1
|
Huang Y, Liao Q, Wang X, Fu H, Huang B, Xin J, Shen C. Roles and mechanisms of boron in reducing cadmium accumulation in crops. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118216. [PMID: 40249977 DOI: 10.1016/j.ecoenv.2025.118216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/17/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Cadmium (Cd) contamination in farmland soil has become a global environmental concern, resulting in Cd pollution in crops. It is urgent to address this issue, and recent research has suggested that exogenous application of nutrient elements, including boron (B), is an effective strategy to decrease Cd accumulation in crops. Boron, an essential micronutrient for plants, plays a key role in maintaining cell integrity, promoting nitrogen metabolism, and enhancing nutrient absorption. Boron enhances Cd tolerance and reduces Cd accumulation in crops by regulating ROS homeostasis, heavy metal transport proteins, and promoting Cd chelation onto cell walls. However, the precise mechanism by which B regulates Cd accumulation remains unclear. This paper summarizes the physiological, biochemical, and molecular mechanisms by which B regulates Cd accumulation in crops. We believe that the rational application of B in light to moderate Cd-contaminated areas could effectively reduce Cd accumulation in crops, ensuring the safety of agricultural products in these regions.
Collapse
Affiliation(s)
- Yingying Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Qiong Liao
- Hunan Chemical Vocational Technology College, Zhuzhou 412000, China
| | - Xuesong Wang
- Chinese Academy of Inspection and Quarantine Greater Bay Area, Zhongshan 528437, China
| | - Huiling Fu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Baifei Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Chuang Shen
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| |
Collapse
|
2
|
Tao H, Wu Y, Liu S, Yang S, Xu X. Over-expression of LsEXPA6, a lettuce expansin gene, improves cadmium stress tolerance in transgenic Arabidopsis. Gene 2025; 933:148927. [PMID: 39255860 DOI: 10.1016/j.gene.2024.148927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Cadmium (Cd) is a harmful heavy metal that is highly toxic to plants and animals. Expansins are cell wall proteins inducing cell wall loosening and participate in all plant growth and development processes which are associated with cell wall modifications. We investigated lettuce's expansin gene LsEXPA6 and found that LsEXPA6 overexpression Arabidopsis lines were much more resistant to cadmium stress. Our results revealed that the root system of the expa6 mutant was suppressed under cadmium stress, resulting in shorter plant height, reduced biomass, and a significant increase in cadmium content in the plants compared with wild-type plants, whereas LsEXPA6 overexpression lines had a well-developed root system and reduced cadmium accumulation in the roots and shoots of the plants. The above results indicated that overexpression of LsEXPA6 affected root development and reduced Cd absorption in Arabidopsis. In addition, the higher absorption capacity of nutrients, increased antioxidant enzymes activities, improved chlorophyll and photosynthetic function in the overexpression Arabidopsis plants, supported the Cd stress tolerance mechanism. Taken together, these results provided a new insight on the role of expansin proteins in the tolerance of plants to Cd stress by root cell elongation.
Collapse
Affiliation(s)
- Huifang Tao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yongzhen Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Sixuan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuxue Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoming Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Li Z, Jiang L, Long P, Wang C, Liu P, Hou F, Zhang M, Zou C, Huang Y, Ma L, Shen Y. A phased small interfering RNA-derived pathway mediates lead stress tolerance in maize. PLANT PHYSIOLOGY 2024; 196:1163-1179. [PMID: 39074204 DOI: 10.1093/plphys/kiae397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
Phased small interfering RNAs (phasiRNAs) are a distinct class of endogenous small interfering RNAs, which regulate plant growth, development, and environmental stress response. To determine the effect of phasiRNAs on maize (Zea mays L.) tolerance to lead (Pb) stress, the roots of 305 maize lines under Pb treatment were subjected to generation of individual databases of small RNAs. We identified 55 high-confidence phasiRNAs derived from 13 PHAS genes (genes producing phasiRNAs) in this maize panel, of which 41 derived from 9 PHAS loci were negatively correlated with Pb content in the roots. The potential targets of the 41 phasiRNAs were enriched in ion transport and import. Only the expression of PHAS_1 (ZmTAS3j, Trans-Acting Short Interference RNA3) was regulated by its cis-expression quantitative trait locus and thus affected the Pb content in the roots. Using the Nicotiana benthamiana transient expression system, 5'-rapid amplification of cDNA ends, and Arabidopsis heterologously expressed, we verified that ZmTAS3j was cleaved by zma-miR390 and thus generated tasiRNA targeting ARF genes (tasiARFs), and that the 5' and 3' zma-miR390 target sites of ZmTAS3j were both necessary for efficient biosynthesis and functional integrity of tasiARFs. We validated the involvement of the zma-miR390-ZmTAS3j-tasiARF-ZmARF3-ZmHMA3 pathway in Pb accumulation in maize seedlings using genetic, molecular, and cytological methods. Moreover, the increased Pb tolerance in ZmTAS3j-overexpressed lines was likely attributed to the zma-miR390-ZmTAS3j-tasiARF-ZmARF3-SAURs pathway, which elevated indole acetic acid levels and thus reactive oxygen species-scavenging capacity in maize roots. Our study reveals the importance of the TAS3-derived tasiRNA pathway in plant adaptation to Pb stress.
Collapse
Affiliation(s)
- Zhaoling Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Li Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chen Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fengxia Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Minyan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongcai Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Chen H, Tang X, Wang T, Liao W, Wu Z, Wu M, Song Z, Li Y, Luo P. Calcium polypeptide mitigates Cd toxicity in rice via reducing oxidative stress and regulating pectin modification. PLANT CELL REPORTS 2024; 43:163. [PMID: 38842544 DOI: 10.1007/s00299-024-03253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
KEY MESSAGE Calcium polypeptide plays a key role during cadmium stress responses in rice, which is involved in increasing peroxidase activity, modulating pectin methylesterase activity, and regulating cell wall by reducing malondialdehyde content. Cadmium (Cd) contamination threatens agriculture and human health globally, emphasizing the need for sustainable methods to reduce cadmium toxicity in crops. Calcium polypeptide (CaP) is a highly water-soluble small molecular peptide acknowledged for its potential as an organic fertilizer in promoting plant growth. However, it is still unknown whether CaP has effects on mitigating Cd toxicity. Here, we investigated the effect of CaP application on the ability to tolerate toxic Cd in rice. We evaluated the impact of CaP on rice seedlings under varying Cd stress conditions and investigated the effect mechanism of CaP mitigating Cd toxicity by Fourier transform infrared spectroscopy (FTIR), fluorescent probe dye, immunofluorescent labeling, and biochemical analysis. We found a notable alleviation of Cd toxicity by reduced malondialdehyde content and increased peroxidase activity. In addition, our findings reveal that CaP induces structural alterations in the root cell wall by modulating pectin methylesterase activity. Altogether, our results confirm that CaP not only promoted biomass accumulation but also reduced Cd concentration in rice. This study contributes valuable insights to sustainable strategies for addressing Cd contamination in agricultural ecosystems.
Collapse
Affiliation(s)
- Hongbing Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Xiaojun Tang
- Civil & Environmental Engineering, University of California, Irvine, CA, US
| | - Tiejun Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
- Collaborative Innovation of Water Security for the Water Source Region of Mid-Line of the South-to-North Diversion Project of Henan Province, College of Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Weifang Liao
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhixian Wu
- Bijie Institute of Agricultural Science, Bijie, China
| | - Meiling Wu
- Bijie Institute of Agricultural Science, Bijie, China
| | - Zhihao Song
- Bijie Institute of Agricultural Science, Bijie, China
| | - Yadong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Pan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China.
| |
Collapse
|
5
|
Dalal M, Mansi, Mayandi K. Zoom-in to molecular mechanisms underlying root growth and function under heterogeneous soil environment and abiotic stresses. PLANTA 2023; 258:108. [PMID: 37898971 DOI: 10.1007/s00425-023-04262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023]
Abstract
MAIN CONCLUSION The review describes tissue-specific and non-cell autonomous molecular responses regulating the root system architecture and function in plants. Phenotypic plasticity of roots relies on specific molecular and tissue specific responses towards local and microscale heterogeneity in edaphic factors. Unlike gravitropism, hydrotropism in Arabidopsis is regulated by MIZU KUSSIE1 (MIZ1)-dependent asymmetric distribution of cytokinin and activation of Arabidopsis response regulators, ARR16 and ARR17 on the lower water potential side of the root leading to higher cell division and root bending. The cortex specific role of Abscisic acid (ABA)-activated SNF1-related protein kinase 2.2 (SnRK2.2) and MIZ1 in elongation zone is emerging for hydrotropic curvature. Halotropism involves clathrin-mediated internalization of PIN FORMED 2 (PIN2) proteins at the side facing higher salt concentration in the root tip, and ABA-activated SnRK2.6 mediated phosphorylation of cortical microtubule-associated protein Spiral2-like (SP2L) in the root transition zone, which results in anisotropic cell expansion and root bending away from higher salt. In hydropatterning, Indole-3-acetic acid 3 (IAA3) interacts with SUMOylated-ARF7 (Auxin response factor 7) and prevents expression of Lateral organ boundaries-domain 16 (LBD16) in air-side of the root, while on wet side of the root, IAA3 cannot repress the non-SUMOylated-ARF7 thereby leading to LBD16 expression and lateral root development. In root vasculature, ABA induces expression of microRNA165/microRNA166 in endodermis, which moves into the stele to target class III Homeodomain leucine zipper protein (HD-ZIP III) mRNA in non-cell autonomous manner. The bidirectional gradient of microRNA165/6 and HD-ZIP III mRNA regulates xylem patterning under stress. Understanding the tissue specific molecular mechanisms regulating the root responses under heterogeneous and stress environments will help in designing climate-resilient crops.
Collapse
Affiliation(s)
- Monika Dalal
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| | - Mansi
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Karthikeyan Mayandi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
6
|
Mansoor S, Ali A, Kour N, Bornhorst J, AlHarbi K, Rinklebe J, Abd El Moneim D, Ahmad P, Chung YS. Heavy Metal Induced Oxidative Stress Mitigation and ROS Scavenging in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3003. [PMID: 37631213 PMCID: PMC10459657 DOI: 10.3390/plants12163003] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Although trace elements are essential for life, environmental contamination due to metal accumulation and overuse in various sectors, such as healthcare, agriculture, industry, and cosmetics, poses significant health concerns. Exposure of plants to heavy metals leads to the overproduction of reactive oxygen species (ROS) due to their ability to change mitochondrial membrane permeability and restrict the action of ROS clearance enzymes in the cellular antioxidant system. The interaction of ROS with cellular membranes, heavy-metal-induced interactions directly or indirectly with different macromolecules, and signaling pathways leads to the accumulation of environmental pollutants and oxidative stress in exposed organisms. The heavy metal-ROS-cell signaling axis affects various pathological processes such as ATP depletion, excess ROS production, mitochondrial respiratory chain damage, decoupling of oxidative phosphorylation, and mitochondrial death. This review focuses on discussing the toxic effects of different heavy metals on plants, with particular emphasis on oxidative stress, its consequences, and mitigation strategies.
Collapse
Affiliation(s)
- Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Republic of Korea;
| | - Asif Ali
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK;
| | - Navneet Kour
- Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 20, 42119 Wuppertal, Germany;
- Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany
| | - Khadiga AlHarbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Jörg Rinklebe
- Laboratory of Soil and Groundwater Management, Institute of Foundation Engineering, Water and Waste Management, School of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285 Wuppertal, Germany;
| | - Diaa Abd El Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt;
| | - Parvaiz Ahmad
- Department of Botany, Government Degree College, Pulwama 192301, Jammu and Kashmir, India
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Republic of Korea;
| |
Collapse
|
7
|
Moy A, Czajka K, Michael P, Nkongolo K. Transcriptome Analysis Reveals Changes in Whole Gene Expression, Biological Process, and Molecular Functions Induced by Nickel in Jack Pine ( Pinus banksiana). PLANTS (BASEL, SWITZERLAND) 2023; 12:2889. [PMID: 37571042 PMCID: PMC10421529 DOI: 10.3390/plants12152889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Understanding the genetic response of plants to nickel stress is a necessary step to improving the utility of plants in environmental remediation and restoration. The main objective of this study was to generate whole genome expression profiles of P. banksiana exposed to nickel ion toxicity compared to reference genotypes. Pinus banksiana seedlings were screened in a growth chamber setting using a high concentration of 1600 mg of nickel per 1 kg of soil. RNA was extracted and sequenced using the Illumina platform, followed by de novo transcriptome assembly. Overall, 25,552 transcripts were assigned gene ontology. The biological processes in water-treated samples were analyzed, and 55% of transcripts were distributed among five categories: DNA metabolic process (19.3%), response to stress (13.3%), response to chemical stimuli (8.7%), signal transduction (7.7%) and response to biotic stimulus (6.0%). For molecular function, the highest percentages of genes were involved in nucleotide binding (27.6%), nuclease activity (27.3%) and kinase activity (10.3%). Sixty-two percent of genes were associated with cellular compartments. Of these genes, 21.7% were found in the plasma membrane, 16.1% in the cytosol, 12.4% with the chloroplast and 11.9% in the extracellular region. Nickel ions induced changes in gene expression, resulting in the emergence of differentially regulated categories. Overall, there were significant changes in gene expression with a total 4128 genes upregulated and 3754 downregulated genes detected in nickel-treated genotypes compared to water-treated control plants. For biological processes, the highest percentage of upregulated genes in plants exposed to nickel were associated with the response to stress (15%), the response to chemicals (11,1%), carbohydrate metabolic processes (7.4%) and catabolic processes (7.4%). The largest proportions of downregulated genes were associated with the biosynthetic process (21%), carbohydrate metabolic process (14.3%), response to biotic stimulus (10.7%) and response to stress (10.7%). For molecular function, genes encoding for enzyme regulatory and hydrolase activities represented the highest proportion (61%) of upregulated gene. The majority of downregulated genes were involved in the biosynthetic processes. Overall, 58% of upregulated genes were located in the extracellular region and the nucleus, while 42% of downregulated genes were localized to the plasma membrane and 33% to the extracellular region. This study represents the first report of a transcriptome from a conifer species treated with nickel.
Collapse
Affiliation(s)
| | | | | | - Kabwe Nkongolo
- Biomolecular Sciences Program and Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (A.M.); (K.C.); (P.M.)
| |
Collapse
|
8
|
Zuo D, Hu M, Zhou W, Lei F, Zhao J, Gu L. EcAGL enhances cadmium tolerance in transgenic Arabidopsis thaliana through inhibits cadmium transport and ethylene synthesis pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107900. [PMID: 37482029 DOI: 10.1016/j.plaphy.2023.107900] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal with severe impacts on plant growth and development. Although a multitude of plants have acquired strong tolerance to Cd stress, the underlying molecular mechanism has not been fully elucidated. Here, we identified a Agamous-like MADS-box gene (EcAGL) from Erigeron canadensis. The expression of EcAGL was obviously raised under Cd stress and subcellular localization indicated EcAGL was localized in the nucleus. Overexpression of EcAGL in Arabidopsis thaliana showed marked alleviation of the Cd-induced reduction; Compared to wild-type lines, the antioxidant enzymes activities were increased in EcAGL overexpressing lines under Cd stress. The roots Cd content of transgenic lines was not different with the control plants, whereas significant reduction in shoots Cd content was detected in the transgenic lines, indicating that this gene can enhance Cd tolerance by reducing Cd accumulation in Arabidopsis. Moreover, the expression levels of heavy metal ATPase (AtHMA2 and AtHMA3) and natural resistance-associated macrophage protein (AtNRAMP5) genes in the root of transgenic lines decreased under Cd stress, indicating that EcAGL likely hampered the Cd transport pathway. Gene expression profiles in shoot showed that EcAGL likely modulates the expression of 1-aminocyclopropane-1-carboxylic acid synthase gene (AtACS2), which is involved in the ethylene synthesis pathway, to strengthen the tolerance to Cd. Collectively, these results indicate that EcAGL plays a significant role in regulating Cd tolerance in E. canadensis by alleviating oxidative stress, Cd transport and affecting the ethylene biosynthesis pathway, providing new insight into the molecular mechanism underlying plant tolerance to Cd stress.
Collapse
Affiliation(s)
- Dan Zuo
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Mingyang Hu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Wenwen Zhou
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Fangping Lei
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Jingwen Zhao
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
| |
Collapse
|
9
|
Shumayla, Tyagi S, Sharma Y, Madhu, Sharma A, Pandey A, Singh K, Upadhyay SK. Expression of TaNCL2-A ameliorates cadmium toxicity by increasing calcium and enzymatic antioxidants activities in arabidopsis. CHEMOSPHERE 2023; 329:138636. [PMID: 37040835 DOI: 10.1016/j.chemosphere.2023.138636] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) is a heavy metal that occurs naturally in the environment and is toxic to both animals and plants. The impact of Cd toxicity is shown to be reduced by the exogenous application of calcium (Ca) in crop plants. The sodium/calcium exchanger-like (NCL) protein is involved in Ca enrichment in the cytoplasm by transporting it from the vacuole in the exchange of cytosolic sodium (Na). However, it has not been utilized to ameliorate the Cd toxicity, to date. An elevated expression of TaNCL2-A gene in the root and shoot tissues of bread wheat seedlings, and a higher growth rate of recombinant yeast cells, suggested its role in Cd stress response. The TaNCL2-A expressing transgenic Arabidopsis lines exhibited significant Cd tolerance with increased Ca (∼10-fold) accumulation. The proline content and antioxidant enzymes activities were increased while oxidative stress-related molecules such as H2O2 and MDA were reduced in the transgenic lines. In addition, the growth and yield parameters of transgenic lines such as seed germination rate, root length, leaf biomass, leaf area index, rosette diameter, leaf length and width, and silique count, along with various physiological indicators like chlorophyll, carotenoid, and relative water contents were also improved in comparison to the control plants. Further, the transgenic lines exhibited significant salinity and osmotic stress tolerance, as well. Taken together, these results suggested that the TaNCL2-A could mitigate Cd toxicity along with salinity and osmotic stress. This gene may also be utilized for phytoremediation and Cd sequestration in future studies.
Collapse
Affiliation(s)
- Shumayla
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Yashraaj Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India; Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Madhu
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, New Delhi, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | | |
Collapse
|
10
|
Carvalho MEA, Agathokleous E, Nogueira ML, Brunetto G, Brown PH, Azevedo RA. Neutral-to-positive cadmium effects on germination and seedling vigor, with and without seed priming. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130813. [PMID: 36706487 DOI: 10.1016/j.jhazmat.2023.130813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
This review gathered and analyzed data about (i) the Cd-induced impacts on seed germination and seedling vigor, and (ii) the use of different priming agents to mitigate Cd-induced impacts on the early plant development. Critical evaluation of the obtained data revealed intriguing results. First, seeds of diverse species can endure exposures to Cd. Such endurance is exhibited as maintenance of or even improvement in the seed germination and vigor (up to 15% and 70%, respectively). Second, the main factors influencing seed tolerance to Cd toxicity are related to temporal variations in anatomical, physiological, and/or biochemical features. Third, Cd can trigger diverse transgenerational effects on plants by shaping seed endophytes, by modulating seed provisioning with resources and regulatory elements, and/or by altering seed (epi)genomics. Fourth, different chemical, biological and physical priming agents can mitigate Cd-induced impacts on seeds, sometimes enhancing their performance over the control (reference) values. Overall, this review shows that the impacts of Cd on seed germination and vigor encompass not only negative outcomes but also neutral and positive ones, depending upon the Cd dose, media properties, plant species and genotypes, plant developmental stage and organ, and management approaches. Increasing our understanding of plant tolerance mechanisms against the growing background Cd pollution is relevant to support breeding programs, agricultural practices, and health-environmental policies.
Collapse
Affiliation(s)
- Marcia E A Carvalho
- Department of Genetics, Luiz de Queiroz College of Agriculture/ University of São Paulo, Avenida Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Marina L Nogueira
- Department of Genetics, Luiz de Queiroz College of Agriculture/ University of São Paulo, Avenida Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Gustavo Brunetto
- Soil Science Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Patrick H Brown
- Department of Plant Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Ricardo A Azevedo
- Department of Genetics, Luiz de Queiroz College of Agriculture/ University of São Paulo, Avenida Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil.
| |
Collapse
|
11
|
Cuypers A, Vanbuel I, Iven V, Kunnen K, Vandionant S, Huybrechts M, Hendrix S. Cadmium-induced oxidative stress responses and acclimation in plants require fine-tuning of redox biology at subcellular level. Free Radic Biol Med 2023; 199:81-96. [PMID: 36775109 DOI: 10.1016/j.freeradbiomed.2023.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Cadmium (Cd) is one of the most toxic compounds released into our environment and is harmful to human health, urging the need to remediate Cd-polluted soils. To this end, it is important to increase our insight into the molecular mechanisms underlying Cd stress responses in plants, ultimately leading to acclimation, and to develop novel strategies for economic validation of these soils. Albeit its non-redox-active nature, Cd causes a cellular oxidative challenge, which is a crucial determinant in the onset of diverse signalling cascades required for long-term acclimation and survival of Cd-exposed plants. Although it is well known that Cd affects reactive oxygen species (ROS) production and scavenging, the contribution of individual organelles to Cd-induced oxidative stress responses is less well studied. Here, we provide an overview of the current information on Cd-induced organellar responses with special attention to redox biology. We propose that an integration of organellar ROS signals with other signalling pathways is essential to finetune plant acclimation to Cd stress.
Collapse
Affiliation(s)
- Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium.
| | - Isabeau Vanbuel
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Verena Iven
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Kris Kunnen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Stéphanie Vandionant
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| |
Collapse
|
12
|
Zhang J, Zhang M, Zhang J, Wang F, Wang Y, Zheng L. Overexpression of RtSYP121 confers cadmium colerance by promoting vesicle trafficking, maintaining ion homeostasis, and alleviating photosynthetic inhibition in Arabidopsis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114620. [PMID: 36773437 DOI: 10.1016/j.ecoenv.2023.114620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/22/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal in soil that seriously threatens crop production, food security, and human health. Syntaxins, a prototype family of Soluble N-ethyl-maleimide-associated protein receptors (SNAREs) involved in vesicle trafficking, are implicated in resistance to abiotic stresses, including Cd stress, but the molecular mechanisms underlying the involvement of syntaxins in Cd tolerance in plants are unclear. In this study, we isolated and functionally characterized the syntaxin gene RtSYP121 from Reaumuria trigyna to evaluate its potential for phytoremediation. RtSYP121 resides in the plasma membrane. The transcriptional level of RtSYP121 was strongly increased by salt, drought, and Cd stress. Overexpression of RtSYP121 significantly enhanced the Cd tolerance of transgenic Arabidopsis. The Cd tolerance of transgenic plants mainly depended on elevated vesicle trafficking, which increased the content of K+ and Ca2+ and thus decreased the accumulation of Cd2+ by regulating the delivery or activity of ion transporters, channels, and pumps. Moreover, overexpression of RtSYP121 in Arabidopsis ameliorated Cd stress-induced phytotoxic effects, including growth inhibition, ROS burst, photosynthetic impairment, and cell death. Therefore, we suggest that RtSYP121 plays multiple roles in the plant response to Cd stress by promoting vesicle trafficking, maintaining ion homeostasis, and alleviating photosynthetic inhibition.
Collapse
Affiliation(s)
- Jiayuan Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| | - Miao Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| | - Jian Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| | - Fang Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| | - Yingchun Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| | - Linlin Zheng
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| |
Collapse
|
13
|
Khan Z, Fan X, Khan MN, Khan MA, Zhang K, Fu Y, Shen H. The toxicity of heavy metals and plant signaling facilitated by biochar application: Implications for stress mitigation and crop production. CHEMOSPHERE 2022; 308:136466. [PMID: 36122746 DOI: 10.1016/j.chemosphere.2022.136466] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) accumulation in soil poses a severe threat worldwide for soil, plants, and humans. The accumulation of HMs in soil and uptake by plants leads to disrupt physiological and biochemical metabolisms. As a potential and sustainable soil amendment, biochar has attained huge attention to reduce HMs toxicity in soil and improve plant growth influenced by HMs stress. Despite an array of research studies, there is a lack of knowledge on how biochar interacts with HMs, moderate plant defence system, induce HMs stress signals pathways and promote plant growth. At first, the review highlights the possible effects of HMs on soil and plant and their consequences on plant signaling network. Secondly, the biochar's impact on soil physiochemical properties and the sorption of HMs on biochar surface through direct and indirect mechanisms are reviewed. Finally, the review shows the key roles of biochar in soil improvement to enhance plant growth and signaling response to HMs by enhancing the activities of antioxidants and reducing chlorophyll injury, reactive oxygen species (ROS) accumulation, and cell membrane degradation under HMs stress. However, future studies are needed to evaluate the role of biochar in diverse climatic conditions as well as the long-term effects of biochar on HMs persistency in soil and crop productivity. This review will provide new avenues for future studies to address and quantify the advancement in biochar's role in alleviating plant's HMs stress on a sustainable basis.
Collapse
Affiliation(s)
- Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Xianting Fan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Mohammad Nauman Khan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Kangkang Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Youqiang Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, China; Guangdong Key Laboratory of New Technology in Rice Breeding, China; Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Hong Shen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
14
|
Waheed A, Haxim Y, Islam W, Ahmad M, Ali S, Wen X, Khan KA, Ghramh HA, Zhang Z, Zhang D. Impact of Cadmium Stress on Growth and Physio-Biochemical Attributes of Eruca sativa Mill. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212981. [PMID: 36365433 PMCID: PMC9654351 DOI: 10.3390/plants11212981] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/15/2022] [Accepted: 11/01/2022] [Indexed: 05/30/2023]
Abstract
Plants may experience adverse effects from Cadmium (Cd). As a result of its toxicity and mobility within the soil-plant continuum, it is attracting the attention of soil scientists and plant nutritionists. In this study, we subjected young Eruca sativa Mill. seedlings to different levels of Cd applications (0, 1.5, 6 and 30 µmol/L) via pot experiment to explore its morpho-physio-biochemical adaptations. Our results revealed a significant Cd accumulation in leaves at high Cd stress. It was also demonstrated that Cd stress inhibited photosynthetic rate and pigment levels, ascorbate peroxidase (APX), guaiacol peroxidase (GPX), catalase (CAT), and superoxide dismutase (SOD) enzyme activities, and increased malondialdehyde (MDA) levels. Conversely, the concentration of total ascorbate (TAS) increased at all levels of Cd application, whereas that of ascorbic acid (ASA), and dehydroascorbate (DHA) increased at 1.5 (non-significant), 6, 30 and 6 µmol/L (significant), though their concentrations decreased non-significantly at 30 µmol/L application. In conclusion, Cd-subjected E. sativa seedlings diverted much energy from growth towards the synthesis of anti-oxidant metabolites and osmolytes. However, they did not seem to have protected the E. sativa seedlings from Cd-induced oxidative stress, causing a decrease in osmotic adjustment, and an increase in oxidative damage, which resulted in a reduction in photosynthesis and growth. Accordingly, we recommend that the cultivation of E. sativa should be avoided on soil with Cd contamination.
Collapse
Affiliation(s)
- Abdul Waheed
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Yakupjan Haxim
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Mushtaq Ahmad
- Department of Zoology, Islamia College University, Peshawar 25120, Pakistan
| | - Sajjad Ali
- Department of Botany, Bacha Khan University, Charsadda 24461, Pakistan
| | - Xuejing Wen
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, King Khalid University, Abha 61413, Saudi Arabia
- Applied College, Mahala Campus, King Khalid University, Abha 61413, Saudi Arabia
- Biology Department Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Unit of Bee Research and Honey Production, King Khalid University, Abha 61413, Saudi Arabia
- Applied College, Mahala Campus, King Khalid University, Abha 61413, Saudi Arabia
- Biology Department Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Zhuqi Zhang
- Binzhou Vocational College, Binzhou 256603, China
| | - Daoyuan Zhang
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| |
Collapse
|
15
|
Han M, Yang H, Yu G, Jiang P, You S, Zhang L, Lin H, Liu J, Shu Y. Application of Non-invasive Micro-test Technology (NMT) in environmental fields: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113706. [PMID: 35659702 DOI: 10.1016/j.ecoenv.2022.113706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Non-invasive Micro-test Technology (NMT) is a selective microelectrode technique which can detect the flux rates and three-dimensional motion directions of ions or molecules into and out of living organisms in situ without damaging the sample. It has the advantages of maintaining sample integrity, high temporal and spatial resolution, and being able to measure multiple sites simultaneously. In this paper we provide a comprehensive review on the development of NMT in recent years. Its principles, characteristics, and the differences with other microelectrode techniques are introduced. We discuss the applications of NMT in the field of phytoremediation, plant resistance, water quality monitoring, and toxicity mechanisms of heavy metals on organisms. Furthermore, the challenges and future prospects of NMT in the environmental field are presented.
Collapse
Affiliation(s)
- Mengxuan Han
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Huan Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Guo Yu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Pingping Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Shaohong You
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin, China.
| | - Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Hua Lin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin, China
| | - Yi Shu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| |
Collapse
|
16
|
John WA, Lückel B, Matschiavelli N, Hübner R, Matschi S, Hoehenwarter W, Sachs S. Endocytosis is a significant contributor to uranium(VI) uptake in tobacco (Nicotiana tabacum) BY-2 cells in phosphate-deficient culture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153700. [PMID: 35168012 DOI: 10.1016/j.scitotenv.2022.153700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Endocytosis of metals in plants is a growing field of study involving metal uptake from the rhizosphere. Uranium, which is naturally and artificially released into the rhizosphere, is known to be taken up by certain species of plant, such as Nicotiana tabacum, and we hypothesize that endocytosis contributes to the uptake of uranium in tobacco. The endocytic uptake of uranium was investigated in tobacco BY-2 cells using an optimized setup of culture in phosphate-deficient medium. A combination of methods in biochemistry, microscopy and spectroscopy, supplemented by proteomics, were used to study the interaction of uranium and the plant cell. We found that under environmentally relevant uranium concentrations, endocytosis remained active and contributed to 14% of the total uranium bioassociation. Proteomics analyses revealed that uranium induced a change in expression of the clathrin heavy chain variant, signifying a shift in the type of endocytosis taking place. However, the rate of endocytosis remained largely unaltered. Electron microscopy and energy-dispersive X-ray spectroscopy showed an adsorption of uranium to cell surfaces and deposition in vacuoles. Our results demonstrate that endocytosis constitutes a considerable proportion of uranium uptake in BY-2 cells, and that endocytosed uranium is likely targeted to the vacuole for sequestration, providing a physiologically safer route for the plant than uranium transported through the cytosol.
Collapse
Affiliation(s)
- Warren A John
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Benita Lückel
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Nicole Matschiavelli
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Matschi
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | | | - Susanne Sachs
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
17
|
Wang PL, Lei XJ, Wang YY, Liu BC, Wang DN, Liu ZY, Gao CQ. Transcriptomic Analysis of Cadmium Stressed Tamarix hispida Revealed Novel Transcripts and the Importance of Abscisic Acid Network. FRONTIERS IN PLANT SCIENCE 2022; 13:843725. [PMID: 35519810 PMCID: PMC9062237 DOI: 10.3389/fpls.2022.843725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) pollution is widely detected in soil and has been recognized as a major environmental problem. Tamarix hispida is a woody halophyte, which can form natural forest on the desert and soil with 0.5 to 1% salt content, making it an ideal plant for the research on response to abiotic stresses. However, no systematic study has investigated the molecular mechanism of Cd tolerance in T. hispida. In the study, RNA-seq technique was applied to analyze the transcriptomic changes in T. hispida treated with 150 μmol L-1 CdCl2 for 24, 48, and 72 h compared with control. In total, 72,764 unigenes exhibited similar sequences in the Non-redundant nucleic acid database (NR database), while 36.3% of all these unigenes may be new transcripts. In addition, 6,778, 8,282, and 8,601 DEGs were detected at 24, 48, and 72 h, respectively. Functional annotation analysis indicated that many genes may be involved in Cd stress response, including ion bonding, signal transduction, stress sensing, hormone responses and ROS metabolism. A ThUGT gene from the abscisic acid (ABA) signaling pathway can enhance Cd resistance ability of T. hispida by regulating the production of ROS under Cd stress and inhibit absorption of Cd. The new transcriptome resources and data that we present in this study for T. hispida may facilitate investigation of molecular mechanisms governing Cd resistance.
Collapse
Affiliation(s)
- Pei-Long Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xiao-Jin Lei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yuan-Yuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Bai-chao Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Dan-ni Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhong-Yuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Cai-Qiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
18
|
van Dijk JR, Kranchev M, Blust R, Cuypers A, Vissenberg K. Arabidopsis root growth and development under metal exposure presented in an adverse outcome pathway framework. PLANT, CELL & ENVIRONMENT 2022; 45:737-750. [PMID: 34240430 PMCID: PMC9290988 DOI: 10.1111/pce.14147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/06/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Due to human activities, soils become more and more polluted with metals, which imposes risks for human health and wildlife welfare. As most of the metals end up in the food chain through accumulation in plants, we need to establish science-based environmental criteria and risk management policies. To meet these necessities, a thorough understanding is required of how these metals accumulate in and affect plants. Many studies have been conducted towards this aim, but strikingly, only a few entries can be found in ecotoxicological databases, especially on Arabidopsis thaliana, which serves as a model species for plant (cell) physiology and genetic studies. As experimental conditions seem to vary considerably throughout literature, extrapolation or comparison of data is rather difficult or should be approached with caution. Furthermore, metal-polluted soils often contain more than one metal, yet limited studies investigated the impact of metal mixtures on plants. This review aims to compile all data concerning root system architecture under Cu, Cd and Zn stress, in single or multi-metal exposure in A. thaliana, and link it to metal-induced responses at different biological levels. Global incorporation into an adverse outcome pathway framework is presented.
Collapse
Affiliation(s)
- Jesper R. van Dijk
- Integrated Molecular Plant Physiology Research, Department of BiologyUniversity of AntwerpAntwerpBelgium
- Adrem Data Lab, Department of Mathematics and Computer Science and Biomedical Informatics Research Network Antwerp (Biomina)University of AntwerpAntwerpBelgium
| | - Mario Kranchev
- Integrated Molecular Plant Physiology Research, Department of BiologyUniversity of AntwerpAntwerpBelgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research, Department of BiologyUniversity of AntwerpAntwerpBelgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental SciencesHasselt UniversityHasseltBelgium
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, Department of BiologyUniversity of AntwerpAntwerpBelgium
- Plant Biochemistry & Biotechnology Lab, Department of AgricultureHellenic Mediterranean UniversityHeraklionGreece
| |
Collapse
|
19
|
Arabidopsis CAP1 mediates ammonium-regulated root hair growth by influencing vesicle trafficking and the cytoskeletal arrangement in root hair cells. J Genet Genomics 2022; 49:986-989. [PMID: 35202888 DOI: 10.1016/j.jgg.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
|
20
|
Patra N, Hariharan S, Gain H, Maiti MK, Das A, Banerjee J. TypiCal but DeliCate Ca ++re: Dissecting the Essence of Calcium Signaling Network as a Robust Response Coordinator of Versatile Abiotic and Biotic Stimuli in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:752246. [PMID: 34899779 PMCID: PMC8655846 DOI: 10.3389/fpls.2021.752246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 06/14/2023]
Abstract
Plant growth, development, and ultimately crop productivity are largely impacted by the interaction of plants with different abiotic and biotic factors throughout their life cycle. Perception of different abiotic stresses, such as salt, cold, drought, heat, and heavy metals, and interaction with beneficial and harmful biotic agents by plants lead to transient, sustained, or oscillatory changes of [calcium ion, Ca2+]cyt within the cell. Significant progress has been made in the decoding of Ca2+ signatures into downstream responses to modulate differential developmental and physiological responses in the whole plant. Ca2+ sensor proteins, mainly calmodulins (CaMs), calmodulin-like proteins (CMLs), and others, such as Ca2+-dependent protein kinases (CDPKs), calcineurin B-like proteins (CBLs), and calmodulin-binding transcription activators (CAMTAs) have played critical roles in coupling the specific stress stimulus with an appropriate response. This review summarizes the current understanding of the Ca2+ influx and efflux system in plant cells and various Ca2+ binding protein-mediated signal transduction pathways that are delicately orchestrated to mitigate abiotic and biotic stresses. The probable interactions of different components of Ca2+ sensor relays and Ca2+ sensor responders in response to various external stimuli have been described diagrammatically focusing on established pathways and latest developments. Present comprehensive insight into key components of the Ca2+ signaling toolkit in plants can provide an innovative framework for biotechnological manipulations toward crop improvability in near future.
Collapse
Affiliation(s)
- Neelesh Patra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Shruthi Hariharan
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Hena Gain
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mrinal K. Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Arpita Das
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Joydeep Banerjee
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
21
|
Jia W, Lin K, Lou T, Feng J, Lv S, Jiang P, Yi Z, Zhang X, Wang D, Guo Z, Tang Y, Qiu R, Li Y. Comparative analysis of sRNAs, degradome and transcriptomics in sweet sorghum reveals the regulatory roles of miRNAs in Cd accumulation and tolerance. PLANTA 2021; 254:16. [PMID: 34185181 DOI: 10.1007/s00425-021-03669-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Key miRNAs including sbi-miR169p/q, sbi-miR171g/j, sbi-miR172a/c/d, sbi-miR172e, sbi-miR319a/b, sbi-miR396a/b, miR408, sbi-miR5384, sbi-miR5565e and nov_23 were identified to function in the regulation of Cd accumulation and tolerance. As an energy plant, sweet sorghum shows great potential in the phytoremediation of Cd-contaminated soils. However, few studies have focused on the regulatory roles of miRNAs and their targets under Cd stress. In this study, comparative analysis of sRNAs, degradome and transcriptomics was conducted in high-Cd accumulation (H18) and low-Cd accumulation (L69) genotypes of sweet sorghum. A total of 38 conserved and 23 novel miRNAs with differential expressions were identified under Cd stress or between H18 and L69, and 114 target genes of 41 miRNAs were validated. Furthermore, 25 miRNA-mRNA pairs exhibited negatively correlated expression profiles and sbi-miR172e together with its target might participate in the distinct Cd tolerance between H18 and L69 as well as sbi-miR172a/c/d. Additionally, two groups of them: miR169p/q-nov_23 and miR408 were focused through the co-expression analysis, which might be involved in Cd uptake and tolerance by regulating their targets associated with transmembrane transportation, cytoskeleton activity, cell wall construction and ROS (reactive oxygen species) homeostasis. Further experiments exhibited that cell wall components of H18 and L69 were different when exposed to cadmium, which might be regulated by miR169p/q, miR171g/j, miR319a/b, miR396a/b, miR5384 and miR5565e through their targets. Through this study, we aim to reveal the potential miRNAs involved in sweet sorghum in response to Cd stress and provide references for developing high-Cd accumulation or high Cd-resistant germplasm of sweet sorghum that can be used in phytoremediation.
Collapse
Affiliation(s)
- Weitao Jia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Tengxue Lou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Juanjuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
| | - Ze Yi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xuan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zijing Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yetao Tang
- Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Rongliang Qiu
- Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China.
| |
Collapse
|
22
|
Cadmium (II)-Induced Oxidative Stress Results in Replication Stress and Epigenetic Modifications in Root Meristem Cell Nuclei of Vicia faba. Cells 2021; 10:cells10030640. [PMID: 33805688 PMCID: PMC7999292 DOI: 10.3390/cells10030640] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Among heavy metals, cadmium is considered one of the most toxic and dangerous environmental factors, contributing to stress by disturbing the delicate balance between production and scavenging of reactive oxygen species (ROS). To explore possible relationships and linkages between Cd(II)-induced oxidative stress and the consequent damage at the genomic level (followed by DNA replication stress), root apical meristem (RAM) cells in broad bean (V. faba) seedlings exposed to CdCl2 treatment and to post-cadmium recovery water incubations were tested with respect to H2O2 production, DNA double-strand breaks (γ-phosphorylation of H2AX histones), chromatin morphology, histone H3S10 phosphorylation on serine (a marker of chromatin condensation), mitotic activity, and EdU staining (to quantify cells typical of different stages of nuclear DNA replication). In order to evaluate Cd(II)-mediated epigenetic changes involved in transcription and in the assembly of nucleosomes during the S-phase of the cell cycle, the acetylation of histone H3 on lysine 5 (H3K56Ac) was investigated by immunofluorescence. Cellular responses to cadmium (II) toxicity seem to be composed of a series of interlinked biochemical reactions, which, via generation of ROS and DNA damage-induced replication stress, ultimately activate signal factors engaged in cell cycle control pathways, DNA repair systems, and epigenetic adaptations.
Collapse
|
23
|
Guo X, Luo J, Du Y, Li J, Liu Y, Liang Y, Li T. Coordination between root cell wall thickening and pectin modification is involved in cadmium accumulation in Sedum alfredii. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115665. [PMID: 33010543 DOI: 10.1016/j.envpol.2020.115665] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/17/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Root cell wall (RCW) modification is a widespread important defense strategy of plant to cope with trace metals. However, mechanisms underlying its remolding in cadmium (Cd) accumulation are still lacking in hyperaccumulators. In this study, changes of RCW structures and components between nonhyperaccumulating ecotype (NHE) and hyperaccumulating ecotype (HE) of Sedum alfredii were investigated simultaneously. Under 25 μM Cd treatment, RCW thickness of NHE is nearly 2 folds than that of HE and the thickened cell wall of NHE was enriched in low-methylated pectin, leading to more Cd trapped in roots tightly. In the opposite, large amounts of high-methylated pectin were assembled around RCW of HE with Cd supply, in this way, HE S. alfredii decreased its root fixation of Cd and enhanced Cd migration into xylem. TEM and AFM results further confirmed that thickened cell wall was caused by the increased amounts of cellulose and lignin while root tip lignification was resulted from variations of sinapyl (S) and guaiacyl (G) monomers. Overall, thickened cell wall and methylated pectin have synchronicity in spatial location of roots, and their coordination contributed to Cd accumulation in S. alfredii.
Collapse
Affiliation(s)
- Xinyu Guo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yilin Du
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China; National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Keyster M, Niekerk LA, Basson G, Carelse M, Bakare O, Ludidi N, Klein A, Mekuto L, Gokul A. Decoding Heavy Metal Stress Signalling in Plants: Towards Improved Food Security and Safety. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1781. [PMID: 33339160 PMCID: PMC7765602 DOI: 10.3390/plants9121781] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
The mining of heavy metals from the environment leads to an increase in soil pollution, leading to the uptake of heavy metals into plant tissue. The build-up of toxic metals in plant cells often leads to cellular damage and senescence. Therefore, it is of utmost importance to produce plants with improved tolerance to heavy metals for food security, as well as to limit heavy metal uptake for improved food safety purposes. To achieve this goal, our understanding of the signaling mechanisms which regulate toxic heavy metal uptake and tolerance in plants requires extensive improvement. In this review, we summarize recent literature and data on heavy metal toxicity (oral reference doses) and the impact of the metals on food safety and food security. Furthermore, we discuss some of the key events (reception, transduction, and response) in the heavy metal signaling cascades in the cell wall, plasma membrane, and cytoplasm. Our future perspectives provide an outlook of the exciting advances that will shape the plant heavy metal signaling field in the near future.
Collapse
Affiliation(s)
- Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
- DST-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville 7530, South Africa;
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
| | - Gerhard Basson
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Mogamat Carelse
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
| | - Olalekan Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
| | - Ndiko Ludidi
- DST-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville 7530, South Africa;
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Arun Gokul
- Department of Chemical Engineering, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
25
|
Yemets A, Horiunova I, Blume Y. Cadmium, nickel, copper, and zinc influence on microfilament organization in Arabidopsis root cells. Cell Biol Int 2020; 45:211-226. [PMID: 33064326 DOI: 10.1002/cbin.11485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023]
Abstract
The plant cytoskeleton orchestrates such fundamental processes in cells as division, growth and development, polymer cross-linking, membrane anchorage, etc. Here, we describe the influence of Cd2+ , Ni2+ , Zn2+ , and Cu2+ on root development and vital organization of actin filaments into different cells of Arabidopsis thaliana line expressing GFP-FABD2. CdSO4 , NiSO4 , CuSO4 , and ZnSO4 were used in concentrations of 5-20 µM in this study. It was found that Cd, Ni, and Cu cause dose-dependent primary root growth inhibition and alteration of the root morphology, whereas Zn slightly stimulates root growth and does not affect the morphology of Arabidopsis roots. This growth inhibition/stimulation correlated with the various sensitivities of microfilaments to Cd, Ni, Cu, and Zn action. It was established that Cd, Ni, and Cu affected predominantly the actin filaments of meristematic cells. Cells of transition and elongation zones demonstrated strong actin filament sensitivity to Cd and Cu. Microfilaments of elongating root cells were more sensitive to Ni and Cu. Although Cd, Ni, and Cu stimulated root hair growth after long-term treatment, actin filaments were destroyed after 1 h exposure with these metals. Zn did not disrupt native actin filament organization in root cells. Thus, our investigation shows that microfilaments act as sensitive cellular targets for Cd, Ni, and Cu. More data on effects on native actin filaments organization would contribute to a better understanding of plant tolerance mechanisms to the action of these metals.
Collapse
Affiliation(s)
- Alla Yemets
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Inna Horiunova
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yaroslav Blume
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
26
|
Effect of Different Forms of Selenium on the Physiological Response and the Cadmium Uptake by Rice under Cadmium Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17196991. [PMID: 32987814 PMCID: PMC7579289 DOI: 10.3390/ijerph17196991] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Cadmium (Cd) is a pollutant toxic to plants and a potential threat to human health. Selenium (Se), though not essential for plants, has beneficial effects on plants under abiotic stress. A hydroponic experiment was conducted to investigate the impact of different forms of Se (Nano-Se, selenite, selenate, and SeMet) on accumulation, subcellular distribution, and chemical forms of Cd, as well as oxidative stress in rice seedlings. Cd (20 μmol·L−1) treatment significantly decreased biomass accumulation and chlorophyll content. The application of all Se forms, except selenate, mitigated the adverse effects of Cd on growth and chlorophyll content. The application of selenite, Nano-Se, and SeMet decreased root and shoot Cd concentrations as well as root-to-shoot Cd translocation in rice seedlings. Selenate application decreased shoot Cd concentration and root-to-shoot Cd translocation with no effect on root Cd concentration. Accordingly, Se increased the sequestration of Cd in the cell wall and vacuoles and decreased the active chemical form of Cd in rice seedlings. SeMet was the most effective supplement that decreased Cd concentration and enhanced Se concentration in the roots and shoots of rice seedlings. All forms of Se further enhanced catalase (CAT) and glutathione peroxidase (GSH-Px) activities and inhibited MDA accumulation. To conclude, Se influenced Cd accumulation and translocation in rice seedlings by altering the subcellular distribution, chemical forms, and antioxidant defense system under Cd stress. These effects were highly significant with SeMet treatment, probably due to better absorption and utilization by the plant.
Collapse
|
27
|
De Caroli M, Furini A, DalCorso G, Rojas M, Di Sansebastiano GP. Endomembrane Reorganization Induced by Heavy Metals. PLANTS (BASEL, SWITZERLAND) 2020; 9:E482. [PMID: 32283794 PMCID: PMC7238196 DOI: 10.3390/plants9040482] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022]
Abstract
Plant cells maintain plasmatic concentrations of essential heavy metal ions, such as iron, zinc, and copper, within the optimal functional range. To do so, several molecular mechanisms have to be committed to maintain concentrations of non-essential heavy metals and metalloids, such as cadmium, mercury and arsenic below their toxicity threshold levels. Compartmentalization is central to heavy metals homeostasis and secretory compartments, finely interconnected by traffic mechanisms, are determinant. Endomembrane reorganization can have unexpected effects on heavy metals tolerance altering in a complex way membrane permeability, storage, and detoxification ability beyond gene's expression regulation. The full understanding of endomembrane role is propaedeutic to the comprehension of translocation and hyper-accumulation mechanisms and their applicative employment. It is evident that further studies on dynamic localization of these and many more proteins may significantly contribute to the understanding of heavy metals tolerance mechanisms. The aim of this review is to provide an overview about the endomembrane alterations involved in heavy metals compartmentalization and tolerance in plants.
Collapse
Affiliation(s)
- Monica De Caroli
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (M.D.C.); (M.R.)
| | - Antonella Furini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.F.); (G.D.)
| | - Giovanni DalCorso
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.F.); (G.D.)
| | - Makarena Rojas
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (M.D.C.); (M.R.)
| | - Gian-Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (M.D.C.); (M.R.)
| |
Collapse
|
28
|
Tao Q, Liu Y, Li M, Li J, Luo J, Lux A, Kováč J, Yuan S, Li B, Li Q, Li H, Li T, Wang C. Cd-induced difference in root characteristics along root apex contributes to variation in Cd uptake and accumulation between two contrasting ecotypes of Sedum alfredii. CHEMOSPHERE 2020; 243:125290. [PMID: 31759213 DOI: 10.1016/j.chemosphere.2019.125290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/19/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
The root apex is the most active part for water and ions uptake, however, longitudinal alterations in root characteristics along root apex and consequences for metal uptake in hyperaccumulator are poorly understood. Here, we compared cadmium (Cd)-induced longitudinal alterations in root apex of two ecotypes of Sedum alfredii and assess their effects on Cd uptake. Under Cd treatment, cell death began from epidermis to the stele in non-hyperaccumulating ecotype (NHE) over time, and the number of dead cells was significantly higher than that in hyperaccumulating ecotype (HE). Cd-induced the presence of border-like cells (BLCs) surrounding the root tip of NHE prevented Cd from entering roots, however, almost no BLCs were observed in the root tip of in HE. Besides, Cd-treated NHE exhibited 76% and 52% decrease in the proportions of meristematic and elongation zone, respectively, resulting in lower Cd influx and less intensive Cd-fluorescence in these zones, as compared with HE. In the differentiation zone, Cd induced earlier initiation of root hairs (RHs), lower RHs-density, shorter RHs-length, thicker RHs-radius and less trichoblasts in NHE than those in HE. These remarkable variations led to less Cd influx and lower intensity of Cd-fluorescence in RHs of NHE than those of HE. Furthermore, decline in cell wall thickness under Cd exposure resulted in less cell-wall-bond Cd in the cell wall of HE. Therefore, Cd-induced alterations in root characteristics alongside root apex contributed to the difference in Cd uptake and accumulation between two ecotypes of S. alfredii.
Collapse
Affiliation(s)
- Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B2, 842 15, Bratislava, Slovakia
| | - Ján Kováč
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B2, 842 15, Bratislava, Slovakia
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
29
|
Carvalho MEA, Castro PRC, Azevedo RA. Hormesis in plants under Cd exposure: From toxic to beneficial element? JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121434. [PMID: 31812481 DOI: 10.1016/j.jhazmat.2019.121434] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 05/17/2023]
Abstract
Tolerance level to cadmium (Cd) toxicity is generally associated with reductions of the internal Cd accumulation in living organisms. In plants, Cd exposure frequently triggers negative effects on their growth and productivity. However, an increased number of studies has reported the improved performance of some plant species (or their accessions/genotypes/varieties/cultivars/clones) to Cd exposure, despite Cd accumulation in their roots and shoots. These results indicate that plants have developed protective strategies to neutralize the side-effects from Cd toxicity or, more controversially, mechanisms that employ Cd as beneficial element. Here, we gathered information about Cd-induced hormetic effects on plants, and explored the potential mechanisms that allow them to have a better performance under Cd exposure. The promotion of plant development depends on both direct and indirect Cd-induced alterations in the metabolism of plants and their surround environment. In addition, the mechanisms behind the positive Cd-induced transgenerational effects were also discussed in the present paper.
Collapse
Affiliation(s)
- Marcia E A Carvalho
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Paulo R C Castro
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (Esalq/USP), Avenida Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Ricardo A Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
30
|
Pizzaia D, Nogueira ML, Mondin M, Carvalho MEA, Piotto FA, Rosario MF, Azevedo RA. Cadmium toxicity and its relationship with disturbances in the cytoskeleton, cell cycle and chromosome stability. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:1046-1055. [PMID: 31502144 DOI: 10.1007/s10646-019-02096-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the mode of action of cadmium (Cd) toxicity at cell level, especially at early stages of plant exposure. Tomato seedlings were cultivated in growth media containing from 0.1 to 70 µM CdCl2 for 24 h. Mitotic index, chromosome abnormality, DNA integrity and organization of tubulin-based structures were assessed in root cells. As higher the Cd concentration in the growth media, higher was the DNA damage intensity and the occurrence of chromosomal abnormalities that included chromosome lost, bridges, stickiness, C-metaphase and polyploidy. The profile of chromosomal aberrations also varied with elevated Cd concentration, being observed increases in the frequency of chromosome stickiness. The mitotic index was reduced at the lowest Cd concentration, but such reduction was statistically similar to that detected at the highest concentration, suggesting that mitotic depression is a rapid outcome and, at same time, a Cd-induced effect that is limited at the first 24 h of direct root exposure to this metal. Under exposure to 20 µM CdCl2, heterogenous distribution of the spindle fibers, formation of two spindle complexes in both of the cell poles, absence of centrosome center, polarization of the spindle fibers during cell division, and non-uniform tubulin deposition in microtubule and phragmoplast were noticed. The results indicate that the tubulin-dependent components of cytoskeleton are Cd targets, and the sensitivity of tubulin-based structures to Cd exposure depends on cell cycle phase. Moreover, DNA damage intensity and chromosomal abnormality profile can be employed as markers of Cd toxicity level.
Collapse
Affiliation(s)
- Daniel Pizzaia
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Marina Lima Nogueira
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Mateus Mondin
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Marcia Eugenia Amaral Carvalho
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Fernando Angelo Piotto
- Departamento de Produção Vegetal, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Millor Fernandes Rosario
- Universidade Federal de São Carlos, Campus Lagoa do Sino, Rodovia Lauri Simões de Barros, km 12, SP 189, Buri, SP, 18290-000, Brazil
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
31
|
Geng N, Wu Y, Zhang M, Tsang DCW, Rinklebe J, Xia Y, Lu D, Zhu L, Palansooriya KN, Kim KH, Ok YS. Bioaccumulation of potentially toxic elements by submerged plants and biofilms: A critical review. ENVIRONMENT INTERNATIONAL 2019; 131:105015. [PMID: 31369978 DOI: 10.1016/j.envint.2019.105015] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 05/28/2023]
Abstract
The accumulation of potentially toxic elements (PTEs) in aquatic ecosystems has become a global concern, as PTEs may exert a wide range of toxicological impacts on aquatic organisms. Submerged plants and the microorganisms attached to their surfaces, however, have displayed great potential as a means of coping with such pollution. Therefore, it is crucial to understand the transport pathways of PTEs across sediment and organisms as well as their accumulation mechanisms in the presence of submerged plants and their biofilms. The majority of previous studies have demonstrated that submerged plants and their biofilms are indicators of PTE pollution in the aquatic environment, yet relatively little is known about PTE accumulation in epiphytic biofilms. In this review, we describe the transport pathways of PTEs in the aquatic environment in order to offer remarkable insights into bioaccumulation mechanisms in submerged plants and their biofilms. Based on the literature cited in this review, the roles of epiphytic biofilms in bioaccumulation and as an indicator of ecosystem health are discussed.
Collapse
Affiliation(s)
- Nan Geng
- College of Water Conservancy and Environment Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China; Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, Institute of Soil Engineering, Waste- and Water Science, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Yinfeng Xia
- College of Water Conservancy and Environment Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China; Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Debao Lu
- College of Water Conservancy and Environment Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China; Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Lifang Zhu
- College of Water Conservancy and Environment Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China
| | - Kumuduni Niroshika Palansooriya
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Republic of Korea.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
32
|
Zhang X, Shao J, Chen A, Shang C, Hu X, Luo S, Lei M, Peng L, Zeng Q. Effects of cadmium on calcium homeostasis in the white-rot fungus Phanerochaete chrysosporium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:95-101. [PMID: 29609109 DOI: 10.1016/j.ecoenv.2018.03.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Due to the widespread application of white-rot fungi for the treatment of pollutants, it's crucial to exploit the special effects of pollutants on the microbes. Here, we studied the effects of cadmium on calcium homeostasis in the most studied white-rot fungus Phanerochaete chrysosporium. The response of P. chrysosporium to cadmium stress is concentration-dependent. A high concentration of cadmium caused the release of calcium from P. chrysosporium, while a hormesis effect was observed at a lower cadmium concentration (10 μM), which resulted in a significant increase in calcium uptake and reversed the decrease in cell viability. Calcium (50 μM) promoted cell viability (127.2% of control), which reflects that calcium can protect P. chrysosporium from environmental stress. Real-time changes in the Ca2+ and Cd2+ fluxes of P. chrysosporium were quantified using the noninvasive microtest technique. Ca2+ influx decreased significantly under cadmium exposure, and the Ca2+ channel was involved in Ca2+ and Cd2+ influx. The cadmium and/or calcium uptake results coupled with the real-time Ca2+ and Cd2+ influxes microscale signatures can enhance our knowledge of the homeostasis of P. chrysosporium with respect to cadmium stress, which may provide useful information for improving the bioremediation process.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Jihai Shao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China.
| | - Cui Shang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Si Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Ming Lei
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Liang Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Qingru Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
33
|
Dutta S, Mitra M, Agarwal P, Mahapatra K, De S, Sett U, Roy S. Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. PLANT SIGNALING & BEHAVIOR 2018; 13:e1460048. [PMID: 29621424 PMCID: PMC6149466 DOI: 10.1080/15592324.2018.1460048] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/28/2018] [Indexed: 05/17/2023]
Abstract
Plants, being sessile in nature, are constantly exposed to various environmental stresses, such as solar UV radiations, soil salinity, drought and desiccation, rehydration, low and high temperatures and other vast array of air and soil borne chemicals, industrial waste products, metals and metalloids. These agents, either directly or indirectly via the induction of oxidative stress and overproduction of reactive oxygen species (ROS), frequently perturb the chemical or physical structures of DNA and induce both cytotoxic or genotoxic stresses. Such condition, in turn, leads to genome instability and thus eventually severely affecting plant health and crop yield. With the growing industrialization process and non-judicious use of chemical fertilizers, the heavy metal mediated chemical toxicity has become one of the major environmental threats for the plants around the globe. The heavy metal ions cause damage to the structural, enzymatic and non-enzymatic components of plant cell, often resulting in loss of cell viability, thus negatively impacting plant growth and development. Plants have also evolved with an extensive and highly efficient mechanism to respond and adapt under such heavy metal toxicity mediated stress conditions. In addition to morpho-anatomical, hormonal and biochemical responses, at the molecular level, plants respond to heavy metal stress induced oxidative and genotoxic damage via the rapid change in the expression of the responsive genes at the transcriptional level. Various families of transcription factors play crucial role in triggering such responses. Apart from transcriptional response, epigenetic modifications have also been found to be essential for maintenance of plant genome stability under genotoxic stress. This review represents a comprehensive survey of recent advances in our understanding of plant responses to heavy metal mediated toxicity in general with particular emphasis on the transcriptional and epigenetic responses and highlights the importance of understanding the potential targets in the associated pathways for improved stress tolerance in crops.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Mehali Mitra
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Puja Agarwal
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Kalyan Mahapatra
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Sayanti De
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Upasana Sett
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Sujit Roy
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| |
Collapse
|
34
|
Huang X, Wang L, Ma F. Arbuscular mycorrhizal fungus modulates the phytotoxicity of Cd via combined responses of enzymes, thiolic compounds, and essential elements in the roots of Phragmites australis. CHEMOSPHERE 2017; 187:221-229. [PMID: 28850908 DOI: 10.1016/j.chemosphere.2017.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/21/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
The positive effects of arbuscular mycorrhizal (AM) fungi on host plants under heavy metal (HM) stress conditions have been widely recognized. HMs are known to induce phytotoxicity through 1) the production of reactive oxygen species (ROS), 2) the direct interaction with thiol groups or 3) the competition with essential elements. However, how AM fungus inoculation can affect defense mechanisms against cadmium (Cd) stress, which can regulate and alleviate the phytotoxicity via different pathways, is still unclear. We hypothesized that one or some factors in each pathway of phytotoxicity were involved in detoxifying Cd by inoculating with AM fungus. In this study, the involvements of enzymes, thiolic compounds, and divalent essential elements in the roots of Phragmites australis (Cav.) Trin. ex Steud. were assessed. In addition, we also worked to elucidate the significant factors among three possible pathways involved in biosynthesis with AM fungus inoculation, using principal component analysis (PCA). The results presented here indicate that AM symbiosis can result in a marked tolerance to Cd via accumulating Cd with a shorter exposure treatment time, and obvious fluorescence in the roots was also observed. The decrease in phytotoxicity was mainly accomplished by changes in superoxide dismutase (SOD), catalase (CAT), non-protein thiols (NPT), calcium (Ca), manganese (Mn), and copper (Cu). These results provide comprehensive insights for elucidating the defense mechanisms by which inoculation with AM fungus has beneficial roles in helping P. australis cope with the deleterious effects of Cd.
Collapse
Affiliation(s)
- Xiaochen Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Li Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
35
|
Bruno L, Pacenza M, Forgione I, Lamerton LR, Greco M, Chiappetta A, Bitonti MB. In Arabidopsis thaliana Cadmium Impact on the Growth of Primary Root by Altering SCR Expression and Auxin-Cytokinin Cross-Talk. FRONTIERS IN PLANT SCIENCE 2017; 8:1323. [PMID: 28798767 PMCID: PMC5529362 DOI: 10.3389/fpls.2017.01323] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/14/2017] [Indexed: 05/21/2023]
Abstract
Cadmium is one of the most widespread pollutant in both terrestrial and marine environment, and its inhibitory effect on plant growth has been largely demonstrated. However, the molecular mechanisms underlying Cd toxicity in plant and mainly in root, as the first organ sensing soil heavy metals, need to be better investigated. To this aim, in the present work we analyzed the growth and the organization of Arabidopsis thaliana primary root in seedlings exposed to Cd (25 and 50 μM) for 8 days starting from germination. Root length, root meristem size, and organization were evaluated together with the behavior of some of the major molecular players in root growth and patterning. In particular, by using different GFP transgenic lines, we monitored: (i) the expression pattern of WOX5 and SCR transcription factors involved in the establishment and maintenance of stem cell niche and in the control of meristem size; (ii) the expression pattern of the IAA-inducible pDR5::GFP reporter, PIN 1, 2, 3, 7 auxin carriers and TCSn::GFP cytokinin-sensitive sensor as relevant components of hormone circuit controlling root growth. We report that Cd exposure inhibits primary root growth via affecting RAM stem cell niche and root radial pattern. At the molecular level, an impairment of auxin maximum accumulation at the root tip, related to a down-regulation and mislocalisation of PIN proteins, and an enhancement of TCSn::GFP cytokinin-sensitive sensor signal is also detected under Cd treatment, thus suggesting an alteration in the homeostasis of auxin/cytokinin signaling. Moreover, and for the first time Cd toxicity on root growth and pattern has been related to a misexpression of SCR transcription factors which is known to interplay with auxin/cytokinin cross-talk in the control of RAM maintenance and activity.
Collapse
Affiliation(s)
- Leonardo Bruno
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della CalabriaArcavacata di Rende, Italy
- *Correspondence: Leonardo Bruno,
| | - Marianna Pacenza
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della CalabriaArcavacata di Rende, Italy
| | - Ivano Forgione
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della CalabriaArcavacata di Rende, Italy
| | - Liam R. Lamerton
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della CalabriaArcavacata di Rende, Italy
- School of Biosciences, University of CardiffCardiff, United Kingdom
| | - Maria Greco
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della CalabriaArcavacata di Rende, Italy
| | - Adriana Chiappetta
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della CalabriaArcavacata di Rende, Italy
| | - Maria B. Bitonti
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della CalabriaArcavacata di Rende, Italy
| |
Collapse
|
36
|
Plohovska SG, Yemets AI, Blume YB. Influence of cold on organization of actin filaments of different types of root cells in Arabidopsis thaliana. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716050108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Wilkins KA, Matthus E, Swarbreck SM, Davies JM. Calcium-Mediated Abiotic Stress Signaling in Roots. FRONTIERS IN PLANT SCIENCE 2016; 7:1296. [PMID: 27621742 PMCID: PMC5002411 DOI: 10.3389/fpls.2016.01296] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/12/2016] [Indexed: 05/20/2023]
Abstract
Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium's other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response.
Collapse
Affiliation(s)
| | | | | | - Julia M. Davies
- Department of Plant Sciences, University of CambridgeCambridge, UK
| |
Collapse
|
38
|
Krzesłowska M, Rabęda I, Basińska A, Lewandowski M, Mellerowicz EJ, Napieralska A, Samardakiewicz S, Woźny A. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:354-361. [PMID: 27107260 DOI: 10.1016/j.envpol.2016.04.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/27/2016] [Accepted: 04/06/2016] [Indexed: 05/04/2023]
Abstract
Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation.
Collapse
Affiliation(s)
- Magdalena Krzesłowska
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | - Irena Rabęda
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Aneta Basińska
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Michał Lewandowski
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Ewa J Mellerowicz
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umea, Sweden
| | - Anna Napieralska
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Sławomir Samardakiewicz
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Adam Woźny
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
39
|
Liu M, Qiu W, He X, Zheng L, Song X, Han X, Jiang J, Qiao G, Sang J, Liu M, Zhuo R. Functional Characterization of a Gene in Sedum alfredii Hance Resembling Rubber Elongation Factor Endowed with Functions Associated with Cadmium Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:965. [PMID: 27446189 PMCID: PMC4925709 DOI: 10.3389/fpls.2016.00965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/16/2016] [Indexed: 05/19/2023]
Abstract
Cadmium is a major toxic heavy-metal pollutant considering their bioaccumulation potential and persistence in the environment. The hyperaccumulating ecotype of Sedum alfredii Hance is a Zn/Cd co-hyperaccumulator inhabiting in a region of China with soils rich in Pb/Zn. Investigations into the underlying molecular regulatory mechanisms of Cd tolerance are of substantial interest. Here, library screening for genes related to cadmium tolerance identified a gene resembling the rubber elongation factor gene designated as SaREFl. The heterologous expression of SaREFl rescued the growth of a transformed Cd-sensitive strain (ycf1). Furthermore, SaREFl-expressing Arabidopsis plants were more tolerant to cadmium stress compared with wild type by measuring parameters of root length, fresh weight and physiological indexes. When under four different heavy metal treatments, we found that SaREFl responded most strongly to Cd and the root was the plant organ most sensitive to this heavy metal. Yeast two-hybrid screening of SaREFl as a bait led to the identification of five possible interacting targets in Sedum alfredii Hance. Among them, a gene annotated as prenylated Rab acceptor 1 (PRA1) domain protein was detected with a high frequency. Moreover, subcellular localization of SaREF1-GFP fusion protein revealed some patchy spots in cytosol suggesting potential association with organelles for its cellular functions. Our findings would further enrich the connotation of REF-like genes and provide theoretical assistance for the application in breeding heavy metal-tolerant plants.
Collapse
Affiliation(s)
- Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Wenming Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Xuelian He
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
- Biotechnology Research Center of China Three Gorges University, YichangChina
| | - Liu Zheng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
- Biotechnology Research Center of China Three Gorges University, YichangChina
| | - Xixi Song
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Jian Sang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Mingqing Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Vocational Secondary Specialized School of Hedong District, LinyiChina
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| |
Collapse
|
40
|
Sharma SS, Dietz KJ, Mimura T. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. PLANT, CELL & ENVIRONMENT 2016; 39:1112-26. [PMID: 26729300 DOI: 10.1111/pce.12706] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 05/02/2023]
Abstract
Plant cells orchestrate an array of molecular mechanisms for maintaining plasmatic concentrations of essential heavy metal (HM) ions, for example, iron, zinc and copper, within the optimal functional range. In parallel, concentrations of non-essential HMs and metalloids, for example, cadmium, mercury and arsenic, should be kept below their toxicity threshold levels. Vacuolar compartmentalization is central to HM homeostasis. It depends on two vacuolar pumps (V-ATPase and V-PPase) and a set of tonoplast transporters, which are directly driven by proton motive force, and primary ATP-dependent pumps. While HM non-hyperaccumulator plants largely sequester toxic HMs in root vacuoles, HM hyperaccumulators usually sequester them in leaf cell vacuoles following efficient long-distance translocation. The distinct strategies evolved as a consequence of organ-specific differences particularly in vacuolar transporters and in addition to distinct features in long-distance transport. Recent molecular and functional characterization of tonoplast HM transporters has advanced our understanding of their contribution to HM homeostasis, tolerance and hyperaccumulation. Another important part of the dynamic vacuolar sequestration syndrome involves enhanced vacuolation. It involves vesicular trafficking in HM detoxification. The present review provides an updated account of molecular aspects that contribute to the vacuolar compartmentalization of HMs.
Collapse
Affiliation(s)
- Shanti S Sharma
- Department of Biosciences, Himachal Pradesh University, Shimla, 171005, India
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, D-33501, Bielefeld, Germany
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
41
|
Qu H, Xing W, Wu F, Wang Y. Rapid and Inexpensive Method of Loading Fluorescent Dye into Pollen Tubes and Root Hairs. PLoS One 2016; 11:e0152320. [PMID: 27055240 PMCID: PMC4824429 DOI: 10.1371/journal.pone.0152320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/11/2016] [Indexed: 01/07/2023] Open
Abstract
The most direct technique for studying calcium, which is an essential element for pollen tube growth, is Ca2+ imaging. Because membranes are relatively impermeable, the loading of fluorescent Ca2+ probes into plant cells is a challenging task. Thus, we have developed a new method of loading fluo-4 acetoxymethyl ester into cells that uses a cell lysis solution to improve the introduction of this fluorescent dye into pollen tubes. Using this method, the loading times were reduced to 15 min. Furthermore, loading did not have to be performed at low (4°C) temperatures and was successful at room temperature, and pluronic F-127 was not required, which would theoretically allow for the loading of an unlimited number of cells. Moreover, the method can also be used to fluorescently stain root hairs.
Collapse
Affiliation(s)
- Haiyong Qu
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao City, Shandong Province, China
- * E-mail:
| | - Wenxi Xing
- Department of Horticulture, Qingdao Agricultural University, China, Qingdao City, China
| | - Fenfen Wu
- Department of Horticulture, Qingdao Agricultural University, China, Qingdao City, China
| | - Yongzhang Wang
- Department of Horticulture, Qingdao Agricultural University, China, Qingdao City, China
| |
Collapse
|
42
|
Horiunova II, Krasylenko YA, Yemets AI, Blume YB. Involvement of plant cytoskeleton in cellular mechanisms of metal toxicity. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716010060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Wang F, Wang M, Liu Z, Shi Y, Han T, Ye Y, Gong N, Sun J, Zhu C. Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to Cd stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:261-9. [PMID: 26318143 DOI: 10.1016/j.plaphy.2015.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 05/01/2023]
Abstract
Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. The accumulation of Cd in rice grains is a major agricultural problem in regions with Cd pollution. A hydroponics experiment using low grain-Cd-accumulating rice (xiushui 11) and high grain-Cd-accumulating rice (xiushui 110) was carried out to characterize the different responses of rice cultivars to Cd stress. We found that xiushui 11 was more tolerant to Cd than xiushui 110, and xiushui 11 suffered less oxidative damage. Cell walls played an important role in limiting the amount of Cd that entered the protoplast, especially in xiushui 11. Cd stored in organelles as soluble fractions, leading to greater physiological stress of Cd detoxification. We found that Cd can disturb the ion homeostasis in rice roots because Cd(2+) and Ca(2+) may have a similar uptake route. Xiushui 11 had a faster root-to-shoot transport of Cd, and the expression level of OsPCR1 gene which was predicted related with Cd accumulation in rice was consist with the Cd transport of root-to-shoot in rice and maintain the greater Cd tolerance of xiushui 11. These results suggest there are different Cd detoxification and accumulation mechanisms in rice cultivars.
Collapse
Affiliation(s)
- Feijuan Wang
- College of Life Sciences, China Jiliang University, Xueyuan Road 258, Hangzhou 310018, China.
| | - Min Wang
- College of Life Sciences, China Jiliang University, Xueyuan Road 258, Hangzhou 310018, China
| | - Zhouping Liu
- College of Life Sciences, China Jiliang University, Xueyuan Road 258, Hangzhou 310018, China
| | - Yan Shi
- College of Life Sciences, China Jiliang University, Xueyuan Road 258, Hangzhou 310018, China
| | - Tiqian Han
- College of Life Sciences, China Jiliang University, Xueyuan Road 258, Hangzhou 310018, China
| | - Yaoyao Ye
- College of Life Sciences, China Jiliang University, Xueyuan Road 258, Hangzhou 310018, China
| | - Ning Gong
- Yiwu Product and Commodity Quality Supervision and Inspection Institute, China
| | - Junwei Sun
- College of Life Sciences, China Jiliang University, Xueyuan Road 258, Hangzhou 310018, China
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Xueyuan Road 258, Hangzhou 310018, China.
| |
Collapse
|
44
|
Sun C, Jin Y, He H, Wang W, He H, Fu Z, Qian H. Two novel herbicide candidates affect Arabidopsis thaliana growth by inhibiting nitrogen and phosphate absorption. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 123:1-8. [PMID: 26267046 DOI: 10.1016/j.pestbp.2015.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/30/2015] [Accepted: 03/11/2015] [Indexed: 06/04/2023]
Abstract
Both 2-[(2,4-dichlorophenoxy)acetoxy](methy)lmethyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (termed as IIa) and 2-[(4-chloro-2-methyl-phenoxy)-acetoxy](methyl)methyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (termed as IIr) are novel herbicide candidates that positively affect herbicidal activity via the introduction of a phosphorus-containing heterocyclic ring. This report investigated the mechanism of IIa and IIr on weed control in the model plant Arabidopsis thaliana at physiological, ultrastructural and molecular levels. IIa and IIr significantly inhibited the growth of A. thaliana and altered its root structure by inhibiting energy metabolism and lipid or protein biosynthesis. These compounds also significantly affected the absorption of nitrogen and phosphorus by down-regulating the transcripts of nitrate transporter-related genes, ammonium transporter-related genes and phosphorus transporter-related genes.
Collapse
Affiliation(s)
- Chongchong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yujian Jin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haifeng He
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, China
| | - Wei Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, China
| | - Hongwu He
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, China
| | - Zhengwei Fu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haifeng Qian
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310032, China; College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
45
|
Zhang Y, Kang E, Yuan M, Fu Y, Zhu L. PCaP2 regulates nuclear positioning in growing Arabidopsis thaliana root hairs by modulating filamentous actin organization. PLANT CELL REPORTS 2015; 34:1317-30. [PMID: 25929794 DOI: 10.1007/s00299-015-1789-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/23/2015] [Accepted: 03/31/2015] [Indexed: 05/10/2023]
Abstract
PCaP2 plays a key role in maintaining the nucleus at a relatively fixed distance from the apex during root hair growth by modulating actin filaments. During root hair growth, the nucleus localizes at a relatively fixed distance from the apex. In Arabidopsis thaliana, the position of the nucleus is mainly dependent on the configuration of microfilaments (filamentous actin). However, the mechanisms underlying the regulation of actin dynamics and organization for nuclear positioning are largely unknown. In the present study, we demonstrated that plasma membrane-associated Ca(2+) binding protein 2 (PCaP2) influences the position of the nucleus during root hair growth. Abnormal expression of PCaP2 in pcap2 and PCaP2 over-expression plants led to the disorganization of actin filaments, rather than microtubules, in the apex and sub-apical regions of root hairs, which resulted in aberrant root hair growth patterns and misplaced nuclei. Analyses using a PCaP2 mutant protein revealed that actin-severing activity is essential for the function of PCaP2 in root hairs. We demonstrated that PCaP2 plays a key role in maintaining nuclear position in growing root hairs by modulating actin filaments.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | | | | | | | | |
Collapse
|
46
|
Tan Q, Chen G, Zeng G, Chen A, Guan S, Li Z, Zuo Y, Huang Z, Guo Z. Physiological fluxes and antioxidative enzymes activities of immobilized Phanerochaete chrysosporium loaded with TiO2 nanoparticles after exposure to toxic pollutants in solution. CHEMOSPHERE 2015; 128:21-27. [PMID: 25638529 DOI: 10.1016/j.chemosphere.2014.12.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/19/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
Immobilized Phanerochaete chrysosporium loaded with TiO2 nanoparticles (PTNs) are novel high-value bioremediation materials for adsorbing cadmium and for degrading 2,4-dichlorophenol (2,4-DCP). The real-time changes in H(+) and O2 fluxes were measured using the noninvasive microtest technique (NMT). The H(+) influx increased after the addition of 2,4-DCP, and shifted to efflux following the addition of Cd(2+). The O2 flux decreased after the addition of both 2,4-DCP and Cd(2+). A larger Cd(2+) flux was immediately observed after exposure to 0.5mM Cd(2+) (-351.25 pmol cm(-2) s(-1)) than to 0.1 mM Cd(2+) (-107.47 pmol cm(-2) s(-1)). The removal of Cd(2+) by the PTNs increased more after treatment with the 0.5 mM exposure solution (27.6 mg g(-1)) than with the 0.1 mM exposure solution (3.49 mg g(-1)). The enzyme activities were analyzed to review the antioxidative defense system of PTNs in a solution containing various concentrations of Cd(2+). The activities of the coenzyme nicotinamide adenine dinucleotide (NADH) oxidase as well as the enzyme catalase (CAT) plateaued at 6.5 U g(-1) FW and 9.7 U g(-1) FW, respectively, after exposure to 0.25 mM Cd(2+). The activity of superoxide dismutase (SOD) increased gradually in solutions containing 0.1-0.6 mM Cd(2+), and eventually reached a maximum (68.86 U g(-1) FW). These results illustrate how the antioxidative defense system and the physiological fluxes of PTNs respond to the stress caused by toxic pollutants.
Collapse
Affiliation(s)
- Qiong Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guiqiu Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Song Guan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanan Zuo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhenzhen Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhi Guo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
47
|
Meyer CL, Juraniec M, Huguet S, Chaves-Rodriguez E, Salis P, Isaure MP, Goormaghtigh E, Verbruggen N. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3215-27. [PMID: 25873677 PMCID: PMC4449548 DOI: 10.1093/jxb/erv144] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform infrared spectroscopy. Indeed, recent works on A. halleri suggest Cd sequestration both inside cells and in the cell wall/apoplast. All A. halleri populations tested were hypertolerant to Cd, and the metallicolous populations were on average the most tolerant. Accumulation was highly variable between and within populations, and populations that were non-accumulators of Cd were identified. The effect of Cd on the cell wall composition was quite similar in the sensitive species A. lyrata and in A. halleri individuals; the pectin/polysaccharide content of cell walls seems to increase after Cd treatment. Nevertheless, the changes induced by Cd were more pronounced in the less tolerant individuals, leading to a correlation between the level of tolerance and the extent of modifications. This work demonstrated that Cd tolerance and accumulation are highly variable traits in A. halleri, suggesting adaptation at the local scale and involvement of various molecular mechanisms. While in non-metallicolous populations drastic modifications of the cell wall occur due to higher Cd toxicity and/or Cd immobilization in this compartment, the increased tolerance of metallicolous populations probably involves other mechanisms such as vacuolar sequestration.
Collapse
Affiliation(s)
- Claire-Lise Meyer
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Michal Juraniec
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Stéphanie Huguet
- Laboratoire de Chimie Analytique Bio Inorganique et Environnement, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Université de Pau et des Pays de l'Adour, 64053 Pau cedex 9, France
| | - Elena Chaves-Rodriguez
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Pietro Salis
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Marie-Pierre Isaure
- Laboratoire de Chimie Analytique Bio Inorganique et Environnement, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Université de Pau et des Pays de l'Adour, 64053 Pau cedex 9, France
| | - Erik Goormaghtigh
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, 1050 Brussels, Belgium
| |
Collapse
|
48
|
Parrotta L, Guerriero G, Sergeant K, Cai G, Hausman JF. Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. FRONTIERS IN PLANT SCIENCE 2015; 6:133. [PMID: 25814996 PMCID: PMC4357295 DOI: 10.3389/fpls.2015.00133] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/19/2015] [Indexed: 05/19/2023]
Abstract
Increasing industrialization and urbanization result in emission of pollutants in the environment including toxic heavy metals, as cadmium and lead. Among the different heavy metals contaminating the environment, cadmium raises great concern, as it is ecotoxic and as such can heavily impact ecosystems. The cell wall is the first structure of plant cells to come in contact with heavy metals. Its composition, characterized by proteins, polysaccharides and in some instances lignin and other phenolic compounds, confers the ability to bind non-covalently and/or covalently heavy metals via functional groups. A strong body of evidence in the literature has shown the role of the cell wall in heavy metal response: it sequesters heavy metals, but at the same time its synthesis and composition can be severely affected. The present review analyzes the dual property of plant cell walls, i.e., barrier and target of heavy metals, by taking Cd toxicity as example. Following a summary of the known physiological and biochemical responses of plants to Cd, the review compares the wall-related mechanisms in early- and later-diverging land plants, by considering the diversity in cell wall composition. By doing so, common as well as unique response mechanisms to metal/cadmium toxicity are identified among plant phyla and discussed. After discussing the role of hyperaccumulators' cell walls as a particular case, the review concludes by considering important aspects for plant engineering.
Collapse
Affiliation(s)
- Luigi Parrotta
- Dipartimento Scienze della Vita, Università di Siena, Siena, Italy
| | - Gea Guerriero
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Kjell Sergeant
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Giampiero Cai
- Dipartimento Scienze della Vita, Università di Siena, Siena, Italy
| | - Jean-Francois Hausman
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
49
|
Gardiner J. Use of Arabidopsis to Model Hereditary Spastic Paraplegia and Other Movement Disorders. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Liu M, Dong F, Kang W, Sun S, Wei H, Zhang W, Nie X, Guo Y, Huang T, Liu Y. Biosorption of strontium from simulated nuclear wastewater by Scenedesmus spinosus under culture conditions: adsorption and bioaccumulation processes and models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:6099-118. [PMID: 24919131 PMCID: PMC4078568 DOI: 10.3390/ijerph110606099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 11/16/2022]
Abstract
Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately 10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions.
Collapse
Affiliation(s)
- Mingxue Liu
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wu Kang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China.
| | - Shiyong Sun
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Hongfu Wei
- Life Science and Engineering College, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wei Zhang
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Xiaoqin Nie
- National Defense Key Discipline Laboratory of the Nuclear Waste and Environmental Safety of the Commission of Science, Technology and Industry for National Defense, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China.
| | - Yuting Guo
- Life Science and Engineering College, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Ting Huang
- Life Science and Engineering College, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yuanyuan Liu
- Life Science and Engineering College, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|