1
|
Fernández J, Chaves W, Vargas-Diaz D, Petras D, Lomonte B. Top-down proteomics of venoms from five Micrurus species from Costa Rica: Comparative composition of phospholipase A 2-rich vs three-finger toxin-rich phenotypes. Toxicon 2024; 252:108187. [PMID: 39579878 DOI: 10.1016/j.toxicon.2024.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Coralsnakes of the genus Micrurus include more than 80 species distributed in the American continent. They produce potent neurotoxic venoms acting at the neuromuscular junction and potentially leading to respiratory paralysis and death. The vast majority of proteins in coralsnake venoms belong to the three-finger toxin (3FTx) and the group I phospholipase A2 (PLA2) families. Previous studies using 'bottom-up' proteomic strategies have revealed a compositional dichotomy of toxin expression by which different Micrurus species display a predominance of either 3FTx or PLA2 proteins in their venoms, possibly linked to the phylogeographic structure of the genus radiation. 'Top-down' proteomics (TDP) allows the direct analysis of intact proteins in a high resolution mass spectrometer, circumventing the limitations of the 'peptide-to-protein inference problem' inherent to the bottom-up approach. Here, we analyzed the venoms of five out of the six Micrurus species that inhabit Costa Rica, by using a TDP approach. Results unveil venom proteoforms that are shared between these species, and provide additional insights into the variable compositional complexity of these venoms and relationships to their 3FTx/PLA2 dichotomy.
Collapse
Affiliation(s)
- Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Walter Chaves
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - David Vargas-Diaz
- Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Daniel Petras
- Department of Biochemistry, University of California Riverside, 169 Aberdeen 17 Dr, Riverside, CA, 92507, USA; Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Auf der Morgenstelle 24, 72076, Tuebingen, Germany
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| |
Collapse
|
2
|
Hiremath K, Dodakallanavar J, Sampat GH, Patil VS, Harish DR, Chavan R, Hegde HV, Roy S. Three finger toxins of elapids: structure, function, clinical applications and its inhibitors. Mol Divers 2024; 28:3409-3426. [PMID: 37749455 DOI: 10.1007/s11030-023-10734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
The WHO lists snakebite as a "neglected tropical disease". In tropical and subtropical areas, envenoming is an important public health issue. This review article describes the structure, function, chemical composition, natural inhibitors, and clinical applications of Elapids' Three Finger Toxins (3FTX) using scientific research data. The primary venomous substance belonging to Elapidae is 3FTX, that targets nAChR. Three parallel β-sheets combine to create 3FTX, which has four or five disulfide bonds. The three primary types of 3FTX are short-chain, long-chain, and nonconventional 3FTX. The functions of 3FTX depend on the specific toxin subtype and the target receptor or ion channel. The well-known effect of 3FTX is probably neurotoxicity because of the severe consequences of muscular paralysis and respiratory failure in snakebite victims. 3FTX have also been studied for their potential clinical applications. α-bungarotoxin has been used as a molecular probe to study the structure and function of nAChRs (Nicotinic Acetylcholine Receptors). Acid-sensing ion channel (ASIC) isoforms 1a and 1b are inhibited by Mambalgins, derived from Black mamba venom, which hinders their function and provide an analgesic effect. α- Cobra toxin is a neurotoxin purified from Chinese cobra (Naja atra) binds to nAChR at the neuronal junction and causes an analgesic effect for moderate to severe pain. Some of the plants and their compounds have been shown to inhibit the activity of 3FTX, and their mechanisms of action are discussed.
Collapse
Affiliation(s)
- Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Jagadeesh Dodakallanavar
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
| | - Rajashekar Chavan
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India.
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| |
Collapse
|
3
|
Benard-Valle M, Wouters Y, Ljungars A, Nguyen GTT, Ahmadi S, Ebersole TW, Dahl CH, Guadarrama-Martínez A, Jeppesen F, Eriksen H, Rodríguez-Barrera G, Boddum K, Jenkins TP, Bjørn SP, Schoffelen S, Voldborg BG, Alagón A, Laustsen AH. In vivo neutralization of coral snake venoms with an oligoclonal nanobody mixture in a murine challenge model. Nat Commun 2024; 15:4310. [PMID: 38773068 PMCID: PMC11109316 DOI: 10.1038/s41467-024-48539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
Oligoclonal mixtures of broadly-neutralizing antibodies can neutralize complex compositions of similar and dissimilar antigens, making them versatile tools for the treatment of e.g., infectious diseases and animal envenomations. However, these biotherapeutics are complicated to develop due to their complex nature. In this work, we describe the application of various strategies for the discovery of cross-neutralizing nanobodies against key toxins in coral snake venoms using phage display technology. We prepare two oligoclonal mixtures of nanobodies and demonstrate their ability to neutralize the lethality induced by two North American coral snake venoms in mice, while individual nanobodies fail to do so. We thus show that an oligoclonal mixture of nanobodies can neutralize the lethality of venoms where the clinical syndrome is caused by more than one toxin family in a murine challenge model. The approaches described may find utility for the development of advanced biotherapeutics against snakebite envenomation and other pathologies where multi-epitope targeting is beneficial.
Collapse
Affiliation(s)
- Melisa Benard-Valle
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens, Lyngby, Denmark
| | - Yessica Wouters
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens, Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens, Lyngby, Denmark
| | - Giang Thi Tuyet Nguyen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens, Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens, Lyngby, Denmark
| | - Tasja Wainani Ebersole
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens, Lyngby, Denmark
| | - Camilla Holst Dahl
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens, Lyngby, Denmark
| | - Alid Guadarrama-Martínez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Mor, 62210, México
| | - Frederikke Jeppesen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens, Lyngby, Denmark
| | - Helena Eriksen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens, Lyngby, Denmark
| | - Gibran Rodríguez-Barrera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Mor, 62210, México
| | - Kim Boddum
- Sophion Bioscience, DK-2750, Ballerup, Denmark
| | - Timothy Patrick Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens, Lyngby, Denmark
| | - Sara Petersen Bjørn
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens, Lyngby, Denmark
| | - Sanne Schoffelen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens, Lyngby, Denmark
| | - Bjørn Gunnar Voldborg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens, Lyngby, Denmark
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Mor, 62210, México
| | - Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens, Lyngby, Denmark.
| |
Collapse
|
4
|
Saldarriaga-Córdoba M, Clavero-León C, Rey-Suarez P, Nuñez-Rangel V, Avendaño-Herrera R, Solano-González S, Alzate JF. Unveiling Novel Kunitz- and Waprin-Type Toxins in the Micrurus mipartitus Coral Snake Venom Gland: An In Silico Transcriptome Analysis. Toxins (Basel) 2024; 16:224. [PMID: 38787076 PMCID: PMC11126030 DOI: 10.3390/toxins16050224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Kunitz-type peptide expression has been described in the venom of snakes of the Viperidae, Elapidae and Colubridae families. This work aimed to identify these peptides in the venom gland transcriptome of the coral snake Micrurus mipartitus. Transcriptomic analysis revealed a high diversity of venom-associated Kunitz serine protease inhibitor proteins (KSPIs). A total of eight copies of KSPIs were predicted and grouped into four distinctive types, including short KSPI, long KSPI, Kunitz-Waprin (Ku-WAP) proteins, and a multi-domain Kunitz-type protein. From these, one short KSPI showed high identity with Micrurus tener and Austrelaps superbus. The long KSPI group exhibited similarity within the Micrurus genus and showed homology with various elapid snakes and even with the colubrid Pantherophis guttatus. A third group suggested the presence of Kunitz domains in addition to a whey-acidic-protein-type four-disulfide core domain. Finally, the fourth group corresponded to a transcript copy with a putative 511 amino acid protein, formerly annotated as KSPI, which UniProt classified as SPINT1. In conclusion, this study showed the diversity of Kunitz-type proteins expressed in the venom gland transcriptome of M. mipartitus.
Collapse
Affiliation(s)
| | - Claudia Clavero-León
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Santiago 8320000, Chile
| | - Paola Rey-Suarez
- Grupo de Investigación en Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 50010, Colombia; (P.R.-S.); (V.N.-R.)
| | - Vitelbina Nuñez-Rangel
- Grupo de Investigación en Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 50010, Colombia; (P.R.-S.); (V.N.-R.)
- Escuela de Microbiología, Universidad de Antioquia, Medellín 50010, Colombia
| | - Ruben Avendaño-Herrera
- Facultad de Ciencias de la Vida & Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Viña del Mar 2531015, Chile;
| | - Stefany Solano-González
- Laboratorio de Bioinformática Aplicada, Escuela de Ciencias Biológicas, Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Juan F. Alzate
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín 50010, Colombia;
| |
Collapse
|
5
|
Machado Marinho AC, Chapeaurouge A, Dutra BM, Quintela BCSF, Pereira SS, Fernandes CFC. The role of venom proteomics and single-domain antibodies for antivenoms: Progress in snake envenoming treatment. Drug Discov Today 2024; 29:103967. [PMID: 38555033 DOI: 10.1016/j.drudis.2024.103967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Single-domain antibodies (sdAbs) hold promise for developing new biopharmaceuticals to treat neglected tropical diseases (NTDs), including snakebites, which are severe and occur frequently. In addition, limitations of conventional snakebite treatments, especially in terms of local action, and the global antivenom crisis incentivize the use of this biotechnological tool to design next-generation snakebite antivenoms. Conventional antivenoms for snakebite treatment are usually composed of immunoglobulin G or F(ab')2 fragments derived from the plasma of immunized animals. sdAbs, the smallest antigen-binding fragments, are derived from the variable domains of camelid heavy-chain antibodies. sdAbs may have some advantages over conventional antivenoms for local toxicity, such as better penetration into tissues due to their small size, and high solubility and affinity for venom antigens due to their unique antigen-binding loops and ability to access cryptic epitopes. We present an overview of current antivenom therapy in the context of sdAb development for toxin neutralization. Furthermore, strategies are presented for identifying snake venom's major toxins as well as for developing antisnake toxin sdAbs by employing proteomic tools for toxin neutralization.
Collapse
Affiliation(s)
- Anna Carolina Machado Marinho
- Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz Ceará, FIOCRUZ CE, Eusébio-CE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, UFC, Fortaleza, Brazil
| | - Alexander Chapeaurouge
- Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz Ceará, FIOCRUZ CE, Eusébio-CE, Brazil
| | - Brunheld Maia Dutra
- Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz Ceará, FIOCRUZ CE, Eusébio-CE, Brazil
| | - Barbara Cibelle S F Quintela
- Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz Ceará, FIOCRUZ CE, Eusébio-CE, Brazil
| | - Soraya S Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz Rondônia, FIOCRUZ RO, Porto Velho-RO, Brazil
| | - Carla Freire C Fernandes
- Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz Ceará, FIOCRUZ CE, Eusébio-CE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, UFC, Fortaleza, Brazil
| |
Collapse
|
6
|
Tabares Vélez S, Preciado LM, Vargas Muñoz LJ, Madrid Bracamonte CA, Zuluaga A, Gómez Robles J, Renjifo-Ibañez C, Estrada-Gómez S. Standard Quality Characteristics and Efficacy of a New Third-Generation Antivenom Developed in Colombia Covering Micrurus spp. Venoms. Toxins (Basel) 2024; 16:183. [PMID: 38668608 PMCID: PMC11054757 DOI: 10.3390/toxins16040183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/29/2024] Open
Abstract
In Colombia, Micrurus snakebites are classified as severe according to the national clinical care guidelines and must be treated with specific antivenoms. Unfortunately, these types of antivenoms are scarce in certain areas of the country and are currently reported as an unavailable vital medicine. To address this issue, La Universidad de Antioquia, through its spin-off Tech Life Saving, is leading a project to develop third-generation polyvalent freeze-dried antivenom. The goal is to ensure access to this therapy, especially in rural and dispersed areas. This project aims to evaluate the physicochemical and preclinical parameters (standard quality characteristics) of a lab-scale anti-elapid antivenom batch. The antivenom is challenged against the venoms of several Micrurus species, including M. mipartitus, M. dumerilii, M. ancoralis, M. dissoleucus, M. lemniscatus, M. medemi, M. spixii, M. surinamensis, and M. isozonus, following the standard quality characteristics set by the World Health Organization (WHO). The antivenom demonstrates an appearance consistent with standards, 100% solubility within 4 min and 25 s, an extractable volume of 10.39 mL, a pH of 6.04, an albumin concentration of 0.377 mg/mL (equivalent to 1.22% of total protein), and a protein concentration of 30.97 mg/mL. Importantly, it maintains full integrity of its F(ab')2 fragments and exhibits purity over 98.5%. Furthermore, in mice toxicity evaluations, doses up to 15 mg/mouse show no toxic effects. The antivenom also demonstrates a significant recognition pattern against Micrurus venoms rich in phospholipase A2 (PLA2) content, as observed in M. dumerilii, M. dissoleucus, and M. isozonus. The effective dose 50 (ED50) indicates that a single vial (10 mL) can neutralize 2.33 mg of M. mipartitus venom and 3.99 mg of M. dumerilii venom. This new anti-elapid third-generation polyvalent and freeze-dried antivenom meets the physicochemical parameters set by the WHO and the regulators in Colombia. It demonstrates significant efficacy in neutralizing the venom of the most epidemiologically important Micrurus species in Colombia. Additionally, it recognizes seven other species of Micrurus venom with a higher affinity for venoms exhibiting PLA2 toxins. Fulfilling these parameters represents the first step toward proposing a new pharmacological alternative for treating snakebites in Colombia, particularly in dispersed rural areas, given that this antivenom is formulated as a freeze-dried product.
Collapse
Affiliation(s)
- Santiago Tabares Vélez
- Grupo de Toxinología y Alternativas Terapéuticas—Serpentario, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellin 050010, Colombia; (S.T.V.); (L.M.P.); (J.G.R.)
- Tech Life Saving (TLS), Tech Innovation Group Company, Medellin 050022, Colombia; (L.J.V.M.); (C.A.M.B.); (A.Z.)
| | - Lina María Preciado
- Grupo de Toxinología y Alternativas Terapéuticas—Serpentario, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellin 050010, Colombia; (S.T.V.); (L.M.P.); (J.G.R.)
| | - Leidy Johana Vargas Muñoz
- Tech Life Saving (TLS), Tech Innovation Group Company, Medellin 050022, Colombia; (L.J.V.M.); (C.A.M.B.); (A.Z.)
- Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin 050012, Colombia
| | | | - Angelica Zuluaga
- Tech Life Saving (TLS), Tech Innovation Group Company, Medellin 050022, Colombia; (L.J.V.M.); (C.A.M.B.); (A.Z.)
| | - Jeisson Gómez Robles
- Grupo de Toxinología y Alternativas Terapéuticas—Serpentario, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellin 050010, Colombia; (S.T.V.); (L.M.P.); (J.G.R.)
| | - Camila Renjifo-Ibañez
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria—AGROSAVIA, Bogota 250047, Colombia;
| | - Sebastián Estrada-Gómez
- Grupo de Toxinología y Alternativas Terapéuticas—Serpentario, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellin 050010, Colombia; (S.T.V.); (L.M.P.); (J.G.R.)
- Tech Life Saving (TLS), Tech Innovation Group Company, Medellin 050022, Colombia; (L.J.V.M.); (C.A.M.B.); (A.Z.)
| |
Collapse
|
7
|
Rodríguez-Vargas A, Franco-Vásquez AM, Triana-Cerón M, Alam-Rojas SN, Escobar-Wilches DC, Corzo G, Lazcano-Pérez F, Arreguín-Espinosa R, Ruiz-Gómez F. Immunological Cross-Reactivity and Preclinical Assessment of a Colombian Anticoral Antivenom against the Venoms of Three Micrurus Species. Toxins (Basel) 2024; 16:104. [PMID: 38393182 PMCID: PMC10891627 DOI: 10.3390/toxins16020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Snakebite accident treatment requires the administration of antivenoms that provide efficacy and effectiveness against several snake venoms of the same genus or family. The low number of immunogenic components in venom mixtures that allow the production of antivenoms consequently gives them partial neutralization and a suboptimal pharmacological response. This study evaluates the immunorecognition and neutralizing efficacy of the polyvalent anticoral antivenom from the Instituto Nacional de Salud (INS) of Colombia against the heterologous endemic venoms of Micrurus medemi, and M. sangilensis, and M. helleri by assessing immunoreactivity through affinity chromatography, ELISA, Western blot, and neutralization capability. Immunorecognition towards the venoms of M. medemi and M. sangilensis showed values of 62% and 68% of the protein composition according to the immunoaffinity matrix, respectively. The analysis by Western blot depicted the highest recognition patterns for M. medemi, followed by M. sangilensis, and finally by M. helleri. These findings suggest that the venom compositions are closely related and exhibit similar recognition by the antivenom. According to enzyme immunoassays, M. helleri requires a higher amount of antivenom to achieve recognition than the others. Besides reinforcing the evaluation of INS antivenom capability, this work recommends the use of M. helleri in the production of Colombian antisera.
Collapse
Affiliation(s)
- Ariadna Rodríguez-Vargas
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Instituto Nacional de Salud, Bogotá 111321, Colombia; (M.T.-C.); (S.N.A.-R.); (F.R.-G.)
| | - Adrián Marcelo Franco-Vásquez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.M.F.-V.); (F.L.-P.); (R.A.-E.)
| | - Miguel Triana-Cerón
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Instituto Nacional de Salud, Bogotá 111321, Colombia; (M.T.-C.); (S.N.A.-R.); (F.R.-G.)
- Bacterial Molecular Genetics Laboratory, Research Department, Universidad El Bosque, Bogotá 110121, Colombia
| | - Shaha Noor Alam-Rojas
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Instituto Nacional de Salud, Bogotá 111321, Colombia; (M.T.-C.); (S.N.A.-R.); (F.R.-G.)
| | | | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | - Fernando Lazcano-Pérez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.M.F.-V.); (F.L.-P.); (R.A.-E.)
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.M.F.-V.); (F.L.-P.); (R.A.-E.)
| | - Francisco Ruiz-Gómez
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Instituto Nacional de Salud, Bogotá 111321, Colombia; (M.T.-C.); (S.N.A.-R.); (F.R.-G.)
| |
Collapse
|
8
|
Pereañez JA, Preciado LM, Rey-Suárez P. Knowledge about Snake Venoms and Toxins from Colombia: A Systematic Review. Toxins (Basel) 2023; 15:658. [PMID: 37999521 PMCID: PMC10675826 DOI: 10.3390/toxins15110658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Colombia encompasses three mountain ranges that divide the country into five natural regions: Andes, Pacific, Caribbean, Amazon, and Orinoquia. These regions offer an impressive range of climates, altitudes, and landscapes, which lead to a high snake biodiversity. Of the almost 300 snake species reported in Colombia, nearly 50 are categorized as venomous. This high diversity of species contrasts with the small number of studies to characterize their venom compositions and natural history in the different ecoregions. This work reviews the available information about the venom composition, isolated toxins, and potential applications of snake species found in Colombia. Data compilation was conducted according to the PRISMA guidelines, and the systematic literature search was carried out in Pubmed/MEDLINE. Venom proteomes from nine Viperidae and three Elapidae species have been described using quantitative analytical strategies. In addition, venoms of three Colubridae species have been studied. Bioactivities reported for some of the venoms or isolated components-such as antibacterial, cytotoxicity on tumoral cell lines, and antiplasmodial properties-may be of interest to develop potential applications. Overall, this review indicates that, despite recent progress in the characterization of venoms from several Colombian snakes, it is necessary to perform further studies on the many species whose venoms remain essentially unexplored, especially those of the poorly known genus Micrurus.
Collapse
Affiliation(s)
- Jaime Andrés Pereañez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia; (L.M.P.); (P.R.-S.)
- Research Group in Pharmaceutical Promotion and Prevention, University of Antioquia, Medellín 50010, Colombia
| | - Lina María Preciado
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia; (L.M.P.); (P.R.-S.)
| | - Paola Rey-Suárez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia; (L.M.P.); (P.R.-S.)
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Santiago 8320000, Chile
| |
Collapse
|
9
|
Rodríguez-Vargas A, Franco-Vásquez AM, Bolívar-Barbosa JA, Vega N, Reyes-Montaño E, Arreguín-Espinosa R, Carbajal-Saucedo A, Angarita-Sierra T, Ruiz-Gómez F. Unveiling the Venom Composition of the Colombian Coral Snakes Micrurus helleri, M. medemi, and M. sangilensis. Toxins (Basel) 2023; 15:622. [PMID: 37999485 PMCID: PMC10674450 DOI: 10.3390/toxins15110622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 11/25/2023] Open
Abstract
Little is known of the biochemical composition and functional features of the venoms of poorly known Colombian coral snakes. Here, we provide a preliminary characterization of the venom of two Colombian endemic coral snake species, Micrurus medemi and M. sangilensis, as well as Colombian populations of M. helleri. Electrophoresis and RP-HPLC techniques were used to identify venom components, and assays were conducted to detect enzyme activities, including phospholipase A2, hyaluronidase, and protease activities. The median lethal dose was determined using murine models. Cytotoxic activities in primary cultures from hippocampal neurons and cancer cell lines were evaluated. The venom profiles revealed similarities in electrophoretic separation among proteins under 20 kDa. The differences in chromatographic profiles were significant, mainly between the fractions containing medium-/large-sized and hydrophobic proteins; this was corroborated by a proteomic analysis which showed the expected composition of neurotoxins from the PLA2 (~38%) and 3FTx (~17%) families; however, a considerable quantity of metalloproteinases (~12%) was detected. PLA2 activity and protease activity were higher in M. helleri venom according to qualitative and quantitative assays. M. medemi venom had the highest lethality. All venoms decreased cell viability when tested on tumoral cell cultures, and M. helleri venom had the highest activity in neuronal primary culture. These preliminary studies shed light on the venoms of understudied coral snakes and broaden the range of sources that could be used for subsequent investigations of components with applications to specific diseases. Our findings also have implications for the clinical manifestations of snake envenoming and improvements in its medical management.
Collapse
Affiliation(s)
- Ariadna Rodríguez-Vargas
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (T.A.-S.); (F.R.-G.)
| | - Adrián Marcelo Franco-Vásquez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico (R.A.-E.)
| | - Janeth Alejandra Bolívar-Barbosa
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
| | - Nohora Vega
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
| | - Edgar Reyes-Montaño
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico (R.A.-E.)
| | - Alejandro Carbajal-Saucedo
- Laboratorio de Herpetología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, Mexico;
| | - Teddy Angarita-Sierra
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (T.A.-S.); (F.R.-G.)
- Grupo de investigación Biodiversidad para la Sociedad, Escuela de pregrados, Dirección Académica, Universidad Nacional de Colombia sede de La Paz, Cesar 22010, Colombia
| | - Francisco Ruiz-Gómez
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (T.A.-S.); (F.R.-G.)
| |
Collapse
|
10
|
Couceiro FYGM, Demico PJ, Dias SR, Oliveira IN, Pacagnelli FL, Silva EO, Sant'Anna SS, Grego KF, Morais-Zani K, Torres-Bonilla KA, Hyslop S, Floriano RS. Involvement of phospholipase A 2 in the neuromuscular blockade caused by coralsnake (Micrurus spp.) venoms in mouse phrenic nerve-diaphragm preparations in vitro. Toxicon 2023; 234:107263. [PMID: 37659667 DOI: 10.1016/j.toxicon.2023.107263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
In this work, we examined the neuromuscular blockade caused by venoms from four South-American coralsnakes (Micrurus altirostris - MA, M. corallinus - MC, M. spixii - MS, and M. dumerilii carinicauda - MDC) and the ability of varespladib (VPL), a phospholipase A2 (PLA2) inhibitor, to attenuate this blockade. PLA2 activity was determined using a colorimetric assay and a fixed amount of venom (10 μg). Neurotoxicity was assayed using a single concentration of venom (10 μg/ml) in mouse phrenic nerve-diaphragm (PND) preparations mounted for myographic recordings and then subjected to histological analysis. All venoms showed PLA2 activity, with MS and MA venoms having the highest (15.53 ± 1.9 A425 nm/min) and lowest (0.23 ± 0.14 A425 nm/min) activities, respectively. VPL (292 and 438 μM) inhibited the PLA2 activity of all venoms, although that of MA venom was least affected. All venoms caused neuromuscular blockade, with MS and MDC venoms causing the fastest and slowest 100% blockade [in 40 ± 3 min and 120 ± 6 min (n = 4), respectively]; MA and MC produced complete blockade within 90-100 min. Preincubation of venoms with 292 μM VPL attenuated the blockade to varying degrees: the greatest inhibition was seen with MDC venom and blockade by MS venom was unaffected by this inhibitor. These results indicate that PLA2 has a variable contribution to coralsnake venom-induced neuromuscular blockade in vitro, with the insensitivity of MS venom to VPL suggesting that blockade by this venom is mediated predominantly by post-synaptically-active α-neurotoxins.
Collapse
Affiliation(s)
- Fernanda Y G M Couceiro
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Poliana J Demico
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Samuel R Dias
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Isabele N Oliveira
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Francis L Pacagnelli
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Elisangela O Silva
- Laboratory of Pathological Anatomy, Veterinary Hospital, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Sávio S Sant'Anna
- Laboratory of Herpetology, Butantan Institute (IB), São Paulo, SP, Brazil
| | - Kathleen F Grego
- Laboratory of Herpetology, Butantan Institute (IB), São Paulo, SP, Brazil
| | - Karen Morais-Zani
- Laboratory of Herpetology, Butantan Institute (IB), São Paulo, SP, Brazil
| | - Kristian A Torres-Bonilla
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Stephen Hyslop
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rafael S Floriano
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil.
| |
Collapse
|
11
|
Vanuopadath M, Rajan K, Alangode A, Nair SS, Nair BG. The Need for Next-Generation Antivenom for Snakebite Envenomation in India. Toxins (Basel) 2023; 15:510. [PMID: 37624267 PMCID: PMC10467155 DOI: 10.3390/toxins15080510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/26/2023] Open
Abstract
The limitations posed by currently available antivenoms have emphasized the need for alternative treatments to counteract snakebite envenomation. Even though exact epidemiological data are lacking, reports have indicated that most global snakebite deaths are reported in India. Among the many problems associated with snakebite envenomation, issues related to the availability of safer and more efficient antivenoms are of primary concern. Since India has the highest number of global snakebite deaths, efforts should be made to reduce the burden associated with snakebite envenoming. Alternative methods, including aptamers, camel antivenoms, phage display techniques for generating high-affinity antibodies and antibody fragments, small-molecule inhibitors, and natural products, are currently being investigated for their effectiveness. These alternative methods have shown promise in vitro, but their in vivo effectiveness should also be evaluated. In this review, the issues associated with Indian polyvalent antivenoms in neutralizing venom components from geographically distant species are discussed in detail. In a nutshell, this review gives an overview of the current drawbacks of using animal-derived antivenoms and several alternative strategies that are currently being widely explored.
Collapse
Affiliation(s)
| | | | | | | | - Bipin Gopalakrishnan Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India; (M.V.); (K.R.); (A.A.); (S.S.N.)
| |
Collapse
|
12
|
Antibodies against a single fraction of Micrurus dumerilii venom neutralize the lethal effect of whole venom. Toxicol Lett 2023; 374:77-84. [PMID: 36528173 DOI: 10.1016/j.toxlet.2022.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The coralsnake Micrurus dumerilii (Elapidae) is reported to cause envenomings of medical importance. Previous studies characterized the protein composition of its venom, with phospholipase A2 (PLA2) proteins the most abundant. However, it is unknown which venom components are responsible for its lethal toxicity. Fractionation of M. dumerilii venom from Colombia was carried out using RP-HPLC and each fraction was screened for lethal effect in mice at a dose of 20 μg by intraperitoneal route. Results showed that only one fraction, F9, was lethal. This fraction displayed PLA2 activity, induced indirect hemolysis in vitro, as well as edema and myotoxicity in vivo. SDS-PAGE of unreduced F9 evidenced two bands of 8 and 15 kDa, respectively, consistent with the detection of proteins with masses of 13,217.77 Da, 7144.06 Da, and 7665.55 Da. Tryptic digestion of F9 followed by nESI-MS/MS revealed peptide sequences matching proteins of the three-finger toxin (3FTx) and PLA2 families. Immunization of a rabbit with F9 proteins elicited antibody titers up to 1:10,000 by ELISA. After serum fractionation with caprylic acid, the obtained IgG was able to neutralize the lethal effect of the complete venom of M. dumerilii using a challenge of 2 ×LD50 at the IgG/venom ratio of 50:1 (w/w). In conclusion, present results show that the lethal effect of M. dumerilii venom in mice is mainly driven by one fraction which contains 3FTx and PLA2 proteins. The antibodies produced against this fraction cross-recognized other PLA2s and neutralized the lethal effect of whole M. dumerilii venom, pointing out to the potential usefulness of F9 as a relevant antigen for improving current coral snake antivenoms.
Collapse
|
13
|
Corrêa-Netto C, Strauch MA, Monteiro-Machado M, Teixeira-Araújo R, Fonseca JG, Leitão-Araújo M, Machado-Alves ML, Sanz L, Calvete JJ, Melo PA, Zingali RB. Monoclonal-Based Antivenomics Reveals Conserved Neutralizing Epitopes in Type I PLA 2 Molecules from Coral Snakes. Toxins (Basel) 2022; 15:toxins15010015. [PMID: 36668835 PMCID: PMC9863321 DOI: 10.3390/toxins15010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
For over a century, polyclonal antibodies have been used to treat snakebite envenoming and are still considered by the WHO as the only scientifically validated treatment for snakebites. Nevertheless, moderate innovations have been introduced to this immunotherapy. New strategies and approaches to understanding how antibodies recognize and neutralize snake toxins represent a challenge for next-generation antivenoms. The neurotoxic activity of Micrurus venom is mainly due to two distinct protein families, three-finger toxins (3FTx) and phospholipases A2 (PLA2). Structural conservation among protein family members may represent an opportunity to generate neutralizing monoclonal antibodies (mAbs) against family-conserved epitopes. In this work, we sought to produce a set of monoclonal antibodies against the most toxic components of M. altirostris venom. To this end, the crude venom was fractionated, and its major toxic proteins were identified and used to generate a panel of five mAbs. The specificity of these mAbs was characterized by ELISA and antivenomics approaches. Two of the generated mAbs recognized PLA2 epitopes. They inhibited PLA2 catalytic activity and showed paraspecific neutralization against the myotoxicity from the lethal effect of Micrurus and Naja venoms' PLA2s. Epitope conservation among venom PLA2 molecules suggests the possibility of generating pan-PLA2 neutralizing antibodies.
Collapse
Affiliation(s)
- Carlos Corrêa-Netto
- Instituto Vital Brazil, Rio de Janeiro 24230-410, RJ, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (C.C.-N.); (R.B.Z.); Tel.: +55-213-938-6782 (R.B.Z.)
| | - Marcelo A. Strauch
- Instituto Vital Brazil, Rio de Janeiro 24230-410, RJ, Brazil
- Programa de Farmacologia e Química Medicinal-UFRJ, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Marcos Monteiro-Machado
- Programa de Farmacologia e Química Medicinal-UFRJ, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Ricardo Teixeira-Araújo
- Instituto Vital Brazil, Rio de Janeiro 24230-410, RJ, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | | | - Moema Leitão-Araújo
- Fundação Zoobotânica do Rio Grande do Sul, Museu de Ciências Naturais, Núcleo Regional de Ofiologia de Porto Alegre, Porto Alegre 90690-000, RS, Brazil
| | - Maria Lúcia Machado-Alves
- Fundação Zoobotânica do Rio Grande do Sul, Museu de Ciências Naturais, Núcleo Regional de Ofiologia de Porto Alegre, Porto Alegre 90690-000, RS, Brazil
| | - Libia Sanz
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, 46010 Valencia, Spain
| | - Juan J. Calvete
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, 46010 Valencia, Spain
| | - Paulo A. Melo
- Programa de Farmacologia e Química Medicinal-UFRJ, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (C.C.-N.); (R.B.Z.); Tel.: +55-213-938-6782 (R.B.Z.)
| |
Collapse
|
14
|
Romo E, Torres M, Martin-Solano S. Current situation of snakebites envenomation in the Neotropics: Biotechnology, a versatile tool in the production of antivenoms. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Snakebite envenomation is a neglected tropical disease that affects millions of people around the world with a great impact on health and the economy. Unfortunately, public health programs do not include this kind of disease as a priority in their social programs. Cases of snakebite envenomations in the Neotropics are inaccurate due to inadequate disease management from medical records to the choice of treatments. Victims of snakebite envenomation are primarily found in impoverished agricultural areas where remote conditions limit the availability of antivenom. Antivenom serum is the only Food and Drug Administration-approved treatment used up to date. However, it has several disadvantages in terms of safety and effectiveness. This review provides a comprehensive insight dealing with the current epidemiological status of snakebites in the Neotropics and technologies employed in antivenom production. Also, modern biotechnological tools such as transcriptomic, proteomic, immunogenic, high-density peptide microarray and epitope mapping are highlighted for producing new-generation antivenom sera. These results allow us to propose strategic solutions in the Public Health Sector for managing this disease.
Keywords: antivenom, biotechnology, neglected tropical disease, omics, recombinant antibody.
Collapse
Affiliation(s)
- Elizabeth Romo
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Marbel Torres
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador, Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Immunology and Virology Laboratory, Nanoscience and Nanotechnology Center, Universidad de las Fuerzas Armadas, ESPE, Sangolquí, Ecuador
| | - Sarah Martin-Solano
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador, Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública, Universidad Central del Ecuador
| |
Collapse
|
15
|
Hernández-Altamirano JA, Salazar-Valenzuela D, Medina-Villamizar EJ, Quirola DR, Patel K, Vaiyapuri S, Lomonte B, Almeida JR. First Insights into the Venom Composition of Two Ecuadorian Coral Snakes. Int J Mol Sci 2022; 23:ijms232314686. [PMID: 36499012 PMCID: PMC9740791 DOI: 10.3390/ijms232314686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Micrurus is a medically relevant genus of venomous snakes composed of 85 species. Bites caused by coral snakes are rare, but they are usually associated with very severe and life-threatening clinical manifestations. Ecuador is a highly biodiverse country with a complex natural environment, which is home to approximately 20% of identified Micrurus species. Additionally, it is on the list of Latin American countries with the highest number of snakebites. However, there is no local antivenom available against the Ecuadorian snake venoms, and the biochemistry of these venoms has been poorly explored. Only a limited number of samples collected in the country from the Viperidae family were recently characterised. Therefore, this study addressed the compositional patterns of two coral snake venoms from Ecuador, M. helleri and M. mipartitus, using venomics strategies, integrating sample fractionation, gel electrophoresis, and mass spectrometry. Chromatographic and electrophoretic profiles of these snake venoms revealed interspecific variability, which was ascertained by mass spectrometry. The two venoms followed the recently recognised dichotomic toxin expression trends displayed by Micrurus species: M. helleri venom contains a high proportion (72%) of phospholipase A2, whereas M. mipartitus venom is dominated by three-finger toxins (63%). A few additional protein families were also detected in these venoms. Overall, these results provide the first comprehensive views on the composition of two Ecuadorian coral snake venoms and expand the knowledge of Micrurus venom phenotypes. These findings open novel perspectives to further research the functional aspects of these biological cocktails of PLA2s and 3FTxs and stress the need for the preclinical evaluation of the currently used antivenoms for therapeutic purposes in Ecuador.
Collapse
Affiliation(s)
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 180103, Ecuador
| | | | - Diego R. Quirola
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 180103, Ecuador
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK
| | | | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San Jose 11501, Costa Rica
| | - José R. Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 8 Via Muyuna, Tena 150101, Ecuador
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK
- Correspondence:
| |
Collapse
|
16
|
Romero-Giraldo LE, Pulido S, Berrío MA, Flórez MF, Rey-Suárez P, Nuñez V, Pereañez JA. Heterologous Expression and Immunogenic Potential of the Most Abundant Phospholipase A 2 from Coral Snake Micrurus dumerilii to Develop Antivenoms. Toxins (Basel) 2022; 14:toxins14120825. [PMID: 36548722 PMCID: PMC9788014 DOI: 10.3390/toxins14120825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Micrurus dumerilii is a coral snake of clinic interest in Colombia. Its venom is mainly composed of phospholipases A2 being MdumPLA2 the most abundant protein. Nevertheless, Micrurus species produce a low quantity of venom, which makes it difficult to produce anticoral antivenoms. Therefore, in this work, we present the recombinant expression of MdumPLA2 to evaluate its biological activities and its immunogenic potential to produce antivenoms. For this, a genetic construct rMdumPLA2 was cloned into the pET28a vector and expressed heterologously in bacteria. His-rMdumPLA2 was extracted from inclusion bodies, refolded in vitro, and isolated using affinity and RP-HPLC chromatography. His-rMdumPLA2 was shown to have phospholipase A2 activity, a weak anticoagulant effect, and induced myonecrosis and edema. The anti-His-rMdumPLA2 antibodies produced in rabbits recognized native PLA2, the complete venom of M. dumerilii, and a phospholipase from another species of the Micrurus genus. Antibodies neutralized 100% of the in vitro phospholipase activity of the recombinant toxin and a moderate percentage of the myotoxic activity of M. dumerilii venom in mice. These results indicate that His-rMdumPLA2 could be used as an immunogen to improve anticoral antivenoms development. This work is the first report of an M. dumerilii functional recombinant PLA2.
Collapse
Affiliation(s)
- Luz E. Romero-Giraldo
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| | - Sergio Pulido
- Tropical Disease Study and Control Program—PECET, University of Antioquia, Medellín 50010, Colombia
- LifeFactors Zona Franca SAS, Rionegro 54047, Colombia
| | - Mario A. Berrío
- Tropical Disease Study and Control Program—PECET, University of Antioquia, Medellín 50010, Colombia
| | - María F. Flórez
- Tropical Disease Study and Control Program—PECET, University of Antioquia, Medellín 50010, Colombia
| | - Paola Rey-Suárez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Santiago 8320000, Chile
| | - Vitelbina Nuñez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
- Microbiology School, University of Antioquia, Medellín 50010, Colombia
| | - Jaime A. Pereañez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
- Correspondence:
| |
Collapse
|
17
|
Oliveira ISD, Pucca MB, Ferreira IG, Cerni FA, Jacob BDCDS, Wiezel GA, Pinheiro-Júnior EL, Cordeiro FA, Bordon KDCF, Arantes EC. State-of-the-art review of snake venom phosphodiesterases (svPDEs). Toxicon 2022; 217:121-130. [PMID: 35998712 DOI: 10.1016/j.toxicon.2022.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
Phosphodiesterases (PDEs) constitute an enzyme group able to hydrolyze nucleic acids as well as some second messengers. Due to this ability and their expression in several human tissues and organs, PDEs can control a gamut of physiological processes. They are also involved in some pathological conditions, such as Alzheimer's disease and erectile dysfunction. PDEs are also expressed in snake venom glands, being called snake venoms phosphodiesterases, or simply svPDEs. The occurrence of these enzymes has already been reported in crotalid, elapid and viperid venoms, such as Crotalus, Naja and Trimeresurus, respectively, but not all of them have been characterized concerning their structure, activity and function. In this review, we are addressing general characteristics of svPDEs, in addition to their structural, biochemical and functional characteristics, and we also report some potential applications of svPDEs.
Collapse
Affiliation(s)
- Isadora Sousa de Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Manuela Berto Pucca
- Medical School, Federal University of Roraima, Boa Vista, RR, Brazil; Health Sciences Postgraduate Program, Federal University of Roraima, Boa Vista, RR, Brazil
| | - Isabela Gobbo Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe Augusto Cerni
- Health Sciences Postgraduate Program, Federal University of Roraima, Boa Vista, RR, Brazil
| | - Beatriz de Cássia da Silva Jacob
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gisele Adriano Wiezel
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ernesto Lopes Pinheiro-Júnior
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Francielle Almeida Cordeiro
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karla de Castro Figueiredo Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eliane Candiani Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
18
|
Silva-Carvalho R, Gaspar MZ, Quadros LHB, Lobo LGG, Giuffrida R, Santarém CL, Silva EO, Gerez JR, Silva NJ, Hyslop S, Lomonte B, Floriano RS. Partial efficacy of a Brazilian coralsnake antivenom and varespladib in neutralizing distinct toxic effects induced by sublethal Micrurus dumerilii carinicauda envenoming in rats. Toxicon 2022; 213:99-104. [PMID: 35489427 DOI: 10.1016/j.toxicon.2022.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
Abstract
In this work, we report the efficacy of a combination of Brazilian therapeutic coralsnake antivenom (CAV) and varespladib (phospholipase A2 inhibitor - VPL) in partially neutralizing selected toxic effects of Micrurus dumerilii carinicauda coralsnake venom in rats. Venom caused local myonecrosis and systemic neurotoxicity, nephrotoxicity, and hepatotoxicity within 2 h of injection. CAV and VPL administered separately failed to prevent most of these alterations. However, a combination of CAV plus VPL offered variable protection against venom-induced coagulation disturbances, leukocytosis, and renal and hepatic morphological alterations.
Collapse
Affiliation(s)
- Rosimeire Silva-Carvalho
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Matheus Z Gaspar
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Luiz H B Quadros
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Luís G G Lobo
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Rogério Giuffrida
- Graduate Program in Animal Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, 19067-175, Presidente Prudente, SP, Brazil
| | - Cecília L Santarém
- Graduate Program in Animal Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, 19067-175, Presidente Prudente, SP, Brazil
| | - Elisangela O Silva
- Graduate Program in Animal Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, 19067-175, Presidente Prudente, SP, Brazil
| | - Juliana R Gerez
- Department of Histology, State University of Londrina (UEL), Rodovia Celso Garcia Cid Km 380, 86057-970, Londrina, PR, Brazil
| | - Nelson J Silva
- Graduate Program in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás (PUC-Goiás), 74605-140, Goiânia, GO, Brazil
| | - Stephen Hyslop
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, 13083-887, Campinas, SP, Brazil
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, 11501, San José, Costa Rica.
| | - Rafael S Floriano
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil.
| |
Collapse
|
19
|
Mena G, Chaves-Araya S, Chacón J, Török E, Török F, Bonilla F, Sasa M, Gutiérrez JM, Lomonte B, Fernández J. Proteomic and toxicological analysis of the venom of Micrurus yatesi and its neutralization by an antivenom. Toxicon X 2022; 13:100097. [PMID: 35243330 PMCID: PMC8864321 DOI: 10.1016/j.toxcx.2022.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
Coralsnakes belong to the family Elapidae and possess venoms which are lethal to humans and can be grouped based on the predominance of either three finger toxins (3FTxs) or phospholipases A2 (PLA2s). A proteomic and toxicological analysis of the venom of the coralsnake Micrurus yatesi was performed. This species, distributed in southeastern Costa Rica, was formerly considered a subspecies of M. alleni. Results showed that this venom is PLA2-rich, in contrast with the previously studied venom of Micrurus alleni. Toxicological evaluation of the venom, in accordance with proteomic data, revealed that it has a markedly higher in vitro PLA2 activity upon a synthetic substrate than M. alleni. The evaluation of in vivo myotoxicity in CD-1 mice using histological evaluation and plasma creatine kinase release also showed that M. yatesi venom caused muscle damage. A commercial equine antivenom prepared using the venom of Micrurus nigrocinctus displayed a similar recognition of the venoms of M. yatesi and M. nigrocinctus by enzyme immunoassay. This antivenom also immunorecognized the main fractions of the venom of M. yatesi and was able to neutralize its lethal effect in a murine model. The venom proteome of Micrurus yatesi was determined. The venom of Micrurus yatesi is a Phospholipase A2-rich venom. When injected in mice, the venom of Micrurus yatesi caused muscle damage. An antivenom immunorecognized the main fractions of Micrurus yatesi venom. The antivenom was able to neutralize the lethal activity of the venom of Micrurus yatesi.
Collapse
|
20
|
Kazandjian TD, Petras D, Robinson SD, van Thiel J, Greene HW, Arbuckle K, Barlow A, Carter DA, Wouters RM, Whiteley G, Wagstaff SC, Arias AS, Albulescu LO, Plettenberg Laing A, Hall C, Heap A, Penrhyn-Lowe S, McCabe CV, Ainsworth S, da Silva RR, Dorrestein PC, Richardson MK, Gutiérrez JM, Calvete JJ, Harrison RA, Vetter I, Undheim EAB, Wüster W, Casewell NR. Convergent evolution of pain-inducing defensive venom components in spitting cobras. Science 2021; 371:386-390. [PMID: 33479150 PMCID: PMC7610493 DOI: 10.1126/science.abb9303] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023]
Abstract
Convergent evolution provides insights into the selective drivers underlying evolutionary change. Snake venoms, with a direct genetic basis and clearly defined functional phenotype, provide a model system for exploring the repeated evolution of adaptations. While snakes use venom primarily for predation, and venom composition often reflects diet specificity, three lineages of cobras have independently evolved the ability to spit venom at adversaries. Using gene, protein, and functional analyses, we show that the three spitting lineages possess venoms characterized by an up-regulation of phospholipase A2 (PLA2) toxins, which potentiate the action of preexisting venom cytotoxins to activate mammalian sensory neurons and cause enhanced pain. These repeated independent changes provide a fascinating example of convergent evolution across multiple phenotypic levels driven by selection for defense.
Collapse
Affiliation(s)
- T D Kazandjian
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - D Petras
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - S D Robinson
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - J van Thiel
- Institute of Biology, University of Leiden, Leiden 2333BE, Netherlands
| | - H W Greene
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - K Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK
| | - A Barlow
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - D A Carter
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - R M Wouters
- Institute of Biology, University of Leiden, Leiden 2333BE, Netherlands
| | - G Whiteley
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - S C Wagstaff
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Research Computing Unit, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - A S Arias
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - L-O Albulescu
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - A Plettenberg Laing
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - C Hall
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - A Heap
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - S Penrhyn-Lowe
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - C V McCabe
- School of Earth Sciences, University of Bristol, Bristol BS8 1RL, UK
| | - S Ainsworth
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - R R da Silva
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Molecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - P C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - M K Richardson
- Institute of Biology, University of Leiden, Leiden 2333BE, Netherlands
| | - J M Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - J J Calvete
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain
| | - R A Harrison
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - I Vetter
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - E A B Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Blindern, 0316 Oslo, Norway
| | - W Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - N R Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| |
Collapse
|
21
|
Bénard-Valle M, Neri-Castro E, Elizalde-Morales N, Olvera-Rodríguez A, Strickland J, Acosta G, Alagón A. Protein composition and biochemical characterization of venom from Sonoran Coral Snakes (Micruroides euryxanthus). Biochimie 2021; 182:206-216. [PMID: 33485932 DOI: 10.1016/j.biochi.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
The elapid genus, Micruroides, is considered the sister clade of all New World coral snakes (Genus Micrurus), is monotypic, and is represented by Sonoran Coral Snakes, Micruroides euryxanthus. Coral snakes of the genus Micrurus have been reported to have venoms that are predominantly composed of phospholipases A2 (PLA2) or three finger toxins (3FTx), but the venoms of the genus Micruroides are almost completely unstudied. Here, we present the first description of the venom of M. euryxanthus including identification of some proteins as well as transcriptomic, and biological activity assays. The most abundant components within M. euryxanthus venom are 3FTxs (62.3%) and there was relatively low proportion of PLA2s (14.2%). The venom phenotype supports the hypothesis that the common ancestor of Micrurus and Micruroides had a 3FTx-dominated venom. Within the venom, there were two nearly identical α-neurotoxins (α-Ntx), one of which was designated Eurytoxin, that account for approximately 60% of the venom's lethality to mice. Eurytoxin was cloned, expressed in a soluble and active form, and used to produce rabbit hyperimmune serum. This allowed the analysis of its immunochemical properties, showing them to be different from the recombinant αNTx D.H., present in the venoms of some species of Micrurus. Finally, we observed that the commercial antivenom produced in Mexico for coral snake envenomation is unable to neutralize the lethality from M. euryxanthus venom. This work allowed the classification of Micruroides venom into the 3FTx-predominant group and identified the main components responsible for toxicity to mice.
Collapse
Affiliation(s)
- Melisa Bénard-Valle
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Colonia Chamilpa, CP: 62210, Cuernavaca, Morelos, Mexico
| | - Edgar Neri-Castro
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Colonia Chamilpa, CP: 62210, Cuernavaca, Morelos, Mexico
| | - Nicolás Elizalde-Morales
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Colonia Chamilpa, CP: 62210, Cuernavaca, Morelos, Mexico
| | - Alejandro Olvera-Rodríguez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Colonia Chamilpa, CP: 62210, Cuernavaca, Morelos, Mexico
| | - Jason Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC, 29632, USA; Department of Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Gerardo Acosta
- MIVIA. Museo Itinerante de Vida Animal, Hermosillo, Sonora, Mexico
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Colonia Chamilpa, CP: 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
22
|
Archundia IG, de la Rosa G, Olvera F, Calderón A, Benard-Valle M, Alagón A, Corzo G. Assessment of neutralization of Micrurus venoms with a blend of anti-Micrurus tener and anti-ScNtx antibodies. Vaccine 2021; 39:1000-1006. [PMID: 33423840 DOI: 10.1016/j.vaccine.2020.12.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Micrurus venoms contain two main groups of toxic protein components: short-chain α-neurotoxins (SNtx) and phospholipases type A2 (PLA2). In North America, generally, the Micrurus venoms have low abundance of SNtx compared to that of PLA2s; however, both are highly toxic to mammals, and consequently both can play a major role in the envenomation processes. Concerning the commercial horse-derived antivenoms against Micrurus from the North America region, they contain a relatively large amount of antibodies against PLA2s, and a low content of antibodies against short chain α-neurotoxins. This is mainly due to the lower relative abundance of SNtxs, and also to its poor immunogenicity due to their size and nature. Hence, Micrurus antivenoms made in North America usually present low neutralizing capacity towards Micrurus venoms whose lethality depend largely on short chain α-neurotoxins, such as South American Micrurus species. METHODS Horses were hyperimmunized with either the venom of M. tener (PLA2-predominant) or a recombinant short-chain consensus α-neurotoxin (ScNtx). Then, the combination of the two monospecific horse antibodies (anti-M. tener and anti-ScNtx) was used to test their efficacy against eleven Micrurus venoms. RESULTS The blend of anti-M. tener and anti-ScNtx antibodies had a better capacity to neutralize the lethality of diverse species from North, Central and South American Micrurus venoms. The antibodies combination neutralized both the ScNtx and ten out of eleven Micrurus venom tested, and particularly, it neutralized the venoms of M. distans and M. laticollaris that were neither neutralized by monospecific anti-M. tener nor anti-ScNtx. CONCLUSIONS These results provide a proof-of-principle for using recombinant immunogens to enrich poor or even non-neutralizing antisera against elapid venoms containing short chain α-neurotoxins to develop antivenoms with higher effectiveness and broader neutralizing capacity.
Collapse
Affiliation(s)
- Irving G Archundia
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología - UNAM, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Guillermo de la Rosa
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S3E1, Canada.
| | - Felipe Olvera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología - UNAM, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Arlene Calderón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología - UNAM, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Melisa Benard-Valle
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología - UNAM, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología - UNAM, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología - UNAM, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
23
|
Micrurus surinamensis Peruvian snake venom: Cytotoxic activity and purification of a C-type lectin protein (Ms-CTL) highly toxic to cardiomyoblast-derived H9c2 cells. Int J Biol Macromol 2020; 164:1908-1915. [PMID: 32781119 DOI: 10.1016/j.ijbiomac.2020.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/20/2022]
Abstract
Micrurus surinamensis (Cuvier, 1817), popularly known as aquatic coral snake, has a broad geographic distribution in the Rainforest of South America. The purpose of this study was to investigate the cytotoxic effect caused by M. surinamensis venom in H9c2 cardiomyoblast cells and to identify protein components involved in cardiotoxic processes. Venom cardiotoxic potential is evidenced by cell viability reduction in a concentration-dependent manner. We have purified one of venom components responsible for this effect after three chromatographic steps: a cytotoxic 23.461 kDa protein, as determined by mass spectrometry. A 19-residue sequence (DCPSGWSSYEGSCYNFFQR) of the purified protein was deduced by MS/MS and exhibited high homology with N-terminal region of C-type lectin from snake venoms. This protein was named Ms-CTL. Morphologically, H9c2 incubation with Ms-CTL led to a significant cellular retraction and formation of cellular aggregates, as observed by microscopy phase-contrast images. Our results indicate that M. surinamensis venom is highly toxic to H9c2 cardiomyoblast cell and less or not cytotoxic to other cell lines, such as HaCat, VERO and U373. Results presented herein will help understanding the mechanisms that underlie cellular damage and tissue destruction, being useful in the development of alternative therapies against these coral snake bites.
Collapse
|
24
|
Cardiovascular activity of Micrurus lemniscatus lemniscatus (South American coralsnake) venom. Toxicon 2020; 186:58-66. [DOI: 10.1016/j.toxicon.2020.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/30/2020] [Accepted: 07/18/2020] [Indexed: 11/20/2022]
|
25
|
Rey-Suárez P, Lomonte B. Immunological cross-recognition and neutralization studies of Micrurus mipartitus and Micrurus dumerilii venoms by two therapeutic equine antivenoms. Biologicals 2020; 68:40-45. [PMID: 32928631 DOI: 10.1016/j.biologicals.2020.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/13/2020] [Accepted: 08/29/2020] [Indexed: 11/16/2022] Open
Abstract
New world Coral snakes comprise 82 species of medical importance distributed from southeastern United States to Argentina. In Colombia, Micrurus mipartitus and M. dumerilii are responsible for most coral snakebite accidents. Although infrequent, the severity of these envenomings, as well as the limited information available on the neutralizing coverage of commercially available antivenoms, underscores the need to perform studies to assess the cross-neutralizing ability of these life-saving immunobiologicals. In the present work, we evaluated the cross-recognition and neutralization ability of two equine therapeutic antivenoms: PROBIOL and SAC-ICP. PROBIOL antivenom showed cross-recognition towards both M. mipartitus and M. dumerilii venoms, with a significantly higher binding to the latter in both whole-venom ELISA and fractionated-venom immunoprofiling. In contrast, SAC-ICP antivenom cross-recognized M. dumerilii venom, but not that of M. mipartitus. Lethality of M. dumerilii venom was neutralized by both antivenoms, with a slightly higher potency for the SAC-ICP antivenom. However, the lethality of M. mipartitus venom was not neutralized by any of the two antivenoms. Results uncover the need to include M. mipartitus venom, or its most relevant toxins, in the production of coral snake antivenoms to be used in Colombia, to assure the neutralizing coverage for this species.
Collapse
Affiliation(s)
- Paola Rey-Suárez
- Programa de Ofidismo y Escorpionismo, Universidad de Antioquia, Medellín, Colombia.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
26
|
Bolívar-Barbosa JA, Rodríguez-Vargas AL. Actividad neurotóxica del veneno de serpientes del género Micrurus y métodos para su análisis. Revisión de la literatura. REVISTA DE LA FACULTAD DE MEDICINA 2020. [DOI: 10.15446/revfacmed.v68n3.75992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. Las serpientes del género Micrurus son animales de hábitos fosoriales, de temperamento pasivo y escasa producción de un potente veneno con características neurotóxicas que bloquean la transmisión sináptica en la placa neuromuscular.Objetivo. Presentar un panorama general de la neurotoxicidad del veneno de las serpientes Micrurus y su caracterización funcional mediante métodos de análisis ex vivo.Materiales y métodos. Se realizó una revisión de la literatura en MedLine y ScienceDirect usando términos específicos y sus combinaciones. Estrategia de búsqueda: tipo de estudios: artículos sobre la neurotoxicidad del veneno de serpientes Micrurus y técnicas para determinar su actividad neurotóxica mediante modelos in vitro, in vivo y ex vivo; periodo de publicación: sin limite inicial a junio de 2018; idiomas: inglés y español.Resultados. De los 88 estudios identificados en la búsqueda inicial, se excluyeron 28 por no cumplir los criterios de inclusión (basándose en la lectura de títulos y resúmenes); además, se incluyeron 8 documentos adicionales (libros e informes), que, a criterio de los autores, complementaban la información reportada por las referencias seleccionadas. Los estudios incluidos en la revisión (n=68) correspondieron a las siguientes tipologías: investigaciones originales (n=44), artículos de revisión (n=16) y capítulos de libros, informes, guías y consultas en internet (n=8).Conclusiones. Los estudios que describen el uso de preparaciones ex vivo de músculo y nervio para evaluar el efecto de neurotoxinas ofrecen un buen modelo para la caracterización del efecto presináptico y postsináptico del veneno producido por las serpientes Micrurus.
Collapse
|
27
|
Bisneto PF, Alcântara JA, Mendonça da Silva I, de Almeida Gonçalves Sachett J, Bernarde PS, Monteiro WM, Kaefer IL. Coral snake bites in Brazilian Amazonia: Perpetrating species, epidemiology and clinical aspects. Toxicon 2020; 175:7-18. [DOI: 10.1016/j.toxicon.2019.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/16/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
|
28
|
Rey-Suárez P, Saldarriaga-Córdoba M, Torres U, Marin-Villa M, Lomonte B, Núñez V. Novel three-finger toxins from Micrurus dumerilii and Micrurus mipartitus coral snake venoms: Phylogenetic relationships and characterization of Clarkitoxin-I-Mdum. Toxicon 2019; 170:85-93. [DOI: 10.1016/j.toxicon.2019.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/11/2022]
|
29
|
Díaz C, Rivera J, Lomonte B, Bonilla F, Diego-García E, Camacho E, Tytgat J, Sasa M. Venom characterization of the bark scorpion Centruroides edwardsii (Gervais 1843): Composition, biochemical activities and in vivo toxicity for potential prey. Toxicon 2019; 171:7-19. [PMID: 31585140 DOI: 10.1016/j.toxicon.2019.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
Abstract
In this study, we characterize the venom of Centruroides edwardsii, one of the most abundant scorpions in urban and rural areas of Costa Rica, in terms of its biochemical constituents and their biological activities. C. edwardsii venom is rich in peptides but also contains some higher molecular weight protein components. No phospholipase A2, hemolytic or fibrinogenolytic activities were found, but the presence of proteolytic and hyaluronidase enzymes was evidenced by zymography. Venom proteomic analysis indicates the presence of a hyaluronidase, several cysteine-rich secretory proteins, metalloproteinases and a peptidylglycine α-hydroxylating monooxygenase like-enzyme. It also includes peptides similar to the K+-channel blocker margatoxin, a dominant toxin in the venom of the related scorpion C. margaritatus. MS and N-terminal sequencing analysis also reveals the presence of Na+-channel-modulating peptides with sequence similarity to orthologs present in other scorpion species of the genera Centruroides and Tityus. We purified the hyaluronidase (which co-eluted with an allergen 5-like CRiSP) and sequenced ~60% of this enzyme. We also sequenced some venom gland transcripts that include other cysteine-containing peptides and a Non-Disulfide Bridged Peptide (NDBP). Our in vivo experiments characterizing the effects on potential predators and prey show that C. edwardsii venom induces paralysis in several species of arthropods and geckos; crickets being the most sensitive and cockroaches and scorpions the most resistant organisms tested. Envenomation signs were also observed in mice, but no lethality was reached by intraperitoneal administration of this venom up to 120 μg/g body weight.
Collapse
Affiliation(s)
- Cecilia Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica; Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica.
| | - Jennifer Rivera
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Fabián Bonilla
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Elia Diego-García
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Belgium
| | - Erika Camacho
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Belgium
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica; Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
30
|
Sanz L, de Freitas-Lima LN, Quesada-Bernat S, Graça-de-Souza VK, Soares AM, Calderón LDA, Calvete JJ, Caldeira CA. Comparative venomics of Brazilian coral snakes: Micrurus frontalis, Micrurus spixii spixii, and Micrurus surinamensis. Toxicon 2019; 166:39-45. [DOI: 10.1016/j.toxicon.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
|
31
|
New insights into the phylogeographic distribution of the 3FTx/PLA2 venom dichotomy across genus Micrurus in South America. J Proteomics 2019; 200:90-101. [DOI: 10.1016/j.jprot.2019.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 01/01/2023]
|
32
|
Rojas-Azofeifa D, Sasa M, Lomonte B, Diego-García E, Ortiz N, Bonilla F, Murillo R, Tytgat J, Díaz C. Biochemical characterization of the venom of Central American scorpion Didymocentrus krausi Francke, 1978 (Diplocentridae) and its toxic effects in vivo and in vitro. Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:54-67. [PMID: 30517877 DOI: 10.1016/j.cbpc.2018.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 11/28/2022]
Abstract
Venoms of medically important scorpions from Buthidae family have been intensively studied, in contrast to non-buthid venoms, for which knowledge is scarce. In this work, we characterized the venom of a Diplocentridae species, Didymocentrus krausi, a small fossorial scorpion that inhabits the Tropical Dry Forest of Central America. D. krausi venom soluble fraction contains proteases with enzymatic activity on gelatin and casein. Mass spectrometry and venomic analysis confirmed the presence of elastase-like, cathepsin-O-like proteases and a neprilysin-like metalloproteinase. We did not detect phospholipase A2, C or D, nor hyaluronidase activity in the venom. By homology-based venom gland transcriptomic analysis, NDBPs, a β-KTx-like peptide, and other putative toxin transcripts were found, which, together with a p-benzoquinone compound present in the venom, could potentially explain its direct hemolytic and cytotoxic effects in several mammalian cell lines. Cytotoxicity of D. krausi venom was higher than the effect of venoms from two buthid scorpion species distributed in Costa Rica, Centruroides edwardsii and Tityus pachyurus. Even though D. krausi venom was not lethal to mice or crickets, when injected in mouse gastrocnemius muscle at high doses it induced pathological effects at 24 h, which include myonecrosis, weak hemorrhage, and inflammatory infiltration. We observed an apparent thrombotic effect in the skin blood vessels, but no in vitro fibrinogenolytic activity was detected. In crickets, D. krausi venom induced toxicity and paralysis in short periods of time.
Collapse
Affiliation(s)
- Daniela Rojas-Azofeifa
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Elia Diego-García
- Cátedras CONACYT-El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, Mexico; Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Belgium
| | - Natalia Ortiz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fabián Bonilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Renato Murillo
- Centro de Investigaciones en Productos Naturales, Universidad de Costa Rica, San José, Costa Rica
| | - Jan Tytgat
- Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Belgium
| | - Cecilia Díaz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
33
|
Castillo-Beltrán MC, Hurtado-Gómez JP, Corredor-Espinel V, Ruiz-Gómez FJ. A polyvalent coral snake antivenom with broad neutralization capacity. PLoS Negl Trop Dis 2019; 13:e0007250. [PMID: 30856180 PMCID: PMC6428337 DOI: 10.1371/journal.pntd.0007250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/21/2019] [Accepted: 02/19/2019] [Indexed: 01/08/2023] Open
Abstract
Coral snakes of the genus Micrurus have a high diversity and wide distribution in the Americas. Despite envenomings by these animals being uncommon, accidents are often severe and may result in death. Producing an antivenom to treat these envenomings has been challenging since coral snakes are difficult to catch, produce small amounts of venom, and the antivenoms produced have shown limited cross neutralization. Here we present data of cross neutralization among monovalent antivenoms raised against M. dumerilii, M. isozonus, M. mipartitus and M. surinamensis and the development of a new polyvalent coral snake antivenom, resulting from the mix of monovalent antivenoms. Our results, show that this coral snake antivenom has high neutralizing potency and wide taxonomic coverage, constituting a possible alternative for a long sought Pan-American coral snake antivenom.
Collapse
Affiliation(s)
- María Carlina Castillo-Beltrán
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Grupo de Producción y Desarrollo Tecnológico, Dirección de Producción, Instituto Nacional de Salud, Bogotá, Colombia
| | - Juan Pablo Hurtado-Gómez
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Grupo de Producción y Desarrollo Tecnológico, Dirección de Producción, Instituto Nacional de Salud, Bogotá, Colombia
| | - Vladimir Corredor-Espinel
- Parasitology Laboratory, Department of Public Health, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Francisco Javier Ruiz-Gómez
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Grupo de Producción y Desarrollo Tecnológico, Dirección de Producción, Instituto Nacional de Salud, Bogotá, Colombia
| |
Collapse
|
34
|
Oliveira ISD, Pucca MB, Sampaio SV, Arantes EC. Antivenomic approach of different Crotalus durissus collilineatus venoms. J Venom Anim Toxins Incl Trop Dis 2018; 24:34. [PMID: 30534148 PMCID: PMC6260869 DOI: 10.1186/s40409-018-0169-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/01/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Our group has previously performed a proteomic study verifying that individual variations can occur among Crotalus durissus collilineatus venoms. These variations may lead to differences in venom toxicity and may result in lack of neutralization of some components by antivenom. In this way, this study aimed to evaluate the Brazilian anticrotalic serum capacity in recognizing twenty-two Crotalus durissus collilineatus venoms, as well as their fractions. METHODS The indirect enzyme-linked immunosorbent assay (ELISA) was chosen to evaluate the efficacy of heterologous anticrotalic serum produced by Instituto Butantan (Brazil) in recognizing the twenty-two Crotalus durissus collilineatus venoms and the pool of them. Moreover, the venom pool was fractionated using reversed-phase fast protein liquid chromatography (RP-FPLC) and the obtained fractions were analyzed concerning antivenom recognition. RESULTS Evaluation of venom variability by ELISA showed that all venom samples were recognized by the Brazilian anticrotalic antivenom. However, some particular venom fractions were poorly recognized. CONCLUSION This study demonstrated that the Brazilian anticrotalic serum recognizes all the different twenty-two venoms of C. d. collilineatus and their fractions, although in a quantitatively different way, which may impact the effectiveness of the antivenom therapy. These results confirm the need to use a pool of venoms with the greatest possible variability in the preparation of antivenoms, in order to improve their effectiveness.
Collapse
Affiliation(s)
- Isadora Sousa de Oliveira
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | | | - Suely Vilela Sampaio
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Eliane Candiani Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| |
Collapse
|
35
|
Tan KY, Liew JL, Tan NH, Quah ESH, Ismail AK, Tan CH. Unlocking the secrets of banded coral snake (Calliophis intestinalis, Malaysia): A venom with proteome novelty, low toxicity and distinct antigenicity. J Proteomics 2018; 192:246-257. [PMID: 30243938 DOI: 10.1016/j.jprot.2018.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/27/2018] [Accepted: 09/17/2018] [Indexed: 11/15/2022]
Abstract
The Asiatic coral snakes are basal in the phylogeny of coral snakes. Although envenoming by the Asiatic coral snakes is rarely fatal, little is known about their venom properties and variability from the American coral snakes. Integrating reverse-phase high performance liquid chromatography and nano-liquid chromatography-tandem mass spectrometry, we showed that the venom proteome of the Malaysian banded or striped coral snake (Calliophis intestinalis) was composed of mainly phospholipases A2 (PLA2, 43.4%) and three-finger toxins (3FTx, 20.1%). Within 3FTx, the cytotoxins or cardiotoxins (CTX) dominated while the neurotoxins' content was much lower. Its subproteomic details contrasted with the 3FTx profile of most Micrurus sp., illustrating a unique dichotomy of venom phenotype between the Old and the New World coral snakes. Calliophis intestinalis venom proteome was correlated with measured enzymatic activities, and in vivo it was myotoxic but non-lethal to mice, frogs and geckos at high doses (5-10 μg/g). The venom contains species-specific toxins with distinct sequences and antigenicity, and the antibodies raised against PLA2 and CTX of other elapids showed poor binding toward its venom antigens. The unique venom proteome of C. intestinalis unveiled a repertoire of novel toxins, and the toxicity test supported the need for post-bite monitoring of myotoxic complication. SIGNIFICANCE: Malaysian banded or striped coral snake (Calliophis intestinalis) has a cytotoxin (CTX)-predominating venom proteome, a characteristic shared by its congener, the Malayan blue coral snake (Calliophis bivirgata). With little neurotoxins (NTX), it illustrates a CTX/NTX dichotomy of venom phenotype between the Old World and the New World coral snakes. The low toxicity of the venom imply that C. intestinalis bite envenoming can be managed via symptomatic relief of the mild to moderate pain with appropriate analgesia. Systemically, the serum creatine kinase level of patients should be monitored serially for potential complication of myotoxicity. The distinct antigenicity of the venom proteins implies that the empirical use of heterologous antivenom is mostly inappropriate and not recommended.
Collapse
Affiliation(s)
- Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jia Lee Liew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Evan S H Quah
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Ahmad Khaldun Ismail
- Department of Emergency Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
36
|
Preclinical assessment of the neutralizing efficacy of snake antivenoms in Latin America and the Caribbean: A review. Toxicon 2018; 146:138-150. [DOI: 10.1016/j.toxicon.2018.02.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/28/2018] [Indexed: 11/19/2022]
|
37
|
Ancient Diversification of Three-Finger Toxins in Micrurus Coral Snakes. J Mol Evol 2018; 86:58-67. [PMID: 29379986 DOI: 10.1007/s00239-017-9825-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/18/2017] [Indexed: 01/03/2023]
Abstract
Coral snakes, most notably the genus Micrurus, are the only terrestrial elapid snakes in the Americas. Elapid venoms are generally known for their potent neurotoxicity which is usually caused by Three-Finger Toxin (3FTx) proteins. These toxins can have a wide array of functions that have been characterized from the venom of other elapids. We examined publicly available sequences from Micrurus 3FTx to show that they belong to 8 monophyletic clades that diverged as deep in the 3FTx phylogenetic tree as the other clades with characterized functions. Functional residues from previously characterized clades of 3FTx are not well conserved in most of the Micrurus toxin clades. We also analyzed the patterns of selection on these toxins and find that they have been diversifying at different rates, with some having undergone extreme diversifying selection. This suggests that Micrurus 3FTx may contain a previously underappreciated functional diversity that has implications for the clinical outcomes of bite victims, the evolution and ecology of the genus, as well as the potential for biodiscovery efforts focusing on these toxins.
Collapse
|
38
|
Fernández ML, Quartino PY, Arce-Bejarano R, Fernández J, Camacho LF, Gutiérrez JM, Kuemmel D, Fidelio G, Lomonte B. Intravascular hemolysis induced by phospholipases A 2 from the venom of the Eastern coral snake, Micrurus fulvius: Functional profiles of hemolytic and non-hemolytic isoforms. Toxicol Lett 2017; 286:39-47. [PMID: 29197624 DOI: 10.1016/j.toxlet.2017.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/10/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
A unique feature of the venom of Micrurus fulvius (Eastern coral snake) is its ability to induce severe intravascular hemolysis in particular species, such as dogs or mice. This effect was previously shown to be induced by distinct phospholipase A2 (PLA2) isoforms which cause direct hemolysis in vitro, an uncommon finding for such enzymes. The functional profiles of PLA2-17, a direct hemolytic enzyme, and PLA2-12, a co-existing venom isoform lacking such effect, were compared. The enzymes differed not only in their ability to cause intravascular hemolysis: PLA2-17 additionally displayed lethal, myotoxic, and anticoagulant actions, whereas PLA2-12 lacked these effects. PLA2-12 was much more active in hydrolyzing a monodisperse synthetic substrate than PLA2-17, but the catalytic activity of latter was notably higher on a micellar substrate, or towards pure phospholipid artificial monolayers under controlled lateral pressures. Interestingly, PLA2-17 could hydrolyze substrate at a pressure of 20 mN m-1, in contrast to PLA2-12 or the non-toxic pancreatic PLA2. This suggests important differences in the monolayer penetrating power, which could be related to differences in toxicity. Comparative examination of primary structures and predicted three-dimensional folding of PLA2-12 and PLA2-17, revealed that differences concentrate in their N-terminal and central regions, leading to variations of the surface properties at the membrane interacting interface. PLA2-17 presents a less basic interfacial surface than PLA2-12, but more bulky aromatic residues, which could be associated to its higher membrane-penetrating strength. Altogether, these structural and functional comparative observations suggest that the ability of PLA2s to penetrate substrate interfaces could be a major determinant of toxicity, perhaps more important than protein surface charge.
Collapse
Affiliation(s)
- María Laura Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José 11501, Costa Rica
| | - Pablo Yunes Quartino
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Ruth Arce-Bejarano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José 11501, Costa Rica
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José 11501, Costa Rica
| | - Luis F Camacho
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José 11501, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José 11501, Costa Rica
| | - Daniel Kuemmel
- Biology and Chemistry Department, University of Osnabrueck, Osnabrueck, Germany
| | - Gerardo Fidelio
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José 11501, Costa Rica.
| |
Collapse
|
39
|
A Review and Database of Snake Venom Proteomes. Toxins (Basel) 2017; 9:toxins9090290. [PMID: 28927001 PMCID: PMC5618223 DOI: 10.3390/toxins9090290] [Citation(s) in RCA: 396] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Advances in the last decade combining transcriptomics with established proteomics methods have made possible rapid identification and quantification of protein families in snake venoms. Although over 100 studies have been published, the value of this information is increased when it is collated, allowing rapid assimilation and evaluation of evolutionary trends, geographical variation, and possible medical implications. This review brings together all compositional studies of snake venom proteomes published in the last decade. Compositional studies were identified for 132 snake species: 42 from 360 (12%) Elapidae (elapids), 20 from 101 (20%) Viperinae (true vipers), 65 from 239 (27%) Crotalinae (pit vipers), and five species of non-front-fanged snakes. Approximately 90% of their total venom composition consisted of eight protein families for elapids, 11 protein families for viperines and ten protein families for crotalines. There were four dominant protein families: phospholipase A2s (the most common across all front-fanged snakes), metalloproteases, serine proteases and three-finger toxins. There were six secondary protein families: cysteine-rich secretory proteins, l-amino acid oxidases, kunitz peptides, C-type lectins/snaclecs, disintegrins and natriuretic peptides. Elapid venoms contained mostly three-finger toxins and phospholipase A2s and viper venoms metalloproteases, phospholipase A2s and serine proteases. Although 63 protein families were identified, more than half were present in <5% of snake species studied and always in low abundance. The importance of these minor component proteins remains unknown.
Collapse
|
40
|
Yang DC, Dobson J, Cochran C, Dashevsky D, Arbuckle K, Benard M, Boyer L, Alagón A, Hendrikx I, Hodgson WC, Fry BG. The Bold and the Beautiful: a Neurotoxicity Comparison of New World Coral Snakes in the Micruroides and Micrurus Genera and Relative Neutralization by Antivenom. Neurotox Res 2017; 32:487-495. [DOI: 10.1007/s12640-017-9771-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/29/2017] [Accepted: 06/13/2017] [Indexed: 11/30/2022]
|
41
|
Rey-Suárez P, Núñez V, Saldarriaga-Córdoba M, Lomonte B. Primary structures and partial toxicological characterization of two phospholipases A 2 from Micrurus mipartitus and Micrurus dumerilii coral snake venoms. Biochimie 2017; 137:88-98. [DOI: 10.1016/j.biochi.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/13/2017] [Indexed: 10/20/2022]
|
42
|
Lomonte B, Calvete JJ. Strategies in 'snake venomics' aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. J Venom Anim Toxins Incl Trop Dis 2017; 23:26. [PMID: 28465677 PMCID: PMC5408369 DOI: 10.1186/s40409-017-0117-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
This work offers a general overview on the evolving strategies for the proteomic analysis of snake venoms, and discusses how these may be combined through diverse experimental approaches with the goal of achieving a more comprehensive knowledge on the compositional, toxic, and immunological characteristics of venoms. Some recent developments in this field are summarized, highlighting how strategies have evolved from the mere cataloguing of venom components (proteomics/venomics), to a broader exploration of their immunological (antivenomics) and functional (toxicovenomics) characteristics. Altogether, the combination of these complementary strategies is helping to build a wider, more integrative view of the life-threatening protein cocktails produced by venomous snakes, responsible for thousands of deaths every year.
Collapse
Affiliation(s)
- Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501 Costa Rica
| | - Juan J Calvete
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| |
Collapse
|
43
|
Boldrini-França J, Cologna CT, Pucca MB, Bordon KDCF, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cerni FA, Pinheiro-Junior EL, Shibao PYT, Ferreira IG, de Oliveira IS, Cardoso IA, Arantes EC. Minor snake venom proteins: Structure, function and potential applications. Biochim Biophys Acta Gen Subj 2017; 1861:824-838. [DOI: 10.1016/j.bbagen.2016.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
|
44
|
Laustsen AH, Engmark M, Clouser C, Timberlake S, Vigneault F, Gutiérrez JM, Lomonte B. Exploration of immunoglobulin transcriptomes from mice immunized with three-finger toxins and phospholipases A 2 from the Central American coral snake, Micrurus nigrocinctus. PeerJ 2017; 5:e2924. [PMID: 28149694 PMCID: PMC5267563 DOI: 10.7717/peerj.2924] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/19/2016] [Indexed: 11/20/2022] Open
Abstract
Snakebite envenomings represent a neglected public health issue in many parts of the rural tropical world. Animal-derived antivenoms have existed for more than a hundred years and are effective in neutralizing snake venom toxins when timely administered. However, the low immunogenicity of many small but potent snake venom toxins represents a challenge for obtaining a balanced immune response against the medically relevant components of the venom. Here, we employ high-throughput sequencing of the immunoglobulin (Ig) transcriptome of mice immunized with a three-finger toxin and a phospholipase A2 from the venom of the Central American coral snake, Micrurus nigrocinctus. Although exploratory in nature, our indicate results showed that only low frequencies of mRNA encoding IgG isotypes, the most relevant isotype for therapeutic purposes, were present in splenocytes of five mice immunized with 6 doses of the two types of toxins over 90 days. Furthermore, analysis of Ig heavy chain transcripts showed that no particular combination of variable (V) and joining (J) gene segments had been selected in the immunization process, as would be expected after a strong humoral immune response to a single antigen. Combined with the titration of toxin-specific antibodies in the sera of immunized mice, these data support the low immunogenicity of three-finger toxins and phospholipases A2found in M. nigrocinctusvenoms, and highlight the need for future studies analyzing the complexity of antibody responses to toxins at the molecular level.
Collapse
Affiliation(s)
- Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark , Kgs. Lyngby , Denmark
| | - Mikael Engmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark; Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Christopher Clouser
- Juno Therapeutics, Seattle, WA, United States of America; AbVitro, Boston, MA, United States of America
| | | | - Francois Vigneault
- Juno Therapeutics, Seattle, WA, United States of America; AbVitro, Boston, MA, United States of America
| | | | - Bruno Lomonte
- Instituto Clodomiro Picado, Universidad de Costa Rica , San José , Costa Rica
| |
Collapse
|
45
|
Lomonte B, Rey-Suárez P, Fernández J, Sasa M, Pla D, Vargas N, Bénard-Valle M, Sanz L, Corrêa-Netto C, Núñez V, Alape-Girón A, Alagón A, Gutiérrez JM, Calvete JJ. Venoms of Micrurus coral snakes: Evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon 2016; 122:7-25. [DOI: 10.1016/j.toxicon.2016.09.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/04/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
|
46
|
Lewin M, Samuel S, Merkel J, Bickler P. Varespladib (LY315920) Appears to Be a Potent, Broad-Spectrum, Inhibitor of Snake Venom Phospholipase A2 and a Possible Pre-Referral Treatment for Envenomation. Toxins (Basel) 2016; 8:toxins8090248. [PMID: 27571102 PMCID: PMC5037474 DOI: 10.3390/toxins8090248] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 01/07/2023] Open
Abstract
Snakebite remains a neglected medical problem of the developing world with up to 125,000 deaths each year despite more than a century of calls to improve snakebite prevention and care. An estimated 75% of fatalities from snakebite occur outside the hospital setting. Because phospholipase A2 (PLA2) activity is an important component of venom toxicity, we sought candidate PLA2 inhibitors by directly testing drugs. Surprisingly, varespladib and its orally bioavailable prodrug, methyl-varespladib showed high-level secretory PLA2 (sPLA2) inhibition at nanomolar and picomolar concentrations against 28 medically important snake venoms from six continents. In vivo proof-of-concept studies with varespladib had striking survival benefit against lethal doses of Micrurus fulvius and Vipera berus venom, and suppressed venom-induced sPLA2 activity in rats challenged with 100% lethal doses of M. fulvius venom. Rapid development and deployment of a broad-spectrum PLA2 inhibitor alone or in combination with other small molecule inhibitors of snake toxins (e.g., metalloproteases) could fill the critical therapeutic gap spanning pre-referral and hospital setting. Lower barriers for clinical testing of safety tested, repurposed small molecule therapeutics are a potentially economical and effective path forward to fill the pre-referral gap in the setting of snakebite.
Collapse
Affiliation(s)
- Matthew Lewin
- Research and Development, Ophirex, Inc., Corte Madera, CA 94925, USA.
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA.
| | - Stephen Samuel
- General Medicine, Queen Elizabeth Hospital, King's Lynn, Norfolk PE30 4ET, UK.
| | - Janie Merkel
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516, USA.
| | - Philip Bickler
- Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
47
|
Venomic Analysis of the Poorly Studied Desert Coral Snake, Micrurus tschudii tschudii, Supports the 3FTx/PLA₂ Dichotomy across Micrurus Venoms. Toxins (Basel) 2016; 8:toxins8060178. [PMID: 27338473 PMCID: PMC4926144 DOI: 10.3390/toxins8060178] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/17/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022] Open
Abstract
The venom proteome of the poorly studied desert coral snake Micrurus tschudii tschudii was unveiled using a venomic approach, which identified ≥38 proteins belonging to only four snake venom protein families. The three-finger toxins (3FTxs) constitute, both in number of isoforms (~30) and total abundance (93.6% of the venom proteome), the major protein family of the desert coral snake venom. Phospholipases A2 (PLA2s; seven isoforms, 4.1% of the venom proteome), 1–3 Kunitz-type proteins (1.6%), and 1–2 l-amino acid oxidases (LAO, 0.7%) complete the toxin arsenal of M. t. tschudii. Our results add to the growing evidence that the occurrence of two divergent venom phenotypes, i.e., 3FTx- and PLA2-predominant venom proteomes, may constitute a general trend across the cladogenesis of Micrurus. The occurrence of a similar pattern of venom phenotypic variability among true sea snake (Hydrophiinae) venoms suggests that the 3FTx/PLA2 dichotomy may be widely distributed among Elapidae venoms.
Collapse
|
48
|
Venom of the Coral Snake Micrurus clarki: Proteomic Profile, Toxicity, Immunological Cross-Neutralization, and Characterization of a Three-Finger Toxin. Toxins (Basel) 2016; 8:toxins8050138. [PMID: 27164141 PMCID: PMC4885053 DOI: 10.3390/toxins8050138] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 04/25/2016] [Accepted: 05/02/2016] [Indexed: 11/16/2022] Open
Abstract
Micrurus clarki is an uncommon coral snake distributed from the Southeastern Pacific of Costa Rica to Western Colombia, for which no information on its venom could be found in the literature. Using a ‘venomics’ approach, proteins of at least nine families were identified, with a moderate predominance of three-finger toxins (3FTx; 48.2%) over phospholipase A2 (PLA2; 36.5%). Comparison of this venom profile with those of other Micrurus species suggests that it may represent a more balanced, ‘intermediate’ type within the dichotomy between 3FTx- and PLA2-predominant venoms. M. clarki venom was strongly cross-recognized and, accordingly, efficiently neutralized by an equine therapeutic antivenom against M. nigrocinctus, revealing their high antigenic similarity. Lethal activity for mice could be reproduced by a PLA2 venom fraction, but, unexpectedly, not by fractions corresponding to 3FTxs. The most abundant venom component, hereby named clarkitoxin-I, was identified as a short-chain (type I) 3FTx, devoid of lethal effect in mice, whose target remains to be defined. Its amino acid sequence of 66 residues shows high similarity with predicted sequences of venom gland transcripts described for M. fulvius, M. browni, and M. diastema.
Collapse
|