1
|
Baez-Jurado E, Hidalgo-Lanussa O, Barrera-Bailón B, Sahebkar A, Ashraf GM, Echeverria V, Barreto GE. Secretome of Mesenchymal Stem Cells and Its Potential Protective Effects on Brain Pathologies. Mol Neurobiol 2019; 56:6902-6927. [PMID: 30941733 DOI: 10.1007/s12035-019-1570-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Previous studies have indicated that mesenchymal stem cells (MSCs) have a fundamental role in the repair and regeneration of damaged tissues. There is strong evidence showing that much of the beneficial effects of these cells are due to the secretion of bioactive molecules-besides microRNAs, hormones, and neurotrophins-with anti-inflammatory, immunoregulatory, angiogenic, and trophic effects. These factors have been reported by many studies to possess protective effects on the nervous tissue. Although the beneficial effects of the secretory factors of MSCs have been suggested for various neurological diseases, their actions on astrocytic cells are not well understood. Hence, it is important to recognize the specific effects of MSCs derived from adipose tissue, in addition to the differences presented by the secretome, depending on the source and methods of analysis. In this paper, the different sources of MSCs and their main characteristics are described, as well as the most significant advances in regeneration and protection provided by the secretome of MSCs. Also, we discuss the possible neuroprotective mechanisms of action of the MSC-derived biomolecules, with special emphasis on the effect of MSCs derived from adipose tissue and their impact on glial cells and brain pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Biviana Barrera-Bailón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Lientur 1457, 4080871, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, 33744, USA
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| |
Collapse
|
2
|
Sato Y, Ueda K, Kondo T, Hattori T, Mikrogeorgiou A, Sugiyama Y, Suzuki T, Yamamoto M, Hirata H, Hirakawa A, Nakanishi K, Tsuji M, Hayakawa M. Administration of Bone Marrow-Derived Mononuclear Cells Contributed to the Reduction of Hypoxic-Ischemic Brain Injury in Neonatal Rats. Front Neurol 2018; 9:987. [PMID: 30559704 PMCID: PMC6284369 DOI: 10.3389/fneur.2018.00987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 11/02/2018] [Indexed: 11/13/2022] Open
Abstract
Background/Objective: Perinatal hypoxic-ischemia (HI) causes neonatal death and permanent neurological deficits. Cell therapy using various cell sources has been recently identified as a novel therapy for perinatal HI. Among the available types of cell sources, bone marrow-derived mononuclear cells (BMMNCs) have unique features for clinical application. For example, stem cells can be collected after admission, thus enabling us to perform autologous transplantation. This study aimed to investigate whether the administration of BMMNCs ameliorated HI brain injury in a neonatal rat model. Methods: Seven-day-old rats underwent left carotid artery ligation and were exposed to 8% oxygen for 60 min. BMMNCs were collected from the femurs and tibias of juvenile rats using the Ficoll-Hypaque technique and injected intravenously 24 h after the insult (1 × 105 cells). Active caspase-3, as an apoptosis marker, and ED1, as an activated microglia/macrophage marker, were evaluated immunohistochemically 48 h after the insult (vehicle, n = 9; BMMNC, n = 10). Behavioral assessments using the rotarod treadmill, gait analysis, and active avoidance tests were initiated 3 weeks after the insult (sham, n = 9, vehicle, n = 8; BMMNC, n = 8). After these behavioral tests (6 weeks after the insult), we evaluated the volumes of their hippocampi, cortices, thalami, striata, and globus pallidus. Results: The mean cell densities of the sum of four parts that were positive for active caspase-3 significantly decreased in the BMMNC group (p < 0.05), whereas in the hippocampi, cortices, thalami, and striata cell densities decreased by 42, 60, 56, and 47%, respectively, although statistical significance was not attained. The number of ED1 positive cells for the sum of the four parts also significantly decreased in the BMMNC group compared to the vehicle group (p < 0.05), whereas in each of the four parts the decrease was 35, 39, 47, and 36%, respectively, although statistical significance was not attained. In gait analysis, the BMMNC normalized the contact area of the affected hind paw widened by HI. The volumes of the affected striata and globus pallidus were significantly larger in the BMMNC group than in the control group. Conclusion: These results indicated that the injection of BMMNCs ameliorated HI brain injury in a neonatal rat model.
Collapse
Affiliation(s)
- Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Kazuto Ueda
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Taiki Kondo
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Tetsuo Hattori
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Alkisti Mikrogeorgiou
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yuichiro Sugiyama
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Toshihiko Suzuki
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Michiro Yamamoto
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Hirakawa
- Department of Biostatistics and Bioinformatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiko Nakanishi
- Department of Perinatology, Aichi Human Service Center, Institute for Developmental Research, Aichi, Japan
| | - Masahiro Tsuji
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
3
|
Human Adipose Stromal Cells Increase Survival and Mesenteric Perfusion Following Intestinal Ischemia and Reperfusion Injury. Shock 2018; 46:75-82. [PMID: 26796571 DOI: 10.1097/shk.0000000000000571] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Intestinal ischemia can quickly escalate to bowel necrosis and perforation. Transplantation of stem cells presents a novel treatment modality for this problem. We hypothesized that: human adipose-derived stromal cells (hASCs) would increase survival and mesenteric perfusion to a greater degree compared with differentiated cellular controls following ischemic intestinal injury, and improved outcomes with hASC therapy would be associated with preservation of intestinal histological and tight junction architecture, and lower levels of systemic inflammation following intestinal injury. METHODS hASCs and keratinocytes (differentiated cellular control) were cultured on polystyrene flasks at 37°C in 5% CO2 in air. Adult male C57Bl6J mice were anesthetized and a midline laparotomy performed. The intestines were eviscerated, the small bowel mesenteric root identified, and intestinal ischemia was established by temporarily occluding the superior mesenteric artery for 60 min with a noncrushing vascular clamp. Following ischemia, the clamp was removed, and the intestines were returned to the abdominal cavity. Before abdominal closure, 2 million hASCs or keratinocytes in 250 μL of phosphate-buffered saline (carrier for cells and control solution) were infused into the peritoneum. Animals were allowed to recover for 12 or 24 h (perfusion, histology, cytokine, and immunofluoresence studies), or 7 days (survival studies). Intestinal perfusion was assessed by laser Doppler imaging. Intestinal tissue segments were stained with hematoxylin and eosin, as well as antibodies for the tight junction protein claudin-1. Separate aliquots of intestine, liver, and lung tissue were homogenized and assessed for inflammatory cytokines via multiplex beaded assay. RESULTS Animals administered hASCs following intestinal ischemia and reperfusion (I/R) injury had significantly greater 7-day survival and better postischemic recovery of mesenteric perfusion compared with vehicle or keratinocyte therapy. hASCs also abated intestinal mucosal destruction, facilitated preservation of intestinal tight junctions, and decreased the systemic inflammatory response to injury. CONCLUSIONS Human adipose-derived stromal cells improved survival and mesenteric perfusion and attenuated the mucosal damage associated with intestinal I/R injury. hASCs should be considered as a plausible cell source for novel cellular treatment plans following intestinal ischemia.
Collapse
|
4
|
Boroujeni ME, Gardaneh M, Shahriari MH, Aliaghaei A, Hasani S. Synergy Between Choroid Plexus Epithelial Cell-Conditioned Medium and Knockout Serum Replacement Converts Human Adipose-Derived Stem Cells to Dopamine-Secreting Neurons. Rejuvenation Res 2017; 20:309-319. [PMID: 28437187 DOI: 10.1089/rej.2016.1887] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human adipose-derived stem cells (hADSCs) have great capacity to differentiate into mesodermal origins as well as nonmesodermal lineages, including neural cells. This valuable feature paves the way for the therapeutic application of hADSCs for neurodegenerative maladies such as Parkinson's disease (PD). We tested the capacity of choroid plexus epithelial cell-conditioned medium (CPEC-CM) alone or cocktailed with knockout serum (KS) to induce dopaminergic (DAergic) differentiation of hADSCs. To this end, hADSCs from lipoaspirate were phenotypically characterized and shown to maintain mesodermal multipotency so that selected media easily differentiated them into osteoblasts, chondrocytes, and adipocytes. To begin inducing hADSC neuronal differentiation, we isolated CPECs from rat brain and expanded them in culture to obtain CPEC-CM. We then treated hADSCs with optimized quantities of collected CPEC-CM, KS, or both. The ADSCs treated with either CPEC-CM or CPEC-CM and KS displayed morphological changes typical of neuron-like phenotypes. As revealed by reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time PCR (qPCR), and immunostaining analyses, hADSCs cotreated with CPEC-CM and KS expressed significantly higher levels of neuronal and DAergic markers in comparison with single-treated groups. Moreover, the hADSCs began expressing dopamine-biosynthesizing enzymes mainly after cotreatment with CPEC-CM and KS. Consequently, only cotreated hADSCs were capable of synthesizing and releasing dopamine detectable by high-performance liquid chromatography (HPLC). Finally, hADSCs growing in an ordinary medium were found positive for astrocytic marker glial fibrillary acidic protein (GFAP), but stopped GFAP expression on either single or cotreatments. These combined results suggest that CPEC-CM and KS can synergize to remarkably augment DAergic induction of hADSCs, an effect that has implications for cell replacement therapy for PD and related disorders.
Collapse
Affiliation(s)
- Mahdi Eskandarian Boroujeni
- 1 Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran, Iran
| | - Mossa Gardaneh
- 1 Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran, Iran
| | - Mehrnoosh Hasan Shahriari
- 1 Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran, Iran
| | - Abbas Aliaghaei
- 2 Department of Anatomy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Sanaz Hasani
- 1 Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran, Iran
| |
Collapse
|
5
|
Azedi F, Kazemnejad S, Zarnani AH, Soleimani M, Shojaei A, Arasteh S. Comparative capability of menstrual blood versus bone marrow derived stem cells in neural differentiation. Mol Biol Rep 2016; 44:169-182. [PMID: 27981446 DOI: 10.1007/s11033-016-4095-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/03/2016] [Indexed: 12/29/2022]
Abstract
In order to characterize the potency of menstrual blood stem cells (MenSCs) for future cell therapy of neurological disorders instead of bone marrow stem cells (BMSCs) as a well-known and conventional source of adult stem cells, we examined the in vitro differentiation potential of these stem cells into neural-like cells. The differentiation potential of MenSCs to neural cells in comparison with BMSCs was assessed under two step neural differentiation including conversion to neurosphere-like cells and final differentiation. The expression levels of Nestin, Microtubule-associated protein 2, gamma-aminobutyric acid type B receptor subunit 1 and 2, and Tubulin, beta 3 class III mRNA and/or protein were up-regulated during development of MenSCs into neurosphere-like cells (NSCs) and neural-like cells. The up-regulation level of these markers in differentiated neural-like cells from MenSCs was comparable with differentiated cells from BMSCs. Moreover, both differentiated MenSCs and BMSCs expressed high levels of potassium, calcium and sodium channel genes developing functional channels with electrophysiological recording. For the first time, we demonstrated that MenSCs are a unique cell population with differentiation ability into neural-like cells comparable to BMSCs. In addition, we have introduced an approach to generate NSCs from MenSCs and BMSCs and their further differentiation into neural-like cells in vitro. Our results hold a promise to future stem cell therapy of neurological disorders using NSCs derived from menstrual blood, an accessible source in every woman.
Collapse
Affiliation(s)
- Fereshteh Azedi
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, P.O. Box: 1177-19615, Tehran, Iran
- Department of Neuroscience, Faculty of advanced technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, P.O. Box: 1177-19615, Tehran, Iran.
| | - Amir Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shaghayegh Arasteh
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, P.O. Box: 1177-19615, Tehran, Iran
| |
Collapse
|
6
|
Satani N, Savitz SI. Is Immunomodulation a Principal Mechanism Underlying How Cell-Based Therapies Enhance Stroke Recovery? Neurotherapeutics 2016; 13:775-782. [PMID: 27485235 PMCID: PMC5081125 DOI: 10.1007/s13311-016-0468-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammation within the brain and in peripheral tissues contributes to brain injury following ischemic stroke. Therapeutic modulation of the inflammatory response has been actively pursued as a novel stroke treatment approach for decades, without success. In recent years, extensive studies support the high potential for cell-based therapies to become a new treatment modality for stroke and other neurological disorders. In this review, we explore different types of cellular therapies and discuss how they modulate central and peripheral inflammatory processes after stroke. Apart from identifying potential targets for cell therapy, we also discuss paracrine and immunomodulatory mechanisms of cell therapy.
Collapse
Affiliation(s)
- Nikunj Satani
- Stroke Program, McGovern Medical School, UTHealth, Houston, TX, USA.
| | - Sean I Savitz
- Stroke Program, McGovern Medical School, UTHealth, Houston, TX, USA
| |
Collapse
|
7
|
Jung S, Kleineidam B, Kleinheinz J. Regenerative potential of human adipose-derived stromal cells of various origins. J Craniomaxillofac Surg 2015; 43:2144-51. [PMID: 26541747 DOI: 10.1016/j.jcms.2015.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/22/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022] Open
Abstract
In regenerative concepts, the potential of adult stem cells holds great promise concerning an individualized therapeutic approach. These cells provide renewable progenitor cells to replace aged tissue, and play a significant role in tissue repair and regeneration. In this investigation, the characteristics of different types of adipose tissue are analysed systematically with special attention to their proliferation and differentiation potential concerning the angiogenic and osteogenic lineage. Tissue samples from subcutaneous, visceral, and omental fat were processed according to standard procedures. The cells were characterized and cultivated under suitable conditions for osteogenic and angiogenic cell culture. The development of the different cell cultures as well as their differentiation were analysed morphologically and immunohistochemically from cell passages P1 to P12. Harvesting and isolation of multipotent cells from all three tissue types could be performed reproducibly. The cultivation of these cells under osteogenic conditions led to a morphological and immunohistochemical differentiation; mineralization could be detected. The most stable results were observed for the cells of subcutaneous origin. An osteogenic differentiation from adipose-derived cells from all analysed fatty tissues can be achieved easily and reproducibly. In therapeutic concepts including angiogenic regeneration, adipose-derived cells from subcutaneous tissue provide the optimal cellular base.
Collapse
Affiliation(s)
- Susanne Jung
- Department of Cranio-Maxillofacial Surgery, Research Unit Vascular Biology of Oral Structures (VABOS), University Hospital Muenster, Germany.
| | - Benedikt Kleineidam
- Department of Cranio-Maxillofacial Surgery, Research Unit Vascular Biology of Oral Structures (VABOS), University Hospital Muenster, Germany
| | - Johannes Kleinheinz
- Department of Cranio-Maxillofacial Surgery, Research Unit Vascular Biology of Oral Structures (VABOS), University Hospital Muenster, Germany
| |
Collapse
|
8
|
Lee TH. Behavioral assessment of cell transplantation after focal cerebral ischemia in rats. J Exerc Rehabil 2015; 11:140-4. [PMID: 26171379 PMCID: PMC4492423 DOI: 10.12965/jer.150206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/08/2015] [Indexed: 11/22/2022] Open
Abstract
We induced middle cerebral artery occlusion (MCAO) in rats using silicone-coated vascular embolus. We transplanted mouse embryonic stem (mES) cells after MCAO. Rats were tested behaviorally using motor and sensory function with neurological assessment. Functional effectiveness of the transplanted mES cells gradually improved the function of sensory and motor neurons. This study demonstrated that the transplanted cells have synaptic connection in the recipient brain. We suggest that stem cell transplantation can have a positive effect on behavioral recovery and reduction of infarct size in focal ischemic rats. Cell transplantation may induce certain functional recovery of the brain tissue by endogenous cell mediated effect. Our study suggests that intracerebrally injected mES cells survived and migrated into the infarct area from inoculation site and neuroglially differentiated in the ischemic brain area of adult rats. Therefore, mES cells may be a useful tool for the treatment in neurological diseases. In conclusion, cell transplantation therapy represents a novel approach that may enhance the efficacy and effectiveness of stem cell transplantation after ischemic stroke.
Collapse
Affiliation(s)
- Tae Hoon Lee
- Department of Emergency Medical Service, Namseoul University, Cheonan, Korea
| |
Collapse
|
9
|
Kalani A, Kamat PK, Familtseva A, Chaturvedi P, Muradashvili N, Narayanan N, Tyagi SC, Tyagi N. Role of microRNA29b in blood-brain barrier dysfunction during hyperhomocysteinemia: an epigenetic mechanism. J Cereb Blood Flow Metab 2014; 34:1212-22. [PMID: 24802332 PMCID: PMC4083388 DOI: 10.1038/jcbfm.2014.74] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/04/2014] [Accepted: 03/25/2014] [Indexed: 12/22/2022]
Abstract
Although blood-brain barrier (BBB) integrity is maintained by the cross-talk of endothelial cells, junction proteins, and neurogliovascular network, the epigenetic mechanisms behind BBB permeability are largely unknown. We are reporting for the first time miR29b-mediated regulation of BBB, which is a novel mechanism underlying BBB integrity. We hypothesize that miR29b regulates BBB dysfunction by regulating DNMT3b, which consequently regulates the levels of metalloproteinases, that can eat up the membrane and junction proteins leading to leaky vasculature. In addition, 5'-azacytidine (5'-aza) was used to test its efficacy on BBB permeability. Blood-brain barrier disruption model was created by using homocysteine, and in the models miR29b was identified to be most affected, by using microRNA RT(2)-qPCR array. MiR29b mimics and inhibitors also confirmed that miR29b regulates the levels DNMT3b and MMP9. In hyperhomocysteinemic cystathionine-β-synthase deficient (CBS(+/-)) mice with high brain vessel permeability, miR29b levels were also high as compared with wild-type (WT) mice. Interestingly, 5'-aza improved BBB permeability by decreasing the expression of miR29b. In conclusion, our data suggested miR29b-mediated regulation of BBB dysfunction through DNMT3b and MMP9. It also potentiates the use of microRNAs as candidates for future epigenetic therapies in the improvement of BBB integrity.
Collapse
Affiliation(s)
- Anuradha Kalani
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Pradip K Kamat
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Anastasia Familtseva
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Pankaj Chaturvedi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Nino Muradashvili
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Nithya Narayanan
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Neetu Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
10
|
Isolation, characterization, differentiation, and application of adipose-derived stem cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 123:55-105. [PMID: 20091288 DOI: 10.1007/10_2009_24] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While bone marrow-derived mesenchymal stem cells are known and have been investigated for a long time, mesenchymal stem cells derived from the adipose tissue were identified as such by Zuk et al. in 2001. However, as subcutaneous fat tissue is a rich source which is much more easily accessible than bone marrow and thus can be reached by less invasive procedures, adipose-derived stem cells have moved into the research spotlight over the last 8 years.Isolation of stromal cell fractions involves centrifugation, digestion, and filtration, resulting in an adherent cell population containing mesenchymal stem cells; these can be subdivided by cell sorting and cultured under common conditions.They seem to have comparable properties to bone marrow-derived mesenchymal stem cells in their differentiation abilities as well as a favorable angiogenic and anti-inflammatory cytokine secretion profile and therefore have become widely used in tissue engineering and clinical regenerative medicine.
Collapse
|
11
|
Ogura F, Wakao S, Kuroda Y, Tsuchiyama K, Bagheri M, Heneidi S, Chazenbalk G, Aiba S, Dezawa M. Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine. Stem Cells Dev 2014; 23:717-28. [PMID: 24256547 DOI: 10.1089/scd.2013.0473] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, we demonstrate that a small population of pluripotent stem cells, termed adipose multilineage-differentiating stress-enduring (adipose-Muse) cells, exist in adult human adipose tissue and adipose-derived mesenchymal stem cells (adipose-MSCs). They can be identified as cells positive for both MSC markers (CD105 and CD90) and human pluripotent stem cell marker SSEA-3. They intrinsically retain lineage plasticity and the ability to self-renew. They spontaneously generate cells representative of all three germ layers from a single cell and successfully differentiate into targeted cells by cytokine induction. Cells other than adipose-Muse cells exist in adipose-MSCs, however, do not exhibit these properties and are unable to cross the boundaries from mesodermal to ectodermal or endodermal lineages even under cytokine inductions. Importantly, adipose-Muse cells demonstrate low telomerase activity and transplants do not promote teratogenesis in vivo. When compared with bone marrow (BM)- and dermal-Muse cells, adipose-Muse cells have the tendency to exhibit higher expression in mesodermal lineage markers, while BM- and dermal-Muse cells were generally higher in those of ectodermal and endodermal lineages. Adipose-Muse cells distinguish themselves as both easily obtainable and versatile in their capacity for differentiation, while low telomerase activity and lack of teratoma formation make these cells a practical cell source for potential stem cell therapies. Further, they will promote the effectiveness of currently performed adipose-MSC transplantation, particularly for ectodermal and endodermal tissues where transplanted cells need to differentiate across the lineage from mesodermal to ectodermal or endodermal in order to replenish lost cells for tissue repair.
Collapse
Affiliation(s)
- Fumitaka Ogura
- 1 Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine , Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kalani A, Kamat PK, Tyagi SC, Tyagi N. Synergy of homocysteine, microRNA, and epigenetics: a novel therapeutic approach for stroke. Mol Neurobiol 2013; 48:157-68. [PMID: 23430482 PMCID: PMC3695063 DOI: 10.1007/s12035-013-8421-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/30/2013] [Indexed: 01/12/2023]
Abstract
Homocysteine (Hcy) is a thiol-containing amino acid formed during methionine metabolism. Elevated level of Hcy is known as hyperhomocysteinemia (HHcy). HHcy is an independent risk factor for cerebrovascular diseases such as stroke, dementia, Alzheimer's disease, etc. Stroke, which is caused by interruption of blood supply to the brain, is one of the leading causes of death and disability in a number of people worldwide. The HHcy causes an increased carotid artery plaque that may lead to ischemic stroke but the mechanism is currently not well understood. Though mutations or polymorphisms in the key genes of Hcy metabolism pathway have been well elucidated in stroke, emerging evidences suggested epigenetic mechanisms equally play an important role in stroke development such as DNA methylation, chromatin remodeling, RNA editing, noncoding RNAs (ncRNAs), and microRNAs (miRNAs). However, there is no review available yet that describes the role of genetics and epigenetics during HHcy in stroke. The current review highlights the role of genetics and epigenetics in stroke during HHcy and the role of epigenetics in its therapeutics. The review also highlights possible epigenetic mechanisms, potential therapeutic molecules, putative challenges, and approaches to deal with stroke during HHcy.
Collapse
Affiliation(s)
- Anuradha Kalani
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Pradeep K. Kamat
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Suresh C. Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Neetu Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
13
|
Tae-Hoon L, Yoon-Seok L. Transplantation of mouse embryonic stem cell after middle cerebral artery occlusion. Acta Cir Bras 2012; 27:333-9. [PMID: 22534809 DOI: 10.1590/s0102-86502012000400009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/15/2012] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Stem cell transplantation has been extensively studied as individual therapies for ischemic stroke. The present investigation is an initial effort to combine these methods to achieve increased therapeutic effects after brain ischemia. Cell transplantation may recover massive neuronal loss by replacing damaged brain cells. METHODS Undifferentiated mouse embryonic stem (mES) cells were used to induce differentiation in vitro into neuron-like cells with good cell viability for use a graft. In this study, middle cerebral artery occlusion (MCAO) was induced in rats using intra-luminal vascular occlusion, and infused mES cells after MCAO. The animals were examined behaviorally using motor and sensory test with neurological assessment. RESULTS Motor function of the recipients was gradually improved, whereas little improvement was observed in control rats. This result may suggest that the grafted cells have synaptic connection in the recipient brain. Our study revealed that stem cell transplantation can have a positive effect on behavioral recovery and reduction of infarct size in focal ischemic rats. Consequently after euthanasia, rats were histochemically investigated to explore graft survival with green fluorescent protein (GFP). CONCLUSION The mouse embryonic stem cells may have advantage for use as a donor source in various neurological disorders including motor dysfunction.
Collapse
Affiliation(s)
- Lee Tae-Hoon
- Department of Emergency Medical Service, Namseoul University, Chungnam, Korea.
| | | |
Collapse
|
14
|
Chen J, Tang YX, Liu YM, Chen J, Hu XQ, Liu N, Wang SX, Zhang Y, Zeng WG, Ni HJ, Zhao B, Chen YF, Tang ZP. Transplantation of adipose-derived stem cells is associated with neural differentiation and functional improvement in a rat model of intracerebral hemorrhage. CNS Neurosci Ther 2012; 18:847-54. [PMID: 22934896 DOI: 10.1111/j.1755-5949.2012.00382.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 06/27/2012] [Accepted: 07/05/2012] [Indexed: 12/14/2022] Open
Abstract
AIMS To examine whether transplantation of adipose-derived stem cells (ADSCs) induces neural differentiation and improves neural function in a rat intracerebral hemorrhage (ICH) model. METHODS Adipose-derived stem cells cells were isolated from inguinal fat pad of rat. ICH was induced by injection of collagenase type IV into the right basal ganglia of rat. Forty-eight hours after ICH, ADSCs cells (10 μL of 2-4 × 10(7) cells/mL) were injected into the right lateral cerebral ventricle. The differentiation of ADSCs was detected in vitro and in vivo. The neural function was evaluated with Zea Longa 5-grade scale at day 1, 3, 7, 14, or 28. RESULTS Our data demonstrated that ADSCs differentiated into cells that shared the similarities of neurons or astrocytes in vitro. Transplantation of ADSCs decreased cell apoptosis and the transplanted ADSCs were able to differentiate into neuron-like and astrocyte-like cells around the hematoma, accompanied with upregulation of vascular endothelial growth factor expression and improvement of neural function. CONCLUSIONS Our data suggest that transplantation of ADSCs could be a therapeutic approach for ICH stroke.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Neurology, University Hospital of Hubei Institute for Nationalities, Enshi, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The prospects for stem cell-derived therapy in stroke look promising, with a myriad of cell therapy products developed from brain, blood, bone marrow, and adipose tissue in early clinical development. Eight clinical trials have now reported final results, and several are currently registered recruiting patients or pending to start. Products passing the safety hurdle are recruiting patients for large efficacy studies. Besides identifying the most appropriate cell type, other issues to resolve include optimal timing for intervention, optimal delivery route, cell dose, patient selection, relevant clinical endpoints, and monitoring for effectiveness, to advance cell therapy through the hurdles of clinical research. In this chapter, we present the products and strategies used in the current cell therapy trials in ischemic stroke, provide an update on relevant preclinical research, and discuss the vital developments still needed to advance their clinical application as a future therapeutic option.
Collapse
Affiliation(s)
- John D Sinden
- ReNeuron Limited, Surrey Research Park, Guildford, Surrey, UK.
| | | | | |
Collapse
|
16
|
Liu GB, Cheng YX, Feng YK, Pang CJ, Li Q, Wang Y, Jia H, Tong XJ. Adipose-derived stem cells promote peripheral nerve repair. Arch Med Sci 2011; 7:592-6. [PMID: 22291793 PMCID: PMC3258787 DOI: 10.5114/aoms.2011.24127] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/15/2011] [Accepted: 05/11/2011] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Recent evidence suggests that the implantation of bone marrow-derived mesenchymal stem cells improves peripheral nerve regeneration. In this study we aimed to investigate whether adipose-derived stem cells (ADSCs) can be used for peripheral nerve repair. MATERIAL AND METHODS In a rat model, nerve regeneration was evaluated across a 15 mm lesion in the sciatic nerve by using an acellular nerve injected with allogenic ADSCs. The walking behaviour of rats was measured by footprint analysis, and electrophysiological analysis and histological examination were performed to evaluate the efficacy of nerve regeneration. RESULTS Cultured ADSCs became morphologically homogeneous with a bipolar, spindle-like shape after ex vivo expansion. Implantation of ADSCs into the rat models led to (i) improved walking behaviour as measured by footprint analysis, (ii) increased conservation of muscle-mass ratio of gastrocnemius and soleus muscles, (iii) increased nerve conduction velocity, and (iv) increased number of myelinated fibres within the graft. CONCLUSIONS Adipose-derived stem cells could promote peripheral nerve repair in a rat model. Although the detailed mechanism by which ADSCs promote peripheral nerve regeneration is being investigated in our lab, our results suggest that ADSCs transplantation represents a powerful therapeutic approach for peripheral nerve injury.
Collapse
Affiliation(s)
- Gui-Bo Liu
- Department of Human Anatomy, The Basic College of Medical Sciences, China Medical University, Shenyang, China
- Department of Human Anatomy, Mudanjiang Medical College, Mudanjiang, China
| | - Yong-Xia Cheng
- Department of Pathology, Mudanjiang Medical College, Mudanjiang, China
| | - Yu-Kuan Feng
- Department of Human Anatomy, Mudanjiang Medical College, Mudanjiang, China
| | - Chao-Jian Pang
- Department of Human Anatomy, The Basic College of Medical Sciences, China Medical University, Shenyang, China
| | - Qi Li
- Department of Human Anatomy, The Basic College of Medical Sciences, China Medical University, Shenyang, China
| | - Ying Wang
- Department of Human Anatomy, The Basic College of Medical Sciences, China Medical University, Shenyang, China
- Department of Human Anatomy, Mudanjiang Medical College, Mudanjiang, China
| | - Hua Jia
- Department of Human Anatomy, The Basic College of Medical Sciences, China Medical University, Shenyang, China
| | - Xiao-Jie Tong
- Department of Human Anatomy, The Basic College of Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
17
|
Jensen MB, Han DY, Sawaf AA, Krishnaney-Davison R. Behavioral outcome measures used for human neural stem cell transplantation in rat stroke models. Neurol Int 2011; 3:e10. [PMID: 22053257 PMCID: PMC3207229 DOI: 10.4081/ni.2011.e10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 08/30/2011] [Indexed: 11/22/2022] Open
Abstract
Stroke is a leading cause of death and disability, leading to the development of various stroke models to test new treatments, most commonly in the rat. Human stroke trials focus on disability, related primarily to neurological deficits. To better model the clinical application of these treatments, many behavioral tests have been developed using the rat stroke model. We performed a systematic review of all the behavioral outcome measures used in published studies of human neural stem cell transplantation in rat stroke models. The reviewed tests include motor, sensory, cognitive, activity, and combination tests. For each test, we give a brief description, trace the origin of the test, and discuss test performance in the reviewed studies. We conclude that while many behavioral tests are available for this purpose, there does not appear to be consensus on an optimal testing strategy.
Collapse
|
18
|
Human adipose-derived stem cells: Isolation, characterization and current application in regeneration medicine. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.gmbhs.2011.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Kuhbier JW, Weyand B, Sorg H, Radtke C, Vogt PM, Reimers K. [Stem cells from fatty tissue : A new resource for regenerative medicine?]. Chirurg 2011; 81:826-32. [PMID: 20830547 DOI: 10.1007/s00104-010-1962-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While stem cells derived from the bone marrow are well-known in clinical medicine, fatty tissue as a source of mesenchymal stem cells is still the subject of recent research. However, adipose-derived stem cells (ASC) are not only harvested less invasively, i.e. via minimally invasive liposuction, but also yield higher numbers of multipotent stem cells.Due to cell-cell interactions and also because of the very favorable secretion profile of growth factors and cytokines ASCs displayed an extraordinary regenerative potential in recent preclinical and clinical applications and achieved a significantly better healing in ischemic muscle, heart, and brain insults and in impaired wound healing. ASCs enhanced regeneration in skeletal tissues such as cartilage or bone. They also revealed immunomodulatory effects and improved the clinical status in immunological diseases.In conclusion ASCs are comparable to bone marrow-derived stem cells concerning possible applications in clinical medicine.
Collapse
Affiliation(s)
- J W Kuhbier
- Klinik für Plastische, Hand- und Wiederherstellungschirurgie, Medizinische Hochschule Hannover, Deutschland
| | | | | | | | | | | |
Collapse
|
20
|
Qureshi IA, Mehler MF. Emerging role of epigenetics in stroke: part 1: DNA methylation and chromatin modifications. ACTA ACUST UNITED AC 2010; 67:1316-22. [PMID: 21060009 DOI: 10.1001/archneurol.2010.275] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Epigenetic mechanisms refer to the complex and interrelated molecular processes that dynamically modulate gene expression and function within every cell in the body. These regulatory systems represent the long-sought-after molecular interfaces that mediate gene × environment interactions. Changes in the epigenome throughout life are responsible not only for controlling normal development, adult homeostasis, and aging but also for mediating responses to injury. Emerging evidence implicates a spectrum of epigenetic processes in the pathophysiology of stroke. In this review, we describe conventional epigenetic mechanisms (including DNA methylation, histone code modifications, nucleosome remodeling, and higher-order chromatin formation) and highlight the emerging roles each of these processes play in the pathobiology of stroke. We suggest that understanding these mechanisms may be important for discovering more sensitive and specific biomarkers for risk, onset, and progression of stroke. In addition, we highlight epigenetic approaches for stroke therapy, including the inhibition of DNA methyltransferase and histone deacetylase enzyme activities. These therapeutic approaches are still in their infancy, but preliminary results suggest that contemporary agents targeting these pathways can regulate the deployment of stress responses that modulate neural cell viability and promote brain repair and functional reorganization. Indeed, these agents even appear to orchestrate sophisticated cognitive functions, including learning and memory.
Collapse
Affiliation(s)
- Irfan A Qureshi
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Institute for Brain Disorders and Neural Regeneration, and Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
21
|
Jang S, Cho HH, Cho YB, Park JS, Jeong HS. Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol 2010; 11:25. [PMID: 20398362 PMCID: PMC2867791 DOI: 10.1186/1471-2121-11-25] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 04/16/2010] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Adult mesenchymal stem cells (MSCs) derived from adipose tissue have the capacity to differentiate into mesenchymal as well as endodermal and ectodermal cell lineage in vitro. We characterized the multipotent ability of human adipose tissue-derived stem cells (hADSCs) as MSCs and investigated the neural differentiation potential of these cells. RESULTS Human ADSCs from earlobe fat maintained self-renewing capacity and differentiated into adipocytes, osteoblasts, or chondrocytes under specific culture conditions. Following neural induction with bFGF and forskolin, hADSCs were differentiated into various types of neural cells including neurons and glia in vitro. In neural differentiated-hADSCs (NI-hADSCs), the immunoreactivities for neural stem cell marker (nestin), neuronal markers (Tuj1, MAP2, NFL, NFM, NFH, NSE, and NeuN), astrocyte marker (GFAP), and oligodendrocyte marker (CNPase) were significantly increased than in the primary hADSCs. RT-PCR analysis demonstrated that the mRNA levels encoding for ABCG2, nestin, Tuj1, MAP2, NFL, NFM, NSE, GAP43, SNAP25, GFAP, and CNPase were also highly increased in NI-hADSCs. Moreover, NI-hADSCs acquired neuron-like functions characterized by the display of voltage-dependent tetrodotoxin (TTX)-sensitive sodium currents, outward potassium currents, and prominent negative resting membrane potentials under whole-cell patch clamp recordings. Further examination by RT-PCR showed that NI-hADSCs expressed high level of ionic channel genes for sodium (SCN5A), potassium (MaxiK, Kv4.2, and EAG2), and calcium channels (CACNA1C and CACNA1G), which were expressed constitutively in the primary hADSCs. In addition, we demonstrated that Kv4.3 and Eag1, potassium channel genes, and NE-Na, a TTX-sensitive sodium channel gene, were highly induced following neural differentiation. CONCLUSIONS These combined results indicate that hADSCs have the same self-renewing capacity and multipotency as stem cells, and can be differentiated into functional neurons using bFGF and forskolin.
Collapse
Affiliation(s)
- Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Gwangju 501190, Republic of Korea
- Brain Korea 21 Project, Center for Biomedical Human Resources at Chonnam National University, Gwangju, 501-190, Republic of Korea
- Research Institute of Medical Sciences, Chonnam National University, Gwangju 501-190, Republic of Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju 501190, Republic of Korea
- Research Institute of Medical Sciences, Chonnam National University, Gwangju 501-190, Republic of Korea
| | - Yong-Bum Cho
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju 501190, Republic of Korea
- Research Institute of Medical Sciences, Chonnam National University, Gwangju 501-190, Republic of Korea
| | - Jong-Seong Park
- Department of Physiology, Chonnam National University Medical School, Gwangju 501190, Republic of Korea
- Brain Korea 21 Project, Center for Biomedical Human Resources at Chonnam National University, Gwangju, 501-190, Republic of Korea
- Research Institute of Medical Sciences, Chonnam National University, Gwangju 501-190, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Gwangju 501190, Republic of Korea
- Brain Korea 21 Project, Center for Biomedical Human Resources at Chonnam National University, Gwangju, 501-190, Republic of Korea
- Research Institute of Medical Sciences, Chonnam National University, Gwangju 501-190, Republic of Korea
| |
Collapse
|
22
|
Lourbopoulos A, Grigoriadis N, Karacostas D, Spandou E, Artemis N, Milonas I, Tascos N, Simeonidou C. Predictable ventricular shift after focal cerebral ischaemia in rats: practical considerations for intraventricular therapeutic interventions. Lab Anim 2009; 44:71-8. [PMID: 19900985 DOI: 10.1258/la.2009.009043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intracerebroventricular (ICV) route of administration is a useful experimental method to study the effects of chemicals or cellular grafts in the ventricular compartment of the brain after focal ischaemia. However, the induced oedema may cause structural dislocating phenomena and render a stereotaxic ICV invasion difficult and practically unavailable especially during the acute post-ischaemia phase. The aim of this study was to measure these structural ventricular dislocations and set new stereotaxic coordinates for successful and cost-effective ICV invasion 6-18 h after focal cerebral ischaemia. Wistar rats were subjected to 2 h middle cerebral artery occlussion (t-MCAO), were neurologically evaluated (modified Neurological Stroke Scale [mNSS], modified Bederson's Scale [mBS] and grid-walking test [GWT]) and brain slides were studied at 6 and 18 h post-occlusion for infarction volume, hemispheric oedema, middle line dislocation and stereotaxia of the lateral ventricles. Our data indicated that stereotaxic coordinates of the lateral ventricles in the infarcted and contralateral hemispheres significantly (P < 0.05) changed at both time-points and were linearly correlated with the mNSS, mBS and some GWT scores (P < 0.001). This correlation allowed for the calculation of simple (linear) mathematical equations (stereotaxic coordinate = b0 + b1*mNSS, where 'b0' and 'b1' are fixed number and factor, respectively, calculated by regression analysis) that determined individually new coordinates for each animal. Verification experiments revealed that the new coordinates render ICV invasion feasible in up to 80% of infarcted rats (number needed to treat 1.65), compared with only 19.4% using the classical coordinates for normal rats. Therefore, we propose a new, time- and cost-effective methodology for practically feasible ICV invasion in rats 6-18 h after t-MCAO.
Collapse
Affiliation(s)
- A Lourbopoulos
- B' Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | | | | | | | | | | | | | | |
Collapse
|
23
|
The potential of neural stem cells to repair stroke-induced brain damage. Acta Neuropathol 2009; 117:469-80. [PMID: 19283395 DOI: 10.1007/s00401-009-0516-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 01/19/2023]
Abstract
Acute injuries to CNS such as stroke induce neural progenitor proliferation in adult brain which might be an endogenous attempt to self-repair. This process is known to be altered by several exogenous and endogenous modulators including growth factors that could help to reinforce the post-stroke neurogenesis. Increasing the neurogenesis may be a future therapeutic option to decrease the cognitive and behavioral deficits following stroke. In addition, transplantation of various types of stem cells into the injured brain is currently thought to be an exciting option to replace the neurons lost in the post-ischemic brain. These include immortalized stem cell lines, neural progenitors prepared from embryonic and adult animals and mesenchymal stem cells. Using exogenous stem cells in addition to modulating endogenous neurogenesis, we may be able to repair the injured brain after a devastating stroke. This article reviewed the current literature of these two issues.
Collapse
|