1
|
Bruschi G, Sbrollini A, Pecci F, Cognigni V, Paoloni F, Galassi T, Cantini L, Morettini M, Berardi R, Burattini L. Feature Engineering Assessment of Tumor Infiltrating Lymphocytes in Lung Adenocarcinoma. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039199 DOI: 10.1109/embc53108.2024.10782758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Tumor-Infiltrating Lymphocytes (TIL) are emerging as immunotherapy prognostic markers. Currently, TIL are assessed on hematoxylin and eosin (H&E)-stained slides of tumor tissue by pathologists. This approach is time-consuming, and subjected to inter-observer variability. The aim of this study is to propose a machine learning-based algorithm, called Feature Engineering TIL Assessment (FTA), for the automatic TIL assessment by using adenocarcinoma metadata (i.e., anamnestic, clinical and pathological data). The algorithm is an Elastic Net, tuned by Bayesian Optimization and validated by Leave-One-Subject-Out cross validation. Obtained coefficients were used for feature ranking. Results confirms the goodness of performance of FTA, with an overall Mean Absolute Error of 2.1%, Concordance Correlation Coefficient equal to 0.71 and difference in the Bland- Altman plot equal to -0.001. The obtained feature ranking revealed the key role of gender, as confirmed by the clinical literature. In conclusion, FTA is the first image-independent automatic TIL assessment procedure, having the potential to address challenges associated with inter-observer variability and the time-consuming nature of classical procedures.
Collapse
|
2
|
Wang X, Yuan Z, Li Z, He X, Zhang Y, Wang X, Su J, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Shen J, Yi T, Xiao Z. Key oncogenic signaling pathways affecting tumor-infiltrating lymphocytes infiltration in hepatocellular carcinoma: basic principles and recent advances. Front Immunol 2024; 15:1354313. [PMID: 38426090 PMCID: PMC10902128 DOI: 10.3389/fimmu.2024.1354313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) ranks first among primary liver cancers, and its mortality rate exhibits a consistent annual increase. The treatment of HCC has witnessed a significant surge in recent years, with the emergence of targeted immune therapy as an adjunct to early surgical resection. Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) has shown promising results in other types of solid tumors. This article aims to provide a comprehensive overview of the intricate interactions between different types of TILs and their impact on HCC, elucidate strategies for targeting neoantigens through TILs, and address the challenges encountered in TIL therapies along with potential solutions. Furthermore, this article specifically examines the impact of oncogenic signaling pathways activation within the HCC tumor microenvironment on the infiltration dynamics of TILs. Additionally, a concise overview is provided regarding TIL preparation techniques and an update on clinical trials investigating TIL-based immunotherapy in solid tumors.
Collapse
Affiliation(s)
- Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhengbo Li
- Department of Laboratory Medicine, The Longmatan District People’s Hospital, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Dai Y, Ma S, Zhu Y, Gontcharov AA, Liu Y, Wang Q. Immunomodulatory Effect of Flammulina rossica Fermentation Extract on Healthy and Immunosuppressed Mice. Molecules 2023; 28:5825. [PMID: 37570797 PMCID: PMC10421243 DOI: 10.3390/molecules28155825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Flammulina rossica fermentation extract (FREP) was obtained by ethanol precipitation of the fermentation broth. The molecular weight of FREP is 28.52 kDa, and it mainly contains active ingredients such as polysaccharides, proteins, reducing sugars, and 16 amino acids. Among them, the polysaccharides were mannose, glucose, galactose, arabinose, and fucose and possessed β-glycosidic bonds. Furthermore, the immunoregulatory activities of FREP were investigated in vivo. The results demonstrated that FREP could increase the counts of CD4+ T lymphocytes and the ratio of CD4+/CD8+ in a dose-dependent manner in healthy mice. In addition, FREP significantly increased serum cytokines, including IL-2, IL-8, IL-10, IL-12, IL-6, IL-1β, INF-γ, C-rection protein, and TNF-α, and promoted splenocyte proliferation in healthy mice. Finally, FREP could restore the counts of white blood cells, red blood cells, secretory immunoglobulin A, and antibody-forming cells and significantly promote the serum haemolysin level in mice treated with cyclophosphamide. The findings indicated that FREP possessed immunoregulatory activity in healthy mice and could improve the immune functions in immunosuppressive mice. Therefore, FREP could be exploited as an immunomodulatory agent and potential immunotherapeutic medicine for patients with inadequate immune function.
Collapse
Affiliation(s)
- Yingdi Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (S.M.); (Y.Z.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Sijia Ma
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (S.M.); (Y.Z.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Yanyan Zhu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (S.M.); (Y.Z.)
| | - Andrey A. Gontcharov
- Institute of Biology and Soil Science, FEB RAS, 100-Letia Vladivostoka Prospect, 159, Vladivostok 690022, Russia;
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (S.M.); (Y.Z.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (S.M.); (Y.Z.)
| |
Collapse
|
4
|
Nguyen HT, Luong BA, Tran DH, Nguyen TH, Ngo QD, Le LGH, Ho QC, Nguyen HHT, Nguyen CM, Tran VU, Pham TVN, Le MT, Le NAT, Le TK, Nguyen TL, Pham HAT, Le HT, Duong HDT, Hoang AV, Nguyen HB, Truong Dinh K, Phan MD, Nguyen HN, Do TTT, Giang H, Tran LS, Tran DT. Ultra-Deep Sequencing of Plasma-Circulating DNA for the Detection of Tumor- Derived Mutations in Patients with Nonmetastatic Colorectal Cancer. Cancer Invest 2021; 40:354-365. [PMID: 34894952 DOI: 10.1080/07357907.2021.2017951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Identification of tumor-derived mutation (TDM) in liquid biopsies (LB), especially in early-stage patients, faces several challenges, including low variant-allele frequencies, interference by white blood cell (WBC)-derived mutations (WDM), benign somatic mutations and tumor heterogeneity. Here, we addressed the above-mentioned challenges in a cohort of 50 nonmetastatic colorectal cancer patients, via a workflow involving parallel sequencing of paired WBC- and tumor-gDNA. After excluding potential false positive mutations, we detected at least one TDM in LB of 56% (28/50) of patients, with the majority showing low-patient coverage, except for one TDM mapped to KMT2D that recurred in 30% (15/30) of patients.
Collapse
Affiliation(s)
| | - Bac An Luong
- University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Duc-Huy Tran
- University Medical Center, Ho Chi Minh City, Vietnam
| | | | - Quoc Dat Ngo
- University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | | | - Quoc Chuong Ho
- University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | | | | | - Vu Uyen Tran
- Medical Genetics Institute, Ho Chi Minh City, Vietnam
| | | | - Minh Triet Le
- University Medical Center, Ho Chi Minh City, Vietnam
| | | | - Trung Kien Le
- University Medical Center, Ho Chi Minh City, Vietnam
| | | | | | - Hong Thuy Le
- University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | | | - Anh Vu Hoang
- University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | | | | | - Minh-Duy Phan
- Medical Genetics Institute, Ho Chi Minh City, Vietnam
| | | | | | - Hoa Giang
- Medical Genetics Institute, Ho Chi Minh City, Vietnam
| | - Le Son Tran
- Medical Genetics Institute, Ho Chi Minh City, Vietnam
| | - Diep Tuan Tran
- University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Dong XD, Liu YN, Zhao Y, Liu AJ, Ji HY, Yu J. Structural characterization of a water-soluble polysaccharide from Angelica dahurica and its antitumor activity in H22 tumor-bearing mice. Int J Biol Macromol 2021; 193:219-227. [PMID: 34688677 DOI: 10.1016/j.ijbiomac.2021.10.110] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/20/2021] [Accepted: 10/16/2021] [Indexed: 01/16/2023]
Abstract
A novel Angelica dahurica polysaccharide (ADP) with Mw of 6.09 × 103 Da was isolated. The contents of total sugar and uronic acid in ADP were 91.04% and 12.69%. The structure characteristics indicated that ADP was an acidic polysaccharide consisting of rhamnose, arabinose, galactose, glucose, mannose, glucuronic acid and galacturonic acid (0.09: 0.61: 1.88: 1: 0.14: 0.63: 0.03). Moreover, there were →3)-Manp-(1→, →4, 6)-Galp-(1→, →4)-Galp-(1→, →3)-Glcp-(1→, →5)-Araf-(1→, →2)-Galp-(1→ in ADP with relative molar ratios of 0.32:0.57:0.29:0.95:0.71:0.26. In vivo experiments suggested that ADP significantly inhibited the tumor growth of mice, increased the activities of spleen lymphocytes and natural killer (NK) cells, improved the cytokine level (IL-2 and TNF-α) and the proportions of lymphocyte subsets in the peripheral blood. The tumor cell progression was arrested in the G1 phase, and the apoptosis rate of tumor cells were 7.54% and 19.32% at the dose of 100 and 200 mg/kg, which was consistent with the results of pathological observation. In summary, the study might provide a theoretical basis for the application on functional foods containing Angelica dahurica polysaccharides.
Collapse
Affiliation(s)
- Xiao-Dan Dong
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Yi-Ning Liu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Yan Zhao
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - An-Jun Liu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hai-Yu Ji
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Juan Yu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
6
|
Zuo T, Fang T, Zhang J, Yang J, Xu R, Wang Z, Deng H, Shen Q. pH-Sensitive Molecular-Switch-Containing Polymer Nanoparticle for Breast Cancer Therapy with Ferritinophagy-Cascade Ferroptosis and Tumor Immune Activation. Adv Healthc Mater 2021; 10:e2100683. [PMID: 34535975 DOI: 10.1002/adhm.202100683] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Indexed: 12/30/2022]
Abstract
Ferritin internalized into tumor cells is degraded and releases iron ions via ferritinophagy. Iron ions participate in Fenton reaction to produce reactive oxygen species for lipid peroxidation and ferroptosis. Inhibition of indoleamine-2,3-dioxygenase (IDO) decreases tryptophan elimination to induce T cells activation for tumor immunosuppression relief. The active tumor targeting nanoparticles containing ferritin and a pH-sensitive molecular-switch (FPBC@SN) are developed to utilize ferritinophagy-cascade ferroptosis and tumor immunity activation for cancer therapy. FPBC@SN disintegrates in acidic cytoplasm and releases sorafenib (SRF) and IDO inhibitor (NLG919). SRF upregulates nuclear receptor coactivator 4 (NCOA4) to induce ferritin and endogenous iron pool degradation by ferritinophagy, then obtained iron ions participate in the Fenton reaction to produce lipid peroxide (LPO). Meanwhile, SRF blocks glutathione synthesis to downregulate glutathione peroxidase 4 (GPX4) which can scavenge LPO as a different pathway from ferritinophagy to promote ferroptosis in tumor cells. NLG919 inhibits IDO to reduce tryptophan metabolism, so immunity in tumors is aroused to anti-tumor. In vitro and in vivo experiments prove FPBC@SN inhibits tumor cell growth and metastasis, indicating the potential of FPBC@SN for breast cancer therapy based on the combination of ferritinophagy-cascade ferroptosis and tumor immunity activation.
Collapse
Affiliation(s)
- Tiantian Zuo
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Tianxu Fang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jun Zhang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jie Yang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Rui Xu
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhihua Wang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Huizi Deng
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Qi Shen
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
7
|
Zhou W, Zhou Y, Yi C, Shu X, Wei G, Chen X, Shen X, Qiu M. Case Report: Immune and Genomic Characteristics Associated With Hyperprogression in a Patient With Metastatic Deficient Mismatch Repair Gastrointestinal Cancer Treated With Anti-PD-1 Antibody. Front Immunol 2021; 12:749204. [PMID: 34659249 PMCID: PMC8511698 DOI: 10.3389/fimmu.2021.749204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023] Open
Abstract
Microsatellite instability-high/deficient mismatch repair (MSI-H/dMMR) status of tumors is a distinct predictive biomarker of immune checkpoint inhibitors (ICIs) for colorectal and non-colorectal cancer populations. The overall response rate (ORR) varies from approximately 40% to 60%, indicating that nearly half of MSI-H tumors do not respond to ICIs. The mechanism of response heterogeneity in MSI-H/dMMR cancers is unclear. Some patients who have been treated with ICIs have developed a novel pattern of progression called hyperprogression, which is defined as unexpected accelerated tumor growth. No case of MSI-H/dMMR immunotherapy-associated hyperprogression has been reported in the literature. Here, we present the case of a patient with dMMR gastrointestinal cancer who suffered hyperprogressive disease (HPD) after treatment with nivolumab. We explored the potential mechanisms of HPD by clinical, immune, and genomic characteristics. Extremely high levels of serum LDH, low TMB and TILs, and the disruption of TGFβ signaling, may be related to hyperprogression.
Collapse
Affiliation(s)
- Wenyue Zhou
- Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuwen Zhou
- Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Yi
- Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyao Shu
- Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Guixia Wei
- Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaorong Chen
- Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xudong Shen
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Meng Qiu
- Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Abdel-Hamid NM, Abass SA. Matrix metalloproteinase contribution in management of cancer proliferation, metastasis and drug targeting. Mol Biol Rep 2021; 48:6525-6538. [PMID: 34379286 DOI: 10.1007/s11033-021-06635-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinases (MMPs) or matrixins, are members of a zinc-dependent endopeptidase family. They cause remodeling of the extracellular matrix (ECM) leading to numerous diseases. MMPs subfamilies possess: collagenases, gelatinases, stromelysins and membrane-type MMPs (MT-MMP). They consist of several domains; pro-peptide, catalytic, linker peptide and the hemopexin (Hpx) domains. MMPs are involved in initiation, proliferation and metastasis of cancer through the breakdown of ECM physical barriers. Overexpression of MMPs is associated with poor prognosis of cancer. This review will discuss both types of MMPs and current inhibitors, which target them in different aspects, including, biosynthesis, activation, secretion and catalytic activity. Several synthetic and natural inhibitors of MMPs (MMPIs) that can bind the catalytic domain of MMPs have been designed including; peptidomimetic, non-peptidomimetic, tetracycline derivatives, off-target MMPI, natural products, microRNAs and monoclonal antibodies.
Collapse
Affiliation(s)
- Nabil M Abdel-Hamid
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Shimaa A Abass
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
9
|
Analysis of Acanthopanax giraldii Harms Polysaccharide II Composition and Its Immune-Protective Role in a Cyclophosphamide-Induced Immunosuppressive Mice Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3387396. [PMID: 34373697 PMCID: PMC8349253 DOI: 10.1155/2021/3387396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
Acanthopanax giraldii Harms is commonly used in traditional Chinese medicine to treat rheumatism, improve joints, and strengthen muscles and bones. The polysaccharides present in A. giraldii Harms contain major bioactive substances, which have antioxidant, anticancer, and antiviral activities. In this study, the structural characterization of the homogeneous polysaccharide isolated from A. giraldii Harms, known as AHP-II, and its immunomodulatory effects in vivo will be studied. High-performance ion chromatography (HPIC) and high-performance gel permeation chromatography (HPGPC) based analyses revealed that AHP-II was composed of various monosaccharides, which included rhamnose, arabinose, galactose, glucose, mannose, galacturonic acid, and glucuronic acid in molar ratios of 29.5 : 24.6 : 23.8 : 4.4 : 5.7 : 8.8 : 3.1, respectively, and had a collective molecular weight of 80.21 × 103 Da. Fourier-transform infrared (FTIR) spectroscopy indicated the presence of a pyranose ring and β-type glycosidic linkages in AHP-II. In addition, immunomodulatory effect analyses of AHP-II that used a cyclophosphamide-induced immunosuppressive mouse model demonstrated that its treatment could significantly restore spleen and thymus indices, promote the proliferation of splenic lymphocytes, elevate CD4+ T lymphocyte percentage and CD4+ : CD8+ ratio in the spleen, promote macrophage phagocytosis, and restore cytokines (IL-6, TNF-α, IgM, and IgG) levels. These results suggested that AHP-II could potentially be used as natural immunomodulator and as an alternative treatment to reduce chemotherapy-induced immunosuppression.
Collapse
|
10
|
Zhou C, Duan D, Liu S. Predictive Value of a Prognostic Model Based on Lymphocyte-to-Monocyte Ratio Before Radioiodine Therapy for Recurrence of Papillary Thyroid Carcinoma. Technol Cancer Res Treat 2021; 20:15330338211027910. [PMID: 34191658 PMCID: PMC8252333 DOI: 10.1177/15330338211027910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the predictive value of a prognostic model based on the lymphocyte-to-monocyte ratio (LMR) before radioiodine treatment for the recurrence of papillary thyroid carcinoma (PTC). METHODS Clinicopathological data of 441 patients with papillary thyroid cancer were collected retrospectively. The Receiver operating characteristic (ROC) was used to determine the optimal cut-off value for predicting PTC recurrence by LMR before radioiodine treatment. Recurrence was the endpoint of the study, and survival was estimated by the Kaplan-Meier method, and any differences in survival were evaluated with a stratified log-rank test. Univariate and multifactorial analyses were performed using Cox proportional-hazards models to identify risk factors associated with PTC recurrence. RESULTS The ROC curve showed that the best cut-off value of LMR before radioiodine treatment to predict recurrence in patients with PTC was 6.61, with a sensitivity of 54.1%, a specificity of 73%, and an area under the curve of 0.628. The recurrence rate was significantly higher in the low LMR group (16%) than in the high LMR group (5%) (P = 0.001, χ2 = 12.005). Multifactorial analysis showed that LMR < 6.61 (P = 0.006; HR = 2.508) and risk stratification (high risk) (P = 0.000; HR = 5.076) before radioiodine treatment were independent risk factors predicting recurrence in patients with PTC. Patients with preoperative LMR < 6.61 and high risk stratification had the lowest recurrence-free survival rate and the shortest recurrence-free survival time. CONCLUSIONS The LMR-based prognostic model before radioactive iodine treatment is valuable for early prediction of PTC recurrence and it can be used in clinical practice as a supplement to risk stratification and applied in combination to help screen out patients with poorer prognosis early.
Collapse
Affiliation(s)
- Chunyan Zhou
- Department of Nuclear Medicine, Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Dong Duan
- Department of Nuclear Medicine, Chongqing General Hospital (Chongqing Hospital, University of Chinese Academy of Sciences), Liangjiang New Area, Chongqing, China
| | - Shuang Liu
- Department of Nuclear Medicine, Chongqing Medical University, Yuzhong District, Chongqing, China
| |
Collapse
|
11
|
Granito A, Muratori L, Lalanne C, Quarneti C, Ferri S, Guidi M, Lenzi M, Muratori P. Hepatocellular carcinoma in viral and autoimmune liver diseases: Role of CD4+ CD25+ Foxp3+ regulatory T cells in the immune microenvironment. World J Gastroenterol 2021; 27:2994-3009. [PMID: 34168403 PMCID: PMC8192285 DOI: 10.3748/wjg.v27.i22.2994] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/09/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
More than 90% of cases of hepatocellular carcinoma (HCC) occurs in patients with cirrhosis, of which hepatitis B virus and hepatitis C virus are the leading causes, while the tumor less frequently arises in autoimmune liver diseases. Advances in understanding tumor immunity have led to a major shift in the treatment of HCC, with the emergence of immunotherapy where therapeutic agents are used to target immune cells rather than cancer cells. Regulatory T cells (Tregs) are the most abundant suppressive cells in the tumor microenvironment and their presence has been correlated with tumor progression, invasiveness, as well as metastasis. Tregs are characterized by the expression of the transcription factor Foxp3 and various mechanisms ranging from cell-to-cell contact to secretion of inhibitory molecules have been implicated in their function. Notably, Tregs amply express checkpoint molecules such as cytotoxic T lymphocyte-associated antigen 4 and programmed cell-death 1 receptor and therefore represent a direct target of immune checkpoint inhibitor (ICI) immunotherapy. Taking into consideration the critical role of Tregs in maintenance of immune homeostasis as well as avoidance of autoimmunity, it is plausible that targeting of Tregs by ICI immunotherapy results in the development of immune-related adverse events (irAEs). Since the use of ICI becomes common in oncology, with an increasing number of new ICI currently under clinical trials for cancer treatment, the occurrence of irAEs is expected to dramatically rise. Herein, we review the current literature focusing on the role of Tregs in HCC evolution taking into account their opposite etiological function in viral and autoimmune chronic liver disease, and we discuss their involvement in irAEs due to the new immunotherapies.
Collapse
Affiliation(s)
- Alessandro Granito
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna 40138, Italy
- Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Luigi Muratori
- Division of Internal Medicine and Immunorheumatology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, University of Bologna, Bologna 40138, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Claudine Lalanne
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, Bologna 40138, Italy
| | - Chiara Quarneti
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, Bologna 40138, Italy
| | - Silvia Ferri
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, Bologna 40138, Italy
| | - Marcello Guidi
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, Bologna 40138, Italy
| | - Marco Lenzi
- Division of Internal Medicine and Immunorheumatology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, University of Bologna, Bologna 40138, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Paolo Muratori
- Division of Internal Medicine, Morgagni-Pierantoni Hospital, Forlì 47100, Italy
- Department of Science for the Quality of Life, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
12
|
Singh D. Current updates and future perspectives on the management of renal cell carcinoma. Life Sci 2020; 264:118632. [PMID: 33115605 DOI: 10.1016/j.lfs.2020.118632] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
Renal cell carcinoma (RCC) refers to renal-epithelial cancer, which represents over 90% of kidney cancer and is a cause for cancer related deaths in the world. Studies suggested somatic VHL mutations to be the cause for the occurrence of cancer, but with the time, more latest genomic and biological studies have detected variation in epigenetic regulatory genes and showed significant heterogeneity of the intratumor that may lead to strategies of diagnostic, predictive, and therapeutic importance. Immune dysfunction is responsible for almost all types of renal cancer, and angiogenesis and immunosuppression function together in the tumor microenvironment of renal cell carcinoma (RCC). Over the past few years, advancement in the management of the RCC has finally revolutionized with the arrival of the entrapped immune inhibitors which particularly concentrated on the receptor (programmed cell death-1) and focus on the new generation receptor i.e. TKRI (tyrosine-kinase receptor inhibitors). The present review deals with the comprehensive review of RCC and emphasizes on its types, pathogenesis and advancement in these diseases. This review also overviews the role of innate and adaptive immune response-related mechanism, the function of cancer stem cell in this diseases, therapeutic targeted drugs and hormonal signaling pathways as an emerging strategy in the management of the renal cancer.
Collapse
Affiliation(s)
- Deepika Singh
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India.
| |
Collapse
|
13
|
Saha J, Sarkar D, Pramanik A, Mahanti K, Adhikary A, Bhattacharyya S. PGE2-HIF1α reciprocal induction regulates migration, phenotypic alteration and immunosuppressive capacity of macrophages in tumor microenvironment. Life Sci 2020; 253:117731. [PMID: 32353431 DOI: 10.1016/j.lfs.2020.117731] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/27/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Very little is known about the role inflammation and mechanism(s) that enables the tumor to evade host's anti-tumor immune function during very initial days of tumor establishment. Our study focuses on the immune response and local inflammation specially the pro-inflammatory and immune modifier components that are responsible for tumor-induced immune-suppression, tumor-associated macrophages (TAM) at tumor microenvironment in mouse model from very early to late phase of tumor progression. METHODS 1 × 105 Ascites tumor, EAC in Swiss albino or Sarcoma-180 (S-180) in Balb c mice strain were inoculated intra-peritonially and grouped into Control (0 day or no tumor), initial phase (3 day tumor), early (7 Day), Late (14 day) and terminal (21 day tumor) sets. T cell activity, tumor niche macrophage, inflammatory signatures were studied using Confocal microscopy, flowcytometry, ELISA, q-RT PCR and Western blot. RESULTS We observed increased T cell infiltration at a very early stage of tumorigenesis in the tumor site with elevated percentage of activated/memory T cells. But increased cellular death and functional suppression of tumor site T cells during final stages. We observed increased infiltration of TAMs with skewed M2 phenotype. Increased chemokine receptor expression could be noted on these TAMs. Using HIF-1α inhibitor and prostaglandin receptor antagonists we demonstrated crucial role of these factor in functional alteration in TAMs. HIF-1α inhibition and also by prostaglandin receptor inhibition reduced signature pro-inflammatory gene expression, migration of macrophages and T cell suppression capacity of TAMs. We also demonstrated that PGE2 can induce HIF-1α activation in relatively less hypoxic microenvironment during early stages of tumor. CONCLUSION Altogether, these findings strongly suggest link between prostaglandin mediated early HIF-1α activation and subsequent hypoxia induced HIF-1α activation that further enhances prostaglandin synthesis driving the recruitment and functional alteration of tumor site macrophages.
Collapse
Affiliation(s)
- Jayasree Saha
- Department of Zoology, Sidho Kanho Birsha University, Purulia, West Bengal, India
| | - Debanjan Sarkar
- Department of Zoology, Sidho Kanho Birsha University, Purulia, West Bengal, India
| | - Anik Pramanik
- Department of Zoology, Sidho Kanho Birsha University, Purulia, West Bengal, India
| | - Krishna Mahanti
- Department of Zoology, Sidho Kanho Birsha University, Purulia, West Bengal, India
| | - Arghya Adhikary
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Sankar Bhattacharyya
- Department of Zoology, Sidho Kanho Birsha University, Purulia, West Bengal, India.
| |
Collapse
|
14
|
Pinato DJ, Guerra N, Fessas P, Murphy R, Mineo T, Mauri FA, Mukherjee SK, Thursz M, Wong CN, Sharma R, Rimassa L. Immune-based therapies for hepatocellular carcinoma. Oncogene 2020; 39:3620-3637. [PMID: 32157213 PMCID: PMC7190571 DOI: 10.1038/s41388-020-1249-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third most frequent cause of cancer-related death. The immune-rich contexture of the HCC microenvironment makes this tumour an appealing target for immune-based therapies. Here, we discuss how the functional characteristics of the liver microenvironment can potentially be harnessed for the treatment of HCC. We will review the evidence supporting a therapeutic role for vaccines, cell-based therapies and immune-checkpoint inhibitors and discuss the potential for patient stratification in an attempt to overcome the series of failures that has characterised drug development in this disease area.
Collapse
Affiliation(s)
- David J Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK.
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK
| | - Petros Fessas
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | - Ravindhi Murphy
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | | | - Francesco A Mauri
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | - Sujit K Mukherjee
- Department of Metabolism, Digestion & Reproduction, Imperial College London, St. Mary's Hospital, Praed Street, London, UK
| | - Mark Thursz
- Department of Metabolism, Digestion & Reproduction, Imperial College London, St. Mary's Hospital, Praed Street, London, UK
| | - Ching Ngar Wong
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | - Rohini Sharma
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | - Lorenza Rimassa
- Medical Oncology and Haematology Unit, Humanitas Cancer Center, Humanitas Clinical and Research Center-IRCCS, Via Manzoni 56, 20089, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy
| |
Collapse
|
15
|
Cen Y, Huang Z, Ren J, Zhang J, Gong Y, Xie C. The characteristic of tumor immune microenvironment in pulmonary carcinosarcoma. Immunotherapy 2020; 12:323-331. [PMID: 32212951 DOI: 10.2217/imt-2019-0123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pulmonary carcinosarcoma (PCS) is a rare but aggressive neoplasm, due to late diagnosis and early metastasis. Surgery combined with radiotherapy is a standard treatment. However, PCS features an easy relapse after surgery resection and resistance to chemotherapy and radiotherapy. Tumor immune microenvironment reflects tumor immunophenotyping and affects immunotherapy efficiency. This review summarized current studies on the characteristic of tumor immune microenvironment in PCS and discussed the potential of immunotherapy combined with other regimes strategy as a candidate for treatments in PCS.
Collapse
Affiliation(s)
- Yanhong Cen
- Department of Radiation & Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Huang
- Department of Radiation & Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junhong Zhang
- Department of Radiation & Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation & Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Hsiao YW, Chiu LT, Chen CH, Shih WL, Lu TP. Tumor-Infiltrating Leukocyte Composition and Prognostic Power in Hepatitis B- and Hepatitis C-Related Hepatocellular Carcinomas. Genes (Basel) 2019; 10:genes10080630. [PMID: 31434354 PMCID: PMC6722571 DOI: 10.3390/genes10080630] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Tumor-infiltrating leukocytes (TILs) are immune cells surrounding tumor cells, and several studies have shown that TILs are potential survival predictors in different cancers. However, few studies have dissected the differences between hepatitis B- and hepatitis C-related hepatocellular carcinoma (HBV−HCC and HCV−HCC). Therefore, we aimed to determine whether the abundance and composition of TILs are potential predictors for survival outcomes in HCC and which TILs are the most significant predictors. Methods: Two bioinformatics algorithms, ESTIMATE and CIBERSORT, were utilized to analyze the gene expression profiles from 6 datasets, from which the abundance of corresponding TILs was inferred. The ESTIMATE algorithm examined the overall abundance of TILs, whereas the CIBERSORT algorithm reported the relative abundance of 22 different TILs. Both HBV−HCC and HCV−HCC were analyzed. Results: The results indicated that the total abundance of TILs was higher in non-tumor tissue regardless of the HCC type. Alternatively, the specific TILs associated with overall survival (OS) and recurrence-free survival (RFS) varied between subtypes. For example, in HBV−HCC, plasma cells (hazard ratio [HR] = 1.05; 95% CI 1.00–1.10; p = 0.034) and activated dendritic cells (HR = 1.08; 95% CI 1.01–1.17; p = 0.03) were significantly associated with OS, whereas in HCV−HCC, monocytes (HR = 1.21) were significantly associated with OS. Furthermore, for RFS, CD8+ T cells (HR = 0.98) and M0 macrophages (HR = 1.02) were potential biomarkers in HBV−HCC, whereas neutrophils (HR = 1.01) were an independent predictor in HCV−HCC. Lastly, in both HBV−HCC and HCV−HCC, CD8+ T cells (HR = 0.97) and activated dendritic cells (HR = 1.09) had a significant association with OS, while γ delta T cells (HR = 1.04), monocytes (HR = 1.05), M0 macrophages (HR = 1.04), M1 macrophages (HR = 1.02), and activated dendritic cells (HR = 1.15) were highly associated with RFS. Conclusions: These findings demonstrated that TILs are potential survival predictors in HCC and different kinds of TILs are observed according to the virus type. Therefore, further investigations are warranted to elucidate the role of TILs in HCC, which may improve immunotherapy outcomes.
Collapse
Affiliation(s)
- Yi-Wen Hsiao
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei City 10617, Taiwan
| | - Lu-Ting Chiu
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei City 10617, Taiwan
| | - Ching-Hsuan Chen
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei City 10617, Taiwan
| | - Wei-Liang Shih
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei City 10617, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei City 10617, Taiwan.
| |
Collapse
|
17
|
Neagu M, Constantin C, Caruntu C, Dumitru C, Surcel M, Zurac S. Inflammation: A key process in skin tumorigenesis. Oncol Lett 2019; 17:4068-4084. [PMID: 30944600 PMCID: PMC6444305 DOI: 10.3892/ol.2018.9735] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023] Open
Abstract
The extremely delicate shift from an inflammatory process to tumorigenesis is a field of major scientific interest. While the inflammation induced by environmental agents has well known underlying mechanisms, less is known concerning the oncogenic changes that follow an inflammatory chronic status in the tissue microenvironment that can lead to pro-tumorigenic processes. Regardless of the origin of the environmental factors, the maintenance of an inflammatory microenvironment is a clear condition that favors tumorigenesis. Inflammation sustains the proliferation and survival of malignant transformed cells, can promote angiogenesis and metastatic processes, can negatively regulate the antitumoral adaptive and innate immune responses and may alter the efficacy of therapeutic agents. There is an abundance of studies focusing on molecular pathways that trigger inflammation-mediated tumorigenesis, and these data have revealed a series of biomarkers that can improve the diagnosis and prognosis in oncology. In skin there is a clear connection between tissue destruction, inflammation and tumor onset. Inflammation is a self-limiting process in normal physiological conditions, while tumor is a constitutive process activating new pro-tumor mechanisms. Among skin cancers, the most commonly diagnosed skin cancers, squamous cell carcinoma and basal cell carcinoma (BCC) have important inflammatory components. The most aggressive skin cancer, melanoma, is extensively research in regards to the new context of novel developed immune-therapies. In skin cancers, inflammatory markers can find their place in the biomarker set for improvement of diagnosis and prognosis.
Collapse
Affiliation(s)
- Monica Neagu
- Immunobiology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 050107 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Carolina Constantin
- Immunobiology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carmen Dumitru
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Mihaela Surcel
- Immunobiology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 050107 Bucharest, Romania
| | - Sabina Zurac
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Pathology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
18
|
Immunotherapy of gynecological cancers. Best Pract Res Clin Obstet Gynaecol 2019; 60:97-110. [PMID: 31003902 DOI: 10.1016/j.bpobgyn.2019.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 12/29/2022]
Abstract
Oncology treatments have evolved from intuitive, via empiric, to the present precision medicine, with the integration of molecular targeted therapies in our treatment arsenal. The use of the patients' powerful immune system has long been contemplated and recently led to the integration of immunotherapy to overturn the well-documented inhibitory effects of the tumor on the immune system and restore it to a state of activity against the cancer. Recent favorable results have shown the value and effectiveness of immunotherapy against gynecological cancers. In particular, the checkpoint inhibitors, targeting the programmed death-1 (PD-1) pathway, have shown durable clinical responses with manageable toxicity. Several phase II and III clinical trials testing the association of different regimen of chemotherapy and immunotherapy are ongoing in gynecological cancers, and important results are expected. In this chapter, we outline the main principles of immunotherapy for gynecological cancers and summarize the current strategies used in clinical trials.
Collapse
|
19
|
Abstract
The concept that progression of cancer is regulated by interactions of cancer cells with their microenvironment was postulated by Stephen Paget over a century ago. Contemporary tumour microenvironment (TME) research focuses on the identification of tumour-interacting microenvironmental constituents, such as resident or infiltrating non-tumour cells, soluble factors and extracellular matrix components, and the large variety of mechanisms by which these constituents regulate and shape the malignant phenotype of tumour cells. In this Timeline article, we review the developmental phases of the TME paradigm since its initial description. While illuminating controversies, we discuss the importance of interactions between various microenvironmental components and tumour cells and provide an overview and assessment of therapeutic opportunities and modalities by which the TME can be targeted.
Collapse
Affiliation(s)
- Shelly Maman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Isaac P Witz
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
20
|
Das D, Sarkar B, Mukhopadhyay S, Banerjee C, Biswas Mondal S. An Altered Ratio of CD4+ And CD8+ T Lymphocytes in Cervical Cancer Tissues and Peripheral Blood – A Prognostic Clue? Asian Pac J Cancer Prev 2018; 19:471-478. [PMID: 29480666 PMCID: PMC5980936 DOI: 10.22034/apjcp.2018.19.2.471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Several studies have provided evidence of CD4+ and CD8+ lymphocyte infiltration in various malignancies with probable implications for prognosis. Cervical cancer accounts for a major part of the cancer burden in the developing world. Study of genetically and ethnically diverse Indian cervical cancer patients is necessary to assess effects on lymphocytic infiltration of tumour tissue. Methods: This observational study was conducted over a period of 12 months with selected cervical cancer patients meeting inclusion criteria. Samples of cervical cancer tissue and peripheral blood were obtained and tumour infiltration with CD4+ and CD8+ lymphocytes was noted. Cell numbers were quantified by flow-cytometry and proportions compared between tumour and peripheral blood samples. Results: Tumour infiltration was noted with both CD4+ (13.93±10.95) and CD8+ (19.5±12.05) lymphocyte subtypes. However, compared to peripheral blood, CD4+ cells were significantly less predominant in tumour tissue (p, 0.0013). There was a statistically significant (p, 0.0004) reversal of the ratio of CD4+ and CD8+ in the tumour tissue (0.68±0.39) compared to peripheral blood (1.5±0.66) with maximal alteration in higher stage disease. Conclusion: The study revealed that T lymphocyte infiltration of cervical cancer tissue occurs but the ratio of CD4+ to CD8+ subtypes is sifnificantly lower than in peripheral blood, especially with in advanced stages of disease. The clinical implications of such a reversal of CD4+ and CD8+ ratios is unknown, but might have prognostic significance.
Collapse
Affiliation(s)
- Diptimoy Das
- Department of Radiotherapy, Burdwan Medical College, Burdwan, India.
| | | | | | | | | |
Collapse
|
21
|
Yang KQ, Liu Y, Huang QH, Mo N, Zhang QY, Meng QG, Cheng JW. Bone marrow-derived mesenchymal stem cells induced by inflammatory cytokines produce angiogenetic factors and promote prostate cancer growth. BMC Cancer 2017; 17:878. [PMID: 29268703 PMCID: PMC5740893 DOI: 10.1186/s12885-017-3879-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/06/2017] [Indexed: 01/21/2023] Open
Abstract
Background Prostate is susceptible to infection and pro-inflammatory agents in a man’s whole life. Chronic inflammation might play important roles in the development and progression of prostate cancer. Mesenchymal stem cells (MSCs) are often recruited to the tumor microenvironment due to local inflammation. We have asked whether stimulation of MSCs by pro-inflammatory cytokines could promote prostate tumor growth. The current study investigated the possible involvement of MSCs stimulated by pro-inflammatory cytokines in promotion and angiogenesis of prostate cancer through relative pathway in vitro and in vivo. Methods A syngeneic mouse model of C57 was established. The murine prostate cancer cells (RM-1) mixing with MSCs treated with tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) or vehicle were subcutaneously injected into C57 mice. Tumor volume of C57 mouse model was estimated and serum level of platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) was test by Enzyme-linked Immunosorbent Assay (ELISA). A hen egg test-chorioallantoic membrane (HET-CAM) assay was applied to test the effect of conditioned media of stimulated MSCs in chorioallantoic membrane angiogenesis. Short interfering RNA (siRNA) knocked down either hypoxia-inducible factor-1alpha (HIF-1α) or nuclear factor-erythroid-2-related factor 2 (NRF2) were employed. mRNA of PDGF and VEGF in MSCs, as well as NRF2 and HIF-1α was test by Real time polymerase chain reaction (PCR) analyses. Protein expression levels of PDGF and VEGF from conditioned medium, NRF2, HIF-1α, as well as PDGF and VEGF in MSCs were detected by Western blot analysis. Results MSCs treated with TNF-α and IFN-γ promote tumor growth in C57 syngeneic mouse model, correlating with increased serum level of PDGF, VEGF. HET-CAM assay shows the angiogenic effect of conditioned medium of MSCs pre-treated with the pro-inflammatory cytokines. mRNA and protein levels of two pro-angiogenic factors (PDGF and VEGF) and key hypoxia regulators (HIF-1α and NRF2) in MSCs were induced after MSCs’ pretreatment. siRNA knockdown either HIF-1α or NRF2 results reduction of PDGF and VEGF expression. Conclusions MSCs stimulated by pro-inflammatory cytokines increase the expression of PDGF and VEGF via the NRF2-HIF-1α pathway and accelerate prostate cancer growth in mice. Electronic supplementary material The online version of this article (10.1186/s12885-017-3879-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ke-Qin Yang
- Department of Orthopedics, Guiping People's Hospital, Guiping, Guangxi Zhuang Autonomous Region, 537200, China
| | - Yan Liu
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Qing-Hua Huang
- Department of Breast Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Ning Mo
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Qing-Yun Zhang
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Qing-Gui Meng
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Ji-Wen Cheng
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China. .,Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China.
| |
Collapse
|
22
|
The Genes of Life and Death: A Potential Role for Placental-Specific Genes in Cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201700091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/20/2017] [Indexed: 12/17/2022]
|
23
|
ZHAO XIN, GUO FEI, LI ZHONGHU, JIANG PENG, DENG XIANG, TIAN FENG, LI XIAOWU, WANG SHUGUANG. Aberrant expression of B7-H4 correlates with poor prognosis and suppresses tumor-infiltration of CD8+ T lymphocytes in human cholangiocarcinoma. Oncol Rep 2016; 36:419-27. [DOI: 10.3892/or.2016.4807] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/14/2016] [Indexed: 11/05/2022] Open
|
24
|
Kumari A, Garnett-Benson C. Effector function of CTLs is increased by irradiated colorectal tumor cells that modulate OX-40L and 4-1BBL and is reversed following dual blockade. BMC Res Notes 2016; 9:92. [PMID: 26872462 PMCID: PMC4752774 DOI: 10.1186/s13104-016-1914-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/03/2016] [Indexed: 01/10/2023] Open
Abstract
Background Sub-lethal doses of ionizing radiation (IR) can alter the phenotype of target tissue by modulating genes that influence effector T cell activity. Previous studies indicate that cancer cells respond to radiation by up-regulating surface expression of death receptors, cell adhesion molecules and tumor-associated antigens (TAA). However, there is limited information available regarding how T cells themselves are altered following these interactions with irradiated tumor cells. Methods Here, several human colorectal tumor cell lines were exposed to radiation (0–10 Gy) in vitro and changes in the expression of molecules costimulatory to effector T cells (4-1BBL, OX-40L, CD70, ICOSL) were examined by flow cytometry. T cell effector function was assessed to determine if changes in these proteins were directly related to the changes in T cell function. Results We found OX-40L and 4-1BBL to be the most consistently upregulated proteins on the surface of colorectal tumor cells post-IR while ICOSL and CD70 remained largely unaltered. Expression of these gene products correlated with enhanced killing of irradiated human colorectal tumor cells by TAA-specific T-cells. Importantly, blocking of both OX-40L and 4-1BBL reversed radiation-enhanced T-cell killing of human tumor targets as well as T-cell survival and activation. Conclusions Overall, results of this study suggest that, beyond simply rendering tumor cells more sensitive to immune attack, radiation can be used to specifically modulate expression of genes that directly stimulate effector T cell activity.
Collapse
Affiliation(s)
- Anita Kumari
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA.
| | - Charlie Garnett-Benson
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA.
| |
Collapse
|
25
|
Bołkun Ł, Rusak M, Eljaszewicz A, Pilz L, Radzikowska U, Łapuć I, Łuksza E, Dąbrowska M, Bodzenta-Łukaszyk A, Kłoczko J, Moniuszko M. Enhanced pretreatment CD25 expression on peripheral blood CD4+ T cell predicts shortened survival in acute myeloid leukemia patients receiving induction chemotherapy. Pharmacol Rep 2016; 68:12-9. [DOI: 10.1016/j.pharep.2015.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
|
26
|
The prognostic influence of tumor infiltrating Foxp3(+)CD4(+), CD4(+) and CD8(+) T cells in resected non-small cell lung cancer. JOURNAL OF INFLAMMATION-LONDON 2015; 12:63. [PMID: 26604855 PMCID: PMC4657296 DOI: 10.1186/s12950-015-0108-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/17/2015] [Indexed: 11/10/2022]
Abstract
Background Different subsets of tumor infiltrating T lymphocytes are believed to play essential role in the immune response to cancer cells. The data of these cells in NSCLC are relatively rare and controversial therefore we aimed to evaluate the infiltration patterns of Foxp3 + CD4+, CD4+ and CD8+ T cells in NSCLC and to analyze their relations to survival. Methods Lung tissue specimens from 80 newly diagnosed and untreated patients who underwent surgery for NSCLC (stages I-III), and 16 control group subjects, who underwent surgery due to recurrent spontaneous pneumothorax, were analyzed. Foxp3 + CD4+, CD4+ and CD8+ T cells in tumor stroma and islets were evaluated immunohistochemically. All statistical analyses were performed using the Statistical Package for the Social Sciences (SPSS), version 20.0. Results Tumor infiltrating CD4+, CD8+ T cells were associated with neither overall survival nor disease-free survival. The presence of high tumor stroma infiltrating Foxp3 + CD4+ T cells was independently associated with improved NSCLC patients overall survival (P < 0.05). Conclusions Our study demonstrated that tumor infiltrating Foxp3 + CD4+ T cells are associated with improved NSCLC patients' survival. In addition our findings highlight a tendency of high CD4+/CD8+ and CD8+/Foxp3 + CD4+ T cells ratio in prolonged NSCLC patients' survival.
Collapse
|
27
|
Moon EK, Ranganathan R, Eruslanov E, Kim S, Newick K, O'Brien S, Lo A, Liu X, Zhao Y, Albelda SM. Blockade of Programmed Death 1 Augments the Ability of Human T Cells Engineered to Target NY-ESO-1 to Control Tumor Growth after Adoptive Transfer. Clin Cancer Res 2015; 22:436-47. [PMID: 26324743 DOI: 10.1158/1078-0432.ccr-15-1070] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/18/2015] [Indexed: 01/02/2023]
Abstract
PURPOSE Tumor-infiltrating lymphocytes (TILs) become hypofunctional, although the mechanisms are not clear. Our goal was to generate a model of human tumor-induced TIL hypofunction to study mechanisms and to test anti-human therapeutics. EXPERIMENTAL DESIGN We transduced human T cells with a published, optimized T-cell receptor (TCR) that is directed to a peptide within the cancer testis antigen, NY-ESO-1. After demonstrating antigen-specific in vitro activity, these cells were used to target a human lung cancer line that expressed NY-ESO-1 in the appropriate HLA context growing in immunodeficient mice. The ability of anti-PD1 antibody to augment efficacy was tested. RESULTS Injection of transgenic T cells had some antitumor activity, but did not eliminate the tumors. The injected T cells became profoundly hypofunctional accompanied by upregulation of PD1, Tim3, and Lag3 with coexpression of multiple inhibitory receptors in a high percentage of cells. This model allowed us to test reagents targeted specifically to human T cells. We found that injections of an anti-PD1 antibody in combination with T cells led to decreased TIL hypofunction and augmented the efficacy of the adoptively transferred T cells. CONCLUSIONS This model offers a platform for preclinical testing of adjuvant immunotherapeutics targeted to human T cells prior to transition to the bedside. Because the model employs engineering of human T cells with a TCR clone instead of a CAR, it allows for study of the biology of tumor-reactive TILs that signal through an endogenous TCR. The lessons learned from TCR-engineered TILs can thus be applied to tumor-reactive TILs.
Collapse
Affiliation(s)
- Edmund K Moon
- Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Raghuveer Ranganathan
- Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evgeniy Eruslanov
- Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Soyeon Kim
- Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kheng Newick
- Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shaun O'Brien
- Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Albert Lo
- Department of Animal Biology and Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaojun Liu
- Abramson Family Cancer Research Institute and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yangbing Zhao
- Abramson Family Cancer Research Institute and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven M Albelda
- Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Chen Y, Huang Y, Cui Z, Liu J. Purification, characterization and biological activity of a novel polysaccharide from Inonotus obliquus. Int J Biol Macromol 2015; 79:587-94. [DOI: 10.1016/j.ijbiomac.2015.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/29/2015] [Accepted: 05/05/2015] [Indexed: 12/31/2022]
|
29
|
Xing K, Gu B, Zhang P, Wu X. Dexamethasone enhances programmed cell death 1 (PD-1) expression during T cell activation: an insight into the optimum application of glucocorticoids in anti-cancer therapy. BMC Immunol 2015; 16:39. [PMID: 26112261 PMCID: PMC4480888 DOI: 10.1186/s12865-015-0103-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/09/2015] [Indexed: 12/18/2022] Open
Abstract
Background Programmed cell death 1 (PD-1) is a key cell-surface receptor of CD28 superfamily that triggers inhibitory pathways to attenuate T-cell responses and promote T-cell tolerance. As a crucial role in tumor immunity, PD-1 has been a focus of studies in anti-cancer therapy. It has been approved that tumors could exploit PD-1-dependent immune suppression for immune evasion. Considering the wide use of glucocorticoids (GCs) in anti-cancer therapy and their immunosuppressive effects, we explored whether GCs could influence the expression of PD-1. Results In our study, we used dexamethasone (DEX) as a model glucocorticoid and demonstrated that DEX could enhance PD-1 expression in a dose-dependent manner. The effects were completely inhibited by the glucocorticoid receptor (GR) antagonist mifepristone (RU486), indicating that the effect of DEX on PD-1 is mediated through GR. We further found the sensitivity to DEX-induced upregulation of PD-1 expression had a significant difference between different T cell subsets, with memory T cells more susceptible to this effect. We also showed that DEX could suppress T cell functions via inhibition of cytokines production such as IL-2, IFN-γ, TNF-α and induction of apoptosis of T cells. Conclusion Our findings suggest a novel way by which DEX suppress the function of activated T lymphocytes by enhancing expression of PD-1 and provide an insight into the optimum clinical application of GCs.
Collapse
Affiliation(s)
- Kailin Xing
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai, 200032, China.
| | - Bingxin Gu
- Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai, 200032, China. .,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China.
| | - Ping Zhang
- Cancer Research Institute of Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China.
| | - Xianghua Wu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai, 200032, China.
| |
Collapse
|
30
|
Neagu M, Constantin C, Dumitrascu GR, Lupu AR, Caruntu C, Boda D, Zurac S. Inflammation markers in cutaneous melanoma - edgy biomarkers for prognosis. Discoveries (Craiova) 2015; 3:e38. [PMID: 32309563 PMCID: PMC6941591 DOI: 10.15190/d.2015.30] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There is a fine balance between inflammation and tumorigenesis. While environmentally induced inflammatory condition can precede a malignant transformation, in other cases an oncogenic change of unknown origin can induce an inflammatory microenvironment that promotes the development of tumors. Regardless of its origin, maintaining the inflammation milieu has many tumor-promoting effects. As a result, inflammation can aid the proliferation and survival of malignant cells, can promote angiogenesis and metastasis, can down-regulate innate/adaptive immune responses, and can alter responses to hormones and chemotherapeutic agents. There is an abundance of studies unveiling molecular pathways of cancer-related inflammation; this wealth of information brings new insights into biomarkers domain in the diagnosis and treatment improvement pursue.
In cutaneous tissue there is an established link between tissue damage, inflammation, and cancer development. Inflammation is a self-limiting process in normal healthy physiological conditions, while tumorigenesis is a complex mechanism of constitutive pathway activation. Once more, in cutaneous melanoma, there is an unmet need for inflammatory biomarkers that could improve prognostication. Targeting inflammation and coping with the phenotypic plasticity of melanoma cells represent rational strategies to specifically interfere with metastatic progression. We have shown that there is a prototype of intratumor inflammatory infiltrate depicting a good prognosis, infiltrate that is composed of numerous T cells CD3+, Langerhans cells, few/absent B cells CD20+ and few/absent plasma cells. Circulating immune cells characterized by phenotype particularities are delicately linked to the stage melanoma is diagnosed in. Hence circulatory immune sub-populations, with activated or suppressor phenotype would give the physician a more detailed immune status of the patient. A panel of tissue/circulatory immune markers can complete the immune status, can add value to the overall prognostic of the patient and, as a result direct/redirect the therapy choice. The future lies within establishing low-cost, affordable/available, easily reproducible assays that will complete the pre-clinical parameters of the patient.
Collapse
Affiliation(s)
- Monica Neagu
- Immunobiology Laboratory, "Victor Babes" National Institute of Pathology and Biomedical Sciences, Bucharest, Romania.,Faculty of Biochemistry, University of Bucharest, Romania
| | - Carolina Constantin
- Immunobiology Laboratory, "Victor Babes" National Institute of Pathology and Biomedical Sciences, Bucharest, Romania
| | - Georgiana Roxana Dumitrascu
- Immunobiology Laboratory, "Victor Babes" National Institute of Pathology and Biomedical Sciences, Bucharest, Romania
| | - Andreea Roxana Lupu
- Immunobiology Laboratory, "Victor Babes" National Institute of Pathology and Biomedical Sciences, Bucharest, Romania
| | - Constantin Caruntu
- Immunobiology Laboratory, "Victor Babes" National Institute of Pathology and Biomedical Sciences, Bucharest, Romania.,Dermatology Research Laboratory, "Carol Davila" University of Medicine & Pharmacy, Bucharest, Romania
| | - Daniel Boda
- Dermatology Research Laboratory, "Carol Davila" University of Medicine & Pharmacy, Bucharest, Romania
| | - Sabina Zurac
- Department of Pathology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Colentina University Hospital, Bucharest, Romania
| |
Collapse
|
31
|
Santoni M, Berardi R, Amantini C, Burattini L, Santini D, Santoni G, Cascinu S. Role of natural and adaptive immunity in renal cell carcinoma response to VEGFR-TKIs and mTOR inhibitor. Int J Cancer 2014; 134:2772-2777. [PMID: 24114790 DOI: 10.1002/ijc.28503] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/12/2013] [Indexed: 12/15/2022]
Abstract
Angiogenesis and immunosuppression work hand-in-hand in the renal cell carcinoma (RCC) microenvironment. Tumor growth is associated with impaired antitumor immune response in RCC, which involves T cells, natural killer cells, dendritic cells (DCs) and macrophages. Vascular endothelial growth factor receptor (VEGFR), such as sorafenib, sunitinib, pazopanib and axitinib, and mammalian target of rapamycin (mTOR) inhibitors, such as temsirolimus and everolimus, do exert both antiangiogenic and immunomodulatory functions. Indeed, these agents affect neutrophil migration, as well as T lymphocyte-DC cross-talk, DC maturation and immune cell metabolism and reactivity. In this review, we overview the essential role of innate and adaptive immune response in RCC proliferation, invasion and metastasis and the relationship between tumor-associated immune cells and the response to targeted agents approved for the treatment of metastatic RCC.
Collapse
Affiliation(s)
- Matteo Santoni
- Medical Oncology AOU Ospedali Riuniti, Polytechnic University of the Marche Region, Ancona, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Sun X, Gao RL, Xiong YK, Huang QC, Xu M. Antitumor and immunomodulatory effects of a water-soluble polysaccharide from Lilii Bulbus in mice. Carbohydr Polym 2014; 102:543-9. [DOI: 10.1016/j.carbpol.2013.12.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 12/18/2022]
|
33
|
The response of breast cancer cells to mesenchymal stem cells: a possible role of inflammation by breast implants. Plast Reconstr Surg 2014; 132:899e-910e. [PMID: 24281636 DOI: 10.1097/01.prs.0000434401.98939.60] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Breast implants are widely used and at times might cause inflammation as a foreign body, followed by fibrous capsule formation around the implant. In cancer, the inflamed stroma is essential for preservation of the tumor. Mesenchymal stem cells can be recruited to sites of inflammation, and their role in cancer development is debated. The authors assessed the effects of inflammation caused by breast implants' effects on tumor. METHODS Mesenchymal stem cells were isolated from the fibrous capsules of women who underwent a second operation after 1 year (presenting inflammation) or after 20 years (not presenting inflammation) since initial surgery. After characterization, cells were co-cultured with MCF7, a breast cancer cell line. The expression of genes involved in oncogenesis, proliferation, and epithelial-to-mesenchymal transition was investigated, followed by Western blot analyses. RESULTS After co-culture with mesenchymal stem cells from the inflamed capsule, MCF7 induced a dose- and time-dependent increase in proliferation. Polymerase chain reaction analyses revealed a dysregulation of genes involved in oncogenesis, proliferation, and epithelial-to-mesenchymal transition. The subsequent evaluation by Western blot did not confirm these results, showing only a modest decrease in the expression of E-cadherin after co-culture with mesenchymal stem cells (both derived from inflamed or control capsules). CONCLUSION These data indicate that inflammation caused by breast implants partially affects proliferation of MCF7 but does not influence key mechanisms of tumor development.
Collapse
|
34
|
Kumari A, Cacan E, Greer SF, Garnett-Benson C. Turning T cells on: epigenetically enhanced expression of effector T-cell costimulatory molecules on irradiated human tumor cells. J Immunother Cancer 2013; 1:17. [PMID: 24829753 PMCID: PMC4019910 DOI: 10.1186/2051-1426-1-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/12/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sub-lethal doses of radiation can alter the phenotype of target tissue by modulating gene expression and making tumor cells more susceptible to T-cell-mediated immune attack. We have previously shown that sub-lethal tumor cell irradiation enhances killing of colorectal carcinoma cells by tumor-specific cytotoxic T cells by unknown mechanisms. Recent data from our lab indicates that irradiation of tumor cells results in the upregulation of OX40L and 41BBL, and that T cells incubated with irradiated tumor cells displayed improved CTL survival, activation and effector activity. The objective of this current study was to determine the mechanism of enhanced OX40L and 41BBL expression in human colorectal tumor cells. METHODS Two colorectal carcinoma cell lines, HCT116 and SW620, were examined for changes in the expression of 41BBL and OX40L in response to inhibition of histone deacetylases (using TSA) and DNA methyltransferases (using 5-Aza-2'-deoxycytidine) to evaluate if epigenetic mechanisms of gene expression can modulate these genes. Tumor cells were treated with radiation, TSA, or 5-Aza-dC, and subsequently evaluated for changes in gene expression using RT-qPCR and flow cytometry. Moreover, we assessed levels of histone acetylation at the 41BBL promoter using chromatin immunoprecipitation assays in irradiated HCT116 cells. RESULTS Our data indicate that expression of 41BBL and OX40L can indeed be epigenetically regulated, as inhibition of histone deacetylases and of DNA methyltransferases results in increased OX40L and 41BBL mRNA and protein expression. Treatment of tumor cells with TSA enhanced the expression of these genes more than treatment with 5-Aza-dC, and co-incubation of T cells with TSA-treated tumor cells enhanced T-cell survival and activation, similar to radiation. Furthermore, chromatin immunoprecipitation experiments revealed significantly increased histone H3 acetylation of 41BBL promoters specifically following irradiation. CONCLUSIONS Full understanding of specific mechanisms of immunogenic modulation (altered expression of immune relevant genes) of irradiated tumor cells will be required to determine how to best utilize radiation as a tool to enhance cancer immunotherapy approaches. Overall, our results suggest that radiation can be used to make human tumors more immunogenic through epigenetic modulation of genes stimulatory to effector T-cells.
Collapse
Affiliation(s)
- Anita Kumari
- Department of Biology, Center for Inflammation, Infection and Immunity, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, USA
| | - Ercan Cacan
- Department of Biology, Center for Inflammation, Infection and Immunity, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, USA
| | - Susanna F Greer
- Department of Biology, Center for Inflammation, Infection and Immunity, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, USA
| | - Charlie Garnett-Benson
- Department of Biology, Center for Inflammation, Infection and Immunity, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, USA
| |
Collapse
|
35
|
Neagu M, Constantin C, Zurac S. Immune parameters in the prognosis and therapy monitoring of cutaneous melanoma patients: experience, role, and limitations. BIOMED RESEARCH INTERNATIONAL 2013; 2013:107940. [PMID: 24163809 PMCID: PMC3791585 DOI: 10.1155/2013/107940] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/01/2013] [Indexed: 12/13/2022]
Abstract
Cutaneous melanoma is an immune-dependent aggressive tumour. Up to our knowledge, there are no reports regarding immune parameters monitoring in longitudinal followup of melanoma patients. We report a followup for 36 months of the immune parameters of patients diagnosed in stages I-IV. The circulatory immune parameters comprised presurgery and postsurgery immune circulating peripheral cells and circulating intercommunicating cytokines. Based on our analysis, the prototype of the intratumor inflammatory infiltrate in a melanoma with good prognosis is composed of numerous T cells CD3+, few or even absent B cells CD20+, few or absent plasma cells CD138+, and present Langerhans cells CD1a+ or langerin+. Regarding circulatory immune cells, a marker that correlates with stage is CD4+/CD8+ ratio, and its decrease clearly indicates a worse prognosis of the disease. Moreover, even in advanced stages, patients that have an increased overall survival rate prove the increase of this ratio. The decrease in the circulating B lymphocytes with stage is balanced by an increase in circulating NK cells, a phenomenon observed in stage III. Out of all the tested cytokines in the followup, IL-6 level correlated with the patient's survival, while in our study, IL-8, IL-10, and IL-12 did not correlate statistically in a significant way with overall survival, or relapse-free survival.
Collapse
Affiliation(s)
- Monica Neagu
- Immunobiology Laboratory, “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Carolina Constantin
- Immunobiology Laboratory, “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Sabina Zurac
- Department of Pathology, University of Medicine and Pharmacy Carol Davila, Colentina University Hospital, 21 Stefan cel Mare, 020125 Bucharest, Romania
| |
Collapse
|
36
|
Raghuwanshi SK, Smith N, Rivers EJ, Thomas AJ, Sutton N, Hu Y, Mukhopadhyay S, Chen XL, Leung T, Richardson RM. G protein-coupled receptor kinase 6 deficiency promotes angiogenesis, tumor progression, and metastasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:5329-5336. [PMID: 23589623 PMCID: PMC3646980 DOI: 10.4049/jimmunol.1202058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
G protein-coupled receptor kinases (GRKs) phosphorylate the activated form of G protein-coupled receptors leading to receptor desensitization and downregulation. We have recently shown that the chemokine receptor, CXCR2, couples to GRK6 to regulate cellular responses including chemotaxis, angiogenesis, and wound healing. In this study, we investigate the role of GRK6 in tumorigenesis using murine models of human lung cancer. Mice deficient in GRK6 (GRK6(-/-)) exhibited a significant increase in Lewis lung cancer growth and metastasis relative to control littermates (GRK6(+/+)). GRK6 deletion had no effect on the expression of proangiogenic chemokine or vascular endothelial growth factor, but upregulated matrix metalloproteinase (MMP)-2 and MMP-9 release, tumor-infiltrating PMNs, and microvessel density. Because β-arrestin-2-deficient (βarr2(-/-)) mice exhibited increased Lewis lung cancer growth and metastasis similar to that of GRK6(-/-), we developed a double GRK6(-/-)/βarr2(-/-) mouse model. Surprisingly, GRK6(-/-)/βarr2(-/-) mice exhibited faster tumor growth relative to GRK6(-/-) or βarr2(-/-) mice. Treatment of the mice with anti-CXCR2 Ab inhibited tumor growth in both GRK6(-/-) and GRK6(-/-)/βarr2(-/-) animals. Altogether, the results indicate that CXCR2 couples to GRK6 to regulate angiogenesis, tumor progression, and metastasis. Deletion of GRK6 increases the activity of the host CXCR2, resulting in greater PMN infiltration and MMP release in the tumor microenvironment, thereby promoting angiogenesis and metastasis. Because GRK6(-/-)/βarr2(-/-) showed greater tumor growth relative to GRK6(-/-) or βarr2(-/-) mice, the data further suggest that CXCR2 couples to different mechanisms to mediate tumor progression and metastasis.
Collapse
Affiliation(s)
- Sandeep K. Raghuwanshi
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biology, North Carolina Central University, Durham, NC 27707
| | - Nikia Smith
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biology, North Carolina Central University, Durham, NC 27707
| | - Elizabeth, J. Rivers
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biology, North Carolina Central University, Durham, NC 27707
| | - Ariel J. Thomas
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biology, North Carolina Central University, Durham, NC 27707
| | - Natalie Sutton
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biology, North Carolina Central University, Durham, NC 27707
| | - Yuhui Hu
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biology, North Carolina Central University, Durham, NC 27707
| | | | - Xiaoxin L. Chen
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biology, North Carolina Central University, Durham, NC 27707
| | - TinChung Leung
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biology, North Carolina Central University, Durham, NC 27707
- North Carolina Research Campus, Nutrition Research Center, 500 Laureate Way, Kannapolis, NC 28081
| | - Ricardo M. Richardson
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biology, North Carolina Central University, Durham, NC 27707
| |
Collapse
|
37
|
López-Muñoz H, Escobar-Sánchez ML, López-Marure R, Lascurain-Ledesma R, Zenteno E, Hernández-Vazquez JMV, Weiss-Steider B, Sánchez-Sánchez L. Cervical cancer cells induce apoptosis in TCD4+ lymphocytes through the secretion of TGF-β. Arch Gynecol Obstet 2012. [PMID: 23179798 DOI: 10.1007/s00404-012-2621-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Tumor cells are known to secrete cytokines that modify their microenvironment in order to favor their survival and continuous proliferation. In this work, we evaluated if TGF-β secreted in vitro by cervical cancer cells could interfere with the proliferation and survival of lymphocytes. METHODS Lymphocytes were obtained from peripheral blood of healthy human volunteers, and isolated by density gradient centrifugation and cultured in 96-well plates. Lymphocyte proliferation was induced with phytohemaglutinin and co-cultured with conditioned media (CM) from cervical cancer cell lines, and the inhibition of proliferation was evaluated after 72 h by the incorporated radioactivity and a CFSE-labeling assay. TGF-β quantification on these CM was evaluated by ELISA. Non-apoptotic cellular death was evaluated through disruption of cell membrane integrity by measuring the liberation of lactate dehydrogenase. The apoptosis process was evaluated by annexin-V and active caspase-3. The presence of CD4+ or CD8+ lymphocytes was evaluated by flow cytometry using specific antibodies. RESULTS It was found that the conditioned media from these cells significantly inhibited the proliferation of lymphocytes and induced them to go into apoptosis. Antibodies against TGF-β almost completely blocked this activity, suggesting that this cytokine is responsible for the inhibitory activity. When the induced apoptosis on subpopulations of lymphocytes was evaluated, it was detected that the CD4+ cells were specifically targeted. CONCLUSIONS Cervical cancer cells secrete TGF-β that inhibits lymphocyte proliferation and induces apoptosis in CD4+, but not in CD8+ lymphocytes.
Collapse
Affiliation(s)
- Hugo López-Muñoz
- Unidad de Investigación en Diferenciación Celular y Cáncer, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230 Mexico DF, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu F, Lang R, Zhao J, Zhang X, Pringle GA, Fan Y, Yin D, Gu F, Yao Z, Fu L. CD8⁺ cytotoxic T cell and FOXP3⁺ regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat 2011; 130:645-55. [PMID: 21717105 DOI: 10.1007/s10549-011-1647-3] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 06/18/2011] [Indexed: 10/18/2022]
Abstract
The prognostic significance of tumor-associated FOXP3(+) regulatory T cells (Tregs) and CD8(+) cytotoxic T lymphocytes (CTLs) in invasive breast carcinomas is studied. Tregs and CTLs were assessed by immunohistochemistry in 1270 cases of invasive breast carcinoma for their associations with patient survival, histopathologic features, and molecular subtypes. Infiltrates of Tregs and CTLs were observed within tumor bed and in the tissue surrounding tumor. Within tumor bed, increased infiltration of Tregs and CTLs was significantly more common in those with unfavorable histologic features, including high histologic grade and negative ER and PR status. In addition, high density Treg infiltration was also associated with tumor HER2 overexpression, decreased overall survival (OS) and progression-free survival (PFS). In tissue surrounding tumor, in contrast, high CTL/Treg ratio was found to be significantly associated with improved OS and PFS. These prognostic associations were confirmed by multivariate analysis. Furthermore, the density of Treg infiltrates within tumors was inversely correlated with the prognosis of the molecular subtypes of tumors. The ratio of CTL/Treg infiltrates in the surrounding tissue was also significantly higher in luminal than non-luminal subtypes of carcinoma. The prognostic significances of Tregs and CTLs in breast carcinoma depend on their relative density and location. The density of intratumoral Treg infiltrates and the peritumoral CTL/Treg ratio are independent prognostic factors and correlated with the prognosis of the molecular subtypes of breast carcinoma, which may serve as potential target for stratifying immunotherapy to battle against the aggressive subtypes of breast carcinoma.
Collapse
Affiliation(s)
- Fangfang Liu
- Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Medical University Cancer Institute & Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin 300060, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu Y, Han ZP, Zhang SS, Jing YY, Bu XX, Wang CY, Sun K, Jiang GC, Zhao X, Li R, Gao L, Zhao QD, Wu MC, Wei LX. Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer. J Biol Chem 2011; 286:25007-15. [PMID: 21592963 DOI: 10.1074/jbc.m110.213108] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which are modulated by cytokines present in the tumor microenvironment, play an important role in tumor progression. It is well documented that inflammation is an important part of the tumor microenvironment, so we investigated whether stimulation of MSCs by inflammatory cytokines would contribute to their ability to promote tumor growth. We first showed that MSCs could increase C26 colon cancer growth in mice. This growth-promoting effect was further accelerated when the MSCs were pre-stimulated by inflammatory factors IFN-γ and TNF-α. At the same time, we demonstrated that MSCs pre-stimulated by both inflammatory factors could promote tumor angiogenesis in vivo to a greater degree than untreated MSCs or MSCs pre-stimulated by either IFN-γ or TNF-α alone. A hen egg test-chorioallantoic membrane (HET-CAM) assay showed that treatment of MSC-conditioned medium can promote chorioallantoic membrane angiogenesis in vitro, especially treatment with conditioned medium of MSCs pretreated with IFN-γ and TNF-α together. This mechanism of promoting angiogenesis appears to take place via an increase in the expression of vascular endothelial growth factor (VEGF), which itself takes place through an increase in signaling in the hypoxia-inducible factor 1α (HIF-1α)-dependent pathway. Inhibition of HIF-1α in MSCs by siRNA was found to effectively reduce the ability of MSC to affect the growth of colon cancer in vivo in the inflammatory microenviroment. These results indicate that MSCs stimulated by inflammatory cytokines such as IFN-γ and TNF-α in the tumor microenvironment express higher levels of VEGF via the HIF-1α signaling pathway and that these MSCs then enhance tumor angiogenesis, finally leading to colon cancer growth in mice.
Collapse
Affiliation(s)
- Yan Liu
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nagai H, Oniki S, Fujiwara S, Yoshimoto T, Nishigori C. Antimelanoma immunotherapy: clinical and preclinical applications of IL-12 family members. Immunotherapy 2011; 2:697-709. [PMID: 20874653 DOI: 10.2217/imt.10.46] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Malignant melanoma has been considered a prototypical 'immunogenic' tumor through clinical observations, such as the spontaneous regression of primary lesions, their higher incidence in immune-suppressed individuals, and the development of vitiligo after immunotherapy. Among many cytokines, IL-12 is one of the best characterized and the most potent anti-tumor cytokines. Although the systemic application of IL-12 resulted in disappointing results owing to its considerable toxicity, IL-12 is not entirely unusable in the clinical setting. IL-12-related cytokines, IL-23 and IL-27, have also been shown to possess anti-tumor activities in preclinical models. Although belonging to the same cytokine family, IL-12, IL-23 and IL-27 were found to have different anti-tumor mechanisms, adjuvant activity for tumor vaccines and adverse effects in a poorly immunogeneic melanoma model. In addition, their novel activities on melanoma have been clarified. We briefly review the key features of these members of the IL-12 cytokine family and discuss their potential relevance to melanoma immunity and antimelanoma immunotherapy.
Collapse
Affiliation(s)
- Hiroshi Nagai
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | | | | | | | | |
Collapse
|
41
|
Immunotherapy for lung cancers. J Biomed Biotechnol 2011; 2011:250860. [PMID: 21318107 PMCID: PMC3035001 DOI: 10.1155/2011/250860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/15/2010] [Accepted: 12/23/2010] [Indexed: 11/21/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Although treatment methods in surgery, irradiation, and chemotherapy have improved, prognosis remains unsatisfactory and developing new therapeutic strategies is still an urgent demand. Immunotherapy is a novel therapeutic approach wherein activated immune cells can specifically kill tumor cells by recognition of tumor-associated antigens without damage to normal cells. Several lung cancer vaccines have demonstrated prolonged survival time in phase II and phase III trials, and several clinical trials are under investigation. However, many clinical trials involving cancer vaccination with defined tumor antigens work in only a small number of patients. Cancer immunotherapy is not completely effective in eradicating tumor cells because tumor cells escape from host immune scrutiny. Understanding of the mechanism of immune evasion regulated by tumor cells is required for the development of more effective immunotherapeutic approaches against lung cancer. This paper discusses the identification of tumor antigens in lung cancer, tumor immune escape mechanisms, and clinical vaccine trials in lung cancer.
Collapse
|
42
|
Kobayashi N, Kubota K, Kato S, Watanabe S, Shimamura T, Kirikoshi H, Saito S, Ueda M, Endo I, Inayama Y, Maeda S, Nakajima A. FOXP3+ regulatory T cells and tumoral indoleamine 2,3-dioxygenase expression predicts the carcinogenesis of intraductal papillary mucinous neoplasms of the pancreas. Pancreatology 2010; 10:631-40. [PMID: 21051918 DOI: 10.1159/000308966] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 03/13/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS FOXP3+ regulatory T cells (Tregs) play a central role in self-tolerance and suppress the effective antitumor immune response. A recent study revealed that indoleamine 2,3-dioxygenase (IDO)-mediated tryptophan depletion was able to affect local tumor-infiltrating lymphocytes. The aim of this study was to investigate the clinical significance of the tumor-infiltrating Tregs and tumoral IDO expression during the progression of intraductal papillary mucinous neoplasms (IPMNs) of the pancreas. METHODS We investigated the prevalence and localization of FOXP3+ Tregs, CD8+ lymphocytes, and IDO expression in IPMNs by immunohistochemistry. We recruited 39 cases with IPMNs (IPMA: adenoma, n = 11; IPMB: borderline malignancy, n = 9; IPMC: noninvasive carcinoma, n = 7; I-IPMC: invasive IPMC, n = 12). RESULTS The prevalence of Tregs increased step by step during the carcinogenesis of IPMNs (Kruskal-Wallis test: p < 0.0001). IDO expression in the tumor was observed in 5 cases with IPMNs (IPMC, n = 1; I-IPMC, n = 4). IDO expression in the tumor was positively correlated with the prevalence of Tregs in IPMNs. CONCLUSIONS FOXP3+ Tregs play a role in controlling the immune surveillance against IPMNs at the premalignant stage. IDO expression in the tumor is one of the late-stage phenomena of multistage carcinogenesis of IPMNs.
Collapse
Affiliation(s)
- Noritoshi Kobayashi
- Gastroenterology Division, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shen Z, Zhou S, Wang Y, Li RL, Zhong C, Liang C, Sun Y. Higher intratumoral infiltrated Foxp3+ Treg numbers and Foxp3+/CD8+ ratio are associated with adverse prognosis in resectable gastric cancer. J Cancer Res Clin Oncol 2010; 136:1585-95. [PMID: 20221835 DOI: 10.1007/s00432-010-0816-9] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 02/01/2010] [Indexed: 12/13/2022]
Abstract
PURPOSE The aim of the present study was to investigate the prognostic value of tumor-infiltrated lymphocytes (TILs), especially the prognostic value of Foxp3+ regulatory T cells (Tregs), CD8+ CTLs and Tregs/CD8+ ratios in gastric cancer patients after R0 resection. PATIENTS AND METHODS From 133 patients, CD4+, CD8+ and Foxp3+ TILs were assessed by immunohistochemistry in tissue microarrays and N1 regional lymph nodes sections containing gastric cancer. The prognostic effects of low- or high-density TIL subsets were evaluated by Cox regression and Kaplan-Meier analysis using median values as cutoff, while the effects of Foxp3+/CD8+ ratios were evaluated using the value determined by ROC cure analysis as cutoff. RESULTS It was found that CD4+ and CD8+ TILs were not associated with overall survival (OS). In the tumor sites, higher Foxp3+ Tregs/CD8+ ratio was an independent factor for worse OS (multivariate analysis HR = 2.827, P = 0.037). The 1-year, 2-year and 3-year OS rates were 90, 77.5 and 70% for the group with intratumoral high Tregs/CD8+ ratio, compared with 100, 94.3 and 90.5% for the group with intratumoral low ratio. At the same time, the presence of intratumoral high Foxp3+ Tregs was also associated with worse OS (log rank test, P = 0.025); however, it was not an independent predictor and correlated with intratumoral Foxp3+ Tregs/CD8+ ratio (chi(2) test, P < 0.001). Although the infiltration of Foxp3+ Tregs in N1 regional lymph nodes was associated with lymph node metastasis (P = 0.028), it was not associated with prognosis (P = 0.458). CONCLUSIONS Intratumoral high Foxp3+ Tregs/CD8+ ratio was an independent predictor for the prognosis of gastric cancer. It can be inferred that a combination of deletion of Tregs and stimulation of CD8+ effector T cells may be an effective immunotherapy to prolong survival after surgery.
Collapse
Affiliation(s)
- Zhengbin Shen
- The General Surgery Department of Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Stem cell-based neuroprotective and neurorestorative strategies. Int J Mol Sci 2010; 11:2039-55. [PMID: 20559500 PMCID: PMC2885092 DOI: 10.3390/ijms11052039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/08/2010] [Accepted: 04/18/2010] [Indexed: 01/11/2023] Open
Abstract
Stem cells, a special subset of cells derived from embryo or adult tissues, are known to present the characteristics of self-renewal, multiple lineages of differentiation, high plastic capability, and long-term maintenance. Recent reports have further suggested that neural stem cells (NSCs) derived from the adult hippocampal and subventricular regions possess the utilizing potential to develop the transplantation strategies and to screen the candidate agents for neurogenesis, neuroprotection, and neuroplasticity in neurodegenerative diseases. In this article, we review the roles of NSCs and other stem cells in neuroprotective and neurorestorative therapies for neurological and psychiatric diseases. We show the evidences that NSCs play the key roles involved in the pathogenesis of several neurodegenerative disorders, including depression, stroke and Parkinson’s disease. Moreover, the potential and possible utilities of induced pluripotent stem cells (iPS), reprogramming from adult fibroblasts with ectopic expression of four embryonic genes, are also reviewed and further discussed. An understanding of the biophysiology of stem cells could help us elucidate the pathogenicity and develop new treatments for neurodegenerative disorders. In contrast to cell transplantation therapies, the application of stem cells can further provide a platform for drug discovery and small molecular testing, including Chinese herbal medicines. In addition, the high-throughput stem cell-based systems can be used to elucidate the mechanisms of neuroprotective candidates in translation medical research for neurodegenerative diseases.
Collapse
|
45
|
Barnas JL, Simpson-Abelson MR, Yokota SJ, Kelleher RJ, Bankert RB. T cells and stromal fibroblasts in human tumor microenvironments represent potential therapeutic targets. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2010; 3:29-47. [PMID: 21209773 PMCID: PMC2990491 DOI: 10.1007/s12307-010-0044-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/02/2010] [Indexed: 12/16/2022]
Abstract
The immune system of cancer patients recognizes tumor-associated antigens expressed on solid tumors and these antigens are able to induce tumor-specific humoral and cellular immune responses. Diverse immunotherapeutic strategies have been used in an attempt to enhance both antibody and T cell responses to tumors. While several tumor vaccination strategies significantly increase the number of tumor-specific lymphocytes in the blood of cancer patients, most vaccinated patients ultimately experience tumor progression. CD4+ and CD8+ T cells with an effector memory phenotype infiltrate human tumor microenvironments, but most are hyporesponsive to stimulation via the T cell receptor (TCR) and CD28 under conditions that activate memory T cells derived from the peripheral blood of the cancer patients or normal donors. Attempts to identify cells and molecules responsible for the TCR signaling arrest of tumor-infiltrating T cells have focused largely upon the immunosuppressive effects of tumor cells, tolerogenic dendritic cells and regulatory T cells. Here we review potential mechanisms by which human T cell function is arrested in the tumor microenvironment with a focus on the immunomodulatory effects of stromal fibroblasts. Determining in vivo which cells and molecules are responsible for the TCR arrest in human tumor-infiltrating T cells will be necessary to formulate and test strategies to prevent or reverse the signaling arrest of the human T cells in situ for a more effective design of tumor vaccines. These questions are now addressable using novel human xenograft models of tumor microenvironments.
Collapse
Affiliation(s)
- Jennifer L. Barnas
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| | - Michelle R. Simpson-Abelson
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| | - Sandra J. Yokota
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| | - Raymond J. Kelleher
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| | - Richard B. Bankert
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| |
Collapse
|
46
|
Nowak M, Klink M, Glowacka E, Sulowska Z, Kulig A, Szpakowski M, Szyllo K, Tchorzewski H. Production of Cytokines During Interaction of Peripheral Blood Mononuclear Cells with Autologous Ovarian Cancer Cells or Benign Ovarian Tumour Cells. Scand J Immunol 2010; 71:91-8. [DOI: 10.1111/j.1365-3083.2009.02350.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Eun S, Jeon YK, Jang JJ. Hepatocellular carcinoma with immature T-cell (T-lymphoblastic) proliferation. J Korean Med Sci 2010; 25:309-12. [PMID: 20119589 PMCID: PMC2811303 DOI: 10.3346/jkms.2010.25.2.309] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Accepted: 08/27/2008] [Indexed: 01/20/2023] Open
Abstract
Indolent T-lymphoblastic proliferation has been rarely reported in the upper aerodigestive tract. The lymphoid cells associated with this condition have the morphological and phenotypical features of immature thymocytes. However, their pathogenesis and biology are unknown. We present an unusual type of tumor infiltrating lymphocytes in a case with hepatocellular carcinoma, presumed to be a T-lymphoblastic proliferation. A 58-yr-old female patient presented with indigestion and a palpable epigastric mass. The abdominal computed tomography revealed a mass in the S6 region of the liver. A hepatic segmentectomy was performed. Microscopic examination showed dense isolated nests of monomorphic lymphoid cells within the tumor. Immunohistochemically, the lymphoid cells were positive for CD3, terminal deoxymucleotide transferase (TdT) and CD1a. In addition, they showed dual expression of CD4 and CD8. The polymerase chain reaction used to examine the T-cell antigen receptor gamma gene rearrangement showed polyclonal T-cell proliferation. This is the second case of hepatocellular carcinoma combined with indolent T-lymphoblastic proliferation identified by an unusual tumor infiltrating lymphocytes.
Collapse
Affiliation(s)
- Shin Eun
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Youn Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Ja June Jang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Ye Y, Zhou L, Xie X, Jiang G, Xie H, Zheng S. Interaction of B7-H1 on intrahepatic cholangiocarcinoma cells with PD-1 on tumor-infiltrating T cells as a mechanism of immune evasion. J Surg Oncol 2009; 100:500-4. [PMID: 19697355 DOI: 10.1002/jso.21376] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND OBJECTIVES The B7-H1/PD-1 pathway has recently been found to contribute to immune evasion of cancer cells from host immune system. This study aimed to investigate the expression of B7-H1 and its receptor PD-1 and to explore their significance in the progression of intraheptic cholangiocarcinoma (ICC). METHODS Thirty-one surgically resected ICC tissues and the corresponding cancer adjacent tissues were enrolled from 2006 to 2007. Immunohistochemical studies were performed with antibody of B7-H1, PD-1, CD8, and CD4. Apoptosis status of tumor-infiltrating lymphocytes (TILs) was detected by TUNEL assay. RESULTS Expression of B7-H1 and PD-1 was found to be up-regulated in ICC tissues compared with the cancer adjacent tissues. Tumor-related B7-H1 expression was significantly correlated with both tumor differentiation and pTNM stage and was inversely correlated with CD8+ TILs but not CD4+ TILs. TILs in primary carcinoma showed a high level of apoptosis. CONCLUSION B7-H1/PD-1 pathway may be linked to malignant potential of ICC and contribute to tumor immune evasion by promoting CD8+ TILs apoptosis. Thus, this pathway may indeed be a potential therapeutic target in the treatment of this disease.
Collapse
Affiliation(s)
- Yufu Ye
- Key Lab of Combined Multi-organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | | | | | | | | | | |
Collapse
|
49
|
Holtan SG, Creedon DJ, Haluska P, Markovic SN. Cancer and Pregnancy: Parallels in Growth, Invasion, and Immune Modulation and Implications for Cancer Therapeutic Agents. Mayo Clin Proc 2009. [DOI: 10.4065/84.11.985] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Holtan SG, Creedon DJ, Haluska P, Markovic SN. Cancer and pregnancy: parallels in growth, invasion, and immune modulation and implications for cancer therapeutic agents. Mayo Clin Proc 2009; 84:985-1000. [PMID: 19880689 PMCID: PMC2770910 DOI: 10.1016/s0025-6196(11)60669-1] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many proliferative, invasive, and immune tolerance mechanisms that support normal human pregnancy are also exploited by malignancies to establish a nutrient supply and evade or edit the host immune response. In addition to the shared capacity for invading through normal tissues, both cancer cells and cells of the developing placenta create a microenvironment supportive of both immunologic privilege and angiogenesis. Systemic alterations in immunity are also detectable, particularly with respect to a helper T cell type 2 polarization evident in advanced cancers and midtrimester pregnancy. This review summarizes the similarities between growth and immune privilege in cancer and pregnancy and identifies areas for further investigation. Our PubMed search strategy included combinations of terms such as immune tolerance, pregnancy, cancer, cytokines, angiogenesis, and invasion. We did not place any restrictions on publication dates. The knowledge gained from analyzing similarities and differences between the physiologic state of pregnancy and the pathologic state of cancer could lead to identification of new potential targets for cancer therapeutic agents.
Collapse
Affiliation(s)
| | | | | | - Svetomir N. Markovic
- From the Division of Hematology (S.G.H., S.N.M.), Department of Oncology (S.G.H., P.H., S.N.M.), and Department of Obstetrics and Gynecology (D.J.C.), Mayo Clinic, Rochester, MN
| |
Collapse
|