1
|
Quintero-Moreno A, Martínez-López C, Luongo C, García ML, Argente MJ, Romero G, Pérez-Patiño C, Díaz JR, García-Vázquez FA, Llamas-López PJ. Wine Grape Pomace as a Dietary Supplement to Improve Semen Quality in Boars. Reprod Domest Anim 2025; 60:e70049. [PMID: 40192035 DOI: 10.1111/rda.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/04/2025] [Accepted: 03/06/2025] [Indexed: 05/17/2025]
Abstract
Boar spermatozoa are highly susceptible to oxidative damage due to their high content of unsaturated fatty acids, which are prone to disruption by reactive oxygen species (ROS). Excessive ROS can induce lipid peroxidation, DNA fragmentation and impaired enzyme activity, ultimately reducing sperm quality and reproductive performance. Wine grape pomace (WGP), a by-product of the winemaking process, is rich in polyphenols, including flavonoids (anthocyanins and quercetin), stilbenes (resveratrol) and tannins, which possess strong antioxidant properties. This study aimed to evaluate the effects of dietary supplementation with 4% WGP on boar ejaculate output and sperm quality during storage. Twenty boars were divided into two groups: a control group fed a standard diet and a WGP group supplemented with 4% WGP for 4 months. Semen samples were collected and analysed for ejaculate number of sperm per ml, total antioxidant capacity (in seminal plasma) and quality parameters (motility, kinematic parameters, mitochondrial activity, acrosome integrity, viability) after 1, 3 and 5 days of refrigerated storage. Results showed that WGP supplementation increased the number of sperm per ml compared to the control group (p < 0.05), resulting in approximately two additional seminal doses per ejaculate, without negatively affecting other seminal parameters (p > 0.05) and refrigeration storage (p > 0.05). This improvement in sperm concentration could enhance the profitability of swine semen production by increasing the number of doses produced per boar annually. Given the low cost of WGP (10.03 €/boar/year), this strategy could offer a cost-effective approach to improving reproductive performance in boars. These findings support further research into optimising WGP inclusion levels and exploring its broader impacts on boar fertility and reproductive efficiency.
Collapse
Affiliation(s)
- Armando Quintero-Moreno
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum, Universidad de Murcia, Murcia, Spain
- Laboratorio de Andrología, Universidad del Zulia, Maracaibo, Venezuela
| | - Cristina Martínez-López
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Chiara Luongo
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - María Luz García
- Instituto de Investigación e Investigación Agroalimentaria y Agroambiental CIAGRO-UMH, Orihuela, Spain
| | - María José Argente
- Instituto de Investigación e Investigación Agroalimentaria y Agroambiental CIAGRO-UMH, Orihuela, Spain
| | - Gema Romero
- Instituto de Investigación e Investigación Agroalimentaria y Agroambiental CIAGRO-UMH, Orihuela, Spain
| | | | - José Ramón Díaz
- Instituto de Investigación e Investigación Agroalimentaria y Agroambiental CIAGRO-UMH, Orihuela, Spain
| | - Francisco A García-Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Pedro José Llamas-López
- Instituto de Investigación e Investigación Agroalimentaria y Agroambiental CIAGRO-UMH, Orihuela, Spain
| |
Collapse
|
2
|
Chegini Z, Khoshbayan A, Kashi M, Zare Shahraki R, Didehdar M, Shariati A. The possible pathogenic mechanisms of microorganisms in infertility: a narrative review. Arch Microbiol 2025; 207:27. [PMID: 39777552 DOI: 10.1007/s00203-024-04231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025]
Abstract
Infertility can harm a patient in physical, psychological, spiritual, and medical ways. This illness is unusual because it affects the patient's companion and the patient individually. Infertility is a multifactorial disease, and various etiological factors like infection are known to develop this disorder. Recently published studies reported that different bacteria, such as Chlamydia trachomatis, Mycoplasma spp., Ureaplasma urealyticum, Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, can lead to infertility by immunopathological effects, oxidative stress, and adverse effects on sperm concentration, motility, morphology, and DNA condensation. Among viruses, Human papillomavirus and Herpes simplex virus reduce sperm progressive motility and sperm concentration. The viruses can lead to the atrophy of the germinal epithelium and degenerative changes in the testes. Candida albicans also harm sperm quality, motility, and chromatin integrity and induce apoptosis in sperm cells. Finally, Trichomonas vaginalis leads to distorted heads, broken necks, and acrosomes exocytosis in sperms. This parasite decreases sperm viability and functional integrity. Noteworthy, oxidative stress could have a role in many pathological changes in the reproductive system. Recent findings show that microorganisms can increase reactive oxygen species concentration inside the host cells, leading to oxidative stress and sperm distress and dysfunction. Therefore, this article explores the potential significance of critical bacteria linked to infertility and their pathogenic mechanisms that can affect sperm function and the female reproductive system.
Collapse
Affiliation(s)
- Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Kashi
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Raha Zare Shahraki
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
3
|
Umehara T, Yamanaka T, Shimada M. Toll-like receptors in mammalian sperm. Reprod Med Biol 2025; 24:e12651. [PMID: 40242391 PMCID: PMC12000229 DOI: 10.1002/rmb2.12651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
Background Toll-like receptors (TLRs) are critical components of the innate immune system and are expressed in various cells, including the reproductive system. Although their roles in female reproductive tissues such as the ovaries and uterus, including their involvement in fertilization and implantation, have been extensively reviewed, their expression and function in male germ cells, particularly in sperm, remain underexplored. Methods This review provides a comprehensive summary of research on TLRs expressed in sperm, including findings from experimental models in mice, humans, and industrial livestock. Results The activation of TLR2 and TLR4, which detect Gram-positive and Gram-negative bacteria, has been shown to reduce sperm motility and viability, thereby impairing fertilization. Conversely, low levels of TLR2 activation have been reported to promote the fertilization of bull sperm, suggesting that TLR2/4 may act as regulators of fertilization. TLR7 and TLR8, which are exclusively expressed in X chromosome-bearing sperm (X-sperm), have attracted increasing research interest. These receptors modulate sperm metabolism, selectively reduce the motility of X sperm, and enable the separation of X and Y sperm. Conclusion TLRs in the sperm serve as immune receptors that detect bacterial and viral infections, thereby reducing sperm functionality, preventing miscarriage, protecting maternal health, and sex selection.
Collapse
Affiliation(s)
- Takashi Umehara
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Takahiro Yamanaka
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| |
Collapse
|
4
|
Henkel R. Leukocytospermia and/or Bacteriospermia: Impact on Male Infertility. J Clin Med 2024; 13:2841. [PMID: 38792382 PMCID: PMC11122306 DOI: 10.3390/jcm13102841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Infertility is a globally underestimated public health concern affecting almost 190 million people, i.e., about 17.5% of people during their lifetime, while the prevalence of male factor infertility is about 7%. Among numerous other causes, the prevalence of male genital tract infections reportedly ranges between 10% and 35%. Leukocytospermia is found in 30% of infertile men and up to 20% in fertile men. Bacterial infections cause an inflammatory response attracting leukocytes, which produce reactive oxygen species (ROS) and release cytokines, both of which can cause damage to sperm, rendering them dysfunctional. Although leukocytospermia and bacteriospermia are both clinical conditions that can negatively affect male fertility, there is still debate about their impact on assisted reproduction outcomes and management. According to World Health Organization (WHO) guidelines, leukocytes should be determined by means of the Endtz test or with monoclonal antibodies against CD15, CD68 or CD22. The cut-off value proposed by the WHO is 1 × 106 peroxidase-positive cells/mL. For bacteria, Gram staining and semen culture are regarded as the "gold standard", while modern techniques such as PCR and next-generation sequencing (NGS) are allowing clinicians to detect a wider range of pathogens. Whereas the WHO manual does not specify a specific value as a cut-off for bacterial contamination, several studies consider semen samples with more than 103 colony-forming units (cfu)/mL as bacteriospermic. The pathogenic mechanisms leading to sperm dysfunction include direct interaction of bacteria with the male germ cells, bacterial release of spermatotoxic substances, induction of pro-inflammatory cytokines and ROS, all of which lead to oxidative stress. Clinically, bacterial infections, including "silent" infections, are treatable, with antibiotics being the treatment of choice. Yet, non-steroidal antiphlogistics or antioxidants should also be considered to alleviate inflammatory lesions and improve semen quality. In an assisted reproduction set up, sperm separation techniques significantly reduce the bacterial load in the semen. Nonetheless, contamination of the semen sample with skin commensals should be prevented by applying relevant hygiene techniques. In patients where leukocytospermia is detected, the causes (e.g. infection, inflammation, varicocele, smoking, etc.) of the leukocyte infiltration have to be identified and addressed with antibiotics, anti-inflammatories or antioxidants in cases where high oxidative stress levels are detected. However, no specific strategy is available for the management of leukocytospermia. Therefore, the relationship between bacteriospermia and leukocytospermia as well as their specific impact on functional sperm parameters and reproductive outcome variables such as fertilization or clinical pregnancy must be further investigated. The aim of this narrative review is to provide an update on the current knowledge on leukocytospermia and bacteriospermia and their impact on male fertility.
Collapse
Affiliation(s)
- Ralf Henkel
- LogixX Pharma Ltd., Merlin House, Brunel Road, Theale, Reading RG7 4AB, UK;
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0HS, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
5
|
Aghazarian A, Huf W, Klingler HC, Klatte T. The effect of seminal pathogens on standard semen parameters, sperm kinematics and seminal inflammatory markers. J Reprod Immunol 2024; 161:104183. [PMID: 38154434 DOI: 10.1016/j.jri.2023.104183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/29/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
This study evaluated the effects of urogenital pathogens on standard semen parameters, sperm kinematics and host inflammatory response in a cohort of asymptomatic subfertile men. There were six groups based on the results of bacterial culture, including Ureaplasma urealyticum (U. Urealyticum) (n = 27), mixed comprising two or more pathogenic species (n = 28), Gardnerella Vaginalis (G. Vaginalis) (n = 15), gram-positive cocci and bacilli (g+cocci/bacilli) (n = 15), gram-negative bacilli (g-bacilli) (n = 10) and Chlamydia trachomatis (C. trachomatis) (n = 2). One control group (n = 20) and one leukocytospermic group (n = 10) were also included. Sperm quality parameters, seminal leukocytes and interleukin (IL)-6 of all groups, apart from C. trachomatis, were compared to the control group. Standard semen parameters were significantly worse in all groups except for that with g-bacilli. Progressive motility, total motility and normal sperm morphology demonstrated the most significant differences, when U. Urealyticum, leukocytospermia and mixed pathogens were detected in semen. Among sperm kinematics, the concentration of progressive motile sperm cells (CPMS), the percentage of progressive motile sperm cells (PPMS) and straightness (STR) were manifested significant declines in the presence of seminal pathogens. CPMS was affected in all groups except for G. vaginalis. Moreover, the presence of g+cocci/bacilli and g-bacilli were associated with increased seminal IL-6. Seminal leukocytes were elevated significantly only when g-bacilli were cultured in semen. We conclude that seminal pathogens can negatively affect sperm quality. The most negative effect is related to U. Urealyticum. Moreover, g+cocci/bacilli and g-bacilli can initiate an inflammatory response.
Collapse
Affiliation(s)
- Artin Aghazarian
- Department of Urology, Clinic Hietzing, Vienna, Austria; Department of Laboratory Medicine, Clinic Hietzing, Vienna, Austria.
| | - Wolfgang Huf
- Karl Landsteiner Institute for Clinical Risk Management, Vienna, Austria
| | | | - Tobias Klatte
- Department of Urology, Helios Klinikum Bad Saarow, Bad Saarow, Germany
| |
Collapse
|
6
|
Hu J, Luo X, Panga MJ, Appiah C, Retyunskiy V, Zhu L, Zhao Y. Toxic effects and potential mechanisms of zinc pyrithione (ZPT) exposure on sperm and testicular injury in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132575. [PMID: 37741212 DOI: 10.1016/j.jhazmat.2023.132575] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
Zinc pyrithione (ZPT) is widely recognized for its beneficial properties as an antifouling, antibacterial, and antifungal agent. Despite its positive industrial contributions, ZPT has been proven to exhibit toxicity towards various ecosystems, particularly affecting marine life. However, there is still a dearth of comprehensive research on ZPT toxicity and its toxicological mechanism in reproductive systems of aquatic organisms. In our study, we conducted a thorough analysis and unveiled a multitude of abnormalities in zebrafish sperm and testicular tissue caused by ZPT exposure, including a dose-dependent diminishing of testosterone levels, various sperm deformities, decreased sperm concentration and motility, and ROS-induced testicular tissue DNA damage. In addition, our study suggested that ZPT-induced testicular damage is associated with heightened oxidative stress, apoptosis, and possible hyperpolarization of the mitochondrial membrane. Through RNA-seq analysis, a total of 409 DEGs associated with ZPT-induced testicular injury were identified, and the hub gene was determined using a protein-protein interaction network (PPI). The genes and pathways uncovered in this study point to potential mechanisms of ZPT exposure on sperm and testicular injury in zebrafish.
Collapse
Affiliation(s)
- Jinyuan Hu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xu Luo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Mogellah John Panga
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Clara Appiah
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Vladimir Retyunskiy
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Lin Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
7
|
Davies R, Minhas S, Jayasena CN. Next-Generation Sequencing to Elucidate the Semen Microbiome in Male Reproductive Disorders. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:25. [PMID: 38256286 PMCID: PMC10819355 DOI: 10.3390/medicina60010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
Mean sperm counts are declining at an accelerated rate and infertility is increasingly becoming a public health concern. It is now understood that human semen, previously considered to be sterile, harbours its own specific microbiome. Via activated leucocytes and the generation of reactive oxygen species, bacteria have the capability of evoking an immune response which may lead to sperm damage. Men with infertility have higher rates of both reactive oxygen species and sperm DNA damage. Due to the lack of sensitivity of routine culture and PCR-based methods, next-generation sequencing technology is being employed to characterise the seminal microbiome. There is a mounting body of studies that share a number of similarities but also a great range of conflicting findings. A lack of stringent decontamination procedures, small sample sizes and heterogeneity in other aspects of methodology makes it difficult to draw firm conclusions from these studies. However, various themes have emerged and evidence of highly conserved clusters of common bacteria can be seen. Depletion or over-representation of specific bacteria may be associated with aberrations in traditional and functional seminal parameters. Currently, the evidence is too limited to inform clinical practice and larger studies are needed.
Collapse
Affiliation(s)
- Rhianna Davies
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0HS, UK;
| | - Suks Minhas
- Department of Urology, Charing Cross Hospital, Imperial College NHS Trust, London W6 8RF, UK;
| | - Channa N. Jayasena
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0HS, UK;
| |
Collapse
|
8
|
Anastas ZM, Byrne PG, O'Brien JK, Hobbs RJ, Upton R, Silla AJ. The Increasing Role of Short-Term Sperm Storage and Cryopreservation in Conserving Threatened Amphibian Species. Animals (Basel) 2023; 13:2094. [PMID: 37443891 DOI: 10.3390/ani13132094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Multidisciplinary approaches to conserve threatened species are required to curb biodiversity loss. Globally, amphibians are facing the most severe declines of any vertebrate class. In response, conservation breeding programs have been established in a growing number of amphibian species as a safeguard against further extinction. One of the main challenges to the long-term success of conservation breeding programs is the maintenance of genetic diversity, which, if lost, poses threats to the viability and adaptive potential of at-risk populations. Integrating reproductive technologies into conservation breeding programs can greatly assist genetic management and facilitate genetic exchange between captive and wild populations, as well as reinvigorate genetic diversity from expired genotypes. The generation of offspring produced via assisted fertilisation using frozen-thawed sperm has been achieved in a small but growing number of amphibian species and is poised to be a valuable tool for the genetic management of many more threatened species globally. This review discusses the role of sperm storage in amphibian conservation, presents the state of current technologies for the short-term cold storage and cryopreservation of amphibian sperm, and discusses the generation of cryo-derived offspring.
Collapse
Affiliation(s)
- Zara M Anastas
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Justine K O'Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Rebecca J Hobbs
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Rose Upton
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
9
|
Veneruso I, Cariati F, Alviggi C, Pastore L, Tomaiuolo R, D'Argenio V. Metagenomics Reveals Specific Microbial Features in Males with Semen Alterations. Genes (Basel) 2023; 14:1228. [PMID: 37372408 DOI: 10.3390/genes14061228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Infertility incidence is rising worldwide, with male infertility accounting for about 50% of cases. To date, several factors have been associated with male infertility; in particular, it has been suggested that semen microbiota may play a role. Here, we report the NGS-based analyses of 20 semen samples collected from men with (Case) and without (Control) semen alterations. Genomic DNA was extracted from each collected sample, and a specific PCR was carried out to amplify the V4-V6 regions of the 16S rRNA. Sequence reactions were carried out on the MiSeq and analyzed by specific bioinformatic tools. We found a reduced richness and evenness in the Case versus the Control group. Moreover, specific genera, the Mannheimia, the Escherichia_Shigella, and the Varibaculum, were significantly increased in the Case compared to the Control group. Finally, we highlighted a correlation between the microbial profile and semen hyperviscosity. Even if further studies are required on larger groups of subjects to confirm these findings and explore mechanistic hypotheses, our results confirm the correlation between semen features and seminal microbiota. These data, in turn, may open the way to the possible use of semen microbiota as an attractive target for developing novel strategies for infertility management.
Collapse
Affiliation(s)
- Iolanda Veneruso
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Federica Cariati
- Department of Public Health, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Carlo Alviggi
- Department of Public Health, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Lucio Pastore
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Rossella Tomaiuolo
- Faculty of Medicine, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Valeria D'Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Via di Val Cannuta 247, 00166 Roma, Italy
| |
Collapse
|
10
|
Tvrdá E, Ďuračka M, Benko F, Lukáč N. Bacteriospermia - A formidable player in male subfertility. Open Life Sci 2022; 17:1001-1029. [PMID: 36060647 PMCID: PMC9386612 DOI: 10.1515/biol-2022-0097] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial colonization of male reproductive tissues, cells, and fluids, and the subsequent impact of bacteria on the sperm architecture, activity, and fertilizing potential, has recently gained increased attention from the medical and scientific community. Current evidence strongly emphasizes the fact that the presence of bacteria in semen may have dire consequences on the resulting male fertility. Nevertheless, the molecular basis underlying bacteriospermia-associated suboptimal semen quality is sophisticated, multifactorial, and still needs further understanding. Bacterial adhesion and subsequent sperm agglutination and immobilization represent the most direct pathway of sperm-bacterial interactions. Furthermore, the release of bacterial toxins and leukocytic infiltration, associated with a massive outburst of reactive oxygen species, have been repeatedly associated with sperm dysfunction in bacteria-infested semen. This review serves as a summary of the present knowledge on bacteriospermia-associated male subfertility. Furthermore, we strived to outline the currently available methods for assessing bacterial profiles in semen and to outline the most promising strategies for the prevention and/or management of bacteriospermia in practice.
Collapse
Affiliation(s)
- Eva Tvrdá
- Department of Animal Physiology, Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra-Chrenová, 949 76, Slovakia
| | - Michal Ďuračka
- Department of Animal Physiology, Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra-Chrenová, 949 76, Slovakia
| | - Filip Benko
- Department of Animal Physiology, Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra-Chrenová, 949 76, Slovakia
| | - Norbert Lukáč
- Department of Animal Physiology, Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra-Chrenová, 949 76, Slovakia
| |
Collapse
|
11
|
Possible Implications of Bacteriospermia on the Sperm Quality, Oxidative Characteristics, and Seminal Cytokine Network in Normozoospermic Men. Int J Mol Sci 2022; 23:ijms23158678. [PMID: 35955814 PMCID: PMC9369207 DOI: 10.3390/ijms23158678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
This study focused on the identification of bacterial profiles of semen in normozoospermic men and their possible involvement in changes to the sperm structural integrity and functional activity. Furthermore, we studied possible fluctuations of selected cytokines, oxidative markers, and antibacterial proteins as a result of bacterial presence in the ejaculate. Sperm motility was assessed with computer-assisted sperm analysis, while sperm apoptosis, necrosis and acrosome integrity were examined with fluorescent methods. Reactive oxygen species (ROS) generation was quantified via luminometry, sperm DNA fragmentation was evaluated using the TUNEL protocol and chromatin-dispersion test, while the JC-1 assay was applied to evaluate the mitochondrial membrane potential. Cytokine levels were quantified with the biochip assay, whilst selected antibacterial proteins were quantified using the ELISA method. The predominant species identified by the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were Staphylococcus hominis, Staphylococcus capitis and Micrococcus luteus. The results revealed that the sperm quality decreased proportionally to the increasing bacterial load and occurrence of conditionally pathogenic bacteria, including Enterococcus faecalis, Staphylococcus aureus and Escherichia coli. Antimicrobial susceptibility tests revealed a substantial resistance of randomly selected bacterial strains to ampicillin, vancomycin, tobramycin, and tetracycline. Furthermore, an increased bacterial quantity in semen was accompanied by elevated levels of pro-inflammatory cytokines, including interleukin-1, interleukin-2, interleukin-6, tumor necrosis factor alpha as well as ROS overproduction and lipid peroxidation of the sperm membranes. Our results suggest that semen quality may be notably affected by the bacterial quantity as well as quality. It seems that bacteriospermia may be associated with inflammatory processes, oxidative stress, sperm structural deterioration, and a subsequent risk for the development of subfertility, even in normozoospermic males.
Collapse
|
12
|
Sharma R, Gupta S, Agarwal A, Henkel R, Finelli R, Parekh N, Saleh R, Arafa M, Ko E, Zini A, Tadros N, Shah R, Ambar RF, Elbardisi H, Sengupta P, Martinez M, Boitrelle F, Simopoulou M, Vogiatzi P, Gosalvez J, Kavoussi P, Kandil H, Palani A, Rodriguez Peña M, Rajmil O, Busetto GM, Anagnostopoulou C, Micic S, Alves MG, Rocco L, Mostafa T, Alvarez JG, Jindal S, Sallam HN, Maldonado Rosas I, Lewis SEM, AlSaid S, Altan M, Park HJ, Ramsay J, Parekattil S, Sabbaghian M, Tremellen K, Khalafalla K, Durairajanayagam D, Colpi GM. Relevance of Leukocytospermia and Semen Culture and Its True Place in Diagnosing and Treating Male Infertility. World J Mens Health 2022; 40:191-207. [PMID: 34169683 PMCID: PMC8987138 DOI: 10.5534/wjmh.210063] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 02/05/2023] Open
Abstract
The current WHO 2010 manual for human semen analysis defines leukocytospermia as the presence of peroxidase-positive leukocytes at a concentration >1×106/mL of semen. Granular leukocytes when activated are capable of generating high levels of reactive oxygen species in semen resulting in oxidative stress. Oxidative stress has been correlated with poor sperm quality, increased level of sperm DNA fragmentation and low fertility potential. The presence of leukocytes and pathogens in the semen may be a sign of infection and/or localized inflammatory response in the male genital tract and the accessory glands. Common uro-pathogens including Chlamydia trachomatis, Ureaplasma urealyticum, Neisseria gonorrhoeae, Mycoplasma hominis, and Escherichia coli can cause epididymitis, epididymo-orchitis, or prostatitis. The relationship between leukocytospermia and infection is unclear. Therefore, we describe the pathogens responsible for male genital tract infections and their association with leukocytospermia. The review also examines the diagnostic tests available to identify seminal leukocytes. The role of leukocytospermia in male infertility and its management is also discussed.
Collapse
Affiliation(s)
- Rakesh Sharma
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Sajal Gupta
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Neel Parekh
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mohamed Arafa
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Urology, Weill Cornell Medical-Qatar, Doha, Qatar
| | - Edmund Ko
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Armand Zini
- Department of Surgery, McGill University, Montreal, Canada
| | - Nicholas Tadros
- Division of Urology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| | - Rafael F Ambar
- Department of Urology, Centro Universitario em Saude do ABC/Andrology Group at Ideia Fertil Institute of Human Reproduction, Santo André, Brazil
| | - Haitham Elbardisi
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Urology, Weill Cornell Medical-Qatar, Doha, Qatar
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Marlon Martinez
- Section of Urology, University of Santo Tomas Hospital, Manila, Philippines
| | - Florence Boitrelle
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Paris Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Mara Simopoulou
- Department of Physiology, School of Medicine, National & Kapodistrian University of Athens, Maroussi, Athens, Greece
| | - Paraskevi Vogiatzi
- Andromed Health & Reproduction, Fertility Diagnostics Laboratory, Maroussi, Greece
| | - Jaime Gosalvez
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Parviz Kavoussi
- Austin Fertility and Reproductive Medicine/Westlake IVF, Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | - Ayad Palani
- Department of Biochemistry, College of Medicine, University of Garmian, Kalar, Iraq
| | - Marcelo Rodriguez Peña
- Departamento Docencia e Investigación, Hospital Militar Campo de Mayo, Universidad Barcelo, Buenos Aires, Argentina
| | - Osvaldo Rajmil
- Clinical and training Centre of the European Academy of Andrology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia Policlinico Riuniti of Foggia, Foggia, Italy
| | | | - Sava Micic
- Department of Andrology, Uromedica Polyclinic, Belgrade, Serbia
| | - Marco G Alves
- Department of Anatomy & Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Taymour Mostafa
- Department of Andrology, Sexology & STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Juan G Alvarez
- Centro ANDROGEN, La Coruña, Spain
- Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Sunil Jindal
- Department of Andrology and Reproductive Medicine, Jindal Hospital, Meerut, India
| | - Hassan N Sallam
- Department of Obstetrics and Gynaecology, Alexandria University Faculty of Medicine, Alexandria, Egypt
| | - Israel Maldonado Rosas
- Centerf Technological Innovation, and Reproductive Medicine (CITMER), Mexico City, Mexico
| | - Sheena E M Lewis
- Examenlab Ltd., Weavers Court Business Park, Linfield Road, Belfast, Northern Ireland, UK
| | - Sami AlSaid
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
| | - Mesut Altan
- Department of Urology, Haceppete University, Ankara, Turkey
| | - Hyun Jun Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute of Pusan National University Hospital, Busan, Korea
| | | | - Sijo Parekattil
- Avant Concierge Urology & University of Central Florida, Winter Garden, FL, USA
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Kelton Tremellen
- Department of Obstetrics Gynaecology and Reproductive Medicine, Flinders University, Adelaide, South Australia
| | | | - Damayanthi Durairajanayagam
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | | |
Collapse
|
13
|
Boursier A, Dumont A, Boitrelle F, Prasivoravong J, Lefebvre-Khalil V, Robin G, Barbotin AL. Necrozoospermia: The tree that hides the forest. Andrology 2022; 10:642-659. [PMID: 35246969 DOI: 10.1111/andr.13172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Necrozoospermia is a condition found in 0.2 to 0.4 % of male infertility cases. The causes of necrozoospermia are multiple: they can be related to testicular and/or post-testicular damage. Additionally, these causes most often involve the production of reactive oxygen species (ROS) and/or sperm DNA fragmentation (SDF) which can reduce the chances of spontaneous pregnancy or affect the outcome of assisted reproductive technologies. OBJECTIVE To focus on potential etiologies of necrozoospermia, its diagnosis and its therapeutic management especially before the employment of ICSI. METHODS Authors searched PubMed/Medline, Web of Science, Cochrane Library, Google and Institutional websites for medical subheading terms and free text words referred to "necrozoospermia", "sperm vitality", "sperm viability", "sperm DNA fragmentation" and "ICSI". RESULTS We identified twelve main etiologies of necrozoospermia responsible for either a decrease of sperm vitality, a mild a moderate or a severe necrozoospermia. In case of a confirmed decreased vitality, a thorough check-up should be conducted and if available, etiological treatment should be proposed. Therapeutic management could also include repeated ejaculations, drug treatments, the use of ICSI with ejaculated or surgically extracted spermatozoa in case of a non-treatable necrozoospermia. DISCUSSION AND CONCLUSION The potential causes of necrozoospermia should be investigated because many of them could be corrected, thus avoiding the use of ICSI. Moreover, if ICSI procedure remains necessary, the therapeutic management of necrozoospermia could also improve the chances of success by reducing oxidative stress and/or sperm DNA fragmentation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Angele Boursier
- Institut de Biologie de La Reproduction-Spermiologie-CECOS, Hôpital Jeanne de Flandre, CHU Lille, Lille, F-59000, France
| | - A Dumont
- Service de Gynécologie Endocrinienne et Médecine de La Reproduction, Assistance Médicale à La Procréation et Préservation de La Fertilité, Hôpital Jeanne de Flandre, Avenue Eugène Avinée, CHU Lille, Lille, F-59000, France
| | - F Boitrelle
- Service de Biologie de la Reproduction et de Cytogénétique, Centre Hospitalier Poissy-Saint-Germain-en-Laye, Poissy, 78303, France
| | | | - V Lefebvre-Khalil
- Institut de Biologie de La Reproduction-Spermiologie-CECOS, Hôpital Jeanne de Flandre, CHU Lille, Lille, F-59000, France
| | - Geoffroy Robin
- Service de Gynécologie Endocrinienne et Médecine de La Reproduction, Assistance Médicale à La Procréation et Préservation de La Fertilité, Hôpital Jeanne de Flandre, Avenue Eugène Avinée, CHU Lille, Lille, F-59000, France.,Service d'Andrologie, Hôpital Huriez, CHU Lille, Lille, F-59000, France.,EA 4308 Gamètogenèse Et Qualité du Gamète, Université de Lille Et CHU de Lille, Lille, F-59000, France
| | - Anne-Laure Barbotin
- Institut de Biologie de La Reproduction-Spermiologie-CECOS, Hôpital Jeanne de Flandre, CHU Lille, Lille, F-59000, France.,EA 4308 Gamètogenèse Et Qualité du Gamète, Université de Lille Et CHU de Lille, Lille, F-59000, France
| |
Collapse
|
14
|
Ayad B, Omolaoye TS, Louw N, Ramsunder Y, Skosana BT, Oyeipo PI, Du Plessis SS. Oxidative Stress and Male Infertility: Evidence From a Research Perspective. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:822257. [PMID: 36303652 PMCID: PMC9580735 DOI: 10.3389/frph.2022.822257] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Male fertility potential can be influenced by a variety of conditions that frequently coincide. Spermatozoa are particularly susceptible to oxidative damage due to their limited antioxidant capacity and cell membrane rich in polyunsaturated fatty acids (PUFAs). The role of oxidative stress (OS) in the etiology of male infertility has been the primary focus of our Stellenbosch University Reproductive Research Group (SURRG) over the last 10 years. This review aims to provide a novel insight into the impact of OS on spermatozoa and male reproductive function by reviewing the OS-related findings from a wide variety of studies conducted in our laboratory, along with those emerging from other investigators. We will provide a concise overview of the production of reactive oxygen species (ROS) and the development of OS in the male reproductive tract along with the physiological and pathological effects thereof on male reproductive functions. Recent advances in methods and techniques used for the assessment of OS will also be highlighted. We will furthermore consider the current evidence regarding the association between OS and ejaculatory abstinence period, as well as the potential mechanisms involved in the pathophysiology of various systemic diseases such as obesity, insulin resistance, hypertension, and certain mental health disorders which have been shown to cause OS induced male infertility. Finally, special emphasis will be placed on the potential for transferring and incorporating research findings emanating from different experimental studies into clinical practice.
Collapse
Affiliation(s)
- Bashir Ayad
- Department of Physiology, Faculty of Medicine, Misurata University, Misrata, Libya
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Temidayo S. Omolaoye
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nicola Louw
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Yashthi Ramsunder
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Bongekile T. Skosana
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Peter I. Oyeipo
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Physiology, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Stefan S. Du Plessis
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
15
|
The Semen Microbiome and Semen Parameters in Healthy Stallions. Animals (Basel) 2022; 12:ani12050534. [PMID: 35268102 PMCID: PMC8908834 DOI: 10.3390/ani12050534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Stallion infertility is a major cause of concern in the horse industry. Despite zootechnics advances, sub- or infertile animals appear in stud farms without a toxic, genetic, or nutritional reason. Recent research in human andrology has opened the door for a new, plausible factor that affects sperm quality: seminal microflora. In recent years, there has been an increasing amount of evidence regarding the relationship between different seminal flora compositions and male fertility. However, little has been studied in veterinary science, including horses. Therefore, the objective of this study was to examine associations with the presence of bacteria families in horse semen with five sperm quality parameters: concentration, total number of spermatozoa, total and progressive sperm motility, and DNA fragmentation. Our study detected a correlation between the presence of the Peptoniphilaceae family and higher total motility and the presence of Clostridiales Incertae Sedis XI and lower progressive motility. These changes in seminal flora may contribute to the idiopathically poorer sperm quality in certain animals. Although further mechanisms behind bacteria–spermatozoa interactions are unknown, these associations are already leading to a new therapeutic approach to infertility: the use of prebiotics, which has already yielded promising results in human andrology. Abstract Despite the advances in reproductive technology, there is still a considerable number of low sperm quality cases in stallions. Recent studies in humans have detected several seminal microflora–spermatozoa associations behind some idiopathic infertility cases. However, no studies are available on horses, and there is limited information on the microflora present in stallion ejaculates. Accordingly, the objective of this study was to examine associations to the presence of bacteria families with five sperm quality parameters: concentration, total number of spermatozoa, total and progressive motility, and DNA fragmentation. Samples were cryopreserved after their extraction. High-speed homogenization using grinding media was performed for cell disruption. Family identification was performed via 16S rRNA sequencing. Bacterial families were only considered if the relative abundance was higher than 1%. Only two families appeared to have a correlation with two sperm quality parameters. Peptoniphilaceae correlated positively with total sperm motility, whereas Clostridiales Incertae Sedis XI correlated negatively with progressive motility. No significant differences were found for the rest of the parameters. In conclusion, the seminal microbiome may affect spermatozoa activity. Our findings are based on statistical associations; thus, further studies are needed to understand the internal interactions between seminal flora and cells.
Collapse
|
16
|
Izadi M, Dehghan Marvast L, Rezvani ME, Zohrabi M, Aliabadi A, Mousavi SA, Aflatoonian B. Mesenchymal Stem-Cell Derived Exosome Therapy as a Potential Future Approach for Treatment of Male Infertility Caused by Chlamydia Infection. Front Microbiol 2022; 12:785622. [PMID: 35095800 PMCID: PMC8792933 DOI: 10.3389/fmicb.2021.785622] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023] Open
Abstract
Some microbial sexually transmitted infections (STIs) have adverse effects on the reproductive tract, sperm function, and male fertility. Given that STIs are often asymptomatic and cause major complications such as urogenital inflammation, fibrosis, and scarring, optimal treatments should be performed to prevent the noxious effect of STIs on male fertility. Among STIs, Chlamydia trachomatis is the most common asymptomatic preventable bacterial STI. C. trachomatis can affect both sperm and the male reproductive tract. Recently, mesenchymal stem cells (MSCs) derived exosomes have been considered as a new therapeutic medicine due to their immunomodulatory, anti-inflammatory, anti-oxidant, and regenerative effects without consequences through the stem cell transplantation based therapies. Inflammation of the genital tract and sperm dysfunction are the consequences of the microbial infections, especially Chlamydia trachomatis. Exosome therapy as a noninvasive approach has shown promising results on the ability to regenerate the damaged sperm and treating asthenozoospermia. Recent experimental methods may be helpful in the novel treatments of male infertility. Thus, it is demonstrated that exosomes play an important role in preventing the consequences of infection, and thereby preventing inflammation, reducing cell damage, inhibiting fibrogenesis, and reducing scar formation. This review aimed to overview the studies about the potential therapeutic roles of MSCs-derived exosomes on sperm abnormalities and male infertility caused by STIs.
Collapse
Affiliation(s)
- Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Laleh Dehghan Marvast
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Zohrabi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Aliabadi
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Alireza Mousavi
- Infectious Disease Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
17
|
Kumaresan G, Gangwar C, Mishra AK, Kumar A, Kharche SD, Singh NP, Pachoori A. Occurrence, molecular characterization and antimicrobial-resistance pattern of Staphylococcus species isolates from buck semen. Arch Microbiol 2022; 204:135. [DOI: 10.1007/s00203-021-02731-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023]
|
18
|
Das S, Roychoudhury S, Roychoudhury S, Agarwal A, Henkel R. Role of Infection and Leukocytes in Male Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:115-140. [DOI: 10.1007/978-3-030-89340-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Seminal and testicular microbiome and male fertility: A systematic review. Porto Biomed J 2021; 6:e151. [PMID: 34881355 PMCID: PMC8647872 DOI: 10.1097/j.pbj.0000000000000151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/20/2021] [Indexed: 11/26/2022] Open
Abstract
Supplemental Digital Content is available in the text Microbiome is of upmost importance for the well-being of the human body. Based on culture and PCR methods, seminal flora has been pointed as a potential cause for some of the unexplained male infertility. This is a systematic review about the effect of seminal microbiota studied by Next Generation Sequencing techniques on sperm quality and male fertility, performed according to PRISMA statement. Nine articles were included. Results of different studies are diverse. It seems that microbiota may a play a role in seminal quality and further male fertility, but the way this effect is modulated is still to be unknown. Lactobacillus spp seemed to play a beneficial role in semen quality, but the role of the remaining bacteria is unclear. Due to the lack of research and the incongruence of the results so far, the effect of microbiota on seminal quality is still unclear.
Collapse
|
20
|
Kowalczyk A. The Role of the Natural Antioxidant Mechanism in Sperm Cells. Reprod Sci 2021; 29:1387-1394. [PMID: 34845666 PMCID: PMC9005387 DOI: 10.1007/s43032-021-00795-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 11/03/2021] [Indexed: 11/05/2022]
Abstract
Molecular studies of the causes of male infertility revealed a significant contribution of oxidative stress. When excessive amounts of reactive oxygen species (ROS) are produced or antioxidant activity fails, the equilibrium between oxidation and reduction is disrupted, causing oxidative stress (OS). High levels of ROS can have an adverse effect on sperm function through the initiation of DNA damage, lipid peroxidation, loss of membrane integrity and increased permeability, inactivation of cellular enzymes, and cell apoptosis. In addition to endogenous factors such as immature sperm, leukocytes, and varicocele, potential causes of excessive ROS can also be found exogenously in males with testicular hyperthermia or exposed to environmental toxicity. To maintain the optimal functioning of sperm cells, it is, therefore, necessary to balance the redox potential, i.e., to balance ROS by antioxidants. The purpose of this review is to present the antioxidant defense systems in semen.
Collapse
Affiliation(s)
- Alicja Kowalczyk
- Department of Environment Hygiene, and Animal Welfare, Wrocław University Of Environmental and Life Sciences, Chełmońskiego 38C, Wroclaw, Poland.
| |
Collapse
|
21
|
Identification of Bull Semen Microbiome by 16S Sequencing and Possible Relationships with Fertility. Microorganisms 2021; 9:microorganisms9122431. [PMID: 34946031 PMCID: PMC8705814 DOI: 10.3390/microorganisms9122431] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
Reports on the use of 16S sequencing for the identification of bacteria in healthy animals are lacking. Bacterial contamination of bull semen can have a negative effect on the sperm quality. The aims of this study were threefold: to identify bacteria in the semen of healthy bulls using 16S sequencing; to investigate the differences in the bacterial community between individual bulls; and to establish if there was a relationship between the bacteria isolated and bull fertility. Semen from 18 bulls of known fertility was used for the DNA extraction and 16S sequencing; 107 bacterial genera were identified. The differences in the amplicon sequence variants (ASVs) and the numbers of genera between bulls were noted. Negative correlations (p < 0.05) between several bacterial genera with Curvibacter, Rikenellaceae RC9-gut-group and Dyella spp. were seen. Other negatively correlated bacteria were Cutibacterium, Ruminococcaceae UCG-005, Ruminococcaceae UCG-010 and Staphylococcus, all within the top 20 genera. Two genera, W5053 and Lawsonella, were enriched in bulls of low fertility; this is the first time that these bacteria have been reported in bull semen samples. The majority of the bacteria were environmental organisms or were species originating from the mucous membranes of animals and humans. The results of this study indicate that differences in the seminal microbiota of healthy bulls occur and might be correlated with fertility.
Collapse
|
22
|
Nabi A, Khalili MB, Eslami G, Vakili M, Anbari F, Torki A. A comparison of different O-antigen serogroups of Escherichia coli in semen samples of fertile and infertile men. Clin Exp Reprod Med 2021; 49:33-39. [PMID: 35172539 PMCID: PMC8923631 DOI: 10.5653/cerm.2020.04161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 05/25/2021] [Indexed: 11/08/2022] Open
Abstract
Objective Male genital tract infections have been associated with infertility, and Escherichia coli has drawn increasing attention as an important bacterium in this context. This investigation aimed to characterize and compare the distributions of O-antigen serogroups of E. coli in the semen samples of fertile and infertile men. Methods In this case-control study, semen samples were collected from 618 fertile and 1,535 infertile men. The E. coli-positive samples were evaluated in terms of concentration, morphology, viability, and motility parameters according to the World Health Organization 2010 guidelines. Finally, different serogroups of E. coli were identified by multiplex polymerase chain reaction targeting the O-antigen variations of the bacterium. Results The prevalence of E. coli among fertile men was significantly higher than among infertile men (p<0.001). The sperm morphology, viability, and motility in the E. coli-positive fertile group were significantly higher than in the E. coli-positive infertile group (p<0.001). E. coli O6 was the most prevalent serogroup found in both groups. However, there was no significant difference in the frequency of different serogroups of E. coil between the two groups (p=0.55). Conclusion Despite the higher prevalence of E. coli among fertile men, E. coli had more detrimental effects on semen parameters in infertile men. There was no significant difference in E. coli serogroups between the fertile and infertile groups.
Collapse
Affiliation(s)
- Ali Nabi
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Bagher Khalili
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Gilda Eslami
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahmood Vakili
- Community Medicine, Monitoring of Health Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Anbari
- Department of Reproductive Biology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Torki
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Corresponding author: Alireza Torki Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences,Javan Blvd., Safayeh, Yazd 8916978477, Iran Tel: +98-91-3250-8432 Fax: +98-91-3250-8432 E-mail:
| |
Collapse
|
23
|
Rivera VV, Cardona Maya WD, Suárez JP. The relationship between sexually transmitted bacteria, microbiota and seminal quality in asymptomatic men. Asian J Urol 2021; 9:473-479. [PMID: 36381602 PMCID: PMC9643280 DOI: 10.1016/j.ajur.2021.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/01/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022] Open
Abstract
Objective To detect DNA of different microorganisms, in semen samples from apparently healthy men and correlate their presence with seminal quality. Methods Semen samples from 81 healthy volunteers were collected, and semen parameters were analyzed. DNA extraction was performed using the phenol-chloroform technique, and the microorganisms were detected by the amplification of specific primers using polymerase chain reaction. Results DNA from at least one of the microorganisms was detected in 78 samples. The most frequent microorganism found in semen were: Lactobacillus spp. (70%), Neisseria gonorrhoeae (N. gonorrhoeae) (36%), Streptococcus epidermidis (64%), Klebsiella pneumoniae (56%), Staphylococcus aureus (32%), Chlamydia trachomatis (C. trachomatis) (28%), Pseudomonas aeruginosa (27%). The seminal parameters of all semen samples were over the lower reference values for normal semen analysis. To compare with negative samples, seminal volume was higher for the Escherichia coli positive samples and lower for Pseudomonas aeruginosa positive samples. Semen samples positive for Staphylococcus aureus had worse sperm morphology. The frequency of progressive motility was higher in positive samples for N. gonorrhoeae and C. trachomatis. Positive semen samples for C. trachomatis had a higher concentration per milliliter. Conclusion It is common to find microorganisms in semen of asymptomatic men, including those responsible for sexually transmitted infections. Antimicrobial treatment is recommended only in those individuals with a sexually transmitted infection (C. trachomatis and N. gonorrhoeae) and always promote condom use.
Collapse
|
24
|
Ďuračka M, Belić L, Tokárová K, Žiarovská J, Kačániová M, Lukáč N, Tvrdá E. Bacterial communities in bovine ejaculates and their impact on the semen quality. Syst Biol Reprod Med 2021; 67:438-449. [PMID: 34445906 DOI: 10.1080/19396368.2021.1958028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although bacterial contamination of ejaculates may cause difficulties in cattle reproduction, standard protocols for a routine microbiological analysis of bovine semen are still missing. Understanding of the mechanisms of bacterial damage to spermatozoa may contribute to the prevention and management of bacteriospermia in the future. Therefore, this study was designed to investigate bacterial profiles of fresh bovine ejaculates (n = 30), while at the same time we focused on assessing the relationships between bacteriospermia and selected sperm quality parameters as well as an array of oxidative stress and inflammatory markers. The samples were divided into three quality groups according to the sperm motility: Excellent (EX) - over 90% > Good (GO) - between 89% and 80% > Moderate (MO) - under 80%. The results showed a significant increase in reactive oxygen species (ROS) generation in the GO group when compared to the EX group. In the MO group, a deterioration of almost all quality parameters was observed when compared to the EX group. In particular, sperm motility, mitochondrial membrane potential, ROS production and IL-6 concentration exhibited a significant decline. Pearson correlation analysis revealed positive associations among bacterial load and the presence of leukocytes in semen (r = 0.965), malondialdehyde concentration (r = 0.816) and DNA fragmentation (r = 0.784). MALDI-TOF MS Biotyper analysis showed a prevalence of the Staphylococcus genus. The quantification of bacterial colonies revealed a significantly increased (P < 0.01) bacterial load in the MO group when compared with the EX as well as the GO group. Overall, our results suggest that sperm quality may be affected by both, bacterial composition, and bacterial load. It appears that an increased presence of bacterial species triggers the immune response, causes oxidative stress, and thereby contributes to sperm structural alterations while diminishing their fertilization ability.Abbreviations: EX: Excellent; GO: Good; MO: Moderate; MOT: Motility; ROS: Reactive Oxygen Species; MMP: Mitochondrial Membrane Potential; IL-1: Interleukin 1; IL-6: Interleukin 6; IL-8: Interleukin 8; IL-12: Interleukin 12; CRP: C-reactive protein; DNA: Deoxyribonucleic acid; MALDI-TOF MS: Matrix-assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry; LPO: Lipid peroxidation; CFU: Colony-forming units MDA: Malondialdehyde; CASA: Computer-assisted Sperm Analysis; WS: Working solution; RIPA: Radio-immunoprecipitation assay; TBARS: Thiobarbituric Acid Reactive Substances; BHB: D-β-hydroxybutyrate.
Collapse
Affiliation(s)
- Michal Ďuračka
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Ljubica Belić
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Katarína Tokárová
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Jana Žiarovská
- Department of Genetics and Plant Breeding, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Miroslava Kačániová
- Department of Fruit Growing, Viticulture and Enology, Slovak University of Agriculture in Nitra, Nitra, Slovakia.,Department of Bioenergy, Food Technology and Microbiology, University of Rzeszow, Rzeszow, Poland
| | - Norbert Lukáč
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Eva Tvrdá
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| |
Collapse
|
25
|
Eini F, Kutenaei MA, Zareei F, Dastjerdi ZS, Shirzeyli MH, Salehi E. Effect of bacterial infection on sperm quality and DNA fragmentation in subfertile men with Leukocytospermia. BMC Mol Cell Biol 2021; 22:42. [PMID: 34388964 PMCID: PMC8364116 DOI: 10.1186/s12860-021-00380-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Background Although bacterial infections have been recognized as a possible cause of male infertility, the effect of bacterial infections on sperm quality and sperm DNA fragmentation remains controversial. The current study aimed to investigate the prevalence rate of bacterial infection in subfertile men and its effect on semen quality. Seminal fluid was collected from 172 male members of infertile couples attending the andrology infertility center and a group of 35 fertile subjects as a control. Sperm parameters and DNA fragmentation were evaluated based on the type of bacteria in all ejaculates. Results From the 172 patients investigated for infertility, 60 (34.88%) patients had a positive culture for pathogenic bacteria of different species. Leukocytospermia was significantly higher in infected samples in comparison with non-infected samples (p < 0.05). Sperm concentration and motility and morphology were significantly lower in infected than non-infected samples. Moreover, sperm DNA fragmentation was significantly higher in infected than non-infected samples. Besides, our results showed that sperm DNA fragmentation was correlated significantly with leukocytospermia (R: 0.22, p < 0.01). Conclusion The present study suggested that bacterial infection significantly correlated with leukocytospermia could impair male fertility potential through decreasing sperm motility, morphology, and DNA integrity.
Collapse
Affiliation(s)
- Fatemeh Eini
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Maryam Azizi Kutenaei
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fayegheh Zareei
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | - Ensieh Salehi
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
26
|
Quiñones-Pérez C, Hidalgo M, Ortiz I, Crespo F, Vega-Pla JL. Characterization of the seminal bacterial microbiome of healthy, fertile stallions using next-generation sequencing. Anim Reprod 2021; 18:e20200052. [PMID: 34394753 PMCID: PMC8356074 DOI: 10.1590/1984-3143-ar2020-0052] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
High-throughput sequencing studies have shown the important role microbial communities play in the male reproductive tract, indicating differences in the semen microbial composition between fertile and infertile males. Most of these studies were made on human beings but little is known regarding domestic animals. Seminal bacteria studies made in stallions mostly focus on pathogenic bacteria and on their impact on reproductive technology. However, little is known about stallion commensal seminal microflora. That ultimately hinders our capacity to associate specific bacteria to conditions or seminal quality. Therefore, the aim of this study was to characterize the seminal microbial composition of 12 healthy, fertile stallion using next-generation sequencing. Hypervariable region V3 was chosen for bacterial identification. A total of nine phyla was detected. The most abundant ones were Bacteroidetes (46.50%), Firmicutes (29.92%) and Actinobacteria (13.58%). At family level, we found 69 bacterial families, but only nine are common in all samples. Porphyromonadaceae (33.18%), Peptoniphilaceae (14.09%), Corynebacteriaceae (11.32%) and Prevotellaceae (9.05%) were the most representative ones, while the Firmicutes phylum displayed the highest number of families (23, a third of the total). Samples showed high inter-subject variability. Findings previously described in other species notably differ from our findings. Families found in human such as Lactobacillaceae, Staphylococcaceae and Streptococcaceae only represented a 0.00%, 0.17% and 0.22% abundance in our samples, respectively. In conclusion, Porphyromonadaceae, Prevotellaceae, Peptoniphilaceae and Corynebacteriaceae families are highly represented in the seminal microbiome of healthy, fertile stallions. A high variation among individuals is also observed.
Collapse
Affiliation(s)
- Carlota Quiñones-Pérez
- Laboratorio de Investigación Aplicada, Cría Caballar de las Fuerzas Armadas, Córdoba, España
| | - Manuel Hidalgo
- Veterinary Reproduction Group Department of Animal Medicine and Surgery, Universidad de Córdoba, Córdoba, España
| | - Isabel Ortiz
- Veterinary Reproduction Group Department of Animal Medicine and Surgery, Universidad de Córdoba, Córdoba, España
| | - Francisco Crespo
- Centro Militar de Cría Caballar de Ávila, Cría Caballar de las Fuerzas Armadas, Ávila, España
| | - José Luis Vega-Pla
- Laboratorio de Investigación Aplicada, Cría Caballar de las Fuerzas Armadas, Córdoba, España
| |
Collapse
|
27
|
Ghasemian F, Esmaeilnezhad S, Mehdipour Moghaddam MJ. Staphylococcus saprophyticus and Escherichia coli: Tracking from sperm fertility potential to assisted reproductive outcomes. Clin Exp Reprod Med 2021; 48:142-149. [PMID: 34078007 PMCID: PMC8176154 DOI: 10.5653/cerm.2020.04203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/14/2021] [Indexed: 11/07/2022] Open
Abstract
Objective Bacteriospermia and urogenital infections are common problems in male infertility. This study aimed to evaluate the effects of bacteriospermia on sperm parameters and clinical outcomes in semen samples infected with two common bacteria (Staphylococcus saprophyticus and Escherichia coli) in northern Iran. Methods Microbiological tests were performed to isolate and identify organisms from 435 semen samples from infertile couples. Semen samples were assessed according to the World Health Organization criteria. The protamine status, chromatin structure, chromatin condensation, and acrosome reaction of sperm and assisted reproductive outcomes were determined in couples with different male infertility factors. Results Among the total cases, the two most prevalent pathogens were considered: S. saprophyticus (38.2%) and E. coli (52.9%). In the semen samples infected with E. coli, the spontaneous acrosome reaction and abnormal chromatin condensation were more common (p<0.05). Significant increases in abnormal chromatin condensation and deprotamination were seen in the presence of S. saprophyticus. In washed semen, tight adhesion between the sperm midpiece and S. saprophyticus was observed. There was also a significant decrease in the fertilization rate using semen samples infected with S. saprophyticus and E. coli during in vitro fertilization cycles (p<0.001). In addition, the presence of S. saprophyticus and E. coli in semen samples was associated with a lower likelihood of clinical pregnancy in couples with various factors of male infertility. Conclusion Poor results of assisted reproductive techniques may be correlated with semen samples infected with two common bacteria in northern Iran.
Collapse
Affiliation(s)
- Fatemeh Ghasemian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | | | | |
Collapse
|
28
|
Kačániová M, Terentjeva M, Štefániková J, Žiarovská J, Savitskaya T, Grinshpan D, Kowalczewski PŁ, Vukovic N, Tvrdá E. Chemical Composition and Antimicrobial Activity of Selected Essential Oils against Staphylococcus spp. Isolated from Human Semen. Antibiotics (Basel) 2020; 9:antibiotics9110765. [PMID: 33142792 PMCID: PMC7693587 DOI: 10.3390/antibiotics9110765] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus spp. is not only a commensal bacteria but also a major human pathogen that causes a wide range of clinical infections. Recent evidence suggests that Staphylococcus has the ability to colonize the reproductive system and to affect its structure and functions. The objective of this study was to determine the chemical properties and antibacterial effects of select essential oils (EOs): Amyris balsamifera L., Boswellia carterii Birdw., Canarium luzonicum (Blume) A. Gray, Cinnamomum camphora (L.) J. Presl., Cinnamomum camphora var. linaloolifera Y. Fuita, Citrus x aurantium L., Gaultheria procumbens L., Litsea cubeba (Lour.) Pers., Melaleuca ericifolia Smith., Melaleuca leucadendra L., Pogostemon cablin (Blanco) Benth., Citrus limon (L.) Osbeck, Santalum album L., and Vetiveria zizanoides (L.) Roberty against 50 Staphylococcus spp. cultures isolated from human semen, specifically Staphylococcus aureus, S. capiti, S. epidermidis, S. haemoliticus, and S. hominis. The disc diffusion and broth microdilution methods were used to assess the antimicrobial potential and to determine the minimum inhibitory concentration (MIC) of the selected EOs. The best anti-Staphylococcus activities were found with both methods for the essential oils of C. luzonicum (Blume) A. Gray, A. balsamifera, C. camphora, and P. cabli.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
- Correspondence:
| | - Margarita Terentjeva
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, K. Helmaņa iela 8, LV-3004 Jelgava, Latvia;
| | - Jana Štefániková
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Jana Žiarovská
- Department of Plant Genetics and Breeding, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Tatsiana Savitskaya
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, 220030 Minsk, Belarus; (T.S.); (D.G.)
| | - Dmitrij Grinshpan
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, 220030 Minsk, Belarus; (T.S.); (D.G.)
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland;
| | - Nenad Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, P.O. Box 12, 34000 Kragujevac, Serbia;
| | - Eva Tvrdá
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| |
Collapse
|
29
|
Probiotic therapy in couples with infertility: A systematic review. Eur J Obstet Gynecol Reprod Biol 2020; 256:95-100. [PMID: 33188995 DOI: 10.1016/j.ejogrb.2020.10.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
The reproductive microbiome is becoming increasingly recognised for its influence on fertility. While there has been much work to investigate the treatment of bacterial vaginosis and disordered microbiomes in optimizing outcomes in Assisted Reproductive Technology (ART), the role of routinely prescribed probiotics is yet to be established. The therapeutic potential of probiotic therapy remains an exciting opportunity in ART and this review endeavours to summarise its evidence to date. A systematic review of MEDLINE (Pubmed), Allied Health Literature (CINAHL), EMBASE, Web of Science and the Cochrane database was performed on 7th May 2019, and repeated on 26th August 2019. The search was built using the terms 'subfertility;' 'probiotic therapy;' 'clinical pregnancy rate' and 'assisted reproductive outcomes.' The primary outcome was change in clinical pregnancy rate. Secondary outcomes included improvements in male and female fertility parameters and microbial assessment. The initial search found 882 articles, of which 26 full manuscripts were reviewed. Four articles were eligible for inclusion. Of the two studies that reported the primary outcome, only one study found probiotics increased the clinical pregnancy rate non-significantly (48.0%-58.8%, p = 0.47). It also found higher miscarriage rate (30 % vs 16.6 %, p = 0.47) in the group treated with probiotics. Both studies on males with oral probiotic found significantly improved sperm motility. While benefit in sperm motility has been observed with male probiotic therapy, there is conflicting evidence on the efficacy of probiotic therapy for women undergoing assisted reproduction. High quality randomized studies are needed to definitively examine probiotic therapy and establish its benefit for couples undergoing assisted reproduction.
Collapse
|
30
|
Farsimadan M, Motamedifar M. Bacterial infection of the male reproductive system causing infertility. J Reprod Immunol 2020; 142:103183. [PMID: 32853846 DOI: 10.1016/j.jri.2020.103183] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/03/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
Bacterial infections play a disruptive and hidden role in male reproductive failure. Different kinds of bacteria are often able to interfere with reproductive function in both sexes and lead to infertility. In this study, to further evaluate the role of bacterial infections in male reproduction we provided an extensive overview of so far researches investigating the effects of bacterial infections on male fertility. We searched Medline, PubMed, Scopus and Google scholar databases to identify the potentially relevant studies on bacterial infections and their implications in male infertility. All the bacteria included in this article have negative effects on the male reproductive function; however, there is ample evidence to blame bacteria such as Escherichia coli, Chlamydia trachomatis, Ureaplasma, Mycoplasma and Staphylococcus aureus for reduced fertility and deterioration of sperm parameters. More studies are needed to clarify the molecular mechanisms by which different bacteria exert their detrimental effects on male reproductive system. Getting more insight into probable mechanisms, would significantly facilitate the production of new, advanced, and effective remedies in the future. In view of all evidence, we strongly suggest increasing awareness among people and considering screening programs for patients seeking fertility both to avoid transmission and to improve fertility outcomes among them.
Collapse
Affiliation(s)
- Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Mohammad Motamedifar
- Department of Bacteriology and Virology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
31
|
Henkel R, Offor U, Fisher D. The role of infections and leukocytes in male infertility. Andrologia 2020; 53:e13743. [PMID: 32693434 DOI: 10.1111/and.13743] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Declining birth rates are one of the problems facing society today. Male counterparts are responsible for about half of the infertility cases, and genitourinary tract infections may play a contributing role in approximately 15% of male infertility cases. Leukocytospermia is an established indicator of infection in the male urogenital tract, although other microorganisms such as bacteria and virus may also be contributors to the etiology of male infertility. The pathophysiology of these infectious agents may be initiated by a local inflammatory reaction resulting in an increase in reactive oxygen species (ROS). This results in testicular injury, thereby affecting sperm morphology, sperm motility, sperm viability and elevation of the seminal leukocyte as a result of the genital tract infection. The infectious and inflammatory changes can result in male infertility. It is proposed that high concentrations of seminal leukocyte and infectious agents may affect sperm function resulting in clumping of motile spermatozoa, decreasing acrosomal functionality and also causing alterations in sperm morphology. However, the literature has poorly clarified the role of infection in male infertility, provoking further debate and research on this topic.
Collapse
Affiliation(s)
- Ralf Henkel
- Department of Medical Bioscience, Faculty of Natural Science, University of Western Cape, Bellville, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ugochukwu Offor
- Department of Pre-Clinical Sciences, Faculty of Health Sciences, University of Limpopo, Polokwane, South Africa
| | - David Fisher
- Department of Medical Bioscience, Faculty of Natural Science, University of Western Cape, Bellville, South Africa
| |
Collapse
|
32
|
Oghbaei H, Rastgar Rezaei Y, Nikanfar S, Zarezadeh R, Sadegi M, Latifi Z, Nouri M, Fattahi A, Ahmadi Y, Bleisinger N. Effects of bacteria on male fertility: Spermatogenesis and sperm function. Life Sci 2020; 256:117891. [PMID: 32504760 DOI: 10.1016/j.lfs.2020.117891] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/24/2020] [Accepted: 05/30/2020] [Indexed: 11/24/2022]
Abstract
Bacterial infection can negatively affect different parts of the male genital tract and subsequently cause impaired spermatogenesis and male fertility. However, most of the previous studies have focused on the infected organs of the male genital tract and there are not many studies that investigated the direct effect of bacteria on sperm and their mechanism of action. Interestingly, bacteria can induce different damages on sperm cells such as DNA fragmentation, cell membrane peroxidation, and acrosome impairment. Such negative effects can be mediated by bacteria-secreted toxins and metabolites or by direct attachment of bacteria on the sperm cells and subsequent activation of signaling pathways related to oxidative stress, apoptosis, and inflammation. These bacteria-induced changes can impair semen parameters and subsequently cause infertility. Given the significant destructive effect of some bacteria on sperm function and male fertility, in this study, we reviewed the impact of male urogenital bacteria on spermatogenesis and sperm functions as well as the underlying mechanisms by which the bacteria can damage sperm.
Collapse
Affiliation(s)
- Hajar Oghbaei
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Rastgar Rezaei
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Nikanfar
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Sadegi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Yadollah Ahmadi
- Department of Urology, Sina Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nathalie Bleisinger
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
33
|
Song T, Shi Y, Wang Y, Qazi IH, Angel C, Zhang M. Implication of Polyhistidine, a Novel Apoptosis Inhibitor, in Inhibiting Lipopolysaccharide-Induced Apoptosis in Boar Sperm. Animals (Basel) 2019; 9:ani9100719. [PMID: 31554281 PMCID: PMC6827019 DOI: 10.3390/ani9100719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Gram-negative bacteria are the main pathogenic microorganisms found in human and animal semen. Lipopolysaccharide (LPS), a component of the cell wall of Gram-negative bacteria, has been linked to inducing apoptosis in human and rat sperm; however, little is known regarding LPS-induced apoptosis in boar sperm. This detrimental effect of LPS is potentially mediated via competitive bidding with toll-like receptor (TLR) 4 on the cytoplasmic membrane. Therefore, it is reasonable to elucidate the potential mechanisms by which the binding of LPS and TLR4 could be prevented. Polyhistidine is widely used for the delivery of nucleic acids and antibodies into the cell cytoplasm, and it is a novel TLR4 agonist. In the current study, we envisaged that pHis might also serve as an effective tool for inhibiting LPS-induced apoptosis in boar sperm. The new finding of our present study is that pHis could inhibit, to some extent, LPS-induced boar sperm apoptosis, and it could ameliorate the overall sperm quality parameters under liquid storage or at 37 °C incubation conditions. However, further investigation should be continued to fully elucidate the mechanistic basis of these ameliorative effects of pHis. Abstract Lipopolysaccharide (LPS) released from Gram-negative bacteria binds to toll-like receptor 4 (TLR4) and induces boar sperm apoptosis. Similarly, polyhistidine (pHis), a TLR4 agonist, can also bind to TLR4. We hypothesized that pHis could inhibit LPS-induced sperm apoptosis by competitively binding to TLR4 to then improve sperm quality. Therefore, the objective of this study was to examine whether pHis can inhibit LPS-induced sperm apoptosis and affect sperm quality. The results showed that the concentrations of bacterial colonies were significantly increased from 36 to 120 h under liquid storage conditions (p < 0.05); however, concentrations of LPS in boar semen showed a relatively constant trend (4.98 ± 1.55 EU/mL) following 120 h storage. The addition of 100 μg/mL pHis in the BTS extender significantly improved boar sperm motility and viability at 37 °C, and it significantly (p < 0.05) inhibited boar sperm apoptosis under liquid storage (17 °C) and at 37 °C incubation conditions. The co-treatment of LPS and pHis further confirmed that pHis played its role in inhibiting LPS-induced sperm apoptosis. In conclusion, our preliminary findings provide reasonable evidence that pHis could act as an inhibitor of LPS-induced apoptosis in boar sperm stored for longer periods of time. pHis might inhibit LPS-induced sperm apoptosis by competitively binding to TLR4. Nevertheless, further mechanistic studies are awaited to fully elucidate its potential implication in inhibiting LSP-induced apoptosis.
Collapse
Affiliation(s)
- Tianzeng Song
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China; (S.T.); (Y.S.); (Y.W.); (I.H.Q.)
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Yi Shi
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China; (S.T.); (Y.S.); (Y.W.); (I.H.Q.)
| | - Yangang Wang
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China; (S.T.); (Y.S.); (Y.W.); (I.H.Q.)
| | - Izhar Hyder Qazi
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China; (S.T.); (Y.S.); (Y.W.); (I.H.Q.)
- Department of Veterinary Anatomy & Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Christiana Angel
- Department of Veterinary Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Ming Zhang
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China; (S.T.); (Y.S.); (Y.W.); (I.H.Q.)
- Correspondence:
| |
Collapse
|
34
|
Erhabor JO, Erhabor RC, ldu M. In vitro antibacterial and cytogenotoxicological properties of the aqueous extract of Cymbopogoncitratus Stapf (DC) leaf. Afr Health Sci 2019; 19:2056-2067. [PMID: 31656489 PMCID: PMC6794529 DOI: 10.4314/ahs.v19i2.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Microbial infection of the genital tract or semen is one of the leading causes of male infertility. Consequently, there is a need to seek alternative products from natural sources. OBJECTIVES The antibacterial, phytochemical and cytogenotoxicological assessments of the aqueous extract of Cymbopogon citratus leaf were evaluated. METHODS The antibacterial potential of the extract was done via agar-well diffusion and microdilution techniques. The phytochemical analysis was done via standard protocols.The cytogenotoxicity of the extract were analyzed using the Allium cepa assay. RESULTS All test organisms were found to be sensitive to the extract except Pseudomonas. aeruginosa where no measurable zone of inhibition could be ascertained at all concentrations assessed.The highest mean inhibition diameter of 21.33±1.20mm against S. sapophyticus was recorded and a concentration-dependent susceptibility noticed. The phytochemical results revealed the presence of saponins, flavonoid, glycoside, steroids, terpenoid and alkaloids. The Alliumcepa root showed reduced mitotic indices following aconcentration-dependent increase in the extract.It can be said that the aqueous extract of C. citratus had inhibitory activities against the tested pathogenic organisms with relative anti-tumour potential. CONCLUSION This study indicated, C. citratus could be a potential source for antibacterial compounds for the possible treatment of male reproductive related infections.
Collapse
Affiliation(s)
- Joseph Omorogiuwa Erhabor
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria, South Africa
| | - Rosemary Chinelo Erhabor
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - MacDonald ldu
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| |
Collapse
|
35
|
Gloria A, Contri A, Grotta L, Carluccio A, Robbe D, Ianni A, Vignola G, Martino G. Effect of dietary grape marc on fresh and refrigerated boar semen. Anim Reprod Sci 2019; 205:18-26. [PMID: 30981566 DOI: 10.1016/j.anireprosci.2019.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/11/2019] [Accepted: 03/26/2019] [Indexed: 01/15/2023]
Abstract
In several studies there has been evaluation of the dietary addition of antioxidants to improve the quality of fresh and stored semen in domestic animals. Grape marc (GM), as the residue of vinification, contains large amounts of polyphenols with antioxidant, anti-inflammatory, antimicrobial, and antiaging effects. In this study, two regimens of dietary GM supplementation (2% and 4%) were tested regarding effects on the characteristics and lipid peroxidation of fresh and stored semen. The dietary supplementation of GM improved sperm characteristics in fresh semen, especially at 4% of GM. There were greater values for all kinetic variables and membrane integrity, and lesser values for sperm abnormalities and lipid peroxidation with 2% and 4% GM supplementation. Lipid peroxidation of the pellet was less with both 2% and 4% GM supplementation. During sperm storage, the dietary supplementation of GM improved the quality of sperm, with greater values for kinetic variables and membrane integrity at day 15 of storage. In the present study, supplementation of GM in boar diets improved fresh semen characteristics and reduced the lipid peroxidation of ejaculated spermatozoa, possibly due to the effect of polyphenols present in the GM. Consequently, this likely resulted in improved sperm quality during storage.
Collapse
Affiliation(s)
- Alessia Gloria
- University of Teramo, Faculty of Veterinary Medicine, Località Piano D'Accio, 64100, Teramo, Italy
| | - Alberto Contri
- University of Teramo, Faculty of Veterinary Medicine, Località Piano D'Accio, 64100, Teramo, Italy.
| | - Lisa Grotta
- University of Teramo, Faculty of Biosciences and Technologies for Agriculture Food and Environment, Via R. Balzarini 1, 64100, Teramo, Italy
| | - Augusto Carluccio
- University of Teramo, Faculty of Veterinary Medicine, Località Piano D'Accio, 64100, Teramo, Italy
| | - Domenico Robbe
- University of Teramo, Faculty of Veterinary Medicine, Località Piano D'Accio, 64100, Teramo, Italy
| | - Andrea Ianni
- University of Teramo, Faculty of Biosciences and Technologies for Agriculture Food and Environment, Via R. Balzarini 1, 64100, Teramo, Italy
| | - Giorgio Vignola
- University of Teramo, Faculty of Veterinary Medicine, Località Piano D'Accio, 64100, Teramo, Italy
| | - Giuseppe Martino
- University of Teramo, Faculty of Biosciences and Technologies for Agriculture Food and Environment, Via R. Balzarini 1, 64100, Teramo, Italy
| |
Collapse
|
36
|
Maldonado-Arriaga B, Escobar-Escamilla N, Pérez-Razo JC, Alcaráz-Estrada SL, Flores-Sánchez I, Moreno-García D, Pérez-Cabeza de Vaca R, Mondragón-Terán P, Shaw J, Hernandez-Cortez C, Castro-Escarpulli G, Suárez-Cuenca JA. Mollicutes antibiotic resistance profile and presence of genital abnormalities in couples attending an infertility clinic. J Int Med Res 2019; 48:300060519828945. [PMID: 30819052 PMCID: PMC7140224 DOI: 10.1177/0300060519828945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Brenda Maldonado-Arriaga
- Laboratorio de Metabolismo Experimental e Investigación Clínica; División de Investigación Clínica y Coordinación de Investigación, C.M.N. "20 de Noviembre", ISSSTE, San Lorenzo, Colonia del Valle Sur, Alcaldía Benito Juárez, C.P., Ciudad de México, México.,Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Prolongación de Carpio y Plan de Ayala S/N Colonia Plutarco Elías Calles, Alcaldía Miguel Hidalgo C.P., Ciudad de México
| | - Noé Escobar-Escamilla
- Transferencia de Métodos Moleculares, Departamento de Biología Molecular y Validación de Técnicas, Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Francisco de P. Miranda # 177, Colonia Unidad Lomas de Plateros, Alcaldía Álvaro Obregón. Ciudad de México C.P., México
| | - Juan Carlos Pérez-Razo
- Unidad de Análisis y Referencia Virológica, C.M.N. "20 de Noviembre", ISSSTE, San Lorenzo, Colonia del Valle Sur, Alcaldía Benito Juárez, C.P., Ciudad de México, México
| | - Sofia Lizeth Alcaráz-Estrada
- Unidad de Análisis y Referencia Virológica, C.M.N. "20 de Noviembre", ISSSTE, San Lorenzo, Colonia del Valle Sur, Alcaldía Benito Juárez, C.P., Ciudad de México, México
| | - Ignacio Flores-Sánchez
- Clínica de Infertilidad, Biología de la Reproducción C.M.N. "20 de Noviembre", ISSSTE, Félix Cuevas, Colonia del Valle Sur, Alcaldía Benito Juárez, C.P., Ciudad de México, México
| | - Daniel Moreno-García
- Clínica de Infertilidad, Biología de la Reproducción C.M.N. "20 de Noviembre", ISSSTE, Félix Cuevas, Colonia del Valle Sur, Alcaldía Benito Juárez, C.P., Ciudad de México, México
| | - Rebeca Pérez-Cabeza de Vaca
- Laboratorio de Metabolismo Experimental e Investigación Clínica; División de Investigación Clínica y Coordinación de Investigación, C.M.N. "20 de Noviembre", ISSSTE, San Lorenzo, Colonia del Valle Sur, Alcaldía Benito Juárez, C.P., Ciudad de México, México
| | - Paul Mondragón-Terán
- Laboratorio de Metabolismo Experimental e Investigación Clínica; División de Investigación Clínica y Coordinación de Investigación, C.M.N. "20 de Noviembre", ISSSTE, San Lorenzo, Colonia del Valle Sur, Alcaldía Benito Juárez, C.P., Ciudad de México, México
| | - Jonathan Shaw
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Cecilia Hernandez-Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Prolongación de Carpio y Plan de Ayala S/N Colonia Plutarco Elías Calles, Alcaldía Miguel Hidalgo C.P., Ciudad de México
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Prolongación de Carpio y Plan de Ayala S/N Colonia Plutarco Elías Calles, Alcaldía Miguel Hidalgo C.P., Ciudad de México
| | - Juan Antonio Suárez-Cuenca
- Laboratorio de Metabolismo Experimental e Investigación Clínica; División de Investigación Clínica y Coordinación de Investigación, C.M.N. "20 de Noviembre", ISSSTE, San Lorenzo, Colonia del Valle Sur, Alcaldía Benito Juárez, C.P., Ciudad de México, México
| |
Collapse
|
37
|
Abstract
Current evidence links oxidative stress (OS) to male infertility, reduced sperm motility, sperm DNA damage and increased risk of recurrent abortions and genetic diseases. A review of PubMed, Medline, Google Scholar, and Cochrane review databases of published articles from years 2000–2018 was performed focusing on physiological and pathological consequences of reactive oxygen species (ROS), sperm DNA damage, OS tests, and the association between OS and male infertility, pregnancy and assisted reproductive techniques outcomes. Generation of ROS is essential for reproductive function, but OS is detrimental to fertility, pregnancy, and genetic status of the newborns. Further, there is a lack of consensus on selecting OS test, type, and duration of antioxidants treatment as well as on the target patients group. Developing advanced diagnostic and therapeutic options for OS is essential to improve fertility potential and limit genetic diseases transmitted to offspring.
Collapse
Affiliation(s)
- Ahmed T Alahmar
- Department of Pathological Analysis, College of Science, University of Sumer, Thi-Qar, Iraq
| |
Collapse
|
38
|
Agarwal A, Rana M, Qiu E, AlBunni H, Bui AD, Henkel R. Role of oxidative stress, infection and inflammation in male infertility. Andrologia 2018; 50:e13126. [DOI: 10.1111/and.13126] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/08/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine; Cleveland Clinic; Cleveland Ohio
| | - Mohit Rana
- American Center for Reproductive Medicine; Cleveland Clinic; Cleveland Ohio
| | - Emily Qiu
- American Center for Reproductive Medicine; Cleveland Clinic; Cleveland Ohio
| | - Hashem AlBunni
- American Center for Reproductive Medicine; Cleveland Clinic; Cleveland Ohio
| | - Albert D. Bui
- American Center for Reproductive Medicine; Cleveland Clinic; Cleveland Ohio
- Ohio University Heritage College of Osteopathic Medicine; Athens Ohio
| | - Ralf Henkel
- American Center for Reproductive Medicine; Cleveland Clinic; Cleveland Ohio
- Department of Medical Biosciences; University of the Western Cape; Bellville South Africa
| |
Collapse
|
39
|
Ricci S, De Giorgi S, Lazzeri E, Luddi A, Rossi S, Piomboni P, De Leo V, Pozzi G. Impact of asymptomatic genital tract infections on in vitro Fertilization (IVF) outcome. PLoS One 2018; 13:e0207684. [PMID: 30444931 PMCID: PMC6239332 DOI: 10.1371/journal.pone.0207684] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/05/2018] [Indexed: 01/07/2023] Open
Abstract
Background Infertility is estimated to affect approximately 9–30% of reproductive-aged couples. Several conditions involving one or both partners may contribute to infertility. The aim of this study is to evaluate the role of asymptomatic genital tract infections in the outcome of In Vitro Fertilization (IVF) in couples with infertility. Methods A total of 285 infertile couples were enrolled in the study. Vaginal/endocervical swabs and semen samples were collected and subjected to microbiological analysis. Spermiograms were carried out on semen specimens, and lactobacilli were quantified in vaginal swabs. Data were associated with IVF results and analysed by using non parametric tests and multivariate analysis. Results Microbiological analysis showed that 46.3% of couples presented with an asymptomatic genital tract infection. Spermiogram results showed a significantly diminished motility of sperm cells in samples positive to microbiological testing compared to negative specimens. Enterococcus faecalis was the most prevalent species (11.6%) in positive semen samples and was found to negatively affect both sperm morphology (p = 0.026) and motility (p = 0.003). Analysis of genital swabs from females showed that the presence of E. faecalis (p<0.0001), Escherichia coli (p = 0.0123), Streptococcus agalactiae (p<0.0001), and Gardnerella vaginalis (p = 0.0003) was significantly associated to reduced levels of vaginal lactobacilli. Association of microbiological data with IVF outcome showed that 85.7% of IVF+ couples was microbiologically negative, while IVF was successful in just 7.5% of couples infected with E. faecalis and/or U. urealyticum and/or M. hominis (p = 0.02). Conclusions The results show the negative impact of E. faecalis on sperm quality and the association of definite bacterial pathogens with reduced levels of vaginal lactobacilli. The presence of E. faecalis and/or U. urealyticum and/or M. hominis in genital samples of infertile couples is predictive for a negative outcome of IVF.
Collapse
Affiliation(s)
- Susanna Ricci
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Bacteriology Unit, Siena University Hospital, Siena, Italy
- * E-mail:
| | - Stefano De Giorgi
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Lazzeri
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Stefania Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Centre for Diagnosis and Treatment of Couple Sterility, Siena University Hospital, Siena, Italy
| | - Vincenzo De Leo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Centre for Diagnosis and Treatment of Couple Sterility, Siena University Hospital, Siena, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Bacteriology Unit, Siena University Hospital, Siena, Italy
| |
Collapse
|
40
|
Rahman SU, Huang Y, Zhu L, Feng S, Khan IM, Wu J, Li Y, Wang X. Therapeutic Role of Green Tea Polyphenols in Improving Fertility: A Review. Nutrients 2018; 10:E834. [PMID: 29954124 PMCID: PMC6073549 DOI: 10.3390/nu10070834] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/23/2018] [Accepted: 06/23/2018] [Indexed: 12/20/2022] Open
Abstract
Sperm cells are highly sensitive to reactive oxygen species (ROS), which are produced during cellular oxidation. In normal cell biology, ROS levels increase with a decreasing antioxidant response, resulting in oxidative stress which threatens sperm biology. Oxidative stress has numerous effects, including increased apoptosis, reduced motion parameters, and reduced sperm integrity. In this regard, green tea polyphenols (GrTPs) have been reported to possess properties that may increase the quality of male and female gametes, mostly via the capability of catechins to reduce ROS production. GrTPs have antioxidant properties that improve major semen parameters, such as sperm concentration, motility, morphology, DNA damage, fertility rate, and gamete quality. These unique properties of green tea catechins could improve reproductive health and represent an important study area. This exploratory review discusses the therapeutic effects of GrTPs against infertility, their possible mechanisms of action, and recommended supportive therapy for improving fertility in humans and in animals.
Collapse
MESH Headings
- Animals
- Antioxidants/isolation & purification
- Antioxidants/therapeutic use
- Female
- Fertility/drug effects
- Fertility Agents, Female/therapeutic use
- Fertility Agents, Male/therapeutic use
- Humans
- Infertility, Female/drug therapy
- Infertility, Female/metabolism
- Infertility, Female/pathology
- Infertility, Female/physiopathology
- Infertility, Male/drug therapy
- Infertility, Male/metabolism
- Infertility, Male/pathology
- Infertility, Male/physiopathology
- Male
- Ovum/drug effects
- Ovum/metabolism
- Ovum/pathology
- Oxidative Stress/drug effects
- Polyphenols/isolation & purification
- Polyphenols/therapeutic use
- Pregnancy
- Reproductive Health
- Risk Factors
- Spermatozoa/drug effects
- Spermatozoa/metabolism
- Spermatozoa/pathology
- Tea/chemistry
Collapse
Affiliation(s)
- Sajid Ur Rahman
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Yingying Huang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Lei Zhu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Ibrar Muhammad Khan
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| |
Collapse
|
41
|
Monteiro C, Marques PI, Cavadas B, Damião I, Almeida V, Barros N, Barros A, Carvalho F, Gomes S, Seixas S. Characterization of microbiota in male infertility cases uncovers differences in seminal hyperviscosity and oligoasthenoteratozoospermia possibly correlated with increased prevalence of infectious bacteria. Am J Reprod Immunol 2018; 79:e12838. [DOI: 10.1111/aji.12838] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/06/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Catarina Monteiro
- Instituto de Investigação e Inovação em Saúde; Universidade do Porto (I3S); Porto Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP); Porto Portugal
| | - Patrícia I. Marques
- Instituto de Investigação e Inovação em Saúde; Universidade do Porto (I3S); Porto Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP); Porto Portugal
| | - Bruno Cavadas
- Instituto de Investigação e Inovação em Saúde; Universidade do Porto (I3S); Porto Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP); Porto Portugal
| | - Isabel Damião
- Center of Infertility and Sterility Studies (CEIE); Porto Portugal
| | - Vasco Almeida
- Center of Infertility and Sterility Studies (CEIE); Porto Portugal
- Department of Biology; Faculty of Sciences; University of Porto; Porto Portugal
| | - Nuno Barros
- Center for Reproductive Genetics Alberto Barros; Porto Portugal
| | - Alberto Barros
- Instituto de Investigação e Inovação em Saúde; Universidade do Porto (I3S); Porto Portugal
- Center for Reproductive Genetics Alberto Barros; Porto Portugal
- Department of Genetics; Faculty of Medicine; University of Porto; Porto Portugal
| | - Filipa Carvalho
- Instituto de Investigação e Inovação em Saúde; Universidade do Porto (I3S); Porto Portugal
- Department of Genetics; Faculty of Medicine; University of Porto; Porto Portugal
| | - Sílvia Gomes
- Instituto de Investigação e Inovação em Saúde; Universidade do Porto (I3S); Porto Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP); Porto Portugal
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde; Universidade do Porto (I3S); Porto Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP); Porto Portugal
| |
Collapse
|
42
|
Kenny LC, Kell DB. Immunological Tolerance, Pregnancy, and Preeclampsia: The Roles of Semen Microbes and the Father. Front Med (Lausanne) 2018; 4:239. [PMID: 29354635 PMCID: PMC5758600 DOI: 10.3389/fmed.2017.00239] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022] Open
Abstract
Although it is widely considered, in many cases, to involve two separable stages (poor placentation followed by oxidative stress/inflammation), the precise originating causes of preeclampsia (PE) remain elusive. We have previously brought together some of the considerable evidence that a (dormant) microbial component is commonly a significant part of its etiology. However, apart from recognizing, consistent with this view, that the many inflammatory markers of PE are also increased in infection, we had little to say about immunity, whether innate or adaptive. In addition, we focused on the gut, oral and female urinary tract microbiomes as the main sources of the infection. We here marshall further evidence for an infectious component in PE, focusing on the immunological tolerance characteristic of pregnancy, and the well-established fact that increased exposure to the father's semen assists this immunological tolerance. As well as these benefits, however, semen is not sterile, microbial tolerance mechanisms may exist, and we also review the evidence that semen may be responsible for inoculating the developing conceptus (and maybe the placenta) with microbes, not all of which are benign. It is suggested that when they are not, this may be a significant cause of PE. A variety of epidemiological and other evidence is entirely consistent with this, not least correlations between semen infection, infertility and PE. Our view also leads to a series of other, testable predictions. Overall, we argue for a significant paternal role in the development of PE through microbial infection of the mother via insemination.
Collapse
Affiliation(s)
- Louise C. Kenny
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Douglas B. Kell
- School of Chemistry, The University of Manchester, Manchester, United Kingdom
- The Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
43
|
Iovene MR, Martora F, Bombace F, Montella F, Del Vecchio C, De Rosa M, D'Oriano V, Galdiero M, Vitiello M. A new enrichment diagnostic platform for semen culture. J Microbiol Methods 2017; 144:168-172. [PMID: 29174353 DOI: 10.1016/j.mimet.2017.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
Urogenital bacterial infections have been described in literature as a potential cause of infertility. For the consequences that a failure in diagnosis could have on the evolution of male urogenital infectious disease, an accurate microbiological procedure to investigate the bacterial species composition of seminal fluid plays a crucial role to better understand the eventual correlation with infertility. In order to improve the quality of semen culture investigations, we have developed a new enrichment diagnostic platform. Semen samples of 540 infertile men were simultaneously analyzed using the standard microbiological semen culture method and an alternative new experimental technique (Brain Heart Infusion broth, BHI, enrichment). Our results established the possibility to apply BHI enrichment to detect bacteria from semen samples with higher sensitivity (100%) and negative predictive value (100%) than the standard technique.
Collapse
Affiliation(s)
- Maria Rosaria Iovene
- Department of Experimental Medicine, University of Campa6nia "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| | - Francesca Martora
- Department of Experimental Medicine, University of Campa6nia "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy
| | - Francesca Bombace
- Department of Experimental Medicine, University of Campa6nia "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy
| | - Fortunato Montella
- Department of Experimental Medicine, University of Campa6nia "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy
| | - Chiara Del Vecchio
- Department of Molecular and Clinical Endocrinology and Oncology, University of Naples Federico II, Naples, Italy
| | - Michele De Rosa
- Department of Molecular and Clinical Endocrinology and Oncology, University of Naples Federico II, Naples, Italy
| | - Virginia D'Oriano
- Department of Experimental Medicine, University of Campa6nia "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campa6nia "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy
| | - Mariateresa Vitiello
- Department of Clinical Pathology, Virology Unit, "San Giovanni di Dio e Ruggi d'Aragona Hospital", Salerno, Italy
| |
Collapse
|
44
|
Needham KB, Kucera AC, Heidinger BJ, Greives TJ. Repeated immune challenges affect testosterone but not sperm quality. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:398-406. [DOI: 10.1002/jez.2110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Katie B. Needham
- Department of Biological Sciences; North Dakota State University; Fargo North Dakota
| | - Aurelia C. Kucera
- Department of Biological Sciences; North Dakota State University; Fargo North Dakota
| | - Britt J. Heidinger
- Department of Biological Sciences; North Dakota State University; Fargo North Dakota
| | - Timothy J. Greives
- Department of Biological Sciences; North Dakota State University; Fargo North Dakota
| |
Collapse
|
45
|
Zhou YH, Ma HX, Shi XX, Liu Y. Ureaplasma spp. in male infertility and its relationship with semen quality and seminal plasma components. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 51:778-783. [PMID: 28739435 DOI: 10.1016/j.jmii.2016.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 12/09/2022]
Abstract
OBJECTIVE We investigated the prevalence of Ureaplasma spp. in semen samples of infertile men in Shanghai, China and evaluated the correlation between the sperm parameters (seminal volume, sperm concentration, progressive motility and non-progressive) and the secretary function in these infectious populations. METHODS Semens were collected from 540 infertile men and 260 fertile control group in shanghai, China and subjected to standard bacterial and Ureaplasma spp. culture. Positive Ureaplasma spp. isolates were further tested by PCR to detect the biovars and serotypes of Ureaplasma spp. Sperm seminological variabilities were analyzed by Computer-Assisted Semen Analysis according to the fifth edition of World Health Organization (WHO) laboratory manual for the examination and processing of human semen. Seminal markers were measured by the automatic analyzer. RESULTS The prevalence of Ureaplasma spp. in semen specimens was 39.6% (214/540) and 19.2% (50/260) in infertile and control group, respectively. Significant difference was observed between the two groups (P < 0.001). Among all clinical isolates from infertile men (n = 214), 59.3% (n = 127) was Ureaplasma parvum (UPA), 26.2% (n = 56) was Ureaplasma urealyticum (UUR), and 14.5% (n = 31) was mixed species. While those numbers in control group (n = 50) were 64.0% (n = 32), 20.0% (n = 10), 16.0% (n = 8), respectively. There was no significant difference between any two groups (P > 0.05). The progressive motility and the NAG activity of infertile men infected with UPA and mixed species were significantly lower than those of UUR infected subgroup (P < 0.05). CONCLUSIONS The infection of Ureaplasma spp. plays an important pathogenic role in male infertility. UPA has higher pathogenicity on the progressive motility and the secretary function of epididymis than UUR.
Collapse
Affiliation(s)
- Yun Heng Zhou
- Department of Clinical Laboratory, Shanghai Crops Hospital of Chinese People's Armed Police, Shanghai, China
| | - Hong Xia Ma
- Department of Physical Examination Center, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Xiao Xing Shi
- Department of Clinical Laboratory, Shanghai Crops Hospital of Chinese People's Armed Police, Shanghai, China
| | - Yang Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
46
|
Gatimel N, Moreau J, Parinaud J, Léandri RD. Sperm morphology: assessment, pathophysiology, clinical relevance, and state of the art in 2017. Andrology 2017; 5:845-862. [DOI: 10.1111/andr.12389] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/05/2017] [Accepted: 05/11/2017] [Indexed: 12/26/2022]
Affiliation(s)
- N. Gatimel
- Department of Reproductive Medicine; Paule de Viguier Hospital; Toulouse University Hospital; Toulouse France
- EA 3694 Human Fertility Research Group; Paule de Viguier Hospital; Toulouse University Hospital; Toulouse France
| | - J. Moreau
- Department of Reproductive Medicine; Paule de Viguier Hospital; Toulouse University Hospital; Toulouse France
- EA 3694 Human Fertility Research Group; Paule de Viguier Hospital; Toulouse University Hospital; Toulouse France
| | - J. Parinaud
- Department of Reproductive Medicine; Paule de Viguier Hospital; Toulouse University Hospital; Toulouse France
- EA 3694 Human Fertility Research Group; Paule de Viguier Hospital; Toulouse University Hospital; Toulouse France
| | - R. D. Léandri
- Department of Reproductive Medicine; Paule de Viguier Hospital; Toulouse University Hospital; Toulouse France
- EA 3694 Human Fertility Research Group; Paule de Viguier Hospital; Toulouse University Hospital; Toulouse France
| |
Collapse
|
47
|
Antibiotic treatment of asymptomatic Ureaplasma infection improves semen parameters in infertile men. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2016.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Carcinogenic Activities and Sperm Abnormalities of Methicillin Resistance Staphylococcus aureus and Inhibition of Their Virulence Potentials by Ayamycin. Appl Biochem Biotechnol 2017; 183:833-852. [PMID: 28389766 DOI: 10.1007/s12010-017-2467-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/26/2017] [Indexed: 02/03/2023]
Abstract
This investigation aimed to study the in vivo harmful effects of the subcutaneous injection of different methicillin resistance Staphylococcus aureus extracts (MRSA2, MRSA4, MRSA10, MRSA69, MRSA70, MRSA76, and MRSA78). Such strains represented the highest minimum inhibition concentration toward methicillin with various multidrug-resistant patterns. The obtained results revealed that rats injected with the MRSA4 extract died immediately after the last dose indicating the high cytotoxicity of MRSA4 strain (100% mortality). While the mortalities in other groups injected by the other MRSA extracts ranged from 50 to 75%. In comparison with the normal animal group, all MRSA extracts induced a hepatotoxic effect which was indicated from the significant (p < 0.01) increases in the activities of the serum alanine aminotransferase (ALAT) and aspartate aminotransferase (ASAT) enzymes. Moreover, alkaline phosphatase (ALP) combined with a partial nephrotoxicity that was monitored from the significant elevation of serum urea concentration. While serum creatinine levels did not affect. Similarly, a significant elevation was recorded in serum levels of tumor biomarkers (alpha fetoprotein; AFP, carcinoembryonic antigen; CEA, and lactate dehydrogenase; LDH) reflecting their carcinogenic potential. On the other hand, the percentage of micronuclei (MN) in polychromatic erythrocytes from bone marrow cells was statistically significant in all groups as compared to the control group. The percentage of sperm abnormalities was statistically significant compared to the control. Different types of head abnormalities and coiled tail were recorded. Consequently, the current study focused on fighting MRSA virulence factors by the new compound ayamycin, which proved to be potent anti-virulence factor against all MRSA strains under study by significant decreasing of their streptokinase activities, hemolysin synthesis, biofilm formation, and their cell surface hydrophobicity.
Collapse
|
49
|
Korhonen CJ, Srinivasan S, Huang D, Ko DL, Sanders EJ, Peshu NM, Krieger JN, Muller CH, Coombs RW, Fredricks DN, Graham SM. Semen Bacterial Concentrations and HIV-1 RNA Shedding Among HIV-1-Seropositive Kenyan Men. J Acquir Immune Defic Syndr 2017; 74:250-257. [PMID: 27861240 PMCID: PMC5305287 DOI: 10.1097/qai.0000000000001244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/28/2016] [Indexed: 11/25/2022]
Abstract
INTRODUCTION HIV-1 is transmitted through semen from men to their sexual partners. Genital infections can increase HIV-1 RNA shedding in semen, but shedding also occurs in the absence of typical pathogens. We hypothesized that higher bacterial concentrations in semen would be associated with higher HIV-1 RNA levels. METHODS We analyzed semen samples from 42 HIV-1-seropositive Kenyan men using quantitative polymerase chain reaction (PCR) to assess bacterial concentrations and real-time PCR to measure HIV-1 RNA levels. Generalized estimation equations were used to evaluate associations between these 2 measures. Broad-range 16S rRNA gene PCR with pyrosequencing was performed on a subset of 13 samples to assess bacterial community composition. RESULTS Bacteria were detected in 96.6% of 88 samples by quantitative PCR. Semen bacterial concentration and HIV-1 RNA levels were correlated 0.30 (P = 0.01). The association between bacterial concentration and HIV-1 RNA detection was not significant after adjustment for antiretroviral therapy (ART) (adjusted odds ratio: 1.27, 95% CI: 0.84 to 1.91). Factors associated with semen bacterial concentration included insertive anal sex (adjusted beta 0.92, 95% CI: 0.12 to 1.73) and ART use (adjusted beta: -0.77, 95% CI: -1.50 to 0.04). Among 13 samples with pyrosequencing data, Corynebacterium spp., Staphylococcus spp., and Streptococcus spp. were most frequently detected. CONCLUSION Most of these HIV-1-infected men had bacteria in their semen. ART use was associated with undetectable semen HIV-1 RNA and lower semen bacterial concentrations, whereas insertive anal sex was associated with higher bacterial concentrations. Additional studies evaluating the relationship between semen bacteria, inflammation, mucosal immunity, and HIV-1 shedding are needed to understand implications for HIV-1 transmission.
Collapse
Affiliation(s)
| | - Sujatha Srinivasan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, WA
| | - Dandi Huang
- School of Medicine, University of Washington, Seattle, WA
| | - Daisy L. Ko
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, WA
| | - Eduard J. Sanders
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Norbert M. Peshu
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | | | - David N. Fredricks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, WA
- Medicine
- Microbiology; and
| | - Susan M. Graham
- Department of Epidemiology, University of Washington, Seattle, WA
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Medicine
- Global Health, University of Washington, Seattle, WA; and
- University of Nairobi, Nairobi, Kenya
| |
Collapse
|
50
|
Fraczek M, Hryhorowicz M, Gill K, Zarzycka M, Gaczarzewicz D, Jedrzejczak P, Bilinska B, Piasecka M, Kurpisz M. The effect of bacteriospermia and leukocytospermia on conventional and nonconventional semen parameters in healthy young normozoospermic males. J Reprod Immunol 2016; 118:18-27. [DOI: 10.1016/j.jri.2016.08.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
|