1
|
Nguyen LHT, Mirzaei A, Kim JY, Phan TB, Tran LD, Wu KCW, Kim HW, Kim SS, Doan TLH. Advancements in MOF-based resistive gas sensors: synthesis methods and applications for toxic gas detection. NANOSCALE HORIZONS 2025. [PMID: 40201945 DOI: 10.1039/d4nh00662c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Gas sensors are essential tools for safeguarding public health and safety because they allow the detection of hazardous gases. To advance gas-sensing technologies, novel sensing materials with distinct properties are needed. Metal-organic frameworks (MOFs) hold great potential because of their extensive surface areas, high porosity, unique chemical properties, and capabilities for preconcentration and molecular sieving. These attributes make MOFs highly suitable for designing and creating innovative resistive gas sensors. This review article examines resistive gas sensors made from pristine, doped, decorated, and composite MOFs. The first part of the review focuses on the synthesis strategies of MOFs, while the second part discusses MOF-based resistive gas sensors that operate based on changes in resistance.
Collapse
Affiliation(s)
- Linh Ho Thuy Nguyen
- Faculty of Pharmacy, University of Health Sciences, Ho Chi Minh City 70000, Vietnam
- Vietnam National University, Ho Chi Minh City 70000, Vietnam.
| | - Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Jin-Young Kim
- The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea.
| | - Thang Bach Phan
- Vietnam National University, Ho Chi Minh City 70000, Vietnam.
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 70000, Vietnam
| | - Lam Dai Tran
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi 11300, Vietnam
| | - Kevin C-W Wu
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan 32003, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hyoun Woo Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea.
| | - Tan Le Hoang Doan
- Vietnam National University, Ho Chi Minh City 70000, Vietnam.
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 70000, Vietnam
| |
Collapse
|
2
|
Ferrari L, Buoli M, Borroni E, Nosari G, Ceresa A, Antonangeli LM, Monti P, Matsagani R, Bollati V, Pesatori AC, Carugno M. DNA methylation of core clock genes in patients with major depressive disorder: Association with air pollution exposure and disease severity. Psychiatry Res 2025; 348:116466. [PMID: 40184933 DOI: 10.1016/j.psychres.2025.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Major Depressive Disorder (MDD) is a multifactorial disease which could be influenced by exposure to air pollution through disruption of sleep-wake cycles and other circadian-related behaviors. Our study aimed to investigate the interplay between air pollution exposure, DNA methylation of core clock genes involved in circadian rhythms, and MDD severity. METHODS Four hundred sixteen MDD patients (64 % females) agreed to participate and donated a blood sample to measure DNA methylation of the core clock genes CRY1, PER1, PER2, CLOCK, BMAL1. MDD severity and functioning was assessed using five rating scales. Daily mean estimates of particulate matter with diameter ≤ 2.5 μm (PM2.5) and nitrogen dioxide (NO2) were assigned to study participants based on their residential address, and averaged to estimate different cumulative exposure windows. Multivariate regression models were applied to assess associations between air pollutants and core clock genes methylation and between DNA methylation of those same genes and MDD severity. RESULTS PM2.5 exposure in the six months preceding recruitment was associated with CLOCK hypomethylation (β=-0.11, 95 % confidence interval [CI]:0.20; -0.02) and CRY1 hypermethylation (β=0.32, 95 %CI: 0.06; 0.58). All NO2 exposure windows were associated with CRY1 hypermethylation. Increasing methylation of CLOCK was associated with lower MDD severity considering several scales (e.g., Hamilton Depression Rating Scale: β=-7.21, 95 %CI:3.97; -0.44). CONCLUSIONS Taken together our findings shed some light on the complex mechanism underlying the pathogenesis of MDD, with a potentially relevant role of the environment and of its impact on epigenetic mechanisms altering the expression of core clock genes.
Collapse
Affiliation(s)
- Luca Ferrari
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Massimiliano Buoli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Borroni
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Guido Nosari
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Ceresa
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Laura Maria Antonangeli
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Rachele Matsagani
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Cecilia Pesatori
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michele Carugno
- EPIGET Lab, Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
3
|
Hwang SL, Lin YC, Lin CM, Chi MC. Effects of ambient fine particulate matter on the exacerbation of psychiatric disorders in southern Taiwan: a case-crossover study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-12. [PMID: 40103419 DOI: 10.1080/09603123.2025.2480853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/13/2025] [Indexed: 03/20/2025]
Abstract
This study investigated the impact of short-term exposures to ambient fine particulate matter 2.5 (PM2.5) on the exacerbation of psychiatric disorders (PDs) in southern Taiwan between 2014 and 2020. Data on emergency room visits (ERVs) for PDs and air pollutant levels were obtained from the Chang Gung Research Database and the Environmental Protection Administration, respectively. A time-stratified case-crossover design was adopted to estimate the risks of ERVs for PDs. At lag4 days, a 10-μg/m3 increase in PM2.5 was associated with significant increases in ERVs in both single- and multi-pollutant models, with odds ratio (OR) of 1.18 [95% confidence interval (95% CI): 1.00, 1.38] (PM2.5), 1.20 (95% CI: 1.00, 1.43) (PM2.5 + SO2), 1.23 (95% CI: 1.03, 1.46) (PM2.5 + O3), and 1.25 (95% CI: 1.03, 1.52) (PM2.5 + SO2 + O3). For cumulative lags (lag0-6), a 10-μg/m3 increase in PM2.5 was associated with significant increases in ERVs only for multi-pollutant model (PM2.5 + SO2), with OR of 1.41 (95% CI: 1.03, 1.93). Among males, significant increases in ERVs were observed at lag4 and lag0-6 days; however, no significant associations were observed in females. In conclusion, short-term exposure to PM2.5 increased the risk of PDs exacerbation, exhibiting both delayed and cumulative effects, with male patients found to be more sensitive.
Collapse
Affiliation(s)
- Su-Lun Hwang
- Department of Nursing, Chang Gung University of Science and Technology, Puzi, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan
- Division of Thoracic Oncology, Chang Gung Memorial Hospital Chiayi Branch, Puzi, Taiwan
| | - Yu-Ching Lin
- Division of Thoracic Oncology, Chang Gung Memorial Hospital Chiayi Branch, Puzi, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Taiwan
| | - Chieh-Mo Lin
- Department of Nursing, Chang Gung University of Science and Technology, Puzi, Taiwan
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Puzi, Chiayi Country, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Miao-Ching Chi
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Taiwan
| |
Collapse
|
4
|
Petrongari D, Ciarelli F, Di Filippo P, Di Ludovico A, Di Pillo S, Chiarelli F, Pellegrino GM, Sferrazza Papa GF, Nosetti L, Attanasi M. Risk and Protective Factors for Obstructive Sleep Apnea Syndrome Throughout Lifespan: From Pregnancy to Adolescence. CHILDREN (BASEL, SWITZERLAND) 2025; 12:216. [PMID: 40003319 PMCID: PMC11854123 DOI: 10.3390/children12020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Obstructive sleep apnea syndrome (OSAS) in children is indeed a significant and often underdiagnosed condition. The risk factors for OSAS vary across different stages of life. OBJECTIVES Identifying risk factors early can help in taking preventive measures to reduce the likelihood of developing OSAS, and different life stages may require different interventions. RESULTS During pregnancy, maternal factors such as obesity, smoking, and genetic predispositions can increase the risk of OSAS, while breastfeeding serves as a protective factor. For children aged 2 to 12, adenotonsillar hypertrophy is the primary cause of airway narrowing, with other contributing factors including obesity, craniofacial abnormalities, and increased nasal resistance. In adolescence, obesity and craniofacial abnormalities remain the main risk factors. CONCLUSIONS By reviewing and understanding these risk factors, healthcare providers can offer more personalized and effective care, ultimately leading to better health outcomes for individuals at all stages of life.
Collapse
Affiliation(s)
- Duilio Petrongari
- Department of Pediatrics, Pediatric Allergy and Pulmonology Unit, University of Chieti-Pescara, Via Dei Vestini 5, 66100 Chieti, Italy; (D.P.); (F.C.); (P.D.F.); (A.D.L.); (S.D.P.); (F.C.)
| | - Francesca Ciarelli
- Department of Pediatrics, Pediatric Allergy and Pulmonology Unit, University of Chieti-Pescara, Via Dei Vestini 5, 66100 Chieti, Italy; (D.P.); (F.C.); (P.D.F.); (A.D.L.); (S.D.P.); (F.C.)
| | - Paola Di Filippo
- Department of Pediatrics, Pediatric Allergy and Pulmonology Unit, University of Chieti-Pescara, Via Dei Vestini 5, 66100 Chieti, Italy; (D.P.); (F.C.); (P.D.F.); (A.D.L.); (S.D.P.); (F.C.)
| | - Armando Di Ludovico
- Department of Pediatrics, Pediatric Allergy and Pulmonology Unit, University of Chieti-Pescara, Via Dei Vestini 5, 66100 Chieti, Italy; (D.P.); (F.C.); (P.D.F.); (A.D.L.); (S.D.P.); (F.C.)
| | - Sabrina Di Pillo
- Department of Pediatrics, Pediatric Allergy and Pulmonology Unit, University of Chieti-Pescara, Via Dei Vestini 5, 66100 Chieti, Italy; (D.P.); (F.C.); (P.D.F.); (A.D.L.); (S.D.P.); (F.C.)
| | - Francesco Chiarelli
- Department of Pediatrics, Pediatric Allergy and Pulmonology Unit, University of Chieti-Pescara, Via Dei Vestini 5, 66100 Chieti, Italy; (D.P.); (F.C.); (P.D.F.); (A.D.L.); (S.D.P.); (F.C.)
| | - Giulia Maria Pellegrino
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy; (G.M.P.); (G.F.S.P.)
| | | | - Luana Nosetti
- Department of Pediatrics, Pediatric Sleep Disorders Center, F. Del Ponte Hospital, Insubria University, 21100 Varese, Italy;
| | - Marina Attanasi
- Department of Pediatrics, Pediatric Allergy and Pulmonology Unit, University of Chieti-Pescara, Via Dei Vestini 5, 66100 Chieti, Italy; (D.P.); (F.C.); (P.D.F.); (A.D.L.); (S.D.P.); (F.C.)
| |
Collapse
|
5
|
Tavella RA, Penteado JO, Brum RDL, Bonifácio ADS, San Martin MC, Saes-Silva E, Brum AN, Buffarini R, Correia Filho WLF, Adamatti DF, Neves RG, de Freitas ED, Miraglia SGEK, da Silva Júnior FMR. An exploratory study on the association between air pollution and health problems (ICD-10) with an emphasis on respiratory diseases. ATMOSPHERIC POLLUTION RESEARCH 2025; 16:102377. [DOI: 10.1016/j.apr.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Pan K, Lin F, Huang K, Zeng S, Guo M, Cao J, Dong H, Wei J, Xi Q. The effect of short-term exposure to air pollution on the admission of ischemic stroke and its interaction with meteorological factors. Public Health 2025; 239:103-111. [PMID: 39799658 DOI: 10.1016/j.puhe.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025]
Abstract
OBJECTIVES The aim of this study was to investigate the associations, potential effects, and interactions between short-term exposure to air pollution and the risk of ischemic stroke (IS). STUDY DESIGN An ecological study. METHODS Daily data on IS incidents, air pollution, and meteorological conditions were collected from 2017 to 2021 in Gannan. A time-stratified case-crossover design, combined with a distributional lag nonlinear model, was employed to analyze the relationship between air pollution exposure and the admission of IS. Additionally, the interaction between air pollutants and meteorological factors was examined using bivariate response surface modeling. The study also conducted stratified analyses based on gender, age, marital status, medical insurance purchase status, and season of admission. RESULTS In the single lag day structure, extremely low levels of PM2.5 (RR = 1.11, 95 % CI: 1.03-1.20) and PM10 (RR = 1.10, 95 % CI: 1.02-1.20) peaked on lag 3. Conversely, extremely high levels of NO2 (RR = 1.05, 95 % CI: 1.01-1.10), CO (RR = 1.19, 95 % CI: 1.03-1.37), and extremely low levels of O3 (RR = 1.09, 95 % CI: 1.01-1.19) exhibited a greater relative risk on lag 4. In the cumulative lag-day structure, extremely high levels of NO2 exhibited the most significant hazard effect at lag 05 (RR = 1.27, 95 % CI: 1.01-1.52), while extremely low levels of CO at lag 02 (RR = 1.15, 95 % CI: 1.05-1.24) and extremely low levels of O3 at lag 01 (RR = 1.20, 95 % CI: 1.04-1.40) also demonstrated notable associations. In the subgroup stratum, the association between air pollution and IS was found to be more significant in patients who were male, aged <65 years, married, had medical insurance, and were admitted during the cold season. The lowest number of IS hospitalisations occurred under low relative humidity conditions alongside increasing concentrations of CO. CONCLUSIONS Short-term exposure to air pollution was positively associated with an increased risk of IS. This association was influenced by factors such as being male, aged <65 years, married, having medical insurance, and admissions during the cold season. Additionally, an interaction was observed between air pollutants and meteorological factors. These findings carry significant public health implications for the prevention of IS.
Collapse
Affiliation(s)
- Kailun Pan
- Department of Neurology, First Affiliated Hospital of Gannan Medical Univesity, Ganzhou, 341000, Jiangxi, China; School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, Jiangxi, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Fen Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, Jiangxi, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Kai Huang
- School of the Frist Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Songbing Zeng
- School of the Frist Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Mingwei Guo
- Department of Neurology, First Affiliated Hospital of Gannan Medical Univesity, Ganzhou, 341000, Jiangxi, China
| | - Jie Cao
- Department of Neurology, First Affiliated Hospital of Gannan Medical Univesity, Ganzhou, 341000, Jiangxi, China
| | - Haifa Dong
- Department of Neurology, First Affiliated Hospital of Gannan Medical Univesity, Ganzhou, 341000, Jiangxi, China
| | - Jianing Wei
- School of the Frist Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Qiujiang Xi
- Department of Neurology, First Affiliated Hospital of Gannan Medical Univesity, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
7
|
Motoc I, Ginos BNR, Goncalves Soares A, Elhakeem A, Voortman T, Kavousi M, Luik AI, Roseboom TJ, de Rooij SR. Examining associations of air pollution and green space with depressive symptoms in adults: A LongITools cross-cohort analysis. ENVIRONMENTAL RESEARCH 2025; 264:120321. [PMID: 39522873 DOI: 10.1016/j.envres.2024.120321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Evidence suggests that high levels of air pollution and less green space increase depressive symptoms in adults. However, results are mixed and cross-cohort comparisons are scarce, largely due to heterogeneity in exposure assessment. Also, the impact of these exposures on the trajectory of depressive symptoms over time has been less studied. We investigated the association of air pollution and green space with depressive symptoms in adulthood and whether these exposures modify the trajectory of depressive symptoms leveraging harmonized data from four population-based cohorts across the Netherlands and United Kingdom (UK). METHODS We analyzed data from the Dutch Famine Birth Cohort (DFBC) (n = 840, baseline ages: 56-61), and the Rotterdam Study (RS) (RS-I n = 4,049, baseline ages: 61-101 and RS-II n = 2,861, baseline ages: 55-99), in the Netherlands, and the Avon Longitudinal Study of Parents and Children (ALSPAC) (n = 17,100, baseline ages: 18-71) in the UK, each using a different validated instrument for depressive symptoms, with 3-11 repeated measures. European-wide environmental data was linked to participants' addresses at baseline. Linear mixed-models were used to estimate associations of air pollution and green space with standardized cohort-specific depressive symptoms, and whether these exposures modify the trajectory of depressive symptoms. RESULTS Long-term exposure to fine particulate matter (PM2.5) was positively associated with overall higher standardized depressive symptom scores in ALSPAC and RS-I (β per 10 μg/m3 increase in PM2.5: 0.07 SD, 95%CI 0.02, 0.11 and 0.13 SD, 95%CI 0.02, 0.24, respectively). Exposure to higher normalized difference vegetation index (NDVI) at 300 m buffer was associated with lower depressive symptoms in DFBC (β per 0.1 increase in NDVI: 0.08, 95%CI -0.14, -0.01). In RS-II, the positive effect of higher NDVI at 300-m buffer on depressive symptoms decreased over time, but this effect was very small (β per 0.1 increase in NDVI: 0.01 SD per year, 95%CI 0.00, 0.01). CONCLUSION Air pollution in the form of particulate matter as well as green space were associated with depressive symptoms across multiple cohorts. In the majority of cohorts, depressive symptoms increased with age, but we found little evidence that trajectories of depressive symptoms are influenced by exposure to environmental variables.
Collapse
Affiliation(s)
- Irina Motoc
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam Reproduction & Development programs, Amsterdam, Netherlands; Amsterdam Public Health, Aging & Later Life and Mental Health programs, Amsterdam, Netherlands.
| | - Bigina N R Ginos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ana Goncalves Soares
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom; Population Health Sciences, Bristol Medical School. University of Bristol. Bristol, United Kingdom
| | - Ahmed Elhakeem
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom; Population Health Sciences, Bristol Medical School. University of Bristol. Bristol, United Kingdom
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Annemarie I Luik
- Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, Netherlands
| | - Tessa J Roseboom
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam Reproduction & Development programs, Amsterdam, Netherlands
| | - Susanne R de Rooij
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam Reproduction & Development programs, Amsterdam, Netherlands; Amsterdam Public Health, Aging & Later Life and Mental Health programs, Amsterdam, Netherlands
| |
Collapse
|
8
|
Jaiswal C, Singh AK. Particulate matter exposure and its consequences on hippocampal neurogenesis and cognitive function in experimental models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125275. [PMID: 39515570 DOI: 10.1016/j.envpol.2024.125275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Exposure to air pollution is thought to cause millions of deaths globally each year. According to the Who 2018, approximately 7 million deaths annually are caused predominantly by noncommunicable diseases due to air pollution. Exposure to air particulate matter 2.5 (PM2.5) has been strongly associated with increased mortality and has significant effects on brain health. Air pollution, particularly ultrafine particulate matter, has emerged as a serious environmental concern with profound implications for human health. Studies in animal models have indicated that exposure to these pollutants during gestational development impacts prenatal and postnatal brain development. In particular, air pollution has been increasingly identified as a potential causative factor, as it affects neurogenesis in the brain's hippocampal region. The hippocampus is highly vulnerable to PM exposure, and any alteration in the structure or function of this region leads to various neurodevelopmental defects and neurodegenerative disorders via oxidative stress, microglial activation, neuronal death, and differential expression of genes. The neurogenesis process involves several steps, such as proliferation, differentiation, migration, synaptogenesis, and neuritogenesis. If any step of the neurogenesis process is hampered by environmental exposure or other factors, it can lead to neurodevelopmental defects, neurodegenerative disorders, and cognitive decline. One significant contributor to these alterations is air pollution, which ranks as the leading environmental risk factor worldwide. Some of the most common effects include oxidative stress, neuroinflammation, depressive behavior, altered cognitive processes, and microglial activation. This review explores how prenatal and postnatal PM exposure affects the hippocampal regions of the brain and the defects associated with exposure.
Collapse
Affiliation(s)
- Charu Jaiswal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
9
|
Pignatelli A, Benedusi M, Barbieri M, Pecorelli A, Valacchi G. Tropospheric ozone effect on olfactory perception and olfactory bulb dopaminergic interneuron excitability. Neurotoxicology 2024; 104:36-44. [PMID: 39004287 DOI: 10.1016/j.neuro.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
Ozone (O3) forms in the Earth's atmosphere, both naturally and by reactions of man-made air pollutants. Deleterious effects of O3 have been found in the respiratory system. Here, we examine whether O3 alters olfactory behavior and cellular properties in the olfactory system. For this purpose, mice were exposed to O3 at a concentration found in highly polluted city air [0.8 ppm], and the behavior elicited by social and non-social odors in habituation/dishabituation tests was assessed. In addition, the electrical responses of dopaminergic olfactory bulb (OB) neurons were also evaluated. O3 differentially compromises olfactory perception to odors: it reduces responses to social and non-social odors in Swiss Webster mice, while this effect was observed in C57BL/6 J mice only for some non-social odors. Additionally, O3 reduced the rate of spontaneous spike firing in periglomerular dopaminergic cells (PG-DA) of the OB. Because this effect could reflect changes in excitability and/or synaptic inputs, the ability of O3 to alter PG-DA spontaneous activity was also tested together with cell membrane resistance, membrane potential, rheobase and chronaxie. Taken together, our data suggest the ability of O3 to affect olfactory perception.
Collapse
Affiliation(s)
- Angela Pignatelli
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy.
| | - Mascia Benedusi
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy.
| | - Mario Barbieri
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy.
| | - Alessandra Pecorelli
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Giuseppe Valacchi
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy; Dept. of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; Dept. of Food and Nutrition, Kyung Hee University, Seoul 26723, Republic of Korea.
| |
Collapse
|
10
|
Linnman C. Invited Perspective: Blue Skies and Alzheimer's Disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:71303. [PMID: 39028626 PMCID: PMC11259244 DOI: 10.1289/ehp15478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Affiliation(s)
- Clas Linnman
- Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Zhang X, Ding L, Yang F, Qiao G, Gao X, Xiong Z, Zhu X. Association between indoor air pollution and depression: a systematic review and meta-analysis of cohort studies. BMJ Open 2024; 14:e075105. [PMID: 38719299 PMCID: PMC11086541 DOI: 10.1136/bmjopen-2023-075105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVES Incomplete combustion of solid fuel and exposure to secondhand smoke (SHS) are the primary causes of indoor air pollution (IAP), potentially leading to detrimental effects on individual mental health. However, current evidence regarding the association between IAP and depression remains inconclusive. This study aims to systematically investigate the evidence regarding the association between IAP and the risk of depression. DESIGN Systematic review and meta-analysis of cohort studies. DATA SOURCES Two independent reviewers searched PubMed, the Cochrane Library, Web of Science and EMBASE for available studies published up to 13 January 2024. ELIGIBILITY CRITERIA We included all cohort studies published in English that aimed to explore the relationship between IAP from solid fuel use and SHS exposure and the risk of depression. DATA EXTRACTION AND SYNTHESIS Two independent reviewers extracted data and assessed the risk of bias. The association between IAP and depression was calculated using pooled relative risk (RR) with 95% CIs. Heterogeneity was assessed using the I2 value, and the effect estimates were pooled using fixed-effects or random-effects models depending on the results of homogeneity analysis. RESULTS We included 12 articles with data from 61 217 participants. The overall findings demonstrated a significant association between IAP exposure and depression (RR=1.22, 95% CI: 1.13 to 1.31), although with substantial heterogeneity (I2=75%). Subgroup analyses based on pollutant type revealed that IAP from solid fuel use was associated with a higher risk of depression (RR=1.20, 95% CI: 1.13 to 1.26; I2=62%; 5 studies, 36 768 participants) than that from SHS exposure (RR=1.11, 95% CI: 0.87 to 1.41; I2=80%; 7 studies, 24 449 participants). In terms of fuel use, the use of solid fuel for cooking (RR: 1.23, 95% CI: 1.16 to 1.31; I2=58%; 4 studies, 34 044 participants) and heating (RR 1.15, 95% CI: 1.04 to 1.27; I2=65%; 3 studies, 24 874 participants) was associated with increased depression risk. CONCLUSIONS The findings from this systematic review and meta-analysis of cohort studies indicated an association between exposure to IAP and depression. PROSPERO REGISTRATION NUMBER CRD42022383285.
Collapse
Affiliation(s)
| | - Linlin Ding
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Fen Yang
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Guiyuan Qiao
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaolian Gao
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhenfang Xiong
- School of Nursing and Health Management, Wuhan Donghu University, Wuhan, China
| | - Xinhong Zhu
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
12
|
Zhuang Z, Li D, Zhang S, Hu Z, Deng W, Lin H. Short-Term Exposure to PM 2.5 Chemical Components and Depression Outpatient Visits: A Case-Crossover Analysis in Three Chinese Cities. TOXICS 2024; 12:136. [PMID: 38393231 PMCID: PMC10892610 DOI: 10.3390/toxics12020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND The association between specific chemical components of PM2.5 and depression remains largely unknown. METHODS We conducted a time-stratified case-crossover analysis with a distributed lag nonlinear model (DLNM) to evaluate the relationship of PM2.5 and its chemical components, including black carbon (BC), organic matter (OM), sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+), with the depression incidence. Daily depression outpatients were enrolled from Huizhou, Shenzhen, and Zhaoqing. RESULTS Among 247,281 outpatients, we found the strongest cumulative effects of PM2.5 and its chemical components with the odd ratios (ORs) of 1.607 (95% CI: 1.321, 1.956) and 1.417 (95% CI: 1.245, 1.612) at the 50th percentile of PM2.5 and OM at lag 21, respectively. Furthermore, the ORs with SO42- and NH4+ at the 75th percentile on the same lag day were 1.418 (95% CI: 1.247, 1.613) and 1.025 (95% CI: 1.009, 1.140). Relatively stronger associations were observed among females and the elderly. CONCLUSIONS Our study suggests that PM2.5 and its chemical components might be important risk factors for depression. Reducing PM2.5 emissions, with a particular focus on the major sources of SO42- and OM, might potentially alleviate the burden of depression in South China.
Collapse
Affiliation(s)
- Zitong Zhuang
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Dan Li
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Shiyu Zhang
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhaoyang Hu
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Wenfeng Deng
- Huizhou Center for Disease Control and Prevention, No. 10 Jiangbei Fumin Road, Huizhou 516003, China;
| | - Hualiang Lin
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| |
Collapse
|
13
|
Gavito-Covarrubias D, Ramírez-Díaz I, Guzmán-Linares J, Limón ID, Manuel-Sánchez DM, Molina-Herrera A, Coral-García MÁ, Anastasio E, Anaya-Hernández A, López-Salazar P, Juárez-Díaz G, Martínez-Juárez J, Torres-Jácome J, Albarado-Ibáñez A, Martínez-Laguna Y, Morán C, Rubio K. Epigenetic mechanisms of particulate matter exposure: air pollution and hazards on human health. Front Genet 2024; 14:1306600. [PMID: 38299096 PMCID: PMC10829887 DOI: 10.3389/fgene.2023.1306600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2024] Open
Abstract
Environmental pollution nowadays has not only a direct correlation with human health changes but a direct social impact. Epidemiological studies have evidenced the increased damage to human health on a daily basis because of damage to the ecological niche. Rapid urban growth and industrialized societies importantly compromise air quality, which can be assessed by a notable accumulation of air pollutants in both the gas and the particle phases. Of them, particulate matter (PM) represents a highly complex mixture of organic and inorganic compounds of the most variable size, composition, and origin. PM being one of the most complex environmental pollutants, its accumulation also varies in a temporal and spatial manner, which challenges current analytical techniques used to investigate PM interactions. Nevertheless, the characterization of the chemical composition of PM is a reliable indicator of the composition of the atmosphere, the quality of breathed air in urbanized societies, industrial zones and consequently gives support for pertinent measures to avoid serious health damage. Epigenomic damage is one of the most promising biological mechanisms of air pollution-derived carcinogenesis. Therefore, this review aims to highlight the implication of PM exposure in diverse molecular mechanisms driving human diseases by altered epigenetic regulation. The presented findings in the context of pan-organic cancer, fibrosis, neurodegeneration and metabolic diseases may provide valuable insights into the toxicity effects of PM components at the epigenomic level and may serve as biomarkers of early detection for novel targeted therapies.
Collapse
Affiliation(s)
- Dulcemaría Gavito-Covarrubias
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
- Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Josué Guzmán-Linares
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Ilhuicamina Daniel Limón
- Laboratory of Neuropharmacology, Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Dulce María Manuel-Sánchez
- Laboratory of Neuropharmacology, Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Estela Anastasio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Arely Anaya-Hernández
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Primavera López-Salazar
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Gabriel Juárez-Díaz
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Javier Martínez-Juárez
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Julián Torres-Jácome
- Laboratorio de Fisiopatología Cardiovascular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alondra Albarado-Ibáñez
- Laboratorio de Fisiopatología Cardiovascular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Carolina Morán
- Centro de Investigación en Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| |
Collapse
|
14
|
Pourhoseini SA, Akbary A, Mahmoudi H, Akbari M, Heydari ST. Association between prenatal period exposure to ambient air pollutants and development of postpartum depression: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:455-465. [PMID: 36469809 DOI: 10.1080/09603123.2022.2153808] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
There is body of evidence supporting a role for maternal exposure to ambient air pollutants and postpartum depression (PPD). We attempted to review the literature systematically to assess the association between exposure to both ambient air particulate matters within pregnancy and PPD. The effect estimates extracting across each study were standardized to a 10 μg/m3 change. The random-effects model was applied to pool odds ratios. According to the three included cohort articles, exposure to PM10 within second trimester (OR = 1.26, 95% CI = 1.15-1.37) was significantly associated with higher odds of PPD. However, there was no significant association between having exposure to other ambient air pollutants and PPD. This meta-analysis showed that air pollutants could be associated with an increased risk of PPD.
Collapse
Affiliation(s)
- Seyedeh Azam Pourhoseini
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Akbary
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Psychiatry, Faculty of Medicine, Social Determinants of Health Research Cente, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hedieh Mahmoudi
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Akbari
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Taghi Heydari
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Naishadham K, Naishadham G, Cabrera N, Bekyarova E. Response Surface Modeling of the Steady-State Impedance Responses of Gas Sensor Arrays Comprising Functionalized Carbon Nanotubes to Detect Ozone and Nitrogen Dioxide. SENSORS (BASEL, SWITZERLAND) 2023; 23:8447. [PMID: 37896540 PMCID: PMC10610975 DOI: 10.3390/s23208447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Carbon nanotube (CNT) sensors provide a versatile chemical platform for ambient monitoring of ozone (O3) and nitrogen dioxide (NO2), two important airborne pollutants known to cause acute respiratory and cardiovascular health problems. CNTs have shown great potential for use as sensing layers due to their unique properties, including high surface to volume ratio, numerous active sites and crystal facets with high surface reactivity, and high thermal and electrical conductivity. With operational advantages such as compactness, low-power operation, and easy integration with electronics devices, nanotechnology is expected to have a significant impact on portable low-cost environmental sensors. Enhanced sensitivity is feasible by functionalizing the CNTs with polymers, metals, and metal oxides. This paper focuses on the design and performance of a two-element array of O3 and NO2 sensors comprising single-walled CNTs functionalized by covalent modification with organic functional groups. Unlike the conventional chemiresistor in which the change in DC resistance across the sensor terminals is measured, we characterize the sensor array response by measuring both the magnitude and phase of the AC impedance. Multivariate response provides higher degrees of freedom in sensor array data processing. The complex impedance of each sensor is measured at 5 kHz in a controlled gas-flow chamber using gas mixtures with O3 in the 60-120 ppb range and NO2 between 20 and 80 ppb. The measured data reveal response change in the 26-36% range for the O3 sensor and 5-31% for the NO2 sensor. Multivariate optimization is used to fit the laboratory measurements to a response surface mathematical model, from which sensitivity and selectivity are calculated. The ozone sensor exhibits high sensitivity (e.g., 5 to 6 MΩ/ppb for the impedance magnitude) and high selectivity (0.8 to 0.9) for interferent (NO2) levels below 30 ppb. However, the NO2 sensor is not selective.
Collapse
Affiliation(s)
| | | | - Nelson Cabrera
- Carbon Solutions, Inc., Riverside, CA 92507, USA; (N.C.); (E.B.)
| | - Elena Bekyarova
- Carbon Solutions, Inc., Riverside, CA 92507, USA; (N.C.); (E.B.)
| |
Collapse
|
16
|
Lamorie-Foote K, Ge B, Shkirkova K, Liu Q, Mack W. Effect of Air Pollution Particulate Matter on Ischemic and Hemorrhagic Stroke: A Scoping Review. Cureus 2023; 15:e46694. [PMID: 37942398 PMCID: PMC10629995 DOI: 10.7759/cureus.46694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Air pollution particulate matter (PM) exposure has been established as a risk factor for stroke. However, few studies have investigated the effects of PM exposure on stroke subtypes (ischemic and hemorrhagic stroke). Ischemic (IS) and hemorrhagic strokes (HS) involve distinctive pathophysiological pathways and may be differentially influenced by PM exposure. This review aims to characterize the effects of PM exposure on ischemic and hemorrhagic strokes. It also identifies subpopulations that may be uniquely vulnerable to PM toxicity. Pubmed was queried from 2000 to 2023 to identify clinical and epidemiological studies examining the association between PM exposure and stroke subtypes (ischemic and hemorrhagic stroke). Inclusion criteria were: 1) articles written in English 2) clinical and epidemiological studies 3) studies with a clear definition of stroke, IS, HS, and air pollution 4) studies reporting the effects of PM and 5) studies that included distinct analyses per stroke subtype. Two independent reviewers screened the literature for applicable studies. A total of 50 articles were included in this review. Overall, PM exposure increases ischemic stroke risk in both lightly and heavily polluted countries. The association between PM exposure and hemorrhagic stroke is variable and may be influenced by a country's ambient air pollution levels. A stronger association between PM exposure and stroke is demonstrated in older individuals and those with pre-existing diabetes. There is no clear effect of sex or hypertension on PM-associated stroke risk. Current literature suggests PM exposure increases ischemic stroke risk, with an unclear effect on hemorrhagic stroke risk. Older patients and those with pre-existing diabetes may be the most vulnerable to PM toxicity. Future investigations are needed to characterize the influence of sex and hypertension on PM-associated stroke risk.
Collapse
Affiliation(s)
| | - Brandon Ge
- Neurological Surgery, Keck School of Medicine of University of Southern California, Los Angeles, USA
| | - Kristina Shkirkova
- Neurological Surgery, Keck School of Medicine of University of Southern California, Los Angeles, USA
| | - Qinghai Liu
- Neurological Surgery, University of Southern California, Los Angeles, USA
| | - William Mack
- Neurological Surgery, University of Southern California, Los Angeles, USA
| |
Collapse
|
17
|
Messingschlager M, Bartel-Steinbach M, Mackowiak SD, Denkena J, Bieg M, Klös M, Seegebarth A, Straff W, Süring K, Ishaque N, Eils R, Lehmann I, Lermen D, Trump S. Genome-wide DNA methylation sequencing identifies epigenetic perturbations in the upper airways under long-term exposure to moderate levels of ambient air pollution. ENVIRONMENTAL RESEARCH 2023; 233:116413. [PMID: 37343754 DOI: 10.1016/j.envres.2023.116413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
While the link between exposure to high levels of ambient particulate matter (PM) and increased incidences of respiratory and cardiovascular diseases is widely recognized, recent epidemiological studies have shown that low PM concentrations are equally associated with adverse health effects. As DNA methylation is one of the main mechanisms by which cells regulate and stabilize gene expression, changes in the methylome could constitute early indicators of dysregulated signaling pathways. So far, little is known about PM-associated DNA methylation changes in the upper airways, the first point of contact between airborne pollutants and the human body. Here, we focused on cells of the upper respiratory tract and assessed their genome-wide DNA methylation pattern to explore exposure-associated early regulatory changes. Using a mobile epidemiological laboratory, nasal lavage samples were collected from a cohort of 60 adults that lived in districts with records of low (Simmerath) or moderate (Stuttgart) PM10 levels in Germany. PM10 concentrations were verified by particle measurements on the days of the sample collection and genome-wide DNA methylation was determined by enzymatic methyl sequencing at single-base resolution. We identified 231 differentially methylated regions (DMRs) between moderately and lowly PM10 exposed individuals. A high proportion of DMRs overlapped with regulatory elements, and DMR target genes were involved in pathways regulating cellular redox homeostasis and immune response. In addition, we found distinct changes in DNA methylation of the HOXA gene cluster whose methylation levels have previously been linked to air pollution exposure but also to carcinogenesis in several instances. The findings of this study suggest that regulatory changes in upper airway cells occur at PM10 levels below current European thresholds, some of which may be involved in the development of air pollution-related diseases.
Collapse
Affiliation(s)
- Marey Messingschlager
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany; Freie Universität Berlin, Institute for Biology, Königin-Luise-Strasse 12-16, 14195, Berlin, Germany
| | - Martina Bartel-Steinbach
- Fraunhofer Institute for Biomedical Engineering IBMT, Josef-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Sebastian D Mackowiak
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Johanna Denkena
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Matthias Bieg
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Matthias Klös
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany
| | - Anke Seegebarth
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany
| | - Wolfgang Straff
- Environmental Medicine and Health Effects Assessment, German Environment Agency, Corrensplatz 1, 14195, Berlin, Germany
| | - Katrin Süring
- Environmental Medicine and Health Effects Assessment, German Environment Agency, Corrensplatz 1, 14195, Berlin, Germany
| | - Naveed Ishaque
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Roland Eils
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany; German Center for Lung Research (DZL), Germany; Health Data Science Unit, Heidelberg University Hospital and BioQuant, University of Heidelberg, Germany; Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 14, 14195, Berlin, Germany
| | - Irina Lehmann
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany; German Center for Lung Research (DZL), Germany.
| | - Dominik Lermen
- Fraunhofer Institute for Biomedical Engineering IBMT, Josef-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Saskia Trump
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
18
|
Song W, Bian L, Xiong M, Duan Y, Wang Y, Zhang X, Li B, Dai Y, Lu J, Li M, Liu Z, Liu S, Zhang L, Yao H, Shao R, Li G, Li L. Association of genetic polymorphisms with mercapturic acids in the urine of young healthy subjects before and after exposure to outdoor air pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:936-948. [PMID: 35469493 DOI: 10.1080/09603123.2022.2066068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
We aimed to identify the relationship between variations in metabolic genes and human urinary changes in mercapturic acids (MAs), including CEMA, HMPMA, SPMA, HPMA and HEMA, before and after air pollution exposure. Genotype detection for 47 relevant single nucleotide polymorphisms (SNPs) collected by literature research was performed. Five MAs expression levels in the urinary samples of 50 young healthy individuals with short-term exposure to clean, polluted and purified air at five time points were detected by targeted online solid-phase extraction liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS), followed with associations of SNPs with MAs changes. Difference in MAs between polluted and clean/purified air was significantly associated with 21 SNPs mapped into 9 genes. Five SNPs in GSTP1 showed the most prominent association with the changes in SPMA expression, indicating that those SNPs in GSTP1 and SPMA might serve as biomarkers for susceptibility and the prognosis of lung cancer.
Collapse
Affiliation(s)
- Wenping Song
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lingjie Bian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengran Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Duan
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Wang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Xia Zhang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Biao Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yulong Dai
- Department of Bioinformatics Analysis & Technical Support, Shanghai Lu Ming Biological Technology Co. Ltd, Shanghai, China
| | - Jiawei Lu
- Department of Bioinformatics Analysis & Technical Support, Shanghai Lu Ming Biological Technology Co. Ltd, Shanghai, China
| | - Meng Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiguo Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Shigang Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Li Zhang
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hongjuan Yao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Guangxi Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
19
|
Aquino GV, Dabi A, Odom GJ, Lavado R, Nunn K, Thomas K, Schackmuth B, Shariff N, Jarajapu M, Pluto M, Miller SR, Eller L, Pressley J, Patel RR, Black J, Bruce ED. Evaluating the effect of acute diesel exhaust particle exposure on P-glycoprotein efflux transporter in the blood-brain barrier co-cultured with microglia. Curr Res Toxicol 2023; 4:100107. [PMID: 37332622 PMCID: PMC10276163 DOI: 10.1016/j.crtox.2023.100107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
A growing public health concern, chronic Diesel Exhaust Particle (DEP) exposure is a heavy risk factor for the development of neurodegenerative diseases like Alzheimer's (AD). Considered the brain's first line of defense, the Blood-Brain Barrier (BBB) and perivascular microglia work in tandem to protect the brain from circulating neurotoxic molecules like DEP. Importantly, there is a strong association between AD and BBB dysfunction, particularly in the Aβ transporter and multidrug resistant pump, P-glycoprotein (P-gp). However, the response of this efflux transporter is not well understood in the context of environmental exposures, such as to DEP. Moreover, microglia are seldom included in in vitro BBB models, despite their significance in neurovascular health and disease. Therefore, the goal of this study was to evaluate the effect of acute (24 hr.) DEP exposure (2000 μg/ml) on P-gp expression and function, paracellular permeability, and inflammation profiles of the human in vitro BBB model (hCMEC/D3) with and without microglia (hMC3). Our results suggested that DEP exposure can decrease both the expression and function of P-gp in the BBB, and corroborated that DEP exposure impairs BBB integrity (i.e. increased permeability), a response that was significantly worsened by the influence of microglia in co-culture. Interestingly, DEP exposure seemed to produce atypical inflammation profiles and an unexpected general downregulation in inflammatory markers in both the monoculture and co-culture, which differentially expressed IL-1β and GM-CSF. Interestingly, the microglia in co-culture did not appear to influence the response of the BBB, save in the permeability assay, where it worsened the BBB's response. Overall, our study is important because it is the first (to our knowledge) to investigate the effect of acute DEP exposure on P-gp in the in vitro human BBB, while also investigating the influence of microglia on the BBB's responses to this environmental chemical.
Collapse
Affiliation(s)
- Grace V. Aquino
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Amjad Dabi
- Department of Bioinformatics and Computational Biology, University of North Carolina Chapel Hill, 120-Mason Farm Rd, Chapel Hill, NC 27514, USA
| | - Gabriel J. Odom
- Department of Biostatistics, Sempel College of Public Health, Florida International University, 11200, SW 8th Street, AHC4-470, Miami, FL 33199, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Kaitlin Nunn
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Kathryn Thomas
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Bennett Schackmuth
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Nazeel Shariff
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Manogna Jarajapu
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Morgan Pluto
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Sara R. Miller
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Leah Eller
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Justin Pressley
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Rishi R. Patel
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Jeffrey Black
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Erica D. Bruce
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| |
Collapse
|
20
|
Badaloni C, De Sario M, Caranci N, De' Donato F, Bolignano A, Davoli M, Leccese L, Michelozzi P, Leone M. A spatial indicator of environmental and climatic vulnerability in Rome. ENVIRONMENT INTERNATIONAL 2023; 176:107970. [PMID: 37224679 DOI: 10.1016/j.envint.2023.107970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/14/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Urban areas are disproportionately affected by multiple pressures from overbuilding, traffic, air pollution, and heat waves that often interact and are interconnected in producing health effects. A new synthetic tool to summarize environmental and climatic vulnerability has been introduced for the city of Rome, Italy, to provide the basis for environmental and health policies. METHODS From a literature overview and based on the availability of data, several macro-dimensions were identified on 1,461 grid cells with a width of 1 km2 in Rome: land use, roads and traffic-related exposure, green space data, soil sealing, air pollution (PM2.5, PM10, NO2, C6H6, SO2), urban heat island intensity. The Geographically Weighted Principal Component Analysis (GWPCA) method was performed to produce a composite spatial indicator to describe and interpret each spatial feature by integrating all environmental dimensions. The method of natural breaks was used to define the risk classes. A bivariate map of environmental and social vulnerability was described. RESULTS The first three components explained most of the variation in the data structure with an average of 78.2% of the total percentage of variance (PTV) explained by the GWPCA, with air pollution and soil sealing contributing most in the first component; green space in the second component; road and traffic density and SO2 in the third component. 56% of the population lives in areas with high or very high levels of environmental and climatic vulnerability, showing a periphery-centre trend, inverse to the deprivation index. CONCLUSIONS A new environmental and climatic vulnerability indicator for the city of Rome was able to identify the areas and population at risk in the city, and can be integrated with other vulnerability dimensions, such as social deprivation, providing the basis for risk stratification of the population and for the design of policies to address environmental, climatic and social injustice.
Collapse
Affiliation(s)
- Chiara Badaloni
- Department of Epidemiology of the Lazio Regional Health Service, ASL Roma 1, Rome, Italy.
| | - Manuela De Sario
- Department of Epidemiology of the Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | - Nicola Caranci
- Regional Health and Social Care Agency, Emilia-Romagna Region, Bologna, Italy
| | - Francesca De' Donato
- Department of Epidemiology of the Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | | | - Marina Davoli
- Department of Epidemiology of the Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | - Letizia Leccese
- Department of Epidemiology of the Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | - Paola Michelozzi
- Department of Epidemiology of the Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | | |
Collapse
|
21
|
Jonas F, Hagen A, Ackermann BW, Knüpfer M. Students experience the effects of climate change on children's health in role play and develop strategies for medical work - an interactive seminar. GMS JOURNAL FOR MEDICAL EDUCATION 2023; 40:Doc29. [PMID: 37377577 PMCID: PMC10291342 DOI: 10.3205/zma001611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 01/09/2023] [Accepted: 03/06/2023] [Indexed: 06/29/2023]
Abstract
Background This project report describes the development and evaluation of an interactive seminar on the topic "medical effects of climate change on children's health". Objectives The learning objectives are learning the basics and the direct and indirect connections between climate change and children's health. Future scenarios for affected children, parents and doctors are developed interactively. Subsequently, communication strategies concerning climate change are discussed so that students identify and analyze possibilities to become active. Methodology The seminar was offered as an obligatory seminar for a total of 128 third-year medical students with one appointment of 45 minutes per course group as part of the interdisciplinary seminar series "Environmental Medicine". A course group consisted of 14 to 18 students. The seminar for the 2020 summer semester was developed as part of the interdisciplinary field of environmental medicine with the special feature of an interactive role play. The role play intends to give the students the opportunity to put themselves in the situation of affected children, parents and doctors of the future in order to develop detailed solution strategies. From 2020 to 2021, the seminar took place as online self-study due to the lockdown requirements. Since winter semester 2021/22, the seminar was held as an attendance event for the first time, although the switch to an online presence seminar with obligatory attendance had to take place after four seminar dates due to renewed lockdown requirements, which also took place four times. The evaluated results here refer to a total of eight dates in the winter semester 2021/22 and were carried out using a specially developed questionnaire, which was filled out voluntarily and anonymously by the students immediately after the respective seminar date. An overall grade as well as the appropriateness of the time and content of lectures and role play were asked for. Free text answers were possible for each question. Results A total of 83 questionnaires were evaluated, 54 of which were from the four seminars in attendance, 15 were from the four online presence seminars that took place as an online live stream. The evaluation of the seminar resulted in an average grade of 1.7 for the face-to-face seminars and 1.9 for the online seminars. Content-related comments in the free-text answers addressed the desire for concrete solution strategies, more time for discussions and a more in-depth study of the topic. Numerous positive responses described the seminar as "very exciting", "good food for thought", "interesting and important topic". Conclusion There is a very high interest on the topic of "climate change & health" among students There is an obvious need to integrate the topic on a larger scale into medical education. Ideally, the focus on children's health should be an integral part of the pediatric curriculum.
Collapse
Affiliation(s)
- Friederike Jonas
- Universitätsklinikum Leipzig, Klinik und Poliklinik für Kinder- und Jugendmedizin, Leipzig, Germany
| | - Anja Hagen
- Universitätsklinikum Leipzig, Klinik und Poliklinik für Kinder- und Jugendmedizin, Leipzig, Germany
| | - Benjamin W. Ackermann
- Universitätsklinikum Leipzig, Klinik und Poliklinik für Kinder- und Jugendmedizin, Selbstständige Abteilung für Neonatologie, Leipzig, Germany
| | - Matthias Knüpfer
- Universitätsklinikum Leipzig, Klinik und Poliklinik für Kinder- und Jugendmedizin, Selbstständige Abteilung für Neonatologie, Leipzig, Germany
| |
Collapse
|
22
|
Chang YT, Jung CR, Chang YC, Chuang BR, Chen ML, Hwang BF. Prenatal and postnatal exposure to PM 2 .5 and the risk of tic disorders. Paediatr Perinat Epidemiol 2023; 37:191-200. [PMID: 36562434 DOI: 10.1111/ppe.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Tic disorders are common neurodevelopmental disorders during childhood. Whether prenatal and postnatal exposure to particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5 ) plays a role in the development of tic disorders remains unexplored. OBJECTIVES To investigate the association of exposure between PM2.5 during the pregnancy and infancy periods and the risk of tic disorders. METHODS This birth cohort study recruited singleton live births at term gestations in central Taiwan from the Taiwan Maternal and Child Health Database between 2004 and 2012 and followed up to the end of 2017. New cases of tic disorders were defined using the ICD-9-CM (307.2) and ICD-10-CM (F95), which include all tic spectrum disorders. We assigned daily PM2.5 concentrations derived from a satellite-based model to individuals based on maternal residential addresses at delivery. We fit Cox proportional hazard model and distributed lag non-linear model to estimate the associations between PM2.5 and tic disorders, with hazard ratio (HR) with 95% confidence interval (CI) as the effect measure. RESULTS Of the 309,376 singleton live births at term gestations, we identified 5902 (1.9%) tic disorder cases. The HR of tic disorders was positively associated with a 10 μg/m3 increase in PM2.5 : during pregnancy HR 1.09, 95% CI 1.04, 1.15 and during infancy HR 1.12, 95% CI 1.06, 1.18. The vulnerable time window for infants with increased risk of tic disorders was 6-52 weeks after birth. We observed a nonlinear relationship between PM2.5 and the risk of tic disorders, with exposure to PM2.5 between 16 and 64 μg/m3 being associated with the risk of tic disorders. The association was restricted to Tourette's disorder group. Infant sex did not modify these associations. CONCLUSIONS Infants delivered at term and exposed to PM2.5 are associated with an increased risk of tic disorders (6-52 weeks). Further studies are needed to confirm these associations.
Collapse
Affiliation(s)
- Yu-Tzu Chang
- Division of Pediatric Neurology, China Medical University Children's Hospital, Taichung, Taiwan R.O.C
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan R.O.C
| | - Chau-Ren Jung
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan R.O.C
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Ya-Chu Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan R.O.C
| | - Bao-Ru Chuang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan R.O.C
| | - Mei-Ling Chen
- College of Human Science and Social Innovation, HungKuang University, Taichung, Taiwan R.O.C
| | - Bing-Fang Hwang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan R.O.C
- Department of Occupational Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan R.O.C
| |
Collapse
|
23
|
Wicki B, Schäffer B, Wunderli JM, Müller TJ, Pervilhac C, Röösli M, Vienneau D. Suicide and Transportation Noise: A Prospective Cohort Study from Switzerland. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:37013. [PMID: 36988318 PMCID: PMC10053778 DOI: 10.1289/ehp11587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/18/2023] [Accepted: 02/10/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Although plausible from a pathophysiological point of view, robust evidence for effects of transportation noise on mental health remains scarce. Meanwhile, psychiatric diseases are among the most prevalent noncommunicable diseases worldwide, and suicide as a mortality outcome highly connected to mental disorders presents a pressing public health issue. The aim of this study was to investigate the association between source-specific transportation noise, particulate matter (PM) air pollution, residential greenness, and suicide by means of a nationwide cohort study. METHODS Road traffic, railway and aircraft noise exposure as well as exposure to air pollution [PM with aerodynamic diameter ≤2.5μm (PM2.5)] and greenness [normalized difference vegetation index (NDVI)] were linked to 5.1 million adults (age 15 y and older) in the Swiss National Cohort, accounting for their address history. Mean noise exposure in 5-y periods was calculated. Individuals were followed for up to 15 y (2001-2015). Time-varying Cox regression models were applied to deaths by suicide (excluding assisted suicide). Models included all three noise sources, PM2.5, and NDVI plus individual and spatial covariates, including socioeconomic status. Effect modification by sex, age, socioeconomic indicators, and degree of urbanization was explored. RESULTS During the follow-up, there were 11,265 suicide deaths (10.4% poisoning, 33.3% hanging, 28.7% firearms, 14.7% falls). Road traffic and railway noise were associated with total suicides [hazard ratios: 1.040; 95% confidence interval (CI): 1.015, 1.065; and 1.022 (95% CI: 1.004, 1.041) per 10 dB day-evening-night level (Lden)], whereas for aircraft noise, a risk increase starting from 50 dB was masked by an inverse association in the very low exposure range (30-40 dB). Associations were stronger for females than males. The results were robust to adjustment for residential greenness and air pollution. CONCLUSION In this longitudinal, nationwide cohort study, we report a robust association between exposure to road traffic and railway noise and risk of death by suicide after adjusting for exposure to air pollution and greenness. These findings add to the growing body of evidence that mental health disorders may be related to chronic transportation noise exposure. https://doi.org/10.1289/EHP11587.
Collapse
Affiliation(s)
- Benedikt Wicki
- Swiss TPH (Swiss Tropical and Public Health Institute), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Beat Schäffer
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Jean Marc Wunderli
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Thomas J. Müller
- Translational Research Centre, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Private Clinic Meiringen, Meiringen, Switzerland
| | - Charlotte Pervilhac
- Private Clinic Meiringen, Meiringen, Switzerland
- Institute of Psychology, Health Psychology and Behavioural Meidicne, University of Bern, Bern, Switzerland
| | - Martin Röösli
- Swiss TPH (Swiss Tropical and Public Health Institute), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Swiss TPH (Swiss Tropical and Public Health Institute), Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
24
|
Choi JY, Kim SY, Kim T, Lee C, Kim S, Chung HM. Ambient air pollution and the risk of neurological diseases in residential areas near multi-purposed industrial complexes of korea: A population-based cohort study. ENVIRONMENTAL RESEARCH 2023; 219:115058. [PMID: 36521536 DOI: 10.1016/j.envres.2022.115058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/25/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Emerging evidence suggest that long-term exposure to air pollution may induce adverse effects on the central nervous system. However, no study explored the associations in large industrial complex (IC) areas which are one of the major contributors to air pollution. Therefore, we aimed to investigate the pollution status and the association between residential proximity and incidence of neurological diseases near two major ICs characterized as multi-purposed ICs in Korea. A retrospective cohort of residents near the ICs was constructed using Korea's health insurance data and monitored from 2008 to 2019. Emission amounts of the ICs and the air pollution status in the nearby (exposed) and remote (control) area were evaluated using data from national regulatory networks, and hazard ratios (HRs) and 95% confidence intervals (CIs) for neurological diseases of the exposed group compared to the control group were calculated using Cox proportional regression models. Overall, the complexes emitted large amounts of VOCs, CO, NOx, and PM10, and annual levels of ambient PM (2.5, 10), gaseous substances (NO2, SO2), VOCs and PAHs were higher in the exposed area compared to the control and/or the national average. The risk of inflammatory disease of the CNS (G00-09) and extrapyramidal and movement disorders (G20-26) were higher in the exposed area with a HR (95% CI) of 1.36 (1.10-1.68) and 1.33 (1.27-1.39) respectively. Among the subclasses, other extrapyramidal and movement disorders (G25) and epilepsy (G40) were associated with higher risks in the exposed area (HR (95%CI): 1.11 (1.04-1.18), 1.08 (1.00-1.16)) after adjusting for potential confounders. These results suggest that people living near ICs are more likely to be exposed to higher air pollution levels and have higher risks of developing several neurological disorders. However, further epidemiological studies in these industrial areas supplemented with other indicators of environmental exposure and control of other diverse factors are warranted.
Collapse
Affiliation(s)
- Ji Yoon Choi
- Environmental Health Research Division, Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Republic of Korea
| | - Sung Yeon Kim
- Environmental Health Research Division, Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Republic of Korea.
| | - Taekyu Kim
- Environmental Health Research Division, Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Republic of Korea
| | - Chulwoo Lee
- Environmental Health Research Division, Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Republic of Korea
| | - Suejin Kim
- Environmental Health Research Division, Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Republic of Korea
| | - Hyen-Mi Chung
- Environmental Health Research Division, Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Republic of Korea
| |
Collapse
|
25
|
Zhang Z, Chen L, Wang X, Wang C, Yang Y, Li H, Cai M, Lin H. Associations of Air Pollution and Genetic Risk With Incident Dementia: A Prospective Cohort Study. Am J Epidemiol 2023; 192:182-194. [PMID: 36269005 DOI: 10.1093/aje/kwac188] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/02/2022] [Accepted: 10/18/2022] [Indexed: 02/07/2023] Open
Abstract
Evidence on the association between air pollution and dementia is accumulating but still inconclusive, and the potential effect modification by genetics is unclear. We investigated the joint effects of air pollution exposure and genetic risk on incident dementia in a prospective cohort study, the UK Biobank study. Land use regression models were used to estimate exposure to ambient particulate matter (PM) in 3 fraction sizes (PM with diameter < 2.5 μm (PM2.5), coarse particles (PM with diameter 2.5-10 μm (PMc)), and PM with diameter < 10 μm (PM10)), PM2.5 absorbance, nitrogen dioxide levels, and nitrogen oxide levels at each individual's baseline residence. A polygenic risk score was calculated as a quantitative measure of genetic dementia risk. Incident cases of dementia were ascertained through linkage to health administrative data sets. Among the 227,840 participants included in the analysis, 3,774 incident dementia cases (including 1,238 cases of Alzheimer disease and 563 cases of vascular dementia) were identified. After adjustment for a variety of covariates, including genetic factors, positive associations were found between exposure to air pollution-particularly PM10, PM2.5 absorbance, and nitrogen dioxide-and incident all-cause dementia and Alzheimer disease but not vascular dementia. No significant interaction between air pollution and genetics was found, either on the multiplicative scale or on the additive scale. Exposure to air pollution was associated with a higher risk of developing dementia regardless of genetic risk.
Collapse
|
26
|
Zhang J, Yang Y, Al-Ahmady ZS, Du W, Duan J, Liao Z, Sun Q, Wei Z, Hua J. Maternal exposure to PM 2.5 induces cognitive impairment in offspring via cerebellar neuroinflammation and oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114425. [PMID: 38321695 DOI: 10.1016/j.ecoenv.2022.114425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 09/02/2023]
Abstract
Available evidence suggest that exposure to PM2.5 during pregnancy is associated with reduced cognitive function in offspring. This study aimed to investigate the effects of maternal exposure to PM2.5 on offspring cognitive function and to elucidate the underlying mechanisms. In this work, pregnant C57BL/6 female mice were exposed to concentrated ambient PM2.5 or filtered air from day 0.5 (=vaginal plug) to day 15.5 in the Shanghai Meteorological and Environmental Animal Exposure System, and offspring cerebellar tissues were collected on embryonic day 15.5, as well as postnatal days 0, 10 and 42. The mean PM2.5 concentrations exposed to the pregnant mice were 73.06 ± 4.90 μg/m3 and 11.15 ± 2.71 μg/m3 in the concentrated ambient PM2.5 and filtered air chambers, respectively. Maternal concentrated PM2.5 exposure was negatively correlated with offspring spatial memory significantly as assessed by the Morris water maze. Compared with the filtered air group, PM2.5-exposed offspring mice had reduced cerebellar microglia. Both RNA and protein levels of IL-8 and TNF-α were elevated in the concentrated ambient PM2.5 group. PM2.5 exposure increased the level of 8-OHG in miRNA of microglia and Purkinje cells in 6-week-old offspring. The level of prostaglandin F2α (8-iso-PGF2Aα) in the cerebellum was increased at different growing stages of offspring after gestational exposure of PM2.5. These results suggested that maternal air pollution exposure might cause inflammatory damage and oxidative stress to the cerebellum, contributing to reduced cognitive performance in mice offspring.
Collapse
Affiliation(s)
- Jiajia Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Women and Children's Health Care, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yingying Yang
- Clinical Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zahraa S Al-Ahmady
- Pharmacology Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom; Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Wenchong Du
- NTU Psychology, School of Social Sciences, Nottingham Trent University, Nottingham NG1 1BU, United Kingdom
| | - Jinjin Duan
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17177 Stockholm, Sweden
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Zhejiang 310053, China
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Women and Children's Health Care, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Jing Hua
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Women and Children's Health Care, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
27
|
Paliienko K, Korbush M, Krisanova N, Pozdnyakova N, Borysov A, Tarasenko A, Pastukhov A, Dudarenko M, Kalynovska L, Grytsaenko V, Garmanchuk L, Dovbynchuk T, Tolstanova G, Borisova T. Similar in vitro response of rat brain nerve terminals, colon preparations and COLO 205 cells to smoke particulate matter from different types of wood. Neurotoxicology 2022; 93:244-256. [DOI: 10.1016/j.neuro.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/17/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
|
28
|
Zundel CG, Ryan P, Brokamp C, Heeter A, Huang Y, Strawn JR, Marusak HA. Air pollution, depressive and anxiety disorders, and brain effects: A systematic review. Neurotoxicology 2022; 93:272-300. [PMID: 36280190 PMCID: PMC10015654 DOI: 10.1016/j.neuro.2022.10.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Accumulating data suggest that air pollution increases the risk of internalizing psychopathology, including anxiety and depressive disorders. Moreover, the link between air pollution and poor mental health may relate to neurostructural and neurofunctional changes. We systematically reviewed the MEDLINE database in September 2021 for original articles reporting effects of air pollution on 1) internalizing symptoms and behaviors (anxiety or depression) and 2) frontolimbic brain regions (i.e., hippocampus, amygdala, prefrontal cortex). One hundred and eleven articles on mental health (76% human, 24% animals) and 92 on brain structure and function (11% human, 86% animals) were identified. For literature search 1, the most common pollutants examined were PM2.5 (64.9%), NO2 (37.8%), and PM10 (33.3%). For literature search 2, the most common pollutants examined were PM2.5 (32.6%), O3 (26.1%) and Diesel Exhaust Particles (DEP) (26.1%). The majority of studies (73%) reported higher internalizing symptoms and behaviors with higher air pollution exposure. Air pollution was consistently associated (95% of articles reported significant findings) with neurostructural and neurofunctional effects (e.g., increased inflammation and oxidative stress, changes to neurotransmitters and neuromodulators and their metabolites) within multiple brain regions (24% of articles), or within the hippocampus (66%), PFC (7%), and amygdala (1%). For both literature searches, the most studied exposure time frames were adulthood (48% and 59% for literature searches 1 and 2, respectively) and the prenatal period (26% and 27% for literature searches 1 and 2, respectively). Forty-three percent and 29% of studies assessed more than one exposure window in literature search 1 and 2, respectively. The extant literature suggests that air pollution is associated with increased depressive and anxiety symptoms and behaviors, and alterations in brain regions implicated in risk of psychopathology. However, there are several gaps in the literature, including: limited studies examining the neural consequences of air pollution in humans. Further, a comprehensive developmental approach is needed to examine windows of susceptibility to exposure and track the emergence of psychopathology following air pollution exposure.
Collapse
Affiliation(s)
- Clara G Zundel
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.
| | - Patrick Ryan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Cole Brokamp
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Autumm Heeter
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.
| | - Yaoxian Huang
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, USA.
| | - Jeffrey R Strawn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Anxiety Disorders Research Program, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.
| | - Hilary A Marusak
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA; Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, MI, USA; Translational Neuroscience Program, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
29
|
Serafini MM, Maddalon A, Iulini M, Galbiati V. Air Pollution: Possible Interaction between the Immune and Nervous System? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192316037. [PMID: 36498110 PMCID: PMC9738575 DOI: 10.3390/ijerph192316037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 06/01/2023]
Abstract
Exposure to environmental pollutants is a serious and common public health concern associated with growing morbidity and mortality worldwide, as well as economic burden. In recent years, the toxic effects associated with air pollution have been intensively studied, with a particular focus on the lung and cardiovascular system, mainly associated with particulate matter exposure. However, epidemiological and mechanistic studies suggest that air pollution can also influence skin integrity and may have a significant adverse impact on the immune and nervous system. Air pollution exposure already starts in utero before birth, potentially causing delayed chronic diseases arising later in life. There are, indeed, time windows during the life of individuals who are more susceptible to air pollution exposure, which may result in more severe outcomes. In this review paper, we provide an overview of findings that have established the effects of air pollutants on the immune and nervous system, and speculate on the possible interaction between them, based on mechanistic data.
Collapse
|
30
|
Chang YC, Chen WT, Su SH, Jung CR, Hwang BF. PM 2.5 exposure and incident attention-deficit/hyperactivity disorder during the prenatal and postnatal periods: A birth cohort study. ENVIRONMENTAL RESEARCH 2022; 214:113769. [PMID: 35777438 DOI: 10.1016/j.envres.2022.113769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 05/14/2023]
Abstract
Only a few studies have assessed the effects of fine particulate matter (PM2.5) exposure during the prenatal and postnatal periods on the development of attention-deficit/hyperactivity disorder (ADHD). We investigated the association of exposure to PM2.5 during pregnancy and early life with ADHD. This birth cohort consisted of 425,736 singleton live-term births between 2004 and 2015 in Taiwan. Daily PM2.5 concentrations were derived from a 1-km satellite-based estimation model. A time-dependent Cox model was used to assess the effects of PM2.5 on ADHD during the first, second, and third trimesters and from age 1-5 years after birth. The distributed lag nonlinear model was utilized to explore the dose-response relationship. Total 9,294 children were diagnosed with ADHD during the study period. The hazard ratio (HR) of ADHD was significantly associated with a 10 μg/m3 increase in PM2.5 during the first trimester (HR = 1.26; 95% confidence interval [CI]: 1.13-1.40) and increased at PM2.5 over 16 μg/m3. For postnatal periods, the HR of ADHD was significantly associated with increased PM2.5 at the first to third year of life (HR ranged between 1.40 and 1.87). According to the dose-response relationship of exposure to PM2.5 at the third year of life, the HR of ADHD was significantly associated with PM2.5 above 16 μg/m3 and sharply increased as PM2.5 >50 μg/m3. We did not observe a significant modification of sex on the relation between PM2.5 and ADHD. Exposure of pregnant women to PM2.5 above 16 μg/m3 from conception to the early life of their children may increase the risk of ADHD. The government should improve the criteria for air quality control and meet the WHO air quality guidelines to protect pregnant women and children from developing ADHD in the future.
Collapse
Affiliation(s)
- Ya-Chu Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Wei-Ting Chen
- Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
| | - Shih-Hao Su
- Department of Atmospheric Sciences, Chinese Culture University, Taipei, Taiwan
| | - Chau-Ren Jung
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan; Japan Environment and Children's Study Programme Office, Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan.
| | - Bing-Fang Hwang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan; Department of Occupational Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
31
|
Afsheen N, Rafique S, Rafeeq H, Irshad K, Hussain A, Huma Z, Kumar V, Bilal M, Aleya L, Iqbal HMN. Neurotoxic effects of environmental contaminants-measurements, mechanistic insight, and environmental relevance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70808-70821. [PMID: 36059010 DOI: 10.1007/s11356-022-22779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Pollution is a significant and growing concern for any population regardless of age because these environmental contaminants exhibit different neurodegenerative effects on persons of different ages. These environmental contaminants are the products of human welfare projects like industry, automobile exhaust, clinical and research laboratory extrudes, and agricultural chemicals. These contaminants are found in various forms in environmental matrices like nanoparticles, particulate matter, lipophilic vaporized toxicants, and ultrafine particulate matter. Because of their small size, they can easily cross blood-brain barriers or use different cellular mechanisms for assistance. Other than this, these contaminants cause an innate immune response in different cells of the central nervous system and cause neurotoxicity. Considering the above critiques and current needs, this review summarizes different protective strategies based on bioactive compounds present in plants. Various bioactive compounds from medicinal plants with neuroprotective capacities are discussed with relevant examples. Many in vitro studies on clinical trials have shown promising outcomes using plant-based bioactive compounds against neurological disorders.
Collapse
Affiliation(s)
- Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Sadia Rafique
- Department of Pharmacy, Riphah International University, Faisalabad, 38000, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Kanwal Irshad
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Asim Hussain
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Zille Huma
- Department of Chemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Vineet Kumar
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
32
|
Kvestad I, Chandyo RK, Schwinger C, Ranjitkar S, Hysing M, Ulak M, Shrestha M, Shrestha L, Strand TA. Biomass fuel use for cooking in Nepalese families and child cognitive abilities, results from a community-based study. ENVIRONMENTAL RESEARCH 2022; 212:113265. [PMID: 35500855 DOI: 10.1016/j.envres.2022.113265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Biomass fuel use for cooking is widespread in low to middle income countries. Studies on the association between biomass fuel use and cognitive abilities in children are limited. OBJECTIVE To examine the association between biomass fuel use for cooking and cognitive abilities in Nepalese children at 4 years of age. METHODS In a cohort design we have information on biomass fuel use in the households of 533 children in infancy and cognitive abilities when they were 4 years old from a community-based sample. Cognitive abilities were measured by the Wechsler Preschool and Primary Scale of Intelligence, 4th edition (WPPSI-IV) and the NEPSY-II. We examined the associations between biomass fuel use and scores on the WPPSI-IV Full-Scale IQ (FSIQ) (primary outcome), and WPPSI index and NEPSY-II subtest scores in multiple linear regression models. The associations were also examined in predefined subgroups. RESULTS Ninety-nine (18.6%) of the families used biomass fuel for cooking. Children in these families had lower mean FSIQ than children in families with no biomass use (83.3 (95%CI 81.7, 85.0) vs. 85.3 (95%CI 84.5, 86.0)), with a mean difference of -2.2 (95%CI -3.9, -0.5) adjusting for demographics and socio-economic status. The association between biomass fuel use and cognitive abilities was strongest in subgroups of children from households with more than three rooms, with separate kitchen and bedroom, and with higher wealth-score. These interactions were significant for number of rooms in the home (p = 0.04), if the household had separate bedroom and kitchen (p = 0.05), and for the wealth-score (p = 0.03). CONCLUSION Biomass fuel use for cooking in Nepalese families was associated with lower overall cognitive abilities at 4 years. Uncertainties include exposure misclassification and unmeasured confounding. The associations between biomass fuel use and neurodevelopment in children needs further investigation with more precise measurements of the exposure.
Collapse
Affiliation(s)
- Ingrid Kvestad
- Regional Centre for Child and Youth Mental Health and Child Welfare, NORCE Norwegian Research Centre, Bergen, Norway; Department of Research, Innlandet Hospital Trust, Lillehammer, Norway
| | - Ram K Chandyo
- Department of Community Medicine, Kathmandu Medical College, Kathmandu, Nepal
| | - Catherine Schwinger
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Suman Ranjitkar
- Department of Child Health, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Mari Hysing
- Department of Psychosocial Science, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Manjeswori Ulak
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Child Health, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Merina Shrestha
- Department of Child Health, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Laxman Shrestha
- Department of Child Health, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Tor A Strand
- Department of Research, Innlandet Hospital Trust, Lillehammer, Norway; Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
| |
Collapse
|
33
|
Dang Y, Song Y, Mohiuddin M, Sheng D. Towards Cleaner Production Ecosystem: An Analysis of Embodied Industrial Pollution in International Trade of China's Processing versus Normal Exports. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9900. [PMID: 36011546 PMCID: PMC9407730 DOI: 10.3390/ijerph19169900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
While promoting economic growth, industrial development is causing serious environmental problems and threatening human health. Studies on pollution transfer through international trade often over-estimate the actual embodied emissions in exports and ignore the industrial pollutants. By designing a non-competitive input-output model which differentiates between processing exports and normal exports, we calculate the embodied domestic and imported industrial emissions in China's processing and normal exports and imports. We also calculate the balance of embodied emission in trade (BEET) and the pollution terms of trade (PTT), as well as the decomposition of scale, structural, and technical effects on embodied emission in international trade. The results demonstrate that processing exports reduce domestic pollution by importing intermediate inputs; normal exports, on the other hand, have a considerable impact on domestic pollution. Bilateral trade between China and the US has the most detrimental impact on China's local environment, followed by trade between China and Japan. China's exports to Japan are more polluting per unit than those to the US and Germany. Technological upgradations and transformation of trade structure have helped to reduce the negative environmental consequences of China-US and China-Japan bilateral trade. Investment in technology and trade policy can lead to a cleaner production ecosystem.
Collapse
Affiliation(s)
- Yuting Dang
- School of Management, Tianjin University of Technology, Tianjin 300084, China
| | - Yating Song
- School of Management, Tianjin University of Technology, Tianjin 300084, China
| | - Muhammad Mohiuddin
- Faculty of Business Administration, Laval University, Quebec, QC G1S2K7, Canada
| | - Dan Sheng
- School of Economics, Nankai University, Tianjin 300071, China
| |
Collapse
|
34
|
Sobolewski M, Conrad K, Marvin E, Eckard M, Goeke CM, Merrill AK, Welle K, Jackson BP, Gelein R, Chalupa D, Oberdörster G, Cory-Slechta DA. The potential involvement of inhaled iron (Fe) in the neurotoxic effects of ultrafine particulate matter air pollution exposure on brain development in mice. Part Fibre Toxicol 2022; 19:56. [PMID: 35945578 PMCID: PMC9364598 DOI: 10.1186/s12989-022-00496-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Air pollution has been associated with neurodevelopmental disorders in epidemiological studies. In our studies in mice, developmental exposures to ambient ultrafine particulate (UFP) matter either postnatally or gestationally results in neurotoxic consequences that include brain metal dyshomeostasis, including significant increases in brain Fe. Since Fe is redox active and neurotoxic to brain in excess, this study examined the extent to which postnatal Fe inhalation exposure, might contribute to the observed neurotoxicity of UFPs. Mice were exposed to 1 µg/m3 Fe oxide nanoparticles alone, or in conjunction with sulfur dioxide (Fe (1 µg/m3) + SO2 (SO2 at 1.31 mg/m3, 500 ppb) from postnatal days 4-7 and 10-13 for 4 h/day. RESULTS Overarching results included the observations that Fe + SO2 produced greater neurotoxicity than did Fe alone, that females appeared to show greater vulnerability to these exposures than did males, and that profiles of effects differed by sex. Consistent with metal dyshomeostasis, both Fe only and Fe + SO2 exposures altered correlations of Fe and of sulfur (S) with other metals in a sex and tissue-specific manner. Specifically, altered metal levels in lung, but particularly in frontal cortex were found, with reductions produced by Fe in females, but increases produced by Fe + SO2 in males. At PND14, marked changes in brain frontal cortex and striatal neurotransmitter systems were observed, particularly in response to combined Fe + SO2 as compared to Fe only, in glutamatergic and dopaminergic functions that were of opposite directions by sex. Changes in markers of trans-sulfuration in frontal cortex likewise differed in females as compared to males. Residual neurotransmitter changes were limited at PND60. Increases in serum glutathione and Il-1a were female-specific effects of combined Fe + SO2. CONCLUSIONS Collectively, these findings suggest a role for the Fe contamination in air pollution in the observed neurotoxicity of ambient UFPs and that such involvement may be different by chemical mixture. Translation of such results to humans requires verification, and, if found, would suggest a need for regulation of Fe in air for public health protection.
Collapse
Affiliation(s)
- Marissa Sobolewski
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Katherine Conrad
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Elena Marvin
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Matthew Eckard
- grid.262333.50000000098205004Department of Psychology, Radford University, Radford, VA 24142 USA
| | - Calla M. Goeke
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Alyssa K. Merrill
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Kevin Welle
- grid.412750.50000 0004 1936 9166Proteomics Core, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Brian P. Jackson
- grid.254880.30000 0001 2179 2404Department of Earth Sciences, Dartmouth College, Hanover, NH 03755 USA
| | - Robert Gelein
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - David Chalupa
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Günter Oberdörster
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Deborah A. Cory-Slechta
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| |
Collapse
|
35
|
Fitoussi R, Faure MO, Beauchef G, Achard S. Human skin responses to environmental pollutants: A review of current scientific models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119316. [PMID: 35469928 DOI: 10.1016/j.envpol.2022.119316] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Whatever the exposure route, chemical, physical and biological pollutants modify the whole organism response, leading to nerve, cardiac, respiratory, reproductive, and skin system pathologies. Skin acts as a barrier for preventing pollutant modifications. This review aims to present the available scientific models, which help investigate the impact of pollution on the skin. The research question was "Which experimental models illustrate the impact of pollution on the skin in humans?" The review covered a period of 10 years following a PECO statement on in vitro, ex vivo, in vivo and in silico models. Of 582 retrieved articles, 118 articles were eligible. In oral and inhalation routes, dermal exposure had an important impact at both local and systemic levels. Healthy skin models included primary cells, cell lines, co-cultures, reconstructed human epidermis, and skin explants. In silico models estimated skin exposure and permeability. All pollutants affected the skin by altering elasticity, thickness, the structure of epidermal barrier strength, and dermal extracellular integrity. Some specific models concerned wound healing or the skin aging process. Underlying mechanisms were an exacerbated inflammatory skin reaction with the modulation of several cytokines and oxidative stress responses, ending with apoptosis. Pathological skin models revealed the consequences of environmental pollutants on psoriasis, atopic dermatitis, and tumour development. Finally, scientific models were used for evaluating the safety and efficacy of potential skin formulations in preventing the skin aging process or skin irritation after repeated contact. The review gives an overview of scientific skin models used to assess the effects of pollutants. Chemical and physical pollutants were mainly represented while biological contaminants were little studied. In future developments, cell hypoxia and microbiota models may be considered as more representative of clinical situations. Models considering humidity and temperature variations may reflect the impact of these changes.
Collapse
Affiliation(s)
| | - Marie-Odile Faure
- Scientific Consulting For You, 266 avenue Daumesnil, 75012, PARIS, France
| | | | - Sophie Achard
- HERA Team (Health Environmental Risk Assessment), INSERM UMR1153, CRESS-INRAE, Université Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75270 CEDEX 06, PARIS, France.
| |
Collapse
|
36
|
Guo M, Ji X, Liu J. Hypoxia and Alpha-Synuclein: Inextricable Link Underlying the Pathologic Progression of Parkinson's Disease. Front Aging Neurosci 2022; 14:919343. [PMID: 35959288 PMCID: PMC9360429 DOI: 10.3389/fnagi.2022.919343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease, with typical motor symptoms as the main clinical manifestations. At present, there are about 10 million patients with PD in the world, and its comorbidities and complications are numerous and incurable. Therefore, it is particularly important to explore the pathogenesis of PD and find possible therapeutic targets. Because the etiology of PD is complex, involving genes, environment, and aging, finding common factors is the key to identifying intervention targets. Hypoxia is ubiquitous in the natural environment and disease states, and it is considered to be closely related to the etiology of PD. Despite research showing that hypoxia increases the expression and aggregation of alpha-synuclein (α-syn), the most important pathogenic protein, there is still a lack of systematic studies on the role of hypoxia in α-syn pathology and PD pathogenesis. Considering that hypoxia is inextricably linked with various causes of PD, hypoxia may be a co-participant in many aspects of the PD pathologic process. In this review, we describe the risk factors for PD, and we discuss the possible role of hypoxia in inducing PD pathology by these risk factors. Furthermore, we attribute the pathological changes caused by PD etiology to oxygen uptake disorder and oxygen utilization disorder, thus emphasizing the possibility of hypoxia as a critical link in initiating or promoting α-syn pathology and PD pathogenesis. Our study provides novel insight for exploring the pathogenesis and therapeutic targets of PD.
Collapse
Affiliation(s)
- Mengyuan Guo
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Xunming Ji
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- *Correspondence: Jia Liu
| |
Collapse
|
37
|
Zhao Y, Guo M, An J, Zhang L, Tan P, Tian X, Liu L, Zhao Z, Wang X, Liu X, Guo X, Luo Y. Associations between ambient air pollution, meteorology, and daily hospital admissions for ischemic stroke: a time-stratified case-crossover study in Beijing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53704-53717. [PMID: 35290577 DOI: 10.1007/s11356-021-18461-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Air pollution and ischemic stroke (IS) are both vital factors affecting the health of Beijing citizens. This study aims at exploring the associations between air pollution, meteorology, and the hospital admission of IS (IS HA). Information on 476,659 IS inpatients in secondary and higher hospitals in Beijing from 2013 to 2018 were collected. A time-stratified case-crossover design with the generalized additive model and the distributed lag nonlinear model were used. In the single-pollutant models, an inter-quartile range increase in O3, SO2, CO, and NO2 resulted in a significant highest increase in IS HA by 2.23% (95% CI: 1.56%, 2.90%), 1.53% (95% CI: 1.12%, 1.95%), 1.05% (95% CI: 0.70%, 1.40%), and 0.51% (95% CI: 0.24%, 0.79%) on the day of pollution, so did PM2.5 and PM10 by 1.13% (95% CI: 0.68%, 1.59%) and 1.19% (95% CI: 0.74%, 1.64%) at a lag of 0-5 days. There was a nonlinear relationship between meteorology and IS HA. In the multivariate model, the cumulative relative risks with a maximum lag time of 21 days of PM2.5 and NO2 were 1.11 (95% CI: 1.04, 1.19) and 0.88 (95% CI: 0.82, 0.94), while the effects of SO2, O3, and meteorology were insignificant. The findings suggested that particulate pollutants could increase the risk of IS, and the elderly were more sensitive to it, while the results of gaseous pollutants are still discordant. The control of air pollution and the protection of susceptible populations should receive higher attention from policymakers.
Collapse
Affiliation(s)
- Yuhan Zhao
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Moning Guo
- Beijing Municipal Commission of Health and Family Planning Information Center, Beijing, 100034, China
| | - Ji An
- Department of Medical Engineering, Peking University Third Hospital, Beijing, 100191, China
| | - Licheng Zhang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Peng Tan
- Beijing Municipal Commission of Health and Family Planning Information Center, Beijing, 100034, China
| | - Xue Tian
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Lulu Liu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Zemeng Zhao
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Xiaonan Wang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Xiangtong Liu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Xiuhua Guo
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Yanxia Luo
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China.
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
38
|
Ju K, Lu L, Chen T, Duan Z, Chen D, Liao W, Zhou Q, Xu Z, Wang W. Does long-term exposure to air pollution impair physical and mental health in the middle-aged and older adults? - A causal empirical analysis based on a longitudinal nationwide cohort in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154312. [PMID: 35248644 DOI: 10.1016/j.scitotenv.2022.154312] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The world is aging, posing a challenge to public health. Air pollution is increasingly recognized as an important environmental risk factor, with effects on both physical and mental health. Considering the vulnerability of older adults, they tend to have more prevalent comorbidities that may lead to broader consequences. However, evidence to comprehensively assess the causal effects of long-term air pollution exposure on the physical and mental health of older adults remains limited and inconsistent, especially in developing countries. The longitudinal data from the Chinese Family Panel Study (a representative Chinese national cohort study) for 2012, 2014, 2016, and 2018 were included in this study. The Correlated Random Effects Control Function method (CRE-CF) in a counterfactual causal inference framework was employed to explore the causal relationship between long-term exposure to air pollution and physical and mental health and self-rated health status in middle-aged and older adults, considering the ordered categorical nature of health outcomes. The appropriate instrumental variable was selected and validated. This study included 5846 participants aged >45 years in 2012. In the CRE-CF model for activities of daily living (ADLs, positively associated with physical health), subjective memory impairment (SMI, negatively associated with memory health) and self-rated health status in middle-age and older adults, the coefficient of PM2.5 is -0.069, 0.102, and 0.106 respectively, and all statistically significant at 5% level, which suggests that chronic exposure to air pollutants had significant negative effects on ADLs, SMI and self-rated health in middle-aged and older adults. The findings suggest that long-term exposure to air pollutants can impair the health of middle-aged and older adults across the board, including physical and mental health. In the context of an aging society, the findings of this study will provide tremendous implications for the authority to protect them from damage caused by long-term exposure to air pollutants.
Collapse
Affiliation(s)
- Ke Ju
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia; HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Liyong Lu
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, Chengdu 610041, China
| | - Ting Chen
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, Chengdu 610041, China
| | - Zhongxin Duan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dapeng Chen
- Department of Economics, Lehigh University, Bethlehem, PA 18015, United States
| | - Weibin Liao
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, Chengdu 610041, China
| | - Qian Zhou
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, Chengdu 610041, China
| | - Zongyou Xu
- Medical School, Hubei Minzu University, Enshi, 445000, China
| | - Wen Wang
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
39
|
Yi C, Wang Q, Qu Y, Niu J, Oliver BG, Chen H. In-utero exposure to air pollution and early-life neural development and cognition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113589. [PMID: 35525116 DOI: 10.1016/j.ecoenv.2022.113589] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 05/06/2023]
Abstract
Air pollution remains one of the major health threats around the world. Compared to adults, foetuses and infants are more vulnerable to the effects of environmental toxins. Maternal exposure to air pollution causes several adverse birth outcomes and may lead to life-long health consequences. Given that a healthy intrauterine environment is a critical factor for supporting normal foetal brain development, there is a need to understand how prenatal exposure to air pollution affects brain health and results in neurological dysfunction. This review summarised the current knowledge on the adverse effects of prenatal air pollution exposure on early life neurodevelopment and subsequent impairment of cognition and behaviour in childhood, as well as the potential of early-onset neurodegeneration. While inflammation, oxidative stress, and endoplasmic reticulum are closely involved in the physiological response, sex differences also occur. In general, males are more susceptible than females to the adverse effect of in-utero air pollution exposure. Considering the evidence provided in this review and the rising concerns of global air pollution, any efforts to reduce pollutant emission or exposure will be protective for the next generation.
Collapse
Affiliation(s)
- Chenju Yi
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| | - Qi Wang
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, NSW 2037, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
40
|
Luminati O, Brentani A, Flückiger B, Ledebur de Antas de Campos B, Raess M, Röösli M, de Hoogh K, Fink G. Assessing the association between air pollution and child development in São Paulo, Brazil. PLoS One 2022; 17:e0268192. [PMID: 35560170 PMCID: PMC9106172 DOI: 10.1371/journal.pone.0268192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/19/2022] [Indexed: 11/19/2022] Open
Abstract
Background Outdoor air pollution is increasingly recognised as a key threat to population health globally, with particularly high risks for urban residents. In this study, we assessed the association between residential nitrogen dioxide (NO2) exposure and children’s cognitive and behavioural development using data from São Paulo Brazil, one of the largest urban agglomerations in the world. Methods We used data from the São Paulo Western Region Birth Cohort, a longitudinal cohort study aiming to examine determinants as well as long-term implications of early childhood development. Cross-sectional data from the 72-month follow-up was analysed. Data on NO2 concentration in the study area was collected at 80 locations in 2019, and land use regression modelling was used to estimate annual NO2 concentration at children’s homes. Associations between predicted NO2 exposure and children’s cognitive development as well as children’s behavioural problems were estimated using linear regression models adjusted for an extensive set of confounders. All results were expressed per 10 μg/m3 increase in NO2. Results 1143 children were included in the analysis. We found no association between NO2 and children’s cognitive development (beta -0.05, 95% CI [-0.20; 0.10]) or behavioural problems (beta 0.02, 95% CI [-0.80; 0.12]). Conclusion No association between child cognition or child behaviour and NO2 was found in this cross-sectional analysis. Further research will be necessary to understand the extent to which these null results reflect a true absence of association or other statistical, biological or adaptive factors not addressed in this paper.
Collapse
Affiliation(s)
- Ornella Luminati
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Alexandra Brentani
- Department of Pediatrics, Medical School of São Paulo University, São Paulo, Brazil
| | - Benjamin Flückiger
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Michelle Raess
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Kees de Hoogh
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Günther Fink
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
41
|
Han B, Li X, Ai RS, Deng SY, Ye ZQ, Deng X, Ma W, Xiao S, Wang JZ, Wang LM, Xie C, Zhang Y, Xu Y, Zhang Y. Atmospheric particulate matter aggravates CNS demyelination through involvement of TLR-4/NF-kB signaling and microglial activation. eLife 2022; 11:72247. [PMID: 35199645 PMCID: PMC8893720 DOI: 10.7554/elife.72247] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/18/2022] [Indexed: 11/24/2022] Open
Abstract
Atmospheric Particulate Matter (PM) is one of the leading environmental risk factors for the global burden of disease. Increasing epidemiological studies demonstrated that PM plays a significant role in CNS demyelinating disorders; however, there is no direct testimony of this, and yet the molecular mechanism by which the occurrence remains unclear. Using multiple in vivo and in vitro strategies, in the present study we demonstrate that PM exposure aggravates neuroinflammation, myelin injury, and dysfunction of movement coordination ability via boosting microglial pro-inflammatory activities, in both the pathological demyelination and physiological myelinogenesis animal models. Indeed, pharmacological disturbance combined with RNA-seq and ChIP-seq suggests that TLR-4/NF-kB signaling mediated a core network of genes that control PM-triggered microglia pathogenicity. In summary, our study defines a novel atmospheric environmental mechanism that mediates PM-aggravated microglia pathogenic activities, and establishes a systematic approach for the investigation of the effects of environmental exposure in neurologic disorders.
Collapse
Affiliation(s)
- Bing Han
- Shaanxi Normal University, Xi'an, China
| | - Xing Li
- Shaanxi Normal University, Xi'an, China
| | | | | | | | - Xin Deng
- Shaanxi Normal University, Xi'an, China
| | - Wen Ma
- Shaanxi Normal University, Xi'an, China
| | - Shun Xiao
- Shaanxi Normal University, Xi'an, China
| | | | - Li-Mei Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chong Xie
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Shaanxi Normal University, Xi'an, China
| | - Yan Xu
- Shaanxi Normal University, Xi'an, China
| | | |
Collapse
|
42
|
Fan P, Wang Y, Xu M, Han X, Liu Y. The Application of Brain Organoids in Assessing Neural Toxicity. Front Mol Neurosci 2022; 15:799397. [PMID: 35221913 PMCID: PMC8864968 DOI: 10.3389/fnmol.2022.799397] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
The human brain is a complicated and precisely organized organ. Exogenous chemicals, such as pollutants, drugs, and industrial chemicals, may affect the biological processes of the brain or its function and eventually lead to neurological diseases. Animal models may not fully recapitulate the human brain for testing neural toxicity. Brain organoids with self-assembled three-dimensional (3D) structures provide opportunities to generate relevant tests or predictions of human neurotoxicity. In this study, we reviewed recent advances in brain organoid techniques and their application in assessing neural toxicants. We hope this review provides new insights for further progress in brain organoid application in the screening studies of neural toxicants.
Collapse
Affiliation(s)
- Pan Fan
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
| | - YuanHao Wang
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
| | - Min Xu
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
| | - Xiao Han
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| |
Collapse
|
43
|
Antiflammatory activity and potential dermatological applications of characterized humic acids from a lignite and a green compost. Sci Rep 2022; 12:2152. [PMID: 35140310 PMCID: PMC8828863 DOI: 10.1038/s41598-022-06251-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
Long-term exposure to air pollution has been associated with the development of some inflammatory processes related to skin. The goal of modern medicine is the development of new products with antiflammatory action deriving from natural sources to improve environmental and economic sustainability. In this study, two different humic acids (HA) were isolated from from lignite (HA-LIG) and composted artichoke wastes (HA-CYN) and characterized by infrared spectrometry, NMR spectroscopy, thermochemolysis-GC/MS, and high-performance size-exclusion chromatography (HPSEC), while their antiflammatory activity was evaluated on HaCaT cells. Spectroscopic results showing the predominance of apolar aliphatic and aromatic components in HA-LIG, whereas HA-CYN revealed a presence of polysaccharides and polyphenolic lignin residues. The HA application on human keratinocyte pre-treated with Urban Dust revealed a general increase of viability suggesting a protective effect of humic matter due to the content of aromatic, phenolic and lignin components. Conversely, the gene expression of IL-6 and IL-1β cytokines indicated a significant decrease after application of HA-LIG, thus exhibiting a greater antiflammatory power than HA-CYN. The specific combination of HA protective hydrophobic components, viable conformational arrangements, and content of bioactive molecules, suggests an innovative applicability of humic matter in dermatology as skin protectors from environmental irritants and as antiflammatory agents.
Collapse
|
44
|
Li J, Zhang L, Wang J, Jia R, Zhang X, Li X, Fu Y, Song L. Differential expression of long non-coding RNAs in the hippocampus of mice exposed to PM 2.5 in Dalian, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12136-12146. [PMID: 34561797 DOI: 10.1007/s11356-021-16496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Evidence is mounting that PM2.5 exposure could lead to learning disability, memory deficits, and cognitive impairment; however, the underlying mechanisms are still not well demonstrated yet. Long non-coding RNAs (LncRNAs) play a crucial role in many human diseases. Although the relationship of Alzheimer's disease (AD) and lncRNAs have been discovered, the role of lncRNA in AD-like phenotype induced by PM2.5 needs further exploration. In this study, we profiled the expression of messenger RNAs (mRNAs) and lncRNAs in hippocampus after confirming the AD-like changes in mice. Compared with the control group, a total of 478 mRNAs and 151 lncRNAs were dysregulated after PM2.5 exposure. ECM-receptor interaction, focal adhesion, complement and coagulation cascades, and AGE-RAGE signaling pathway were found dysregulated through lncRNA-co-expressed genes analysis based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Meanwhile, the genes related to microglia were significantly altered, such as CX3CR1, CD163, lncRNA Gm44750, and lncRNA Gm43509. Above evidences suggested that microglia-related lncRNAs dysregulation probably plays a crucial role in PM2.5exposure-associated learning and memory deficits.
Collapse
Affiliation(s)
- Jie Li
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Longying Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, People's Republic of China
| | - Jiaqi Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
- The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Ruxue Jia
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Xiao Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Xiaojing Li
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Ying Fu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Laiyu Song
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China.
| |
Collapse
|
45
|
PM10 Alters Trophoblast Cell Function and Modulates miR-125b-5p Expression. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3697944. [PMID: 35036432 PMCID: PMC8759905 DOI: 10.1155/2022/3697944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Air pollution is one of the largest global environmental health hazards that threaten premature mortality or morbidity. Particulate matter 10 (PM10) has been demonstrated to contribute to several human diseases via dysregulated miRNA expression. Trophoblast cells play a key role in implantation and placentation for a successful pregnancy. Nonetheless, the PM10 associated trophoblast cell functions during pregnancy and miRNA expression are still unknown. Our study showed that PM10 affected HTR-8/SVneo cell viability and also decreased cell proliferation, migration, and invasion. A high concentration of PM10 caused an increase in HTR-8/SVneo cell apoptosis. Treatment with PM10 induced inflammation through the upregulated IL-1β, IL-6, and TNF-α expression in trophoblast cells. In PM10-treated HTR-8/SVneo cells, miR-125b-5p expression was considerably increased and TXNRD1 was found to be negatively related to miR-125b-5p. Collectively, our findings revealed that PM10 could alter miR-125b-5p expression by targeting TXNRD1 and suppressing trophoblast cell functions. Additional investigations relating to the function of miR-125b-5p and its target on particulate pollution exposure in trophoblast are warranted for future biomarker or effective therapeutic approaches.
Collapse
|
46
|
Borroni E, Pesatori AC, Bollati V, Buoli M, Carugno M. Air pollution exposure and depression: A comprehensive updated systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118245. [PMID: 34600062 DOI: 10.1016/j.envpol.2021.118245] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
We provide a comprehensive and updated systematic review and meta-analysis of the association between air pollution exposure and depression, searching PubMed, Embase, and Web of Sciences for relevant articles published up to May 2021, and eventually including 39 studies. Meta-analyses were performed separately according to pollutant type [particulate matter with diameter ≤10 μm (PM10) and ≤2.5 μm (PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO)] and exposure duration [short- (<30 days) and long-term (≥30 days)]. Test for homogeneity based on Cochran's Q and I2 statistics were calculated and the restricted maximum likelihood (REML) random effect model was applied. We assessed overall quality of pooled estimates, influence of single studies on the meta-analytic estimates, sources of between-study heterogeneity, and publication bias. We observed an increased risk of depression associated with long-term exposure to PM2.5 (relative risk: 1.074, 95% confidence interval: 1.021-1.129) and NO2 (1.037, 1.011-1.064), and with short-term exposure to PM10 (1.009, 1.006-1.012), PM2.5 (1.009, 1.007-1.011), NO2 (1.022, 1.012-1.033), SO2 (1.024, 1.010-1.037), O3 (1.011, 0.997-1.026), and CO (1.062, 1.020-1.105). The publication bias affecting half of the investigated associations and the high heterogeneity characterizing most of the meta-analytic estimates partly prevent to draw very firm conclusions. On the other hand, the coherence of all the estimates after excluding single studies in the sensitivity analysis supports the soundness of our results. This especially applies to the association between PM2.5 and depression, strengthened by the absence of heterogeneity and of relevant publication bias in both long- and short-term exposure studies. Should further investigations be designed, they should involve large sample sizes, well-defined diagnostic criteria for depression, and thorough control of potential confounding factors. Finally, studies dedicated to the comprehension of the mechanisms underlying the association between air pollution and depression remain necessary.
Collapse
Affiliation(s)
- Elisa Borroni
- Department of Clinical Sciences and Community Health, University of Milan, via san Barnaba 8, 20122, Milan, Italy
| | - Angela Cecilia Pesatori
- Department of Clinical Sciences and Community Health, University of Milan, via san Barnaba 8, 20122, Milan, Italy; Epidemiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via san Barnaba 8, 20122, Milan, Italy.
| | - Valentina Bollati
- Department of Clinical Sciences and Community Health, University of Milan, via san Barnaba 8, 20122, Milan, Italy
| | - Massimiliano Buoli
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Michele Carugno
- Department of Clinical Sciences and Community Health, University of Milan, via san Barnaba 8, 20122, Milan, Italy; Epidemiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via san Barnaba 8, 20122, Milan, Italy
| |
Collapse
|
47
|
Fu Q, Mo Z, Gu Y, Lu B, Hao S, Lyu D, Xu P, Wu L, Lou X, Jin H, Wang X, Chen Z, Yao K. Association between outpatient visits for pterygium and air pollution in Hangzhou, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118246. [PMID: 34592331 DOI: 10.1016/j.envpol.2021.118246] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Air pollution could be a risk factor for the development of pterygium. This study aimed to investigate the potential associations between outpatient visits for pterygium and air pollutants. Using a time-stratified case-crossover design, the data of 3017 outpatients with pterygium visiting an eye center in Hangzhou, China, and the air pollution data of the Environmental Protection Department of Zhejiang Province between July 1, 2014, and November 30, 2019, were examined. The relationships between the air pollutants nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone, and fine particulate matter (PM) with median aerometric diameter <2.5 μm (PM2.5) and <10 μm (PM10) and outpatient visits for primary pterygium were assessed using single- and multiple-pollutant models. Significant associations between outpatient visits for pterygium and air pollutants (PM2.5, PM10, SO2, and NO2) were observed. Younger patients were found to be more sensitive to air pollution. Interestingly, the younger female patients with pterygium were more vulnerable to PM2.5 exposure during the warm season, while the younger male patients with pterygium were more sensitive to NO2 during the cold season. Significant effects were also observed between the pterygium outpatients and PM2.5 (odds ratio [OR] = 1.06, P = 0.02), PM10 (OR = 1.04, P = 0.01), and SO2 (OR = 1.26, P = 0.01) during the warm season, as well as NO2 (OR = 1.06, P = 0.01) during the cold season. Our study provides evidence that outpatient visits for pterygium are positively associated with increases in the air pollutants PM2.5, PM10, SO2, and NO2, revealing the important role of air pollution in the occurrence and development of pterygium.
Collapse
Affiliation(s)
- Qiuli Fu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Zhe Mo
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Yuzhou Gu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Bing Lu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Shengjie Hao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Danni Lyu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Peiwei Xu
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Lizhi Wu
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Xiaoming Lou
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Hongying Jin
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Xiaofeng Wang
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Zhijian Chen
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Ke Yao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
48
|
Zhao N, Pinault L, Toyib O, Vanos J, Tjepkema M, Cakmak S. Long-term ozone exposure and mortality from neurological diseases in Canada. ENVIRONMENT INTERNATIONAL 2021; 157:106817. [PMID: 34385046 DOI: 10.1016/j.envint.2021.106817] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND There is increasing interest in the health effects of air pollution. However, the relationships between ozone exposure and mortality attributable to neurological diseases remain unclear. OBJECTIVES To assess associations of long-term exposure to ozone with death from Parkinson's disease, dementia, stroke, and multiple sclerosis. METHODS Our analyses were based on the 2001 Canadian Census Health and Environment Cohort. Census participants were linked with vital statistics records through 2016, resulting in a cohort of 3.5 million adults/51,045,700 person-years, with 8,500/51,300/43,300/1,300 deaths from Parkinson's/dementia/stroke/multiple sclerosis, respectively. Ten-year average ozone concentrations estimated by chemical transport models and adjusted by ground measurements were assigned to subjects based on postal codes. Cox proportional hazards models were used to calculate hazard ratios (HRs) for deaths from the four neurological diseases, adjusting for eight common demographic and socioeconomic factors, seven environmental indexes, and six contextual covariates. RESULTS The fully adjusted HRs for Parkinson's, dementia, stroke, and multiple sclerosis mortalities related to one interquartile range increase in ozone (10.1 ppb), were 1.09 (95% confidence interval 1.04-1.14), 1.08 (1.06-1.10), 1.06 (1.04-1.09), and 1.35 (1.20-1.51), respectively. The covariates did not influence significance of the ozone-mortality associations, except airshed (i.e., broad region of Canada). During the period of 2001-2016, 5.66%/5.01%/ 3.77%/19.11% of deaths from Parkinson's/dementia/stroke/multiple sclerosis, respectively, were attributable to ozone exposure. CONCLUSIONS We found positive associations between ozone exposure and mortality due to Parkinson's, dementia, stroke, and multiple sclerosis.
Collapse
Affiliation(s)
- Naizhuo Zhao
- Division of Clinical Epidemiology, McGill University Health Center, Montreal, QC, Canada
| | - Lauren Pinault
- Health Stataistics Division, Statistics Canada, Ottawa, ON, Canada
| | - Olaniyan Toyib
- Health Stataistics Division, Statistics Canada, Ottawa, ON, Canada
| | - Jennifer Vanos
- School of Sustainability, Arizona State University, AZ, USA
| | - Michael Tjepkema
- Health Stataistics Division, Statistics Canada, Ottawa, ON, Canada
| | - Sabit Cakmak
- Population Studies Division, Environmental Health Science & Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
49
|
Luminati O, Ledebur de Antas de Campos B, Flückiger B, Brentani A, Röösli M, Fink G, de Hoogh K. Land use regression modelling of NO 2 in São Paulo, Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117832. [PMID: 34340182 DOI: 10.1016/j.envpol.2021.117832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/30/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Air pollution is a major global public health problem. The situation is most severe in low- and middle-income countries, where pollution control measures and monitoring systems are largely lacking. Data to quantify the exposure to air pollution in low-income settings are scarce. METHODS In this study, land use regression models (LUR) were developed to predict the outdoor nitrogen dioxide (NO2) concentration in the study area of the Western Region Birth Cohort in São Paulo. NO2 measurements were performed for one week in winter and summer at eighty locations. Additionally, weekly measurements at one regional background location were performed over a full one-year period to create an annual prediction. RESULTS Three LUR models were developed (annual, summer, winter) by using a supervised stepwise linear regression method. The winter, summer and annual models explained 52 %, 75 % and 66 % of the variance (R2) respectively. Cross-holdout validation tests suggest robust models. NO2 levels ranged from 43.2 μg/m3 to 93.4 μg/m3 in the winter and between 28.1 μg/m3 and 72.8 μg/m3 in summer. Based on our annual prediction, about 67 % of the population living in the study area is exposed to NO2 values over the WHO suggested annual guideline of 40 μg/m3 annual average. CONCLUSION In this study we were able to develop robust models to predict NO2 residential exposure. We could show that average measures, and therefore the predictions of NO2, in such a complex urban area are substantially high and that a major variability within the area and especially within the season is present. These findings also suggest that in general a high proportion of the population is exposed to high NO2 levels.
Collapse
Affiliation(s)
- Ornella Luminati
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O.Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, P. O. Box, 4001, Basel, Switzerland
| | - Bartolomeu Ledebur de Antas de Campos
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O.Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, P. O. Box, 4001, Basel, Switzerland
| | - Benjamin Flückiger
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O.Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, P. O. Box, 4001, Basel, Switzerland
| | - Alexandra Brentani
- Department of Pediatrics at the Medical School of São Paulo University, São Paulo, Brazil
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O.Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, P. O. Box, 4001, Basel, Switzerland
| | - Günther Fink
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O.Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, P. O. Box, 4001, Basel, Switzerland
| | - Kees de Hoogh
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O.Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, P. O. Box, 4001, Basel, Switzerland.
| |
Collapse
|
50
|
Weuve J, Bennett EE, Ranker L, Gianattasio KZ, Pedde M, Adar SD, Yanosky JD, Power MC. Exposure to Air Pollution in Relation to Risk of Dementia and Related Outcomes: An Updated Systematic Review of the Epidemiological Literature. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:96001. [PMID: 34558969 PMCID: PMC8462495 DOI: 10.1289/ehp8716] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Dementia is a devastating neurologic condition that is common in older adults. We previously reviewed the epidemiological evidence examining the hypothesis that long-term exposure to air pollution affects dementia risk. Since then, the evidence base has expanded rapidly. OBJECTIVES With this update, we collectively review new and previously identified epidemiological studies on air pollution and late-life cognitive health, highlighting new developments and critically discussing the merits of the evidence. METHODS Using a registered protocol (PROSPERO 2020 CRD42020152943), we updated our literature review to capture studies published through 31 December 2020, extracted data, and conducted a bias assessment. RESULTS We identified 66 papers (49 new) for inclusion in this review. Cognitive level remained the most commonly considered outcome, and particulate matter (PM) remained the most commonly considered air pollutant. Since our prior review, exposure estimation methods in this research have improved, and more papers have looked at cognitive change, neuroimaging, and incident cognitive impairment/dementia, though methodological concerns remain common. Many studies continue to rely on administrative records to ascertain dementia, have high potential for selection bias, and adjust for putative mediating factors in primary models. A subset of 35 studies met strict quality criteria. Although high-quality studies of fine particulate matter with aerodynamic diameter ≤ 2.5 μ m (PM 2.5 ) and cognitive decline generally supported an adverse association, other findings related to PM 2.5 and findings related to particulate matter with aerodynamic diameter ≤ 10 μ m (PM 10 , NO 2 , and NO x ) were inconclusive, and too few papers reported findings with ozone to comment on the likely direction of association. Notably, only a few findings on dementia were included for consideration on the basis of quality criteria. DISCUSSION Strong conclusions remain elusive, although the weight of the evidence suggests an adverse association between PM 2.5 and cognitive decline. However, we note a continued need to confront methodological challenges in this line of research. https://doi.org/10.1289/EHP8716.
Collapse
Affiliation(s)
- Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Erin E. Bennett
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Lynsie Ranker
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Kan Z. Gianattasio
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Meredith Pedde
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Sara D. Adar
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Jeff D. Yanosky
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Melinda C. Power
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| |
Collapse
|