1
|
Marconato D, Paiva Nogueira B, de Souza V, Grenfell e Queiroz RF, Nakaie CR, Vasconcelos EG, de Faria Pinto P. Evaluation of Synthetic Peptides from Schistosoma mansoni ATP Diphosphohydrolase 1: In Silico Approaches for Characterization and Prospective Application in Diagnosis of Schistosomiasis. ACS Infect Dis 2025; 11:463-473. [PMID: 39807991 PMCID: PMC11833870 DOI: 10.1021/acsinfecdis.4c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
Schistosomiasis is the infection caused by Schistosoma mansoni and constitutes a worldwide public health problem. The parasitological recommended method and serological methods can be used for the detection of eggs and antibodies, respectively. However, both have limitations, especially in low endemicity areas. Thus, new approaches for the diagnosis of schistosomiasis are essential. In this study, a six-amino acid peptide and derived sequences from SmATPDase1 were synthesized for the evaluation of immunogenicity. SmATPDase1 is included in a protein group in S. mansoni tegument; therefore, its peptides could be potential candidates for diagnostic antigens. In the hypothetical SmATPDase1 three-dimensional structure, peptides are located in a region exposed and accessible to antibody binding. In addition, peptide amino acid sequences are conserved in the most relevant Schistosoma species and have low identity with human NTPDases isoforms. Swiss mice immunization resulted in significant anti-peptide polyclonal antibodies production, which recognized a 63 kDa protein in tegument and adult worm preparations. By immunofluorescence microscopy, polyclonal antibodies also identified this enzyme in cercariae. Sera of infected animals presented high seropositivity in ELISA-peptides, with an area under curve (AUC) greater than 0.96 for all peptides. In mice with low parasite burden, we observed a seropositivity AUC > 0.9. Reactivity in the prepatent period exhibited AUC values greater than 0.94 for all peptides. Anti-P1425 monoclonal antibodies were successfully produced, and mAbs recognized the integral protein in ELISA and Western blots. The data indicate that peptides from SmATPDase1 are potential biomarkers for schistosomiasis, and anti-peptide antibodies are interesting tools for the detection of the infection.
Collapse
Affiliation(s)
- Danielle
Gomes Marconato
- Department
of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Beatriz Paiva Nogueira
- Department
of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | | | - Rafaella Fortini Grenfell e Queiroz
- Laboratory
of Diagnosis and Therapy of Infectious Diseases and Cancer—Fiocruz
DATA., René Rachou Research Center, Oswaldo Cruz Foundation, FIOCRUZ, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Clovis R. Nakaie
- Department
of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04044-023, Brazil
| | - Eveline Gomes Vasconcelos
- Department
of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Priscila de Faria Pinto
- Department
of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| |
Collapse
|
2
|
Da'dara AA, Nation CS, Skelly PJ. Metabolism of FAD, FMN and riboflavin (vitamin B2) in the human parasitic blood fluke Schistosoma mansoni. BMC Infect Dis 2024; 24:636. [PMID: 38918706 PMCID: PMC11202380 DOI: 10.1186/s12879-024-09538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Schistosomiasis is a parasitic disease caused by trematodes of the genus Schistosoma. The intravascular worms acquire the nutrients necessary for their survival from host blood. Since all animals are auxotrophic for riboflavin (vitamin B2), schistosomes too must import it to survive. Riboflavin is an essential component of the coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD); these support key functions of dozens of flavoenzymes. METHODS Here, using a combination of metabolomics, enzyme kinetics and in silico molecular analysis, we focus on the biochemistry of riboflavin and its metabolites in Schistosoma mansoni (Sm). RESULTS We show that when schistosomes are incubated in murine plasma, levels of FAD decrease over time while levels of FMN increase. We show that live schistosomes cleave exogenous FAD to generate FMN and this ability is significantly blocked when expression of the surface nucleotide pyrophosphatase/phosphodiesterase ectoenzyme SmNPP5 is suppressed using RNAi. Recombinant SmNPP5 cleaves FAD with a Km of 178 ± 5.9 µM and Kcat/Km of 324,734 ± 36,347 M- 1.S- 1. The FAD-dependent enzyme IL-4I1 drives the oxidative deamination of phenylalanine to produce phenylpyruvate and H2O2. Since schistosomes are damaged by H2O2, we determined if SmNPP5 could impede H2O2 production by blocking IL-4I1 action in vitro. We found that this was not the case; covalently bound FAD on IL-4I1 appears inaccessible to SmNPP5. We also report that live schistosomes can cleave exogenous FMN to generate riboflavin and this ability is significantly impeded when expression of a second surface ectoenzyme (alkaline phosphatase, SmAP) is suppressed. Recombinant SmAP cleaves FMN with a Km of 3.82 ± 0.58 mM and Kcat/Km of 1393 ± 347 M- 1.S- 1. CONCLUSIONS The sequential hydrolysis of FAD by tegumental ecto-enzymes SmNPP5 and SmAP can generate free vitamin B2 around the worms from where it can be conveniently imported by the recently described schistosome riboflavin transporter SmaRT. Finally, we identified in silico schistosome homologs of enzymes that are involved in intracellular vitamin B2 metabolism. These are riboflavin kinase (SmRFK) as well as FAD synthase (SmFADS); cDNAs encoding these two enzymes were cloned and sequenced. SmRFK is predicted to convert riboflavin to FMN while SmFADS could further act on FMN to regenerate FAD in order to facilitate robust vitamin B2-dependent metabolism in schistosomes.
Collapse
Affiliation(s)
- Akram A Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Catherine S Nation
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA.
| |
Collapse
|
3
|
Rinaldi G, Loukas A, Sotillo J. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:507-539. [PMID: 39008274 DOI: 10.1007/978-3-031-60121-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematode infections stand out as one of the frequently overlooked tropical diseases, despite their wide global prevalence and remarkable capacity to parasitize diverse host species and tissues. Furthermore, these parasites hold significant socio-economic, medical, veterinary and agricultural implications. Over the past decades, substantial strides have been taken to bridge the information gap concerning various "omic" tools, such as proteomics and genomics, in this field. In this edition of the book, we highlight recent progress in genomics and proteomics concerning trematodes with a particular focus on the advances made in the past 5 years. Additionally, we present insights into cutting-edge technologies employed in studying trematode biology and shed light on the available resources for exploring the molecular facets of this particular group of parasitic helminths.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
4
|
Wang Z, Teng D, Mao R, Hao Y, Yang N, Wang X, Wang J. A cleavable chimeric peptide with targeting and killing domains enhances LPS neutralization and antibacterial properties against multi-drug resistant E. coli. Commun Biol 2023; 6:1170. [PMID: 37973936 PMCID: PMC10654507 DOI: 10.1038/s42003-023-05528-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Pathogenic Escherichia coli is one of the most common causes of diarrhea diseases and its characteristic component of the outer membrane-lipopolysaccharide (LPS) is a major inducer of sepsis. Few drugs have been proven to kill bacteria and simultaneously neutralize LPS toxicity. Here, the chimeric peptides-R7, A7 and G7 were generated by connecting LBP14 (LPS-targeting domain) with L7 (killing domain) via different linkers to improve antibacterial and anti-inflammatory activities. Compared to parent LBP14-RKRR and L7, the antibacterial activity of R7 with a cleavable "RKRR" linker and the "LBP14-RKRR + L7" cocktail against Escherichia coli, Salmonella typhimurium and Staphylococcus aureus was increased by 2 ~ 4-fold. Both A7 and G7 with non-cleavable linkers almost lost antibacterial activity. The ability of R7 to neutralize LPS was markedly higher than that of LBP14-RKRR and L7. In vivo, R7 could be cleaved by furin in a time-dependent manner, and release L7 and LBP14-RKRR in serum. In vivo, R7 can enhance mouse survival more effectively than L7 and alleviate lung injuries by selective inhibition of the NF-κB signaling pathways and promoting higher IAP activity. It suggests that R7 may be promising dual-function candidates as antibacterial and anti-endotoxin agents.
Collapse
Affiliation(s)
- Zhenlong Wang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Da Teng
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ruoyu Mao
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ya Hao
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Na Yang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Xiumin Wang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| | - Jianhua Wang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| |
Collapse
|
5
|
Yang WB, Luo F, Zhang W, Sun CS, Tan C, Zhou A, Hu W. Inhibition of signal peptidase complex expression affects the development and survival of Schistosoma japonicum. Front Cell Infect Microbiol 2023; 13:1136056. [PMID: 36936776 PMCID: PMC10020623 DOI: 10.3389/fcimb.2023.1136056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background Schistosomiasis, the second most neglected tropical disease defined by the WHO, is a significant zoonotic parasitic disease infecting approximately 250 million people globally. This debilitating disease has seriously threatened public health, while only one drug, praziquantel, is used to control it. Because of this, it highlights the significance of identifying more satisfactory target genes for drug development. Protein translocation into the endoplasmic reticulum (ER) is vital to the subsequent localization of secretory and transmembrane proteins. The signal peptidase complex (SPC) is an essential component of the translocation machinery and functions to cleave the signal peptide sequence (SP) of secretory and membrane proteins entering the ER. Inhibiting the expression of SPC can lead to the abolishment or weaker cleavage of the signal peptide, and the accumulation of uncleaved protein in the ER would affect the survival of organisms. Despite the evident importance of SPC, in vivo studies exploring its function have yet to be reported in S. japonicum. Methods The S. japonicum SPC consists of four proteins: SPC12, SPC18, SPC22 and SPC25. RNA interference was used to investigate the impact of SPC components on schistosome growth and development in vivo. qPCR and in situ hybridization were applied to localize the SPC25 expression. Mayer's carmalum and Fast Blue B staining were used to observe morphological changes in the reproductive organs of dsRNA-treated worms. The effect of inhibitor treatment on the worm's viability and pairing was also examined in vitro. Results Our results showed that RNAi-SPC delayed the worm's normal development and was even lethal for schistosomula in vivo. Among them, the expression of SPC25 was significantly higher in the developmental stages of the reproductive organs in schistosomes. Moreover, SPC25 possessed high expression in the worm tegument, testes of male worms and the ovaries and vitellarium of female worms. The SPC25 knockdown led to the degeneration of reproductive organs, such as the ovaries and vitellarium of female worms. The SPC25 exhaustion also reduced egg production while reducing the pathological damage of the eggs to the host. Additionally, the SPC-related inhibitor AEBSF or suppressing the expression of SPC25 also impacted cultured worms' pairing and viability in vitro. Conclusions These data demonstrate that SPC is necessary to maintain the development and reproduction of S. japonicum. This research provides a promising anti-schistosomiasis drug target and discovers a new perspective on preventing worm fecundity and maturation.
Collapse
Affiliation(s)
- Wen-Bin Yang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Cheng-Song Sun
- Central Laboratory, Anhui Provincial Institute of Parasitic Diseases, Anhui, China
| | - Cong Tan
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - An Zhou
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
- *Correspondence: Wei Hu,
| |
Collapse
|
6
|
Fifty years of the schistosome tegument: discoveries, controversies, and outstanding questions. Int J Parasitol 2021; 51:1213-1232. [PMID: 34767805 DOI: 10.1016/j.ijpara.2021.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022]
Abstract
The unique multilaminate appearance of the tegument surface of schistosomes was first described in 1973, in one of the earliest volumes of the International Journal for Parasitology. The present review, published almost 50 years later, traces the development of our knowledge of the tegument, starting with those earliest cytological advances, particularly the surface plasma membrane-membranocalyx complex, through an era of protein discovery to the modern age of protein characterization, aided by proteomics. More recently, analysis of single cell transcriptomes of schistosomes is providing insight into the organisation of the cell bodies that support the surface syncytium. Our understanding of the tegument, notably the nature of the proteins present within the plasma membrane and membranocalyx, has provided insights into how the schistosomes interact with their hosts but many aspects of how the tegument functions remain unanswered. Among the unresolved aspects are those concerned with maintenance and renewal of the surface membrane complex, and whether surface proteins and membrane components are recycled. Current controversies arising from investigations about whether the tegument is a source of extracellular vesicles during parasitism, and if it is covered with glycolytic enzymes, are evaluated in the light of cytological and proteomic knowledge of the layer.
Collapse
|
7
|
Silva Torres D, Alves de Oliveira B, Souza D Silveira L, Paulo da Silva M, Rodrigues Durães Pereira V, Moraes J, Rúbia Costa Couri M, Fortini Grenfell E Queiroz R, Martins Parreiras P, Roberto Silva M, Azevedo Alves L, Carius de Souza V, Vanessa Zabala Capriles Goliatt P, Gomes Vasconcelos E, Alves da Silva Filho A, de Faria Pinto P. Synthetic Aurones: New Features for Schistosoma mansoni Therapy. Chem Biodivers 2021; 18:e2100439. [PMID: 34665914 DOI: 10.1002/cbdv.202100439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/24/2021] [Indexed: 11/10/2022]
Abstract
In this work, two synthetic aurones revealed moderate schistosomicidal potential in in vitro and in vivo assays. Aurones (1) and (2) promoted changes in tegument integrity and motor activity, leading to death of adult Schistosoma mansoni worms in in vitro assays. When administered orally (two doses of 50 mg/kg) in experimentally infected animals, synthetic aurones (1) and (2) promoted reductions of 56.20 % and 57.61 % of the parasite load and stimulated the displacement towards the liver of the remaining adult worms. The oogram analysis revealed that the treatment with both aurones interferes with the egg development kinetics in the intestinal tissue. Seeking an action target for compounds (1) and (2), the connection with NTPDases enzymes, recognized as important therapeutic targets for S. mansoni, was evaluated. Molecular docking studies have shown promising results. The dataset reveals the anthelmintic character of these compounds, which can be used in the development of new therapies for schistosomiasis.
Collapse
Affiliation(s)
- Daniel Silva Torres
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Bruna Alves de Oliveira
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | - Marcos Paulo da Silva
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | | | - Josué Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | | | | | - Patrícia Martins Parreiras
- Laboratório de Esquistossomose, Centro de Pesquisas René Rachou, Fundação Oswaldo, Cruz, FIOCRUZ, Belo Horizonte, MG, Brazil
| | | | - Lara Azevedo Alves
- Grupo de Modelagem Computacional Aplicada (GMCA), Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Vinícius Carius de Souza
- Grupo de Modelagem Computacional Aplicada (GMCA), Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | - Eveline Gomes Vasconcelos
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Ademar Alves da Silva Filho
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Priscila de Faria Pinto
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| |
Collapse
|
8
|
Azad AK, Raihan T, Ahmed J, Hakim A, Emon TH, Chowdhury PA. Human Aquaporins: Functional Diversity and Potential Roles in Infectious and Non-infectious Diseases. Front Genet 2021; 12:654865. [PMID: 33796134 PMCID: PMC8007926 DOI: 10.3389/fgene.2021.654865] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins and found in all living organisms from bacteria to human. AQPs mainly involved in the transmembrane diffusion of water as well as various small solutes in a bidirectional manner are widely distributed in various human tissues. Human contains 13 AQPs (AQP0-AQP12) which are divided into three sub-classes namely orthodox aquaporin (AQP0, 1, 2, 4, 5, 6, and 8), aquaglyceroporin (AQP3, 7, 9, and 10) and super or unorthodox aquaporin (AQP11 and 12) based on their pore selectivity. Human AQPs are functionally diverse, which are involved in wide variety of non-infectious diseases including cancer, renal dysfunction, neurological disorder, epilepsy, skin disease, metabolic syndrome, and even cardiac diseases. However, the association of AQPs with infectious diseases has not been fully evaluated. Several studies have unveiled that AQPs can be regulated by microbial and parasitic infections that suggest their involvement in microbial pathogenesis, inflammation-associated responses and AQP-mediated cell water homeostasis. This review mainly aims to shed light on the involvement of AQPs in infectious and non-infectious diseases and potential AQPs-target modulators. Furthermore, AQP structures, tissue-specific distributions and their physiological relevance, functional diversity and regulations have been discussed. Altogether, this review would be useful for further investigation of AQPs as a potential therapeutic target for treatment of infectious as well as non-infectious diseases.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jahed Ahmed
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Al Hakim
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tanvir Hossain Emon
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | |
Collapse
|
9
|
Farias LP, Vance GM, Coulson PS, Vitoriano-Souza J, Neto APDS, Wangwiwatsin A, Neves LX, Castro-Borges W, McNicholas S, Wilson KS, Leite LCC, Wilson RA. Epitope Mapping of Exposed Tegument and Alimentary Tract Proteins Identifies Putative Antigenic Targets of the Attenuated Schistosome Vaccine. Front Immunol 2021; 11:624613. [PMID: 33763055 PMCID: PMC7982949 DOI: 10.3389/fimmu.2020.624613] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/14/2020] [Indexed: 02/03/2023] Open
Abstract
The radiation-attenuated cercarial vaccine remains the gold standard for the induction of protective immunity against Schistosoma mansoni. Furthermore, the protection can be passively transferred to naïve recipient mice from multiply vaccinated donors, especially IFNgR KO mice. We have used such sera versus day 28 infection serum, to screen peptide arrays and identify likely epitopes that mediate the protection. The arrays encompassed 55 secreted or exposed proteins from the alimentary tract and tegument, the principal interfaces with the host bloodstream. The proteins were printed onto glass slides as overlapping 15mer peptides, reacted with primary and secondary antibodies, and reactive regions detected using an Agilent array scanner. Pep Slide Analyzer software provided a numerical value above background for each peptide from which an aggregate score could be derived for a putative epitope. The reactive regions of 26 proteins were mapped onto crystal structures using the CCP4 molecular graphics, to aid selection of peptides with the greatest accessibility and reactivity, prioritizing vaccine over infection serum. A further eight MEG proteins were mapped to regions conserved between family members. The result is a list of priority peptides from 44 proteins for further investigation in multiepitope vaccine constructs and as targets of monoclonal antibodies.
Collapse
Affiliation(s)
- Leonardo P. Farias
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Gillian M. Vance
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Patricia S. Coulson
- York Biomedical Research Institute, University of York, York, United Kingdom
| | | | - Almiro Pires da Silva Neto
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Arporn Wangwiwatsin
- Parasite Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Leandro Xavier Neves
- Instituto de Ciẽncias Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - William Castro-Borges
- Instituto de Ciẽncias Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Stuart McNicholas
- York Structural Biology Laboratory, University of York, York, United Kingdom
| | - Keith S. Wilson
- York Structural Biology Laboratory, University of York, York, United Kingdom
| | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - R. Alan Wilson
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
10
|
Schistosoma mansoni venom allergen-like protein 6 (SmVAL6) maintains tegumental barrier function. Int J Parasitol 2020; 51:251-261. [PMID: 33253697 PMCID: PMC7957364 DOI: 10.1016/j.ijpara.2020.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 11/23/2022]
Abstract
Smval6 is expressed in oral/ventral suckers, oesophageal gland and mesenchymal cells of Schistosoma mansoni. Smval6 knockdown increases surface membrane permeability. SmVAL6 interacts with Sm14 and DLC proteins.
The Schistosoma mansoni venom allergen-like protein (SmVAL) superfamily is a collection of at least 29 molecules that have been classified into two distinctive groups (Group 1 and Group 2 SmVALs). The fundamental basis for SmVAL segregation relates to signal peptide and conserved cysteine retention (present in all Group 1 SmVALs, but absent in all Group 2 SmVALs). These structural differences have led to the hypothesis that most Group 1 SmVALs, found as components of schistosome excretory/secretory (E/S) products, predominantly interact with their environment (intermediate or definitive hosts) whereas the Group 2 SmVALs are retained within the schistosome to fulfil parasite-related functions. While experimental evidence to support Group 1 SmVAL/host interactions is growing, similar support for identification of parasite-related Group 2 SmVAL functions is currently lacking. By applying a combination of approaches to the study of SmVAL6, we provide the first known evidence for an essential function of a Group 2 SmVAL in schistosome biology. After whole mount in situ hybridisation (WISH) localised Smval6 to the anterior region of the oesophageal gland (AOG) and cells scattered through the mesenchyme in adult schistosomes, short interfering RNA (siRNA)-mediated silencing of Smval6 was employed to assess loss of function phenotypes. Here, siSmval6-mediated knockdown of transcript and protein levels led to an increase in tegumental permeability as assessed by the quantification of TAMRA-labelled dextran throughout sub-tegumental cells/tissues. Yeast two hybrid screening using SmVAL6 as a bait revealed Sm14 (a fatty acid binding protein) and a dynein light chain (DLC) as directly interacting partners. Interrogation of single-cell RNA-seq (scRNA-seq) data supported these protein interactions by demonstrating the spatial co-expression of Smval6/dlc/Sm14 in a small proportion of adult cell types (e.g. neurons, tegumental cells and neoblasts). In silico modelling of SmVAL6 with Sm14 and DLC provided evidence that opposing faces of SmVAL6 were likely responsible for these protein/protein interactions. Our results suggest that SmVAL6 participates in oesophageal biology, formation of higher order protein complexes and maintenance of tegumental barrier function. Further studies of other Group 2 SmVALs may reveal additional functions of this enigmatic superfamily.
Collapse
|
11
|
Whiteland H, Crusco A, Bloemberg LW, Tibble-Howlings J, Forde-Thomas J, Coghlan A, Murphy PJ, Hoffmann KF. Quorum sensing N-Acyl homoserine lactones are a new class of anti-schistosomal. PLoS Negl Trop Dis 2020; 14:e0008630. [PMID: 33075069 PMCID: PMC7595621 DOI: 10.1371/journal.pntd.0008630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/29/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Schistosomiasis is a prevalent neglected tropical disease that affects approximately 300 million people worldwide. Its treatment is through a single class chemotherapy, praziquantel. Concerns surrounding the emergence of praziquantel insensitivity have led to a need for developing novel anthelmintics. METHODOLOGY/PRINCIPLE FINDINGS Through evaluating and screening fourteen compounds (initially developed for anti-cancer and anti-viral projects) against Schistosoma mansoni, one of three species responsible for most cases of human schistosomiasis, a racemic N-acyl homoserine (1) demonstrated good efficacy against all intra mammalian lifecycle stages including schistosomula (EC50 = 4.7 μM), juvenile worms (EC50 = 4.3 μM) and adult worms (EC50 = 8.3 μM). To begin exploring structural activity relationships, a further 8 analogues of this compound were generated, including individual (R)- and (S)- enantiomers. Upon anti-schistosomal screening of these analogues, the (R)- enantiomer retained activity, whereas the (S)- lost activity. Furthermore, modification of the lactone ring to a thiolactone ring (3) improved potency against schistosomula (EC50 = 2.1 μM), juvenile worms (EC50 = 0.5 μM) and adult worms (EC50 = 4.8 μM). As the effective racemic parent compound is structurally similar to quorum sensing signaling peptides used by bacteria, further evaluation of its effect (along with its stereoisomers and the thiolactone analogues) against Gram+ (Staphylococcus aureus) and Gram- (Escherichia coli) species was conducted. While some activity was observed against both Gram+ and Gram- bacteria species for the racemic compound 1 (MIC 125 mg/L), the (R) stereoisomer had better activity (125 mg/L) than the (S) (>125mg/L). However, the greatest antimicrobial activity (MIC 31.25 mg/L against S. aureus) was observed for the thiolactone containing analogue (3). CONCLUSION/SIGNIFICANCE To the best of our knowledge, this is the first demonstration that N-Acyl homoserines exhibit anthelmintic activities. Furthermore, their additional action on Gram+ bacteria opens a new avenue for exploring these molecules more broadly as part of future anti-infective initiatives.
Collapse
Affiliation(s)
- Helen Whiteland
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, United Kingdom
| | - Alessandra Crusco
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, United Kingdom
| | - Lisa W. Bloemberg
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, United Kingdom
| | | | - Josephine Forde-Thomas
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, United Kingdom
| | - Avril Coghlan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Patrick J. Murphy
- School of Natural Sciences, Bangor University, Gwynedd, United Kingdom
| | - Karl F. Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, United Kingdom
| |
Collapse
|
12
|
Hirst NL, Nebel JC, Lawton SP, Walker AJ. Deep phosphoproteome analysis of Schistosoma mansoni leads development of a kinomic array that highlights sex-biased differences in adult worm protein phosphorylation. PLoS Negl Trop Dis 2020; 14:e0008115. [PMID: 32203512 PMCID: PMC7089424 DOI: 10.1371/journal.pntd.0008115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Although helminth parasites cause enormous suffering worldwide we know little of how protein phosphorylation, one of the most important post-translational modifications used for molecular signalling, regulates their homeostasis and function. This is particularly the case for schistosomes. Herein, we report a deep phosphoproteome exploration of adult Schistosoma mansoni, providing one of the richest phosphoprotein resources for any parasite so far, and employ the data to build the first parasite-specific kinomic array. Complementary phosphopeptide enrichment strategies were used to detect 15,844 unique phosphopeptides mapping to 3,176 proteins. The phosphoproteins were predicted to be involved in a wide range of biological processes and phosphoprotein interactome analysis revealed 55 highly interconnected clusters including those enriched with ribosome, proteasome, phagosome, spliceosome, glycolysis, and signalling proteins. 93 distinct phosphorylation motifs were identified, with 67 providing a ‘footprint’ of protein kinase activity; CaMKII, PKA and CK1/2 were highly represented supporting their central importance to schistosome function. Within the kinome, 808 phosphorylation sites were matched to 136 protein kinases, and 68 sites within 37 activation loops were discovered. Analysis of putative protein kinase-phosphoprotein interactions revealed canonical networks but also novel interactions between signalling partners. Kinomic array analysis of male and female adult worm extracts revealed high phosphorylation of transformation:transcription domain associated protein by both sexes, and CDK and AMPK peptides by females. Moreover, eight peptides including protein phosphatase 2C gamma, Akt, Rho2 GTPase, SmTK4, and the insulin receptor were more highly phosphorylated by female extracts, highlighting their possible importance to female worm function. We envision that these findings, tools and methodology will help drive new research into the functional biology of schistosomes and other helminth parasites, and support efforts to develop new therapeutics for their control. Schistosomes are formidable parasites that cause the debilitating and life-threatening disease human schistosomiasis. We need to better understand the cellular biology of these parasites to develop novel strategies for their control. Within cells, a process called protein phosphorylation controls many aspects of molecular communication or ‘signalling’ and is central to cellular function and homeostasis. Here, using complementary strategies, we have performed the first in-depth characterisation and functional annotation of protein phosphorylation events in schistosomes, providing one of the richest phosphoprotein resources for any parasite to date. Using this knowledge, we have developed a novel tool to simultaneously evaluate signalling processes in these worms and highlight sex-biased differences in adult worm protein phosphorylation. Several proteins were found to be more greatly phosphorylated by female worm extracts, suggesting their possible importance to female worm function. This work will help drive new research into the fundamental biology of schistosomes, as well as related parasites, and will support efforts to develop new drug or vaccine-based therapeutics for their control.
Collapse
Affiliation(s)
- Natasha L. Hirst
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, United Kingdom
| | - Jean-Christophe Nebel
- School of Computer Science and Mathematics, Kingston University, Penrhyn Road, Kingston upon Thames, United Kingdom
| | - Scott P. Lawton
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, United Kingdom
| | - Anthony J. Walker
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Li XH, Vance GM, Cartwright J, Cao JP, Wilson RA, Castro-Borges W. Mapping the epitopes of Schistosoma japonicum esophageal gland proteins for incorporation into vaccine constructs. PLoS One 2020; 15:e0229542. [PMID: 32107503 PMCID: PMC7046203 DOI: 10.1371/journal.pone.0229542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/07/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The development of a schistosome vaccine has proved challenging but we have suggested that characterisation of the self-cure mechanism in rhesus macaques might provide a route to an effective product. The schistosome esophagus is a complex structure where blood processing is initiated by secretions from anterior and posterior glands, achieved by a mixture of ~40 unique proteins. The mechanism of self-cure in macaques involves cessation of feeding, after which worms slowly starve to death. Antibody coats the esophagus lumen and disrupts the secretory processes from the glands, potentially making their secretions ideal vaccine targets. METHODOLOGY/PRINCIPAL FINDINGS We have designed three peptide arrays comprising overlapping 15-mer peptides encompassing 32 esophageal gland proteins, and screened them for reactivity against 22-week infection serum from macaques versus permissive rabbit and mouse hosts. There was considerable intra- and inter-species variation in response and no obvious unique target was associated with self-cure status, which suggests that self-cure is achieved by antibodies reacting with multiple targets. Some immuno-dominant sequences/regions were evident across species, notably including: MEGs 4.1C, 4.2, and 11 (Array 1); MEG-12 and Aspartyl protease (Array 2); a Tetraspanin 1 loop and MEG-n2 (Array 3). Responses to MEGs 8.1C and 8.2C were largely confined to macaques. As proof of principle, three synthetic genes were designed, comprising several key targets from each array. One of these was expressed as a recombinant protein and used to vaccinate rabbits. Higher antibody titres were obtained to the majority of reactive regions than those elicited after prolonged infection. CONCLUSIONS/SIGNIFICANCE It is feasible to test simultaneously the additive potential of multiple esophageal proteins to induce protection by combining their most reactive regions in artificial constructs that can be used to vaccinate suitable hosts. The efficacy of the approach to disrupt esophageal function now needs to be tested by a parasite challenge.
Collapse
Affiliation(s)
- Xiao-Hong Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Gillian M. Vance
- Centre for Immunology and Infection, Department of Biology, University of York, York, England, United Kingdom
| | - Jared Cartwright
- Protein Production Laboratory, Department of Biology, University of York, York, England, United Kingdom
| | - Jian-Ping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - R Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, York, England, United Kingdom
| | - William Castro-Borges
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brasil
| |
Collapse
|
14
|
Limpanont Y, Phuphisut O, Reamtong O, Adisakwattana P. Recent advances in Schistosoma mekongi ecology, transcriptomics and proteomics of relevance to snail control. Acta Trop 2020; 202:105244. [PMID: 31669533 DOI: 10.1016/j.actatropica.2019.105244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Mekong schistosomiasis caused by Schistosoma mekongi is a public health problem that occurs along the border between southern Laos and northern Cambodia. Given its restricted distribution and low prevalence, eventual eradication via an effective control program can be expected to be successful. To achieve this goal detailed knowledge of its basic biology, molecular biology, biochemistry, and pathology is urgently required. In this regard, recent studies on transcriptome analysis of adult male and female S. mekongi worms, and proteome analysis of developmental stages have been reported and are discussed here. The biology, habitat, and distribution of the snail intermediate host Neotricula aperta, which are factors in disease transmission, are discussed in this review. These have initiated renewed interest in S. mekongi research and contributed promising data that will be utilized in the generation of effective control and prevention strategies.
Collapse
|
15
|
Leow CY, Willis C, Chuah C, Leow CH, Jones M. Immunogenicity, antibody responses and vaccine efficacy of recombinant annexin B30 against Schistosoma mansoni. Parasite Immunol 2020; 42:e12693. [PMID: 31880816 DOI: 10.1111/pim.12693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 01/04/2023]
Abstract
AIMS Schistosomes infect approximately 250 million people worldwide. To date, there is no effective vaccine available for the prevention of schistosome infection in endemic regions. There remains a need to develop means to confer long-term protection of individuals against reinfection. In this study, an annexin, namely annexin B30, which is highly expressed in the tegument of Schistosoma mansoni was selected to evaluate its immunogenicity and protective efficacy in a mouse model. METHODS AND RESULTS Bioinformatics analysis showed that there were three potential linear B-cell epitopes and four conformational B-cell epitopes predicted from annexin B30, respectively. Full-length annexin B30 was cloned and expressed in Escherichia coli BL21(DE3). In the presence of adjuvants, the soluble recombinant protein was evaluated for its protective efficacy in two independent vaccine trials. Immunization of CBA mice with recombinant annexin B30 formulated either in alum only or alum/CpG induced a mixed Th1/Th2 cytokine profile but no significant protection against schistosome infection was detected. CONCLUSION Recombinant annexin B30 did not confer significant protection against the parasite. The molecule may not be suitable for vaccine development. However, it could be an ideal biomarker recommended for immunodiagnostics development.
Collapse
Affiliation(s)
- Chiuan Yee Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Charlene Willis
- School of Environment and Science, Griffith University, Nathan, Qld, Australia
| | - Candy Chuah
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Malaysia
| | - Malcolm Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
16
|
Ma G, Jiang A, Luo Y, Luo Y, Huang H, Zhou R. Aquaporin 1 is located on the intestinal basolateral membrane in Toxocara canis and might play a role in drug uptake. Parasit Vectors 2019; 12:243. [PMID: 31101125 PMCID: PMC6525457 DOI: 10.1186/s13071-019-3500-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/09/2019] [Indexed: 01/23/2023] Open
Abstract
Background Aquaporins (AQPs) are a family of integral membrane channel proteins that facilitate the transport of water and other small solutes across cell membranes. AQPs appear to play crucial roles in parasite survival and represent possible drug targets for novel intervention strategy. In this work, we investigated the tissue distribution and biological roles of an aquaporin TcAQP1 in the neglected parasitic nematode Toxocara canis. Methods Recombinant C-terminal hydrophilic domain of AQP1 of T. canis (rTcAQP1c) and polyclonal antibody against rTcAQP1c were produced to analyse the tissue expression of native TcAQP1 in adult (female and male) worms using an immunohistochemical approach. RNA interference (RNAi), quantitative real-time PCR (qRT-PCR) and nematocidal assays were performed to investigate the functional roles of TcAQP1 in the adult stage of T. canis. Results Immunofluorescence analysis showed that TcAQP1 was localised predominantly in the epithelial linings of the reproductive tract and basolateral membrane of the intestine in the adult stage (female and male) of T. canis, indicating important roles in reproduction, nutrient absorption and/or osmoregulation. Treatment with silencing RNA for 24 h resulted in a significant reduction of Tc-aqp-1 mRNA level in adult T. canis, though no phenotypical change was observed. The efficient gene knockdown compromised the nematocidal activity of albendazole in vitro, suggesting the role of TcAQP1 in drug uptake. Conclusions The findings of this study provide important information about tissue expression and functional roles of TcAQP1 protein in adult T. canis. Understanding the biological functions of this protein in other developmental stages of T. canis and related parasitic nematodes would contribute to the discovery of novel diagnostic or anthelmintic targets.
Collapse
Affiliation(s)
- Guangxu Ma
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, The People's Republic of China.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Aiyun Jiang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, The People's Republic of China
| | - Yongfang Luo
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, The People's Republic of China
| | - Yongli Luo
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, The People's Republic of China
| | - Hancheng Huang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, The People's Republic of China
| | - Rongqiong Zhou
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, The People's Republic of China.
| |
Collapse
|
17
|
Sotillo J, Pearson MS, Becker L, Mekonnen GG, Amoah AS, van Dam G, Corstjens PLAM, Murray J, Mduluza T, Mutapi F, Loukas A. In-depth proteomic characterization of Schistosoma haematobium: Towards the development of new tools for elimination. PLoS Negl Trop Dis 2019; 13:e0007362. [PMID: 31091291 PMCID: PMC6538189 DOI: 10.1371/journal.pntd.0007362] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/28/2019] [Accepted: 04/05/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Schistosomiasis is a neglected disease affecting hundreds of millions worldwide. Of the three main species affecting humans, Schistosoma haematobium is the most common, and is the leading cause of urogenital schistosomiasis. S. haematobium infection can cause different urogenital clinical complications, particularly in the bladder, and furthermore, this parasite has been strongly linked with squamous cell carcinoma. A comprehensive analysis of the molecular composition of its different proteomes will contribute to developing new tools against this devastating disease. METHODS AND FINDINGS By combining a comprehensive protein fractionation approach consisting of OFFGEL electrophoresis with high-throughput mass spectrometry, we have performed the first in-depth characterisation of the different discrete proteomes of S. haematobium that are predicted to interact with human host tissues, including the secreted and tegumental proteomes of adult flukes and secreted and soluble egg proteomes. A total of 662, 239, 210 and 138 proteins were found in the adult tegument, adult secreted, soluble egg and secreted egg proteomes, respectively. In addition, we probed these distinct proteomes with urine to assess urinary antibody responses from naturally infected human subjects with different infection intensities, and identified adult fluke secreted and tegument extracts as being the best predictors of infection. CONCLUSION We provide a comprehensive dataset of proteins from the adult and egg stages of S. haematobium and highlight their utility as diagnostic markers of infection intensity. Protein composition was markedly different between the different extracts, highlighting the distinct subsets of proteins that different development stages present in their different niches. Furthermore, we have identified adult fluke ES and tegument extracts as best predictors of infection using urine antibodies of naturally infected people. This study provides the first steps towards the development of novel tools to control this important neglected tropical disease.
Collapse
Affiliation(s)
- Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- Laboratorio de Referencia en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mark S. Pearson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Luke Becker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Gebeyaw G. Mekonnen
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Abena S. Amoah
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Govert van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul L. A. M. Corstjens
- Department of Molecular Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Janice Murray
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh, United Kingdom
| | - Takafira Mduluza
- Biochemistry Department, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
- TIBA Partnership, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Zimbabwe
| | - Francisca Mutapi
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh, United Kingdom
- TIBA Partnership, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Zimbabwe
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
18
|
Lira DGD, Oliveira DCD, Brayner FA, Aires ADL, Albuquerque MCPA, Vieira LD, Castro CMMBD, Paixão AD. Superimposing a high-fat diet on Schistosoma mansoni infection affects renin-angiotensin system components in the mouse kidney. Rev Soc Bras Med Trop 2019; 52:e20180371. [PMID: 30843967 DOI: 10.1590/0037-8682-0371-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/25/2019] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The levels of the full-length form of the (pro)renin receptor (PRR), a component of the renin-angiotensin system (RAS), may be reduced in the membranes of kidneys in renal diseases. This study aimed to investigate the RAS components in the kidneys of mice submitted to a combination of a high-fat diet and Schistosoma mansoni infection. METHODS Female BALB/c mice were maintained on a control or high-fat diet from 3 weeks of age. After 10 weeks on the designated diets, half the mice in each group were infected with S. mansoni cercariae. The blood and kidneys were harvested 8 weeks after infection. RESULTS The high-fat diet increased the number of eggs in the feces and the number of adult worms in the mesenteric bed. Schistosoma mansoni infection reduced the plasma levels of glucose, triglycerides, and HDL cholesterol in the control and high-fat diet groups. In mice on the control diet, S. mansoni infection resulted in increased expression of IL-6 in the kidneys; however, in mice on the high-fat diet, the levels of IL-6 were reduced and those of superoxide anions were increased. The RAS components evaluated were ACE2, renin, PRR, AT1R, and AT2R, and the levels of PRR were found to be reduced in the kidneys of infected mice on the high-fat diet. CONCLUSIONS The finding regarding PRR is not yet clear. However, combining a high-fat diet and S. mansoni infection resulted in increased oxidative stress in the kidney that can aggravate hypertension as well as its associated complications.
Collapse
Affiliation(s)
- Danielle Guedes Dantas Lira
- Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, PE, Brasil.,Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | | | - Fábio André Brayner
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil.,Centro de Pesquisas Aggeu Magalhães, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - André de Lima Aires
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil.,Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Mônica Camelo Pessoa A Albuquerque
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil.,Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Leucio Duarte Vieira
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Célia Maria Machado Barbosa de Castro
- Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, PE, Brasil.,Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Ana Durce Paixão
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, PE, Brasil
| |
Collapse
|
19
|
Cosenza-Contreras M, de Oliveira E Castro RA, Mattei B, Campos JM, Gonçalves Silva G, de Paiva NCN, de Oliveira Aguiar-Soares RD, Carneiro CM, Afonso LCC, Castro-Borges W. The Schistosomiasis SpleenOME: Unveiling the Proteomic Landscape of Splenomegaly Using Label-Free Mass Spectrometry. Front Immunol 2019; 9:3137. [PMID: 30728824 PMCID: PMC6352917 DOI: 10.3389/fimmu.2018.03137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/19/2018] [Indexed: 01/17/2023] Open
Abstract
Schistosomiasis is a neglected parasitic disease that affects millions of people worldwide and is caused by helminth parasites from the genus Schistosoma. When caused by S. mansoni, it is associated with the development of a hepatosplenic disease caused by an intense immune response to the important antigenic contribution of adult worms and to the presence of eggs trapped in liver tissue. Although the importance of the spleen for the establishment of immune pathology is widely accepted, it has received little attention in terms of the molecular mechanisms operating in response to the infection. Here, we interrogated the spleen proteome using a label-free shotgun approach for the potential discovery of molecular mechanisms associated to the peak of the acute phase of inflammation and the development of splenomegaly in the murine model. Over fifteen hundred proteins were identified in both infected and control individuals and 325 of those proteins were differentially expressed. Two hundred and forty-two proteins were found upregulated in infected individuals while 83 were downregulated. Functional enrichment analyses for differentially expressed proteins showed that most of them were categorized within pathways of innate and adaptive immunity, DNA replication, vesicle transport and catabolic metabolism. There was an important contribution of granulocyte proteins and antigen processing and presentation pathways were augmented, with the increased expression of MHC class II molecules but the negative regulation of cysteine and serine proteases. Several proteins related to RNA processing were upregulated, including splicing factors. We also found indications of metabolic reprogramming in spleen cells with downregulation of proteins related to mitochondrial metabolism. Ex-vivo imunophenotyping of spleen cells allowed us to attribute the higher abundance of MHC II detected by mass spectrometry to increased number of macrophages (F4/80+/MHC II+ cells) in the infected condition. We believe these findings add novel insights for the understanding of the immune mechanisms associated with the establishment of schistosomiasis and the processes of immune modulation implied in the host-parasite interactions.
Collapse
Affiliation(s)
- Miguel Cosenza-Contreras
- Programa de Pós Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Bruno Mattei
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Jonatan Marques Campos
- Programa de Pós Graduação em Biotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Gustavo Gonçalves Silva
- Programa de Pós Graduação em Biotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | | | | | - Luis Carlos Crocco Afonso
- Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - William Castro-Borges
- Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
20
|
Sotillo J, Pearson MS, Loukas A. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:411-436. [PMID: 31297769 DOI: 10.1007/978-3-030-18616-6_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Trematode infections are among the most neglected tropical diseases despite their worldwide distribution and extraordinary ability to parasitise many different host species and host tissues. Furthermore, these parasites are of great socioeconomic, medical, veterinary and agricultural importance. During the last 10 years, there have been increasing efforts to overcome the lack of information on different "omic" resources such as proteomics and genomics. Herein, we focus on the recent advances in genomics and proteomics from trematodes of human importance, including liver, blood, intestinal and lung flukes. We also provide information on the latest technologies applied to study the biology of trematodes as well as on the resources available for the study of the molecular aspects of this group of helminths.
Collapse
Affiliation(s)
- Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| | - Mark S Pearson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
21
|
Cameron TC, Cooke I, Faou P, Toet H, Piedrafita D, Young N, Rathinasamy V, Beddoe T, Anderson G, Dempster R, Spithill TW. A novel ex vivo immunoproteomic approach characterising Fasciola hepatica tegumental antigens identified using immune antibody from resistant sheep. Int J Parasitol 2017; 47:555-567. [PMID: 28455238 DOI: 10.1016/j.ijpara.2017.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/19/2017] [Accepted: 02/24/2017] [Indexed: 12/12/2022]
Abstract
A more thorough understanding of the immunological interactions between Fasciola spp. and their hosts is required if we are to develop new immunotherapies to control fasciolosis. Deeper knowledge of the antigens that are the target of the acquired immune responses of definitive hosts against both Fasciola hepatica and Fasciola gigantica will potentially identify candidate vaccine antigens. Indonesian Thin Tail sheep express a high level of acquired immunity to infection by F. gigantica within 4weeks of infection and antibodies in Indonesian Thin Tail sera can promote antibody-dependent cell-mediated cytotoxicity against the surface tegument of juvenile F. gigantica in vitro. Given the high protein sequence similarity between F. hepatica and F. gigantica, we hypothesised that antibody from F. gigantica-infected sheep could be used to identify the orthologous proteins in the tegument of F. hepatica. Purified IgG from the sera of F. gigantica-infected Indonesian Thin Tail sheep collected pre-infection and 4weeks p.i. were incubated with live adult F. hepatica ex vivo and the immunosloughate (immunoprecipitate) formed was isolated and analysed via liquid chromatography-electrospray ionisation-tandem mass spectrometry to identify proteins involved in the immune response. A total of 38 proteins were identified at a significantly higher abundance in the immunosloughate using week 4 IgG, including eight predicted membrane proteins, 20 secreted proteins, nine proteins predicted to be associated with either the lysosomes, the cytoplasm or the cytoskeleton and one protein with an unknown cellular localization. Three of the membrane proteins are transporters including a multidrug resistance protein, an amino acid permease and a glucose transporter. Interestingly, a total of 21 of the 38 proteins matched with proteins recently reported to be associated with the proposed small exosome-like extracellular vesicles of adult F. hepatica, suggesting that the Indonesian Thin Tail week 4 IgG is either recognising individual proteins released from extracellular vesicles or is immunoprecipitating intact exosome-like extracellular vesicles. Five extracellular vesicle membrane proteins were identified including two proteins predicted to be associated with vesicle transport/ exocytosis (VPS4, vacuolar protein sorting-associated protein 4b and the Niemann-Pick C1 protein). RNAseq analysis of the developmental transcription of the 38 immunosloughate proteins showed that the sequences are expressed over a wide abundance range with 21/38 transcripts expressed at a relatively high level from metacercariae to the adult life cycle stage. A notable feature of the immunosloughates was the absence of cytosolic proteins which have been reported to be secreted markers for damage to adult flukes incubated in vitro, suggesting that the proteins observed are not inadvertent contaminants leaking from damaged flukes ex vivo. The identification of tegument protein antigens shared between F. gigantica and F. hepatica is beneficial in terms of the possible development of a dual purpose vaccine effective against both fluke species.
Collapse
Affiliation(s)
- Timothy C Cameron
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Ira Cooke
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia; Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, Australia
| | - Pierre Faou
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Hayley Toet
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - David Piedrafita
- School of Applied and Biomedical Sciences, Federation University, Churchill, Victoria, Australia
| | - Neil Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Vignesh Rathinasamy
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Glenn Anderson
- Virbac (Australia) Pty Ltd, Milperra, New South Wales, Australia
| | - Robert Dempster
- Virbac (Australia) Pty Ltd, Milperra, New South Wales, Australia
| | - Terry W Spithill
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
22
|
Ni ZX, Cui JM, Zhang NZ, Fu BQ. Structural and evolutionary divergence of aquaporins in parasites (Review). Mol Med Rep 2017; 15:3943-3948. [PMID: 28440467 PMCID: PMC5436202 DOI: 10.3892/mmr.2017.6505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 02/28/2017] [Indexed: 11/05/2022] Open
Abstract
Aquaporins are ubiquitous proteins that belong to the major intrinsic protein family. Previous studies have indicated that aquaporins are involved in multiple physiological processes in parasites, such as nutrient absorption and end product efflux, and thus, would be promising pharmacological agents in the fight against parasite infection. In the present paper, the authors analyzed the evolutionary relationship of parasitic aquaporins by re‑constructing of a phylogenic tree using neighbor‑joining and maximum likelihood methods. In addition, the authors discussed the variation of the conserved functional sites impacting on the transportation of water molecules. The protein was concluded to be a potential drug target in parasites.
Collapse
Affiliation(s)
- Zi-Xin Ni
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, P.R. China
| | - Jian-Min Cui
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Bao-Quan Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| |
Collapse
|
23
|
de la Torre-Escudero E, Pérez-Sánchez R, Manzano-Román R, Oleaga A. Schistosoma bovis-host interplay: Proteomics for knowing and acting. Mol Biochem Parasitol 2016; 215:30-39. [PMID: 27485556 DOI: 10.1016/j.molbiopara.2016.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 01/25/2023]
Abstract
Schistosoma bovis is a parasite of ruminants that causes significant economic losses to farmers throughout Africa, Southwestern Asia and the Mediterranean. Additionally, recent studies have reported its zoonotic potential through the formation of S. bovis×Schistosoma haematobium hybrids. As observed in the Schistosoma species infecting humans, it is assumed that S. bovis has also evolved host regulatory molecules that ensure its long-term survival in the bloodstream of its host. Since these molecules could be potential targets for the development of new drugs and anti-schistosome vaccines, their identification and functional characterization were undertaken. With this aim in mind, the molecular interface between S. bovis and its vertebrate host was subjected to a series of proteomic studies, which started with the analysis of the proteomes of the S. bovis moieties exposed to the host, namely, the excretory/secretory products and the tegument surface. Thus, a wealth of novel molecular information of S. bovis was obtained, which in turn allowed the identification of several parasite proteins with fibrinolytic and anticoagulant activities that could be used by S. bovis to regulate the host defensive systems. Following on, the host interface was investigated by studying the proteome of the host vascular endothelium surface at two points along the infection: in the lung vessels during the schistosomula migration and in the portal vein after the parasites have reached adulthood and sexual maturity. These studies have provided original data regarding the proteomes of the endothelial cell surface of pulmonary vasculature and portal vein in S. bovis-infected animals, and have shown significant changes in these proteomes associated with infection. This review compiles current information and the analyses of all the proteomic data from S. bovis and the S. bovis-host interface, including the molecular and functional characterization of S. bovis proteins that were found to participate in the regulation of the host coagulation and fibrinolysis systems.
Collapse
Affiliation(s)
- Eduardo de la Torre-Escudero
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Raúl Manzano-Román
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Ana Oleaga
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
24
|
de Assis RR, Ludolf F, Nakajima R, Jasinskas A, Oliveira GC, Felgner PL, Gaze ST, Loukas A, LoVerde PT, Bethony JM, Correa-Oliveira R, Calzavara-Silva CE. A next-generation proteome array for Schistosoma mansoni. Int J Parasitol 2016; 46:411-5. [PMID: 27131510 DOI: 10.1016/j.ijpara.2016.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/09/2016] [Accepted: 04/09/2016] [Indexed: 02/06/2023]
Abstract
A proteome microarray consisting of 992 Schistosoma mansoni proteins was produced and screened with sera to determine antibody signatures indicative of the clinical stages of schistosomiasis and the identification of subunit vaccine candidates. Herein, we describe the methods used to derive the gene list for this array (representing approximately 10% of the predicted S. mansoni proteome). We also probed a pilot version of the microarray with sera from individuals either acutely or chronically infected with S. mansoni from endemic areas in Brazil and sera from individuals resident outside the endemic area (USA) to determine if the array is functional and informative.
Collapse
Affiliation(s)
- Rafael Ramiro de Assis
- Laboratório de Imunologia Celular e Molecular, Instituto Rene Rachou, FIOCRUZ, Belo Horizonte, MG, Brazil; Protein Microarray Laboratory, Division of Infectious Disease, School of Medicine, University of California, Irvine, CA, USA
| | - Fernanda Ludolf
- Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rie Nakajima
- Protein Microarray Laboratory, Division of Infectious Disease, School of Medicine, University of California, Irvine, CA, USA
| | - Al Jasinskas
- Protein Microarray Laboratory, Division of Infectious Disease, School of Medicine, University of California, Irvine, CA, USA
| | | | - Philip L Felgner
- Protein Microarray Laboratory, Division of Infectious Disease, School of Medicine, University of California, Irvine, CA, USA
| | - Soraya T Gaze
- Laboratório de Imunologia Celular e Molecular, Instituto Rene Rachou, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Philip T LoVerde
- Departments of Biochemistry and Pathology, School of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| | - Jeffrey M Bethony
- Laboratório de Imunologia Celular e Molecular, Instituto Rene Rachou, FIOCRUZ, Belo Horizonte, MG, Brazil; Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Science, The George Washington University, Washington, DC, USA.
| | - Rodrigo Correa-Oliveira
- Laboratório de Imunologia Celular e Molecular, Instituto Rene Rachou, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Carlos E Calzavara-Silva
- Laboratório de Imunologia Celular e Molecular, Instituto Rene Rachou, FIOCRUZ, Belo Horizonte, MG, Brazil; Protein Microarray Laboratory, Division of Infectious Disease, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
25
|
Abstract
Schistosomiasis is a major neglected tropical disease that afflicts more than 240 million people, including many children and young adults, in the tropics and subtropics. The disease is characterized by chronic infections with significant residual morbidity and is of considerable public health importance, with substantial socioeconomic impacts on impoverished communities. Morbidity reduction and eventual elimination through integrated intervention measures are the focuses of current schistosomiasis control programs. Precise diagnosis of schistosome infections, in both mammalian and snail intermediate hosts, will play a pivotal role in achieving these goals. Nevertheless, despite extensive efforts over several decades, the search for sensitive and specific diagnostics for schistosomiasis is ongoing. Here we review the area, paying attention to earlier approaches but emphasizing recent developments in the search for new diagnostics for schistosomiasis with practical applications in the research laboratory, the clinic, and the field. Careful and rigorous validation of these assays and their cost-effectiveness will be needed, however, prior to their adoption in support of policy decisions for national public health programs aimed at the control and elimination of schistosomiasis.
Collapse
|
26
|
Driguez P, McManus DP, Gobert GN. Clinical implications of recent findings in schistosome proteomics. Expert Rev Proteomics 2015; 13:19-33. [PMID: 26558506 DOI: 10.1586/14789450.2016.1116390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schistosomiasis is a neglected tropical disease of clinical significance that, despite years of research, still requires an effective vaccine and improved diagnostics for surveillance, control and potential elimination. Furthermore, the causes of host pathology during schistosomiasis are still not completely understood. The recent sequencing of the genomes of the three key schistosome species has enabled the discovery of many new possible vaccine and drug targets, as well as diagnostic biomarkers, using high-throughput and sensitive proteomics methods. This review focuses on the literature of the last 5 years that has reported on the use of proteomics to both better understand the biology of the schistosome parasites and the disease they cause in definitive mammalian hosts.
Collapse
Affiliation(s)
- Patrick Driguez
- a QIMR Berghofer Medical Research Institute, Infectious Disease Division , Brisbane , Queensland , Australia
| | - Donald P McManus
- a QIMR Berghofer Medical Research Institute, Infectious Disease Division , Brisbane , Queensland , Australia
| | - Geoffrey N Gobert
- a QIMR Berghofer Medical Research Institute, Infectious Disease Division , Brisbane , Queensland , Australia
| |
Collapse
|
27
|
Ranasinghe SL, Fischer K, Gobert GN, McManus DP. Functional expression of a novel Kunitz type protease inhibitor from the human blood fluke Schistosoma mansoni. Parasit Vectors 2015; 8:408. [PMID: 26238343 PMCID: PMC4524284 DOI: 10.1186/s13071-015-1022-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/29/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Schistosomes are able to survive for prolonged periods in the blood system, despite continuous contact with coagulatory factors and mediators of the host immune system. Protease inhibitors likely play a critical role in host immune modulation thereby promoting parasite survival in this extremely hostile environment. Even though Kunitz type serine protease inhibitors have been shown to play important physiological functions in a range of organisms these proteins are less well characterised in parasitic helminths. METHODS We have cloned one gene sequence from S. mansoni, Smp_147730 (SmKI-1) which is coded for single domain Kunitz type protease inhibitor, E. coli-expressed and purified. Immunolocalisation and western blotting was carried out using affinity purified polyclonal anti-SmKI-1 murine antibodies to determine SmKI-1 expression in the parasite. Protease inhibitor assays and coagulation assays were performed to evaluate the functional roles of SmKI-1. RESULTS SmKI-1 is localised in the tegument of adult worms and the sub-shell region of eggs. Furthermore, this Kunitz protein is secreted into the host in the ES products of the adult worm. Recombinant SmKI-1 inhibited mammalian trypsin, chymotrypsin, neutrophil elastase, FXa and plasma kallikrein with IC50 values of 35 nM, 61 nM, 56 nM, 142 nM and 112 nM, respectively. However, no inhibition was detected for pancreatic elastase or cathepsin G. SmKI-1 (4 μM) delayed blood clot formation, reflected in an approximately three fold increase in activated partial thromboplastin time and prothrombin time. CONCLUSIONS We have functionally characterised the first Kunitz type protease inhibitor (SmKI-1) from S. mansoni and show that it has anti-inflammatory and anti-coagulant properties. SmKI-1 is one of a number of putative Kunitz proteins in schistosomes that have presumably evolved as an adaptation to protect these parasites from the defence mechanisms of their mammalian hosts. As such they may represent novel vaccine candidates and/or drug targets for schistosomiasis control.
Collapse
Affiliation(s)
- Shiwanthi L Ranasinghe
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,School of Public Health, The University of Queensland, Brisbane, QLD, Australia.
| | - Katja Fischer
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Geoffrey N Gobert
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
28
|
Retra K, deWalick S, Schmitz M, Yazdanbakhsh M, Tielens AGM, Brouwers JFHM, van Hellemond JJ. The tegumental surface membranes of Schistosoma mansoni are enriched in parasite-specific phospholipid species. Int J Parasitol 2015; 45:629-36. [PMID: 25975668 DOI: 10.1016/j.ijpara.2015.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/18/2022]
Abstract
The complex surface structure of adult Schistosoma mansoni, the tegument, is essential for survival of the parasite. This tegument is syncytial and is covered by two closely-apposed lipid bilayers that form the interactive surface with the host. In order to identify parasite-specific phospholipids present in the tegument, the species compositions of the major glycerophospholipid classes, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and phosphatidylinositol, including lysophospholipid species, were analysed in adult S. mansoni worms, isolated tegumental membranes and hamster blood cells. It was shown that there are large differences in species composition in all four phospholipid classes between the membranes of S. mansoni and those of the host blood cells. The species compositions of phosphatidylserine and phosphatidylcholine were strikingly different in the tegument compared with the whole worm. The tegumental membranes are especially enriched in lysophospholipids, predominantly eicosenoic acid (20:1)-containing lyso-phosphatidylserine and lyso-phosphatidylethanolamine species. Furthermore, the tegument was strongly enriched in phosphatidylcholine that contained 5-octadecenoic acid, an unusual fatty acid that is not present in the host. As we have shown previously that lysophospholipids from schistosomes affect the parasite-host interaction, excretion of these tegument-specific phospholipid species was examined in vitro and in vivo. Our experiments demonstrated that these lysophospholipids are not significantly secreted during in vitro incubations and are not detectable in peripheral blood of infected hosts. However, these analyses demonstrated a substantial decrease in PI content of blood plasma from schistosome-infected hamsters, which might indicate that schistosomes influence exosome formation by the host.
Collapse
Affiliation(s)
- Kim Retra
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Saskia deWalick
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marion Schmitz
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Aloysius G M Tielens
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jos F H M Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jaap J van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
29
|
Pereira ASA, Cavalcanti MGS, Zingali RB, Lima-Filho JL, Chaves MEC. Isoforms of Hsp70-binding human LDL in adult Schistosoma mansoni worms. Parasitol Res 2015; 114:1145-52. [PMID: 25573694 DOI: 10.1007/s00436-014-4292-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/23/2014] [Indexed: 12/15/2022]
Abstract
Schistosoma mansoni is one of the most common parasites infecting humans. They are well adapted to the host, and this parasite's longevity is a consequence of effective escape from the host immune system. In the blood circulation, lipoproteins not only help to conceal the worm from attack by host antibodies but also act as a source of lipids for S. mansoni. Previous SEM studies showed that the low-density lipoprotein (LDL) particles present on the surface of adult S. mansoni worms decreased in size when the incubation time increased. In this study, immunocytochemical and proteomic analyses were used to locate and identify S. mansoni binding proteins to human plasma LDL. Ultrathin sections of adult worms were cut transversely from the anterior, medial and posterior regions of the parasite. Immunocytochemical experiments revealed particles of gold in the tegument, muscle region and spine in male worms and around vitelline cells in females. Immunoblotting and 2D-electrophoresis using incubations with human serum, anti-LDL antibodies and anti-chicken IgG peroxidase conjugate were performed to identify LDL-binding proteins in S. mansoni. Analysis of the binding proteins using LC-MS identified two isoforms of the Hsp70 chaperone in S. mansoni. Hsp70 is involved in the interaction with apoB in the cytoplasm and its transport to the endoplasmic reticulum. However, further studies are needed to clarify the functional role of Hsp70 in S. mansoni, mainly related to the interaction with human LDL.
Collapse
Affiliation(s)
- Adriana S A Pereira
- Laboratório de Expressão Gênica em Eucariotos, Instituto de Química - Departamento de Bioquímica, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, sala 1200, São Paulo, SP, 05508-000, Brazil,
| | | | | | | | | |
Collapse
|
30
|
Voges R, Corsten S, Wiechert W, Noack S. Absolute quantification of Corynebacterium glutamicum glycolytic and anaplerotic enzymes by QconCAT. J Proteomics 2015; 113:366-77. [DOI: 10.1016/j.jprot.2014.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/07/2014] [Accepted: 10/16/2014] [Indexed: 12/17/2022]
|
31
|
Nunes VS, Vasconcelos EG, Faria-Pinto P, Borges CCH, Capriles PVSZ. Structural Comparative Analysis of Ecto- NTPDase Models from S. Mansoni and H. Sapiens. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-19048-8_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
32
|
Mourão MDM, Bitar M, Lobo FP, Peconick AP, Grynberg P, Prosdocimi F, Waisberg M, Cerqueira GC, Macedo AM, Machado CR, Yoshino T, Franco GR. A directed approach for the identification of transcripts harbouring the spliced leader sequence and the effect of trans-splicing knockdown in Schistosoma mansoni. Mem Inst Oswaldo Cruz 2014; 108:707-17. [PMID: 24037192 PMCID: PMC3970683 DOI: 10.1590/0074-0276108062013006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/13/2013] [Indexed: 11/22/2022] Open
Abstract
Schistosomiasis is a major neglected tropical disease caused by trematodes from the genus Schistosoma. Because schistosomes exhibit a complex life cycle and numerous mechanisms for regulating gene expression, it is believed that spliced leader (SL) trans-splicing could play an important role in the biology of these parasites. The purpose of this study was to investigate the function of trans-splicing in Schistosoma mansoni through analysis of genes that may be regulated by this mechanism and via silencing SL-containing transcripts through RNA interference. Here, we report our analysis of SL transcript-enriched cDNA libraries from different S. mansoni life stages. Our results show that the trans-splicing mechanism is apparently not associated with specific genes, subcellular localisations or life stages. In cross-species comparisons, even though the sets of genes that are subject to SL trans-splicing regulation appear to differ between organisms, several commonly shared orthologues were observed. Knockdown of trans-spliced transcripts in sporocysts resulted in a systemic reduction of the expression levels of all tested trans-spliced transcripts; however, the only phenotypic effect observed was diminished larval size. Further studies involving the findings from this work will provide new insights into the role of trans-splicing in the biology of S. mansoni and other organisms. All Expressed Sequence Tags generated in this study were submitted to dbEST as five different libraries. The accessions for each library and for the individual sequences are as follows: (i) adult worms of mixed sexes (LIBEST_027999: JZ139310 - JZ139779), (ii) female adult worms (LIBEST_028000: JZ139780 - JZ140379), (iii) male adult worms (LIBEST_028001: JZ140380 - JZ141002), (iv) eggs (LIBEST_028002: JZ141003 - JZ141497) and (v) schistosomula (LIBEST_028003: JZ141498 - JZ141974).
Collapse
Affiliation(s)
- Marina de Moraes Mourão
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou, Fiocruz, Belo HorizonteMG, Brasil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Toet H, Piedrafita DM, Spithill TW. Liver fluke vaccines in ruminants: strategies, progress and future opportunities. Int J Parasitol 2014; 44:915-27. [PMID: 25200351 DOI: 10.1016/j.ijpara.2014.07.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/27/2022]
Abstract
The development of a vaccine for Fasciola spp. in livestock is a challenge and would be advanced by harnessing our knowledge of acquired immune mechanisms expressed by resistant livestock against fluke infection. Antibody-dependent cell-mediated cytotoxicity directed to the surface tegument of juvenile/immature flukes is a host immune effector mechanism, suggesting that antigens on the surface of young flukes may represent prime candidates for a fluke vaccine. A Type 1 immune response shortly after fluke infection is associated with resistance to infection in resistant sheep, indicating that vaccine formulations should attempt to induce Type 1 responses to enhance vaccine efficacy. In cattle or sheep, an optimal fluke vaccine would need to reduce mean fluke burdens in a herd below the threshold of 30-54 flukes to ensure sustainable production benefits. Fluke infection intensity data suggest that vaccine efficacy of approximately 80% is required to reduce fluke burdens below this threshold in most countries. With the increased global prevalence of triclabendazole-resistant Fasciolahepatica, it may be commercially feasible in the short term to introduce a fluke vaccine of reasonable efficacy that will provide economic benefits for producers in regions where chemical control of new drug-resistant fluke infections is not viable. Commercial partnerships will be needed to fast-track new candidate vaccines using acceptable adjuvants in relevant production animals, obviating the need to evaluate vaccine antigens in rodent models.
Collapse
Affiliation(s)
- Hayley Toet
- Department of Agricultural Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3083, Australia
| | - David M Piedrafita
- School of Applied Sciences and Engineering, Federation University, Churchill, Victoria 3842, Australia
| | - Terry W Spithill
- Department of Agricultural Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
34
|
Mickum ML, Prasanphanich NS, Heimburg-Molinaro J, Leon KE, Cummings RD. Deciphering the glycogenome of schistosomes. Front Genet 2014; 5:262. [PMID: 25147556 PMCID: PMC4122909 DOI: 10.3389/fgene.2014.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022] Open
Abstract
Schistosoma mansoni and other Schistosoma sp. are multicellular parasitic helminths (worms) that infect humans and mammals worldwide. Infection by these parasites, which results in developmental maturation and sexual differentiation of the worms over a period of 5–6 weeks, induces antibodies to glycan antigens expressed in surface and secreted glycoproteins and glycolipids. There is growing interest in defining these unusual parasite-synthesized glycan antigens and using them to understand immune responses, their roles in immunomodulation, and in using glycan antigens as potential vaccine targets. A key problem in this area, however, has been the lack of information about the enzymes involved in elaborating the complex repertoire of glycans represented by the schistosome glycome. Recent availability of the nuclear genome sequences for Schistosoma sp. has created the opportunity to define the glycogenome, which represents the specific genes and cognate enzymes that generate the glycome. Here we describe the current state of information in regard to the schistosome glycogenome and glycome and highlight the important classes of glycans and glycogenes that may be important in their generation.
Collapse
Affiliation(s)
- Megan L Mickum
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| | - Nina S Prasanphanich
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| | | | - Kristoffer E Leon
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
35
|
Abstract
Schistosomes are parasitic flatworms that infect >200 million people worldwide, causing the chronic, debilitating disease schistosomiasis. Unusual among parasitic helminths, the long-lived adult worms, continuously bathed in blood, take up nutrients directly across the body surface and also by ingestion of blood into the gut. Recent proteomic analyses of the body surface revealed the presence of hydrolytic enzymes, solute, and ion transporters, thus emphasising its metabolic credentials. Furthermore, definition of the molecular mechanisms for the uptake of selected metabolites (glucose, certain amino acids, and water) establishes it as a vital site of nutrient acquisition. Nevertheless, the amount of blood ingested into the gut per day is considerable: for males ∼100 nl; for the more actively feeding females ∼900 nl, >4 times body volume. Ingested erythrocytes are lysed as they pass through the specialized esophagus, while leucocytes become tethered and disabled there. Proteomics and transcriptomics have revealed, in addition to gut proteases, an amino acid transporter in gut tissue and other hydrolases, ion, and lipid transporters in the lumen, implicating the gut as the site for acquisition of essential lipids and inorganic ions. The surface is the principal entry route for glucose, whereas the gut dominates amino acid acquisition, especially in females. Heme, a potentially toxic hemoglobin degradation product, accumulates in the gut and, since schistosomes lack an anus, must be expelled by the poorly understood process of regurgitation. Here we place the new observations on the proteome of body surface and gut, and the entry of different nutrient classes into schistosomes, into the context of older studies on worm composition and metabolism. We suggest that the balance between surface and gut in nutrition is determined by the constraints of solute diffusion imposed by differences in male and female worm morphology. Our conclusions have major implications for worm survival under immunological or pharmacological pressure.
Collapse
Affiliation(s)
- Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Akram A. Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Xiao-Hong Li
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
- Key Laboratory of Parasitology and Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People‘s Republic of China
| | - William Castro-Borges
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - R. Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
36
|
Braga MS, Neves LX, Campos JM, Roatt BM, de Oliveira Aguiar Soares RD, Braga SL, de Melo Resende D, Reis AB, Castro-Borges W. Shotgun proteomics to unravel the complexity of the Leishmania infantum exoproteome and the relative abundance of its constituents. Mol Biochem Parasitol 2014; 195:43-53. [PMID: 25017697 DOI: 10.1016/j.molbiopara.2014.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 01/27/2023]
Abstract
The exoproteome of some Leishmania species has revealed important insights into host-parasite interaction, paving the way for the proposal of novel disease-oriented interventions. The focus of the present investigation constituted the molecular profile of the L. infantum exoproteome revealed by a shotgun proteomic approach. Promastigotes under logarithmic phase of growth were obtained and harvested by centrifugation at different time points. Cell integrity was evaluated through the counting of viable parasites using propidium iodide labeling, followed by flow cytometry analysis. The 6h culture supernatant, operationally defined here as exoproteome, was then conditioned to in solution digestion and the resulting peptides submitted to mass spectrometry. A total of 102 proteins were identified and categorized according to their cellular function. Their relative abundance index (emPAI) allowed inference that the L. infantum exoproteome is a complex mixture dominated by molecules particularly involved in nucleotide metabolism and antioxidant activity. Bioinformatic analyses support that approximately 60% of the identified proteins are secreted, of which, 85% possibly reach the extracellular milieu by means of non-classic pathways. At last, sera from naturally infected animals, carriers of differing clinical forms of Canine Visceral Leishmaniasis (CVL), were used to test the immunogenicity associated to the L. infantum exoproteome. Western blotting experiments revealed that this sub-proteome was useful at discriminating symptomatic animals from those exhibiting other clinical forms of the disease. Collectively, the molecular characterization of the L. infantum exoproteome and the preliminary immunoproteomic assays opened up new research avenues related to treatment, prognosis and diagnosis of CVL.
Collapse
Affiliation(s)
- Micheline Soares Braga
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Leandro Xavier Neves
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Jonatan Marques Campos
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Bruno Mendes Roatt
- Laboratório de Imunopatologia, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Samuel Leôncio Braga
- Laboratório de Imunopatologia, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Daniela de Melo Resende
- Laboratório de Pesquisas Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Laboratório de Pesquisas Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - William Castro-Borges
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
37
|
Prasad B, Unadkat JD. Optimized approaches for quantification of drug transporters in tissues and cells by MRM proteomics. AAPS J 2014; 16:634-48. [PMID: 24752720 PMCID: PMC4070263 DOI: 10.1208/s12248-014-9602-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/29/2014] [Indexed: 01/12/2023] Open
Abstract
Drug transporter expression in tissues (in vivo) usually differs from that in cell lines used to measure transporter activity (in vitro). Therefore, quantification of transporter expression in tissues and cell lines is important to develop scaling factor for in vitro to in vivo extrapolation (IVIVE) of transporter-mediated drug disposition. Since traditional immunoquantification methods are semiquantitative, targeted proteomics is now emerging as a superior method to quantify proteins, including membrane transporters. This superiority is derived from the selectivity, precision, accuracy, and speed of analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring (MRM) mode. Moreover, LC-MS/MS proteomics has broader applicability because it does not require selective antibodies for individual proteins. There are a number of recent research and review papers that discuss the use of LC-MS/MS for transporter quantification. Here, we have compiled from the literature various elements of MRM proteomics to provide a comprehensive systematic strategy to quantify drug transporters. This review emphasizes practical aspects and challenges in surrogate peptide selection, peptide qualification, peptide synthesis and characterization, membrane protein isolation, protein digestion, sample preparation, LC-MS/MS parameter optimization, method validation, and sample analysis. In particular, bioinformatic tools used in method development and sample analysis are discussed in detail. Various pre-analytical and analytical sources of variability that should be considered during transporter quantification are highlighted. All these steps are illustrated using P-glycoprotein (P-gp) as a case example. Greater use of quantitative transporter proteomics will lead to a better understanding of the role of drug transporters in drug disposition.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, P.O. Box 357610, Seattle, Washington, 98195, USA,
| | | |
Collapse
|
38
|
Immunological characterization of a chimeric form of Schistosoma mansoni aquaporin in the murine model. Parasitology 2014; 141:1277-88. [PMID: 24786243 DOI: 10.1017/s0031182014000468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aquaporin (SmAQP) is the most abundant transmembrane protein in the tegument of Schistosoma mansoni. This protein is expressed in all developmental stages and seems to be essential in parasite survival since it plays a crucial role in osmoregulation, nutrient transport and drug uptake. In this study, we utilized the murine model to evaluate whether this protein was able to induce protection against challenge infection with S. mansoni cercariae. A chimeric (c) SmAQP was formulated with Freund's adjuvant for vaccination trial and evaluation of the host's immune response was performed. Our results demonstrated that immunization with cSmAQP induced the production of high levels of specific anti-cSmAQP IgG antibodies and a Th1/Th17 type of immune response characterized by IFN-γ, TNF-α and IL-17 cytokines. However, vaccination of mice with cSmAQP failed to reduce S. mansoni worm burden and liver pathology. Finally, we were unable to detect humoral immune response anti-cSmAQP in the sera of S. mansoni-infected human patients. Our results lead us to believe that SmAQP, as formulated in this study, may not be a good target in the search for an anti-schistosomiasis vaccine.
Collapse
|
39
|
Wei J, Ding C, Zhang J, Mi W, Zhao Y, Liu M, Fu T, Zhang Y, Ying W, Cai Y, Qin J, Qian X. High-throughput absolute quantification of proteins using an improved two-dimensional reversed-phase separation and quantification concatemer (QconCAT) approach. Anal Bioanal Chem 2014; 406:4183-93. [PMID: 24760396 DOI: 10.1007/s00216-014-7784-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/14/2014] [Accepted: 03/21/2014] [Indexed: 11/24/2022]
Abstract
Stable isotope dilution-selective reaction monitoring-mass spectrometry (SID-SRM-MS) has been widely used for the absolute quantitative analysis of proteins. However, when performing the large-scale absolute quantification of proteins from a more complex tissue sample, such as mouse liver, in addition to a high-throughput approach for the preparation and calibration of large amounts of stable-isotope-labelled internal standards, a more powerful separation method prior to SRM analysis is also urgently needed. To address these challenges, a high-throughput absolute quantification strategy based on an improved two-dimensional reversed-phase (2D RP) separation and quantification concatemer (QconCAT) approach is presented in this study. This strategy can be used to perform the simultaneous quantification of hundreds of proteins from mouse liver within one week of total MS measurement time. By using calibrated synthesised peptides from the protein glutathione S-transferase (GST), large amounts of GST-tagged QconCAT internal standards corresponding to hundreds of proteins can be accurately and rapidly quantified. Additionally, using an improved 2D RP separation method, a mixture containing a digested sample and QconCAT standards can be efficiently separated and absolutely quantified. When a maximum gradient of 72 min is employed in the first LC dimension, resulting in 72 fractions, identification and absolute quantification experiments for all fractions can be completed within one week of total MS measurement time. The quantification approach developed here can further extend the dynamic range and increase the analytical sensitivity of SRM analysis of complex tissue samples, thereby helping to increase the coverage of absolute quantification in a whole proteome.
Collapse
Affiliation(s)
- Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Evaluation of the use of C-terminal part of the Schistosoma mansoni 200kDa tegumental protein in schistosomiasis diagnosis and vaccine formulation. Exp Parasitol 2014; 139:24-32. [DOI: 10.1016/j.exppara.2014.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 01/31/2014] [Accepted: 02/09/2014] [Indexed: 11/22/2022]
|
41
|
Ludolf F, Patrocínio PR, Corrêa-Oliveira R, Gazzinelli A, Falcone FH, Teixeira-Ferreira A, Perales J, Oliveira GC, Silva-Pereira RA. Serological screening of the Schistosoma mansoni adult worm proteome. PLoS Negl Trop Dis 2014; 8:e2745. [PMID: 24651847 PMCID: PMC3961189 DOI: 10.1371/journal.pntd.0002745] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/01/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND New interventions tools are a priority for schistosomiasis control and elimination, as the disease is still highly prevalent. The identification of proteins associated with active infection and protective immune response may constitute the basis for the development of a successful vaccine and could also indicate new diagnostic candidates. In this context, post-genomic technologies have been progressing, resulting in a more rational discovery of new biomarkers of resistance and antigens for diagnosis. METHODOLOGY/PRINCIPAL FINDINGS Two-dimensional electrophoresed Schistosoma mansoni adult worm protein extracts were probed with pooled sera of infected and non-infected (naturally resistant) individuals from a S. mansoni endemic area. A total of 47 different immunoreactive proteins were identified by mass spectrometry. Although the different pooled sera shared most of the immunoreactive protein spots, nine protein spots reacted exclusively with the serum pool of infected individuals, which correspond to annexin, major egg antigen, troponin T, filamin, disulphide-isomerase ER-60 precursor, actin and reticulocalbin. One protein spot, corresponding to eukaryotic translation elongation factor, reacted exclusively with the pooled sera of non-infected individuals living in the endemic area. Western blotting of two selected recombinant proteins, major egg antigen and hemoglobinase, showed a similar recognition pattern of that of the native protein. CONCLUDING/SIGNIFICANCE Using a serological proteome analysis, a group of antigens related to the different infection status of the endemic area residents was identified and may be related to susceptibility or resistance to infection.
Collapse
Affiliation(s)
- Fernanda Ludolf
- Centro de Pesquisas René Rachou-Fiocruz/MG, Genomics and Computational Biology Group, Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology in Tropical Diseases – INCT-DT, Brazil
| | - Paola R. Patrocínio
- Centro de Pesquisas René Rachou-Fiocruz/MG, Genomics and Computational Biology Group, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Corrêa-Oliveira
- National Institute of Science and Technology in Tropical Diseases – INCT-DT, Brazil
- Centro de Pesquisas René Rachou-Fiocruz/MG, Cellular and Molecular Immunology Laboratory, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Gazzinelli
- National Institute of Science and Technology in Tropical Diseases – INCT-DT, Brazil
- Universidade Federal de Minas Gerais, Nursing School, Belo Horizonte, Minas Gerais, Brazil
| | - Franco H. Falcone
- The University of Nottingham, School of Pharmacy, Division of Molecular and Cellular Science, Nottingham, East Midlands, United Kingdom
| | - André Teixeira-Ferreira
- Fiocruz/RJ, Department of Physiology and Pharmacodynamics, Toxicology Laboratory, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonas Perales
- Fiocruz/RJ, Department of Physiology and Pharmacodynamics, Toxicology Laboratory, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme C. Oliveira
- Centro de Pesquisas René Rachou-Fiocruz/MG, Genomics and Computational Biology Group, Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology in Tropical Diseases – INCT-DT, Brazil
| | - Rosiane A. Silva-Pereira
- Centro de Pesquisas René Rachou-Fiocruz/MG, Genomics and Computational Biology Group, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
42
|
Abstract
The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators.
Collapse
|
43
|
Villanueva J, Carrascal M, Abian J. Isotope dilution mass spectrometry for absolute quantification in proteomics: Concepts and strategies. J Proteomics 2014; 96:184-99. [DOI: 10.1016/j.jprot.2013.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/25/2022]
|
44
|
Peffers MJ, Beynon RJ, Clegg PD. Absolute quantification of selected proteins in the human osteoarthritic secretome. Int J Mol Sci 2013; 14:20658-81. [PMID: 24132152 PMCID: PMC3821636 DOI: 10.3390/ijms141020658] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/19/2013] [Accepted: 09/23/2013] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is characterized by a loss of extracellular matrix which is driven by catabolic cytokines. Proteomic analysis of the OA cartilage secretome enables the global study of secreted proteins. These are an important class of molecules with roles in numerous pathological mechanisms. Although cartilage studies have identified profiles of secreted proteins, quantitative proteomics techniques have been implemented that would enable further biological questions to be addressed. To overcome this limitation, we used the secretome from human OA cartilage explants stimulated with IL-1β and compared proteins released into the media using a label-free LC-MS/MS-based strategy. We employed QconCAT technology to quantify specific proteins using selected reaction monitoring. A total of 252 proteins were identified, nine were differentially expressed by IL-1 β stimulation. Selected protein candidates were quantified in absolute amounts using QconCAT. These findings confirmed a significant reduction in TIMP-1 in the secretome following IL-1β stimulation. Label-free and QconCAT analysis produced equivocal results indicating no effect of cytokine stimulation on aggrecan, cartilage oligomeric matrix protein, fibromodulin, matrix metalloproteinases 1 and 3 or plasminogen release. This study enabled comparative protein profiling and absolute quantification of proteins involved in molecular pathways pertinent to understanding the pathogenesis of OA.
Collapse
Affiliation(s)
- Mandy J. Peffers
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Cheshire, CH64 7TE, UK; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-151-795-6006; Fax: +44-151-795-6101
| | - Robert J. Beynon
- Protein Function Group, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK; E-Mail:
| | - Peter D. Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Cheshire, CH64 7TE, UK; E-Mail:
| |
Collapse
|
45
|
Hahnel S, Lu Z, Wilson RA, Grevelding CG, Quack T. Whole-organ isolation approach as a basis for tissue-specific analyses in Schistosoma mansoni. PLoS Negl Trop Dis 2013; 7:e2336. [PMID: 23936567 PMCID: PMC3723596 DOI: 10.1371/journal.pntd.0002336] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/14/2013] [Indexed: 12/11/2022] Open
Abstract
Background Schistosomiasis is one of the most important parasitic diseases worldwide, second only to malaria. Schistosomes exhibit an exceptional reproductive biology since the sexual maturation of the female, which includes the differentiation of the reproductive organs, is controlled by pairing. Pathogenicity originates from eggs, which cause severe inflammation in their hosts. Elucidation of processes contributing to female maturation is not only of interest to basic science but also considering novel concepts combating schistosomiasis. Methodology/Principal Findings To get direct access to the reproductive organs, we established a novel protocol using a combined detergent/protease-treatment removing the tegument and the musculature of adult Schistosoma mansoni. All steps were monitored by scanning electron microscopy (SEM) and bright-field microscopy (BF). We focused on the gonads of adult schistosomes and demonstrated that isolated and purified testes and ovaries can be used for morphological and structural studies as well as sources for RNA and protein of sufficient amounts for subsequent analyses such as RT-PCR and immunoblotting. To this end, first exemplary evidence was obtained for tissue-specific transcription within the gonads (axonemal dynein intermediate chain gene SmAxDynIC; aquaporin gene SmAQP) as well as for post-transcriptional regulation (SmAQP). Conclusions/Significance The presented method provides a new way of getting access to tissue-specific material of S. mansoni. With regard to many still unanswered questions of schistosome biology, such as elucidating the molecular processes involved in schistosome reproduction, this protocol provides opportunities for, e.g., sub-transcriptomics and sub-proteomics at the organ level. This will promote the characterisation of gene-expression profiles, or more specifically to complete knowledge of signalling pathways contributing to differentiation processes, so discovering involved molecules that may represent potential targets for novel intervention strategies. Furthermore, gonads and other tissues are a basis for cell isolation, opening new perspectives for establishing cell lines, one of the tools desperately needed in the post-genomic era. As a neglected disease, schistosomiasis is still an enormous problem in the tropics and subtropics. Since the 1980s, Praziquantel (PZQ) has been the drug of choice but can be anticipated to lose efficacy in the future due to emerging resistance. Alternative drugs or efficient vaccines are still lacking, strengthening the need for the discovery of novel strategies and targets for combating schistosomiasis. One avenue is to understand the unique reproductive biology of this trematode in more detail. Sexual maturation of the adult female depends on a constant pairing with the male. This is a crucial prerequisite for the differentiation of the female reproductive organs such as the vitellarium and ovary, and consequently for the production of mature eggs. These are needed for life-cycle maintenance, but they also cause pathogenesis. With respect to adult males, the production of mature sperm is essential for fertilisation and life-cycle progression. In our study we present a convenient and inexpensive method to isolate reproductive tissues from adult schistosomes in high amounts and purity, representing a source for gonad-specific RNA and protein, which will serve for future sub-transcriptome and -proteome studies helping to characterise genes, or to unravel differentiation programs in schistosome gonads. Beyond that, isolated organs may be useful for approaches to establish cell cultures, desperately needed in the post-genomic era.
Collapse
Affiliation(s)
- Steffen Hahnel
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
46
|
Rofatto HK, Araujo-Montoya BO, Miyasato PA, Levano-Garcia J, Rodriguez D, Nakano E, Verjovski-Almeida S, Farias LP, Leite LC. Immunization with tegument nucleotidases associated with a subcurative praziquantel treatment reduces worm burden following Schistosoma mansoni challenge. PeerJ 2013; 1:e58. [PMID: 23638396 PMCID: PMC3628383 DOI: 10.7717/peerj.58] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/06/2013] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a debilitating disease caused by flatworm parasites of the Schistosoma genus and remains a high public health impact disease around the world, although effective treatment with Praziquantel (PZQ) has been available since the 1970s. Control of this disease would be greatly improved by the development of a vaccine, which could be combined with chemotherapy. The sequencing of the Schistosoma mansoni transcriptome and genome identified a range of potential vaccine antigens. Among these, three nucleotidases from the tegument of the parasite, presumably involved in purinergic signaling and nucleotide metabolism, were proposed as promising vaccine candidates: an alkaline phosphatase (SmAP), a phosphodiesterase (SmNPP-5) and a diphosphohydrolase (SmNTPDase). Herein, we evaluate the potential of these enzymes as vaccine antigens, with or without subcurative PZQ treatment. Immunization of mice with the recombinant proteins alone or in combination demonstrated that SmAP is the most immunogenic of the three. It induced the highest antibody levels, particularly IgG1, associated with an inflammatory cellular immune response characterized by high TNF-α and a Th17 response, with high IL-17 expression levels. Despite the specific immune response induced, immunization with the isolated or combined proteins did not reduce the worm burden of challenged mice. Nonetheless, immunization with SmAP alone or with the three proteins combined, together with subcurative PZQ chemotherapy was able to reduce the worm burden by around 40%. The immunogenicity and relative exposure of SmAP to the host immune system are discussed, as key factors involved in the apparently synergistic effect of SmAP immunization and subcurative PZQ treatment.
Collapse
Affiliation(s)
- Henrique K. Rofatto
- Pós-Graduação Interunidades em Biotecnologia, Instituto Butantan, São Paulo, Brazil
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil
| | - Bogar O. Araujo-Montoya
- Pós-Graduação Interunidades em Biotecnologia, Instituto Butantan, São Paulo, Brazil
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil
| | | | - Julio Levano-Garcia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Dunia Rodriguez
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil
| | - Eliana Nakano
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil
| | | | | | | |
Collapse
|
47
|
Schistosoma tegument proteins in vaccine and diagnosis development: an update. J Parasitol Res 2012; 2012:541268. [PMID: 23125917 PMCID: PMC3483795 DOI: 10.1155/2012/541268] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/24/2012] [Indexed: 01/16/2023] Open
Abstract
The development of a vaccine against schistosomiasis and also the availability of a more sensitive diagnosis test are important tools to help chemotherapy in controlling disease transmission. Bioinformatics tools, together with the access to parasite genome, published recently, should help generate new knowledge on parasite biology and search for new vaccines or therapeutic targets and antigens to be used in the disease diagnosis. Parasite surface proteins, especially those expressed in schistosomula tegument, represent interesting targets to be used in vaccine formulations and in the diagnosis of early infections, since the tegument represents the interface between host and parasite and its molecules are responsible for essential functions to parasite survival. In this paper we will present the advances in the development of vaccines and diagnosis tests achieved with the use of the information from schistosome genome focused on parasite tegument as a source for antigens.
Collapse
|
48
|
Wilson RA. Virulence factors of schistosomes. Microbes Infect 2012; 14:1442-50. [PMID: 22982150 DOI: 10.1016/j.micinf.2012.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/18/2012] [Accepted: 09/03/2012] [Indexed: 12/25/2022]
Abstract
This review considers whether the products of schistosomes in the mammalian host can be considered as virulence factors. These include: the cercarial secretions used in infection, those of the migrating schistosomulum, surface-exposed proteins of adult worms in the portal system and their gut vomitus in the context of immune evasion, secretions of the egg facilitating its escape from gut tissues and micro-exon gene products.
Collapse
Affiliation(s)
- R Alan Wilson
- Centre for Immunology & Infection, Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
49
|
Vaccination with enzymatically cleaved GPI-anchored proteins from Schistosoma mansoni induces protection against challenge infection. Clin Dev Immunol 2012; 2012:962538. [PMID: 22927873 PMCID: PMC3426240 DOI: 10.1155/2012/962538] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/21/2012] [Indexed: 12/05/2022]
Abstract
The flatworm Schistosoma mansoni is a blood fluke parasite that causes schistosomiasis, a debilitating disease that occurs throughout the developing world. Current schistosomiasis control strategies are mainly based on chemotherapy, but many researchers believe that the best long-term strategy to control schistosomiasis is through immunization with an antischistosomiasis vaccine combined with drug treatment. In the search for potential vaccine candidates, numerous tegument antigens have been assessed. As the major interface between parasite and mammalian host, the tegument plays crucial roles in the establishment and further course of schistosomiasis. Herein, we evaluated the potential of a GPI fraction, containing representative molecules located on the outer surface of adult worms, as vaccine candidate. Immunization of mice with GPI-anchored proteins induced a mixed Th1/Th2 type of immune response with production of IFN-γ and TNF-α, and low levels of IL-5 into the supernatant of splenocyte cultures. The protection engendered by this vaccination protocol was confirmed by 42% reduction in worm burden, 45% reduction in eggs per gram of hepatic tissue, 29% reduction in the number of granulomas per area, and 53% reduction in the granuloma fibrosis. Taken together, the data herein support the potential of surface-exposed GPI-anchored antigens from the S. mansoni tegument as vaccine candidate.
Collapse
|
50
|
Abstract
Systems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we discuss how well positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is readily accessible to the user-community and can be translated and integrated with other relevant data types.
Collapse
|