1
|
Da Silva E, Martín-Cano FE, Gómez-Arrones V, Gaitskell-Phillips G, Alonso JM, Rey J, Becerro L, Gil MC, Peña FJ, Ortega-Ferrusola C. Bacterial endometritis-induced changes in the endometrial proteome in mares: Potential uterine biomarker for bacterial endometritis. Theriogenology 2024; 226:202-212. [PMID: 38909435 DOI: 10.1016/j.theriogenology.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Equine endometritis is one of the main causes of subfertility in the mare. Unraveling the molecular mechanisms involved in this condition and pinpointing proteins with biomarker potential could be crucial in both diagnosing and treating this condition. This study aimed to identify the endometritis-induced changes in the endometrial proteome in mares and to elucidate potential biological processes in which these proteins may be involved. Secondly, biomarkers related to bacterial endometritis (BE) in mares were identified. Uterine lavage fluid samples were collected from 28 mares (14 healthy: negative cytology and culture, and no clinical signs and 14 mares with endometritis: positive cytology and culture, in addition to clinical signs). Proteomic analysis was performed with a UHPLC-MS/MS system and bioinformatic analysis was carried out using Qlucore Omics Explorer. Gene Ontology enrichment and pathway analysis (PANTHER and KEGG) of the uterine proteome were performed to identify active biological pathways in enriched proteins from each group. Quantitative analysis revealed 38 proteins differentially abundant in endometritis mares when compared to healthy mares (fold changes >4.25, and q-value = 0.002). The proteins upregulated in the secretome of mares with BE were involved in biological processes related to the generation of energy and REDOX regulation and to the defense response to bacterium. A total of 24 biomarkers for BE were identified using the biomarker workbench algorithm. Some of the proteins identified were related to the innate immune system such as isoforms of histones H2A and H2B involvement in neutrophil extracellular trap (NET) formation, complement C3a, or gelsolin and profilin, two actin-binding proteins which are essential for dynamic remodeling of the actin cytoskeleton during cell migration. The other group of biomarkers were three known antimicrobial peptides (lysosome, equine cathelicidin 2 and myeloperoxidase (MPO)) and two uncharacterized proteins with a high homology with cathelicidin families. Findings in this study provide the first evidence that innate immune cells in the equine endometrium undergo reprogramming of metabolic pathways similar to the Warburg effect during activation. In addition, biomarkers of BE in uterine fluid of mares including the new proteins identified, as well as other antimicrobial peptides already known, offer future lines of research for alternative treatments to antibiotics.
Collapse
Affiliation(s)
- E Da Silva
- Laboratory of Equine Reproduction and Equine Spermatology, Department of Animal Medicine, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
| | - F E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Department of Animal Medicine, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
| | - V Gómez-Arrones
- CENSYRA, Centro de Selección y Reproducción Animal de Extremadura, Badajoz, Spain
| | - G Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Department of Animal Medicine, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
| | - J M Alonso
- Unit of Infectious Diseases, University of Extremadura, Caceres, Spain
| | - J Rey
- Unit of Infectious Diseases, University of Extremadura, Caceres, Spain
| | - L Becerro
- Laboratory of Equine Reproduction and Equine Spermatology, Department of Animal Medicine, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
| | - M C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Department of Animal Medicine, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
| | - F J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Department of Animal Medicine, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
| | - C Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Department of Animal Medicine, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
2
|
Ferreira-Dias GM, Alpoim-Moreira J, Szóstek-Mioduchowska A, Rebordão MR, Skarzynski DJ. The path to fertility: Current approaches to mare endometritis and endometrosis. Anim Reprod 2024; 21:e20240070. [PMID: 39286368 PMCID: PMC11404863 DOI: 10.1590/1984-3143-ar2024-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/25/2024] [Indexed: 09/19/2024] Open
Abstract
The path to fertility in the mare requires an understanding of the hormonal influences, the immune response, genetics, and epigenetic mechanisms involved not only in physiological reproductive processes, but also such pathologies as endometritis and endometrosis. Endometritis may lead to endometrosis establishment. In the presence of endometritis, neutrophils arrive at the mare endometrium, and form neutrophil extracellular traps. While NETosis plays pivotal roles, prolonged inflammation can lead to chronic endometritis, endometrosis, and fertility issues. Matrix metalloproteinases and epigenetic changes influence the course of endometrosis. Inhibitors of specific enzymes involved in NETosis and epigenetic inhibitors have shown potential in reducing pro-fibrotic effects. Collagen type III (COL3) has emerged as a putative biomarker, correlating with endometrosis and useful in fertility assessment. Thus, COL3 may offer a non-invasive diagnostic tool, as a complement to histopathological methods. Epigenetic modifications and miRNA expressions offer new avenues for therapeutic strategies, emphasizing the importance of understanding the cellular mechanisms at play in mare endometrial fibrosis.
Collapse
Affiliation(s)
- Graça Ml Ferreira-Dias
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, Lisboa, Portugal
| | - Joana Alpoim-Moreira
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, Lisboa, Portugal
| | | | - Maria Rosa Rebordão
- Research Center for Natural Resources, Environment and Society, Polytechnic University of Coimbra, Coimbra, Portugal
- Polytechnic University of Coimbra, S. Martinho do Bispo, Coimbra, Portugal
| | - Dariusz J Skarzynski
- Department of Animal Reproduction with Large Animal Clinic, Faculty of Veterinary Medicine, University of Environmental and Live Sciences, Wrocław, Poland
| |
Collapse
|
3
|
Caldeira JLA, Costa DG, Polveiro RC, Gomes do Rêgo ME, Barbosa WF, de Oliveira LL, Moreira MAS. Short communication: Goat mastitis and the formation of neutrophil extracellular traps (NETs). Vet Immunol Immunopathol 2024; 274:110793. [PMID: 38943998 DOI: 10.1016/j.vetimm.2024.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 07/01/2024]
Abstract
Mastitis, an inflammation of the mammary gland affecting milk production and quality in dairy herds, is often associated with Staphylococcus spp. in goats. Neutrophils are crucial in combating infections by migrating into milk and deploying various defense strategies, including the release of neutrophil extracellular traps (NETs) composed of DNA, histones, and bactericidal proteins. This study investigated whether NETs are released by goat neutrophils stimulated in vitro by Staphylococcus aureus and Staphylococcus warneri, two common pathogens of goat mastitis. PMNs were isolated from blood from healthy adult goats. We evaluated goat NET formation by stimulating cells with: phorbol 12-myristate 13-acetate (PMA) as a positive control, cytochalasin for inhibition of actin polymerization, S. aureus, and S. warneri. NET formation was observed in response to chemical stimulation and bacterial presence, effectively trapping pathogens. Variations in NET formation between S. aureus and S. warneri suggest pathogen-specific responses. These findings suggest that the formation of NETs may be an important complementary mechanism in the defense against mastitis in goats. In conclusion, this study unveils a novel defense mechanism in goats, indicating the role of NETs against S. aureus and S. warneri in mastitis.
Collapse
Affiliation(s)
- Jéssica Lobo Albuquerque Caldeira
- Bacterial Diseases Laboratory, Department of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Daiene Gaione Costa
- Bacterial Diseases Laboratory, Department of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Richard Costa Polveiro
- Bacterial Diseases Laboratory, Department of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maria Eduarda Gomes do Rêgo
- Bacterial Diseases Laboratory, Department of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner Faria Barbosa
- Department of Statistics, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Leandro Licursi de Oliveira
- Immunochemistry and Glycobiology Laboratory, Department of General Biology, Universidade Federal de Viçosa, University Campus, PH Rolfs Avenue, Viçosa, Minas Gerais 36570-000, Brazil
| | - Maria Aparecida Scatamburlo Moreira
- Bacterial Diseases Laboratory, Department of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Li Y, Zhang P, Huang Y, Yu J, Liu Y, Li S, Sun Q, Fu Q. SzM protein of Streptococcus equi ssp. zooepidemicus triggers the release of neutrophil extracellular traps depending on GSDMD. Microb Pathog 2024; 192:106703. [PMID: 38763315 DOI: 10.1016/j.micpath.2024.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/05/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Streptococcus equissp.zooepidemicus (SEZ) is a crucial pathogen and contributes to various infections in numerous animal species. Swine streptococcicosis outbreak caused by SEZ has been reported in several countries in recent years. SzM protein is a cell membrane-anchored protein, which exhibits as an important virulence factor of SEZ. Effects of SzM protein on host innate immune need further study. Here, recombinant SzM (rSzM) protein of the SEZ was obtained, and mice were intraperitoneally injected with rSzM protein. We discovered that rSzM protein can recruit neutrophils into the injected site. In further study, neutrophils were isolated and treated with rSzM protein, NETs release were triggered by rSzM protein independently, and GSDMD protein was promoted-expressed and activated. In order to investigate the role of GSDMD in NETs formation, neutrophils isolated from WT mice and GSDMD-/- mice were treated with rSzM protein. The results showed that GSDMD deficiency suppressed the NETs release. In conclusion, SzM protein of SEZ can trigger the NETs release in a GSDMD-depending manner.
Collapse
Affiliation(s)
- Yajuan Li
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China
| | - Pengju Zhang
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China
| | - Jingyu Yu
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China
| | - Yuxuan Liu
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China
| | - Shun Li
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China
| | - Qinqin Sun
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Guangdong, 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, 528225, China.
| |
Collapse
|
5
|
Quiroga J, Cortes B, Sarmiento J, Morán G, Henríquez C. Characterization of extracellular trap production and release by equine neutrophils in response to different stimuli. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 155:105151. [PMID: 38423491 DOI: 10.1016/j.dci.2024.105151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
This study explores Neutrophil Extracellular Trap (NET) formation in equine neutrophils, which is crucial for eliminating infections and is implicated in various equine inflammatory diseases. We investigated the molecular pathways involved in NET release by equine neutrophils in response to stimuli. We use PMA, A23187, LPS, PAF, OZ, and cytokines, observing NET release in response to PMA, PAF, and A23187. In contrast, LPS, OZ, and the cytokines tested did not induce DNA release or did not consistently induce citrullination of histone 4. Peptidyl-arginine deiminase inhibition completely halted NET release, while NADPH oxidase and mitochondrial reactive oxygen species only played a role in PMA-induced NETs. Neutrophil elastase inhibition modestly affected PAF-induced NET liberation but not in PMA or A23187-induced NET, while myeloperoxidase did not contribute to NET release. We expect to provide a foundation for future investigations into the role of NETs in equine health and disease and the search for potential therapeutic targets.
Collapse
Affiliation(s)
- John Quiroga
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - Bayron Cortes
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - José Sarmiento
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Chile
| | - Gabriel Morán
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - Claudio Henríquez
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile.
| |
Collapse
|
6
|
Zoofeen U, Shah M, Sultan S, Ehtesham E, Shah I, Sharif N, Khan M, Shah FA. Punicalagin improves inflammation and oxidative stress in rat model of pelvic inflammatory disease. Nat Prod Res 2024:1-7. [PMID: 38329023 DOI: 10.1080/14786419.2024.2313183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Pelvic inflammatory disease (PID) is one of the major public health concerns accounting for 30% of infertility and 50% of ectopic pregnancy cases due to severe inflammation and fibrosis. Punicalagin® are known to exhibit potent anti-inflammatory activity. The aim of this study was to demonstrate the anti-inflammatory and antioxidant effects of Punicalagin®, against pelvic inflammatory disease in rats. Female Sprague Dawley rats (n = 24) were divided into 6 groups (n = 4) as control, PID, prophylactic (low dose and high dose) and therapeutic group (low dose and high dose). PID model was constructed by implanting the rat cervix with mixed microbe (Escherichia Coli and Staphylococcus Aureus) solution. Prophylactic group was gavaged with 3 mg/kg (low dose) and 6 mg/kg (high dose) Punicalagin® daily starting one day before PID induction and therapeutic group was gavaged with 3 mg/kg (low dose) and 6 mg/kg (high dose) Punicalagin® daily starting 1 day after confirmation of PID model. Rats were sacrificed at the end of experiment and samples from upper genital tract were collected for ELISA, antioxidant assay and histopathological examination. According to results, obvious signs of inflammation and oxidative stress including infiltration of neutrophils and significantly raised levels of cytokines, and oxidative stress markers were observed in PID group when compared to control group. Punicalagin® significantly decreased the levels of IL-1β, catalase and lipid peroxidation in both prophylactic and therapeutic groups when compared to PID group. Punicalagin® also decreased the infiltration of leucocytes in uterus of prophylactic and therapeutic group when compared to PID group, as determined by histological examination. On basis of these results, we concluded that Punicalagin® showed anti-inflammatory and antioxidant potential in rat model of pelvic inflammatory disease and could be used as possible therapeutic agent in treatment of PID.
Collapse
Affiliation(s)
- Ushna Zoofeen
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Mohsin Shah
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Sidra Sultan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Ehtesham Ehtesham
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Inayat Shah
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Navid Sharif
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Momin Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Fawad Ali Shah
- Prince Sattam Bil Abdul Aziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
7
|
Birckhead EM, Das S, Tidd N, Raidal SL, Raidal SR. Visualizing neutrophil extracellular traps in septic equine synovial and peritoneal fluid samples using immunofluorescence microscopy. J Vet Diagn Invest 2023; 35:751-760. [PMID: 37661696 PMCID: PMC10621558 DOI: 10.1177/10406387231196552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Septic synovitis and peritonitis are routinely diagnosed in horses based on clinical examination findings and laboratory assessment of synoviocentesis and abdominocentesis samples, respectively. Diagnosis is difficult in some cases because of an overlap in laboratory results for septic and non-septic inflammation. Neutrophil extracellular trap (NET) formation is part of the innate immune response against pathogens. Identifying and quantifying NETs, which have not been explored in clinical samples from horses with septic synovitis and peritonitis, to our knowledge, may be helpful in detecting infectious processes. Our main objective was to determine whether NETs could be visualized in septic equine synovial and peritoneal fluid cytology samples using immunofluorescence with antibodies against citrullinated histone H3 (Cit-H3) and myeloperoxidase (MPO). We analyzed 9 synovial and 4 peritoneal fluid samples. NET percentages were quantified using a simple counting technique, which is suitable for high-quality, well-preserved, and stained cytospin smears. NETs were evident in all septic samples and were absent in a non-septic sample; NETs were better visualized with Cit-H3 than with MPO immunolabeling. Overall, we believe that there is the potential for NETs and associated markers to be used to investigate and understand septic inflammation in horses.
Collapse
Affiliation(s)
- Emily M. Birckhead
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Shubhagata Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Naomie Tidd
- Veterinary Diagnostic Laboratory, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Sharanne L. Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Shane R. Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
8
|
Wójtowicz A, Molcan T, Lukasik K, Żebrowska E, Pawlina-Tyszko K, Gurgul A, Szmatoła T, Bugno-Poniewierska M, Ferreira-Dias G, Skarzynski DJ, Szóstek-Mioduchowska A. The potential role of miRNAs and regulation of their expression in the development of mare endometrial fibrosis. Sci Rep 2023; 13:15938. [PMID: 37743390 PMCID: PMC10518347 DOI: 10.1038/s41598-023-42149-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
Mare endometrial fibrosis (endometrosis), is one of the main causes of equine infertility. Despite the high prevalence, both ethology, pathogenesis and the nature of its progression remain poorly understood. Recent studies have shown that microRNAs (miRNAs) are important regulators in multiple cellular processes and functions under physiological and pathological circumstances. In this article, we reported changes in miRNA expression at different stages of endometrosis and the effect of transforming growth factor (TGF)-β1 on the expression of the most dysregulated miRNAs. We identified 1, 26, and 5 differentially expressed miRNAs (DEmiRs), in categories IIA (mild fibrosis), IIB (moderate fibrosis), and III (severe fibrosis) groups compared to category I (no fibrosis) endometria group, respectively (Padjusted < 0.05, log2FC ≥ 1.0/log2FC ≤ - 1.0). This study indicated the potential involvement of miRNAs in the regulation of the process associated to the development and progression of endometrosis. The functional enrichment analysis revealed, that DEmiRs target genes involved in the mitogen-activated protein kinases, Hippo, and phosphoinositide-3-kinase (PI3K)-Akt signalling pathways, focal adhesion, and extracellular matrix-receptor interaction. Moreover, we demonstrated that the most potent profibrotic cytokine-TGF-β1-downregulated novel-eca-miR-42 (P < 0.05) expression in fibroblasts derived from endometria at early-stage endometrosis (category IIA).
Collapse
Affiliation(s)
- Anna Wójtowicz
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Tomasz Molcan
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Karolina Lukasik
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Ewelina Żebrowska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Cracow, Poland
| | - Artur Gurgul
- Department of Animal Reproduction, Anatomy and Genomics, The University of Agriculture in Krakow, Cracow, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Cracow, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Cracow, Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, The University of Agriculture in Krakow, Cracow, Poland
| | - Graca Ferreira-Dias
- Faculty of Veterinary Medicine, CIISA - Center for Interdisciplinary Research in Animal Health, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Dariusz J Skarzynski
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Anna Szóstek-Mioduchowska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
9
|
Li H, Liu L, Wang J, Zhao W. The emerging role of neutrophil extracellular traps in endometritis. Front Immunol 2023; 14:1153851. [PMID: 37033951 PMCID: PMC10073465 DOI: 10.3389/fimmu.2023.1153851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Endometritis is a kind of common obstetric disease in women, usually caused by various pathogenic bacteria. Neutrophil infiltration is one of the most important pathological features of endometritis. Neutrophils can reach the uterine cavity through the endometrium, and make early response to the infection caused by the pathogen. Neutrophil extracellular traps (NETs), a meshwork of chromatin fibers extruded by neutrophils, have a role in entrapping microbial pathogens. It has been confirmed that NETs have a strong antibacterial effect and play crucial roles in the occurrence and development of various diseases. However, while killing pathogenic bacteria, excessive NETs formation may cause immune damage to the body. NETs are present in endometrium of female domestic animals in different physiological periods, especially post-mating, postpartum and in the presence of lesions, especially in endometritis. Meanwhile, NETs and its products might contribute to a reduction in physical clearance and persistent endometritis. In brief, NETs is a double-edged sword and it may play a different role in the development of endometritis, which may be beneficial or harmful, and its specific mechanism needs further study. Here we provide an overview of the role of NETs in the development of endometritis and the regulatory role of selenium on NETs formation and endometritis.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ling Liu
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junrong Wang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Weiliang Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Amaral A, Cebola N, Szóstek-Mioduchowska A, Rebordão MR, Kordowitzki P, Skarzynski D, Ferreira-Dias G. Inhibition of Myeloperoxidase Pro-Fibrotic Effect by Noscapine in Equine Endometrium. Int J Mol Sci 2023; 24:ijms24043593. [PMID: 36835008 PMCID: PMC9959736 DOI: 10.3390/ijms24043593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Myeloperoxidase is an enzyme released by neutrophils when neutrophil extracellular traps (NETs) are formed. Besides myeloperoxidase activity against pathogens, it was also linked to many diseases, including inflammatory and fibrotic ones. Endometrosis is a fibrotic disease of the mare endometrium, with a large impact on their fertility, where myeloperoxidase was shown to induce fibrosis. Noscapine is an alkaloid with a low toxicity, that has been studied as an anti-cancer drug, and more recently as an anti-fibrotic molecule. This work aims to evaluate noscapine inhibition of collagen type 1 (COL1) induced by myeloperoxidase in equine endometrial explants from follicular and mid-luteal phases, at 24 and 48 h of treatment. The transcription of collagen type 1 alpha 2 chain (COL1A2), and COL1 protein relative abundance were evaluated by qPCR and Western blot, respectively. The treatment with myeloperoxidase increased COL1A2 mRNA transcription and COL1 protein, whereas noscapine was able to reduce this effect with respect to COL1A2 mRNA transcription, in a time/estrous cycle phase-dependent manner (in explants from the follicular phase, at 24 h of treatment). Our study indicates that noscapine is a promising drug to be considered as an anti-fibrotic molecule to prevent endometrosis development, making noscapine a strong candidate to be applied in future endometrosis therapies.
Collapse
Affiliation(s)
- Ana Amaral
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Department of Zootechnics, School of Sciences and Technology (ECT), University of Évora, 7002-554 Évora, Portugal
- Comprehensive Health Research Centre (CHRC), 7000-811 Évora, Portugal
- Correspondence:
| | - Nélio Cebola
- Faculty of Veterinary Medicine, Universidade Lusofona, 1749-024 Lisbon, Portugal
- Veterinary Teaching Hospital of the University of Extremadura, 10003 Cáceres, Spain
| | - Anna Szóstek-Mioduchowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland
| | - Maria Rosa Rebordão
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Polytechnic of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| | - Paweł Kordowitzki
- Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Nicolaus Copernicus University, ul. Gagarina 1, 87-100 Torun, Poland
| | - Dariusz Skarzynski
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland
| | - Graça Ferreira-Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
11
|
Parrilla Hernández S, Franck T, Munaut C, Feyereisen É, Piret J, Farnir F, Reigner F, Barrière P, Deleuze S. Characterization of Myeloperoxidase in the Healthy Equine Endometrium. Animals (Basel) 2023; 13:ani13030375. [PMID: 36766264 PMCID: PMC9913682 DOI: 10.3390/ani13030375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Myeloperoxidase (MPO), as a marker of neutrophil activation, has been associated with equine endometritis. However, in absence of inflammation, MPO is constantly detected in the uterine lumen of estrous mares. The aim of this study was to characterize MPO in the uterus of mares under physiological conditions as a first step to better understand the role of this enzyme in equine reproduction. Total and active MPO concentrations were determined, by ELISA and SIEFED assay, respectively, in low-volume lavages from mares in estrus (n = 26), diestrus (n = 18) and anestrus (n = 8) in absence of endometritis. Immunohistochemical analysis was performed on 21 endometrial biopsies randomly selected: estrus (n = 11), diestrus (n = 6) and anestrus (n = 4). MPO, although mostly enzymatically inactive, was present in highly variable concentrations in uterine lavages in all studied phases, with elevated concentrations in estrus and anestrus, while in diestrus, concentrations were much lower. Intracytoplasmic immunoexpression of MPO was detected in the endometrial epithelial cells, neutrophils and glandular secretions. Maximal expression was observed during estrus in mid and basal glands with a predominant intracytoplasmic apical reinforcement. In diestrus, immunopositive glands were sporadic. In anestrus, only the luminal epithelium showed residual MPO immunostaining. These results confirm a constant presence of MPO in the uterine lumen of mares in absence of inflammation, probably as part of the uterine mucosal immune system, and suggest that endometrial cells are a source of uterine MPO under physiological cyclic conditions.
Collapse
Affiliation(s)
- Sonia Parrilla Hernández
- Physiology of Reproduction, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Thierry Franck
- Center for Oxygen Research and development (CORD), University of Liège, 4000 Liège, Belgium
| | - Carine Munaut
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, 4000 Liège, Belgium
| | - Émilie Feyereisen
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, 4000 Liège, Belgium
| | - Joëlle Piret
- Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Frédéric Farnir
- Biostatistics and Bioinformatics Applied to Veterinary Sciences, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | | | | | - Stéfan Deleuze
- Physiology of Reproduction, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
- Equine and Companion Animal Reproduction, Veterinary Medicine Faculty, University of Liège, 4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
12
|
Neutrophil Extracellular Traps Mediate Bovine Endometrial Epithelial Cell Pyroptosis in Dairy Cows with Endometritis. Int J Mol Sci 2022; 23:ijms232214013. [PMID: 36430491 PMCID: PMC9694523 DOI: 10.3390/ijms232214013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Neutrophils are involved in the development of endometritis, but it remains unknown how neutrophils induce inflammation and tissue damage. Neutrophil extracellular traps (NETs) clear invading pathogens during infection but induce pyroptosis, leading to inflammation and tissue damage. Thus, our objective was to investigate whether NETs participate in bovine endometrial epithelial cell (BEEC) pyroptosis during endometritis. To confirm this, NETs and caspase-1/4; apoptosis-associated speck-like protein containing a caspase-recruitment domain(ASC); nod-like receptor protein-3 (NLRP3); and gasdermin D N-terminal (GSDMD-N), TNF-a, IL-1β, IL-6, and IL-18 in endometrial tissue were detected. Pathological section and vaginal discharge smears were performed to visually determine endometritis in the uterus. BEECs were stimulated with NETs to induce pyroptosis, which was treated with DNase I against pyroptosis. Caspase-1/4, ASC, NLRP3, GSDMD-N, TNF-a, IL-1β, IL-6, and IL-18 in BEECs were analyzed in endometrial tissue. The results showed that NET formation, as well as pyroptosis-related proteins and proinflammatory, cytokines were elevated in the endometrial tissue of cows with endometritis. Pathological sections and vaginal discharge smears showed increased neutrophils and plasma cells in the uterus, as well as tissue congestion. In BEECs, NETs increased the level of pyroptosis-related proteins and proinflammatory cytokines and were diminished by DNase I. In summary NETs participate BEEC pyroptosis during endometritis in dairy cows.
Collapse
|
13
|
Janssen P, Tosi I, Hego A, Maréchal P, Marichal T, Radermecker C. Neutrophil Extracellular Traps Are Found in Bronchoalveolar Lavage Fluids of Horses With Severe Asthma and Correlate With Asthma Severity. Front Immunol 2022; 13:921077. [PMID: 35911691 PMCID: PMC9326094 DOI: 10.3389/fimmu.2022.921077] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022] Open
Abstract
Asthma encompasses a spectrum of heterogenous immune-mediated respiratory disorders sharing a similar clinical pattern characterized by cough, wheeze and exercise intolerance. In horses, equine asthma can be subdivided into severe or moderate asthma according to clinical symptoms and the extent of airway neutrophilic inflammation. While severe asthmatic horses are characterized by an elevated neutrophilic inflammation of the lower airways, cough, dyspnea at rest and high mucus secretion, horses with moderate asthma show a milder neutrophilic inflammation, exhibit intolerance to exercise but no labored breathing at rest. Yet, the physiopathology of different phenotypes of equine asthma remains poorly understood and there is a need to elucidate the underlying mechanisms tailoring those phenotypes in order to improve clinical management and elaborate novel therapeutic strategies. In this study, we sought to quantify the presence of neutrophil extracellular traps (NETs) in bronchoalveolar lavage fluids (BALF) of moderate or severe asthmatic horses and healthy controls, and assessed whether NETs correlated with disease severity. To this end, we evaluated the amounts of NETs by measuring cell-free DNA and MPO-DNA complexes in BALF supernatants or by quantifying NETs release by BALF cells by confocal microscopy. We were able to unequivocally identify elevated NETs levels in BALF of severe asthmatic horses as compared to healthy controls or moderate asthmatic horses. Moreover, we provided evidence that BALF NETs release was a specific feature seen in severe equine asthma, as opposed to moderate asthma, and correlated with disease severity. Finally, we showed that NETs could act as a predictive factor for severe equine asthma. Our study thus uniquely identifies NETs in BALF of severe asthmatic horses using three distinct methods and supports the idea that moderate and severe equine asthma do not rely on strictly similar pathophysiological mechanisms. Our data also suggest that NETs represent a relevant biomarker, a putative driver and a potential therapeutic target in severe asthma disease.
Collapse
Affiliation(s)
- Pierre Janssen
- Laboratory of Immunophysiology, GIGA Institute, Liège University, Liège, Belgium
- Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Irene Tosi
- Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Alexandre Hego
- In Vitro Imaging Platform, GIGA Institute, Liège University, Liège, Belgium
| | - Pauline Maréchal
- Laboratory of Immunophysiology, GIGA Institute, Liège University, Liège, Belgium
| | - Thomas Marichal
- Laboratory of Immunophysiology, GIGA Institute, Liège University, Liège, Belgium
- Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Coraline Radermecker
- Laboratory of Immunophysiology, GIGA Institute, Liège University, Liège, Belgium
- Faculty of Veterinary Medicine, Liège University, Liège, Belgium
- *Correspondence: Coraline Radermecker,
| |
Collapse
|
14
|
Witkowski M, Duliban M, Rak A, Profaska-Szymik M, Gurgul A, Arent ZJ, Galuszka A, Kotula-Balak M. Next-Generation Sequencing analysis discloses genes implicated in equine endometrosis that may lead to tumorigenesis. Theriogenology 2022; 189:158-166. [PMID: 35760027 DOI: 10.1016/j.theriogenology.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Endometrosis is a periglandular fibrosis associated with dysfunction of affected glandular epithelial cells that is the most common cause of reduced fertility in mares, although it is not fully understood. The etiology of the disease is still partially unknown. This study focuses on understanding the genetic mechanisms potentially underlying endometrosis in mares using the Next Generation Sequencing (NGS) technique. Endometrial samples, used in the study, were obtained in the anestrus phase both from healthy mares and those diagnosed with endometrosis. The NGS data were analyzed for gene involvement in biological processes and pathways (e.g. STAR, KOBAS-I, STRING, and ClustVis software). Bioinformatic analysis revealed differential expression of 55 transcripts. In tissues with endometrosis, most genes displayed upregulated expression. The protein-protein interaction analysis disclosed a substantial transcript network including transcripts related to metabolism e.g. sulfur metabolism (SELENBP1), ovarian steroidogenesis, steroid hormone biosynthesis, and chemical carcinogenesis (CYP1B1), COXs (COX4I1, COX3, UQCRFS1) as well as transcripts related to immune response e.g. MMP7, JCHAIN, PIGR, CALR, B2M, FCGRT. Interestingly, the latter has been previously linked with various pathologies including cancers in the female reproductive system. In conclusion, this study evaluated genes that are not directly impacted by sex hormone feedback, but that create a metabolic and immune environment in tissues, thus influencing fertility and pregnancy in mares with endometrosis. Moreover, some of the identified genes may be implicated in tumorigenesis of endometrial lesions. These data may be useful as a starting point in further research, such as the development of targeted strategies for rapid diagnosis and/or prevention of this pathology based on gene and protein-protein interactions.
Collapse
Affiliation(s)
- M Witkowski
- Department of Obstetrics, Gynecology with Andrology and Animal Reproduction Biotechnology, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland; Equine Hospital on the Racing Truck, Sluzewiec, Pulawska 266, 02-684, Warszawa, Poland
| | - M Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland.
| | - A Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Profaska-Szymik
- Department of Obstetrics, Gynecology with Andrology and Animal Reproduction Biotechnology, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - A Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland
| | - Z J Arent
- Department of Animal Infectious Diseases and Food Hygiene, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - A Galuszka
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - M Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland.
| |
Collapse
|
15
|
D’Agostino A, Di Palma T, Cecchini Gualandi S, Boni R. Fluorescence Spectroscopy for the Diagnosis of Endometritis in the Mare. Animals (Basel) 2022; 12:ani12091157. [PMID: 35565583 PMCID: PMC9101999 DOI: 10.3390/ani12091157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
By exploiting the PMN property to produce high quantities of oxygen peroxide to neutralize pathogens, the oxygen peroxide content of uterine cells was measured to diagnose endometritis. After preliminary in vitro studies in which endometrial cells from slaughtered mares were mixed with leukocytes from peripheral blood, endometrial samples were collected by uterine flushing from mares before insemination. Staining endometrial cells with H2DCF-DA was combined with hydroethidine to normalize the fluorescence intensity with the cellular content of the sample. Stained cell smears were assumed as the gold standard of endometritis, and based on this assay, the samples were considered positive (C+) and negative (C−) for endometritis. The amount and the turbidity of fluid recovered by uterine flushing were significantly (p < 0.01) higher in C+ than in C−. Moreover, the oxygen peroxide content of the endometrial cells was significantly higher in the C+ than in the C− group (6.31 ± 1.92 vs. 3.12 ± 1.26, p = 0.001). Using the value of 4.4 as the cutoff level of this fluorescence cytology assay, it was found that only one C− sample exceeded the cutoff level (false positives = 7.7%) while three C+ samples showed values below the cutoff level (false negative = 11.5%).
Collapse
Affiliation(s)
- Andrea D’Agostino
- Department of Sciences, University of Basilicata, Campus Macchia Romana, 85100 Potenza, Italy; (A.D.); (S.C.G.)
| | | | - Stefano Cecchini Gualandi
- Department of Sciences, University of Basilicata, Campus Macchia Romana, 85100 Potenza, Italy; (A.D.); (S.C.G.)
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, Campus Macchia Romana, 85100 Potenza, Italy; (A.D.); (S.C.G.)
- Correspondence: ; Tel.: +39-0971-205017
| |
Collapse
|
16
|
Huang SUS, O’Sullivan KM. The Expanding Role of Extracellular Traps in Inflammation and Autoimmunity: The New Players in Casting Dark Webs. Int J Mol Sci 2022; 23:ijms23073793. [PMID: 35409152 PMCID: PMC8998317 DOI: 10.3390/ijms23073793] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
The first description of a new form of neutrophil cell death distinct from that of apoptosis or necrosis was discovered in 2004 and coined neutrophil extracellular traps "(NETs)" or "NETosis". Different stimuli for NET formation, and pathways that drive neutrophils to commit to NETosis have been elucidated in the years that followed. Critical enzymes required for NET formation have been discovered and targeted therapeutically. NET formation is no longer restricted to neutrophils but has been discovered in other innate cells: macrophages/monocytes, mast Cells, basophils, dendritic cells, and eosinophils. Furthermore, extracellular DNA can also be extruded from both B and T cells. It has become clear that although this mechanism is thought to enhance host defense by ensnaring bacteria within large webs of DNA to increase bactericidal killing capacity, it is also injurious to innocent bystander tissue. Proteases and enzymes released from extracellular traps (ETs), injure epithelial and endothelial cells perpetuating inflammation. In the context of autoimmunity, ETs release over 70 well-known autoantigens. ETs are associated with pathology in multiple diseases: lung diseases, vasculitis, autoimmune kidney diseases, atherosclerosis, rheumatoid arthritis, cancer, and psoriasis. Defining these pathways that drive ET release will provide insight into mechanisms of pathological insult and provide potential therapeutic targets.
Collapse
|
17
|
Evolution of the Concepts of Endometrosis, Post Breeding Endometritis, and Susceptibility of Mares. Animals (Basel) 2022; 12:ani12060779. [PMID: 35327176 PMCID: PMC8944725 DOI: 10.3390/ani12060779] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
In this paper, the evolution of our understanding about post breeding endometritis (PBE), the susceptibility of mares, and events leading to endometrosis are reviewed. When sperm arrive in the uterus, pro-inflammatory cytokines and chemokines are released. They attract neutrophils and induce modulatory cytokines which control inflammation. In susceptible mares, this physiological defense can be prolonged since the pattern of cytokine release differs from that of resistant mares being delayed and weaker for anti-inflammatory cytokines. Delayed uterine clearance due to conformational defects, deficient myometrial contractions, and failure of the cervix to relax is detected by intrauterine fluid accumulation and is an important reason for susceptibility to endometritis. Multiparous aged mares are more likely to be susceptible. Untreated prolonged PBE can lead to bacterial or fungal endometritis called persistent or chronic endometritis. Exuberant or prolonged neutrophilia and cytokine release can have deleterious and permanent effects in inducing endometrosis. Interactions of neutrophils, cytokines, and prostaglandins in the formation of collagen and extracellular matrix in the pathogenesis of fibrosis are discussed. Endometritis and endometrosis are interconnected, influencing each other. It is suggested that they represent epigenetic changes induced by age and hostile uterine environment.
Collapse
|
18
|
Diana F, Matteo T, Davide M, Maria DJ, Francesco C, Alessandra R, Duccio P. Deep-horn Artificial Insemination with Frozen Thawed Semen after re-extension in Autologous Seminal Plasma May Improve Pregnancy Rates in Jennies. J Equine Vet Sci 2022; 112:103932. [DOI: 10.1016/j.jevs.2022.103932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
|
19
|
Jasiński T, Zdrojkowski Ł, Kautz E, Juszczuk-Kubiak E, Ferreira-Dias G, Domino M. The NF-κB signaling pathway in mare's endometrium infiltrated with the inflammatory cells. Reprod Domest Anim 2022; 57:598-610. [PMID: 35182075 PMCID: PMC9305511 DOI: 10.1111/rda.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
Endometritis is an important issue decreasing mares' fertility. In the case of endometritis both, inflammatory cells infiltration and proinflammatory molecules production are regulated by various cellular and gene-regulatory mechanisms, including the nuclear factor-κB (NF-κB) dependent pathway. NF-κB signaling pathway has been recently studied in the equine endometrium in the context of endometrosis. Thus, this study aimed to determine gene transcription of NF-κB subunits (RelA; NF-κB1; NF-κB2), proinflammatory molecules (MCP-1; IL-6), and hyaluronan synthases (HAS 1; HAS 2; HAS 3) in endometritis and compare them with the intensity and type of inflammatory cell infiltration. Endometrial samples, collected post-mortem from cyclic mares in estrus or diestrus, were classified histologically and examined using quantitative PCR. Transcription NF-κB subunits genes did not differ with either inflammatory intensity or type of inflammatory cell infiltration. Transcription of MCP-1 and IL-6 genes increased with the severity of inflammation, with the involvement of HAS 3 and HAS 2 genes, as opposed to HAS 1 genes. These proinflammatory molecules and hyaluronan synthases in the equine inflamed endometrium do not seem to be regulated by the NF-κB pathway. Hence, separate signaling pathways for the development and progression of equine endometritis and endometrosis may be suggested.
Collapse
Affiliation(s)
- Tomasz Jasiński
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS - SGGW), Warsaw, Poland
| | - Łukasz Zdrojkowski
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS - SGGW), Warsaw, Poland
| | - Ewa Kautz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław, Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Warsaw, Poland
| | - Graça Ferreira-Dias
- Departmento de Morfologia e Função, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Małgorzata Domino
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS - SGGW), Warsaw, Poland
| |
Collapse
|
20
|
Flanders AJ, Ossiboff RJ, Wellehan JFX, Alexander AB, Fredholm DVE, Desiderio TM, Stacy NI. Presumptive heterophil extracellular traps recognized cytologically in nine reptile patients with inflammatory conditions. Vet Q 2021; 41:89-96. [PMID: 33416037 PMCID: PMC7833021 DOI: 10.1080/01652176.2021.1873453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) represent a novel cellular mechanism of antimicrobial defense activity. Intravascular neutrophils produce extracellular web-like structures composed of chromatin, histones, and cytoplasmic granule proteins to attack and kill microbes. They may impact both pathogen and host; NETs correlate strongly with disseminated intravascular coagulation and mortality in critically ill humans. The mechanism was first discovered in human neutrophils in 2004. Presumptive heterophil extracellular traps (HETs) in a non-avian reptile species were first described in blood films of a gopher tortoise with systemic inflammation. OBJECTIVE While prior reports are limited to blood film review and in vitro studies, this descriptive case series highlights the cytological identification of presumptive HETs in nine reptile patients. METHODS Subjects included six gopher tortoises, one blood python (Python curtus), one Burmese python (P. bivittatus), and one desert king snake (Lampropeltis getula splendida). All six gopher tortoises (Gopherus polyphemus) had upper respiratory disease with bacterial etiology (including Helicobacter sp. and/or Mycoplasma sp.), and snakes had upper respiratory tract infection confirmed with serpentovirus (n = 2) or bacterial dermatitis (n = 1). RESULTS Cytology samples with identified HETs included tissue imprints (n = 4), nasal discharge (n = 3), an oral swab (n = 1), and a fine needle aspirate of a skin lesion (n = 1). The identification of specific bacterial (n = 6) and/or viral pathogens (n = 2) was notable. CLINICAL RELEVANCE To the authors' knowledge, this is the first report of presumptive HETs recognized in reptile cytology specimens, suggesting an active cellular process in vivo in response to systemic inflammation in non-avian reptiles, and contributing to further understanding of extracellular traps in these species.
Collapse
Affiliation(s)
- A. J. Flanders
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - R. J. Ossiboff
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - J. F. X. Wellehan
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - A. B. Alexander
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - D. V. E. Fredholm
- Disney’s Animals, Science and Environment, Disney’s Animal Kingdom®, Bay Lake, FL, USA
| | - T. M. Desiderio
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - N. I. Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
- Disney’s Animals, Science and Environment, Disney’s Animal Kingdom®, Bay Lake, FL, USA
| |
Collapse
|
21
|
Rebordão MR, Amaral A, Fernandes C, Silva E, Lukasik K, Szóstek-Mioduchowska A, Pinto-Bravo P, Galvão A, Skarzynski DJ, Ferreira-Dias G. Enzymes Present in Neutrophil Extracellular Traps May Stimulate the Fibrogenic PGF 2α Pathway in the Mare Endometrium. Animals (Basel) 2021; 11:ani11092615. [PMID: 34573581 PMCID: PMC8469524 DOI: 10.3390/ani11092615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Endometrosis is a fibrotic disease in mare endometrium whose pathological mechanisms remain obscure. Prostaglandin (PG)F2α, despite modulating reproductive physiological processes, may also provoke local pathological collagen deposition (fibrogenesis). Neutrophil extracellular traps (NETs) released during inflammation have been linked to fibrogenesis in several tissues. We have previously shown that enzymes found in NETs increase in vitro collagen production in mare endometrium. In this study, activation of PGF2α-pathway in equine endometrial explants challenged in vitro by enzymes found in NETs is shown. Our results indicate that both endocrine microenvironment (estrous cycle phase) and healthy or pathological conditions of endometrial tissues play an important role in PGF2α-pathway activation. In the endometrium of the follicular phase, we have observed both high production of PGF2α and/or PGF2α receptor gene transcription under the action of enzymes found in NETs, both conditions associated with fibrogenesis in other tissues. Nevertheless, transcription of the PGF2α receptor gene does not appear to be hormone-dependent, albeit their levels seem to be dependent on endometrial category in the mid-luteal phase. This study suggests that enzymes existing in NETs may instigate changes on PGF2α mediators, which may become an additional mechanism of fibrogenesis in mare endometrium. Abstract Endometrosis, a fibrotic disease of mare endometrium, impairs uterine function. Prostaglandins (PG), despite modulating reproductive physiological functions, may also cause local pathological collagen deposition (fibrogenesis). We have previously shown that neutrophil extracellular traps (NETs) may also favor mare endometrosis. The aim of this study was to investigate the effect of enzymes present in NETs on PGF2α-pathway activation. Kenney and Doig’s type I/IIA and IIB/III mare endometria, from follicular phase (FLP) and mid-luteal (MLP) phase, were cultured in vitro in the presence of NETs enzymes (elastase, cathepsin-G or myeloperoxidase). Production of PGF2α (EIA) and transcription (qPCR) of its synthases (PTGS2, AKR1C3) and receptor (PTGFR) genes were evaluated. PGF2α and PTGFR were influenced by endometrial category and estrous cycle phase. In FLP endometrium, NETs enzymes induced both high PGF2α production and/or PTGFR transcription. In MLP type I/IIA tissues, down-regulation of PTGFR transcripts occurred. However, in MLP type IIB/III endometrium, high levels of PTGFR transcripts were induced by NETs enzymes. As PGF2α-pathway activation facilitates fibrogenesis in other tissues, PGF2α may be involved in endometrosis pathogenesis. In the mare, the endocrine microenvironment of healthy and pathological endometrium might modulate the PGF2α pathway, as well as fibrosis outcome on endometrium challenged by NETs enzymes.
Collapse
Affiliation(s)
- Maria Rosa Rebordão
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.R.R.); (A.A.); (C.F.); (E.S.)
- Polytechnic Institute of Coimbra, College of Agriculture, 3045-601 Coimbra, Portugal;
| | - Ana Amaral
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.R.R.); (A.A.); (C.F.); (E.S.)
| | - Carina Fernandes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.R.R.); (A.A.); (C.F.); (E.S.)
| | - Elisabete Silva
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.R.R.); (A.A.); (C.F.); (E.S.)
| | - Karolina Lukasik
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, 10-748 Olsztyn, Poland; (K.L.); (A.S.-M.); (A.G.); (D.J.S.)
| | - Anna Szóstek-Mioduchowska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, 10-748 Olsztyn, Poland; (K.L.); (A.S.-M.); (A.G.); (D.J.S.)
| | - Pedro Pinto-Bravo
- Polytechnic Institute of Coimbra, College of Agriculture, 3045-601 Coimbra, Portugal;
| | - António Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, 10-748 Olsztyn, Poland; (K.L.); (A.S.-M.); (A.G.); (D.J.S.)
| | - Dariusz J. Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, 10-748 Olsztyn, Poland; (K.L.); (A.S.-M.); (A.G.); (D.J.S.)
| | - Graça Ferreira-Dias
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.R.R.); (A.A.); (C.F.); (E.S.)
- Correspondence: ; Tel.: +351-213-652-859
| |
Collapse
|
22
|
Mateo-Otero Y, Zambrano F, Catalán J, Sánchez R, Yeste M, Miro J, Fernandez-Fuertes B. Seminal plasma, and not sperm, induces time and concentration-dependent neutrophil extracellular trap release in donkeys. Equine Vet J 2021; 54:415-426. [PMID: 33908643 DOI: 10.1111/evj.13457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/12/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND In several mammalian species, acute endometritis driven by the recruitment of polymorphonuclear cells (PMN) occurs in response to semen. These PMNs release DNA to form neutrophil extracellular traps (NETs) in cattle, horse and human, leading to sperm entrapment. While there is no evidence of this phenomenon occurring in donkeys, artificial insemination (AI) with frozen-thawed semen, which results in very poor pregnancy rates, leads to a large PMN recruitment to the uterus. OBJECTIVES To investigate whether donkey semen can trigger NET release (NETosis) and if excessive NETosis occurs in response to frozen-thawed semen. STUDY DESIGN In vitro experiments. METHODS Jenny PMNs were exposed to jackass fresh or frozen-thawed semen, isolated sperm or seminal plasma (SP), over the course of three experiments. NET formation in response to different treatments was assessed through manual quantification of stained slides. A one-way analysis of variance (ANOVA), followed by a post hoc Sidak test, was carried out to determine statistical significance. RESULTS NET release occurred in a semen concentration- and incubation-time-dependent manner. Surprisingly, frozen-thawed donkey sperm did not increase NETosis rate in comparison with the control (23 ± 2.5% vs. 31 ± 3.7%; P > .05), whereas fresh semen exposure did (78 ± 5.7% vs. 26 ± 3.2%, P < .01). NETosis increased in the presence of SP, regardless of the presence or absence of sperm, in comparison with the control in both fresh (84 ± 5.2% and 77 ± 5.0% vs. 12 ± 2.7%, respectively; P < .01) and frozen (95 ± 2.2% and 94 ± 2.9% vs. 14 ± 3.8%, respectively; P < .01) samples. Moreover, exposure of PMN to viable and motile sperm, in the absence of SP, did not increase NETosis rates (P > .05). CONCLUSIONS Donkey SP, and not sperm-intrinsic factors, is able to trigger NETosis in both time- and semen concentration-dependent manner. The physiological relevance of such response against semen in the donkey remains to be elucidated.
Collapse
Affiliation(s)
- Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Fabiola Zambrano
- Laboratory in Reproductive Medicine and Molecular Endocrinology, Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT - BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Preclinical Sciences, Faculty of Medicine, University of La Frontera, Temuco, Chile
| | - Jaime Catalán
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.,Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Autonomous University of Barcelona, Barcelona, Spain
| | - Raúl Sánchez
- Laboratory in Reproductive Medicine and Molecular Endocrinology, Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT - BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Preclinical Sciences, Faculty of Medicine, University of La Frontera, Temuco, Chile
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Jordi Miro
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Autonomous University of Barcelona, Barcelona, Spain
| | - Beatriz Fernandez-Fuertes
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| |
Collapse
|
23
|
Zheng Y, Tian C, Fan C, Xu N, Xiao J, Zhao X, Lu Z, Cao H, Liu J, Yu L. Sheng-Mai Yin exerts anti-inflammatory effects on RAW 264.7 cells and zebrafish. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113497. [PMID: 33091492 DOI: 10.1016/j.jep.2020.113497] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sheng-Mai Yin (SMY), a famous traditional Chinese medicine formula, has been commonly used in China for centuries to treat various diseases, such as inflammation-related diseases. However, the anti-inflammatory activity of SMY and its potential mechanisms still have not yet been clearly understood. AIM OF THE STUDY In this study, we aimed to determine the anti-inflammatory effect of SMY and explore its underlying mechanisms both on RAW 264.7 cells and zebrafish. MATERIALS AND METHODS The levels of pro-inflammatory cytokines IL-6 and TNF-α secreted by RAW 264.7 cells were measured by ELISA. The protein expressions of IκBα, p-IκBα (Ser32), STAT3 and p-STAT3 (Tyr705) were determined by Western blotting. And the nuclear translocation of NF-κB p65 in LPS-induced RAW 264.7 macrophage cells was detected by confocal microscopy. Moreover, the in vivo anti-inflammatory effect of SMY and its potential mechanisms were further investigated by survival analysis, hematoxylin-eosin staining (H&E), observation of neutrophil migration and quantitative real-time PCR (qRT-PCR) analysis in zebrafish inflammatory models. RESULTS SMY reduced the release of IL-6 and TNF-α, inhibited the phosphorylation of IκBα and STAT3 as well as the nuclear translocation of NF-κB p65 in LPS-induced RAW 264.7 cells. Furthermore, the increased survival, decreased infiltration of inflammatory cells and the attenuated migration of neutrophils together suggested the in vivo anti-inflammatory effects of SMY. More importantly, SMY reduced the gene expressions of pro-inflammatory cytokines and suppressed LPS-induced up-regulation of NF-κB, IκBα and STAT3 in zebrafish inflammatory models. CONCLUSION SMY exerts significant anti-inflammatory effects with a potential mechanism of inhibiting the NF-κB and STAT3 signal pathways. Our findings suggest a scientific rationale of SMY to treat inflammatory diseases in clinic.
Collapse
Affiliation(s)
- Yuanru Zheng
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China
| | - Chunyang Tian
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China
| | - Chunlin Fan
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Nishan Xu
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China
| | - Junjie Xiao
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China
| | - Xiaoyang Zhao
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China
| | - Zibin Lu
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China
| | - Huihui Cao
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China
| | - Junshan Liu
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China.
| | - Linzhong Yu
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China.
| |
Collapse
|
24
|
Zou W, Gong L, Zhou F, Long Y, Li Z, Xiao Z, Ouyang B, Liu M. Anti-inflammatory effect of traditional Chinese medicine preparation Penyanling on pelvic inflammatory disease. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113405. [PMID: 32979412 DOI: 10.1016/j.jep.2020.113405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Penyanling is made up of Smilacis Glabrae Rhizoma (SG, from Smilar glabra Roxb.), Angelicae Sinensis Radix (AS, from Angelica sinensis (Oliv.) Diels), Salviae Miltiorrhizae Radix et Rhizoma (SM, from Salvia miltiorrhiza Bunge), Sargentodoxae Caulis (SC, from Sargentodoxa cuneata (Oliv.) Rehd.et Wils.), Linderae Radix (LR, from Lindera aggregata (Sims) Kosterm.), Paeoniae Radix Rubra (PR, from Paeonia lactiflora Pall.), Sparganii Rhizoma (SR, from Sparganium stoloniferum (Graebn.) Buch.-Ham.), Corydalis Rhizoma (CoR, from Corydalis yanhusuo W. T. Wang), Cyperi Rhizoma (CyR, from Cyperus rotundus Linn.), Glycyrrhizae Radix et Rhizoma (GR, from Glycyrrhiza uralensis Fisch.), and Patrinia Scabiosaefolia (PS, from Patrinia scabiosaefolia Fisch. ex Trev.) recorded in Chinese Pharmacopoeia. It has been used on pelvic inflammatory disease (PID) for more than twenty years. AIM OF THE STUDY This study was carried out to illustrate its pharmacological action and clarify its substantial composition. MATERIALS AND METHODS The anti-inflammatory effects of Penyanling were studied on a PID rat model and a lipopolysaccharides (LPS)-stimulated THP-1 cell line. Histological changes and levels of inflammatory factors in the uterine tube of the PID rat were examined. Levels of nuclear factor-kappa B (NF-κB) in the nuclear of THP-1 cells and NF-κB, IκB-α, and FPR2 in the cytoplasm were tested by Western blot analysis. Substances within Penyanling were scanned with liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-Q-TOF-MS). The contents of total flavonoids, phenolics, and saponins were quantified. RESULTS The anti-inflammatory effects of Penyanling were observed on PID rats, such as suppressing the infiltrations of lymphocytes and neutrophils in the uterine tube, decreasing the release of interleukin (IL)-1β, IL-6, IL-8, and monocyte chemotactic protein (MCP)-1, and promoting the production of lipoxin A4 (LXA4). On the other hand, Penyanling regulated the activity of NF-κB signal pathway on the LPS-stimulated THP-1 cell line, which suggested the potential mechanism of its anti-inflammatory effect. Besides, it could promote the expression of formyl peptide receptor 2 (FPR2), which suggested its effect on enhancing the resolution of inflammation. Seventy-six substances were identified by their accurate molecular weights, mass fragment patterns, retention times, and standards if available. Most of these substances were flavonoids, phenolics, saponins, and alkaloids. The contents of total flavonoids, phenolics, and saponins within Penyanling were 0.186, 1.371, and 4.321 mg/mL, respectively. CONCLUSION Penyanling showed an anti-inflammatory effect on PID, and its potential mechanism involved suppressing NF-κB signal pathway and promoting the resolution of inflammation. The main substances within it were flavonoids, phenolics, saponins, and alkaloids.
Collapse
Affiliation(s)
- Wei Zou
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, PR China
| | - Linna Gong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Fenghua Zhou
- School of Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Yao Long
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, PR China
| | - Zhen Li
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, PR China
| | - Zuoqi Xiao
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, PR China
| | - Bo Ouyang
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, PR China
| | - Menghua Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
25
|
Myeloperoxidase Inhibition Decreases the Expression of Collagen and Metallopeptidase in Mare Endometria under In Vitro Conditions. Animals (Basel) 2021; 11:ani11010208. [PMID: 33467081 PMCID: PMC7830995 DOI: 10.3390/ani11010208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Neutrophils can originate neutrophil extracellular traps (NETs). Myeloperoxidase (MPO) is a peroxidase found in NETs associated to equine endometrosis and can be inhibited by 4-aminobenzoic acid hydrazide (ABAH). Metallopeptidases (MMPs) participate in extracellular matrix stability and fibrosis development. The objectives of this in vitro work were to investigate, in explants of mare's endometrium, (i) the ABAH capacity to inhibit MPO-induced collagen type I (COL1) expression; and (ii) the action of MPO and ABAH on the expression and gelatinolytic activity of MMP-2/-9. Explants retrieved from the endometrium of mares in follicular or mid-luteal phases were treated with MPO, ABAH, or their combination, for 24 or 48 h. The qPCR analysis measured the transcription of COL1A2, MMP2, and MMP9. Western blot and zymography were performed to evaluate COL1 protein relative abundance and gelatinolytic activity of MMP-2/-9, respectively. Myeloperoxidase elevated COL1 relative protein abundance at both treatment times in follicular phase (p < 0.05). The capacity of ABAH to inhibit MPO-induced COL1 was detected in follicular phase at 48 h (p < 0.05). The gelatinolytic activity of activated MMP-2 augmented in mid-luteal phase at 24 h after MPO treatment, but it was reduced with MPO+ABAH treatment. The activity of MMP-9 active form augmented in MPO-treated explants. However, this effect was inhibited by ABAH in the follicular phase at 48 h (p < 0.05). By inhibiting the pro-fibrotic effects of MPO, it might be possible to reduce the development of endometrosis. Metallopeptidase-2 might be involved in an acute response to MPO in the mid-luteal phase, while MMP-9 might be implicated in a prolonged exposition to MPO in the follicular phase.
Collapse
|
26
|
Quiroga J, Alarcón P, Manosalva C, Taubert A, Hermosilla C, Hidalgo MA, Carretta MD, Burgos RA. Mitochondria-derived ATP participates in the formation of neutrophil extracellular traps induced by platelet-activating factor through purinergic signaling in cows. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103768. [PMID: 32692996 DOI: 10.1016/j.dci.2020.103768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/28/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Neutrophil extracellular trap (NET) formation eliminates/prevents the spread of infectious agents. Platelet activating factor (PAF) is involved in infectious diseases of cattle because it recruits and activates neutrophils. However, its ability to induce NET release and the role of metabolism in this process is not known. We investigated if inhibition of glycolysis, mitochondrial-derived adenosine triphosphate (ATP) synthesis and purinergic signaling though P2X1 purinoceptors interfered with NET formation induced by PAF. We inhibited bovine neutrophils with 2-deoxy-d-glucose, rotenone, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and NF449 to evaluate PAF-mediated NET extrusion. PAF induced mitochondrial hyperpolarization and triggered extracellular ATP release via pannexin-1. Inhibition of mitochondrial metabolism prevented extracellular ATP release. Inhibition of glycolysis, complex-I activity and oxidative phosphorylation prevented NET formation induced by PAF. Inhibition of P2X1 purinergic receptors inhibited mitochondrial hyperpolarization and NET formation. We concluded that PAF-induced NET release is dependent upon glycolysis, mitochondrial ATP synthesis and purinergic signaling.
Collapse
Affiliation(s)
- John Quiroga
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - María Angélica Hidalgo
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María Daniella Carretta
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
27
|
Amaral A, Fernandes C, Morazzo S, Rebordão MR, Szóstek-Mioduchowska A, Lukasik K, Gawronska-Kozak B, Telo da Gama L, Skarzynski DJ, Ferreira-Dias G. The Inhibition of Cathepsin G on Endometrial Explants With Endometrosis in the Mare. Front Vet Sci 2020; 7:582211. [PMID: 33195599 PMCID: PMC7661753 DOI: 10.3389/fvets.2020.582211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/24/2020] [Indexed: 12/31/2022] Open
Abstract
Although proteases found in neutrophil extracellular traps (NETs) have antimicrobial properties, they also stimulate collagen type 1 (COL1) production by the mare endometrium, contributing for the development of endometrosis. Cathepsin G (CAT), a protease present in NETs, is inhibited by specific inhibitors, such as cathepsin G inhibitor I (INH; β-keto-phosphonic acid). Matrix metallopeptidases (MMPs) are proteases involved in the equilibrium of the extracellular matrix. The objective of this study was to investigate the effect of CAT and INH (a selective CAT inhibitor) on the expression of MMP-2 and MMP-9 and on gelatinolytic activity. In addition, the putative inhibitory effect of INH on CAT-induced COL1 production in mare endometrium was assessed. Endometrial explants retrieved from mares in follicular phase or midluteal phase were treated for 24 or 48 h with CAT, inhibitor alone, or both treatments. In explants, transcripts (quantitative polymerase chain reaction) of COL1A2, MMP2, and MMP9, as well as the relative abundance of COL1 protein (Western blot), and activity of MMP-2 and MMP-9 (zymography) were evaluated. The protease CAT induced COL1 expression in explants, at both estrous cycle phases and treatment times. The inhibitory effect of INH was observed on COL1A2 transcripts in follicular phase at 24-h treatment, and in midluteal phase at 48 h (P < 0.05), and on the relative abundance of COL protein in follicular phase and midluteal phase explants, at 48 h (P < 0.001). Our study suggests that MMP-2 might also be involved in an earlier response to CAT, and MMP-9 in a later response, mainly in the follicular phase. While the use of INH reduced CAT-induced COL1 endometrial expression, MMPs might be involved in the fibrogenic response to CAT. Therefore, in mare endometrium, the use of INH may be a future potential therapeutic means to reduce CAT-induced COL1 formation and to hamper endometrosis establishment.
Collapse
Affiliation(s)
- Ana Amaral
- Department Morfologia e Função, Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Carina Fernandes
- Department Morfologia e Função, Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia Morazzo
- Department Morfologia e Função, Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Rosa Rebordão
- Department Morfologia e Função, Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal.,Polytechnic of Coimbra, Coimbra Agriculture School, Coimbra, Portugal
| | | | - Karolina Lukasik
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
| | - Luís Telo da Gama
- Department Morfologia e Função, Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Dariusz Jan Skarzynski
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
| | - Graça Ferreira-Dias
- Department Morfologia e Função, Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
28
|
Amaral A, Fernandes C, Rebordão MR, Szóstek-Mioduchowska A, Lukasik K, Gawronska-Kozak B, Telo da Gama L, Skarzynski DJ, Ferreira-Dias G. The In Vitro Inhibitory Effect of Sivelestat on Elastase Induced Collagen and Metallopeptidase Expression in Equine Endometrium. Animals (Basel) 2020; 10:E863. [PMID: 32429399 PMCID: PMC7278485 DOI: 10.3390/ani10050863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Neutrophil extracellular traps (NETs) fight endometritis, and elastase (ELA), a protease found in NETs, might induce collagen type I (COL1) accumulation in equine endometrium. Metallopeptidases (MMPs) are involved in extracellular matrix balance. The aim was to evaluate the effects of ELA and sivelestat (selective elastase inhibitor) on MMP-2 and MMP-9 expression and gelatinolytic activity, as well as the potential inhibitory effect of sivelestat on ELA-induced COL1 in equine endometrium. Endometrial explants from follicular (FP) and mid-luteal (MLP) phases were treated for 24 or 48 h with ELA, sivelestat, and their combination. Transcripts of COL1A2, MMP2, and MMP9 were evaluated by qPCR; COL1 protein relative abundance by Western blot, and MMP-2 and MMP-9 gelatinolytic activity by zymography. In response to ELA treatment, there was an increase in MMP2 mRNA transcription (24 h) in active MMP-2 (48 h), both in FP, and in MMP9 transcripts in FP (48 h) and MLP (24 h) (p < 0.05). Sivelestat inhibited ELA-induced COL1A2 transcripts in FP (24 h) and MLP (24 h, 48 h) (p < 0.05). The sivelestat inhibitory effect was detected in MMP9 transcripts in FP at 48 h (p < 0.05), but proteases activity was unchanged. Thus, MMP-2 and MMP-9 might be implicated in endometrium fibrotic response to ELA. In mare endometrium, sivelestat may decrease ELA-induced COL1 deposition and hinder endometrosis development.
Collapse
Affiliation(s)
- Ana Amaral
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (M.R.R.); (L.T.d.G.)
| | - Carina Fernandes
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (M.R.R.); (L.T.d.G.)
| | - Maria Rosa Rebordão
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (M.R.R.); (L.T.d.G.)
- Coimbra College of Agriculture, Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal
| | - Anna Szóstek-Mioduchowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science,10-748 Olsztyn, Poland; (A.S.-M.); (K.L.); (B.G.-K.); (D.J.S.)
| | - Karolina Lukasik
- Institute of Animal Reproduction and Food Research, Polish Academy of Science,10-748 Olsztyn, Poland; (A.S.-M.); (K.L.); (B.G.-K.); (D.J.S.)
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Science,10-748 Olsztyn, Poland; (A.S.-M.); (K.L.); (B.G.-K.); (D.J.S.)
| | - Luís Telo da Gama
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (M.R.R.); (L.T.d.G.)
| | - Dariusz J. Skarzynski
- Institute of Animal Reproduction and Food Research, Polish Academy of Science,10-748 Olsztyn, Poland; (A.S.-M.); (K.L.); (B.G.-K.); (D.J.S.)
| | - Graça Ferreira-Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (M.R.R.); (L.T.d.G.)
| |
Collapse
|
29
|
Schöniger S, Schoon HA. The Healthy and Diseased Equine Endometrium: A Review of Morphological Features and Molecular Analyses. Animals (Basel) 2020; 10:ani10040625. [PMID: 32260515 PMCID: PMC7222714 DOI: 10.3390/ani10040625] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Diseases of the endometrium are a frequent cause of subfertility in mares and have an economic impact on the horse breeding industry. These include periglandular fibrosis of endometrial glands (endometrosis), degenerative diseases of vessels (angiosis), inflammation (endometritis), as well as altered differentiation of endometrial glands. Some mares are susceptible towards persistent endometritis. The etiology and pathogenesis of endometrosis are still unclear. This review describes morphological hallmarks and molecular features associated with endometrial health and different types of diseases. The presented literature data reveal characteristic differences in the expression of several extra- and intracellular molecules between the healthy and diseased equine endometrium. Some of these molecules can be detected directly within the tissue and thus have the potential to serve as excellent diagnostic markers for the presence of endometrial diseases. The knowledge of disease-associated changes in cellular differentiation, secretory functions, and immune mechanisms will help to decipher pathogenesis and will contribute to the development of novel treatments. In addition, the quantification of molecular alterations may contribute to a fertility prognosis for an individual mare. Reproductive health increases the well-being of mares and reduces financial loss for the horse breeding industry. Abstract Mares are seasonally polyestric. The breeding season in spring and summer and the winter anestrus are flanked by transitional periods. Endometrial diseases are a frequent cause of subfertility and have an economic impact on the horse breeding industry. They include different forms of endometrosis, endometritis, glandular maldifferentiation, and angiosis. Except for suppurative endometritis, these are subclinical and can only be diagnosed by the microscopic examination of an endometrial biopsy. Endometrosis is characterized by periglandular fibrosis and nonsuppurative endometritis by stromal infiltration with lymphocytes and plasma cells. The pathogenesis of endometrosis and nonsuppurative endometritis is still undetermined. Some mares are predisposed to persistent endometritis; this has likely a multifactorial etiology. Glandular differentiation has to be interpreted under consideration of the season. The presence of endometrial diseases is associated with alterations in the expression of several intra- and extracellular molecular markers. Some of them may have potential to be used as diagnostic biomarkers for equine endometrial health and disease. The aim of this review is to provide an overview on pathomorphological findings of equine endometrial diseases, to outline data on analyses of cellular and molecular mechanisms, and to discuss the impact of these data on reproduction and treatment.
Collapse
Affiliation(s)
- Sandra Schöniger
- Targos Molecular Pathology GmbH, Germaniastrasse 7, 34119 Kassel, Germany
- Correspondence:
| | - Heinz-Adolf Schoon
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, 04103 Leipzig, Germany;
| |
Collapse
|
30
|
Canisso IF, Segabinazzi LG, Fedorka CE. Persistent Breeding-Induced Endometritis in Mares - a Multifaceted Challenge: From Clinical Aspects to Immunopathogenesis and Pathobiology. Int J Mol Sci 2020; 21:E1432. [PMID: 32093296 PMCID: PMC7073041 DOI: 10.3390/ijms21041432] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Post-breeding endometritis (i.e., inflammation/infection of the endometrium), is a physiological reaction taking place in the endometrium of mares within 48 hours post-breeding, aimed to clear seminal plasma, excess sperm, microorganisms, and debris from the uterine lumen in preparation for the arrival of an embryo. Mares are classified as susceptible or resistant to persistent breeding-induced endometritis (PBIE) based on their ability to clear this inflammation/infection by 48 hours post-breeding. Mares susceptible to PBIE, or those with difficulty clearing infection/inflammation, have a deficient immune response and compromised physical mechanisms of defense against infection. Molecular pathways of the innate immune response known to be involved in PBIE are discussed herein. The role of the adaptive uterine immune response on PBIE remains to be elucidated in horses. Advances in the pathobiology of microbes involved in PBIE are also revised here. Traditional and non-traditional therapeutic modalities for endometritis are contrasted and described in the context of clinical and molecular aspects. In recent years, the lack of efficacy of traditional therapeutic modalities, alongside the ever-increasing incidence of antibiotic-resistant microorganisms, has enforced the development of non-traditional therapies. Novel biological products capable of modulating the endometrial inflammatory response are also discussed here as part of the non-traditional therapies for endometritis.
Collapse
Affiliation(s)
- Igor F. Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61802, USA;
| | - Lorenzo G.T.M. Segabinazzi
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61802, USA;
- Department of Animal Reproduction and Veterinary Radiology, Faculty of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-000, São Paulo, Brazil
| | - Carleigh E. Fedorka
- The Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40503, USA;
| |
Collapse
|
31
|
Neumann A, Brogden G, von Köckritz-Blickwede M. Extracellular Traps: An Ancient Weapon of Multiple Kingdoms. BIOLOGY 2020; 9:biology9020034. [PMID: 32085405 PMCID: PMC7168307 DOI: 10.3390/biology9020034] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/31/2022]
Abstract
The discovery, in 2004, of extracellular traps released by neutrophils has extended our understanding of the mode of action of various innate immune cells. This fascinating discovery demonstrated the extracellular trapping and killing of various pathogens by neutrophils. During the last decade, evidence has accumulated showing that extracellular traps play a crucial role in the defence mechanisms of various cell types present in vertebrates, invertebrates, and plants. The aim of this review is to summarise the relevant literature on the evolutionary history of extracellular traps used as a weapon in various kingdoms of life.
Collapse
Affiliation(s)
- Ariane Neumann
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Baravägen 27, 22184 Lund, Sweden;
| | - Graham Brogden
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany;
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
- Correspondence: ; Tel.: +49-511-953-8787
| |
Collapse
|
32
|
Expression of genes involved in the NF-κB-dependent pathway of the fibrosis in the mare endometrium. Theriogenology 2020; 147:18-24. [PMID: 32074495 DOI: 10.1016/j.theriogenology.2020.01.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/29/2019] [Accepted: 01/28/2020] [Indexed: 12/23/2022]
Abstract
Equine endometrosis is a multifactorial chronic degenerative condition, considered to be one of a major causes of equine infertility. The formation of periglandular fibrosis seems to be linked to chronic inflammation of the mare endometrium in a paracrine way and in a response to numerous forms of inflammatory stimuli elicit the net deposition of extracellular matrix (ECM) around the endometrial glands and stroma. We hypothesized some of these stimuli, such as monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), and hyaluronan synthases (HASs), may share the nuclear factor-κB (NF-κB) dependent activation pathway. This study aimed to determine whether mRNA expression of MCP-1, IL-6, HASs, and proteins of canonical (RelA/NK-κβ1) and noncanonical (NK-κβ2) signaling pathways for NF-kB would change in subsequent categories of endometrosis during the estrous cycle. The expression of selected genes was established in mare endometrium (n = 80; Kenney and Doig categories I, IIA, IIB, III), obtained in the follicular phase (FLP) and mid-luteal phase (MLP). The high expression of RelA mRNA was observed in III, whereas of NK-κβ1 and NK-κβ2 also in IIA, and IIA and IIB, respectively. The expression of MCP-1 mRNA occurred constantly, regardless of the category, whereas IL-6 mRNA was low in IIA, IIB, and III. The expression of HAS 1 was high in IIA and HAS 3 in IIA, IIB, and III. All those changes were observed in FLP, but not MLP. Our results suggest that NF-κB may be involved in progression of the chronic degenerative condition of the mare endometrium, on both canonical and noncanonical pathways. The most important changes in target genes expression were observed only in FLP, which may suggest the hormone-dependent activation of the NF-κB-dependent fibrosis pathway.
Collapse
|
33
|
Neutrophils, monocytes and other immune components in the equine endometrium: Friends or foes? Theriogenology 2020; 150:150-157. [PMID: 31973963 DOI: 10.1016/j.theriogenology.2020.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 02/06/2023]
Abstract
The innate and adaptive immune mechanisms are key components of regulation of reproductive physiological function and uterine disorders in equine uterus. The predominant immunological response in equine endometrium, characterized by an innate immune response, occurs under estrogens influence, in the follicular phase. Although, the increase in immune-related genes in equine endometrium during estrus has been suggested to play a role in uterine clearance after mating, immune cells and their product, i.e. cytokines play also mandatory role in the luteal development and maintenance, regression of equine corpus luteum, as well as in early pregnancy. Innate immune response is nonspecific and acts as the first line of defense against pathogens, foreign stimuli that include constituents of seminal fluid and local infections (endometritis). It has been recently established that a phagocytosis-independent mechanism to restrain bacteria, by means of neutrophil extracellular traps (NETs) formation, is involved in pathogenesis of in mare endometrial fibrosis (endometrosis). Moreover, persistent macrophages and mast cell activation could also have pro-fibrotic roles by secreting great amounts of pro-fibrotic factors and lead to fibrosis. This review will highlight the involvement of immune key components of the innate and adaptive immune system and their products in equine uterus and their contribution to reproductive physiological function and uterine disorders.
Collapse
|
34
|
Tang B, Wu K, Meng Q, Wang F. Comparison of the Analgesic and Anti-Inflammatory Effects of Xiaoyuningkun Decoction with Cynanchum Paniculatum and Fukeqianjin in a Mouse Model of Pelvic Inflammatory Disease. Med Sci Monit 2019; 25:9094-9102. [PMID: 31784502 PMCID: PMC6900919 DOI: 10.12659/msm.916070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Preclinical and clinical studies have shown that the extract of Cynanchum paniculatum (bunge) kitag and the fukeqianjin formulation have beneficial effects in pelvic inflammatory disease (PID). This study aimed to compare the effects of Cynanchum paniculatum and fukeqianjin with a new decoction, xiaoyuningkun, consisting of Melia toosendan, Angelica biserrata, and Cynanchum paniculatum, in a mouse model of PID. MATERIAL AND METHODS The mouse model of PID included injection of the upper genital tract with hydrochloric acid (HCl) and lipopolysaccharide (LPS). The control group underwent sham treatment with 0.9% physiological saline. Cynanchum paniculatum, fukeqianjin, and xiaoyuningkun decoction were administered orally for 15 days. Acetic acid-induced writhing and thermal nociception hot plate tests evaluated the analgesic effects of treatment. Mouse uterus and Fallopian tubes were examined histologically to evaluate the degree of inflammation. Immunohistochemistry was used to measure the protein expression of intercellular adhesion molecule-1 (ICAM-1) and vascular endothelial growth factor (VEGF). Enzyme-linked immunosorbent assay (ELISA) measured serum levels of inflammatory cytokines. RESULTS Treatment with xiaoyuningkun decoction significantly reduced the pain threshold in the mouse model of PID and the degree of inflammation in the uterus and Fallopian tubes compared with Cynanchum paniculatum and fukeqianjin. Cynanchum paniculatum decoction significantly reduced the serum levels of interleukin-1ß (IL-1ß), tumor necrosis factor-alpha (TNF-alpha), ICAM-1, and VEGF, and the expression of ICAM-1 and VEGF in the mouse uterus and Fallopian tubes. CONCLUSIONS The new xiaoyuningkun decoction had analgesic and anti-inflammatory effects in the mouse model of PID, possibly by inhibiting ICAM-1, VEGF, and inflammatory cytokines.
Collapse
Affiliation(s)
- Bixin Tang
- Department of Traditional Chinese Medicine Gynecology, Shanghai Pudong New District Gongli Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Kunlun Wu
- Department of Traditional Chinese Medicine Gynecology, Shanghai Pudong New District Gongli Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Qingyi Meng
- Department of Traditional Chinese Medicine Gynecology, Shanghai Pudong New District Gongli Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Fang Wang
- Department of Traditional Chinese Medicine Gynecology, Shanghai Pudong New District Gongli Hospital, Second Military Medical University, Shanghai, China (mainland)
| |
Collapse
|
35
|
Espinosa G, Plaza A, Schenffeldt A, Alarcón P, Gajardo G, Uberti B, Morán G, Henríquez C. Equine bone marrow-derived mesenchymal stromal cells inhibit reactive oxygen species production by neutrophils. Vet Immunol Immunopathol 2019; 221:109975. [PMID: 32087476 DOI: 10.1016/j.vetimm.2019.109975] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Polymorphonuclear neutrophils (PMN) are the largest leukocyte population in the blood of most mammals including horses, and play an important defensive role in many infectious diseases. However, the mechanisms that increase PMN as one of the main cellular subsets in the defense against pathogens could also be involved in the pathophysiology of dysregulated inflammatory conditions. Mesenchymal stem/stromal cells (MSCs) are a heterogeneous population with a modulatory potential on the inflammatory response and are known to interact with nearly all cells of the immune system, including PMN. In this study, the in vitro modulation of equine bone marrow-derived MSCs on equine PMN phagocytosis, ROS production, and NETs generation was assessed. RESULTS In co-culture with MSCs, unstimulated PMN produce less ROS (2.88 % ± 1.43) than PMN in single culture (5.89 % ± 2.63) (p = 0.016). Moreover, PMN co-cultured with MSCs remain conditioned to produce fewer ROS after PMA stimulation in comparison to PMN in single culture (p < 0.05). Additionally, it was found that incubation with MSC supernatant strongly inhibited ROS production (83 % ± 6.35 less than control) without affecting phagocytosis or capacity for NETosis (p < 0.01). CONCLUSIONS These results suggest a modulatory effect of equine BM-derived MSCs on PMN respiratory burst, without impairing other important microbicidal functions. This supports the potential use of equine MSCs in excessive or persistent inflammatory conditions in which neutrophils are the main effector cells.
Collapse
Affiliation(s)
- Gabriel Espinosa
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile.
| | - Anita Plaza
- Instituto de Medicina, Facultad de Medicina, Universidad Austral de Chile, Chile.
| | - Andrés Schenffeldt
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile.
| | - Pablo Alarcón
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile.
| | - Gonzalo Gajardo
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile.
| | - Benjamín Uberti
- Instituto de Ciencias Clínicas, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile.
| | - Gabriel Morán
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile.
| | - Claudio Henríquez
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile.
| |
Collapse
|
36
|
Goggs R, Jeffery U, LeVine DN, Li RHL. Neutrophil-Extracellular Traps, Cell-Free DNA, and Immunothrombosis in Companion Animals: A Review. Vet Pathol 2019; 57:6-23. [PMID: 31342866 DOI: 10.1177/0300985819861721] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunothrombosis is a potentially beneficial physiological process that aids innate immunity and host defense against pathogen invasion. However, this process can also be damaging when it occurs to excess or in critical blood vessels. Formation of extracellular traps by leukocytes, particularly neutrophils, is central to our understanding of immunothrombosis. In addition to degranulation and phagocytosis, extracellular traps are the third mechanism by which neutrophils combat potential pathogens. These traps consist of extracellular DNA decorated with bactericidal cellular proteins, including elastase, myeloperoxidase, and cathepsins. Neutrophils can release these structures as part of a controlled cell-death process or via a process termed vital NETosis that enables the cells to extrude DNA but remain viable. There is accumulating evidence that NETosis occurs in companion animals, including dogs, horses, and cats, and that it actively contributes to pathogenesis. Numerous studies have been published detailing various methods for identification and quantification of extracellular trap formation, including cell-free DNA, measurements of histones and proteins such as high-mobility group box-1, and techniques involving microscopy and flow cytometry. Here, we outline the present understanding of these phenomena and the mechanisms of extracellular trap formation. We critically review the data regarding measurement of NETosis in companion animals, summarize the existing literature on NETosis in veterinary species, and speculate on what therapeutic options these insights might present to clinicians in the future.
Collapse
Affiliation(s)
- Robert Goggs
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Unity Jeffery
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Dana N LeVine
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Ronald H L Li
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
37
|
Rebordão MR, Amaral A, Lukasik K, Szóstek-Mioduchowska A, Pinto-Bravo P, Galvão A, Skarzynski DJ, Ferreira-Dias G. Impairment of the antifibrotic prostaglandin E 2 pathway may influence neutrophil extracellular traps-induced fibrosis in the mare endometrium. Domest Anim Endocrinol 2019; 67:1-10. [PMID: 30522057 DOI: 10.1016/j.domaniend.2018.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/13/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022]
Abstract
Prostaglandin E2 (PGE2) has contradictory effects in many organs. It may have proinflammatory, anti-inflammatory, or anti-fibrotic roles, depending on the type of receptors to which it binds. By signaling through its receptors EP2 and EP4, PGE2 mediates anti-inflammatory and anti-fibrotic actions. In spite of chronic endometrial fibrosis (endometrosis) being a major cause of mare infertility, its pathogenesis is not fully understood. We have shown that contact of mare endometrium in vitro with neutrophil extracellular traps (NETs) proteases favors endometrial collagen type I production. Therefore, we investigated the involvement of the PGE2 pathway in collagen deposition in mare endometrium, challenged in vitro with proteases present in NETs. Mare endometria (Kenney and Doig categories I/IIA and IIB/III), obtained in the follicular phase (FLP) and mid-luteal phase (MLP), were incubated for 24 h with components found in NETs (elastase, cathepsin-G, and myeloperoxidase). Secretion of PGE2 and transcripts for specific PGE synthase (PGES) and PGE2 receptors (EP2 and EP4) were evaluated. Impaired PGE2 production and low EP2 transcript abundance depended on the endometrial category and estrous cycle phase. Impairment of PGE2 and/or EP2 might play a role in FLP (category IIB/III) and MLP (I/IIA) endometrial fibrogenesis because of the reduction in its antifibrotic capacity. In conclusion, priming of the endometrium with endogenous ovarian steroids might inhibit the antifibrotic PGE2 pathway either in healthy or pathologic tissues with collagen formation after NETs proteases action.
Collapse
Affiliation(s)
- Maria Rosa Rebordão
- Department of Morphology and Function, CIISA- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Department of Animal Sciences, Coimbra College of Agriculture, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Ana Amaral
- Department of Morphology and Function, CIISA- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Karolina Lukasik
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland
| | - Anna Szóstek-Mioduchowska
- Department of Morphology and Function, CIISA- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Pedro Pinto-Bravo
- Department of Animal Sciences, Coimbra College of Agriculture, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - António Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland
| | - Dariusz J Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland.
| | - Graça Ferreira-Dias
- Department of Morphology and Function, CIISA- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
38
|
Sheats MK. A Comparative Review of Equine SIRS, Sepsis, and Neutrophils. Front Vet Sci 2019; 6:69. [PMID: 30931316 PMCID: PMC6424004 DOI: 10.3389/fvets.2019.00069] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
The most recent definition of sepsis in human medicine can be summarized as organ dysfunction caused by a dysregulated host response to infection. In equine medicine, although no consensus definition is available, sepsis is commonly described as a dysregulated host systemic inflammatory response to infection. Defense against host infection is the primary role of innate immune cells known as neutrophils. Neutrophils also contribute to host injury during sepsis, making them important potential targets for sepsis prevention, diagnosis, and treatment. This review will present both historical and updated perspectives on the systemic inflammatory response (SIRS) and sepsis; it will also discuss the impact of sepsis on neutrophils, and the impact of neutrophils during sepsis. Future identification of clinically relevant sepsis diagnosis and therapy depends on a more thorough understanding of disease pathogenesis across species. To gain this understanding, there is a critical need for research that utilizes a clearly defined, and consistently applied, classification system for patients diagnosed with, and at risk of developing, sepsis.
Collapse
Affiliation(s)
- M. Katie Sheats
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, United States
| |
Collapse
|
39
|
Li RHL, Tablin F. A Comparative Review of Neutrophil Extracellular Traps in Sepsis. Front Vet Sci 2018; 5:291. [PMID: 30547040 PMCID: PMC6280561 DOI: 10.3389/fvets.2018.00291] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/31/2018] [Indexed: 01/03/2023] Open
Abstract
Sepsis is the leading cause of critical illness and mortality in human beings and animals. Neutrophils are the primary effector cells of innate immunity during sepsis. Besides degranulation and phagocytosis, neutrophils also release neutrophil extracellular traps (NETs), composed of cell-free DNA, histones, and antimicrobial proteins. Although NETs have protective roles in the initial stages of sepsis, excessive NET formation has been found to induce thrombosis and multiple organ failure in murine sepsis models. Since the discovery of NETs nearly a decade ago, many investigators have identified NETs in various species. However, many questions remain regarding the exact mechanisms and fate of neutrophils following NET formation. In humans and mice, platelet-neutrophil interactions via direct binding or soluble mediators seem to play an important role in mediating NET formation during sepsis. Preliminary data suggest that these interactions may be species dependent. Regardless of these differences, there is increasing evidence in human and veterinary medicine suggesting that NETs play a crucial role in the pathogenesis of intravascular thrombosis and multiple organ failure in sepsis. Because the outcome of sepsis is highly dependent on early recognition and intervention, detection of NETs or NET components can aid in the diagnosis of sepsis in humans and veterinary species. In addition, the use of novel therapies such as deoxyribonuclease and non-anticoagulant heparin to target NET components shows promising results in murine septic models. Much work is needed in translating these NET-targeting therapies to clinical practice.
Collapse
Affiliation(s)
- Ronald H L Li
- Department of Radiological and Surgical Sciences, School of Veterinary Medicine, University of California, Davis Davis, CA, United States
| | - Fern Tablin
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis Davis, CA, United States
| |
Collapse
|
40
|
Amaral A, Fernandes C, Lukasik K, Szóstek-Mioduchowska A, Baclawska A, Rebordão MR, Aguiar-Silva J, Pinto-Bravo P, Skarzynski DJ, Ferreira-Dias G. Elastase inhibition affects collagen transcription and prostaglandin secretion in mare endometrium during the estrous cycle. Reprod Domest Anim 2018; 53 Suppl 2:66-69. [PMID: 30238664 DOI: 10.1111/rda.13258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/02/2018] [Accepted: 06/16/2018] [Indexed: 01/18/2023]
Abstract
We have shown that bacteria induce neutrophil extracellular traps (NETs) in mare endometrium. Besides killing pathogens, NETs may contribute for endometrosis (chronic endometrium fibrosis). Since elastase (ELA) is a NETs component that regulates fibrosis and prostaglandin (PG) output, the aim was to evaluate if inhibition of ELA would affect collagen 1 (COL1) transcription and PGs secretion by endometrium explants, in different estrous cycle phases. Follicular-FP (n = 8) and mid luteal-MLP (n = 7) phases explants were cultured for 24-48 hr with medium alone (Control), ELA (0.5 μg/ml,1 μg/ml), sivelestat - ELA inhibitor (INH,10 μg/ml), or ELA (0.5 μg/ml,1 μg/ml) + INH (10 μg/ml). COL1 gene transcription was done by qRT-PCR and PGE2 and PGF2 α determination in culture medium by EIA. In FP, at 24 hr, ELA0.5 increased COL1 transcription (p < 0.001) but its inhibition (ELA0.5 + INH10) decreased COL1 transcription (p < 0.01) and PGF2 α production (p < 0.05). Also, ELA0.5 + INH10 or ELA1 + INH10 raised PGE2 production (p < 0.01). At 48 hr, ELA1 increased COL1 transcription (p < 0.01) and PGF2 α production (p < 0.001), but its inhibition (ELA1 + INH10) decreased these actions (p < 0.01; p < 0.05, respectively). Besides, ELA1 + INH10 incubation increased PGE2 (p < 0.05). PGF2 α also augmented with ELA0.5 (p < 0.001), but lowered with ELA0.5 + INH10 (p < 0.01). In MLP, ELA0.5 up-regulated COL1 transcription (24 hr, p < 0.01; 48 hr, p < 0.001), but ELA0.5 + INH10 decreased it (24 hr, p < 0.05; 48 hr, p < 0.001). At 48 hr, incubation with ELA1 also increased COL1 transcription and PGF2 α production (p < 0.05), but PGF2 α production decreased with ELA1 + INH10 incubation (p < 0.05). PGE2 production was higher in ELA1 + INH10 incubation (p < 0.05). Therefore, ELA inhibition may reduce the establishment of mare endometrial fibrosis by stimulating the production of anti-fibrotic PGE2 and inhibiting pro-fibrotic PGF2 α.
Collapse
Affiliation(s)
- Ana Amaral
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.,Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
| | - Carina Fernandes
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Karolina Lukasik
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
| | | | - Agnieszka Baclawska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
| | - Maria Rosa Rebordão
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.,Polytechnic Institute of Coimbra, Coimbra College of Agriculture, Coimbra, Portugal
| | - Joana Aguiar-Silva
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Pedro Pinto-Bravo
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.,Polytechnic Institute of Coimbra, Coimbra College of Agriculture, Coimbra, Portugal
| | - Dariusz J Skarzynski
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
| | - Graça Ferreira-Dias
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
41
|
Jocelyn NA, Wylie CE, Lean M, Barrelet A, Foote AK. Association of neutrophil morphology with bacterial isolates in equine tracheal wash samples. Equine Vet J 2018; 50:752-758. [PMID: 29603335 DOI: 10.1111/evj.12837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 02/23/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Tracheal wash sample neutrophilia is common in lower airway inflammation of various causes; however, relevance of cytomorphological features to culture of bacterial pathogens has not been established. OBJECTIVES To investigate whether the presence of nondegenerate or degenerate neutrophils in tracheal washes is associated with culture of bacteria and, if so, whether this is influenced by age or temporal factors. STUDY DESIGN Cross-sectional study. METHODS Tracheal wash samples submitted to Rossdales LLP from 1/1/2013 to 31/7/2015 were evaluated using set criteria. Neutrophilia and degenerate neutrophilia (graded ≥2/4 on Rossdales cytological scale [0-4]) were analysed in relation to bacterial isolates considered potentially pathogenic in respiratory disease. Statistical analyses included multivariable logistic regression to identify associations between two separate outcomes: 1) the presence of neutrophilia compared with no neutrophilia and 2) the presence of degenerate neutrophilia compared with nondegenerate neutrophilia and four independent variables. RESULTS Sufficient data for inclusion in the multivariable model for nondegenerate neutrophilia were available from 1100 horses. Culture of potentially pathogenic bacteria was associated with increased odds of degenerate neutrophilia compared with samples with negative culture (OR 4.5, 95% CI 3.1, 6.4, P-value<0.001). Horses over 9 years old had lower odds of having degenerate neutrophilia than those aged 1-3 years (OR 0.6, 95% CI 0.4, 0.9, P-value<0.02). In the spring/summer, horses had reduced odds of a degenerate neutrophilia compared with winter (OR 0.4, 95% CI 0.3, 0.7, P-value <0.001). MAIN LIMITATIONS The study relied on routine laboratory submissions, with no control over sample collection or submitted clinical history. CONCLUSIONS Cytological evaluation of tracheal washes should include cytomorphological features of the neutrophil response. The presence of degenerate neutrophils, especially in young horses, indicates added value of culture and sensitivity for antimicrobial therapeutics. The absence of degenerate changes, in combination with clinical factors, can help support diagnosis of a nonseptic cause of airway neutrophilia.
Collapse
Affiliation(s)
- N A Jocelyn
- Department of Clinical Sciences and Services, Royal Veterinary College, London, UK
| | - C E Wylie
- Rossdales Laboratories, Rossdales LLP, Newmarket, Suffolk, UK
| | - M Lean
- Rossdales Laboratories, Rossdales LLP, Newmarket, Suffolk, UK
| | - A Barrelet
- Rossdales Laboratories, Rossdales LLP, Newmarket, Suffolk, UK
| | - A K Foote
- Rossdales Laboratories, Rossdales LLP, Newmarket, Suffolk, UK
| |
Collapse
|
42
|
Improved uterine immune mediators in Holstein cows supplemented with rumen-protected methionine and discovery of neutrophil extracellular traps (NET). Theriogenology 2018; 114:116-125. [PMID: 29609181 DOI: 10.1016/j.theriogenology.2018.03.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 01/23/2023]
Abstract
During the transition from prepartum to early lactation, dairy cows often experience negative energy balance (NEB) that may result in reproductive stress and decreased fertility. The objective of this study was to observe the effects of rumen-protected methionine (RPM) on plasma amino acid concentrations, uterine cytology, immunohistochemistry (IHC) of glutathione peroxidase 1 (GPX) and superoxide dismutase 1 (SOD), and to confirm neutrophil extracellular trap (NET) formation. Multiparous Holstein cows (n = 20) were randomly assigned to two treatments starting at 21 d before calving until 73 days in milk (DIM). Treatments were: CON (n = 9, no supplementation, TMR with a Lys:Met = 3.5:1) and MET (n = 11, TMR + Smartamine® M with a Lys:Met = 2.8:1). Uterine endometrial biopsies, uterine cytology, and blood samples from the coccygeal artery or vein were collected at 15, 30, and 73 DIM. Blood plasma samples were analyzed for amino acids and metabolites. Uterine biopsies were analyzed for NET formation, neutrophil numbers, as well as GPX and SOD by IHC. Additionally, uterine cytology was analyzed for polymorphonuclear neutrophil (PMN) to epithelial cell percentage. Cows in CON had lower methionine plasma concentrations (18.05 ± 2.0 μM) than cows in MET (30.39 ± 1.6 μM). Cows in CON had greater cystine plasma concentrations (3.62 ± 0.3 μM) than cows in MET (2.8 ± 0.3 μM). No treatment differences were observed for SOD or GPX in the endometrium. Cows in CON tended to have a high score for positively immunolabeled GPX cells at 15 DIM than cows in MET. No treatment differences were observed for the percentage of PMN in uterine cytology, number of neutrophils, or extent of NET formation in the endometrium. A treatment by time interaction was observed for PMN percentage and the number of neutrophils: cows in MET tended to have greater PMN percentages than cows in CON at 15 DIM which decreased for subsequent days and cows in MET had greater neutrophil numbers in the endometrium at 30 DIM than cows in CON. In conclusion, dietary supplementation of RPM altered plasma amino acid concentrations and increased neutrophil infiltration in the postpartum period, suggesting improved uterine immunity.
Collapse
|
43
|
Rebordão MR, Amaral A, Lukasik K, Szóstek-Mioduchowska A, Pinto-Bravo P, Galvão A, Skarzynski DJ, Ferreira-Dias G. Constituents of neutrophil extracellular traps induce in vitro collagen formation in mare endometrium. Theriogenology 2018; 113:8-18. [PMID: 29452855 DOI: 10.1016/j.theriogenology.2018.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 01/08/2023]
Abstract
Neutrophil extracellular traps (NETs) are DNA complexes carrying nuclear and cytoplasmic proteins, such as elastase (ELA), cathepsin-G (CAT) and myeloperoxidase (MPO). Mare endometrosis is a chronic degenerative process characterized by excessive collagen in endometrium. While NETs fight bacteria that cause endometritis, they may trigger endometrial fibrogenesis. The aim was to evaluate the in vitro effect of some NETs components on mare endometrial fibrogenesis and determine its relationship with histopathology or estrous cycle. Endometrial explants were incubated with NETs components (ELA, CAT, MPO or oxytocin). Collagen type I (COL1) protein and type I and III (COL3) gene transcription were evaluated in follicular and mid-luteal phases endometria (Kenney and Doig type I/IIA and IIB/III). Increased COL1 occurred with all NETs proteins, although endometrial response to each NETs protease depended on estrous cycle and/or endometrial category. Since ELA enhanced COL1 production, NETs persistence might be linked to endometrosis. Estrous cycle influenced COL1 protein concentration and COL3 transcripts, suggesting that follicular phase may favor endometrial collagen production. However, luteal phase endometria with moderate or severe lesions may be also susceptible to fibrotic effects of NETs constituents. These data propose that NETs involvement in chronic endometritis in mares may act as putative endometrial fibrogenic mediators.
Collapse
Affiliation(s)
- Maria Rosa Rebordão
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Coimbra College of Agriculture, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Ana Amaral
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Karolina Lukasik
- Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland
| | | | - Pedro Pinto-Bravo
- Coimbra College of Agriculture, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - António Galvão
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland
| | | | - Graça Ferreira-Dias
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
44
|
Anderson SL, Singh B. Equine neutrophils and their role in ischemia reperfusion injury and lung inflammation. Cell Tissue Res 2018; 371:639-648. [PMID: 29335779 DOI: 10.1007/s00441-017-2770-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/07/2017] [Indexed: 01/06/2023]
Abstract
Horses are susceptible to a multitude of inflammatory conditions that are characterized by a strong neutrophilic response. Here, we review basic equine neutrophil biology and explore the role of neutrophils in inflammatory conditions with emphasis on intestinal ischemia and reperfusion injury and lung inflammation. In addition, unique aspects of equine neutrophil biology have been highlighted. Neutrophils comprise the highest proportion of circulating white blood cells in equine blood. The concentration of circulating equine neutrophils is a primary indicator of systemic inflammation. Additionally, equine neutrophils exposed to various stimulants develop "toxic" changes characterized as cytoplasmic basophilia, presence of Döhle bodies, cytoplasmic vacuolation and toxic granulation. In contrast to human neutrophils, equine neutrophils fail to undergo chemotaxis in response to the peptide N-formyl-methionyl-leucyl-phenylalanine and are dependent on the addition of arachidonic acid due to reduced activity of phospholipase A2 to synthesize leukotrienes as part of the arachidonic acid pathway. Understanding the biologic function of neutrophils in horses is integral to developing methods to modulate inflammation associated with ischemia reperfusion injury and lung disease.
Collapse
Affiliation(s)
- Stacy L Anderson
- College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN, 37752, USA.
| | - Baljit Singh
- College of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| |
Collapse
|
45
|
Li RHL, Ng G, Tablin F. Lipopolysaccharide-induced neutrophil extracellular trap formation in canine neutrophils is dependent on histone H3 citrullination by peptidylarginine deiminase. Vet Immunol Immunopathol 2017; 193-194:29-37. [PMID: 29129225 DOI: 10.1016/j.vetimm.2017.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/11/2017] [Accepted: 10/20/2017] [Indexed: 01/01/2023]
Abstract
Neutrophils release neutrophil extracellular traps (NETs), which are extracellular chromatin decorated with histones and antimicrobial proteins. Although known for antimicrobial properties, overzealous production of NETs (NETosis) may lead to cytotoxicity and multiple organ failure in sepsis. Pathogen-induced NETosis has been extensively studied in mice but its importance in dogs remains largely unknown. This study sought to characterize in vitro NETosis induced by E.coli LPS, including assessing the role of peptidylarginine deiminase (PAD) in canine NETosis. Neutrophils (1×106 cells/ml) from healthy dogs were isolated and treated with 100μg/ml LPS, 100nM phorbol 12-myristate 13-acetate (PMA), or buffer for either 90 or 180min. NETs were assessed using fluorescence microscopy of living neutrophils and immunofluorescent microscopy. Supernatant and cellular debris were purified and cell-free DNA was quantified by spectrophotometry. The role of PAD was assessed by treating LPS- and PMA-activated neutrophils with 50, 100 or 200μM of the PAD inhibitor, Cl-amidine. In vitro NETosis was characterized by co-localization of cell-free DNA, citrullinated histone H3, and myeloperoxidase. LPS stimulation resulted in intracellular citrullination of histone H3. Compared to PMA chemically-induced NETosis, LPS resulted in smaller NETs with less extracellular citrullinated histone H3. Cl-amidine decreased citrullination of histones and NET production in either LPS- or PMA-stimulated neutrophils demonstrating that neutrophil PAD is essential for these cellular processes.
Collapse
Affiliation(s)
- Ronald H L Li
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States.
| | - Geena Ng
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Fern Tablin
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| |
Collapse
|
46
|
Rebordão MR, Alexandre-Pires G, Carreira M, Adriano L, Carneiro C, Nunes T, Mateus L, Ferreira-Dias G. Bacteria causing pyometra in bitch and queen induce neutrophil extracellular traps. Vet Immunol Immunopathol 2017; 192:8-12. [PMID: 29042016 DOI: 10.1016/j.vetimm.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/22/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022]
Abstract
Neutrophils are capable of releasing their DNA in response to infectious agents to form neutrophil extracellular traps (NETs) to destroy pathogens. Even though pyometra in queens and bitches is a common disease, its pathogenesis is not fully understood. The aim of this study was to assess the presence of NETs in the endometrium of queens and bitches suffering from pyometra. Pyometra and normal uteri were obtained after ovariohysterectomy from adult queens and bitches in diestrus. Uterine contents were evaluated for bacterial isolation and identification and for NETs presence. Escherichia coli were isolated in 5/5 queens and 4/5 bitches, and Streptococcus spp in one bitch. Sterile glass coverslips were placed on the endometrium surface to obtain material for NETs that were evaluated by immunocytochemistry (histone, neutrophil elastase or myeloperoxidase), fluorescence microscopy or scanning electron microscopy. NETs in endometrium content were positively stained by DNA histone DAPI, myeloperoxidase and by neutrophil elastase. NETs were spread in all observed queen and bitch endometria of pyometra cases. Ultrastructure images of NETs depicted clusters of globular material with fine filaments deposited on or around thick filaments and trapped bacteria. To the best of our knowledge these are the first findings confirming NETs endometrial presence in queen and bitch pyometra. Nevertheless, the precise role of NETs in pyometra in the bitch and queen, either to contribute to the defeat of infection or to its persistence remains to be unraveled.
Collapse
Affiliation(s)
- M R Rebordão
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477 Lisbon, Portugal; Clínica Veterinária das Nogueiras, R. Estádio 6, 3030-318 Coimbra, Portugal; Coimbra College of Agriculture, Bencanta, 3045-601 Coimbra, Portugal
| | - G Alexandre-Pires
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477 Lisbon, Portugal
| | - M Carreira
- Clínica Veterinária das Nogueiras, R. Estádio 6, 3030-318 Coimbra, Portugal
| | - L Adriano
- Clínica Veterinária das Nogueiras, R. Estádio 6, 3030-318 Coimbra, Portugal
| | - C Carneiro
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477 Lisbon, Portugal
| | - T Nunes
- Faculty of Sciences, Microscopy Center, University of Lisbon, Campo Grande C2, 1749-016 Lisbon, Portugal
| | - L Mateus
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477 Lisbon, Portugal
| | - G Ferreira-Dias
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477 Lisbon, Portugal.
| |
Collapse
|
47
|
Zou W, Zhou H, Hu J, Zhang L, Tang Q, Wen X, Xiao Z, Wang W. Rhizoma Smilacis Glabrae inhibits pathogen-induced upper genital tract inflammation in rats through suppression of NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2017; 202:103-113. [PMID: 28238827 DOI: 10.1016/j.jep.2017.02.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/18/2016] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhizoma Smilacis Glabrae (RSG) is traditionally used to treat gynecological disease, which is simply recorded in Chinese Pharmacopoeia. However, whether it has effect on upper genital tract inflammation (UGTI) is unclear. AIM OF THE STUDY To evaluate the pharmacological effect of RSG on UGTI in rats and analyze its phytochemistry characteristics. MATERIALS AND METHODS The substances in RSG extract was qualified by LC-Q-TOF-MS method, and 11 substances were further quantified. The RSG extract, at dose of 241, 482 (clinical dose) and 964mg/kg/day, was orally administered to UGTI rats whose upper genital tracts were multi-infected with pathogens. Infiltrations of neutrophil and lymphocyte and productions of IL-1β, IL-6, CXCL-1, MCP-1, RANTES, PGE2, COX-2, NF-κB p65 and IκB-α in upper genital tract were examined to evaluate the effects of RSG and its potential mechanism. RESULTS A total of 77 substances were detected in RSG extract, with 50 substances putatively identified, most of which were flavonoids, phenolic acids and phenylpropanoids. The quantification analysis showed flavonoid had a relative high amount. In pharmacological study, RSG extract suppressed infiltrations of inflammatory cells, reduced over-productions of factors involved in inflammation and pelvic pain. A potential mechanism of these effects was blocking NF-κB signal pathway. CONCLUSIONS The RSG extract exhibited anti-inflammatory effect on UGTI, with a potential mechanism of blocking the activation of NF-κB signal pathway. The effect may be involved in the presence of substances, such as flavonoids and phenolic acids.
Collapse
Affiliation(s)
- Wei Zou
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics & Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Hougang Zhou
- Department of Clinical Laboratory, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Jian Hu
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics & Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China; TCM and Ethnomedicine Innovation & Development Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Li Zhang
- Department of Medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Qiue Tang
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics & Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Xiaoke Wen
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics & Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China.
| | - Zuoqi Xiao
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics & Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
48
|
Canisso IF, Stewart J, Coutinho da Silva MA. Endometritis: Managing Persistent Post-Breeding Endometritis. Vet Clin North Am Equine Pract 2016; 32:465-480. [PMID: 27810036 DOI: 10.1016/j.cveq.2016.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Endometritis was rated as the third most common medical problem encountered in adult horses in North America. It is the leading cause of subfertility in broodmares and is a major contributor to economic loss in the horse breeding industry, with pregnancy rates reported to be as low as 21% in mares with severe endometritis. Endometritis may be categorized as: endometrosis (chronic degenerative endometritis), acute, chronic, active, dormant, subclinical, clinical, and persistent post-breeding. These classifications are not mutually exclusive, and mares may change categories within breeding seasons or estrous cycles or may fit in multiple classifications. This chapter will focus on discussing etiology and management strategies for mares affected by persistent post-breeding endometritis. Overall, these mares are considered subfertile but acceptable pregnancy and foaling rates can be achieved with appropriate breeding management.
Collapse
Affiliation(s)
- Igor F Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61822, USA
| | - Jamie Stewart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61822, USA
| | - Marco A Coutinho da Silva
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp St, Columbus, OH 43210, USA.
| |
Collapse
|
49
|
Zou W, Xiao Z, Wen X, Luo J, Chen S, Cheng Z, Xiang D, Hu J, He J. The anti-inflammatory effect of Andrographis paniculata (Burm. f.) Nees on pelvic inflammatory disease in rats through down-regulation of the NF-κB pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:483. [PMID: 27887650 PMCID: PMC5123283 DOI: 10.1186/s12906-016-1466-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/17/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Andrographis paniculata (Burm. f.) Nees (APN), a principal constituent of a famous traditional Chinese medicine Fukeqianjin tablet which is used for the treatment of pelvic inflammatory disease (PID), has been reported to have anti-inflammatory effect in vitro. However, whether it has pharmacological effect on PID in vivo is unclear. Therefore, the aim of this study is to test the anti-inflammatory effect of APN and illuminate a potential mechanism. METHODS Thirty-six female specific pathogen-free SD rats were randomly divided into control group, PID group, APN1 group, APN2 group, APN3 group and prednisone group. Pathogen-induced PID rats were constructed. The APN1, APN2 and APN3 group rats were orally administrated with APN extract at different levels. The prednisone group rats were administrated with prednisone. Eight days after the first infection, the histological examination of upper genital tract was carried out, and enzyme-linked immunosorbent assay (ELISA) was carried out using homogenate of the uterus and fallopian tube. Furthermore, immunohistochemical evaluations of NF-κB p65 and IκB-α in uterus was conducted. RESULTS APN obviously suppressed the infiltrations of neutrophils and lymphocytes, and it could significantly reduce the excessive production of cytokines and chemokines including IL-1β, IL-6, CXCL-1, MCP-1 and RANTES in a dose-dependent manner. Furthermore, APN could block the pathogen-induced activation of NF-κB pathway. CONCLUSION APN showed potent anti-inflammatory effect on pathogen-induced PID in rats, with a potential mechanism of inhibiting the NF-κB signal pathway.
Collapse
Affiliation(s)
- Wei Zou
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics and Gynecology Research, Hunan Provincial Maternal and Child Health Care Hospital, No. 53 XiangChun Road, Changsha, 410008, China
- School of Pharmaceutical Sciences, Central South University, Changsha, 410011, China
| | - Zuoqi Xiao
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics and Gynecology Research, Hunan Provincial Maternal and Child Health Care Hospital, No. 53 XiangChun Road, Changsha, 410008, China
| | - Xiaoke Wen
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics and Gynecology Research, Hunan Provincial Maternal and Child Health Care Hospital, No. 53 XiangChun Road, Changsha, 410008, China.
| | - Jieying Luo
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Shuqiong Chen
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics and Gynecology Research, Hunan Provincial Maternal and Child Health Care Hospital, No. 53 XiangChun Road, Changsha, 410008, China
| | - Zeneng Cheng
- School of Pharmaceutical Sciences, Central South University, Changsha, 410011, China
| | - Daxiong Xiang
- Clinic Pharmacy Research Laboratory, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jian Hu
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics and Gynecology Research, Hunan Provincial Maternal and Child Health Care Hospital, No. 53 XiangChun Road, Changsha, 410008, China
| | - Jingyu He
- Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, No. 1121 Haibin Road, Guangzhou, 511458, Guangdong, China.
| |
Collapse
|
50
|
Far beyond Phagocytosis: Phagocyte-Derived Extracellular Traps Act Efficiently against Protozoan Parasites In Vitro and In Vivo. Mediators Inflamm 2016; 2016:5898074. [PMID: 27445437 PMCID: PMC4944069 DOI: 10.1155/2016/5898074] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 12/30/2022] Open
Abstract
Professional mononuclear phagocytes such as polymorphonuclear neutrophils (PMN), monocytes, and macrophages are considered as the first line of defence against invasive pathogens. The formation of extracellular traps (ETs) by activated mononuclear phagocytes is meanwhile well accepted as an effector mechanism of the early host innate immune response acting against microbial infections. Recent investigations showed evidence that ETosis is a widely spread effector mechanism in vertebrates and invertebrates being utilized to entrap and kill bacteria, fungi, viruses, and protozoan parasites. ETs are released in response to intact protozoan parasites or to parasite-specific antigens in a controlled cell death process. Released ETs consist of nuclear DNA as backbone adorned with histones, antimicrobial peptides, and phagocyte-specific granular enzymes thereby producing a sticky extracellular matrix capable of entrapping and killing pathogens. This review summarizes recent data on protozoa-induced ETosis. Special attention will be given to molecular mechanisms of protozoa-induced ETosis and on its consequences for the parasites successful reproduction and life cycle accomplishment.
Collapse
|