1
|
Huang Q, Qadri SF, Bian H, Yi X, Lin C, Yang X, Zhu X, Lin H, Yan H, Chang X, Sun X, Ma S, Wu Q, Zeng H, Hu X, Zheng Y, Yki-Järvinen H, Gao X, Tang H, Xia M. A metabolome-derived score predicts metabolic dysfunction-associated steatohepatitis and mortality from liver disease. J Hepatol 2025; 82:781-793. [PMID: 39423864 DOI: 10.1016/j.jhep.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/11/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is associated with a >10-fold increase in liver-related mortality. However, biomarkers predicting both MASH and mortality in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) are missing. We developed a metabolome-derived prediction score for MASH and examined whether it predicts mortality in Chinese and European cohorts. METHODS The MASH prediction score was developed using a multi-step machine learning strategy, based on 44 clinical parameters and 250 serum metabolites measured by proton nuclear magnetic resonance in 311 Chinese adults undergoing a liver biopsy. External validation was conducted in a Finnish liver biopsy cohort (n = 305). We investigated associations of the score with all-cause and cause-specific mortality in the population-based Shanghai Changfeng study (n = 5,893) and the UK biobank (n = 111,673). RESULTS A total of 24 clinical parameters and 194 serum metabolites were significantly associated with MASH in the Chinese liver biopsy cohort. The final MASH score included BMI, aspartate aminotransferase, tyrosine, and the phospholipid-to-total lipid ratio in VLDL. The score identified patients with MASH with AUROCs of 0.87 (95% CI 0.83-0.91) and 0.81 (95% CI 0.75-0.88) in the Chinese and Finnish cohorts, with high negative predictive values. Participants with a high or intermediate risk of MASH based on the score had a markedly higher risk of MASLD-related mortality than those with a low risk in Chinese (hazard ratio 23.19; 95% CI 4.80-111.97) and European (hazard ratio 20.15; 95% CI 10.95-37.11) individuals after 7.2 and 12.6 years of follow-up, respectively. The MASH prediction score was superior to the Fibrosis-4 index and the NAFLD fibrosis score in predicting MASLD-related mortality. CONCLUSION The metabolome-derived MASH prediction score accurately predicts risk of MASH and MASLD-related mortality in both Chinese and European individuals. IMPACT AND IMPLICATIONS Metabolic dysfunction-associated steatohepatitis (MASH) is associated with more than a 10-fold increase in liver-related death. However, biomarkers predicting not only MASH, but also death due to liver disease, are missing. We established a MASH prediction score based on 44 clinical parameters and 250 serum metabolites using a machine learning strategy. This metabolome-derived MASH prediction score could accurately identify patients with MASH among both Chinese and Finnish individuals, and it was superior to the Fibrosis-4 index and the NAFLD fibrosis score in predicting MASLD-related death in the general population. Thus, the new MASH prediction score is a useful tool for identifying individuals with a markedly increased risk of serious liver-related outcomes among at-risk and general populations.
Collapse
Affiliation(s)
- Qingxia Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Sami F Qadri
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xiaoxuan Yi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Chenhao Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xinyu Yang
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Hongmei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xinxia Chang
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xiaoyang Sun
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Shuai Ma
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Qi Wu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Hailuan Zeng
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xiqi Hu
- Department of Pathology, Medical College, Fudan University, Shanghai, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Xie K, Zhang Y, Ou X, Xiao Y, Luo J, Tan S. Taurine ameliorates liver fibrosis by repressing Fpr2-regulated macrophage M1 polarization. Eur J Pharmacol 2025; 997:177614. [PMID: 40216178 DOI: 10.1016/j.ejphar.2025.177614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Liver fibrosis is a reversible pathophysiological condition characterized by excessive extracellular matrix deposition that can progress to cirrhosis and liver failure if left untreated. Taurine, a sulfur-containing amino acid, protects the liver from damage. However, the effects of taurine on liver fibrogenesis have not been completely elucidated. In this study, we used amino acid metabolomics, gene expression microanalysis, and single-cell RNA sequencing (scRNA-seq) to investigate the roles of taurine, formyl peptide receptor 2 (Fpr2), and proinflammatory macrophages in liver fibrosis in human fibrotic sections and two distinct mouse models of liver fibrosis. Taurine transporter SLC6A6 wild-type and knockout littermate models and critical element inhibitors were also used. We found that taurine levels were significantly reduced in both human and murine fibrotic sections and that exogenous taurine supplementation alleviated fibrosis via SLC6A6. Furthermore, gene expression microarray analysis and scRNA-seq analyses demonstrated that exogenous taurine mitigated liver fibrosis, mainly by regulating Fpr2-related macrophage status. WRW4-mediated inhibition of Fpr2 ameliorated M1 macrophage polarization and alleviated liver fibrosis. Additionally, exogenous taurine suppressed Fpr2-modulated macrophage M1 polarization and the production of associated proinflammatory cytokines by repressing NF-κBp65 phosphorylation; moreover, SLC6A6 deficiency or treatment of liver fibrosis mouse models with an NF-κB inhibitor, BAY, impaired this protective effect of taurine. Therefore, taurine exerts a protective effect against liver fibrosis by repressing Fpr2/NF-κBp65-regulated macrophage M1 polarization, highlighting its potential therapeutic agent.
Collapse
Affiliation(s)
- Kaiduan Xie
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Yiwang Zhang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Xingtong Ou
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Yuelin Xiao
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Jiajie Luo
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Siwei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China.
| |
Collapse
|
3
|
Lin B, Bai G, Zhang Y, Wang Y, Chen S. Betulinic acid from Inonotus obliquus ameliorates T2DM by modulating short-chain fatty acids producing bacteria and amino acids metabolism in db/db mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119417. [PMID: 39884483 DOI: 10.1016/j.jep.2025.119417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/04/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inonotus obliquus has also been used as a traditional folk medicine in Europe and Northeastern China to treat metabolic diseases. Betulinic acid (BA) is a major ingredient with anti-diabetic property derived from I. obliquus, however, its bioavailability is limited. Whether the beneficial effects of BA on type 2 diabetic mellitus (T2DM) referring to modulation of gut microbiota and associated metabolites remain unclear. AIM OF THE STUDY This work aims to investigate the alleviating effect of BA on T2DM in db/db mice and elucidate the mechanism from perspective of network pharmacology, gut microbiome and fecal metabolome. MATERIALS AND METHODS BA was orally administered to db/db mice for 45 days, and the related biochemical parameters were evaluated. The associated mechanism was explored using network pharmacology analysis, 16S rRNA sequencing and UHPLC-MS metabolomics comprehensively. Additionally, Spearman analysis was performed to assess the correlation between gut microbes, metabolites, and T2DM-related biochemical parameters. RESULTS BA ameliorated T2DM symptoms by reducing body weight gain, regulating serum glucose and lipid levels, and mitigating T2DM-associated liver injury in db/db mice. Network pharmacology analysis indicated the ameliorative effect was via targeting at PPAR activity. BA intervention increased the relative abundance of short-chain fatty acids (SCFAs) producing bacteria including Lactobacillus and Eubacterium_xylanophilum group, and enhanced the production of SCFAs. Moreover, BA primarily regulates arginine and proline metabolism, D-glutamine and D-glutamate metabolism, and alanine, aspartate and glutamate metabolism. Spearman analysis indicated a negative correlation between SCFAs-producing bacteria and amino acids, as well as serum glucose and lipid levels. CONCLUSION Apart from PPAR signaling pathway, BA modulated gut microbiota composition and associated metabolites in db/db mice. This study provided novel insights into the therapeutic potential of BA for alleviating T2DM symptoms.
Collapse
Affiliation(s)
- Bing Lin
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guangjian Bai
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China; Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Yifan Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yaqi Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Shaodan Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China; Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
4
|
Schenker RB, Ramirez CB, Jang C, Allayee H, Zhao X, Setchell KDR, Kohli R, Goran MI. Dihydroxyacetone phosphate is a novel predictor of hepatic fibrosis in Latino adolescents with obesity. J Pediatr Gastroenterol Nutr 2025; 80:174-181. [PMID: 39582475 DOI: 10.1002/jpn3.12420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/25/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
OBJECTIVES Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common pediatric liver disease and can progress to liver fibrosis. Latino adolescents have increased MASLD and fibrosis risk. While fibrosis is diagnosed by biopsy or imaging, more accessible, noninvasive, and economical screening methods are needed. We aimed to use plasma metabolomics/lipidomics to identify potential fibrosis biomarkers in Latino adolescents with obesity. METHODS Liver stiffness (LS) was measured in 93 Latino adolescents with obesity using magnetic resonance elastography. Metabolites and lipids were extracted from plasma and identified on Compound Discoverer. Associations between metabolites/lipids and fibrosis (LS > 2.73 kPa) were determined using linear regression models after covariate adjustment. False discovery rate (FDR) adjusted Pearson's correlations were performed. Analytes yielding significant FDR-adjusted correlations were examined further by receiver operator curve analysis. RESULTS Mean (±standard deviation) alanine transaminase (ALT) was 45.7(±65.2) IU/L, hepatic fat fraction was 12.7(±9.1)%, and LS was 2.4(±0.3) kPa. We identified 795 metabolites and 413 lipids in plasma, but only one single metabolite, dihydroxyacetone phosphate (DHAP), a marker of triglyceride synthesis, was significantly associated with fibrosis after FDR adjustment (p < 0.05). In terms of predicting fibrosis, ALT had an area under the curve (AUC) of 0.79, and DHAP had an AUC of 0.79. When combined, ALT + DHAP had an AUC of 0.89. CONCLUSIONS The combination of ALT + DHAP may have the potential as an accurate, noninvasive test for liver fibrosis. Our data are limited to Latino children with obesity, and a larger cohort should be examined to further validate this novel biomarker.
Collapse
Affiliation(s)
- Rachel B Schenker
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Cuauhtemoc B Ramirez
- Department of Biologic Chemistry, University of California Irvine School of Medicine, Irvine, California, USA
| | - Cholsoon Jang
- Department of Biologic Chemistry, University of California Irvine School of Medicine, Irvine, California, USA
| | - Hooman Allayee
- Departments of Population & Public Health Sciences and Biochemistry & Molecular Medicine, University of Southern California, Los Angeles, California, USA
| | - Xueheng Zhao
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Cincinnati Children's Hospital Medical Center, Division of Pathology and Laboratory Medicine, Cincinnati, Ohio, USA
| | - Kenneth D R Setchell
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Cincinnati Children's Hospital Medical Center, Division of Pathology and Laboratory Medicine, Cincinnati, Ohio, USA
| | - Rohit Kohli
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Michael I Goran
- Department of Pediatrics, Division of Endocrinology, Children's Hospital Los Angeles, Los Angeles, California, USA
| |
Collapse
|
5
|
Florea VV, Gajjar P, Huang S, Tang J, Zhao S, Davenport M, Mi MY, Haff M, Zhang X, Miller PE, Vasan RS, Liu CT, Lewis GD, Shah RV, Long MT, Nayor M. Hepatic Steatosis and Fibrosis, Cardiorespiratory Fitness, and Metabolic Mediators in the Community. Liver Int 2025; 45:e16147. [PMID: 39673712 DOI: 10.1111/liv.16147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/25/2024] [Accepted: 10/12/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND AND AIMS Individuals with steatotic liver disease (SLD) are at high cardiovascular disease (CVD) risk, but approaches to characterise and mitigate this risk are limited. By investigating relations, and shared metabolic pathways, of hepatic steatosis/fibrosis and cardiorespiratory fitness (CRF), we sought to identify new avenues for CVD risk reduction in SLD. METHODS In Framingham Heart Study (FHS) participants (N = 2722, age 54 ± 9 years, 53% women), vibration-controlled transient elastography (VCTE) was performed between 2016-2019 to assess hepatic steatosis (continuous attenuation parameter [CAP]) and fibrosis (liver fibrosis measure [LSM]). Concurrently, participants underwent maximum effort cardiopulmonary exercise testing (CPET), and metabolomic profiling (201 circulating metabolites) was performed in a subsample (N = 1268). RESULTS Mean BMI was 28.0 ± 5.3, 27% had hepatic steatosis, 7.6% had fibrosis, and peak oxygen uptake (VO2) was 26.2 ± 6.8 mL/kg/min in men and 20.7 ± 6.0 mL/kg/min in women (95% predicted overall). In linear models adjusted for cardiometabolic risk factors, greater CAP and LSM were associated with lower peak VO2 (p ≤ 0.002 for all), and the CAP association remained significant after BMI adjustment (p < 0.0001). We observed shared metabolic architecture of CAP, LSM, and peak VO2, with metabolites mediating up to 35% (for CAP) and 74% (for LSM) of the association with peak VO2. Metabolite mediators included amino acids and derivatives implicated in cardiometabolic risk and both protective and deleterious lipid species. CONCLUSIONS Hepatic steatosis and fibrosis are associated with CRF impairment in the community, and these relations are partly mediated by pathways of altered lipid metabolism and general cardiometabolic risk.
Collapse
Affiliation(s)
- Victor V Florea
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Priya Gajjar
- Cardiovascular Medicine Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Shi Huang
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jingxian Tang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Shilin Zhao
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Megan Davenport
- Cardiovascular Medicine Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Michael Y Mi
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Madeleine Haff
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xiaoyu Zhang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Patricia E Miller
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Ramachandran S Vasan
- University of Texas School of Public Health, San Antonio, Texas, USA
- Departments of Medicine and Population Health Sciences, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Gregory D Lewis
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Research Center, Cardiology Division, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michelle T Long
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Novo Nordisk A/S, Søborg, Denmark
| | - Matthew Nayor
- Cardiovascular Medicine Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Preventive Medicine and Epidemiology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Skowronek AK, Jaskulak M, Zorena K. The Potential of Metabolomics as a Tool for Identifying Biomarkers Associated with Obesity and Its Complications: A Scoping Review. Int J Mol Sci 2024; 26:90. [PMID: 39795949 PMCID: PMC11719496 DOI: 10.3390/ijms26010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Obesity and its related diseases, such as type 2 diabetes (T2DM), cardiovascular disease (CVD), and metabolic fatty liver disease (MAFLD), require new diagnostic markers for earlier detection and intervention. The aim of this study is to demonstrate the potential of metabolomics as a tool for identifying biomarkers associated with obesity and its comorbidities in every age group. The presented systematic review makes an important contribution to the understanding of the potential of metabolomics in identifying biomarkers of obesity and its complications, especially considering the influence of branched-chain amino acids (BCAAs), amino acids (AAs) and adipokines on the development of T2DM, MAFLD, and CVD. The unique element of this study is the combination of research results from the last decade in different age groups and a wide demographic range. The review was based on the PubMed and Science Direct databases, and the inclusion criterion was English-language original studies conducted in humans between 2014 and 2024 and focusing on the influence of BCAAs, AAs or adipokines on the above-mentioned obesity complications. Based on the PRISMA protocol, a total of 21 papers were qualified for the review and then assigned to a specific disease entity. The collected data reveal that elevated levels of BCAAs and some AAs strongly correlate with insulin resistance, leading to T2DM, MAFLD, and CVD and often preceding conventional clinical markers. Valine and tyrosine emerge as potential markers of MAFLD progression, while BCAAs are primarily associated with insulin resistance in various demographic groups. Adipokines, although less studied, offer hope for elucidating the metabolic consequences of obesity. The review showed that in the case of CVDs, there is still a lack of studies in children and adolescents, who are increasingly affected by these diseases. Moreover, despite the knowledge that adipokines play an important role in the pathogenesis of obesity, there are no precise findings regarding the correlation between individual adipokines and T2DM, MAFLD, or CVD. In order to be able to introduce metabolites into the basic diagnostics of obesity-related diseases, it is necessary to develop panels of biochemical tests that will combine them with classical markers of selected diseases.
Collapse
Affiliation(s)
| | | | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdansk, 80-210 Gdansk, Poland; (A.K.S.); (M.J.)
| |
Collapse
|
7
|
Tan EY, Muthiah MD, Sanyal AJ. Metabolomics at the cutting edge of risk prediction of MASLD. Cell Rep Med 2024; 5:101853. [PMID: 39657668 PMCID: PMC11722125 DOI: 10.1016/j.xcrm.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/12/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health threat globally. Management of patients afflicted with MASLD and research in this domain are limited by the lack of robust well-established non-invasive biomarkers for diagnosis, prognostication, and monitoring. The circulating metabolome reflects both the systemic metabo-inflammatory milieu and changes in the liver in affected individuals. In this review we summarize the available literature on changes in the different components of the metabolome in MASLD with a focus on changes that are linked to the presence of underlying steatohepatitis, severity of disease activity, and fibrosis stage. We further summarize the existing literature around biomarker panels that are derived from interrogation of the metabolome. Their relevance to disease biology and utility in practice are also discussed. We further highlight potential direction for future studies particularly to ensure they are fit for purpose and suitable for widespread use.
Collapse
Affiliation(s)
- En Ying Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.
| | - Mark D Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
8
|
Gu MJ, Ahn Y, Lee YR, Yoo G, Kim Y, Choi I, Ha SK, Kim D. Coriandrum sativum L. Leaf Extract Ameliorates Metabolic Dysfunction-Associated Steatotic Liver Disease by Modulating the AMPK Pathway in High Fat-Fed C57BL/6 Mice. Nutrients 2024; 16:4165. [PMID: 39683561 DOI: 10.3390/nu16234165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. In recent times, the term NAFLD has been modified to metabolic dysfunction-associated steatotic liver disease (MASLD), reflecting its comprehensive scope encompassing a range of metabolic abnormalities. Coriandrum sativum L. (CS) is a traditional medicine, although the preventive mechanism of CS extracts remains unclear. OBJECTIVE This study evaluated the preventive effects of CS in high-fat diet (HFD)-induced MASLD mice by oral administration of 100 or 200 mg/kg/day of CS extracts for 12 weeks. RESULTS The major CS extract compounds were chlorogenic acid, caffeic acid, rutin, and isoquercetin. The administration of CS extract suppressed HFD-induced weight gain, liver weight, and the liver/body weight ratio. It improved the mice's serum biological profiles and suppressed HFD-induced lipid droplet and lipid accumulation by inhibiting lipid accumulation-related gene expression in the liver. It modulated HFD-induced Ampk-Srebp1c pathways and suppressed HFD-induced NF-κB pathway activation in the liver. It regulated inflammation and the AMPK alpha signaling pathway in HFD-fed mice by reducing the accumulation of specific amino acids, leading to the amelioration of fatty liver. CONCLUSIONS The CS extract prevents HFD-induced MASLD and may help prevent or treat MASLD.
Collapse
Affiliation(s)
- Min Ji Gu
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Yejin Ahn
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Yu Ra Lee
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Guijae Yoo
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Yoonsook Kim
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Inwook Choi
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Sang Keun Ha
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Donghwan Kim
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| |
Collapse
|
9
|
Beyoğlu D, Popov YV, Idle JR. Metabolomic Hallmarks of Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2024; 25:12809. [PMID: 39684520 DOI: 10.3390/ijms252312809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
From a detailed review of 90 experimental and clinical metabolomic investigations of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD), we have developed metabolomic hallmarks for both obesity and MASLD. Obesity studies were conducted in mice, rats, and humans, with consensus biomarker groups in plasma/serum being essential and nonessential amino acids, energy metabolites, gut microbiota metabolites, acylcarnitines and lysophosphatidylcholines (LPC), which formed the basis of the six metabolomic hallmarks of obesity. Additionally, mice and rats shared elevated cholesterol, humans and rats shared elevated fatty acids, and humans and mice shared elevated VLDL/LDL, bile acids and phosphatidylcholines (PC). MASLD metabolomic studies had been performed in mice, rats, hamsters, cows, geese, blunt snout breams, zebrafish, and humans, with the biomarker groups in agreement between experimental and clinical investigations being energy metabolites, essential and nonessential amino acids, fatty acids, and bile acids, which lay the foundation of the five metabolomic hallmarks of MASLD. Furthermore, the experimental group had higher LPC/PC and cholesteryl esters, and the clinical group had elevated acylcarnitines, lysophosphatidylethanolamines/phosphatidylethanolamines (LPE/PE), triglycerides/diglycerides, and gut microbiota metabolites. These metabolomic hallmarks aid in the understanding of the metabolic role played by obesity in MASLD development, inform mechanistic studies into underlying disease pathogenesis, and are critical for new metabolite-inspired therapies.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| | - Yury V Popov
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jeffrey R Idle
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| |
Collapse
|
10
|
Jo S, Kim JM, Li M, Kim HS, An YJ, Park S. TAT as a new marker and its use for noninvasive chemical biopsy in NASH diagnosis. Mol Med 2024; 30:232. [PMID: 39592957 PMCID: PMC11590374 DOI: 10.1186/s10020-024-00992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Early diagnosis of Nonalcoholic steatohepatitis (NASH) is crucial to prevent its progression to hepatocellular carcinoma, but its gold standard diagnosis still requires invasive biopsy. Here, a new marker-based noninvasive chemical biopsy approach is introduced that uses urine-secreted tyrosine metabolites. METHODS We first identified NASH-specific decrease in TAT expression, the first enzyme in the tyrosine degradation pathway (TDP), by employing exometabolome-transcriptome correlations, single-cell RNA -seq, and tissue staining on human NASH patient samples. A selective extrahepatic monitoring of the TAT activity was established by the chemical biopsy exploiting the enzyme's metabolic conversion of D2-tyrosine into D2-4HPP. The approach was applied to a NASH mouse model using the methionine-choline deficient diet, where urine D2-4HPP level was measured with a specific LC-MS detection, following oral administration of D2-tyrosine. RESULTS The noninvasive urine chemical biopsy approach could effectively differentiate NASH from normal mice (normal = 14, NASH = 15, p = 0.0054), correlated with the NASH pathology and TAT level decrease observed with immunostaining on the liver tissue. In addition, we showed that the diagnostic differentiation could be enhanced by measuring the downstream metabolites of TDP. The specificity of the TAT and the related TDP enzymes in NASH were also addressed in other settings employing high fat high fructose mouse NASH model and human obesity vs. NASH cohort. CONCLUSIONS Overall, we propose TAT and TDP as pathology-relevant markers for NASH and present the urine chemical biopsy as a noninvasive modality to evaluate the NASH-specific changes in urine that may help the NASH diagnosis.
Collapse
Affiliation(s)
- Sihyang Jo
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jin-Mo Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Minshu Li
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Han Sun Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Yong Jin An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Yuan Y, Zhang Y, Lu X, Li J, Wang M, Zhang W, Zheng M, Sun Z, Xing Y, Li Y, Qu Y, Jiao Y, Han H, Xie C, Mao T. Novel insights into macrophage immunometabolism in nonalcoholic steatohepatitis. Int Immunopharmacol 2024; 131:111833. [PMID: 38503012 DOI: 10.1016/j.intimp.2024.111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Nonalcoholic steatohepatitis (NASH), an inflammatory subtype of nonalcoholic fatty liver disease (NAFLD), is characterized by liver steatosis, inflammation, hepatocellular injury and different degrees of fibrosis, and has been becoming the leading cause of liver-related morbidity and mortality worldwide. Unfortunately, the pathogenesis of NASH has not been completely clarified, and there are no approved therapeutic drugs. Recent accumulated evidences have revealed the involvement of macrophage in the regulation of host liver steatosis, inflammation and fibrosis, and different phenotypes of macrophages have different metabolic characteristics. Therefore, targeted regulation of macrophage immunometabolism may contribute to the treatment and prognosis of NASH. In this review, we summarized the current evidences of the role of macrophage immunometabolism in NASH, especially focused on the related function conversion, as well as the strategies to promote its polarization balance in the liver, and hold promise for macrophage immunometabolism-targeted therapies in the treatment of NASH.
Collapse
Affiliation(s)
- Yali Yuan
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Ye Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Xinyu Lu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Junxiang Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Muyuan Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Wenji Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | | | | | - Yunqi Xing
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yitong Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yingdi Qu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yao Jiao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Haixiao Han
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Chune Xie
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China; Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, PR China.
| | - Tangyou Mao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China.
| |
Collapse
|
12
|
Han J, Wu P, Xu Z, Liu C, Chen Q, Zhang F, Tao H, Luo D, Zhou L, Wang B, Gao Z, Shen T, Wen Y, Yu H. The anti-cholestatic effects of Coptis chinensis Franch. alone and combined with Tetradium ruticarpum (A. Jussieu) T. G. Hartley: dual effects on fecal metabolism and microbial diversity. Front Pharmacol 2024; 15:1372527. [PMID: 38523644 PMCID: PMC10957555 DOI: 10.3389/fphar.2024.1372527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction: Drug dosages and combinations are the main factors that affect the efficacy of pleiotropic traditional Chinese medicine (TCM). Coptis chinensis Franch. (CF) is a representative TCM with multiple effects and is often combined with Tetradium ruticarpum (A. Jussieu) T. G. Hartley (TR) to treat cholestasis. The present study assessed the influence of CF dose and its combination with TR on the efficacy of CF in cholestasis treatment, including their effects on fecal metabolism and fecal microorganisms. Methods: Rats with α-naphthylisothiocyanate (ANIT, 50 mg/kg)-induced cholestasis were administered low (0.3 g/kg) and high (0.6 g/kg) doses of CF, as well as CF combined with TR at doses of 0.6 g/kg and 0.9 g/kg, respectively. The anti-cholestatic effects of these treatments were assessed by determining their anti-inflammatory, hypolipidemic, and anti-oxidative stress properties. Additionally, fecal metabolomics and fecal microorganisms were analyzed. Results: Low dose CF had a more potent hypolipidemic effect than high dose CF, whereas high dose CF had more potent anti-inflammatory and anti-oxidative stress effects. Combination with TR enhanced the hypolipidemic effect, but antagonized the anti-inflammatory effect, of CF. Analyses of fecal metabolomics and fecal microorganisms showed differences in the regulation of lipid- and amino acid metabolism-related pathways, including pathways of linoleic acid, tyrosine, and arachidonic acid metabolism, and amino acid biosynthesis between different doses of CF as well as between different doses of CF in combination with TR. These differences may contribute to differences in the anti-cholestatic effects of these preparations. Conclusion: CF dose influences its anti-cholestatic efficacy. The combination with TR had synergistic or antagonistic effects on the properties of CF, perhaps by altering fecal metabolism and fecal microbial homeostasis.
Collapse
Affiliation(s)
- Jun Han
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peijie Wu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zongying Xu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chao Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fenghua Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Tao
- Cangxi Traditional Chinese Medicine Hospital, Guangyuan, China
| | - Dan Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Wang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhe Gao
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Farías C, Cisternas C, Gana JC, Alberti G, Echeverría F, Videla LA, Mercado L, Muñoz Y, Valenzuela R. Dietary and Nutritional Interventions in Nonalcoholic Fatty Liver Disease in Pediatrics. Nutrients 2023; 15:4829. [PMID: 38004223 PMCID: PMC10674812 DOI: 10.3390/nu15224829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is pediatrics' most common chronic liver disease. The incidence is high in children and adolescents with obesity, which is associated with an increased risk of disease progression. Currently, there is no effective drug therapy in pediatrics; therefore, lifestyle interventions remain the first line of treatment. This review aims to present an updated compilation of the scientific evidence for treating this pathology, including lifestyle modifications, such as exercise and dietary changes, highlighting specific nutritional strategies. The bibliographic review was carried out in different databases, including studies within the pediatric population where dietary and/or nutritional interventions were used to treat NAFLD. Main interventions include diets low in carbohydrates, free sugars, fructose, and lipids, in addition to healthy eating patterns and possible nutritional interventions with n-3 polyunsaturated fatty acids (EPA and DHA), amino acids (cysteine, L-carnitine), cysteamine, vitamins, and probiotics (one strain or multi-strain). Lifestyle changes remain the main recommendation for children with NAFLD. Nevertheless, more studies are required to elucidate the effectiveness of specific nutrients and bioactive compounds in this population.
Collapse
Affiliation(s)
- Camila Farías
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Camila Cisternas
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Juan Cristobal Gana
- Department of Pediatric Gastroenterology and Nutrition, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330023, Chile
| | - Gigliola Alberti
- Department of Pediatric Gastroenterology and Nutrition, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330023, Chile
| | - Francisca Echeverría
- Nutrition and Dietetic School, Department of Health Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Lorena Mercado
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Yasna Muñoz
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360134, Chile
| | - Rodrigo Valenzuela
- Department of Pediatric Gastroenterology and Nutrition, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330023, Chile
| |
Collapse
|
14
|
Garibay-Nieto N, Pedraza-Escudero K, Omaña-Guzmán I, Garcés-Hernández MJ, Villanueva-Ortega E, Flores-Torres M, Pérez-Hernández JL, León-Hernández M, Laresgoiti-Servitje E, Palacios-González B, López-Alvarenga JC, Lisker-Melman M, Vadillo-Ortega F. Metabolomic Phenotype of Hepatic Steatosis and Fibrosis in Mexican Children Living with Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1785. [PMID: 37893503 PMCID: PMC10608521 DOI: 10.3390/medicina59101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Metabolic-dysfunction-associated steatotic liver disease or MASLD is the main cause of chronic liver diseases in children, and it is estimated to affect 35% of children living with obesity. This study aimed to identify metabolic phenotypes associated with two advanced stages of MASLD (hepatic steatosis and hepatic steatosis plus fibrosis) in Mexican children with obesity. Materials and Methods: This is a cross-sectional analysis derived from a randomized clinical trial conducted in children and adolescents with obesity aged 8 to 16 years. Anthropometric and biochemical data were measured, and targeted metabolomic analyses were carried out using mass spectrometry. Liver steatosis and fibrosis were estimated using transient elastography (Fibroscan® Echosens, Paris, France). Three groups were studied: a non-MASLD group, an MASLD group, and a group for MASLD + fibrosis. A partial least squares discriminant analysis (PLS-DA) was performed to identify the discrimination between the study groups and to visualize the differences between their heatmaps; also, Variable Importance Projection (VIP) plots were graphed. A VIP score of >1.5 was considered to establish the importance of metabolites and biochemical parameters that characterized each group. Logistic regression models were constructed considering VIP scores of >1.5, and the receiver operating characteristic (ROC) curves were estimated to evaluate different combinations of variables. Results: The metabolic MASLD phenotype was associated with increased concentrations of ALT and decreased arginine, glycine, and acylcarnitine (AC) AC5:1, while MASLD + fibrosis, an advanced stage of MASLD, was associated with a phenotype characterized by increased concentrations of ALT, proline, and alanine and a decreased Matsuda Index. Conclusions: The metabolic MASLD phenotype changes as this metabolic dysfunction progresses. Understanding metabolic disturbances in MASLD would allow for early identification and the development of intervention strategies focused on limiting the progression of liver damage in children and adolescents.
Collapse
Affiliation(s)
- Nayely Garibay-Nieto
- Pediatric Obesity Clinic and Wellness Unit, General Hospital of Mexico, Mexico City 06720, Mexico; (N.G.-N.); (K.P.-E.); (I.O.-G.); (M.J.G.-H.); (E.V.-O.)
| | - Karen Pedraza-Escudero
- Pediatric Obesity Clinic and Wellness Unit, General Hospital of Mexico, Mexico City 06720, Mexico; (N.G.-N.); (K.P.-E.); (I.O.-G.); (M.J.G.-H.); (E.V.-O.)
| | - Isabel Omaña-Guzmán
- Pediatric Obesity Clinic and Wellness Unit, General Hospital of Mexico, Mexico City 06720, Mexico; (N.G.-N.); (K.P.-E.); (I.O.-G.); (M.J.G.-H.); (E.V.-O.)
| | - María José Garcés-Hernández
- Pediatric Obesity Clinic and Wellness Unit, General Hospital of Mexico, Mexico City 06720, Mexico; (N.G.-N.); (K.P.-E.); (I.O.-G.); (M.J.G.-H.); (E.V.-O.)
| | - Eréndira Villanueva-Ortega
- Pediatric Obesity Clinic and Wellness Unit, General Hospital of Mexico, Mexico City 06720, Mexico; (N.G.-N.); (K.P.-E.); (I.O.-G.); (M.J.G.-H.); (E.V.-O.)
| | - Mariana Flores-Torres
- Unidad de Vinculación de la Facultad de Medicina, UNAM, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
| | - José Luis Pérez-Hernández
- Hepatology Clinic, Gastroenterology Department, General Hospital of Mexico, Mexico City 06720, Mexico;
| | | | | | - Berenice Palacios-González
- Laboratorio de Envejecimiento Saludable, Centro de Investigación Sobre el Envejecimiento, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
| | - Juan Carlos López-Alvarenga
- Department of Population Health & Biostatistics, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Mauricio Lisker-Melman
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Felipe Vadillo-Ortega
- Unidad de Vinculación de la Facultad de Medicina, UNAM, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
| |
Collapse
|
15
|
India-Aldana S, Yao M, Midya V, Colicino E, Chatzi L, Chu J, Gennings C, Jones DP, Loos RJF, Setiawan VW, Smith MR, Walker RW, Barupal D, Walker DI, Valvi D. PFAS Exposures and the Human Metabolome: A Systematic Review of Epidemiological Studies. CURRENT POLLUTION REPORTS 2023; 9:510-568. [PMID: 37753190 PMCID: PMC10520990 DOI: 10.1007/s40726-023-00269-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 09/28/2023]
Abstract
Purpose of Review There is a growing interest in understanding the health effects of exposure to per- and polyfluoroalkyl substances (PFAS) through the study of the human metabolome. In this systematic review, we aimed to identify consistent findings between PFAS and metabolomic signatures. We conducted a search matching specific keywords that was independently reviewed by two authors on two databases (EMBASE and PubMed) from their inception through July 19, 2022 following PRISMA guidelines. Recent Findings We identified a total of 28 eligible observational studies that evaluated the associations between 31 different PFAS exposures and metabolomics in humans. The most common exposure evaluated was legacy long-chain PFAS. Population sample sizes ranged from 40 to 1,105 participants at different stages across the lifespan. A total of 19 studies used a non-targeted metabolomics approach, 7 used targeted approaches, and 2 included both. The majority of studies were cross-sectional (n = 25), including four with prospective analyses of PFAS measured prior to metabolomics. Summary Most frequently reported associations across studies were observed between PFAS and amino acids, fatty acids, glycerophospholipids, glycerolipids, phosphosphingolipids, bile acids, ceramides, purines, and acylcarnitines. Corresponding metabolic pathways were also altered, including lipid, amino acid, carbohydrate, nucleotide, energy metabolism, glycan biosynthesis and metabolism, and metabolism of cofactors and vitamins. We found consistent evidence across studies indicating PFAS-induced alterations in lipid and amino acid metabolites, which may be involved in energy and cell membrane disruption.
Collapse
Affiliation(s)
- Sandra India-Aldana
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Meizhen Yao
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Vishal Midya
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Ruth J. F. Loos
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn
School of Medicine at Mount Sinai, New York, NY, USA
- Faculty of Health and Medical Sciences, Novo Nordisk
Foundation Center for Basic Metabolic Research, University of Copenhagen,
Copenhagen, Denmark
| | - Veronica W. Setiawan
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mathew Ryan Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
- Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ryan W. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dinesh Barupal
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| |
Collapse
|
16
|
González-Alvarez ME, Keating AF. Hepatic and ovarian effects of perfluorooctanoic acid exposure differ in lean and obese adult female mice. Toxicol Appl Pharmacol 2023; 474:116614. [PMID: 37422089 DOI: 10.1016/j.taap.2023.116614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Obesity and overweight cause poor oocyte quality, miscarriage, infertility, polycystic ovarian syndrome, and offspring birth defects and affects 40% and 20% of US women and girls, respectively. Perfluorooctanoic acid (PFOA), a per- and poly-fluoroalkyl substance (PFAS), is environmentally persistent and has negative female reproductive effects including endocrine disruption, oxidative stress, altered menstrual cyclicity, and decreased fertility in humans and animal models. PFAS exposure is associated with non-alcoholic fatty liver disease which affects ∼24-26% of the US population. This study investigated the hypothesis that PFOA exposure impacts hepatic and ovarian chemical biotransformation and alters the serum metabolome. At 7 weeks of age, female lean, wild type (KK.Cg-a/a) or obese (KK.Cg-Ay/J) mice received saline (C) or PFOA (2.5 mg/Kg) per os for 15 d. Hepatic weight was increased by PFOA exposure in both lean and obese mice (P < 0.05) and obesity also increased liver weight (P < 0.05) compared to lean mice. The serum metabolome was also altered (P < 0.05) by PFOA exposure and differed between lean and obese mice. Exposure to PFOA altered (P < 0.05) the abundance of ovarian proteins with roles in xenobiotic biotransformation (lean - 6; obese - 17), metabolism of fatty acids (lean - 3; obese - 9), cholesterol (lean - 8; obese - 11), amino acids (lean - 18; obese - 19), glucose (lean - 7; obese - 10), apoptosis (lean - 18; obese - 13), and oxidative stress (lean - 3; obese - 2). Use of qRT-PCR determined that exposure to PFOA increased (P < 0.05) hepatic Ces1 and Chst1 in lean but Ephx1 and Gstm3 in obese mice. Also, obesity basally increased (P < 0.05) Nat2, Gpi and Hsd17b2 mRNA levels. These data identify molecular changes resultant from PFOA exposure that may cause liver injury and ovotoxicity in females. In addition, differences in toxicity induced by PFOA exposure occurs in lean and obese mice.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, IA 50011, United States of America
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
17
|
Guo F, Xiong H, Tsao R, Wen X, Liu J, Chen D, Jiang L, Sun Y. Multi-omics reveals that green pea ( Pisum sativum L.) hull supplementation ameliorates non-alcoholic fatty liver disease via the SHMT2/glycine/mTOR/PPAR-γ signaling pathway. Food Funct 2023; 14:7195-7208. [PMID: 37462466 DOI: 10.1039/d3fo01771k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Diets rich in various active ingredients may be an effective intervention strategy for non-alcoholic fatty liver disease (NAFLD). The green pea hull (GPH) is a processing by-product of green peas rich in dietary fiber and polyphenols. Here, a mouse model of NAFLD induced by DSS + high-fat diet (HFD) was established to explore the intervention effect of the GPH. The results showed that dietary supplements with the GPH can inhibit obesity and reduce lipid accumulation in the mouse liver to prevent liver fibrosis. GPH intervention can improve liver antioxidant capacity, reduce blood lipid deposition and maintain glucose homeostasis. DSS-induced disruption of the intestinal barrier aggravates NAFLD, which may be caused by the influx of large amounts of LPS. A multi-omics approach combining metabolomics and transcriptomic analysis indicated that glycine was the key target and its content was decreased in the liver after GPH intervention, and that dietary supplements with the GPH can relieve NAFLD via the SHMT2/glycine/mTOR/PPAR-γ signaling pathway, which was further supported by liver-associated protein expression. In conclusion, our study demonstrated that dietary GPH can significantly ameliorate NAFLD, and the future development of related food products can enhance the economic value of the GPH.
Collapse
Affiliation(s)
- Fanghua Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Rong Tsao
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Xushen Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Jiahua Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Dongying Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
18
|
Helsley RN, Park SH, Vekaria HJ, Sullivan PG, Conroy LR, Sun RC, Romero MDM, Herrero L, Bons J, King CD, Rose J, Meyer JG, Schilling B, Kahn CR, Softic S. Ketohexokinase-C regulates global protein acetylation to decrease carnitine palmitoyltransferase 1a-mediated fatty acid oxidation. J Hepatol 2023; 79:25-42. [PMID: 36822479 PMCID: PMC10679901 DOI: 10.1016/j.jhep.2023.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND & AIMS The consumption of sugar and a high-fat diet (HFD) promotes the development of obesity and metabolic dysfunction. Despite their well-known synergy, the mechanisms by which sugar worsens the outcomes associated with a HFD are largely elusive. METHODS Six-week-old, male, C57Bl/6 J mice were fed either chow or a HFD and were provided with regular, fructose- or glucose-sweetened water. Moreover, cultured AML12 hepatocytes were engineered to overexpress ketohexokinase-C (KHK-C) using a lentivirus vector, while CRISPR-Cas9 was used to knockdown CPT1α. The cell culture experiments were complemented with in vivo studies using mice with hepatic overexpression of KHK-C and in mice with liver-specific CPT1α knockout. We used comprehensive metabolomics, electron microscopy, mitochondrial substrate phenotyping, proteomics and acetylome analysis to investigate underlying mechanisms. RESULTS Fructose supplementation in mice fed normal chow and fructose or glucose supplementation in mice fed a HFD increase KHK-C, an enzyme that catalyzes the first step of fructolysis. Elevated KHK-C is associated with an increase in lipogenic proteins, such as ACLY, without affecting their mRNA expression. An increase in KHK-C also correlates with acetylation of CPT1α at K508, and lower CPT1α protein in vivo. In vitro, KHK-C overexpression lowers CPT1α and increases triglyceride accumulation. The effects of KHK-C are, in part, replicated by a knockdown of CPT1α. An increase in KHK-C correlates negatively with CPT1α protein levels in mice fed sugar and a HFD, but also in genetically obese db/db and lipodystrophic FIRKO mice. Mechanistically, overexpression of KHK-C in vitro increases global protein acetylation and decreases levels of the major cytoplasmic deacetylase, SIRT2. CONCLUSIONS KHK-C-induced acetylation is a novel mechanism by which dietary fructose augments lipogenesis and decreases fatty acid oxidation to promote the development of metabolic complications. IMPACT AND IMPLICATIONS Fructose is a highly lipogenic nutrient whose negative consequences have been largely attributed to increased de novo lipogenesis. Herein, we show that fructose upregulates ketohexokinase, which in turn modifies global protein acetylation, including acetylation of CPT1a, to decrease fatty acid oxidation. Our findings broaden the impact of dietary sugar beyond its lipogenic role and have implications on drug development aimed at reducing the harmful effects attributed to sugar metabolism.
Collapse
Affiliation(s)
- Robert N Helsley
- Department of Pediatrics and Gastroenterology, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Se-Hyung Park
- Department of Pediatrics and Gastroenterology, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Hemendra J Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Lindsey R Conroy
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA; Department of Biochemistry & Molecular Biology, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - María Del Mar Romero
- School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, 08028, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Laura Herrero
- School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, 08028, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Joanna Bons
- Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA, USA
| | - Christina D King
- Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA, USA
| | - Jacob Rose
- Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA, USA
| | - Jesse G Meyer
- Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA, USA; Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Birgit Schilling
- Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA, USA
| | - C Ronald Kahn
- Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Samir Softic
- Department of Pediatrics and Gastroenterology, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Bertran L, Capellades J, Abelló S, Durán-Bertran J, Aguilar C, Martinez S, Sabench F, Correig X, Yanes O, Auguet T, Richart C. LC/MS-Based Untargeted Metabolomics Study in Women with Nonalcoholic Steatohepatitis Associated with Morbid Obesity. Int J Mol Sci 2023; 24:9789. [PMID: 37372937 DOI: 10.3390/ijms24129789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigated the importance of a metabolomic analysis in a complex disease such as nonalcoholic steatohepatitis (NASH) associated with obesity. Using an untargeted metabolomics technique, we studied blood metabolites in 216 morbidly obese women with liver histological diagnosis. A total of 172 patients were diagnosed with nonalcoholic fatty liver disease (NAFLD), and 44 were diagnosed with normal liver (NL). Patients with NAFLD were classified into simple steatosis (n = 66) and NASH (n = 106) categories. A comparative analysis of metabolites levels between NASH and NL demonstrated significant differences in lipid metabolites and derivatives, mainly from the phospholipid group. In NASH, there were increased levels of several phosphatidylinositols and phosphatidylethanolamines, as well as isolated metabolites such as diacylglycerol 34:1, lyso-phosphatidylethanolamine 20:3 and sphingomyelin 38:1. By contrast, there were decreased levels of acylcarnitines, sphingomyelins and linoleic acid. These findings may facilitate identification studies of the main pathogenic metabolic pathways related to NASH and may also have a possible applicability in a panel of metabolites to be used as biomarkers in future algorithms of the disease diagnosis and its follow-up. Further confirmatory studies in groups with different ages and sexes are necessary.
Collapse
Affiliation(s)
- Laia Bertran
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Jordi Capellades
- Department of Electronic Engineering, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Sonia Abelló
- Servei de Recursos Científics i Tècnics, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Joan Durán-Bertran
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Salomé Martinez
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Fàtima Sabench
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
- Unitat de Cirurgia, Facultad de Medicina i Ciències de la Salut, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43204 Reus, Spain
| | - Xavier Correig
- Department of Electronic Engineering, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Oscar Yanes
- Department of Electronic Engineering, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| |
Collapse
|
20
|
Cohen CC, Huneault H, Accardi CJ, Jones DP, Liu K, Maner-Smith KM, Song M, Welsh JA, Ugalde-Nicalo PA, Schwimmer JB, Vos MB. Metabolome × Microbiome Changes Associated with a Diet-Induced Reduction in Hepatic Fat among Adolescent Boys. Metabolites 2023; 13:401. [PMID: 36984841 PMCID: PMC10053986 DOI: 10.3390/metabo13030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Dietary sugar reduction is one therapeutic strategy for improving nonalcoholic fatty liver disease (NAFLD), and the underlying mechanisms for this effect warrant further investigation. Here, we employed metabolomics and metagenomics to examine systemic biological adaptations associated with dietary sugar restriction and (subsequent) hepatic fat reductions in youth with NAFLD. Data/samples were from a randomized controlled trial in adolescent boys (11-16 years, mean ± SD: 13.0 ± 1.9 years) with biopsy-proven NAFLD who were either provided a low free-sugar diet (LFSD) (n = 20) or consumed their usual diet (n = 20) for 8 weeks. Plasma metabolomics was performed on samples from all 40 participants by coupling hydrophilic interaction liquid chromatography (HILIC) and C18 chromatography with mass spectrometry. In a sub-sample (n = 8 LFSD group and n = 10 usual diet group), 16S ribosomal RNA (rRNA) sequencing was performed on stool to examine changes in microbial composition/diversity. The diet treatment was associated with differential expression of 419 HILIC and 205 C18 metabolite features (p < 0.05), which were enriched in amino acid pathways, including methionine/cysteine and serine/glycine/alanine metabolism (p < 0.05), and lipid pathways, including omega-3 and linoleate metabolism (p < 0.05). Quantified metabolites that were differentially changed in the LFSD group, compared to usual diet group, and representative of these enriched metabolic pathways included increased serine (p = 0.001), glycine (p = 0.004), 2-aminobutyric acid (p = 0.012), and 3-hydroxybutyric acid (p = 0.005), and decreased linolenic acid (p = 0.006). Microbiome changes included an increase in richness at the phylum level and changes in a few genera within Firmicutes. In conclusion, the LFSD treatment, compared to usual diet, was associated with metabolome and microbiome changes that may reflect biological mechanisms linking dietary sugar restriction to a therapeutic decrease in hepatic fat. Studies are needed to validate our findings and test the utility of these "omics" changes as response biomarkers.
Collapse
Affiliation(s)
- Catherine C. Cohen
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Helaina Huneault
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Carolyn J. Accardi
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P. Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ken Liu
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Kristal M. Maner-Smith
- Emory Integrated Lipidomics Core, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ming Song
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Hepatobiology and Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jean A. Welsh
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Patricia A. Ugalde-Nicalo
- Department of Gastroenterology, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
- Department of Pediatrics, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Jeffrey B. Schwimmer
- Department of Gastroenterology, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
- Department of Pediatrics, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Miriam B. Vos
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
21
|
Ampong I, Zimmerman KD, Perumalla DS, Wallis KE, Li G, Huber HF, Li C, Nathanielsz PW, Cox LA, Olivier M. Maternal obesity alters offspring liver and skeletal muscle metabolism in early post-puberty despite maintaining a normal post-weaning dietary lifestyle. FASEB J 2022; 36:e22644. [PMID: 36415994 PMCID: PMC9827852 DOI: 10.1096/fj.202201473r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022]
Abstract
Maternal obesity (MO) during pregnancy is linked to increased and premature risk of age-related metabolic diseases in the offspring. However, the underlying molecular mechanisms still remain not fully understood. Using a well-established nonhuman primate model of MO, we analyzed tissue biopsies and plasma samples obtained from post-pubertal offspring (3-6.5 y) of MO mothers (n = 19) and from control animals born to mothers fed a standard diet (CON, n = 13). All offspring ate a healthy chow diet after weaning. Using untargeted gas chromatography-mass spectrometry metabolomics analysis, we quantified a total of 351 liver, 316 skeletal muscle, and 423 plasma metabolites. We identified 58 metabolites significantly altered in the liver and 46 in the skeletal muscle of MO offspring, with 8 metabolites shared between both tissues. Several metabolites were changed in opposite directions in males and females in both liver and skeletal muscle. Several tissue-specific and 4 shared metabolic pathways were identified from these dysregulated metabolites. Interestingly, none of the tissue-specific metabolic changes were reflected in plasma. Overall, our study describes characteristic metabolic perturbations in the liver and skeletal muscle in MO offspring, indicating that metabolic programming in utero persists postnatally, and revealing potential novel mechanisms that may contribute to age-related metabolic diseases later in life.
Collapse
Affiliation(s)
- Isaac Ampong
- Center for Precision MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Internal Medicine, Section on Molecular MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Kip D. Zimmerman
- Center for Precision MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Internal Medicine, Section on Molecular MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Danu S. Perumalla
- Center for Precision MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Internal Medicine, Section on Molecular MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Katharyn E. Wallis
- Center for Precision MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Internal Medicine, Section on Molecular MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Ge Li
- Center for Precision MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Internal Medicine, Section on Molecular MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Hillary F. Huber
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTexasUSA
| | - Cun Li
- Center for Pregnancy & Newborn ResearchUniversity of WyomingLaramieWyomingUSA
| | - Peter W. Nathanielsz
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTexasUSA
- Center for Pregnancy & Newborn ResearchUniversity of WyomingLaramieWyomingUSA
| | - Laura A. Cox
- Center for Precision MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Internal Medicine, Section on Molecular MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTexasUSA
| | - Michael Olivier
- Center for Precision MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Internal Medicine, Section on Molecular MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
22
|
Association of Metabolic Signatures with Nonalcoholic Fatty Liver Disease in Pediatric Population. Metabolites 2022; 12:metabo12090881. [PMID: 36144285 PMCID: PMC9503976 DOI: 10.3390/metabo12090881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Several adult omics studies have been conducted to understand the pathophysiology of nonalcoholic fatty liver disease (NAFLD). However, the histological features of children are different from those of adults, and the onset and progression of pediatric NAFLD are not fully understood. In this study, we aimed to evaluate the metabolome profile and metabolic pathway changes associated with pediatric NAFLD to elucidate its pathophysiology and to develop machine learning-based NAFLD diagnostic models. We analyzed the metabolic profiles of healthy control, lean NAFLD, overweight control, and overweight NAFLD groups of children and adolescent participants (N = 165) by assessing plasma samples. Additionally, we constructed diagnostic models by applying three machine learning methods (ElasticNet, random forest, and XGBoost) and multiple logistic regression by using NAFLD-specific metabolic features, genetic variants, and clinical data. We identified 18 NAFLD-specific metabolic features and metabolic changes in lipid, glutathione-related amino acid, and branched-chain amino acid metabolism by comparing the control and NAFLD groups in the overweight pediatric population. Additionally, we successfully developed and cross-validated diagnostic models that showed excellent diagnostic performance (ElasticNet and random forest model: area under the receiver operating characteristic curve, 0.95). Metabolome changes in the plasma of pediatric patients with NAFLD are associated with the pathophysiology of the disease and can be utilized as a less-invasive approach to diagnosing the disease.
Collapse
|
23
|
Shao M, Lu Y, Xiang H, Wang J, Ji G, Wu T. Application of metabolomics in the diagnosis of non-alcoholic fatty liver disease and the treatment of traditional Chinese medicine. Front Pharmacol 2022; 13:971561. [PMID: 36091827 PMCID: PMC9453477 DOI: 10.3389/fphar.2022.971561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease around the world, and it often coexists with insulin resistance-related diseases including obesity, diabetes, hyperlipidemia, and hypertension, which seriously threatens human health. Better prevention and treatment strategies are required to improve the impact of NAFLD. Although needle biopsy is an effective tool for diagnosing NAFLD, this method is invasive and difficult to perform. Therefore, it is very important to develop more efficient approaches for the early diagnosis of NAFLD. Traditional Chinese medicine (TCM) can play a certain role in improving symptoms and protecting target organs, and its mechanism of action needs to be further studied. Metabolomics, the study of all metabolites that is thought to be most closely associated with the patients’ characters, can provide useful clinically biomarkers that can be applied to NAFLD and may open up new methods for diagnosis. Metabolomics technology is consistent with the overall concept of TCM, and it can also be used as a potential mechanism to explain the effects of TCM by measuring biomarkers by metabolomics. Based on PubMed/MEDLINE and other databases, this paper retrieved relevant literature NAFLD and TCM intervention in NAFLD using metabolomics technology in the past 5 years were searched, and the specific metabolites associated with the development of NAFLD and the potential mechanism of Chinese medicine on improving symptoms were summarized.
Collapse
Affiliation(s)
- Mingmei Shao
- Baoshan District Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Baoshan District Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guang Ji, , ; Tao Wu, ,
| |
Collapse
|
24
|
Li S, Wu Y, Jiang H, Zhou F, Ben A, Wang R, Hua C. Chicory polysaccharides alleviate high-fat diet-induced non-alcoholic fatty liver disease via alteration of lipid metabolism- and inflammation-related gene expression. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Comparison of the Lipidomic Signature of Fatty Liver in Children and Adults: A Cross-Sectional Study. J Pediatr Gastroenterol Nutr 2022; 74:734-741. [PMID: 35185113 PMCID: PMC7613028 DOI: 10.1097/mpg.0000000000003418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is an increasingly common condition in children characterised by insulin resistance and altered lipid metabolism. Affected patients are at increased risk of cardiovascular disease (CVD) and children with NAFLD are likely to be at risk of premature cardiac events. Evaluation of the plasma lipid profile of children with NAFLD offers the opportunity to investigate these perturbations and understand how closely they mimic the changes seen in adults with cardiometabolic disease. METHODS We performed untargeted liquid chromatography-mass spectrometry (LC-MS) plasma lipidomics on 287 children: 19 lean controls, 146 from an obese cohort, and 122 NAFLD cases who had undergone liver biopsy. Associations between lipid species and liver histology were assessed using regression adjusted for age and sex. Results were then replicated using data from 9500 adults with metabolic phenotyping. RESULTS More severe paediatric NAFLD was associated with lower levels of long chain, polyunsaturated phosphatidylcholines (pC) and triglycerides (TG). Similar trends in pC and TG chain length and saturation were seen in adults with hepatic steatosis; however, many of the specific lipids associated with NAFLD differed between children and adults. Five lipids replicated in adults (including PC(36:4)) have been directly linked to death and cardiometabolic disease, as well as indirectly via genetic variants. CONCLUSION These findings suggest that, whilst similar pathways of lipid metabolism are perturbed in paediatric NAFLD as in cardiometabolic disease in adults, the specific lipid signature in children is different.
Collapse
|
26
|
Mendelian Randomization Analysis Identifies Blood Tyrosine Levels as a Biomarker of Non-Alcoholic Fatty Liver Disease. Metabolites 2022; 12:metabo12050440. [PMID: 35629944 PMCID: PMC9143809 DOI: 10.3390/metabo12050440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex disease associated with premature mortality. Its diagnosis is challenging, and the identification of biomarkers causally influenced by NAFLD may be clinically useful. We aimed at identifying blood metabolites causally impacted by NAFLD using two-sample Mendelian randomization (MR) with validation in a population-based biobank. Our instrument for genetically predicted NAFLD included all independent genetic variants from a recent genome-wide association study. The outcomes included 123 blood metabolites from 24,925 individuals. After correction for multiple testing, a positive effect of NAFLD on plasma tyrosine levels but not on other metabolites was identified. This association was consistent across MR methods and was robust to outliers and pleiotropy. In observational analyses performed in the Estonian Biobank (10,809 individuals including 359 patients with NAFLD), after multivariable adjustment, tyrosine levels were positively associated with the presence of NAFLD (odds ratio per 1 SD increment = 1.23 [95% confidence interval = 1.12–1.36], p = 2.19 × 10−5). In a small proof-of-concept study on bariatric surgery patients, blood tyrosine levels were higher in patients with NAFLD than without. This study revealed a potentially causal effect of NAFLD on blood tyrosine levels, suggesting it may represent a new biomarker of NAFLD.
Collapse
|
27
|
Kroupina K, Bémeur C, Rose CF. Amino acids, ammonia, and hepatic encephalopathy. Anal Biochem 2022; 649:114696. [PMID: 35500655 DOI: 10.1016/j.ab.2022.114696] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
|
28
|
Amino Acid-Related Metabolic Signature in Obese Children and Adolescents. Nutrients 2022; 14:nu14071454. [PMID: 35406066 PMCID: PMC9003189 DOI: 10.3390/nu14071454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
The growing interest in metabolomics has spread to the search for suitable predictive biomarkers for complications related to the emerging issue of pediatric obesity and its related cardiovascular risk and metabolic alteration. Indeed, several studies have investigated the association between metabolic disorders and amino acids, in particular branched-chain amino acids (BCAAs). We have performed a revision of the literature to assess the role of BCAAs in children and adolescents' metabolism, focusing on the molecular pathways involved. We searched on Pubmed/Medline, including articles published until February 2022. The results have shown that plasmatic levels of BCAAs are impaired already in obese children and adolescents. The relationship between BCAAs, obesity and the related metabolic disorders is explained on one side by the activation of the mTORC1 complex-that may promote insulin resistance-and on the other, by the accumulation of toxic metabolites, which may lead to mitochondrial dysfunction, stress kinase activation and damage of pancreatic cells. These compounds may help in the precocious identification of many complications of pediatric obesity. However, further studies are still needed to better assess if BCAAs may be used to screen these conditions and if any other metabolomic compound may be useful to achieve this goal.
Collapse
|
29
|
Depommier C, Everard A, Druart C, Maiter D, Thissen JP, Loumaye A, Hermans MP, Delzenne NM, de Vos WM, Cani PD. Serum metabolite profiling yields insights into health promoting effect of A. muciniphila in human volunteers with a metabolic syndrome. Gut Microbes 2022; 13:1994270. [PMID: 34812127 PMCID: PMC8632301 DOI: 10.1080/19490976.2021.1994270] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Reduction of A. muciniphila relative abundance in the gut microbiota is a widely accepted signature associated with obesity-related metabolic disorders. Using untargeted metabolomics profiling of fasting plasma, our study aimed at identifying metabolic signatures associated with beneficial properties of alive and pasteurized A. muciniphila when administrated to a cohort of insulin-resistant individuals with metabolic syndrome. Our data highlighted either shared or specific alterations in the metabolome according to the form of A. muciniphila administered with respect to a control group. Common responses encompassed modulation of amino acid metabolism, characterized by reduced levels of arginine and alanine, alongside several intermediates of tyrosine, phenylalanine, tryptophan, and glutathione metabolism. The global increase in levels of acylcarnitines together with specific modulation of acetoacetate also suggested induction of ketogenesis through enhanced β-oxidation. Moreover, our data pinpointed some metabolites of interest considering their emergence as substantial compounds pertaining to health and diseases in the more recent literature.
Collapse
Affiliation(s)
- Clara Depommier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (Welbio), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (Welbio), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Céline Druart
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (Welbio), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Dominique Maiter
- Pôle Edin, Institut De Recherches Expérimentales Et Cliniques, UCLouvain, Université Catholique De Louvain, Brussels, Belgium,Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Jean-Paul Thissen
- Pôle Edin, Institut De Recherches Expérimentales Et Cliniques, UCLouvain, Université Catholique De Louvain, Brussels, Belgium,Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Audrey Loumaye
- Pôle Edin, Institut De Recherches Expérimentales Et Cliniques, UCLouvain, Université Catholique De Louvain, Brussels, Belgium,Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Michel P. Hermans
- Pôle Edin, Institut De Recherches Expérimentales Et Cliniques, UCLouvain, Université Catholique De Louvain, Brussels, Belgium,Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (Welbio), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherland,Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (Welbio), UCLouvain, Université Catholique De Louvain, Brussels, Belgium,CONTACT Patrice D. Cani UCLouvain, Université Catholique De Louvain, Ldri, Metabolism and Nutrition Research Group, Av. E. Mounier, 73 Box B1.73.11, B-1200Brussels, Belgium
| |
Collapse
|
30
|
Su X, Yu W, Liu A, Wang C, Li X, Gao J, Liu X, Jiang W, Yang Y, Lv S. San-Huang-Yi-Shen Capsule Ameliorates Diabetic Nephropathy in Rats Through Modulating the Gut Microbiota and Overall Metabolism. Front Pharmacol 2022; 12:808867. [PMID: 35058786 PMCID: PMC8764181 DOI: 10.3389/fphar.2021.808867] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
San-Huang-Yi-Shen capsule (SHYS) has been used in the treatment of diabetic nephropathy (DN) in clinic. However, the mechanisms of SHYS on DN remain unknown. In this study, we used a high-fat diet (HFD) combined with streptozotocin (STZ) injection to establish a DN rat model. Next, we used 16S rRNA sequencing and untargeted metabolomics to study the potential mechanisms of SHYS on DN. Our results showed that SHYS treatment alleviated the body weight loss, hyperglycemia, proteinuria, pathological changes in kidney in DN rats. SHYS could also inhibite the oxidative stress and inflammatory response in kidney. 16S rRNA sequencing analysis showed that SHYS affected the beta diversity of gut microbiota community in DN model rats. SHYX could also decrease the Firmicutes to Bacteroidetes (F to B) ratio in phylum level. In genus level, SHYX treatment affected the relative abundances of Lactobacillus, Ruminococcaceae UCG-005, Allobaculum, Anaerovibrio, Bacteroides and Candidatus_Saccharimonas. Untargeted metabolomics analysis showed that SHYX treatment altered the serum metabolic profile in DN model rats through affecting the levels of guanidineacetic acid, L-kynurenine, prostaglandin F1α, threonine, creatine, acetylcholine and other 21 kind of metabolites. These metabolites are mainly involved in glycerophospholipid metabolism, tryptophan metabolism, alanine, aspartate and glutamate metabolism, arginine biosynthesis, tricarboxylic acid (TCA) cycle, tyrosine metabolism, arginine and proline metabolism, arginine and proline metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and D-glutamine and D-glutamate metabolism pathways. Spearman correlation analysis showed that Lactobacillus, Candidatus_Saccharimonas, Ruminococcaceae UCG-005, Anaerovibrio, Bacteroides, and Christensenellaceae_R-7_group were closely correlated with most of physiological data and the differential metabolites following SHYS treatment. In conclusion, our study revealed multiple ameliorative effects of SHYS on DN including the alleviation of hyperglycemia and the improvement of renal function, pathological changes in kidney, oxidative stress, and the inflammatory response. The mechanism of SHYS on DN may be related to the improvement of gut microbiota which regulates arginine biosynthesis, TCA cycle, tyrosine metabolism, and arginine and proline metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shuquan Lv
- Cangzhou Hospital of Integrated TCM and Western Medicine of Hebei Province, Cangzhou, China
| |
Collapse
|
31
|
Ruan L, Jiang L, Zhao W, Meng H, Zheng Q, Wang J. Hepatotoxicity or hepatoprotection of emodin? Two sides of the same coin by 1H-NMR metabolomics profiling. Toxicol Appl Pharmacol 2021; 431:115734. [PMID: 34606778 DOI: 10.1016/j.taap.2021.115734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Emodin is the major anthraquinone component of many important traditional Chinese herbs, such as Rheum palmatum L. and Polygonum multiflorum Thunb. They have been popular health products but recently aroused concerns about their hepatotoxicity, which are believed to be arising from the contained anthraquinones, such as emodin. However, emodin exerts potent hepatoprotective ability, such as anti-fibrotic, anti-oxidative, and anti-inflammatory effects. In this study, 1H NMR based metabolomics approach, complemented with histopathological observation, biochemical measurements, western blotting analysis and real-time quantitative PCR (RT-qPCR), was applied to interpret the paradox of emodin (30 mg/kg, 10 mg/kg BW) using both healthy mice (male, ICR) and chronic CCl4-injured mice (0.1 mL/kg, 0.35% CCl4, 3 times a week for a month). Emodin exerted a weight loss property associated with its lipid-lowing effects, which helped alleviate CCl4-induced steatosis. Emodin effectively ameliorated CCl4-induced oxidative stress and energy metabolism dysfunction in mice liver via regulating glucose, lipid and amino acid metabolism, and inhibited excessive inflammatory response. In healthy mice, emodin only exhibited hepatoxicity on high-dosage by disturbing hepatic anti-oxidant homeostasis, especially GSH and xanthine metabolism. This integrated metabolomics approach identified the bidirectional potential of emodin, which are important for its rational use.
Collapse
Affiliation(s)
- Lingyu Ruan
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Lei Jiang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Wenlong Zhao
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Huihui Meng
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Qi Zheng
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| |
Collapse
|
32
|
Niu L, Sulek K, Vasilopoulou CG, Santos A, Wewer Albrechtsen NJ, Rasmussen S, Meier F, Mann M. Defining NASH from a Multi-Omics Systems Biology Perspective. J Clin Med 2021; 10:jcm10204673. [PMID: 34682795 PMCID: PMC8538576 DOI: 10.3390/jcm10204673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a chronic liver disease affecting up to 6.5% of the general population. There is no simple definition of NASH, and the molecular mechanism underlying disease pathogenesis remains elusive. Studies applying single omics technologies have enabled a better understanding of the molecular profiles associated with steatosis and hepatic inflammation—the commonly accepted histologic features for diagnosing NASH, as well as the discovery of novel candidate biomarkers. Multi-omics analysis holds great potential to uncover new insights into disease mechanism through integrating multiple layers of molecular information. Despite the technical and computational challenges associated with such efforts, a few pioneering studies have successfully applied multi-omics technologies to investigate NASH. Here, we review the most recent technological developments in mass spectrometry (MS)-based proteomics, metabolomics, and lipidomics. We summarize multi-omics studies and emerging omics biomarkers in NASH and highlight the biological insights gained through these integrated analyses.
Collapse
Affiliation(s)
- Lili Niu
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (A.S.); (N.J.W.A.); (S.R.); (M.M.)
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (C.G.V.); (F.M.)
- Correspondence: ; Tel.: +45-3114-6118
| | - Karolina Sulek
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (A.S.); (N.J.W.A.); (S.R.); (M.M.)
- Systems Medicine, Steno Diabetes Center Copenhagen, 2820 Gentofte, Denmark
| | - Catherine G. Vasilopoulou
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (C.G.V.); (F.M.)
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (A.S.); (N.J.W.A.); (S.R.); (M.M.)
- Center for Health Data Science, University of Copenhagen, 2200 Copenhagen, Denmark
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | - Nicolai J. Wewer Albrechtsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (A.S.); (N.J.W.A.); (S.R.); (M.M.)
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (A.S.); (N.J.W.A.); (S.R.); (M.M.)
| | - Florian Meier
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (C.G.V.); (F.M.)
- Functional Proteomics, Jena University Hospital, 07747 Jena, Germany
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (A.S.); (N.J.W.A.); (S.R.); (M.M.)
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (C.G.V.); (F.M.)
| |
Collapse
|
33
|
Klaus VS, Schriever SC, Monroy Kuhn JM, Peter A, Irmler M, Tokarz J, Prehn C, Kastenmüller G, Beckers J, Adamski J, Königsrainer A, Müller TD, Heni M, Tschöp MH, Pfluger PT, Lutter D. Correlation guided Network Integration (CoNI) reveals novel genes affecting hepatic metabolism. Mol Metab 2021; 53:101295. [PMID: 34271221 PMCID: PMC8361260 DOI: 10.1016/j.molmet.2021.101295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
Objective Technological advances have brought a steady increase in the availability of various types of omics data, from genomics to metabolomics. Integrating these multi-omics data is a chance and challenge for systems biology; yet, tools to fully tap their potential remain scarce. Methods We present here a fully unsupervised and versatile correlation-based method – termed Correlation guided Network Integration (CoNI) – to integrate multi-omics data into a hypergraph structure that allows for the identification of effective modulators of metabolism. Our approach yields single transcripts of potential relevance that map to specific, densely connected, metabolic subgraphs or pathways. Results By applying our method on transcriptomics and metabolomics data from murine livers under standard Chow or high-fat diet, we identified eleven genes with potential regulatory effects on hepatic metabolism. Five candidates, including the hepatokine INHBE, were validated in human liver biopsies to correlate with diabetes-related traits such as overweight, hepatic fat content, and insulin resistance (HOMA-IR). Conclusion Our method's successful application to an independent omics dataset confirmed that the novel CoNI framework is a transferable, entirely data-driven, flexible, and versatile tool for multiple omics data integration and interpretation.
Collapse
Affiliation(s)
- Valentina S Klaus
- Computational Discovery Research Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany; TUM School of Medicine, Neurobiology of Diabetes, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany
| | - Sonja C Schriever
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany; Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
| | - José Manuel Monroy Kuhn
- Computational Discovery Research Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany
| | - Andreas Peter
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Janina Tokarz
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gabi Kastenmüller
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Neuherberg, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Neuherberg, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Germany
| | - Timo D Müller
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| | - Martin Heni
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Matthias H Tschöp
- TUM School of Medicine, Neurobiology of Diabetes, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University Munich, Munich, Germany
| | - Paul T Pfluger
- TUM School of Medicine, Neurobiology of Diabetes, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany; Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dominik Lutter
- Computational Discovery Research Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany.
| |
Collapse
|
34
|
Shcherbakova ES, Sall TS, Sitkin SI, Vakhitov TY, Demyanova EV. The role of bacterial metabolites derived from aromatic amino acids in non-alcoholic fatty liver disease. ALMANAC OF CLINICAL MEDICINE 2020; 48:375-386. [DOI: 10.18786/2072-0505-2020-48-066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The review deals with the role of aromatic amino acids and their microbial metabolites in the development and progression of non-alcoholic fatty liver disease (NAFLD). Pathological changes typical for NAFLD, as well as abnormal composition and/or functional activity of gut microbiota, results in abnormal aromatic amino acid metabolism. The authors discuss the potential of these amino acids and their bacterial metabolites to produce both negative and positive impact on the main steps of NAFLD pathophysiology, such as lipogenesis and inflammation, as well as on the liver functions through regulation of the intestinal barrier and microbiota-gut-liver axis signaling. The review gives detailed description of the mechanism of biological activity of tryptophan and its derivatives (indole, tryptamine, indole-lactic, indole-propyonic, indole-acetic acids, and indole-3-aldehyde) through the activation of aryl hydrocarbon receptor (AhR), preventing the development of liver steatosis. Bacteria-produced phenyl-alanine metabolites could promote liver steatosis (phenyl acetic and phenyl lactic acids) or, on the contrary, could reduce liver inflammation and increase insulin sensitivity (phenyl propionic acid). Tyramine, para-cumarate, 4-hydroxyphenylacetic acids, being by-products of bacterial catabolism of tyrosine, can prevent NAFLD, whereas para-cresol and phenol accelerate the progression of NAFLD by damaging the barrier properties of intestinal epithelium. Abnormalities in bacterial catabolism of tyrosine, leading to its excess, stimulate fatty acid synthesis and promote lipid infiltration of the liver. The authors emphasize a close interplay between bacterial metabolism of aromatic amino acids by gut microbiota and the functioning of the human body. They hypothesize that microbial metabolites of aromatic amino acids may represent not only therapeutic targets or non-invasive biomarkers, but also serve as bioactive agents for NAFLD treatment and prevention.
Collapse
Affiliation(s)
| | - T. S. Sall
- State Research Institute of Especially Purified Bioproducts
| | - S. I. Sitkin
- State Research Institute of Especially Purified Bioproducts;
North Western State Medical University named after I.I. Mechnikov
| | | | | |
Collapse
|
35
|
Roth K, Imran Z, Liu W, Petriello MC. Diet as an Exposure Source and Mediator of Per- and Polyfluoroalkyl Substance (PFAS) Toxicity. FRONTIERS IN TOXICOLOGY 2020; 2:601149. [PMID: 35296120 PMCID: PMC8915917 DOI: 10.3389/ftox.2020.601149] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/06/2020] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitously found in the environment due to their widespread commercial use and high chemical stability. Humans are exposed primarily through ingestion of contaminated water and food and epidemiological studies over the last several decades have shown that PFAS levels are associated with adverse chronic health effects, including cardiometabolic disorders such as hyperlipidemia and non-alcoholic fatty liver disease. Perhaps the most well-established effects, as demonstrated in animal studies and human epidemiological studies, are the metabolic alterations PFAS exposure can lead to, especially on lipid homeostasis and signaling. This altered lipid metabolism has often been linked to conditions such as dyslipidemia, leading to fatty liver disease and steatosis. Western diets enriched in high fat and high cholesterol containing foods may be an important human exposure route of PFAS and may also act as an important modulator of associated toxicities. In fact, the chemical structure of PFAS resemble fatty acids and may activate some of the same signaling cascades critical for endogenous metabolism. In this review we aim to outline known dietary exposure sources of PFAS, describe the detrimental metabolic health effects associated with PFAS exposure, and focus on studies examining emerging interaction of dietary effects with PFAS exposure that further alter the dysregulated metabolic state.
Collapse
Affiliation(s)
- Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Zunaira Imran
- Department of Chemistry, Wayne State University, Detroit, MI, United States
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI, United States
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Michael C. Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
- *Correspondence: Michael C. Petriello
| |
Collapse
|
36
|
Leonetti S, Herzog RI, Caprio S, Santoro N, Tricò D. Glutamate-Serine-Glycine Index: A Novel Potential Biomarker in Pediatric Non-Alcoholic Fatty Liver Disease. CHILDREN (BASEL, SWITZERLAND) 2020; 7:E270. [PMID: 33291552 PMCID: PMC7761842 DOI: 10.3390/children7120270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Preliminary evidence suggests that the glutamate-serine-glycine (GSG) index, which combines three amino acids involved in glutathione synthesis, may be used as a potential biomarker of non-alcoholic fatty liver disease (NAFLD). We investigated whether the GSG index is associated with NAFLD in youth, independent of other risk factors. Intrahepatic fat content (HFF%) and abdominal fat distribution were measured by magnetic resonance imaging (MRI) in a multiethnic cohort of obese adolescents, including Caucasians, African Americans, and Hispanics. NAFLD was defined as HFF% ≥ 5.5%. Plasma amino acids were measured by mass spectrometry. The GSG index was calculated as glutamate/(serine + glycine). The GSG index was higher in NAFLD patients (p = 0.03) and positively correlated with HFF% (r = 0.26, p = 0.02), alanine aminotransferase (r = 0.39, p = 0.0006), and aspartate aminotransferase (r = 0.26, p = 0.03). Adolescents with a high GSG index had a twofold higher prevalence of NAFLD than those with a low GSG index, despite similar adiposity, abdominal fat distribution, and liver insulin resistance. NAFLD prevalence remained significantly different between groups after adjustment for age, sex, race/ethnicity, and body mass index (OR 3.07, 95% confidence interval 1.09-8.61, p = 0.03). This study demonstrates the ability of the GSG index to detect NAFLD in at-risk pediatric populations with different genetically determined susceptibilities to intrahepatic fat accumulation, independent of traditional risk factors.
Collapse
Affiliation(s)
- Simone Leonetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Raimund I. Herzog
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Sonia Caprio
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510, USA; (S.C.); (N.S.)
| | - Nicola Santoro
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510, USA; (S.C.); (N.S.)
- Department of Medicine and Health Sciences, “V.Tiberio” University of Molise, 86100 Campobasso, Italy
| | - Domenico Tricò
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
37
|
Winther-Sørensen M, Galsgaard KD, Santos A, Trammell SAJ, Sulek K, Kuhre RE, Pedersen J, Andersen DB, Hassing AS, Dall M, Treebak JT, Gillum MP, Torekov SS, Windeløv JA, Hunt JE, Kjeldsen SAS, Jepsen SL, Vasilopoulou CG, Knop FK, Ørskov C, Werge MP, Bisgaard HC, Eriksen PL, Vilstrup H, Gluud LL, Holst JJ, Wewer Albrechtsen NJ. Glucagon acutely regulates hepatic amino acid catabolism and the effect may be disturbed by steatosis. Mol Metab 2020; 42:101080. [PMID: 32937194 PMCID: PMC7560169 DOI: 10.1016/j.molmet.2020.101080] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Glucagon is well known to regulate blood glucose but may be equally important for amino acid metabolism. Plasma levels of amino acids are regulated by glucagon-dependent mechanism(s), while amino acids stimulate glucagon secretion from alpha cells, completing the recently described liver-alpha cell axis. The mechanisms underlying the cycle and the possible impact of hepatic steatosis are unclear. METHODS We assessed amino acid clearance in vivo in mice treated with a glucagon receptor antagonist (GRA), transgenic mice with 95% reduction in alpha cells, and mice with hepatic steatosis. In addition, we evaluated urea formation in primary hepatocytes from ob/ob mice and humans, and we studied acute metabolic effects of glucagon in perfused rat livers. We also performed RNA sequencing on livers from glucagon receptor knock-out mice and mice with hepatic steatosis. Finally, we measured individual plasma amino acids and glucagon in healthy controls and in two independent cohorts of patients with biopsy-verified non-alcoholic fatty liver disease (NAFLD). RESULTS Amino acid clearance was reduced in mice treated with GRA and mice lacking endogenous glucagon (loss of alpha cells) concomitantly with reduced production of urea. Glucagon administration markedly changed the secretion of rat liver metabolites and within minutes increased urea formation in mice, in perfused rat liver, and in primary human hepatocytes. Transcriptomic analyses revealed that three genes responsible for amino acid catabolism (Cps1, Slc7a2, and Slc38a2) were downregulated both in mice with hepatic steatosis and in mice with deletion of the glucagon receptor. Cultured ob/ob hepatocytes produced less urea upon stimulation with mixed amino acids, and amino acid clearance was lower in mice with hepatic steatosis. Glucagon-induced ureagenesis was impaired in perfused rat livers with hepatic steatosis. Patients with NAFLD had hyperglucagonemia and increased levels of glucagonotropic amino acids, including alanine in particular. Both glucagon and alanine levels were reduced after diet-induced reduction in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR, a marker of hepatic steatosis). CONCLUSIONS Glucagon regulates amino acid metabolism both non-transcriptionally and transcriptionally. Hepatic steatosis may impair glucagon-dependent enhancement of amino acid catabolism.
Collapse
Affiliation(s)
- Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samuel A J Trammell
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karolina Sulek
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna S Hassing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe S Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne A Windeløv
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna E Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sasha A S Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Catherine G Vasilopoulou
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Munich, Germany
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel P Werge
- Gastrounit, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Hanne Cathrine Bisgaard
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Lise Lotte Gluud
- Gastrounit, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department for Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
38
|
Tang J, Xiong K, Zhang T, Han Han. Application of Metabolomics in Diagnosis and Treatment of Chronic Liver Diseases. Crit Rev Anal Chem 2020; 52:906-916. [PMID: 33146026 DOI: 10.1080/10408347.2020.1842172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic liver disease represents stepwise destruction of the liver parenchyma after chronic liver injury, which is often difficult to be diagnosed accurately. Thus, the development of specific biomarkers of chronic liver disease is important. Metabolomics is a powerful tool for biomarker exploration, which enables the exploration of disease pathogenesis or drug action mechanisms at the global metabolic level. The metabolomics workflow generally includes collection, preparation, and analysis of samples, and data processing and bioinformatics. A metabolomics study can simultaneously detect the dysfunctions in the glucose, lipid, amino-acid, and nucleotide metabolisms. Hence, it facilitates the obtaining of a better understanding of the pathogenesis of chronic liver disease and its diagnosis. Many effective drugs could reverse the change of comprehensive biochemical phenotypes induced by chronic liver disease. They can even potentially restore the normal metabolic signatures of patients. Increasingly more researchers have begun to apply metabolomics technologies to diagnose chronic liver disease and investigate the mechanism of action of effective drugs or the variations in drug responses. We are convinced that deepening the understanding of the metabolic alterations could extend their use as powerful biomarkers, promoting the more effective clinical diagnosis and treatment of chronic liver disease in the future.
Collapse
Affiliation(s)
- Jie Tang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Xiong
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Han Han
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Stratakis N, Conti DV, Jin R, Margetaki K, Valvi D, Siskos AP, Maitre L, Garcia E, Varo N, Zhao Y, Roumeliotaki T, Vafeiadi M, Urquiza J, Fernández-Barrés S, Heude B, Basagana X, Casas M, Fossati S, Gražulevičienė R, Andrušaitytė S, Uppal K, McEachan RR, Papadopoulou E, Robinson O, Haug LS, Wright J, Vos MB, Keun HC, Vrijheid M, Berhane KT, McConnell R, Chatzi L. Prenatal Exposure to Perfluoroalkyl Substances Associated With Increased Susceptibility to Liver Injury in Children. Hepatology 2020; 72:1758-1770. [PMID: 32738061 PMCID: PMC7723317 DOI: 10.1002/hep.31483] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/26/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Per- and polyfluoroalkyl substances (PFAS) are widespread and persistent pollutants that have been shown to have hepatotoxic effects in animal models. However, human evidence is scarce. We evaluated how prenatal exposure to PFAS associates with established serum biomarkers of liver injury and alterations in serum metabolome in children. APPROACH AND RESULTS We used data from 1,105 mothers and their children (median age, 8.2 years; interquartile range, 6.6-9.1) from the European Human Early-Life Exposome cohort (consisting of six existing population-based birth cohorts in France, Greece, Lithuania, Norway, Spain, and the United Kingdom). We measured concentrations of perfluorooctane sulfonate, perfluorooctanoate, perfluorononanoate, perfluorohexane sulfonate, and perfluoroundecanoate in maternal blood. We assessed concentrations of alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyltransferase in child serum. Using Bayesian kernel machine regression, we found that higher exposure to PFAS during pregnancy was associated with higher liver enzyme levels in children. We also measured child serum metabolomics through a targeted assay and found significant perturbations in amino acid and glycerophospholipid metabolism associated with prenatal PFAS. A latent variable analysis identified a profile of children at high risk of liver injury (odds ratio, 1.56; 95% confidence interval, 1.21-1.92) that was characterized by high prenatal exposure to PFAS and increased serum levels of branched-chain amino acids (valine, leucine, and isoleucine), aromatic amino acids (tryptophan and phenylalanine), and glycerophospholipids (phosphatidylcholine [PC] aa C36:1 and Lyso-PC a C18:1). CONCLUSIONS Developmental exposure to PFAS can contribute to pediatric liver injury.
Collapse
Affiliation(s)
- Nikos Stratakis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA,Department of Complex Genetics and Epidemiology, CAPHRI School for Public Health and Primary Care, University of Maastricht, Maastricht, the Netherlands
| | - David V. Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ran Jin
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Katerina Margetaki
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexandros P. Siskos
- Department of Surgery & Cancer and Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | - Léa Maitre
- ISGlobal, Barcelona, Spain,Universitat Pompeu Fabra (UPF), Barcelona, Spain,Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Erika Garcia
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Nerea Varo
- Laboratory of Biochemistry, University Clinic of Navarra, Pamplona, Spain
| | - Yinqi Zhao
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Jose Urquiza
- ISGlobal, Barcelona, Spain,Universitat Pompeu Fabra (UPF), Barcelona, Spain,Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Silvia Fernández-Barrés
- ISGlobal, Barcelona, Spain,Universitat Pompeu Fabra (UPF), Barcelona, Spain,Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Barbara Heude
- Center of Research in Epidemiology and Statistics, INSERM, INRAe, University of Paris, Paris, France
| | - Xavier Basagana
- ISGlobal, Barcelona, Spain,Universitat Pompeu Fabra (UPF), Barcelona, Spain,Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain,Universitat Pompeu Fabra (UPF), Barcelona, Spain,Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Serena Fossati
- ISGlobal, Barcelona, Spain,Universitat Pompeu Fabra (UPF), Barcelona, Spain,Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Regina Gražulevičienė
- Department of Environmental Sciences, Vytauto Didžiojo Universitetas, Kaunas, Lithuania
| | - Sandra Andrušaitytė
- Department of Environmental Sciences, Vytauto Didžiojo Universitetas, Kaunas, Lithuania
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA
| | - Rosemary R.C. McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | | | - Oliver Robinson
- MRC Centre for Environment and Health, Imperial College London, London, United Kingdom
| | | | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Miriam B. Vos
- Department of Pediatrics, School of Medicine and Nutrition Health Sciences, Emory University, Atlanta, GA,Children’s Healthcare of Atlanta, Atlanta, GA
| | - Hector C. Keun
- Department of Surgery & Cancer and Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain,Universitat Pompeu Fabra (UPF), Barcelona, Spain,Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Kiros T. Berhane
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA,Department of Complex Genetics and Epidemiology, CAPHRI School for Public Health and Primary Care, University of Maastricht, Maastricht, the Netherlands
| |
Collapse
|
40
|
Shao M, Ye Z, Qin Y, Wu T. Abnormal metabolic processes involved in the pathogenesis of non-alcoholic fatty liver disease (Review). Exp Ther Med 2020; 20:26. [PMID: 32934691 PMCID: PMC7471863 DOI: 10.3892/etm.2020.9154] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases and can lead to liver cirrhosis or liver cancer in severe cases. In recent years, the incidence of NAFLD has increased substantially. The trend has continued to increase and has become a key point of concern for health systems. NAFLD is often associated with metabolic abnormalities caused by increased visceral obesity, including insulin resistance, diabetes mellitus, hypertension, dyslipidemia, atherosclerosis and systemic microinflammation. Therefore, the pathophysiological mechanisms of NAFLD must be clarified to develop new drug treatment strategies. Recently, researchers have conducted numerous studies on the pathogenesis of NAFLD and have identified various important regulatory factors and potential molecular mechanisms, providing new targets and a theoretical basis for the treatment of NAFLD. However, the pathogenesis of NAFLD is extremely complex and involves the interrelationship and influence of multiple organs and systems. Therefore, the condition must be explored further. In the present review, the abnormal metabolic process, including glucose, lipid, amino acid, bile acid and iron metabolism are reviewed. It was concluded that NAFLD is associated with an imbalanced metabolic network that involves glucose, lipids, amino acids, bile acids and iron, and lipid metabolism is the core metabolic process. The current study aimed to provide evidence and hypotheses for research and clinical treatment of NAFLD.
Collapse
Affiliation(s)
- Mingmei Shao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zixiang Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yanhong Qin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
41
|
Lensu S, Pariyani R, Mäkinen E, Yang B, Saleem W, Munukka E, Lehti M, Driuchina A, Lindén J, Tiirola M, Lahti L, Pekkala S. Prebiotic Xylo-Oligosaccharides Ameliorate High-Fat-Diet-Induced Hepatic Steatosis in Rats. Nutrients 2020; 12:nu12113225. [PMID: 33105554 PMCID: PMC7690286 DOI: 10.3390/nu12113225] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding the importance of the gut microbiota (GM) in non-alcoholic fatty liver disease (NAFLD) has raised the hope for therapeutic microbes. We have shown that high hepatic fat content associated with low abundance of Faecalibacterium prausnitzii in humans and, further, the administration of F. prausnitzii prevented NAFLD in mice. Here, we aimed at targeting F. prausnitzii by prebiotic xylo-oligosaccharides (XOS) to treat NAFLD. First, the effect of XOS on F. prausnitzii growth was assessed in vitro. Then, XOS was supplemented or not with high (HFD, 60% of energy from fat) or low (LFD) fat diet for 12 weeks in Wistar rats (n = 10/group). XOS increased F. prausnitzii growth, having only a minor impact on the GM composition. When supplemented with HFD, XOS ameliorated hepatic steatosis. The underlying mechanisms involved enhanced hepatic β-oxidation and mitochondrial respiration. Nuclear magnetic resonance (1H-NMR) analysis of cecal metabolites showed that, compared to the HFD, the LFD group had a healthier cecal short-chain fatty acid profile and on the HFD, XOS reduced cecal isovalerate and tyrosine, metabolites previously linked to NAFLD. Cecal branched-chain fatty acids associated positively and butyrate negatively with hepatic triglycerides. In conclusion, XOS supplementation can ameliorate NAFLD by improving hepatic oxidative metabolism and affecting GM.
Collapse
Affiliation(s)
- Sanna Lensu
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (M.L.); (A.D.)
| | - Raghunath Pariyani
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (R.P.); (B.Y.)
| | - Elina Mäkinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (M.L.); (A.D.)
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (R.P.); (B.Y.)
| | - Wisam Saleem
- Department of Future Technologies, University of Turku, FI-20014 Turku, Finland; (W.S.); (L.L.)
| | - Eveliina Munukka
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland;
- Department of Clinical Microbiology, Turku University Hospital, FI-20521 Turku, Finland
| | - Maarit Lehti
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (M.L.); (A.D.)
| | - Anastasiia Driuchina
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (M.L.); (A.D.)
| | - Jere Lindén
- Veterinary Pathology and Parasitology, University of Helsinki, FIN-00014 Helsinki, Finland;
| | - Marja Tiirola
- Department of Environmental and Biological Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland;
| | - Leo Lahti
- Department of Future Technologies, University of Turku, FI-20014 Turku, Finland; (W.S.); (L.L.)
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (M.L.); (A.D.)
- Department of Clinical Microbiology, Turku University Hospital, FI-20521 Turku, Finland
- Correspondence: ; Tel.: +358-45-358-28-98
| |
Collapse
|
42
|
Ahmad MI, Umair Ijaz M, Hussain M, Ali Khan I, Mehmood N, Siddiqi SM, Liu C, Zhao D, Xu X, Zhou G, Li C. High fat diet incorporated with meat proteins changes biomarkers of lipid metabolism, antioxidant activities, and the serum metabolomic profile in Glrx1 -/- mice. Food Funct 2020; 11:236-252. [PMID: 31956867 DOI: 10.1039/c9fo02207d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Red and processed meat consumption has been associated with oxidative stress, diabetes and non-alcoholic fatty liver disease (NAFLD). This study was aimed at exploring the effects of high-fat meat protein diets on potential metabolite biomarkers in Glrx1-/- mice, a well-documented mouse model to study NAFLD. Male Glrx1-/- mice were fed a control diet with 12% energy (kcal) from fat, a high-fat diet supplemented with casein (HFC) with 60% energy (kcal) from fat, and a high-fat diet supplemented with fish (HFF) or mutton proteins (HFM) for 12 weeks. The results of biochemical and histological analyses indicated that the intake of HFM increased hepatic total cholesterol, triglycerides, serum alanine transaminase and aspartate transaminase, and macro- and micro-vesicular lipid droplet accumulation, which were accompanied by altered gene expression associated with the lipid and cholesterol metabolism. HFF diet fed Glrx1-/- mice significantly ameliorated diet-induced NAFLD biomarkers compared to HFC and HFM diets. In addition, serum metabolome profiling identified metabolites specifically associated with lipid metabolism bile acid metabolism, sphingolipid and amino acid metabolism pathways. A HFM diet increased the abundance of LysoPC(15:0), LysoPC(16:0), LysoPC(20:1), LysoPE(18:2), LysoPE(22:0), LysoPE(20:6), O-arachidonoylglycidol, 12-ketodeoxycholic acid and sphinganine that are associated with NAFLD. The KEGG metabolic pathway of identified metabolites of high fat diets showed that the differential metabolites were associated with lipid metabolism, linoleic acid metabolism, amino acid metabolism, bile acid metabolism, sphingolipid metabolism, and glutathione metabolism pathways whereas HFF diet ameliorated NAFLD by modifying these pathways. These results provide potential metabolite biomarkers for NAFLD induced by HFM diet.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, International Collaborative Laboratory of Animal Health and Food Safety, College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Perng W, Francis EC, Smith HA, Carey J, Wang D, Kechris KM, Dabelea D. Sex-Specific Metabolite Biomarkers of NAFLD in Youth: A Prospective Study in the EPOCH Cohort. J Clin Endocrinol Metab 2020; 105:dgaa467. [PMID: 32687159 PMCID: PMC7418446 DOI: 10.1210/clinem/dgaa467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in developed nations. There are currently no accurate biomarkers of NAFLD risk in youth. OBJECTIVE Identify sex-specific metabolomics biomarkers of NAFLD in a healthy cohort of youth. DESIGN/SETTING This prospective study included 395 participants of the EPOCH cohort in Colorado, who were recruited 2006-2009 ("T1 visit") and followed for 5 years ("T2 visit"). We entered 767 metabolites measured at T1 into a reduced rank regression model to identify the strongest determinants of hepatic fat fraction (HFF) at T2, separately for boys and girls. We compared the capacity of metabolites versus conventional risk factors (overweight/obesity, insulin, alanine transaminase, aspartate transaminase) to predict NAFLD (HFF ≥5%) and high HFF (fourth vs first quartile) using area under the receiver operating characteristic curve (AUC). RESULTS Prevalence of NAFLD was 7.9% (8.5% of boys, 7.1% of girls). Mean ± SD HFF was 2.5 ± 3.1%. We identified 13 metabolites in girls and 10 metabolites in boys. Metabolites were in lipid, amino acid, and carbohydrate metabolism pathways. At T1, the metabolites outperformed conventional risk factors in prediction of high HFF but not NAFLD. At T2, the metabolites were superior to conventional risk factors as predictors of high HFF (AUC for metabolites vs conventional risk factors for boys: 0.9565 vs 0.8851, P = 0.02; for girls: 0.9450 vs 0.8469, P = 0.02) with similar trends for NAFLD, although the differences were not significant. CONCLUSIONS The metabolite profiles identified herein are superior predictors of high HFF when assessed 5 years prior and concurrently in a general-risk setting.
Collapse
Affiliation(s)
- Wei Perng
- Lifcourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora Colorado
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Colorado
| | - Ellen C Francis
- Lifcourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora Colorado
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Colorado
| | - Harry A Smith
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - John Carey
- Lifcourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora Colorado
| | - Dongqing Wang
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Katerina M Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dana Dabelea
- Lifcourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora Colorado
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Colorado
- Department of Pediatrics, University of Colorado School of Medicine, Aurora Colorado
| |
Collapse
|
44
|
Matysiak J, Klupczynska A, Packi K, Mackowiak-Jakubowska A, Bręborowicz A, Pawlicka O, Olejniczak K, Kokot ZJ, Matysiak J. Alterations in Serum-Free Amino Acid Profiles in Childhood Asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4758. [PMID: 32630672 PMCID: PMC7370195 DOI: 10.3390/ijerph17134758] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023]
Abstract
Asthma often begins in childhood, although making an early diagnosis is difficult. Clinical manifestations, the exclusion of other causes of bronchial obstruction, and responsiveness to anti-inflammatory therapy are the main tool of diagnosis. However, novel, precise, and functional biochemical markers are needed in the differentiation of asthma phenotypes, endotypes, and creating personalized therapy. The aim of the study was to search for metabolomic-based asthma biomarkers among free amino acids (AAs). A wide panel of serum-free AAs in asthmatic children, covering both proteinogenic and non-proteinogenic AAs, were analyzed. The examination included two groups of individuals between 3 and 18 years old: asthmatic children and the control group consisted of children with neither asthma nor allergies. High-performance liquid chromatography combined with tandem mass spectrometry (LC-MS/MS technique) was used for AA measurements. The data were analyzed by applying uni- and multivariate statistical tests. The obtained results indicate the decreased serum concentration of taurine, L-valine, DL-β-aminoisobutyric acid, and increased levels of ƴ-amino-n-butyric acid and L-arginine in asthmatic children when compared to controls. The altered concentration of these AAs can testify to their role in the pathogenesis of childhood asthma. The authors' results should contribute to the future introduction of new diagnostic markers into clinical practice.
Collapse
Affiliation(s)
- Joanna Matysiak
- Faculty of Health Sciences, The President Stanisław Wojciechowski State University of Applied Sciences in Kalisz, 62-800 Kalisz, Poland;
| | - Agnieszka Klupczynska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60 -780 Poznan, Poland; (A.K.); (K.P.); (A.M.-J.); (O.P.); (J.M.)
| | - Kacper Packi
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60 -780 Poznan, Poland; (A.K.); (K.P.); (A.M.-J.); (O.P.); (J.M.)
| | - Anna Mackowiak-Jakubowska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60 -780 Poznan, Poland; (A.K.); (K.P.); (A.M.-J.); (O.P.); (J.M.)
| | - Anna Bręborowicz
- Department of Pulmonology, Pediatric Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (A.B.); (K.O.)
| | - Olga Pawlicka
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60 -780 Poznan, Poland; (A.K.); (K.P.); (A.M.-J.); (O.P.); (J.M.)
| | - Katarzyna Olejniczak
- Department of Pulmonology, Pediatric Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (A.B.); (K.O.)
| | - Zenon J. Kokot
- Faculty of Health Sciences, The President Stanisław Wojciechowski State University of Applied Sciences in Kalisz, 62-800 Kalisz, Poland;
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60 -780 Poznan, Poland; (A.K.); (K.P.); (A.M.-J.); (O.P.); (J.M.)
| |
Collapse
|
45
|
Cioffi CE, Narayan KMV, Liu K, Uppal K, Jones DP, Tran V, Yu T, Alvarez JA, Bellissimo MP, Maner-Smith KM, Pierpoint B, Caprio S, Santoro N, Vos MB. Hepatic fat is a stronger correlate of key clinical and molecular abnormalities than visceral and abdominal subcutaneous fat in youth. BMJ Open Diabetes Res Care 2020; 8:e001126. [PMID: 32699106 PMCID: PMC7380953 DOI: 10.1136/bmjdrc-2019-001126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/27/2020] [Accepted: 05/13/2020] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Body fat distribution is strongly associated with cardiometabolic disease (CMD), but the relative importance of hepatic fat as an underlying driver remains unclear. Here, we applied a systems biology approach to compare the clinical and molecular subnetworks that correlate with hepatic fat, visceral fat, and abdominal subcutaneous fat distribution. RESEARCH DESIGN AND METHODS This was a cross-sectional sub-study of 283 children/adolescents (7-19 years) from the Yale Pediatric NAFLD Cohort. Untargeted, high-resolution metabolomics (HRM) was performed on plasma and combined with existing clinical variables including hepatic and abdominal fat measured by MRI. Integrative network analysis was coupled with pathway enrichment analysis and multivariable linear regression (MLR) to examine which metabolites and clinical variables associated with each fat depot. RESULTS The data divided into four communities of correlated variables (|r|>0.15, p<0.05) after integrative network analysis. In the largest community, hepatic fat was associated with eight clinical biomarkers, including measures of insulin resistance and dyslipidemia, and 878 metabolite features that were enriched predominantly in amino acid (AA) and lipid pathways in pathway enrichment analysis (p<0.05). Key metabolites associated with hepatic fat included branched-chain AAs (valine and isoleucine/leucine), aromatic AAs (tyrosine and tryptophan), serine, glycine, alanine, and pyruvate, as well as several acylcarnitines and glycerophospholipids (all q<0.05 in MLR adjusted for covariates). The other communities detected in integrative network analysis consisted of abdominal visceral, superficial subcutaneous, and deep subcutaneous fats, but no clinical variables, fewer metabolite features (280, 312, and 74, respectively), and limited findings in pathway analysis. CONCLUSIONS These data-driven findings show a stronger association of hepatic fat with key CMD risk factors compared with abdominal fats. The molecular network identified using HRM that associated with hepatic fat provides insight into potential mechanisms underlying the hepatic fat-insulin resistance interface in youth.
Collapse
Affiliation(s)
- Catherine E Cioffi
- Nutrition and Health Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA
| | - K M Venkat Narayan
- Hubert Department of Global Health, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Ken Liu
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Karan Uppal
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dean P Jones
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - ViLinh Tran
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tianwei Yu
- Department of Biostatistics, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Jessica A Alvarez
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Moriah P Bellissimo
- Nutrition and Health Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA
| | - Kristal M Maner-Smith
- Emory Integrated Lipidomics Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bridget Pierpoint
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sonia Caprio
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nicola Santoro
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Molise, Italy
| | - Miriam B Vos
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
46
|
Caussy C, Chuang JC, Billin A, Hu T, Wang Y, Subramanian GM, Djedjos CS, Myers RP, Dennis EA, Loomba R. Plasma eicosanoids as noninvasive biomarkers of liver fibrosis in patients with nonalcoholic steatohepatitis. Therap Adv Gastroenterol 2020; 13:1756284820923904. [PMID: 32523627 PMCID: PMC7257854 DOI: 10.1177/1756284820923904] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/23/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Eicosanoid and related docosanoid polyunsaturated fatty acids (PUFAs) and their oxygenated derivatives have been proposed as noninvasive lipidomic biomarkers of nonalcoholic steatohepatitis (NASH). Therefore, we investigated associations between plasma eicosanoids and liver fibrosis to evaluate their utility in diagnosing and monitoring NASH-related fibrosis. METHODS Our analysis used baseline eicosanoid data from 427 patients with biopsy-confirmed nonalcoholic fatty liver disease (NAFLD), and longitudinal measurements along with liver fibrosis staging from 63 patients with NASH and stage 2/3 fibrosis followed for 24 weeks in a phase II trial. RESULTS At baseline, four eicosanoids were significantly associated with liver fibrosis stage: 11,12-DIHETE, tetranor 12-HETE, adrenic acid, and 14, 15-DIHETE. Over 24 weeks of follow up, a combination of changes in seven eicosanoids [5-HETE, 7,17-DHDPA, adrenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), 16-HDOHE, and 9-HODE) had good diagnostic accuracy for the prediction of ⩾1 stage improvement in fibrosis (AUROC: 0.74; 95% CI: 0.62-0.87), and a combination of four eicosanoids (7,17-DHDPA, 14,15-DIHETRE, 9-HOTRE, and free adrenic acid) accurately predicted improvement in hepatic collagen content (AUROC: 0.72; 95% CI: 0.50-0.77). CONCLUSION This study provides preliminary evidence that plasma eicosanoids may serve as noninvasive biomarkers of liver fibrosis and may predict liver fibrosis improvement in NASH.
Collapse
Affiliation(s)
- Cyrielle Caussy
- Univ Lyon, CarMen Laboratory, INSERM, INRA, INSA
Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France,Hospices Civils de Lyon, Département
Endocrinologie, Diabète et Nutrition, Hôpital Lyon Sud, Pierre-Bénite,
France
| | | | | | - Tao Hu
- Gilead Sciences, Inc., Foster City, CA,
USA
| | - Ya Wang
- Gilead Sciences, Inc., Foster City, CA,
USA
| | | | | | | | - Edward A. Dennis
- Department of Pharmacology and Department of
Chemistry and Biochemistry, University of California San Diego, 9500 Gilman
Drive, MC 0601, La Jolla, CA 92093-0601, USA
| | | |
Collapse
|
47
|
Beyoğlu D, Idle JR. Metabolomic and Lipidomic Biomarkers for Premalignant Liver Disease Diagnosis and Therapy. Metabolites 2020; 10:E50. [PMID: 32012846 PMCID: PMC7074571 DOI: 10.3390/metabo10020050] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been a plethora of attempts to discover biomarkers that are more reliable than α-fetoprotein for the early prediction and prognosis of hepatocellular carcinoma (HCC). Efforts have involved such fields as genomics, transcriptomics, epigenetics, microRNA, exosomes, proteomics, glycoproteomics, and metabolomics. HCC arises against a background of inflammation, steatosis, and cirrhosis, due mainly to hepatic insults caused by alcohol abuse, hepatitis B and C virus infection, adiposity, and diabetes. Metabolomics offers an opportunity, without recourse to liver biopsy, to discover biomarkers for premalignant liver disease, thereby alerting the potential of impending HCC. We have reviewed metabolomic studies in alcoholic liver disease (ALD), cholestasis, fibrosis, cirrhosis, nonalcoholic fatty liver (NAFL), and nonalcoholic steatohepatitis (NASH). Specificity was our major criterion in proposing clinical evaluation of indole-3-lactic acid, phenyllactic acid, N-lauroylglycine, decatrienoate, N-acetyltaurine for ALD, urinary sulfated bile acids for cholestasis, cervonoyl ethanolamide for fibrosis, 16α-hydroxyestrone for cirrhosis, and the pattern of acyl carnitines for NAFL and NASH. These examples derive from a large body of published metabolomic observations in various liver diseases in adults, adolescents, and children, together with animal models. Many other options have been tabulated. Metabolomic biomarkers for premalignant liver disease may help reduce the incidence of HCC.
Collapse
Affiliation(s)
| | - Jeffrey R. Idle
- Arthur G. Zupko’s Division of Systems Pharmacology and Pharmacogenomics, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, USA;
| |
Collapse
|
48
|
Jin R, McConnell R, Catherine C, Xu S, Walker DI, Stratakis N, Jones DP, Miller GW, Peng C, Conti DV, Vos MB, Chatzi L. Perfluoroalkyl substances and severity of nonalcoholic fatty liver in Children: An untargeted metabolomics approach. ENVIRONMENT INTERNATIONAL 2020; 134:105220. [PMID: 31744629 PMCID: PMC6944061 DOI: 10.1016/j.envint.2019.105220] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Toxicant-associated steatohepatitis has been described in adults but less is known regarding the role of toxicants in liver disease of children. Perfluoroalkyl substances (PFAS) cause hepatic steatosis in rodents, but few previous studies have examined PFAS effects on severity of liver injury in children. OBJECTIVES We aimed to examine the relationship of PFAS to histologic severity of nonalcoholic fatty liver disease (NAFLD) in children. METHODS Seventy-four children with physician-diagnosed NAFLD were recruited from Children's Healthcare of Atlanta between 2007 and 2015. Biopsy-based liver histological features were scored for steatosis, lobular and portal inflammation, ballooning, and fibrosis. Plasma concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonic acid (PFHxS), and untargeted plasma metabolomic profiling, were determined using liquid chromatography with high-resolution mass spectrometry. A metabolome-wide association study coupled with pathway enrichment analysis was performed to evaluate metabolic dysregulation associated with PFAS. A structural integrated analysis was applied to identify latent clusters of children with more severe form of NAFLD based on their PFAS levels and metabolite pattern. RESULTS Patients were 7-19 years old, mostly boys (71%), Hispanic (51%), and obese (85%). The odds of having nonalcoholic steatohepatitis (NASH), compared to children with steatosis alone, was significantly increased with each interquartile range (IQR) increase of PFOS (OR: 3.32, 95% CI: 1.40-7.87) and PFHxS (OR: 4.18, 95% CI: 1.64-10.7). Each IQR increase of PFHxS was associated with increased odds for liver fibrosis (OR: 4.44, 95% CI: 1.34-14.8), lobular inflammation (OR: 2.87, 95% CI: 1.12-7.31), and higher NAFLD activity score (β coefficient 0.46; 95% CI: 0.03, 0.89). A novel integrative analysis identified a cluster of children with NASH, characterized by increased PFAS levels and altered metabolite patterns including higher plasma levels of phosphoethanolamine, tyrosine, phenylalanine, aspartate and creatine, and decreased plasma levels of betaine. CONCLUSIONS Ηigher PFAS exposure was associated with more severe disease in children with NAFLD. PFAS may be an important toxicant contributing to NAFLD progression; however larger, longitudinal studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Ran Jin
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Rob McConnell
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Cioffi Catherine
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, GA, USA.
| | - Shujing Xu
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Douglas I Walker
- Clinical Biomarkers Laboratory, Division of Pulmonary Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA; Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Nikos Stratakis
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA.
| | - Gary W Miller
- Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Cheng Peng
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
| | - David V Conti
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Miriam B Vos
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Metabolic dysregulation in vitamin E and carnitine shuttle energy mechanisms associate with human frailty. Nat Commun 2019; 10:5027. [PMID: 31690722 PMCID: PMC6831565 DOI: 10.1038/s41467-019-12716-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
Global ageing poses a substantial economic burden on health and social care costs. Enabling a greater proportion of older people to stay healthy for longer is key to the future sustainability of health, social and economic policy. Frailty and associated decrease in resilience plays a central role in poor health in later life. In this study, we present a population level assessment of the metabolic phenotype associated with frailty. Analysis of serum from 1191 older individuals (aged between 56 and 84 years old) and subsequent longitudinal validation (on 786 subjects) was carried out using liquid and gas chromatography-mass spectrometry metabolomics and stratified across a frailty index designed to quantitatively summarize vulnerability. Through multivariate regression and network modelling and mROC modeling we identified 12 significant metabolites (including three tocotrienols and six carnitines) that differentiate frail and non-frail phenotypes. Our study provides evidence that the dysregulation of carnitine shuttle and vitamin E pathways play a role in the risk of frailty. Risk of age-related chronic disorders and decrease in resilience is associated with ageing. Here the authors analyse the human blood metabolome and identify metabolites associated with frailty.
Collapse
|
50
|
Caussy C, Ajmera VH, Puri P, Li-Shin Hsu C, Bassirian S, Mgdsyan M, Singh S, Faulkner C, Valasek MA, Rizo E, Richards L, Brenner DA, Sirlin CB, Sanyal AJ, Loomba R. Serum metabolites detect the presence of advanced fibrosis in derivation and validation cohorts of patients with non-alcoholic fatty liver disease. Gut 2019; 68:1884-1892. [PMID: 30567742 PMCID: PMC8328048 DOI: 10.1136/gutjnl-2018-317584] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/22/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Non-invasive and accurate diagnostic tests for the screening of disease severity in non-alcoholic fatty liver disease (NAFLD) remain a major unmet need. Therefore, we aimed to examine if a combination of serum metabolites can accurately predict the presence of advanced fibrosis. DESIGN This is a cross-sectional analysis of a prospective derivation cohort including 156 well-characterised patients with biopsy-proven NAFLD and two validation cohorts, including (1) 142 patients assessed using MRI elastography (MRE) and(2) 59 patients with biopsy-proven NAFLD with untargeted serum metabolome profiling. RESULTS In the derivation cohort, 23 participants (15%) had advanced fibrosis and 32 of 652 analysed metabolites were significantly associated with advanced fibrosis after false-discovery rate adjustment. Among the top 10 metabolites, 8 lipids (5alpha-androstan-3beta monosulfate, pregnanediol-3-glucuronide, androsterone sulfate, epiandrosterone sulfate, palmitoleate, dehydroisoandrosterone sulfate, 5alpha-androstan-3beta disulfate, glycocholate), one amino acid (taurine) and one carbohydrate (fucose) were identified. The combined area under the receiver operating characteristic curve (AUROC) of the top 10 metabolite panel was higher than FIB--4 and NAFLD Fibrosis Score (NFS) for the detection of advanced fibrosis: 0.94 (95% CI 0.897 to 0.982) versus 0.78 (95% CI0.674 to 0.891), p=0.002 and versus 0.84 (95% CI 0.724 to 0.929), p=0.017, respectively. The AUROC of the top 10 metabolite panel remained excellent in the independent validation cohorts assessed by MRE or liver biopsy: c-statistic of 0.94 and 0.84, respectively. CONCLUSION A combination of 10 serum metabolites demonstrated excellent discriminatory ability for the detection of advanced fibrosis in an derivation and two independent validation cohorts with greater diagnostic accuracy than the FIB-4-index and NFS. This proof-of-concept study demonstrates that a non-invasive blood-based diagnostic test can provide excellent performance characteristics for the detection of advanced fibrosis.
Collapse
Affiliation(s)
- Cyrielle Caussy
- NAFLD Research Center, Department of Medicine, La Jolla, California, USA,Université Lyon 1, Hospices Civils de Lyon, Lyon, California, France
| | - Veeral H Ajmera
- NAFLD Research Center, Department of Medicine, La Jolla, California, USA
| | - Puneet Puri
- Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Shirin Bassirian
- NAFLD Research Center, Department of Medicine, La Jolla, California, USA
| | - Mania Mgdsyan
- NAFLD Research Center, Department of Medicine, La Jolla, California, USA
| | - Seema Singh
- NAFLD Research Center, Department of Medicine, La Jolla, California, USA
| | - Claire Faulkner
- NAFLD Research Center, Department of Medicine, La Jolla, California, USA
| | - Mark A Valasek
- Department of Pathology, University of California at San Diego, La Jolla, California, USA
| | - Emily Rizo
- NAFLD Research Center, Department of Medicine, La Jolla, California, USA
| | - Lisa Richards
- NAFLD Research Center, Department of Medicine, La Jolla, California, USA
| | - David A Brenner
- NAFLD Research Center, Department of Medicine, La Jolla, California, USA,Division of Gastroenterology, Department of Medicine, La Jolla, California, USA
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California, San Diego, La Jolla, California, USA
| | - Arun J Sanyal
- Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rohit Loomba
- NAFLD Research Center, Department of Medicine, La Jolla, California, USA,Division of Gastroenterology, Department of Medicine, La Jolla, California, USA,Division of Epidemiology, Department of Family and Preventive Medicine, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|