1
|
Aytar EC, Sarı ZB, Sarı ME, Durmaz A, Torunoğlu EI, Gümrükçüoğlu A, Demirel G. Anticancer potential of Bellardia trixago quantum dots: Cytotoxic effects on various cancer cell lines. Bioorg Chem 2025; 158:108340. [PMID: 40073593 DOI: 10.1016/j.bioorg.2025.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
This study investigates the synthesis, characterization, and anticancer effects of carbon quantum dots (CQDs) derived from Bellardia trixago. The CQDs were analyzed using Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS). TEM results revealed that the CQDs have a spherical morphology and exhibit a layered structure. XRD analysis showed a graphite-like crystalline structure, while FTIR and XPS studies confirmed the presence of OH, CC, and CO functional groups on the surface. The biological activity of CQDs demonstrated selective cytotoxicity, inducing significant cell death in cancer cells while exhibiting low toxicity in healthy cells. More pronounced morphological changes were observed in HEp-2 and SaOS-2 cells, while HEK-293 cells showed negligible changes. These findings suggest that quantum dots could serve as a potential alternative for cancer treatment.
Collapse
Affiliation(s)
- Erdi Can Aytar
- Usak University Faculty of Agriculture Department of Horticulture, 64200 Uşak, Turkey.
| | - Zeynep Betul Sarı
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Department of Basic Medical Sciences, Medical Biology, 06010 Ankara, Turkey
| | - Muhammet Emin Sarı
- Necmettin Erbakan University, Faculty of Medicine, Department of Medical Biology, 42090 Konya, Turkey
| | - Alper Durmaz
- Artvin Coruh University, Ali Nihat Gok Yigit Botanical Garden Application and Research Center, 08000 Artvin, Turkey
| | - Emine Incilay Torunoğlu
- Necmettin Erbakan University, Faculty of Medicine, Department of Medical Biochemistry, 42090 Konya, Turkey
| | - Abidin Gümrükçüoğlu
- Artvin Çoruh University, Medicinal-Aromatic Plants Application and Research Center, 08000 Artvin, Turkey
| | - Gamze Demirel
- Selçuk University - Akşehir Kadir Yallagöz School of Health - Department of Nutrition and Dietetics, 42560 Konya, Turkey
| |
Collapse
|
2
|
Chermashentsev GR, Mikheev IV, Ratova DMV, Proskurnina EV, Proskurnin MA. Unveiling the Role of Fractionated Graphene Oxide in Nitric Oxide Scavenging. Molecules 2025; 30:1069. [PMID: 40076294 PMCID: PMC11901896 DOI: 10.3390/molecules30051069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The feasibility of saturating aqueous anoxic solutions with in situ-generated high-purity nitric oxide (NO) is shown herein. A methemoglobin assay estimated the average nitric oxide concentration to be ca. 20 ± 3 µM. Graphene oxide aqueous dispersions were prepared by ultrasound-assisted extra exfoliation. These dispersions, including unpurified (pristine) samples and samples purified from transition metal impurities (bulk) fractions (bulkGO) and (nano) separated fractions (nanoGO) in a range of 0.5 to 14 kDa were prepared with ppm level concentrations. A robust and reproducible chemiluminescence (CL) assay validated the interaction between graphene oxide and NO in a luminol-based system. The results showed a significant increase in NO scavenging activity within the bulkGO fractions to nanofractions ranging from 14 to 3.5 kDa. The different reaction pathways underlying the transformation of nitric oxide are being evaluated, focusing on understanding how its presence or absence affects these processes. Our kinetic model suggests a significant difference in nitric oxide regulation; nanoGO demonstrates an interception rate seventy-times higher than that achieved through CL quenching.
Collapse
Affiliation(s)
- Grigoriy R. Chermashentsev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119234, Russia; (G.R.C.); (D.-M.V.R.); (M.A.P.)
| | - Ivan V. Mikheev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119234, Russia; (G.R.C.); (D.-M.V.R.); (M.A.P.)
| | - Daria-Mariia V. Ratova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119234, Russia; (G.R.C.); (D.-M.V.R.); (M.A.P.)
| | - Elena V. Proskurnina
- Research Centre for Medical Genetics, Moscow 115522, Russia;
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Mikhail A. Proskurnin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119234, Russia; (G.R.C.); (D.-M.V.R.); (M.A.P.)
| |
Collapse
|
3
|
Zhang L, Chen S, Ning M, Guo S, Wen D, Wang H, Sun Y, Yang G, Wang Y, Xue S. Tea Polyphenol-Derived Carbon Dots Alleviate Abdominal Aortic Aneurysm Progression by Mitigating Oxidative Stress and Ferroptosis. ACS APPLIED BIO MATERIALS 2025; 8:688-703. [PMID: 39737545 DOI: 10.1021/acsabm.4c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
Abdominal aortic aneurysm (AAA) is a cardiovascular disease with potentially fatal consequences, yet effective therapies to prevent its progression remain unavailable. Oxidative stress is associated with AAA development. Carbon dots have reactive oxygen species-scavenging activity, while green tea extract exhibits robust antioxidant properties. However, the potential of green tea derived carbon dots in mitigating AAA progression has not been fully elucidated. In this study, tea polyphenol carbon dots (TP-CDs) were synthesized via hydrothermal methods and characterized for their antioxidant properties. The antioxidant effects of TP-CDs were evaluated, and TP-CDs' impact on phenotypic transformation, oxidative stress, apoptosis and ferroptosis was investigated comprehensively in an Ang II-induced AAA model, employing techniques such as Western blotting, flow cytometry, and immunohistochemistry. The results revealed that TP-CDs effectively alleviated oxidative stress induced by Ang II stimulation, thereby inhibiting phenotypic transformation, apoptosis, and ferroptosis in vivo. Furthermore, treatment with TP-CDs significantly attenuated AAA progression in a mouse AAA model. Overall, these findings demonstrate that TP-CDs reduced reactive oxygen species levels in the microenvironment and alleviated the progression of AAA, offering a promising therapeutic strategy for this condition.
Collapse
Affiliation(s)
- Luzheng Zhang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Shuyang Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Mengling Ning
- MOE Key Laboratory of Laser Life Science and SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Suxiang Guo
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Dezhong Wen
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Heng Wang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Yujin Sun
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Guangdong Yang
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, OntarioP3B 2R9, Canada
| | - Yuehong Wang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| |
Collapse
|
4
|
Jiang PL, Hong YY, Yang L, Lin HJ, Huang CC, Chen YH, Lin CH, Chen YC. Comprehensive evaluation of the nephrotoxicity of carbon quantum dots: Effects of the surface charge. CHEMOSPHERE 2024; 367:143604. [PMID: 39442575 DOI: 10.1016/j.chemosphere.2024.143604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Carbon quantum dots (CQDs) are garnering attention for their broad applications. This study offers a detailed evaluation of the biomedical safety and health risks of carbon quantum dots (CQDs) with different surface modifications, addressing a key gap in their safe application. It focuses on three CQD types: diammonium citrate-based (CQDs-A), spermidine trihydrochloride-based (CQDs-S), and a combination (CQDs-A/S), analyzing their physicochemical properties, cytotoxicity, oxidative stress, inflammatory responses, and nephrotoxicity. While all CQDs were under 10 nm, their biological impacts varied. Positively charged CQDs-S and CQDs-A/S showed significant cytotoxicity in HEK293 cells, inducing oxidative stress but not activating NLRP3 inflammasome, indicating a limited inflammatory response. Renal integrity remained unaffected, with stable zonula occludens 2 expression and unaltered renal markers. In vivo studies in BALB/c mice further supported the safety of CQDs, showing no organ damage or kidney pathology at high doses. The findings underscore the potential for safe biomedical use of CQDs, particularly when their retention time is minimized. This research makes a novel contribution by linking CQDs' surface charge to cytotoxic effects and oxidative stress, providing key insights into their safe use in biomedicine and filling a critical gap in nanoparticle toxicity studies.
Collapse
Affiliation(s)
- Pei-Luen Jiang
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan
| | - Yan-Yu Hong
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan
| | - Lingyan Yang
- Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, Guangdong, 510005, China
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yan-Hua Chen
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan.
| | - Yi-Chun Chen
- Department of Civil Engineering, National Taipei University of Technology, Taipei City, 106, Taiwan; Department of Biology, University of Michigan-Flint, MI, 48502, USA.
| |
Collapse
|
5
|
Aghara H, Chadha P, Mandal P. Mitigative Effect of Graphene Oxide Nanoparticles in Maintaining Gut–Liver Homeostasis against Alcohol Injury. GASTROENTEROLOGY INSIGHTS 2024; 15:574-587. [DOI: 10.3390/gastroent15030042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Alcoholic liver disease (ALD) develops when the immunotolerant environment of the liver is compromised due to excessive alcohol consumption. ALD progression involves variations in the expressions of multiple genes, resulting in liver inflammation and the development of a leaky gut. It is still unclear which molecular mechanism is involved in ALD progression, and due to that, there are currently no FDA-approved drugs available for its treatment. In this study, the protective effects of graphene oxide (GO) nanoparticles were investigated against ethanol-induced damage in the gut–liver axis in in vitro. GO was synthesized using a modified Hummer’s method, and characterization was performed. Given the general concerns regarding nanoparticle toxicity, assessments of cell viability, lipid accumulation, DNA damage, cell death, and the generation of reactive oxygen species (ROS) were conducted using various techniques. Furthermore, the gene expressions of pro- and anti-inflammatory cytokines were determined using RT-qPCR. The findings reveal that GO promoted cell viability even against ethanol treatment. Additionally, lipid accumulation significantly decreased when cells were treated with GO alongside ethanol compared to ethanol treatment alone, with similar trends observed for other assays. A gene expression analysis indicated that GO treatment reduced the expression of proinflammatory cytokines while enhancing the expression of antioxidant genes. Moreover, GO treatment led to improvements in gut integrity and a reduction in proinflammatory cytokines in colon cells damaged by ethanol. These findings suggest that GO holds promise as a drug carrier, exhibiting no observed toxic effects. By shedding light on the protective effects of GO against ethanol-induced damage, this study contributes to the burgeoning field of nanoparticle-mediated therapy for ALD.
Collapse
Affiliation(s)
- Hiral Aghara
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand 388421, Gujarat, India
| | - Prashsti Chadha
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand 388421, Gujarat, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand 388421, Gujarat, India
| |
Collapse
|
6
|
Marković ZM, Milivojević DD, Kovač J, Todorović Marković BM. Phloroglucinol-Based Carbon Quantum Dots/Polyurethane Composite Films: How Structure of Carbon Quantum Dots Affects Antibacterial and Antibiofouling Efficiency of Composite Films. Polymers (Basel) 2024; 16:1646. [PMID: 38931997 PMCID: PMC11207477 DOI: 10.3390/polym16121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Nowadays, bacteria resistance to many antibiotics is a huge problem, especially in clinics and other parts of the healthcare system. This critical health issue requires a dynamic approach to produce new types of antibacterial coatings to combat various pathogen microbes. In this research, we prepared a new type of carbon quantum dots based on phloroglucinol using the bottom-up method. Polyurethane composite films were produced using the swell-encapsulation-shrink method. Detailed electrostatic force and viscoelastic microscopy of carbon quantum dots revealed inhomogeneous structure characterized by electron-rich/soft and electron-poor/hard regions. The uncommon photoluminescence spectrum of carbon quantum dots core had a multipeak structure. Several tests confirmed that carbon quantum dots and composite films produced singlet oxygen. Antibacterial and antibiofouling efficiency of composite films was tested on eight bacteria strains and three bacteria biofilms.
Collapse
Affiliation(s)
- Zoran M. Marković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11158 Belgrade, Serbia;
| | - Dušan D. Milivojević
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11158 Belgrade, Serbia;
| | - Janez Kovač
- Department of Surface Engineering, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia;
| | - Biljana M. Todorović Marković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11158 Belgrade, Serbia;
| |
Collapse
|
7
|
Kulahava T, Belko N, Parkhats M, Bahdanava A, Lepeshkevich S, Chizhevsky V, Mogilevtsev D. Photostability and phototoxicity of graphene quantum dots interacting with red blood cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 248:112800. [PMID: 37857078 DOI: 10.1016/j.jphotobiol.2023.112800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Here we discuss fluorescent properties of graphene quantum dots (GQDs) interacting with the membranes of red blood cells. We report the results of spectroscopic, microscopic, and photon-counting measurements of the GQDs in different surroundings for uncovering specific features of the GQD fluorescence, and describe two observed phenomena important for implementation of the GQDs as fluorescent labels and agents for drug delivery. Firstly, the GQDs can suffer from photodegradation but also can be stabilized in the presence of antioxidants (reduced glutathione, N-acetylcysteine, or 1,4-hydroquinone). Secondly, GQDs can accumulate in red blood cell membranes without compromising the viability of the cells but also can induce hemolysis in the presence of visible light. We discuss mechanisms and regimes of the photodegradation, stabilization, interaction of the GQDs with red blood cell membranes, and hemolysis. Notably, photohemolysis for the case is dependent on the light dose and GQD concentration but not caused by the production of reactive oxygen species.
Collapse
Affiliation(s)
- Tatsiana Kulahava
- Institute for Nuclear Problems of the Belarusian State University, Bobruiskaya str. 11, Minsk 220006, Belarus
| | - Nikita Belko
- B.I. Stepanov Institute of Physics, NAS of Belarus, Nezavisimosty ave. 68, Minsk 220072, Belarus.
| | - Marina Parkhats
- B.I. Stepanov Institute of Physics, NAS of Belarus, Nezavisimosty ave. 68, Minsk 220072, Belarus
| | - Anastasiya Bahdanava
- Institute for Nuclear Problems of the Belarusian State University, Bobruiskaya str. 11, Minsk 220006, Belarus
| | - Sergei Lepeshkevich
- B.I. Stepanov Institute of Physics, NAS of Belarus, Nezavisimosty ave. 68, Minsk 220072, Belarus
| | - Vyacheslav Chizhevsky
- B.I. Stepanov Institute of Physics, NAS of Belarus, Nezavisimosty ave. 68, Minsk 220072, Belarus
| | - Dmitri Mogilevtsev
- B.I. Stepanov Institute of Physics, NAS of Belarus, Nezavisimosty ave. 68, Minsk 220072, Belarus.
| |
Collapse
|
8
|
Oukhrib M, Tamegart L, Assafi A, Hejji L, Azzouz A, Villarejo LP, Haida M, Mohamed C, Gamrani H. Effects of graphene oxide nanoparticles administration against reserpine-induced neurobehavioral damage and oxidative stress in an animal model of Parkinson's disease. Food Chem Toxicol 2023:113904. [PMID: 37356558 DOI: 10.1016/j.fct.2023.113904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/28/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the degeneration of substantia nigra dopaminergic neurons. Many therapeutic strategies were explored for PD with no success. In this study, we investigated the efficacy of graphene oxide nanoparticles (GONPs) using the reserpine model of PD. Low concentrations GONPs were utilized as a therapeutic agent in many neurodegenerative diseases. We assessed the neurobehavioral alterations in the reserpine model of PD and investigated the neuroprotective and antioxidant effects of GONPs in this model. Thirty male mice were separated into three groups (N = 10): C (control); Res (Reserpine 0.25 mg/kg); Res + GONPs (Reserpine 0.25 mg/kg and GONPs 25 mg/kg). Our results showed that reserpine neurotoxicity induced hypoactivity with a significant increase of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) levels in the brain and brainstem. GONPs reversed the reserpine-induced hypoactivity concomitant with decreased neuronal CAT and MDA levels. These findings support the potential use of GONPs as an antioxidant agent in the central nervous system (CNS) that protects against neurodegeneration in the reserpine PD model.
Collapse
Affiliation(s)
- Mjid Oukhrib
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Lahcen Tamegart
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Biology, Health and Ecology Laboratory, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - Abdeslam Assafi
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Lamia Hejji
- Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur s/n, 23700, Linares (Jaén), Spain
| | - Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco.
| | - Luis Pérez Villarejo
- Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur s/n, 23700, Linares (Jaén), Spain
| | - Mohammed Haida
- Water, Biodiversity, and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Chraa Mohamed
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco.
| |
Collapse
|
9
|
Elkodous MA, Olojede SO, Sahoo S, Kumar R. Recent advances in modification of novel carbon-based composites: Synthesis, properties, and biotechnological/ biomedical applications. Chem Biol Interact 2023; 379:110517. [PMID: 37149208 DOI: 10.1016/j.cbi.2023.110517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/12/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Nowadays, carbon-based materials owing to great interest in biomedical science/biotechnology and applied for effective diagnosis and treatment of disease. To enhance the effectiveness of carbon nanotubes (CNTs)/graphene-based materials for bio-medical science/technology applications, different kinds of surface modification/functionalization were developed for the attachment of metal oxides nanostructures, biomolecules and polymers. The attachment of pharmaceutical agents with CNTs/graphene, make it a favorable candidate in research field of bio-medical science/technology applications. Surface modified/functionalized CNTs and graphene derivatives materials integrated with pharmaceutical agents has been developed for the purpose of cancer therapy, antibacterial action, pathogens bio detection, drug and gene delivery. Surface modification or functionalization of CNT/graphene materials provides good platform for pharmaceutical agents attachment with improved surface Raman scattering, fluorescence and its quenching capability. Graphene-based biosensing and bioimaging technologies are widely applied to identify numerous trace level analytes. These fluorescent and electrochemical sensors are utilized primarily for detecting organic, inorganic, and biomolecules. In this article, we highlights and summarized overview of the current research progress concerned on the CNTs/graphene-based materials as a new generation materials for detection and treatment of diseases.
Collapse
Affiliation(s)
- M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan; Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, Giza, 16453, Egypt
| | - Samuel Oluwaseun Olojede
- Nanotechnology Platforms, Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Rajesh Kumar
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India.
| |
Collapse
|
10
|
Jovanović S, Marković Z, Budimir M, Prekodravac J, Zmejkoski D, Kepić D, Bonasera A, Marković BT. Lights and Dots toward Therapy-Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy. Pharmaceutics 2023; 15:pharmaceutics15041170. [PMID: 37111655 PMCID: PMC10145889 DOI: 10.3390/pharmaceutics15041170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The large number of deaths induced by carcinoma and infections indicates that the need for new, better, targeted therapy is higher than ever. Apart from classical treatments and medication, photodynamic therapy (PDT) is one of the possible approaches to cure these clinical conditions. This strategy offers several advantages, such as lower toxicity, selective treatment, faster recovery time, avoidance of systemic toxic effects, and others. Unfortunately, there is a small number of agents that are approved for usage in clinical PDT. Novel, efficient, biocompatible PDT agents are, thus, highly desired. One of the most promising candidates is represented by the broad family of carbon-based quantum dots, such as graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs), and carbonized polymer dots (CPDs). In this review paper, these new smart nanomaterials are discussed as potential PDT agents, detailing their toxicity in the dark, and when they are exposed to light, as well as their effects on carcinoma and bacterial cells. The photoinduced effects of carbon-based quantum dots on bacteria and viruses are particularly interesting, since dots usually generate several highly toxic reactive oxygen species under blue light. These species are acting as bombs on pathogen cells, causing various devastating and toxic effects on those targets.
Collapse
Affiliation(s)
- Svetlana Jovanović
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Zoran Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Milica Budimir
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Jovana Prekodravac
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Danica Zmejkoski
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Dejan Kepić
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aurelio Bonasera
- Palermo Research Unit, Department of Physics and Chemistry-Emilio Segrè, University of Palermo and Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 90128 Palermo, Italy
| | - Biljana Todorović Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Marković ZM, Budimir MD, Danko M, Milivojević DD, Kubat P, Zmejkoski DZ, Pavlović VB, Mojsin MM, Stevanović MJ, Todorović Marković BM. Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:165-174. [PMID: 36761674 PMCID: PMC9907016 DOI: 10.3762/bjnano.14.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 06/01/2023]
Abstract
Carbon quantum dots as a novel type of carbon nanomaterials have attracted the attention of many researchers because of their unique optical, antibacterial, and anticancer properties as well as their biocompatibility. In this study, for the first time, carbon quantum dots were prepared from o-phenylenediamine dissolved in toluene by a solvothermal route. Subsequently, the prepared carbon quantum dots were encapsulated into polyurethane films by a swelling-encapsulation-shrink method. Analyses of the results obtained by different characterization methods (AFM, TEM, EDS, FTIR, photoluminescence, and EPR) indicate the significant influence of the precursor on structural, chemical, and optical properties. Antibacterial and cytotoxicity tests showed that these dots did not have any antibacterial potential, because of the low extent of reactive oxygen species production, and showed low dark cytotoxicity. By investigating the cellular uptake, it was established that these dots penetrated the HeLa cells and could be used as probes for bioimaging.
Collapse
Affiliation(s)
- Zoran M Marković
- Institute of Nuclear Sciences „Vinča“-National Institute of the Republic of Serbia, P.O.B. 522, 11001 Belgrade, Serbia
| | - Milica D Budimir
- Institute of Nuclear Sciences „Vinča“-National Institute of the Republic of Serbia, P.O.B. 522, 11001 Belgrade, Serbia
| | - Martin Danko
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 84 541 Bratislava, Slovakia
| | - Dušan D Milivojević
- Institute of Nuclear Sciences „Vinča“-National Institute of the Republic of Serbia, P.O.B. 522, 11001 Belgrade, Serbia
| | - Pavel Kubat
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23, Praha 8, Czech Republic
| | - Danica Z Zmejkoski
- Institute of Nuclear Sciences „Vinča“-National Institute of the Republic of Serbia, P.O.B. 522, 11001 Belgrade, Serbia
| | - Vladimir B Pavlović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade-Zemun, Serbia
| | - Marija M Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Milena J Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Biljana M Todorović Marković
- Institute of Nuclear Sciences „Vinča“-National Institute of the Republic of Serbia, P.O.B. 522, 11001 Belgrade, Serbia
| |
Collapse
|
12
|
Hsieh CT, Gu S, Gandomi YA, Fu CC, Sung PY, Juang RS, Chen CC. Employing functionalized graphene quantum dots to combat coronavirus and enterovirus. J Colloid Interface Sci 2023; 630:1-10. [PMID: 36308803 PMCID: PMC9580242 DOI: 10.1016/j.jcis.2022.10.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/20/2022]
Abstract
The ongoing COVID-19 (i.e., coronavirus) pandemic continues to adversely affect the human life, economy, and the world's ecosystem. Although significant progress has been made in developing antiviral materials for the coronavirus, much more work is still needed. In this work, N-functionalized graphene quantum dots (GQDs) were designed and synthesized as the antiviral nanomaterial for Feline Coronavirus NTU156 (FCoV NTU156) and Enterovirus 71 (EV71)) with ultra-high inhibition (>99.9%). To prepare the GQD samples, a unique solid-phase microwave-assisted technique was developed and the cell toxicity was established on the H171 and H184 cell lines after 72 h incubation, indicating superior biocompatibility. The surface functionality of GQDs (i.e., the phenolic and amino groups) plays a vital role in interacting with the receptor-binding-domain of the spike protein. It was also found that the addition of polyethylene glycol is advantageous for the dispersion and the adsorption of functionalized GQDs onto the virus surface, leading to an enhanced virus inhibition. The functionality of as-prepared GQD nanomaterials was further confirmed where a functionalized GQD-coated glass was shown to be extremely effective in hindering the virus spread for a relatively long period (>20 h).
Collapse
Affiliation(s)
- Chien-Te Hsieh
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan; Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, United States.
| | - Siyong Gu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Yasser Ashraf Gandomi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, United States
| | - Chun-Chieh Fu
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan; Research and Development Division, Gold Carbon Co., Ltd., Taoyuan 320675, Taiwan
| | - Po-Yu Sung
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ruey-Shin Juang
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan; Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei City 24301, Taiwan.
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei City 11490, Taiwan.
| |
Collapse
|
13
|
Kazlauskas M, Jurgelėnė Ž, Šemčuk S, Jokšas K, Kazlauskienė N, Montvydienė D. Effect of graphene oxide on the uptake, translocation and toxicity of metal mixture to Lepidium sativum L. plants: Mitigation of metal phytotoxicity due to nanosorption. CHEMOSPHERE 2023; 312:137221. [PMID: 36403815 DOI: 10.1016/j.chemosphere.2022.137221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Due to its unique structure and exceptional properties, graphene oxide (GO) is increasingly used in various fields of industry and therefore is inevitably released into the environment, where it interacts with different contaminants. However, the information relating to the ability of GO to affect the toxicity of contaminants is still limited. Therefore, the aim of our study was to synthesize GO, to examine the phytotoxicity of different concentrations of GO and its co-exposure with the metal mixture using garden cress (Lepidium sativum L.) as a test organism and to evaluate the potential of GO to affect toxicity of metals and their uptake by plants. The metal mixture (MIX) containing Ni (II), Zn (II), Cr (III) and Cu (II) was prepared in accordance with the maximum-permissible-concentrations (MPC) accepted for the inland waters in the EU. Additionally, the capacity of GO to adsorb metals was studied in specific conditions of the phytotoxicity test and assessed using adsorption isotherms. Our data indicate that in most cases the tested concentrations of MIX, GO and MIX + GO did not affect seed germination, root growth and biomass of roots and seedlings, however, they were found to alter photosynthesis processes, enhance production of carotenoids and H2O2 as well as to activate lipid peroxidation. Additionally, our study revealed that GO affects the accumulation of tested metals in roots and shoots of the MIX-exposed L. sativum. This is due to the capacity of GO to adsorb metals from the growth medium. Therefore, low concentrations of GO can be used for water decontamination.
Collapse
Affiliation(s)
- M Kazlauskas
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - Ž Jurgelėnė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - S Šemčuk
- SRI Center for Physical Sciences and Technology, Savanorių Ave. 231, LT-02300, Vilnius, Lithuania
| | - K Jokšas
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko St. 24, LT-03225, Vilnius, Lithuania
| | - N Kazlauskienė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - D Montvydienė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania.
| |
Collapse
|
14
|
Pandey AK, Bankoti K, Nath TK, Dhara S. Hydrothermal synthesis of PVP-passivated clove bud-derived carbon dots for antioxidant, catalysis, and cellular imaging applications. Colloids Surf B Biointerfaces 2022; 220:112926. [DOI: 10.1016/j.colsurfb.2022.112926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/24/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
15
|
Pooresmaeil M, Namazi H. Metal-organic framework/carboxymethyl starch/graphene quantum dots ternary hybrid as a pH sensitive anticancer drug carrier for co-delivery of curcumin and doxorubicin. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Tan Y, Ma Y, Fu S, Zhang A. Facile construction of fluorescent C 70-COOH nanoparticles with advanced antibacterial and anti-biofilm photodynamic activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112507. [PMID: 35810597 DOI: 10.1016/j.jphotobiol.2022.112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/06/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Photodynamic antibacterial therapy has been considered as one of the most promising treatments to alleviate the spread of multidrug resistant bacterial pathogens. Given the hypoxic environment of infectious tissues, photosensitizers with reduced oxygen-demand could exhibit superiority upon irradiation. Herein reported is a novel C70-based photosensitizers synthesized by the facile one-step thiol-ene reaction. Various characterization techniques were employed to confirm the structural, photoluminescent properties, photostability and biocompatibility of the as-synthesized C70-COOH nanoparticles. Furthermore, they were capable of efficiently producing reactive oxygen species following both the type I and II mechanistic pathways, thus still generating adequate free radicals under hypoxic condition. Therefore, they could approach and destroy the bacterial cell membrane in the presence of visible light, thereby causing cytoplasmic leakage and eventually achieving broad-spectrum inactivation of four representative bacterial strains. Especially, methicillin-resistant Staphylococcus aureus (MRSA) were completely eliminated after merely 10 minutes irradiation, and the formation of its corresponding biofilm were also greatly inhibited by C70-COOH nanoparticles. These results provide new insights and opportunities for the development of hypoxia-tolerant fullerene-based photosensitizers to combat multidrug resistant bacterial and related infections.
Collapse
Affiliation(s)
- Yixuan Tan
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities, Wuhan 430074, China
| | - Yihan Ma
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities, Wuhan 430074, China.
| | - Sheng Fu
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities, Wuhan 430074, China
| | - Aiqing Zhang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
17
|
Sharma A, Kundu M, Ghosh N, Chatterjee S, Tejwan N, Singh TA, Pabbathi A, Das J, Sil PC. Synthesis of carbon dots from taurine as bioimaging agent and nanohybrid with ceria for antioxidant and antibacterial applications. Photodiagnosis Photodyn Ther 2022; 39:102861. [PMID: 35421600 DOI: 10.1016/j.pdpdt.2022.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022]
Abstract
Here we have synthesized water soluble and biocompatible carbon dots (CDs) from taurine via thermal decomposition method. The CDs showed nearly spherical shape with diameter less than 10 nm. The CDs exhibited excitation dependent fluorescence emission and could be used for mammalian cell imaging. The CDs showed excellent DPPH and hydrogen peroxide radical scavenging activity in cell free system. Besides, the CDs also displayed significant intracellular radical scavenging activity in human normal kidney epithelial (NKE) cells. Furthermore, nanohybrids consisting of both CDs and nanoceria (CeO2) were prepared and tested for their biomedical applications. The nanohybrids showed significant antioxidant activities in both cell free and intracellular conditions. The CDs and nanohybrids possessed very little toxicity upto the concentration of 100 μg/mL when treated for 24 hours in human NKE cells. The CDs as well as nanohybrids further displayed significant bacterial growth inhibition against both gram-positive and gram-negative bacteria under dark as well as light illumination condition via the bacterial membrane damage. However, under the light illumination, the bacterial growth inhibition of CDs and nanohybrids was further enhanced due to the generation of reactive oxygen radicals and subsequent DNA degradation. A higher dose-dependent intracellular antioxidant and antibacterial activities of the nanohybrid is attributed to the synergistic effect of nanoceria and CDs. All these results clearly reflected that our synthesized CDs and their nanohybrids can be used for several biomedical applications.
Collapse
Affiliation(s)
- Anirudh Sharma
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Mousumi Kundu
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Neeraj Tejwan
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Th Abhishek Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Ashok Pabbathi
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Mizoram, Aizawl, 796004, India
| | - Joydeep Das
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
18
|
Uprety B, Abrahamse H. Semiconductor quantum dots for photodynamic therapy: Recent advances. Front Chem 2022; 10:946574. [PMID: 36034651 PMCID: PMC9405672 DOI: 10.3389/fchem.2022.946574] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Photodynamic therapy is a promising cancer treatment that induces apoptosis as a result of the interactions between light and a photosensitizing drug. Lately, the emergence of biocompatible nanoparticles has revolutionized the prospects of photodynamic therapy (PDT) in clinical trials. Consequently, a lot of research is now being focused on developing non-toxic, biocompatible nanoparticle-based photosensitizers for effective cancer treatments using PDT. In this regard, semiconducting quantum dots have shown encouraging results. Quantum dots are artificial semiconducting nanocrystals with distinct chemical and physical properties. Their optical properties can be fine-tuned by varying their size, which usually ranges from 1 to 10 nm. They present many advantages over conventional photosensitizers, mainly their emission properties can be manipulated within the near IR region as opposed to the visible region by the former. Consequently, low intensity light can be used to penetrate deeper tissues owing to low scattering in the near IR region. Recently, successful reports on imaging and PDT of cancer using carbon (carbon, graphene based) and metallic (Cd based) based quantum dots are promising. This review aims to summarize the development and the status quo of quantum dots for cancer treatment.
Collapse
|
19
|
Dorontic S, Bonasera A, Scopelliti M, Markovic O, Bajuk Bogdanović D, Ciasca G, Romanò S, Dimkić I, Budimir M, Marinković D, Jovanovic S. Gamma-Ray-Induced Structural Transformation of GQDs towards the Improvement of Their Optical Properties, Monitoring of Selected Toxic Compounds, and Photo-Induced Effects on Bacterial Strains. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12152714. [PMID: 35957147 PMCID: PMC9370814 DOI: 10.3390/nano12152714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/03/2023]
Abstract
Structural modification of different carbon-based nanomaterials is often necessary to improve their morphology and optical properties, particularly the incorporation of N-atoms in graphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method for N-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presence of the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N was detected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL). Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots, to 7.24% for those irradiated in the presence of 1 g of EDA. Modified GQDs were investigated as a PL probe for the detection of insecticide Carbofuran (2,2-Dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate) and herbicide Amitrole (3-amino-1,2,4-triazole). The limit of detection was 5.4 μmol L-1 for Carbofuran. For the first time, Amitrole was detected by GQDs in a turn-off/turn-on mechanism using Pd(II) ions as a quenching agent. First, Pd(II) ions were quenched (turn-off) PL of GQDs, while after Amitrole addition, PL was recovered linearly with Amitrole concentration (turn-on). LOD was 2.03 μmol L-1. These results suggest that modified GQDs can be used as an efficient new material for Carbofuran and Amitrole detection. Furthermore, the phototoxicity of dots was investigated on both Gram-positive and Gram-negative bacterial strains. When bacterial cells were exposed to different GQD concentrations and illuminated with light of 470 nm wavelength, the toxic effects were not observed.
Collapse
Affiliation(s)
- Sladjana Dorontic
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aurelio Bonasera
- Department of Physics and Chemistry—Emilio Segrè, University of Palermo, 90128 Palermo, Italy
- Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Palermo Research Unit, Viale delle Scienze, Bld. 17, 90128 Palermo, Italy
| | - Michelangelo Scopelliti
- Department of Physics and Chemistry—Emilio Segrè, University of Palermo, 90128 Palermo, Italy
- Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Palermo Research Unit, Viale delle Scienze, Bld. 17, 90128 Palermo, Italy
| | - Olivera Markovic
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | | | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 11158 Rome, Italy
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Sabrina Romanò
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 11158 Rome, Italy
| | - Ivica Dimkić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Milica Budimir
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Dragana Marinković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Svetlana Jovanovic
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| |
Collapse
|
20
|
Guo S, Song Z, Ji DK, Reina G, Fauny JD, Nishina Y, Ménard-Moyon C, Bianco A. Combined Photothermal and Photodynamic Therapy for Cancer Treatment Using a Multifunctional Graphene Oxide. Pharmaceutics 2022; 14:1365. [PMID: 35890259 PMCID: PMC9318106 DOI: 10.3390/pharmaceutics14071365] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Graphene oxide (GO) is one of the most studied nanomaterials in many fields, including the biomedical field. Most of the nanomaterials developed for drug delivery and phototherapies are based on noncovalent approaches that lead to an unspecific release of physisorbed molecules in complex biological environments. Therefore, preparing covalently functionalized GO using straightforward and versatile methods is highly valuable. Phototherapies, including photothermal therapy (PTT) and photodynamic therapy (PDT), have shown great potential as effective therapeutic approaches against cancer. To overcome the limits of a single method, the combination of PTT and PDT can lead to a combined effect with a higher therapeutic efficiency. In this work, we prepare a folic acid (FA) and chlorin e6 (Ce6) double-functionalized GO for combined targeted PTT/PDT. This conjugate can penetrate rapidly into cancer cells and macrophages. A combined effect of PTT and PDT is observed, leading to a higher killing efficiency toward different types of cells involved in cancer and other diseases. Our work provides a simple protocol to prepare multifunctional platforms for the treatment of various diseases.
Collapse
Affiliation(s)
- Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| | - Ding-Kun Ji
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| | - Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| | - Jean-Daniel Fauny
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| | - Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan;
- Research Core for Interdisciplinary Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| |
Collapse
|
21
|
Tejwan N, Kundu M, Ghosh N, Chatterjee S, Sharma A, Abhishek Singh T, Das J, Sil PC. Synthesis of green carbon dots as bioimaging agent and drug delivery system for enhanced antioxidant and antibacterial efficacy. INORG CHEM COMMUN 2022; 139:109317. [DOI: 10.1016/j.inoche.2022.109317] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Zmejkoski DZ, Marković ZM, Mitić DD, Zdravković NM, Kozyrovska NO, Bugárová N, Todorović Marković BM. Antibacterial composite hydrogels of graphene quantum dots and bacterial cellulose accelerate wound healing. J Biomed Mater Res B Appl Biomater 2022; 110:1796-1805. [PMID: 35191591 DOI: 10.1002/jbm.b.35037] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 12/17/2022]
Abstract
The increased antibiotic resistance of pathogenic bacteria requires intense research of new wound healing agents. Novel wound dressings should be designed to provide wound disinfection, good moisture, and fast epithelization. In this study, bacterial cellulose (BC) was impregnated with graphene quantum dots (GQDs) for potential use in wound healing treatment. The BC was successfully loaded with approximately 11.7 wt% of GQDs. The actual release of GQDs from new designed composite hydrogels were 13%. Novel GQDs-BC hydrogel composites are biocompatible and showed significant inhibition towards Staphylococcus aureus and Streptococcus agalactiae and bactericidal effect towards Methicillin-resistant Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The in vitro healing analysis showed significant migration of human fibroblasts after the GQDs-BC hydrogels application. Furthermore, after 72 h exposure to GQDs-BC, endothelial nitric oxide synthase, vascular endothelial growth factor A, matrix metallopeptidase 9, and Vimentin gene expression in fibroblast were significantly upregulated promoting angiogenesis. GQDs-BC hydrogel composites showed very good wound fluid absorption and water retention, which satisfies good dressing properties. All obtained results propose new designed GQDs-BC hydrogels as potential wound dressings.
Collapse
Affiliation(s)
- Danica Z Zmejkoski
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran M Marković
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dijana D Mitić
- Faculty of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Nemanja M Zdravković
- Scientific Veterinary Institute of Serbia, Department for Bacteriology and Parasitology, Belgrade, Serbia
| | - Natalia O Kozyrovska
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nikol Bugárová
- Slovak Academy of Sciences, Polymer Institute, Bratislava, Slovakia
| | - Biljana M Todorović Marković
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
23
|
Activated Carbon and Carbon Quantum Dots/Titanium Dioxide Composite Based on Waste Rice Noodles: Simultaneous Synthesis and Application in Water Pollution Control. NANOMATERIALS 2022; 12:nano12030472. [PMID: 35159817 PMCID: PMC8838941 DOI: 10.3390/nano12030472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 12/24/2022]
Abstract
To achieve the full utilization of waste rice noodle (WRN) without secondary pollution, activated carbon (AC) and carbon quantum dots/titanium dioxide (CQDs/TiO2) composite were simultaneously synthesized by using WRN as raw material. Both of the two materials showed potential applications in water pollution control. The AC based on WRN displayed a porous spherical micro-morphology, which could absorb heavy metal elements like Pb(II) and Cr(VI) efficiently, with a maximum equilibrium uptake of 12.08 mg·g−1 for Pb(II) and 9.36 mg·g−1 for Cr(VI), respectively. The adsorption of the resulted AC could match the Freundlich adsorption isotherm and the pseudo-second-order kinetics mode. On the other hand, the CQDs/TiO2 composite based on WRN displayed a high efficient photocatalytic degradation effect on various water-soluble dyes such as methylene blue, malachite green, methyl violet, basic fuchsin, and rhodamine B under visible light irradiation, which showed better photocatalytic performance than commercial TiO2. The introduction of CQDs based on WRN to TiO2 could result in efficient electron-hole pair separation and enable more photogenerated electrons to reduce O2 and more photogenerated holes to oxidize H2O or OH−, which could cause stronger abilities in producing O2·− and ·OH radical and better photocatalytic activity.
Collapse
|
24
|
Hu Y, Bai S, Fan X, Zhou F, Chen B, Tan S, Xu H, Pan A, Liang S, He Y. Autocatalytic oncotherapy nanosystem with glucose depletion for cascade amplification of hypoxia-activated chemotherapy and H2O2-dependent chemodynamic therapy. Biomater Sci 2022; 10:2358-2369. [PMID: 35383789 DOI: 10.1039/d1bm01944a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypoxia-activated prodrug is an appealing oncotherapy strategy, but limited by insufficient tumor hypoxia. Moreover, standalone prodrug fails to treat tumor satisfactorily due to tumor complexity. Herein, a nanosystem (TPZ@FeMSN-GOX) was...
Collapse
Affiliation(s)
- Yao Hu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Song Bai
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Xingyu Fan
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Fangfang Zhou
- Department of Neurology, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Botao Chen
- Hunan Provincial People's Hospital, the First-Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Hui Xu
- Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China
| | - Anqiang Pan
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Shuquan Liang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
25
|
Interaction of Graphene Oxide Modified with Linear and Branched PEG with Monocytes Isolated from Human Blood. NANOMATERIALS 2021; 12:nano12010126. [PMID: 35010076 PMCID: PMC8746718 DOI: 10.3390/nano12010126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022]
Abstract
Multiple graphene-based therapeutics have recently been developed, however potential risks related to the interaction between nanomaterials and immune cells are still poorly understood. Therefore, studying the impact of graphene oxide on various populations of immune cells is of importance. In this work, we aimed to investigate the effects of PEGylated graphene oxide on monocytes isolated from human peripheral blood. Graphene oxide nanoparticles with lateral sizes of 100–200 nm and 1–5 μm were modified with linear and branched PEG (GO-PEG). Size, elemental composition, and structure of the resulting nanoparticles were characterized. We confirmed that PEG was successfully attached to the graphene oxide surface. The influence of GO-PEG on the production of reactive oxygen species (ROS), cytokines, phagocytosis, and viability of monocytes was studied. Uptake of GO-PEG by monocytes depends on PEG structure (linear or branched). Branched PEG decreased the number of GO-PEG nanoparticles per monocyte. The viability of monocytes was not altered by co-cultivation with GO-PEG. GO-PEG decreased the phagocytosis of Escherichia coli in a concentration-dependent manner. ROS formation by monocytes was determined by measuring luminol-, lucigenin-, and dichlorodihydrofluorescein-dependent luminescence. GO-PEG decreased luminescent signal probably due to inactivation of ROS, such as hydroxyl and superoxide radicals. Some types of GO-PEG stimulated secretion of IL-10 by monocytes, but this effect did not correlate with their size or PEG structure.
Collapse
|
26
|
Krunić M, Ristić B, Bošnjak M, Paunović V, Tovilović-Kovačević G, Zogović N, Mirčić A, Marković Z, Todorović-Marković B, Jovanović S, Kleut D, Mojović M, Nakarada Đ, Marković O, Vuković I, Harhaji-Trajković L, Trajković V. Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death. Free Radic Biol Med 2021; 177:167-180. [PMID: 34678419 DOI: 10.1016/j.freeradbiomed.2021.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023]
Abstract
We investigated the ability of graphene quantum dot (GQD) nanoparticles to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP). GQD reduced SNP cytotoxicity by preventing mitochondrial depolarization, caspase-2 activation, and subsequent apoptotic death. Although GQD diminished the levels of nitric oxide (NO) in SNP-exposed cells, NO scavengers displayed only a slight protective effect, suggesting that NO quenching was not the main protective mechanism of GQD. GQD also reduced SNP-triggered increase in the intracellular levels of hydroxyl radical (•OH), superoxide anion (O2•-), and lipid peroxidation. Nonselective antioxidants, •OH scavenging, and iron chelators, but not superoxide dismutase, mimicked GQD cytoprotective activity, indicating that GQD protect cells by neutralizing •OH generated in the presence of SNP-released iron. Cellular internalization of GQD was required for optimal protection, since a removal of extracellular GQD by extensive washing only partly diminished their protective effect. Moreover, GQD cooperated with SNP to induce autophagy, as confirmed by the inhibition of autophagy-limiting Akt/PRAS40/mTOR signaling and increase in autophagy gene transcription, protein levels of proautophagic beclin-1 and LC3-II, formation of autophagic vesicles, and degradation of autophagic target p62. The antioxidant activity of GQD was not involved in autophagy induction, as antioxidants N-acetylcysteine and dimethyl sulfoxide failed to stimulate autophagy in SNP-exposed cells. Pharmacological inhibitors of early (wortmannin, 3-methyladenine) or late stages of autophagy (NH4Cl) efficiently reduced the protective effect of GQD. Therefore, the ability of GQD to prevent the in vitro neurotoxicity of SNP depends on both •OH/NO scavenging and induction of cytoprotective autophagy.
Collapse
Affiliation(s)
- Matija Krunić
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotića 1, 11000, Belgrade, Serbia
| | - Biljana Ristić
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotića 1, 11000, Belgrade, Serbia
| | - Mihajlo Bošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotića 1, 11000, Belgrade, Serbia
| | - Verica Paunović
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotića 1, 11000, Belgrade, Serbia
| | - Gordana Tovilović-Kovačević
- Department of Biochemistry, Institute for Biological Research, "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000, Belgrade, Serbia
| | - Nevena Zogović
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000, Belgrade, Serbia
| | - Aleksandar Mirčić
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Višegradska 26, 11000, Belgrade, Serbia
| | - Zoran Marković
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade P.O. Box 522, 11000, Belgrade, Serbia
| | - Biljana Todorović-Marković
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade P.O. Box 522, 11000, Belgrade, Serbia
| | - Svetlana Jovanović
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade P.O. Box 522, 11000, Belgrade, Serbia
| | - Duška Kleut
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade P.O. Box 522, 11000, Belgrade, Serbia
| | - Miloš Mojović
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11000, Belgrade, Serbia
| | - Đura Nakarada
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11000, Belgrade, Serbia
| | - Olivera Marković
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Irena Vuković
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotića 1, 11000, Belgrade, Serbia
| | - Ljubica Harhaji-Trajković
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000, Belgrade, Serbia.
| | - Vladimir Trajković
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotića 1, 11000, Belgrade, Serbia.
| |
Collapse
|
27
|
Stygar D, Pogorzelska A, Chełmecka E, Skrzep-Poloczek B, Bażanów B, Gębarowski T, Jochem J, Henych J. Graphene Oxide Normal (GO + Mn 2+) and Ultrapure: Short-Term Impact on Selected Antioxidant Stress Markers and Cytokines in NHDF and A549 Cell Lines. Antioxidants (Basel) 2021; 10:antiox10050765. [PMID: 34065001 PMCID: PMC8151183 DOI: 10.3390/antiox10050765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/28/2021] [Accepted: 05/08/2021] [Indexed: 01/02/2023] Open
Abstract
Since biological applications and toxicity of graphene-based materials are structure dependent, studying their interactions with the biological systems is very timely and important. We studied short-term (1, 24, and 48 h) effects of ultrapure (GO) and Mn2+-contaminated (GOS) graphene oxide on normal human dermal fibroblasts (NHDF) and adenocarcinomic human alveolar basal epithelial cells (A549) using selected oxidative stress markers and cytokines: glutathione reductase (GR) and catalase (CAT) activity, total antioxidative capacity (TAC), and malondialdehyde (MDA) concentration, levels of vascular endothelial growing factor (VEGF), tumor necrosis factor-alpha (TNF-α), platelet-derived growth factor-BB (PDGF-BB), and eotaxin. GOS induced higher levels of oxidative stress, measured with CAT activity, TAC, and MDA concentration than GO in both cell lines when compared to control cells. GR activity decreased in time in NHDF cells but increased in A549 cells. The levels of cytokines were related to the exposure time and graphene oxide type in both analyzed cell lines and their levels comparably increased over time. We observed higher TNF-α levels in NHDF and higher levels of VEGF and eotaxin in the A549 cell line. Both types of cells showed similar susceptibility to GO and GOS. We concluded that the short-time exposure to GOS induced the stronger response of oxidative stress markers without collapsing the antioxidative systems of analysed cells. Increased levels of inflammatory cytokines after GO and GOS exposure were similar both in NHDF and A549 cells.
Collapse
Affiliation(s)
- Dominika Stygar
- Department of Physiology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poniatowskiego 15 Street, 40-055 Katowice, Poland; (B.S.-P.); (J.J.)
- Correspondence: ; Tel.: +48-696-222-884
| | - Aleksandra Pogorzelska
- Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31 Street, 50-375 Wrocław, Poland; (B.B.); (A.P.)
| | - Elżbieta Chełmecka
- Department of Statistics, Department of Instrumental Analysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Ostrogórska 30 Street, 40-055 Katowice, Poland;
| | - Bronisława Skrzep-Poloczek
- Department of Physiology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poniatowskiego 15 Street, 40-055 Katowice, Poland; (B.S.-P.); (J.J.)
| | - Barbara Bażanów
- Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31 Street, 50-375 Wrocław, Poland; (B.B.); (A.P.)
| | - Tomasz Gębarowski
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 Street, 50-367 Wrocław, Poland;
| | - Jerzy Jochem
- Department of Physiology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poniatowskiego 15 Street, 40-055 Katowice, Poland; (B.S.-P.); (J.J.)
| | - Jiří Henych
- Institute of Inorganic Chemistry, Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic;
| |
Collapse
|
28
|
Ansari L, Hallaj S, Hallaj T, Amjadi M. Doped-carbon dots: Recent advances in their biosensing, bioimaging and therapy applications. Colloids Surf B Biointerfaces 2021; 203:111743. [PMID: 33872828 DOI: 10.1016/j.colsurfb.2021.111743] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/12/2021] [Accepted: 04/01/2021] [Indexed: 12/28/2022]
Abstract
As a fascinating class of fluorescent carbon dots (CDs), doped-CDs are now sparked intense research interest, particularly in the diverse fields of biomedical applications due to their unique advantages, including low toxicity, physicochemical, photostability, excellent biocompatibility, and so on. In this review, we have summarized the most recent developments in the literature regarding the employment of doped-CDs for pharmaceutical and medical applications, which are published over approximately the past five years. Accordingly, we discuss the toxicity and optical properties of these nanomaterials. Beyond the presentation of successful examples of the application of these multifunctional nanoparticles in photothermal therapy, photodynamic therapy, and antibacterial activity, we further highlight their application in the cellular labeling, dual imaging, and in vitro and in vivo bioimaging by use of fluorescent-, photoacoustic-, magnetic-, and computed tomography (CT)-imaging. The potency of doped-CDs was also described in the biosensing of ions, small molecules, and drugs in biological samples or inside the cells. Finally, the advantages, disadvantages, and common limitations of doped-CD technologies are reviewed, along with the future prospects in biomedical research. Therefore, this review provides a concise insight into the current developments and challenges in the field of doped-CDs, especially for biological and biomedical researchers.
Collapse
Affiliation(s)
- Legha Ansari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Shahin Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran.
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|