells showed metabolic changes shared with their macroenvironment and unique changes directly or indirectly induced by IFN-α signalling. This study underscores the importance of understanding the interplay between B cells and their macroenvironment in SLE pathology.
Collapse
Affiliation(s)
| | | | | | - Guillermo Barturen
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Marta Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rosa Quirantes-Piné
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Granada, Spain
| | | | | | - Divi Cornec
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | - Anne Bordron
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | | |
Collapse
|
25
|
Zhu ZG, Ma JW, Ji DD, Li QQ, Diao XY, Bao J. Mendelian randomization analysis identifies causal associations between serum lipidomic profile, amino acid biomarkers and sepsis. Heliyon 2024; 10:e32779. [PMID: 38975226 PMCID: PMC11226841 DOI: 10.1016/j.heliyon.2024.e32779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Background Sepsis is a life-threatening condition marked by a severe systemic response to infection, leading to widespread inflammation, cellular signaling disruption, and metabolic dysregulation. The role of lipid and amino acid metabolism in sepsis is not fully understood, but aberrations in this pathway could contribute to the disease's pathophysiology. Methods To explore the potential of lipid and amino acid compounds as biomarkers for the diagnosis and prognosis of sepsis, a two-sample Mendelian Randomization (MR) study was conducted, examining the relationship between sepsis and 249 serum lipid and amino acid-related markers. Key enzymes involved in synthesis of phosphatidylcholine, including choline/ethanolamine phosphotransferase 1 (CEPT1), choline phosphotransferase 1 (CPT1), and ethanolamine phosphotransferase 1 (EPT1), were also targeted for drug-target Mendelian randomization. Results The study found that phosphatidylcholines (OR IVW: 0.88, 95%CI: 0.80-0.96, p = 0.005) and phospholipids in medium HDL (OR IVW: 0.86, 95%CI: 0.77-0.96, p = 0.007) potentially exhibit a protective effect against sepsis nominally. However, the potential drug target of CEPT1, CPT1, and EPT1 was found to be unrelated to septic outcomes. Conclusion Our findings suggest that increasing levels of phosphatidylcholines and medium HDL phospholipids may reduce the incidence of sepsis. This highlights the potential of lipid-based biomarkers in the diagnosis and management of sepsis, opening avenues for new therapeutic strategies.
Collapse
Affiliation(s)
- Zi-gang Zhu
- Department of Critical Care Medicine, Jiangnan University Medical Center,Wuxi No.2 People's Hospital, Wuxi, 214002, China
| | - Jia-wei Ma
- Department of Critical Care Medicine, Jiangnan University Medical Center,Wuxi No.2 People's Hospital, Wuxi, 214002, China
- Department of Critical Care Medicine, Aheqi County People's Hospital, Xinjiang, 843599, China
| | - Dan-dan Ji
- Department of Critical Care Medicine, Jiangnan University Medical Center,Wuxi No.2 People's Hospital, Wuxi, 214002, China
| | - Qian-qian Li
- Department of Critical Care Medicine, Jiangnan University Medical Center,Wuxi No.2 People's Hospital, Wuxi, 214002, China
| | - Xin-yu Diao
- Emergency Department, Yixing Traditional Chinese Medicine Hospital, Yixing,214299,China
| | - Jie Bao
- Department of Critical Care Medicine, Jiangnan University Medical Center,Wuxi No.2 People's Hospital, Wuxi, 214002, China
| |
Collapse
|
26
|
Tiwari P, Verma S, Washimkar KR, Nilakanth Mugale M. Immune cells crosstalk Pathways, and metabolic alterations in Idiopathic pulmonary fibrosis. Int Immunopharmacol 2024; 135:112269. [PMID: 38781610 DOI: 10.1016/j.intimp.2024.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) presents a challenging progression characterized by lung tissue scarring and abnormal extracellular matrix deposition. This review examines the influence of immune responses, emphasizing their complex role in initiating and perpetuating fibrosis. It highlights how metabolic pathways modulate immune cell function during IPF. Immune cell modulation holds promise in managing pulmonary fibrosis (PF). Inhibiting neutrophil recruitment and monitoring mast cell levels offer insights into PF progression. Low-dose IL-2 therapy and regulation of fibroblast recruitment present potential therapeutic avenues, while the role of innate lymphoid cells (ILC2s) in allergic lung inflammation sheds light on disease mechanisms. The review focuses on metabolic reprogramming's role in shaping immune cell function during IPF progression. While some immune cells use glycolysis for pro-inflammatory responses, others favor fatty acid oxidation for regulatory functions. Targeting specialized pro-resolving lipid mediators (SPMs) presents significant potential for managing fibrotic disorders. Additionally, it highlights the pivotal role of amino acid metabolism in synthesizing serine and glycine as crucial regulators of collagen production and exploring the interconnectedness of lipid metabolism, mitochondrial dysfunction, and adipokines in driving fibrotic processes. Moreover, the review discusses the impact of metabolic disorders such as obesity and diabetes on lung fibrosis. Advocating for a holistic approach, it emphasizes the importance of considering this interplay between immune cell function and metabolic pathways in developing effective and personalized treatments for IPF.
Collapse
Affiliation(s)
- Purnima Tiwari
- Division of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, India
| | - Shobhit Verma
- Division of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
27
|
Yang L, Kang Y, Li N, Wang Y, Mou H, Sun H, Ao T, Chen L, Chen W. Unlocking hormesis and toxic effects induced by cadmium in Polygonatum cyrtonema Hua based on morphology, physiology and metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133447. [PMID: 38219579 DOI: 10.1016/j.jhazmat.2024.133447] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Traditional Chinese medicine materials (TCMMs) are widely planted and used, while cadmium (Cd) is a widespread pollutant that poses a potential risk to plant growth and human health. However, studies on the influences of Cd on TCMMs have been limited. Our study aims to reveal the antioxidation-related detoxification mechanism of Polygonatum cyrtonema Hua under Cd stress based on physiology and metabolomics. The results showed that Cd0.5 (total Cd: 0.91 mg/kg; effective Cd: 0.45 mg/kg) induced hormesis on the biomass of roots, tubers and aboveground parts with increases of 22.88%, 27.12% and 17.02%, respectively, and significantly increased the flavonoids content by 57.45%. Additionally, the metabolism of caffeine, glutamine, arginine and purine was upregulated to induce hormesis in Cd0.5, which enhanced the synthesis of resistant substances such as spermidine, choline, IAA and saponins. Under Cd2 stress, choline and IAA decreased, and fatty acid metabolites (such as peanut acid and linoleic acid) and 8-hydroxyguanosine increased in response to oxidative damage, resulting in a significant biomass decrease. Our findings further reveal the metabolic process of detoxification by antioxidants and excessive Cd damage in TCMMs, deepen the understanding of detoxification mechanisms related to antioxidation, and enrich the relevant theories of hormesis induced by Cd.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources, Ministry of Education, Sichuan Normal University, Chengdu 610068, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuchen Kang
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610207, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Na Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuhao Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Haiyan Mou
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610207, China
| | - Hui Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Wenqing Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610207, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
28
|
How CM, Li YS, Huang WY, Wei CC. Early-life exposure to mycotoxin zearalenone exacerbates aberrant immune response, oxidative stress, and mortality of Caenorhabditis elegans under pathogen Bacillus thuringiensis infection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116085. [PMID: 38342010 DOI: 10.1016/j.ecoenv.2024.116085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Zearalenone (ZEN) is a prevalent mycotoxin that severely impacts human and animal health. However, the possible interactions between ZEN exposure, pathogen infection, immune system, and reactive oxygen species (ROS) were rarely investigated. We studied the effects of early-life ZEN (50 µM) exposure on the immune response of Caenorhabditis elegans against Bacillus thuringiensis infection and the associated mechanisms. The transcriptomic responses of C. elegans after early-life ZEN exposure were investigated using RNA sequencing and followed by verification using quantitative PCR analysis. We also investigated the immune responses of the worms through B. thuringiensis killing assays and by measuring oxidative stress. The transcriptomics result showed that early-life exposure to ZEN resulted in 44 differentially expressed genes, 7 of which were protein-coding genes with unknown functions. The Gene Ontology analysis suggested that metabolic processes and immune response were among the most significantly enriched biological processes, and the KEGG analysis suggested that lysosomes and metabolic pathways were the most significantly enriched pathways. The ZEN-exposed worms exhibited significantly reduced survival after 24-h B. thuringiensis infection, reaching near 100% mortality compared to 60% of the controls. Using qRT-PCR assay, we found that ZEN further enhanced the expression of immunity genes lys-6, spp-1, and clec-60 after B. thuringiensis infection. A concurrently enhanced ROS accumulation was also observed for ZEN-exposed worms after B. thuringiensis infection, which was 1.2-fold compared with the controls. Moreover, ZEN exposure further enhanced mRNA expression of catalases (ctl-1 and ctl-2) and increased catalase protein activity after B. thuringiensis exposure compared with their non-exposed counterparts, suggesting an elevated oxidative stress. This study suggests that early-life exposure to mycotoxin zearalenone overstimulates immune responses involving spp-17, clec-52, and clec-56, resulting in excessive ROS production, enhanced oxidative stress as indicated by aggravated ctl expression and activity, and a decline in host resistance to pathogenic infection which ultimately leads to increased mortality under B. thuringiensis infection. Our findings provide evidence that could improve our understanding on the potential interactions between mycotoxin zearalenone and pathogens.
Collapse
Affiliation(s)
- Chun Ming How
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Yong-Shan Li
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Wei-Yun Huang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan.
| |
Collapse
|
29
|
Tan YJ, Jin Y, Zhou J, Yang YF. Lipid droplets in pathogen infection and host immunity. Acta Pharmacol Sin 2024; 45:449-464. [PMID: 37993536 PMCID: PMC10834987 DOI: 10.1038/s41401-023-01189-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
As the hub of cellular lipid metabolism, lipid droplets (LDs) have been linked to a variety of biological processes. During pathogen infection, the biogenesis, composition, and functions of LDs are tightly regulated. The accumulation of LDs has been described as a hallmark of pathogen infection and is thought to be driven by pathogens for their own benefit. Recent studies have revealed that LDs and their subsequent lipid mediators contribute to effective immunological responses to pathogen infection by promoting host stress tolerance and reducing toxicity. In this comprehensive review, we delve into the intricate roles of LDs in governing the replication and assembly of a wide spectrum of pathogens within host cells. We also discuss the regulatory function of LDs in host immunity and highlight the potential for targeting LDs for the diagnosis and treatment of infectious diseases.
Collapse
Affiliation(s)
- Yan-Jie Tan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yi Jin
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yun-Fan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
30
|
Zhang S, Lv K, Liu Z, Zhao R, Li F. Fatty acid metabolism of immune cells: a new target of tumour immunotherapy. Cell Death Discov 2024; 10:39. [PMID: 38245525 PMCID: PMC10799907 DOI: 10.1038/s41420-024-01807-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
Metabolic competition between tumour cells and immune cells for limited nutrients is an important feature of the tumour microenvironment (TME) and is closely related to the outcome of tumour immune escape. A large number of studies have proven that tumour cells need metabolic reprogramming to cope with acidification and hypoxia in the TME while increasing energy uptake to support their survival. Among them, synthesis, oxidation and uptake of fatty acids (FAs) in the TME are important manifestations of lipid metabolic adaptation. Although different immune cell subsets often show different metabolic characteristics, various immune cell functions are closely related to fatty acids, including providing energy, providing synthetic materials and transmitting signals. In the face of the current situation of poor therapeutic effects of tumour immunotherapy, combined application of targeted immune cell fatty acid metabolism seems to have good therapeutic potential, which is blocked at immune checkpoints. Combined application of adoptive cell therapy and cancer vaccines is reflected. Therefore, it is of great interest to explore the role of fatty acid metabolism in immune cells to discover new strategies for tumour immunotherapy and improve anti-tumour immunity.
Collapse
Affiliation(s)
- Sheng Zhang
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kebing Lv
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Liu
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ran Zhao
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Li
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, China.
- Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, China.
| |
Collapse
|
31
|
Sullivan MR, White RP, Dashnamoorthy Ravi, Kanetkar N, Fridman IB, Ekenseair A, Evens AM, Konry T. Characterizing influence of rCHOP treatment on diffuse large B-cell lymphoma microenvironment through in vitro microfluidic spheroid model. Cell Death Dis 2024; 15:18. [PMID: 38195589 PMCID: PMC10776622 DOI: 10.1038/s41419-023-06299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
For over two decades, Rituximab and CHOP combination treatment (rCHOP) has remained the standard treatment approach for diffuse large B-cell lymphoma (DLBCL). Despite numerous clinical trials exploring treatment alternatives, few options have shown any promise at further improving patient survival and recovery rates. A wave of new therapeutic approaches have recently been in development with the rise of immunotherapy for cancer, however, the cost of clinical trials is prohibitive of testing all promising approaches. Improved methods of early drug screening are essential for expediting the development of the therapeutic approaches most likely to help patients. Microfluidic devices provide a powerful tool for drug testing with enhanced biological relevance, along with multi-parameter data outputs. Here, we describe a hydrogel spheroid-based microfluidic model for screening lymphoma treatments. We utilized primary patient DLBCL cells in combination with NK cells and rCHOP treatment to determine the biological relevance of this approach. We observed cellular viability in response to treatment, rheological properties, and cell surface marker expression levels correlated well with expected in vivo characteristics. In addition, we explored secretory and transcriptomic changes in response to treatment. Our results showed complex changes in phenotype and transcriptomic response to treatment stimuli, including numerous metabolic and immunogenic changes. These findings support this model as an optimal platform for the comparative screening of novel treatments.
Collapse
Affiliation(s)
- Matthew R Sullivan
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Rachel P White
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | | | - Ninad Kanetkar
- Chemical Engineering Department, Northeastern University, Boston, MA, USA
| | - Ilana Berger Fridman
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Avram and Stella Goldstein-Goren Department of Biotechnology and Regenerative Medicine and Stem Cell Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Adam Ekenseair
- Chemical Engineering Department, Northeastern University, Boston, MA, USA
| | | | - Tania Konry
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
32
|
Xiao L, Xian M, Zhang C, Guo Q, Yi Q. Lipid peroxidation of immune cells in cancer. Front Immunol 2024; 14:1322746. [PMID: 38259464 PMCID: PMC10800824 DOI: 10.3389/fimmu.2023.1322746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Growing evidence indicates that cellular metabolism is a critical determinant of immune cell viability and function in antitumor immunity and lipid metabolism is important for immune cell activation and adaptation to the tumor microenvironment (TME). Lipid peroxidation is a process in which oxidants attack lipid-containing carbon-carbon double bonds and is an important part of lipid metabolism. In the past decades, studies have shown that lipid peroxidation participates in signal transduction to control cell proliferation, differentiation, and cell death, which is essential for cell function execution and human health. More importantly, recent studies have shown that lipid peroxidation affects immune cell function to modulate tumor immunity and antitumor ability. In this review, we briefly overview the effect of lipid peroxidation on the adaptive and innate immune cell activation and function in TME and discuss the effectiveness and sensitivity of the antitumor ability of immune cells by regulating lipid peroxidation.
Collapse
Affiliation(s)
| | | | | | | | - Qing Yi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston Methodist, Houston, TX, United States
| |
Collapse
|
33
|
Kapnick SM, Martin CA, Jewell CM. Engineering metabolism to modulate immunity. Adv Drug Deliv Rev 2024; 204:115122. [PMID: 37935318 PMCID: PMC10843796 DOI: 10.1016/j.addr.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Metabolic programming and reprogramming have emerged as pivotal mechanisms for altering immune cell function. Thus, immunometabolism has become an attractive target area for treatment of immune-mediated disorders. Nonetheless, many hurdles to delivering metabolic cues persist. In this review, we consider how biomaterials are poised to transform manipulation of immune cell metabolism through integrated control of metabolic configurations to affect outcomes in autoimmunity, regeneration, transplant, and cancer. We emphasize the features of nanoparticles and other biomaterials that permit delivery of metabolic cues to the intracellular compartment of immune cells, or strategies for altering signals in the extracellular space. We then provide perspectives on the potential for reciprocal regulation of immunometabolism by the physical properties of materials themselves. Lastly, opportunities for clinical translation are highlighted. This discussion contributes to our understanding of immunometabolism, biomaterials-based strategies for altering metabolic configurations in immune cells, and emerging concepts in this evolving field.
Collapse
Affiliation(s)
- Senta M Kapnick
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA
| | - Corinne A Martin
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 S Greene Street, Suite N9E17, Baltimore, MD, USA.
| |
Collapse
|
34
|
Lambrecht R, Delgado ME, Gloe V, Schuetz K, Plazzo AP, Franke B, San Phan T, Fleming J, Mayans O, Brunner T. Liver receptor homolog-1 (NR5A2) orchestrates hepatic inflammation and TNF-induced cell death. Cell Rep 2023; 42:113513. [PMID: 38039134 DOI: 10.1016/j.celrep.2023.113513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/09/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
The nuclear receptor liver receptor homolog-1 (LRH-1) has been shown to promote apoptosis resistance in various tissues and disease contexts; however, its role in liver cell death remains unexplored. Hepatocyte-specific deletion of LRH-1 causes mild steatosis and inflammation but unexpectedly shields female mice from tumor necrosis factor (TNF)-induced hepatocyte apoptosis and associated hepatitis. LRH-1-deficient hepatocytes show markedly attenuated estrogen receptor alpha and elevated nuclear factor κB (NF-κB) activity, while LRH-1 overexpression inhibits NF-κB activity. This inhibition relies on direct physical interaction of LRH-1's ligand-binding domain and the Rel homology domain of NF-κB subunit RelA. Mechanistically, increased transcription of anti-apoptotic NF-κB target genes and the proteasomal degradation of pro-apoptotic BCL-2 interacting mediator of cell death prevent mitochondrial apoptosis and ultimately protect mice from TNF-induced liver damage. Collectively, our study emphasizes LRH-1 as a critical, sex-dependent regulator of cell death and inflammation in the healthy and diseased liver.
Collapse
Affiliation(s)
- Rebekka Lambrecht
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - M Eugenia Delgado
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Vincent Gloe
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Karina Schuetz
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Anna Pia Plazzo
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Barbara Franke
- Biophysics and Structural Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Truong San Phan
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Jennifer Fleming
- Biophysics and Structural Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Olga Mayans
- Biophysics and Structural Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany.
| |
Collapse
|
35
|
Challagundla N, Phadnis D, Gupta A, Agrawal-Rajput R. Host Lipid Manipulation by Intracellular Bacteria: Moonlighting for Immune Evasion. J Membr Biol 2023; 256:393-411. [PMID: 37938349 DOI: 10.1007/s00232-023-00296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Lipids are complex organic molecules that fulfill energy demands and sometimes act as signaling molecules. They are mostly found in membranes, thus playing an important role in membrane trafficking and protecting the cell from external dangers. Based on the composition of the lipids, their fluidity and charge, their interaction with embedded proteins vary greatly. Bacteria can hijack host lipids to satisfy their energy needs or to conceal themselves from host cells. Intracellular bacteria continuously exploit host, from their entry into host cells utilizing host lipid machinery to exiting through the cells. This acquisition of lipids from host cells helps in their disguise mechanism. The current review explores various mechanisms employed by the intracellular bacteria to manipulate and acquire host lipids. It discusses their role in manipulating host membranes and the subsequence impact on the host cells. Modulating these lipids in macrophages not only serve the purpose of the pathogen but also modulates the macrophage energy metabolism and functional state. Additionally, we have explored the intricate pathogenic relationship and the potential prospects of using this knowledge in lipid-based therapeutics to disrupt pathogen dominance.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Deepti Phadnis
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Aakriti Gupta
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
36
|
Goswami S, Zhang Q, Celik CE, Reich EM, Yilmaz ÖH. Dietary fat and lipid metabolism in the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2023; 1878:188984. [PMID: 37722512 PMCID: PMC10937091 DOI: 10.1016/j.bbcan.2023.188984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
Metabolic reprogramming has been considered a core hallmark of cancer, in which excessive accumulation of lipids promote cancer initiation, progression and metastasis. Lipid metabolism often includes the digestion and absorption of dietary fat, and the ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment. Among multiple cancer risk factors, obesity has a positive association with multiple cancer types, while diets like calorie restriction and fasting improve health and delay cancer. Impact of these diets on tumorigenesis or cancer prevention are generally studied on cancer cells, despite heterogeneity of the tumor microenvironment. Cancer cells regularly interact with these heterogeneous microenvironmental components, including immune and stromal cells, to promote cancer progression and metastasis, and there is an intricate metabolic crosstalk between these compartments. Here, we focus on discussing fat metabolism and response to dietary fat in the tumor microenvironment, focusing on both immune and stromal components and shedding light on therapeutic strategies surrounding lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Swagata Goswami
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Qiming Zhang
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Cigdem Elif Celik
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Hacettepe Univ, Canc Inst, Department Basic Oncol, Ankara TR-06100, Turkiye
| | - Ethan M Reich
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital and Beth Israel Deaconness Medical Center and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
37
|
Antony IR, Wong BHS, Kelleher D, Verma NK. Maladaptive T-Cell Metabolic Fitness in Autoimmune Diseases. Cells 2023; 12:2541. [PMID: 37947619 PMCID: PMC10650071 DOI: 10.3390/cells12212541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Immune surveillance and adaptive immune responses, involving continuously circulating and tissue-resident T-lymphocytes, provide host defense against infectious agents and possible malignant transformation while avoiding autoimmune tissue damage. Activation, migration, and deployment of T-cells to affected tissue sites are crucial for mounting an adaptive immune response. An effective adaptive immune defense depends on the ability of T-cells to dynamically reprogram their metabolic requirements in response to environmental cues. Inability of the T-cells to adapt to specific metabolic demands may skew cells to become either hyporesponsive (creating immunocompromised conditions) or hyperactive (causing autoimmune tissue destruction). Here, we review maladaptive T-cell metabolic fitness that can cause autoimmune diseases and discuss how T-cell metabolic programs can potentially be modulated to achieve therapeutic benefits.
Collapse
Affiliation(s)
- Irene Rose Antony
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Vellore Institute of Technology, Vellore 632014, India; (I.R.A.); (B.H.S.W.); (D.K.)
| | - Brandon Han Siang Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Interdisciplinary Graduate Programme, NTU Institute for Health Technologies (HealthTech-NTU), Nanyang Technological University, Singapore 637335, Singapore
| | - Dermot Kelleher
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Skin Research Institute of Singapore, Singapore 308205, Singapore
| |
Collapse
|
38
|
Zhang L, More KR, Ojha A, Jackson CB, Quinlan BD, Li H, He W, Farzan M, Pardi N, Choe H. Effect of mRNA-LNP components of two globally-marketed COVID-19 vaccines on efficacy and stability. NPJ Vaccines 2023; 8:156. [PMID: 37821446 PMCID: PMC10567765 DOI: 10.1038/s41541-023-00751-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
During the COVID-19 pandemic, Pfizer-BioNTech and Moderna successfully developed nucleoside-modified mRNA lipid nanoparticle (LNP) vaccines. SARS-CoV-2 spike protein expressed by those vaccines are identical in amino acid sequence, but several key components are distinct. Here, we compared the effect of ionizable lipids, untranslated regions (UTRs), and nucleotide composition of the two vaccines, focusing on mRNA delivery, antibody generation, and long-term stability. We found that the ionizable lipid, SM-102, in Moderna's vaccine performs better than ALC-0315 in Pfizer-BioNTech's vaccine for intramuscular delivery of mRNA and antibody production in mice and long-term stability at 4 °C. Moreover, Pfizer-BioNTech's 5' UTR and Moderna's 3' UTR outperform their counterparts in their contribution to transgene expression in mice. We further found that varying N1-methylpseudouridine content at the wobble position of mRNA has little effect on vaccine efficacy. These findings may contribute to the further improvement of nucleoside-modified mRNA-LNP vaccines and therapeutics.
Collapse
Affiliation(s)
- Lizhou Zhang
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
| | - Kunal R More
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Amrita Ojha
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Cody B Jackson
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Brian D Quinlan
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Hao Li
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Skaggs Graduate School, The Scripps Research Institute, La Jolla, CA, USA
| | - Wenhui He
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Center For Integrated Solutions for Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Farzan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Skaggs Graduate School, The Scripps Research Institute, La Jolla, CA, USA
- Center For Integrated Solutions for Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hyeryun Choe
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
| |
Collapse
|
39
|
Sikorski P, Li Y, Cheema M, Wolfe GI, Kusner LL, Aban I, Kaminski HJ. Serum metabolomics of treatment response in myasthenia gravis. PLoS One 2023; 18:e0287654. [PMID: 37816000 PMCID: PMC10564178 DOI: 10.1371/journal.pone.0287654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/09/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVE High-dose prednisone use, lasting several months or longer, is the primary initial therapy for myasthenia gravis (MG). Upwards of a third of patients do not respond to treatment. Currently no biomarkers can predict clinical responsiveness to corticosteroid treatment. We conducted a discovery-based study to identify treatment responsive biomarkers in MG using sera obtained at study entry to the thymectomy clinical trial (MGTX), an NIH-sponsored randomized, controlled study of thymectomy plus prednisone versus prednisone alone. METHODS We applied ultra-performance liquid chromatography coupled with electro-spray quadrupole time of flight mass spectrometry to obtain comparative serum metabolomic and lipidomic profiles at study entry to correlate with treatment response at 6 months. Treatment response was assessed using validated outcome measures of minimal manifestation status (MMS), MG-Activities of Daily Living (MG-ADL), Quantitative MG (QMG) score, or a strictly defined composite measure of response. RESULTS Increased serum levels of phospholipids were associated with treatment response as assessed by QMG, MMS, and the Responders classification, but all measures showed limited overlap in metabolomic profiles, in particular the MG-ADL. A panel including histidine, free fatty acid (13:0), γ-cholestenol and guanosine was highly predictive of the strictly defined treatment response measure. The AUC in Responders' prediction for these markers was 0.90 irrespective of gender, age, thymectomy or baseline prednisone use. Pathway analysis suggests that xenobiotic metabolism could play a major role in treatment resistance. There was no association with outcome and gender, age, thymectomy or baseline prednisone use. INTERPRETATION We have defined a metabolomic and lipidomic profile that can now undergo validation as a treatment predictive marker for MG patients undergoing corticosteroid therapy. Metabolomic profiles of outcome measures had limited overlap consistent with their assessing distinct aspects of treatment response and supporting unique biological underpinning for each outcome measure. Interindividual variation in prednisone metabolism may be a determinate of how well patients respond to treatment.
Collapse
Affiliation(s)
- Patricia Sikorski
- Department of Neurology & Rehabilitation Medicine, George Washington University, Washington, DC, United States of America
- Department of Pharmacology & Physiology, George Washington University, Washington, DC, United States of America
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Mehar Cheema
- Department of Neurology & Rehabilitation Medicine, George Washington University, Washington, DC, United States of America
| | - Gil I. Wolfe
- Department of Neurology, University at Buffalo/SUNY, Buffalo, New York, United States of America
| | - Linda L. Kusner
- Department of Pharmacology & Physiology, George Washington University, Washington, DC, United States of America
| | - Inmaculada Aban
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Henry J. Kaminski
- Department of Neurology & Rehabilitation Medicine, George Washington University, Washington, DC, United States of America
| |
Collapse
|
40
|
Han S, Lu H, Yu Y, Liu X, Jing F, Wang L, Zhao Y, Hou M. Hyperlipidemia in immune thrombocytopenia: a retrospective study. Thromb J 2023; 21:102. [PMID: 37784127 PMCID: PMC10544441 DOI: 10.1186/s12959-023-00545-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Immune thrombocytopenia (ITP) is an autoimmune hemorrhagic disease characterized by low platelet count and bleeding manifestations. However, some patients also suffered from atherosclerosis or even infarction. Apart from activated platelets, lipid metabolism takes a large part in the formation of atherosclerosis and metabolic syndrome. The lipid metabolic state in ITP patients is still unknown. METHODS We retrospectively reviewed 302 hospitalized ITP patients in our cohort, comparing their blood lipids, bleeding symptoms, metabolic diseases and treatment responses. RESULTS We found a high proportion of ITP patients suffered from hyperlipidemia, and other metabolic diseases including cardiovascular or cerebral atherosclerosis or infarction, hypertension, and type 2 diabetes. Hyperlipidemia was associated with severe bleeding and treatment refractoriness in ITP. Statins could alleviate thrombocytopenia and bleeding severity, and facilitate ITP treatment, while improving hyperlipidemia in ITP patients. CONCLUSIONS Our present study demonstrated that lipid metabolism might play an indispensable role in ITP pathogenesis and development.
Collapse
Affiliation(s)
- Shouqing Han
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Lu
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yafei Yu
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinguang Liu
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, China
| | - Fangmiao Jing
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Liang Wang
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China.
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, China.
| | - Yajing Zhao
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China.
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, China.
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China.
- Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
41
|
Hegde M, Kumar A, Girisa S, Alqahtani MS, Abbas M, Goel A, Hui KM, Sethi G, Kunnumakkara AB. Exosomal noncoding RNA-mediated spatiotemporal regulation of lipid metabolism: Implications in immune evasion and chronic inflammation. Cytokine Growth Factor Rev 2023; 73:114-134. [PMID: 37419767 DOI: 10.1016/j.cytogfr.2023.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
The hallmark of chronic inflammatory diseases is immune evasion. Successful immune evasion involves numerous mechanisms to suppress both adaptive and innate immune responses. Either direct contact between cells or paracrine signaling triggers these responses. Exosomes are critical drivers of these interactions and exhibit both immunogenic and immune evasion properties during the development and progression of various chronic inflammatory diseases. Exosomes carry diverse molecular cargo, including lipids, proteins, and RNAs that are crucial for immunomodulation. Moreover, recent studies have revealed that exosomes and their cargo-loaded molecules are extensively involved in lipid remodeling and metabolism during immune surveillance and disease. Many studies have also shown the involvement of lipids in controlling immune cell activities and their crucial upstream functions in regulating inflammasome activation, suggesting that any perturbation in lipid metabolism results in abnormal immune responses. Strikingly, the expanded immunometabolic reprogramming capacities of exosomes and their contents provided insights into the novel mechanisms behind the prophylaxis of inflammatory diseases. By summarizing the tremendous therapeutic potential of exosomes, this review emphasizes the role of exosome-derived noncoding RNAs in regulating immune responses through the modulation of lipid metabolism and their promising therapeutic applications.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; Computers and communications Department College of Engineering Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Akul Goel
- California Institute of Technology (CalTech), Pasadena, CA, USA
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
42
|
Wang J, Wang D, Huang M, Sun B, Ren F, Wu J, Meng N, Zhang J. Identification of nonvolatile chemical constituents in Chinese Huangjiu using widely targeted metabolomics. Food Res Int 2023; 172:113226. [PMID: 37689963 DOI: 10.1016/j.foodres.2023.113226] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 09/11/2023]
Abstract
Huangjiu is a traditional Chinese alcoholic beverage, whose non-volatile chemical profile remains unclarified. Here, the non-volatile compounds of Huangjiu were first identified using a widely targeted metabolomics analysis. In total, 1146 compounds were identified, 997 of them were identified in Huangjiu for the first time. Moreover, 113 compounds were identified as key active ingredients of traditional Chinese medicines and 78 components were found as active pharmaceutical ingredients against 389 diseases. In addition, the comparative analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that Huangjiu from different regions differ in metabolite composition. Cofactor and amino acid biosynthesis and ABC transport were the dominant metabolic pathways. Furthermore, 7 metabolic pathways and 77 metabolic pathway regulatory markers were further found to be related with the different characteristics of different Huangjius. This study provides a theoretical and material basis for the quality control, health efficacy, and industrial development of Huangjiu.
Collapse
Affiliation(s)
- Juan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Danqing Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Mingquan Huang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Jihong Wu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Nan Meng
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Jinglin Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
43
|
Shi Q, Zhan T, Bi X, Ye BC, Qi N. Cholesterol-autoxidation metabolites in host defense against infectious diseases. Eur J Immunol 2023; 53:e2350501. [PMID: 37369622 DOI: 10.1002/eji.202350501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Cholesterol plays essential roles in biological processes, including cell membrane stability and myelin formation. Cholesterol can be metabolized to oxysterols by enzymatic or nonenzymatic ways. Nonenzymatic cholesterol metabolites, also called cholesterol-autoxidation metabolites, are formed dependent on the oxidation of reactive oxygen species (ROS) such as OH• or reactive nitrogen species, such as ONOO- . Cholesterol-autoxidation metabolites are abundantly produced in diseases such as inflammatory bowel disease and atherosclerosis, which are associated with oxidative stress. Recent studies have shown that cholesterol-autoxidation metabolites can further regulate the immune system. Here, we review the literature and summarize how cholesterol-autoxidation metabolites, such as 25-hydroxycholesterol (25-OHC), 7α/β-OHC, and 7-ketocholesterol, deal with the occurrence and development of infectious diseases through pattern recognition receptors, inflammasomes, ROS production, nuclear receptors, G-protein-coupled receptor 183, and lipid availability. In addition, we include the research regarding the roles of these metabolites in COVID-19 infection and discuss our viewpoints on the future research directions.
Collapse
Affiliation(s)
- Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Tingzhu Zhan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xiaobao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Bang-Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Nan Qi
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Department of Basic Research, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| |
Collapse
|
44
|
Hu JQ, Yan YH, Xie H, Feng XB, Ge WH, Zhou H, Yu LL, Sun LY, Xie Y. Targeting abnormal lipid metabolism of T cells for systemic lupus erythematosus treatment. Biomed Pharmacother 2023; 165:115198. [PMID: 37536033 DOI: 10.1016/j.biopha.2023.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which the immune system attacks its own tissues and organs. However, the causes of SLE remain unknown. Dyslipidemia is a common symptom observed in SLE patients and animal models and is closely correlated to disease activity. Lipid metabolic reprogramming has been considered as a hallmark of the dysfunction of T cells in patients with SLE, therefore, manipulating lipid metabolism provides a potential therapeutic target for treating SLE. A better understanding of the underlying mechanisms for the metabolic events of immune cells under pathological conditions is crucial for tuning immunometabolism to manage autoimmune diseases such as SLE. In this review, we aim to summarize the cross-link between lipid metabolism and the function of T cells as well as the underlying mechanisms, and provide light on the novel therapeutic strategies of active compounds from herbals for the treatment of SLE by targeting lipid metabolism in immune cells.
Collapse
Affiliation(s)
- Jia-Qin Hu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao Special Administrative Region of China
| | - Yan-Hua Yan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao Special Administrative Region of China; The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Xue-Bing Feng
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Wei-Hong Ge
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Hua Zhou
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Li Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao Special Administrative Region of China.
| | - Ling-Yun Sun
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China.
| | - Ying Xie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
45
|
Wang H, Guo H, Sun J, Wang Y. Multi-omics analyses based on genes associated with oxidative stress and phospholipid metabolism revealed the intrinsic molecular characteristics of pancreatic cancer. Sci Rep 2023; 13:13564. [PMID: 37604837 PMCID: PMC10442332 DOI: 10.1038/s41598-023-40560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023] Open
Abstract
Oxidative stress (OS), which impacts lipid metabolic reprogramming, can affect the biological activities of cancer cells. How oxidative stress and phospholipid metabolism (OSPM) influence the prognosis of pancreatic cancer (PC) needs to be elucidated. The metabolic data of 35 pancreatic tumor samples, 34 para-carcinoma samples, and 31 normal pancreatic tissues were obtained from the previously published literature. Pan-cancer samples were obtained from The Cancer Genome Atlas (TCGA). And the Gene Expression Omnibus (GEO), International Cancer Genome Consortium (ICGC), ArrayExpress, and the Genotype-Tissue Expression (GTEx) databases were searched for more PC and normal pancreatic samples. The metabolites in PC were compared with normal and para-carcinoma tissues. The characteristics of the key OSPM genes were summarized in pan-cancer. The random survival forest analysis and multivariate Cox regression analysis were utilized to construct an OSPM-related signature. Based on this signature, PC samples were divided into high- and low-risk subgroups. The dysregulations of the tumor immune microenvironment were further investigated. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was conducted to investigate the expression of genes in the signature in PC and normal tissues. The protein levels of these genes were further demonstrated. In PC, metabolomic studies revealed the alteration of PM, while transcriptomic studies showed different expressions of OSPM-related genes. Then 930 PC samples were divided into three subtypes with different prognoses, and an OSPM-related signature including eight OSPM-related genes (i.e., SLC2A1, MMP14, TOP2A, MBOAT2, ANLN, ECT2, SLC22A3, and FGD6) was developed. High- and low-risk subgroups divided by the signature showed different prognoses, expression levels of immune checkpoint genes, immune cell infiltration, and tumor microenvironment. The risk score was negatively correlated with the proportion of TIL, pDC, Mast cell, and T cell co-stimulation. The expression levels of genes in the signature were verified in PC and normal samples. The protein levels of SLC2A1, MMP14, TOP2A, MBOAT2, ANLN, and SLC22A3 showed up-regulation in PC samples compared with normal tissues. After integrating metabolomics and transcriptomics data, the alterations in OSPM in PC were investigated, and an OSPM-related signature was developed, which was helpful for the prognostic assessment and individualized treatment for PC.
Collapse
Affiliation(s)
- Hongdong Wang
- Department of Hepatobiliary Pancreatic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuefeng Wang
- Department of Hepatobiliary Pancreatic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
46
|
Yang LG, March ZM, Stephenson RA, Narayan PS. Apolipoprotein E in lipid metabolism and neurodegenerative disease. Trends Endocrinol Metab 2023; 34:430-445. [PMID: 37357100 PMCID: PMC10365028 DOI: 10.1016/j.tem.2023.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/27/2023]
Abstract
Dysregulation of lipid metabolism has emerged as a central component of many neurodegenerative diseases. Variants of the lipid transport protein, apolipoprotein E (APOE), modulate risk and resilience in several neurodegenerative diseases including late-onset Alzheimer's disease (LOAD). Allelic variants of the gene, APOE, alter the lipid metabolism of cells and tissues and have been broadly associated with several other cellular and systemic phenotypes. Targeting APOE-associated metabolic pathways may offer opportunities to alter disease-related phenotypes and consequently, attenuate disease risk and impart resilience to multiple neurodegenerative diseases. We review the molecular, cellular, and tissue-level alterations to lipid metabolism that arise from different APOE isoforms. These changes in lipid metabolism could help to elucidate disease mechanisms and tune neurodegenerative disease risk and resilience.
Collapse
Affiliation(s)
- Linda G Yang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Zachary M March
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Roxan A Stephenson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Priyanka S Narayan
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.; National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA; Center for Alzheimer's and Related Dementias (CARD), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
47
|
You M, Sun L, Li C, Zhu S. ATGL-mediated lipophagy balances cholesterol-induced inflammation in pathogen infected Apostichopus japonicus coelomocytes. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108863. [PMID: 37277050 DOI: 10.1016/j.fsi.2023.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Cholesterol metabolism can be dynamically altered in response to pathogen infection that ensure proper macrophage inflammatory function in mammals. However, it is unclear whether the dynamic between cholesterol accumulation and breakdown could induce or suppress inflammation in aquatic animal. Here, we aimed to investigate the cholesterol metabolic response to LPS stimulation in coelomocytes of Apostichopus japonicus, and to elucidate the mechanism of lipophagy in regulating cholesterol-related inflammation. LPS stimulation significantly increased intracellular cholesterol levels at early time point (12 h), and the increase in cholesterol levels is associated with AjIL-17 upregulation. Excessive cholesterol in coelomocytes of A. japonicus was rapidly converted to cholesteryl esters (CEs) and stored in lipid droplets (LDs) after 12 h of LPS stimulation and prolonged for 18 h. Then, increased colocalization of LDs with lysosomes was observed at late time point of LPS treatment (24 h), accompanied by elevated expression of AjLC3 and decreased expression of Ajp62. At the same time, the expression of AjABCA1 rapidly increased, suggesting lipophagy induction. Moreover, we demonstrated that AjATGL is required for induction of lipophagy. Inducing lipophagy by AjATGL overexpression attenuated cholesterol-induced AjIL-17 expression. Overall, our study provides evidence that cholesterol metabolic response occurs upon LPS stimulation, which is actively involved in regulating the inflammatory response of coelomocytes. AjATGL-mediated lipophagy is responsible for cholesterol hydrolysis, thereby balancing cholesterol-induced inflammation in the coelomocytes of A. japonicus.
Collapse
Affiliation(s)
- Meixiang You
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Lianlian Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| | - Si Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
48
|
Lu M, He R, Li C, Liu Z, Chen Y, Yang B, Zhang X, Yu B. Apolipoprotein E deficiency potentiates macrophage against Staphylococcus aureus in mice with osteomyelitis via regulating cholesterol metabolism. Front Cell Infect Microbiol 2023; 13:1187543. [PMID: 37529351 PMCID: PMC10387542 DOI: 10.3389/fcimb.2023.1187543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Staphylococcus aureus (S. aureus) osteomyelitis causes a variety of metabolism disorders in microenvironment and cells. Defining the changes in cholesterol metabolism and identifying key factors involved in cholesterol metabolism disorders during S. aureus osteomyelitis is crucial to understanding the mechanisms of S. aureus osteomyelitis and is important in designing host-directed therapeutic strategies. Methods In this study, we conducted in vitro and in vivo experiments to define the effects of S. aureus osteomyelitis on cholesterol metabolism, as well as the role of Apolipoprotein E (ApoE) in regulating cholesterol metabolism by macrophages during S. aureus osteomyelitis. Results The data from GSE166522 showed that cholesterol metabolism disorder was induced by S. aureus osteomyelitis. Loss of cholesterol from macrophage obtained from mice with S. aureus osteomyelitis was detected by liquid chromatography-tandem mass spectrometry(LC-MS/MS), which is consistent with Filipin III staining results. Changes in intracellular cholesterol content influenced bactericidal capacity of macrophage. Subsequently, it was proven by gene set enrichment analysis and qPCR, that ApoE played a key role in developing cholesterol metabolism disorder in S. aureus osteomyelitis. ApoE deficiency in macrophages resulted in increased resistance to S. aureus. ApoE-deficient mice manifested abated bone destruction and decreased bacteria load. Moreover, the combination of transcriptional analysis, qPCR, and killing assay showed that ApoE deficiency led to enhanced cholesterol biosynthesis in macrophage, ameliorating anti-infection ability. Conclusion We identified a previously unrecognized role of ApoE in S. aureus osteomyelitis from the perspective of metabolic reprogramming. Hence, during treating S. aureus osteomyelitis, considering cholesterol metabolism as a potential therapeutic target presents a new research direction.
Collapse
Affiliation(s)
- Mincheng Lu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ruiyi He
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chao Li
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zixian Liu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuhui Chen
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bingsheng Yang
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianrong Zhang
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Yu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
49
|
Liu S, Wang S, Wang Z. Identification of genetic mechanisms underlying lipid metabolism-mediated tumor immunity in head and neck squamous cell carcinoma. BMC Med Genomics 2023; 16:110. [PMID: 37210507 DOI: 10.1186/s12920-023-01543-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/13/2023] [Indexed: 05/22/2023] Open
Abstract
OBJECTIVE To identify the genetic mechanisms underlying lipid metabolism-mediated tumor immunity in head and neck squamous carcinoma (HNSC). MATERIALS AND METHODS RNA sequencing data and clinical characteristics of HNSC patients were procured from The Cancer Genome Atlas (TCGA) database. Lipid metabolism-related genes were collected from KEGG and MSigDB databases. Immune cells and immune-related genes were obtained from the TISIDB database. The differentially expressed genes (DEGs) in HNSC were identified and weighted correlation network analysis (WGCNA) was performed to identify the significant gene modules. Lasso regression analysis was performed to identify hub genes. The differential gene expression pattern, diagnostic values, relationships with clinical features, prognostic values, relationships with tumor mutation burden (TMB), and signaling pathways involved, were each investigated. RESULTS One thousand six hundred sixty-eight DEGs were identified as dysregulated between HNSC tumor samples and healthy control head and neck samples. WGCNA analysis and Lasso regression analysis identified 8 hub genes, including 3 immune-related genes (PLA2G2D, TNFAIP8L2 and CYP27A1) and 5 lipid metabolism-related genes (FOXP3, IL21R, ITGAL, TRAF1 and WIPF1). Except CYP27A1, the other hub genes were upregulated in HNSC as compared with healthy control samples, and a low expression of these hub genes indicated a higher risk of death in HNSC. Except PLA2G2D, all other hub genes were significantly and negatively related with TMB in HNSC. The hub genes were implicated in several immune-related signaling pathways including T cell receptor signaling, Th17 cell differentiation, and natural killer (NK) cell mediated cytotoxicity. CONCLUSION Three immune genes (PLA2G2D, TNFAIP8L2, and CYP27A1) and immune-related pathways (T cell receptor signaling, Th17 cell differentiation, and natural killer (NK) cell mediated cytotoxicity) were predicted to play significant roles in the lipid metabolism-mediated tumor immunity in HNSC.
Collapse
Affiliation(s)
- Shaokun Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Shuning Wang
- Capital Medical University, No.10 Xitou Tiao, You'an Menwai, Fengtai District, Beijing, 10069, China
| | - Zhenlin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
50
|
Jeon YG, Kim YY, Lee G, Kim JB. Physiological and pathological roles of lipogenesis. Nat Metab 2023; 5:735-759. [PMID: 37142787 DOI: 10.1038/s42255-023-00786-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Lipids are essential metabolites, which function as energy sources, structural components and signalling mediators. Most cells are able to convert carbohydrates into fatty acids, which are often converted into neutral lipids for storage in the form of lipid droplets. Accumulating evidence suggests that lipogenesis plays a crucial role not only in metabolic tissues for systemic energy homoeostasis but also in immune and nervous systems for their proliferation, differentiation and even pathophysiological roles. Thus, excessive or insufficient lipogenesis is closely associated with aberrations in lipid homoeostasis, potentially leading to pathological consequences, such as dyslipidaemia, diabetes, fatty liver, autoimmune diseases, neurodegenerative diseases and cancers. For systemic energy homoeostasis, multiple enzymes involved in lipogenesis are tightly controlled by transcriptional and post-translational modifications. In this Review, we discuss recent findings regarding the regulatory mechanisms, physiological roles and pathological importance of lipogenesis in multiple tissues such as adipose tissue and the liver, as well as the immune and nervous systems. Furthermore, we briefly introduce the therapeutic implications of lipogenesis modulation.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|