1
|
Niu X, Fan Y, Zhu G, Zeng H, Zhao B, Sun M, Chen L, Wu L, Tian Z, James TD, Ge G. Rational engineering of isoform-specific hSULT1E1 fluorogenic substrates for functional analysis and inhibitor screening. Biosens Bioelectron 2025; 275:117192. [PMID: 39933407 DOI: 10.1016/j.bios.2025.117192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/05/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Human estrogen sulfotransferase (hSULT1E1), an important conjugative enzyme, plays crucial roles in both estrogen homeostasis and xenobiotic metabolism. Herein, a rational substrate engineering strategy was adopted to construct highly specific fluorogenic substrates for hSULT1E1. In the 1st round of structure-based virtual screening, 4-hydroxyl-1,8-naphthalimide (4-HN) was identified as a suitable scaffold for constructing hSULT1E1 substrates. Subsequently, structural modifications on the north part of 4-HN generated a panel of derivatives as substrate candidates, in which HN-299 was identified as a highly selective fluorogenic substrate for hSULT1E1. In the 3rd round of structural optimization, a "molecular growth" strategy on the south part of HN-299 was used to develop a highly selective and reactive substrate (HN-375). Under physiological conditions, HN-375 could be readily sulfated by hSULT1E1 to generate a single fluorescent product, which emitted bright green signals at around 510 nm and was fully identified as HN-375 4-O-sulfate (HNS). Further investigations indicated that HN-375 exhibited excellent isoform-specificity, rapid-response, ultrahigh sensitivity, and high signal-to-noise ratio, and as such was subsequently used for sensing SULT1E1 activity in hepatocellular carcinoma specimens and live organs. With HN-375 in hand, a practical fluorescence-based assay was established for high-throughput screening and characterization of hSULT1E1 inhibitors, as such two potent hSULT1E1 inhibitors were identified from in-house compound libraries. Collectively, this study showcases a groundbreaking strategy for engineering highly specific and sensitive fluorogenic substrates for target conjugative enzyme(s), while HN-375 emerges as a practical tool for sensing SULT1E1 activity in a biological context and for the high-throughput screening of inhibitors.
Collapse
Affiliation(s)
- Xiaoting Niu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yufan Fan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guanghao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hairong Zeng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bei Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengru Sun
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lin Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Zhenhao Tian
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Onyiba CI, Kumar NK, Scarlett CJ, Weidenhofer J. Cell Progression and Survival Functions of Enzymes Secreted in Extracellular Vesicles Associated with Breast and Prostate Cancers. Cells 2025; 14:468. [PMID: 40214422 PMCID: PMC11988166 DOI: 10.3390/cells14070468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound cargoes secreted by normal and pathological cells. Through their protein, nucleic acid, and lipid cargoes, EVs mediate several cellular processes, such as cell-cell communication, cell development, immune response, and tissue repair. Most importantly, through their enzyme cargo, EVs mediate pathophysiological processes, including the pathogenesis of cancer. In this review, we enumerate several enzymes secreted in EVs (EV enzyme cargo) from cells and patient clinical samples of breast and prostate cancers and detail their contributions to the progression and survival of both cancers. Findings in this review reveal that the EV enzyme cargo could exert cell progression functions via adhesion, proliferation, migration, invasion, and metastasis. The EV enzyme cargo might also influence cell survival functions of chemoresistance, radioresistance, angiogenesis, cell death inhibition, cell colony formation, and immune evasion. While the current literature provides evidence of the possible contributions of the EV enzyme cargo to the progression and survival mechanisms of breast and prostate cancers, future studies are required to validate that these effects are modified by EVs and provide insights into the clinical applications of the EV enzyme cargo in breast and prostate cancer.
Collapse
Affiliation(s)
- Cosmos Ifeanyi Onyiba
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Niwasini Krishna Kumar
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Christopher J. Scarlett
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
3
|
Cai X, Cai J, Fang L, Xu S, Zhu H, Wu S, Chen Y, Fang S. Design, synthesis and molecular modeling of novel D-ring substituted steroidal 4,5-dihydropyrazole thiazolinone derivatives as anti-inflammatory agents by inhibition of COX-2/iNOS production and down-regulation of NF-κB/MAPKs in LPS-induced RAW264.7 macrophage cells. Eur J Med Chem 2024; 272:116460. [PMID: 38704943 DOI: 10.1016/j.ejmech.2024.116460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
It has been reported that 4,5-dihydropyrazole and thiazole derivatives have many biological functions, especially in the aspect of anti-inflammation. According to the strategy of pharmacophore combination, we introduced thiazolinone and dihydropyrazole moiety into steroid skeleton to design and synthesize a novel series of D-ring substituted steroidal 4,5-dihydropyrazole thiazolinone derivatives, and assessed their in vitro anti-inflammatory profiles against Lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. The anti-inflammatory activities assay demonstrated that compound 12e was considered as the most effective anti-inflammatory drug, which suppressed the expression of pro-inflammatory mediators including nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), it also dose-dependently inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-induced RAW 264.7 macrophage cells. Furthermore, the results of the Western blot analysis showed a correlation between the inhibition of the Nuclear factor-kappa B (NF-κB) and Mitogen-activated protein kinases (MAPKs) signaling pathways and the suppressive effects of compound 12e on pro-inflammatory cytokines. Molecular docking studies of compound 12e into the COX-2 protein receptor (PDB ID: 5IKQ) active site was performed to rationalize their COX-2 inhibitory potency. The results were found to be in line with the biological findings as they exerted more favorable interactions compared to that of dexamethasone (DXM), explaining their remarkable COX-2 inhibitory activity. The findings revealed that these candidates could be identified as potent anti-inflammatory agents, compound 12e could be a promising drug for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xiaorui Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jianfeng Cai
- Department of Interventional Therapy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ling Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Siqi Xu
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Huide Zhu
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shuteng Wu
- Department of Pharmacy, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Yicun Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Shuopo Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
4
|
Hekmatirad S, Moloudizargari M, Fallah M, Rahimi A, Poortahmasebi V, Asghari MH. Cancer-associated immune cells and their modulation by melatonin. Immunopharmacol Immunotoxicol 2023; 45:788-801. [PMID: 37489565 DOI: 10.1080/08923973.2023.2239489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVES Rapidly growing evidence suggests that immune cells play a key role in determining tumor progression. Tumor cells are surrounded by a microenvironment composed of different cell populations including immune cells. The cross talk between tumor cells and the neighboring microenvironment is an important factor to take into account while designing tumor therapies. Despite significant advances in immunotherapy strategies, a relatively small proportion of patients have successfully responded to them. Therefore, the search for safe and efficient drugs, which could be used alongside conventional therapies to boost the immune system against tumors, is an ongoing need. In the present work, the modulatory effects of melatonin on different components of tumor immune microenvironment are reviewed. METHODS A thorough literature review was performed in PubMed, Scopus, and Web of Science databases. All published papers in English on tumor immune microenvironment and the relevant modulatory effects of melatonin were scrutinized. RESULTS Melatonin modulates macrophage polarization and prevents M2 induction. Moreover, it prevents the conversion of fibroblasts into cancer-associated fibroblasts (CAFs) and prevents cancer cell stemness. In addition, it can affect the payload composition of tumor-derived exosomes (TEXs) and their secretion levels to favor a more effective anti-tumor immune response. Melatonin is a safe molecule that affects almost all components of the tumor immune microenvironment and prevents them from being negatively affected by the tumor. CONCLUSION Based on the effects of melatonin on normal cells, tumor cells and microenvironment components, it could be an efficient compound to be used in combination with conventional immune-targeted therapies to increase their efficacy.
Collapse
Affiliation(s)
- Shirin Hekmatirad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Marjan Fallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Medicinal Plant Research Centre, Islamic Azad University, Amol, Iran
| | - Atena Rahimi
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
5
|
Kapoor E, Faubion SS, Kuhle CL, Kling JM, Miller VM, Fokken S, Mara KC, Moyer AM. The effect of genetic variation in estrogen transportation and metabolism on the severity of menopause symptoms: A study from the RIGHT 10K cohort. Maturitas 2023; 176:107797. [PMID: 37595497 PMCID: PMC10478674 DOI: 10.1016/j.maturitas.2023.107797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE The severity of menopause-related symptoms varies considerably among women. The determinants of this variation are incompletely understood. The aim of this study was to assess the association between genetic variation in estrogen metabolism and transport pathways and the severity of menopause symptoms. METHODS This was a cross-sectional study of 60 peri- and postmenopausal women in the Mayo Clinic RIGHT study (which involved sequencing of genes involved in drug metabolism and transport), who had also been evaluated in the Women's Health Clinic at Mayo Clinic in Rochester, MN. All participants completed the Menopause Rating Scale (MRS) for assessment of menopause symptoms, including hot flashes. The association between severity of menopause symptoms and the variation in genes encoding 8 enzymes and transporters involved in estrogen metabolism was evaluated. RESULTS Lower CYP3A4 activity and higher COMT activity were associated with lower severity of somatic menopause symptoms (p = 0.04 and 0.06, respectively). These associations did not persist after adjustment for hormone therapy use. No differences in MRS scores or hot flash severity were noted among other genetic variant groups. Age at natural menopause was not affected by variations in the genes studied. CONCLUSION The current study did not show an association between genetic variation in estrogen metabolism and transport pathways and the severity of menopause symptoms. Further studies with larger sample sizes may be required to understand this potentially complex association.
Collapse
Affiliation(s)
- Ekta Kapoor
- Center for Women's Health, Mayo Clinic, Rochester, MN, USA; Menopause and Women's Sexual Health Clinic, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA; Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA; Women's Health Research Center, Mayo Clinic, Rochester, MN, USA.
| | - Stephanie S Faubion
- Center for Women's Health, Mayo Clinic, Rochester, MN, USA; Division of General Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Carol L Kuhle
- Center for Women's Health, Mayo Clinic, Rochester, MN, USA; Menopause and Women's Sexual Health Clinic, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Juliana M Kling
- Center for Women's Health, Mayo Clinic, Rochester, MN, USA; Division of Women's Health Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Virginia M Miller
- Emerita Staff, Departments of Surgery and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Shawn Fokken
- Menopause and Women's Sexual Health Clinic, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kristin C Mara
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Glassman I, Le N, Asif A, Goulding A, Alcantara CA, Vu A, Chorbajian A, Mirhosseini M, Singh M, Venketaraman V. The Role of Obesity in Breast Cancer Pathogenesis. Cells 2023; 12:2061. [PMID: 37626871 PMCID: PMC10453206 DOI: 10.3390/cells12162061] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Research has shown that obesity increases the risk for type 2 diabetes mellitus (Type 2 DM) by promoting insulin resistance, increases serum estrogen levels by the upregulation of aromatase, and promotes the release of reactive oxygen species (ROS) by macrophages. Increased circulating glucose has been shown to activate mammalian target of rapamycin (mTOR), a significant signaling pathway in breast cancer pathogenesis. Estrogen plays an instrumental role in estrogen-receptor-positive breast cancers. The role of ROS in breast cancer warrants continued investigation, in relation to both pathogenesis and treatment of breast cancer. We aim to review the role of obesity in breast cancer pathogenesis and novel therapies mediating obesity-associated breast cancer development. We explore the association between body mass index (BMI) and breast cancer incidence and the mechanisms by which oxidative stress modulates breast cancer pathogenesis. We discuss the role of glutathione, a ubiquitous antioxidant, in breast cancer therapy. Lastly, we review breast cancer therapies targeting mTOR signaling, leptin signaling, blood sugar reduction, and novel immunotherapy targets.
Collapse
Affiliation(s)
- Ira Glassman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Nghia Le
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Aamna Asif
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Anabel Goulding
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Cheldon Ann Alcantara
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Annie Vu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Abraham Chorbajian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Mercedeh Mirhosseini
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Manpreet Singh
- Corona Regional Medical Center, Department of Emergency Medicine, Corona, CA 92882, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| |
Collapse
|
7
|
Rashid M, Maqbool A, Shafiq N, Bin Jardan YA, Parveen S, Bourhia M, Nafidi HA, Khan RA. The combination of multi-approach studies to explore the potential therapeutic mechanisms of imidazole derivatives as an MCF-7 inhibitor in therapeutic strategies. Front Chem 2023; 11:1197665. [PMID: 37441272 PMCID: PMC10335751 DOI: 10.3389/fchem.2023.1197665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer covers a large area of research because of its prevalence and high frequency all over the world. This study is based on drug discovery against breast cancer from a series of imidazole derivatives. A 3D-QSAR and activity atlas model was developed by exploring the dataset computationally, using the machine learning process of Flare. The dataset of compounds was divided into active and inactive compounds according to their biological and structural similarity with the reference drug. The obtained PLS regression model provided an acceptable r 2 = 0.81 and q2 = 0.51. Protein-ligand interactions of active molecules were shown by molecular docking against six potential targets, namely, TTK, HER2, GR, NUDT5, MTHFS, and NQO2. Then, toxicity risk parameters were evaluated for hit compounds. Finally, after all these screening processes, compound C10 was recognized as the best-hit compound. This study identified a new inhibitor C10 against cancer and provided evidence-based knowledge to discover more analogs.
Collapse
Affiliation(s)
- Maryam Rashid
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Ayesha Maqbool
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Nusrat Shafiq
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shagufta Parveen
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
- Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Rashid Ahmed Khan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| |
Collapse
|
8
|
Fujiwara N, Mukai R, Nishikawa M, Ikushiro S, Murakami A, Ishisaka A. Transfer of quercetin ingested by maternal mice to neonatal mice via breast milk. Biosci Biotechnol Biochem 2023; 87:442-447. [PMID: 36669760 DOI: 10.1093/bbb/zbad007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
This is the first study that quantified quercetin (QUE) and its 16 metabolites in the breast milk of QUE-fed maternal mice, the plasma and urine of that, and neonatal mice. Interestingly, the QUE aglycone concentration in the milk was much higher than in the plasma of maternal mice, suggesting that QUE may exert biological activity in neonates.
Collapse
Affiliation(s)
- Nao Fujiwara
- Department of Food Science and Nutrition, School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan
| | - Rie Mukai
- Department of Food Science, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Tokushima, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Akira Murakami
- Department of Food Science and Nutrition, School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan
- Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo, Japan
| | - Akari Ishisaka
- Department of Food Science and Nutrition, School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan
- Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo, Japan
| |
Collapse
|
9
|
Mauny A, Faure S, Derbré S. Phytoestrogens and Breast Cancer: Should French Recommendations Evolve? Cancers (Basel) 2022; 14:cancers14246163. [PMID: 36551648 PMCID: PMC9776930 DOI: 10.3390/cancers14246163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) occurs less frequently in Asia, where there is high soy consumption. It has been hypothesized that soy isoflavones could be protective against BC recurrence and mortality. At the same time, health organizations in several countries have differing recommendations for soy consumption (soy foods or dietary supplements) in BC survivors. The objective of this review is to analyze the literature and to determine whether it is justified to advise avoiding soy in dietary supplements and/or food in women with a history of BC. We conducted a systematic literature search with the Medline/Pubmed and Web of Science databases. Only prospective cohort studies published since 2009 were retained. The endpoint of studies was BC recurrence and/or mortality, and the association with soy isoflavone intake was specifically targeted. Seven studies were included. None of these studies found statistically significant adverse effects of soy consumption on BC recurrence or mortality (specific or all-cause). Overall, only one study was not able to find beneficial effects of soy intake on BC patients. The other studies concluded that there were positive associations but in very variable ways. Two studies found a decrease in BC recurrence associated with a higher isoflavone intake only for post-menopausal women. The other four studies concluded that there were positive associations regardless of menopausal status. Four studies showed better results on women with hormonal-sensitive cancer and/or patients receiving hormonal treatment. Only one found a stronger association for patients with ER-negative BC. No adverse effects of soy isoflavones on BC mortality/recurrence were found. Soy isoflavones may exert beneficial effects. These results coincide with other recent works and suggest that soy isoflavone intake is safe for BC survivors. Thus, these data no longer seem to coincide with the French recommendations, which could then be brought to evolve. However, in order to confirm the current results, larger studies are needed.
Collapse
Affiliation(s)
- Aurore Mauny
- Department Pharmacy, Faculty of Health Sciences, University of Angers, F-49000 Angers, France
| | - Sébastien Faure
- Department Pharmacy, Faculty of Health Sciences, University of Angers, F-49000 Angers, France
- Inserm, CNRS, MINT, SFR ICAT, University of Angers, F-49000 Angers, France
- Correspondence: (S.F.); (S.D.); Tel.: +33-(0)241-226-740 (S.F.); +33-(0)249-180-440 (S.D.)
| | - Séverine Derbré
- Department Pharmacy, Faculty of Health Sciences, University of Angers, F-49000 Angers, France
- SONAS, SFR QUASAV, University of Angers, F-49000 Angers, France
- Correspondence: (S.F.); (S.D.); Tel.: +33-(0)241-226-740 (S.F.); +33-(0)249-180-440 (S.D.)
| |
Collapse
|
10
|
Lee O, Fought AJ, Shidfar A, Heinz RE, Kmiecik TE, Gann PH, Khan SA, Chatterton RT. Association of genetic polymorphisms with local steroid metabolism in human benign breasts. Steroids 2022; 177:108937. [PMID: 34762930 DOI: 10.1016/j.steroids.2021.108937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Although alterations of concentrations in circulating steroids have been linked to single nucleotide polymorphisms (SNPs) of steroidogenic enzymes, we hypothesized that SNPs of such enzymes located within the breast affect local steroid concentrations more than products of such SNPs absorbed from the circulation. METHODS Steroids (estradiol, estrone, testosterone, androstenedione, DHEA, DHEA sulfate, progesterone) in nipple aspirate fluid (NAF) were purified by HPLC and they along with serum steroids were quantified by immunoassays. Polymorphisms of the transporter SLCO2B1 and enzymes HSD3B1, CYP19A1, HSD17B12, AKR1C3, CYP1B1, and SRD5A1 were measured in white blood cell DNA. RESULTS Steroid concentrations in NAF of subjects with homozygous minor genotypes differed from those with heterozygotes, i.e., SLCO2B1 (rs2851069) decreased DHEAS (p = 0.04), HSD17B12 (rs11555762) increased estradiol (p < 0.004), and CYP1B1 (rs1056836) decreased estradiol (p = 0.017) and increased progesterone (p = 0.05). Also, in serum, CYP19A1 (rs10046 and rs700518) both decreased testosterone (p = 0.02) and SRD5A1 increased androstenedione (p = 0.006). Steroids in subjects with major homozygotes did not differ from those with heterozygotes indicating recessive characteristics. CONCLUSIONS In the breast, SNPs were associated with decreased uptake of DHEAS (SLCO2B1), increased estradiol concentrations through increased oxidoreductase activity (HSD17B12), or decreased estradiol concentrations by presumed formation of 4-hydroxyestradiol (CYP1B1). CYP19A1 was associated with decreased testosterone concentrations in serum but had no significant effect on estrogen or androgen concentrations within the breast. The hormone differences observed in NAF were not usually evident in serum, indicating the importance of assessing the effect of these SNPs within the breast.
Collapse
Affiliation(s)
- Oukseub Lee
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Angela J Fought
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Ali Shidfar
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Richard E Heinz
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Thomas E Kmiecik
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Peter H Gann
- Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| | - Seema A Khan
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Robert T Chatterton
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Departments of Obstetrics/Gynecology, Physiology, and Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
11
|
Identification of key structural features of phosphate and thiophosphate tricyclic coumarin analogs as STS inhibitors. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
12
|
Chen F, Chen Z, Chen M, Chen G, Huang Q, Yang X, Yin H, Chen L, Zhang W, Lin H, Ou M, Wang L, Chen Y, Lin C, Xu W, Yin G. Reduced stress-associated FKBP5 DNA methylation together with gut microbiota dysbiosis is linked with the progression of obese PCOS patients. NPJ Biofilms Microbiomes 2021; 7:60. [PMID: 34267209 PMCID: PMC8282850 DOI: 10.1038/s41522-021-00231-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disease in females that is characterized by hyperandrogenemia, chronic anovulation, and polycystic ovaries. However, the exact etiology and pathogenesis of PCOS are still unknown. The aim of this study was to clarify the bacterial, stress status, and metabolic differences in the gut microbiomes of healthy individuals and patients with high body mass index (BMI) PCOS (PCOS-HB) and normal BMI PCOS (PCOS-LB), respectively. Here, we compared the gut microbiota characteristics of PCOS-HB, PCOS-LB, and healthy controls by 16S rRNA gene sequencing, FK506-binding protein 5 (FKBP5) DNA methylation and plasma metabolite determination. Clinical parameter comparisons indicated that PCOS patients had higher concentrations of total testosterone, androstenedione, dehydroepiandrosterone sulfate, luteinizing hormone, and HOMA-IR while lower FKBP5 DNA methylation. Significant differences in bacterial diversity and community were observed between the PCOS and healthy groups but not between the PCOS-HB and PCOS-LB groups. Bacterial species number was negatively correlated with insulin concentrations (both under fasting status and 120 min after glucose load) and HOMA-IR but positively related to FKBP5 DNA methylation. Compared to the healthy group, both PCOS groups had significant changes in bacterial genera, including Prevotella_9, Dorea, Maihella, and Slackia, and plasma metabolites, including estrone sulfate, lysophosphatidyl choline 18:2, and phosphatidylcholine (22:6e/19:1). The correlation network revealed the complicated interaction of the clinical index, bacterial genus, stress indices, and metabolites. Our work links the stress responses and gut microbiota characteristics of PCOS disease, which might afford perspectives to understand the progression of PCOS.
Collapse
Affiliation(s)
- Fu Chen
- Department of Clinical Nutrition, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Zhangran Chen
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Minjie Chen
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Laboratory of Molecular Cardiology and Laboratory of Molecular Imaging, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Guishan Chen
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Qingxia Huang
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Xiaoping Yang
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Huihuang Yin
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Laboratory of Molecular Cardiology and Laboratory of Molecular Imaging, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Lan Chen
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Weichun Zhang
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Hong Lin
- Department of Reproductive Center, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Miaoqiong Ou
- Department of Clinical Nutrition, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Luanhong Wang
- Department of Gynecological tumor, Tumor Hospital Affiliated to Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yongsong Chen
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Chujia Lin
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Wencan Xu
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Guoshu Yin
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China.
| |
Collapse
|
13
|
Hubbard WJ, Yang S, Chaudry IH. Ethinyl estradiol sulfate acts without fluid resuscitation through estrogen receptors to rapidly protect the cardiovascular system from severe hemorrhage. J Trauma Acute Care Surg 2021; 90:353-359. [PMID: 33048911 DOI: 10.1097/ta.0000000000002978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Our in vivo rodent and pig model evidenced that estrogen and its derivative, ethinyl estradiol sulfate (EES), promote survival following hemorrhagic shock. To determine its mechanism, we first confirmed EES binding to estrogen receptor (ER) and improving/restoring cellular signaling, countering the assumption that EES, an ethinyl estradiol metabolite, is inactive. In addition, we examined if EES acts rapidly, consistent with nongenomic signaling. We selected the biomarkers of cardiovascular performance, reduction of apoptosis and proinflammatory responses, and elaboration of nitric oxide (NO) to validate efficacy. METHODS A rat trauma-hemorrhage model, consisting of a midline laparotomy and controlled bleeding (60% blood loss) without fluid resuscitation, was used. At 30 minutes after hemorrhage, heart performance was monitored, and Western blots were used to quantify biochemical analytes. The specificity of EES for ER was profiled with ER antagonists. Binding studies by Sekisui XenoTech (Kansas City, KS) determined an LD50 value for EES binding the rat ER. RESULTS The EES IC50 value was 1.52 × 10-8 Mol/L, consistent with pharmacologic efficacy. Ethinyl estradiol sulfate raised mean arterial pressure and ±derivative of pressure over time (dP/dT) significantly (but did not fully restore) within a 30-minute window. Levels of apoptosis and activation of NF-κB were dramatically reduced, as was elaboration of nitric oxide (NO) by inducible nitric oxide synthase. Phospho-endothelial nitric oxide synthase (eNOS) was restored to physiological levels. The restoration of cellular signaling occurs before restoration of cardiac contractility. CONCLUSION Ethinyl estradiol sulfate is a potent drug for improving heart performance, which also dramatically reduces damage by apoptosis, proinflammatory activity, and NO production, validating that EES can blunt multiple harmful outcomes arising from hypoxia and hypovolemia. The actions are dependent on receptor engagement, where specificity is confirmed by ER antagonists. The constraint of a 30-minute sampling window affirms that the responses are nongenomic and very likely restricted to cell-surface receptor engagement. The rapidity of these responses makes EES promising for intervention in the "golden hour."
Collapse
Affiliation(s)
- William J Hubbard
- From the Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | |
Collapse
|
14
|
Melatonin as an Oncostatic Molecule Based on Its Anti-Aromatase Role in Breast Cancer. Int J Mol Sci 2021; 22:ijms22010438. [PMID: 33406787 PMCID: PMC7795758 DOI: 10.3390/ijms22010438] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the most common type of cancer. In the developmental stages of breast cancer, estrogens are strongly involved. As estrogen synthesis is regulated by the enzyme aromatase, targeting the activity of this enzyme represents a therapeutic option. The pineal hormone melatonin may exert a suppressive role on aromatase activity, leading to reduced estrogen biosynthesis. A melatonin-mediated decrease in the expression of aromatase promoters and associated genes would provide suitable evidence of this molecule’s efficacy as an aromatase inhibitor. Furthermore, melatonin intensifies radiation-induced anti-aromatase effects and counteracts the unwanted disadvantages of chemotherapeutic agents. In this manner, this review summarizes the inhibitory role of melatonin in aromatase action, suggesting its role as a possible oncostatic molecule in breast cancer.
Collapse
|
15
|
Kong H, Chen J, Tang SC. Synchronous papillary thyroid carcinoma and breast ductal carcinoma. J Int Med Res 2020; 48:300060520948710. [PMID: 32865067 PMCID: PMC7469738 DOI: 10.1177/0300060520948710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A 48-year-old woman was admitted to our hospital with a lump in her left breast. She was diagnosed with synchronous papillary thyroid carcinoma and breast ductal carcinoma. The patient underwent four cycles of neoadjuvant chemotherapy with epirubicin and cyclophosphamide, and one cycle of docetaxel. She then underwent left breast mastectomy and radical resection of thyroid cancer (total thyroidectomy and bilateral central group [levels VI and VII] lymph node dissection) at the same time. She was administered three cycles of chemotherapy with docetaxel and radiotherapy. The patient had no metastasis in the follow-up period. A literature search was performed to characterize the epidemiology, etiology, management, and prognosis of this condition. We speculate that hormone treatment could be a probable pathogenesis of synchronous breast and thyroid cancers.
Collapse
Affiliation(s)
- Heng Kong
- Department of Thyroid and Breast Surgery, Baoan Central Hospital of Shenzhen (Fifth Affiliated Hospital of Shenzhen University), Shenzhen City, Guangdong Province, China.,Department of General Surgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen City, Guangdong Province, China
| | - JiXin Chen
- Department of General Surgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen City, Guangdong Province, China
| | - Shou-Ching Tang
- Cancer Center and Research Institute, Clinical and Translational Research, University of Mississippi Medical Center, Guyton Research Building, 2500 North State Street, Starkville, MS, USA
| |
Collapse
|
16
|
Xu X, Liu X, Yang Y, He J, Gu H, Jiang M, Huang Y, Liu X, Liu L. Resveratrol inhibits the development of obesity-related osteoarthritis via the TLR4 and PI3K/Akt signaling pathways. Connect Tissue Res 2019; 60:571-582. [PMID: 30922122 DOI: 10.1080/03008207.2019.1601187] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim of the study: Obesity leads to mild, chronic inflammation which is a primary risk factor for osteoarthritis (OA). Resveratrol exerts a protective effect on OA through its anti-inflammatory properties, but the precise mechanism remains unknown. The present study aimed to investigate the mechanism by which resveratrol alleviates obesity-related OA, and whether it is linked to the TLR4 and PI3K/Akt signaling pathways. Materials and methods: C57BL/6J male mice were fed a high-fat diet (HFD) with or without resveratrol treatment and knee joints were collected for analysis. In addition, IL-1β-induced SW1353 cells were used to study in vitro the reciprocal effects of TLR4 and PI3K/Akt pathways. Results: Resveratrol inhibited the development of OA in mice fed a HFD. TLR4 and PI3K/Akt signaling pathways were both activated in the articular cartilage; resveratrol treatment down-regulated TLR4 but up-regulated PI3K/Akt signaling. Further in vitro results showed that the effect of resveratrol alone on activation of PI3K/Akt was attenuated but not abolished by the TLR4 inhibitor CLI-095, and resveratrol failed to reduce TLR4 protein expression in IL-1β stimulated cells pretreated with the PI3K inhibitor LY294002. Conclusions: Resveratrol may exert an anti-osteoarthritic effect by inhibiting TLR4 via the activation of PI3K/Akt signaling pathways. Resveratrol has potential as a drug for OA prevention.
Collapse
Affiliation(s)
- Xiaolei Xu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University , Shenyang , China.,Department of Nutrition and Food Hygiene, School of Public Health, Beihua University , Jilin , China
| | - Xudan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University , Shenyang , China
| | - Yingchun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University , Shenyang , China
| | - Jianyi He
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University , Shenyang , China
| | - Hailun Gu
- Department of Orthopedics, Shengjing Hospital, China Medical University , Shenyang , China
| | - Mengqi Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University , Shenyang , China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University , Shenyang , China
| | - Xiaotong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University , Shenyang , China
| | - Li Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University , Shenyang , China
| |
Collapse
|
17
|
Sang X, Han H, Li T, Lin SX. Mutual regulations and breast cancer cell control by steroidogenic enzymes: Dual sex-hormone receptor modulation upon 17β-HSD7 inhibition. J Steroid Biochem Mol Biol 2019; 193:105411. [PMID: 31207361 DOI: 10.1016/j.jsbmb.2019.105411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 12/23/2022]
Abstract
Reductive 17β-hydroxysteroid dehydrogenases (17β-HSDs) and 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) play crucial roles in respectively regulating steroids and glucocorticoids for the progression of hormone-dependent breast cancer. Most studies focused on the function and individual regulation of these enzymes. However, mutual regulation of these enzymes and the induced modulation on the estrogen and androgen receptors for breast cancer promotion are not yet clear. In this study, MCF-7 and T47D cells were treated with inhibitors of 17β-HSD1, 17β-HSD7, aromatase or steroid sulfatase (STS), then mRNA levels of 17β-HSD7, STS, 11β-HSD 2, estrogen receptors α (ERα) and androgen receptor (AR) were determined by Q-PCR. ER negative cell line MDA-MB-231 was used as a negative control. Our results demonstrate that 17β-HSD7, STS and 11β-HSD2 are all regulated by the same estrogen estradiol via ERα. When the gene of ERα (ESR1) was knocked down, there was no longer significant mutual regulation of these enzymes. Our results demonstrate that important steroidogenic enzymes transcriptionally regulated by ERα, can be mutually closely correlated. Inhibition of one of them can reduce the expression of another, thereby amplifying the role of the inhibition. Furthermore, inhibition of 17β-HSD7 increases the expression of AR gene which is considered as a marker for better prognosis in ER + breast cancer, while maintaining ERα level. Thus, our mechanistic finding provides a base for further improving the endocrine therapy of ER + breast cancer, e.g., for selecting the target steroid enzymes, and for the combined targeting of human 17β-HSD7 and ERα.
Collapse
Affiliation(s)
- Xiaoye Sang
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada
| | - Hui Han
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada; Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Tang Li
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada.
| |
Collapse
|
18
|
Flöter VL, Bauersachs S, Fürst RW, Krebs S, Blum H, Reichenbach M, Ulbrich SE. Exposure of pregnant sows to low doses of estradiol-17β impacts on the transcriptome of the endometrium and the female preimplantation embryos†. Biol Reprod 2019; 100:624-640. [PMID: 30260370 DOI: 10.1093/biolre/ioy206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/30/2018] [Accepted: 09/25/2018] [Indexed: 11/14/2022] Open
Abstract
Maternal exposure to estrogens can induce long-term adverse effects in the offspring. The epigenetic programming may start as early as the period of preimplantation development. We analyzed the effects of gestational estradiol-17β (E2) exposure with two distinct low doses, corresponding to the acceptable daily intake "ADI" and close to the no-observed-effect level "NOEL", and a high dose (0.05, 10, and 1000 μg E2/kg body weight daily, respectively). The E2 doses were orally applied to sows from insemination until sampling at day 10 of pregnancy and compared to carrier-treated controls leading to a significant increase in E2 in plasma, bile and selected somatic tissues including the endometrium in the high-dose group. Conjugated and unconjugated E2 metabolites were as well elevated in the NOEL group. Although RNA-sequencing revealed a dose-dependent effect of 14, 17, and 27 differentially expressed genes (DEG) in the endometrium, single embryos were much more affected with 982 DEG in female blastocysts of the high-dose group, while none were present in the corresponding male embryos. Moreover, the NOEL treatment caused 62 and 3 DEG in female and male embryos, respectively. Thus, we detected a perturbed sex-specific gene expression profile leading to a leveling of the transcriptome profiles of female and male embryos. The preimplantation period therefore demonstrates a vulnerable time window for estrogen exposure, potentially constituting the cause for lasting consequences. The molecular fingerprint of low-dose estrogen exposure on developing embryos warrants a careful revisit of effect level thresholds.
Collapse
Affiliation(s)
- Veronika L Flöter
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland.,Physiology Weihenstephan, Technische Universität München, Freising, Germany
| | - Stefan Bauersachs
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Rainer W Fürst
- Physiology Weihenstephan, Technische Universität München, Freising, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Myriam Reichenbach
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center of the Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland.,Physiology Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
19
|
Soy and isoflavones consumption and breast cancer survival and recurrence: a systematic review and meta-analysis. Eur J Nutr 2018; 58:3079-3090. [DOI: 10.1007/s00394-018-1853-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022]
|
20
|
Lee O, Heinz RE, Ivancic D, Muzzio M, Chatterton RT, Zalles CM, Keeney K, Phan B, Liu D, Scholtens D, Fackler MJ, Stearns V, Sukumar S, Khan SA. Breast Hormone Concentrations in Random Fine-Needle Aspirates of Healthy Women Associate with Cytological Atypia and Gene Methylation. Cancer Prev Res (Phila) 2018; 11:557-568. [PMID: 29954758 DOI: 10.1158/1940-6207.capr-17-0323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/31/2018] [Accepted: 06/13/2018] [Indexed: 11/16/2022]
Abstract
Sex steroid hormones contribute to breast cancer development, but data on concentrations of these within breast tissue are limited. We performed simultaneous multiparameter measurement of breast sex steroids, breast epithelial cytology, and DNA methylation in 119 healthy women (54 pre- and 65 postmenopausal) without a history of breast cancer. Random fine-needle aspiration (rFNA) of the breast was performed simultaneously with blood collection. Breast samples were analyzed by LC/MS-MS for estrone, estradiol, progesterone, androstenedione, and testosterone. Blood samples were assayed for estradiol and progesterone by immunoassay. Cytomorphology was classified using the Masood Score, and DNA methylation of eight genes was analyzed using quantitative multiplexed methylation-specific PCR, and expressed as the cumulative methylation index (CMI). Serum and breast concentrations of estradiol and progesterone showed significant correlation (Spearman r = 0.34, Padj = 0.001 and r = 0.69, Padj < 0.0006, respectively). Progesterone concentration was significantly higher in the premenopausal breast (Padj < 0.0008), and showed a luteal surge. Breast estrone and estradiol concentrations did not differ significantly by menopause, but androstenedione concentration was higher in the breasts of postmenopausal women (P = 0.026 and Padj = 0.208). Breast androgens were significantly correlated with breast density (Spearman r = 0.27, Padj = 0.02 for testosterone) and CMI (Spearman r = 0.3, Padj = 0.038 for androstenedione). Our data indicate that future larger studies of breast steroid hormones along with other parameters are feasible. Significant associations of breast androgen concentrations with breast density and gene methylation warrant future study. Cancer Prev Res; 11(9); 557-68. ©2018 AACR.
Collapse
Affiliation(s)
- Oukseub Lee
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard E Heinz
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David Ivancic
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Miguel Muzzio
- Illinois Institute of Technology Research Institute, Chicago, Illinois
| | - Robert T Chatterton
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Kara Keeney
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Belinda Phan
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Dachao Liu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Denise Scholtens
- Preventive Medicine of Northwestern University, Chicago, Illinois
| | - Mary Jo Fackler
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vered Stearns
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Saraswati Sukumar
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Seema A Khan
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
21
|
Fietz D. Transporter for sulfated steroid hormones in the testis - expression pattern, biological significance and implications for fertility in men and rodents. J Steroid Biochem Mol Biol 2018; 179:8-19. [PMID: 29017936 DOI: 10.1016/j.jsbmb.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
Abstract
In various tissues, steroid hormones may be sulfated, glucuronidated or otherwise modified. For a long time, these hydrophilic molecules have been considered to be merely inactive metabolites for excretion via bile or urine. Nevertheless, different organs such as the placenta and breast tissue produce large amounts of sulfated steroids. After the discovery of the enzyme steroid sulfatase, which is able to re-activate sulfated steroids, these precursor molecules entered the focus of interest again as a local supply for steroid hormone synthesis with a prolonged half-life compared to their unconjugated counterparts. The first descriptions of this so-called sulfatase pathway in the placenta and breast tissue (with special regards to hormone-dependent breast cancer) were quickly followed by studies of steroid sulfate production and function in the testis. These hydrophilic molecules may not permeate the cell membrane by diffusion in the way that unbound steroids can, but need to be transported through the plasma membrane by transport systems. In the testis, a functional sulfatase pathway requires the expression of specific uptake carrier and efflux transporters in testicular cells, i.e. Sertoli, Leydig and germ cells. Main focus has to be placed on Sertoli cells, as these cells build up the blood-testis barrier. In this review, an overview of carrier expression pattern in the human as well as rodent testis is provided with special interest towards implications on fertility.
Collapse
Affiliation(s)
- D Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
22
|
Dehydroepiandrosterone (DHEA) and Its Sulfate (DHEA-S) in Mammalian Reproduction: Known Roles and Novel Paradigms. VITAMINS AND HORMONES 2018; 108:223-250. [PMID: 30029728 DOI: 10.1016/bs.vh.2018.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Steroid hormones form an integral part of normal development in mammalian organisms. Cholesterol is the parent compound from which all steroid hormones are synthesized. The product pregnenolone formed from cholesterol serves as precursor for mineralocorticoids, glucocorticoids, as well as dehydroepiandrosterone (DHEA) and its derived sexual hormones. DHEA assumes the prohormone status of a predominant endogenous precursor and a metabolic intermediate in ovarian follicular steroidogenesis. DHEA supplementation has been used to enhance ovarian reserve. Steroids like estradiol and testosterone have long been contemplated to play important roles in regulating meiotic maturation of oocytes in conjunction with gonadotropins. It is known that oocyte priming with estrogen is necessary to develop calcium (Ca2+) oscillations during maturation. Accruing evidence from diverse studies suggests that DHEA and its sulfate (dehydroepiandrosterone sulfate, DHEA-S) play significantly vital role not only as intermediates in androgen and estrogen formation, but may also be the probable 'oocyte factor' and behave as endogenous agonists triggering calcium oscillations for oocyte activation. DHEA/DHEA-S have been reported to regulate calcium channels for the passage of Ca2+ through the oocyte cytoplasm and for maintaining required threshold of Ca2+ oscillations. This role of DHEA/DHEA-S assumes critical significance in assisted reproductive technology and in-vitro fertilization treatment cycles where physical, chemical, and mechanical methods are employed for artificial oocyte activation to enhance fertilization rates. However, since these methods are invasive and may also cause adverse epigenetic modifications; oral or culture-media supplementation with DHEA/DHEA-S provides a noninvasive innate mechanism of in-vitro oocyte activation based on physiological metabolic pathway.
Collapse
|
23
|
González-González A, Mediavilla MD, Sánchez-Barceló EJ. Melatonin: A Molecule for Reducing Breast Cancer Risk. Molecules 2018; 23:E336. [PMID: 29415446 PMCID: PMC6017232 DOI: 10.3390/molecules23020336] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 01/10/2023] Open
Abstract
The objective of this article is to review the basis supporting the usefulness of melatonin as an adjuvant therapy for breast cancer (BC) prevention in several groups of individuals at high risk for this disease. Melatonin, as a result of its antiestrogenic and antioxidant properties, as well as its ability to improve the efficacy and reduce the side effects of conventional antiestrogens, could safely be associated with the antiestrogenic drugs presently in use. In individuals at risk of BC due to night shift work, the light-induced inhibition of melatonin secretion, with the consequent loss of its antiestrogenic effects, would be countered by administering this neurohormone. BC risk from exposure to metalloestrogens, such as cadmium, could be treated with melatonin supplements to individuals at risk of BC due to exposure to this xenoestrogen. The BC risk related to obesity may be reduced by melatonin which decrease body fat mass, inhibits the enhanced aromatase expression in obese women, increases adiponectin secretion, counteracts the oncogenic effects of elevated concentrations of leptin; and decreases blood glucose levels and insulin resistance. Despite compelling experimental evidence of melatonin's oncostatic actions being susceptible to lowering BC risk, there is still a paucity of clinical trials focused on this subject.
Collapse
Affiliation(s)
- Alicia González-González
- Department of Physiology and Pharmacology, School of Medicina, University of Cantabria, 39011 Santander, Spain.
| | - María Dolores Mediavilla
- Department of Physiology and Pharmacology, School of Medicina, University of Cantabria, 39011 Santander, Spain.
| | - Emilio J Sánchez-Barceló
- Department of Physiology and Pharmacology, School of Medicina, University of Cantabria, 39011 Santander, Spain.
| |
Collapse
|
24
|
Ambadapadi S, Wang PL, Palii SP, James MO. Celecoxib affects estrogen sulfonation catalyzed by several human hepatic sulfotransferases, but does not stimulate 17-sulfonation in rat liver. J Steroid Biochem Mol Biol 2017; 172:46-54. [PMID: 28552400 PMCID: PMC5554727 DOI: 10.1016/j.jsbmb.2017.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/14/2017] [Accepted: 05/23/2017] [Indexed: 11/22/2022]
Abstract
Celecoxib is known to alter the preferred position of SULT2A1-catalyzed sulfonation of 17β-estradiol (17β-E2) and other estrogens from the 3- to the 17-position. Understanding the effects of celecoxib on estrogen sulfonation is of interest in the context of the investigational use of celecoxib to treat breast cancer. This study examined the effects on celecoxib on cytosolic sulfotransferases in human and rat liver and on SULT enzymes known to be expressed in liver. Celecoxib's effects on the sulfonation of several steroids catalyzed by human liver cytosol were similar but not identical to those observed previously for SULT2A1. Celecoxib was shown to inhibit recombinant SULT1A1-catalyzed sulfonation of 10nM estrone and 4μM p-nitrophenol with IC50 values of 2.6 and 2.1μM, respectively, but did not inhibit SULT1E1-catalyzed estrone sulfonation. In human liver cytosol, the combined effect of celecoxib and known SULT1A1 and 1E1 inhibitors, quercetin and triclosan, resulted in inhibition of 17β-E2-3-sulfonation such that the 17-sulfate became the major metabolite: this is of interest because the 17-sulfate is not readily hydrolyzed by steroid sulfatase to 17β-E2. Investigation of hepatic cytosolic steroid sulfonation in rat revealed that celecoxib did not stimulate 17β-E2 17-sulfonation in male or female rat liver as it does with human SULT2A1 and human liver cytosol, demonstrating that rat is not a useful model of this effect. In silico studies suggested that the presence of the bulky tryptophan residue in the substrate-binding site of the rat SULT2A homolog instead of glycine as in human SULT2A1 may explain this species difference.
Collapse
Affiliation(s)
- Sriram Ambadapadi
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610-0485, USA
| | - Peter L Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610-0485, USA
| | - Sergiu P Palii
- Biomedical Mass Spectrometry Laboratory, Clinical Research Center, University of Florida, Gainesville, FL 32610-0322, USA
| | - Margaret O James
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610-0485, USA.
| |
Collapse
|
25
|
Geyer J, Bakhaus K, Bernhardt R, Blaschka C, Dezhkam Y, Fietz D, Grosser G, Hartmann K, Hartmann MF, Neunzig J, Papadopoulos D, Sánchez-Guijo A, Scheiner-Bobis G, Schuler G, Shihan M, Wrenzycki C, Wudy SA, Bergmann M. The role of sulfated steroid hormones in reproductive processes. J Steroid Biochem Mol Biol 2017; 172:207-221. [PMID: 27392637 DOI: 10.1016/j.jsbmb.2016.07.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
Sulfated steroid hormones, such as dehydroepiandrosterone sulfate or estrone-3-sulfate, have long been regarded as inactive metabolites as they cannot activate classical steroid receptors. Some of them are present in the blood circulation at quite high concentrations, but generally sulfated steroids exhibit low membrane permeation due to their hydrophilic properties. However, sulfated steroid hormones can actively be imported into specific target cells via uptake carriers, such as the sodium-dependent organic anion transporter SOAT, and, after hydrolysis by the steroid sulfatase (so-called sulfatase pathway), contribute to the overall regulation of steroid responsive organs. To investigate the biological significance of sulfated steroid hormones for reproductive processes in humans and animals, the research group "Sulfated Steroids in Reproduction" was established by the German Research Foundation DFG (FOR1369). Projects of this group deal with transport of sulfated steroids, sulfation of free steroids, desulfation by the steroid sulfatase, effects of sulfated steroids on steroid biosynthesis and membrane receptors as well as MS-based profiling of sulfated steroids in biological samples. This review and concept paper presents key findings from all these projects and provides a broad overview over the current research on sulfated steroid hormones in the field of reproduction.
Collapse
Affiliation(s)
- Joachim Geyer
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany.
| | - Katharina Bakhaus
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Carina Blaschka
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Yaser Dezhkam
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Daniela Fietz
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - Gary Grosser
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Katja Hartmann
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - Michaela F Hartmann
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Jens Neunzig
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Dimitrios Papadopoulos
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - Alberto Sánchez-Guijo
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Georgios Scheiner-Bobis
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - Gerhard Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Mazen Shihan
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - Christine Wrenzycki
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Martin Bergmann
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
26
|
Novel Selective Estrogen Receptor Ligand Conjugates Incorporating Endoxifen-Combretastatin and Cyclofenil-Combretastatin Hybrid Scaffolds: Synthesis and Biochemical Evaluation. Molecules 2017; 22:molecules22091440. [PMID: 28858267 PMCID: PMC6151695 DOI: 10.3390/molecules22091440] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 11/17/2022] Open
Abstract
Nuclear receptors such as the estrogen receptors (ERα and ERβ) modulate the effects of the estrogen hormones and are important targets for design of innovative chemotherapeutic agents for diseases such as breast cancer and osteoporosis. Conjugate and bifunctional compounds which incorporate an ER ligand offer a useful method of delivering cytotoxic drugs to tissue sites such as breast cancers which express ERs. A series of novel conjugate molecules incorporating both the ER ligands endoxifen and cyclofenil-endoxifen hybrids covalently linked to the antimitotic and tubulin targeting agent combretastatin A-4 were synthesised and evaluated as ER ligands. A number of these compounds demonstrated pro-apoptotic effects, with potent antiproliferative activity in ER-positive MCF-7 breast cancer cell lines and low cytotoxicity. These conjugates displayed binding affinity towards ERα and ERβ isoforms at nanomolar concentrations e.g., the cyclofenil-amide compound 13e is a promising lead compound of a clinically relevant ER conjugate with IC50 in MCF-7 cells of 187 nM, and binding affinity to ERα (IC50 = 19 nM) and ERβ (IC50 = 229 nM) while the endoxifen conjugate 16b demonstrates antiproliferative activity in MCF-7 cells (IC50 = 5.7 nM) and binding affinity to ERα (IC50 = 15 nM) and ERβ (IC50 = 115 nM). The ER binding effects are rationalised in a molecular modelling study in which the disruption of the ER helix-12 in the presence of compounds 11e, 13e and 16b is presented These conjugate compounds have potential application for further development as antineoplastic agents in the treatment of ER positive breast cancers.
Collapse
|
27
|
Hu DG, Selth LA, Tarulli GA, Meech R, Wijayakumara D, Chanawong A, Russell R, Caldas C, Robinson JLL, Carroll JS, Tilley WD, Mackenzie PI, Hickey TE. Androgen and Estrogen Receptors in Breast Cancer Coregulate Human UDP-Glucuronosyltransferases 2B15 and 2B17. Cancer Res 2016; 76:5881-5893. [PMID: 27496708 DOI: 10.1158/0008-5472.can-15-3372] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 07/14/2016] [Indexed: 11/16/2022]
Abstract
Glucuronidation is an enzymatic process that terminally inactivates steroid hormones, including estrogens and androgens, thereby influencing carcinogenesis in hormone-dependent cancers. While estrogens drive breast carcinogenesis via the estrogen receptor alpha (ERα), androgens play a critical role as prohormones for estrogen biosynthesis and ligands for the androgen receptor (AR). In this study, the expression and regulation of two androgen-inactivating enzymes, the UDP-glucuronosyltransferases UGT2B15 and UGT2B17, was assessed in breast cancer. In large clinical cohorts, high UGT2B15 and UGT2B17 levels positively influenced disease-specific survival in distinct molecular subgroups. Expression of these genes was highest in cases positive for ERα. In cell line models, ERα, AR, and the transcription factor FOXA1 cooperated to increase transcription via tandem binding events at their proximal promoters. ERα activity was dependent on FOXA1, facilitated by AR activation, and potently stimulated by estradiol as well as estrogenic metabolites of 5α-dihydrotestosterone. AR activity was mediated via binding to an estrogen receptor half-site 3' to the FOXA1 and ERα-binding sites. Although AR and FOXA1 bound the UGT promoters in AR-positive/ERα-negative breast cancer cell lines, androgen treatment did not influence basal transcription levels. Ex vivo culture of human breast tissue and ERα+ tumors provided evidence for upregulation of UGT2B15 and UGT2B17 by estrogen or androgen treatment. ERα binding was evident at the promoters of these genes in a small cohort of primary tumors and distant metastases. Collectively, these data provide insight into sex steroid receptor-mediated regulation of androgen-inactivating enzymes in ERα+ breast cancer, which may have subtype-specific consequences for disease progression and outcomes. Cancer Res; 76(19); 5881-93. ©2016 AACR.
Collapse
Affiliation(s)
- Dong G Hu
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia. Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Gerard A Tarulli
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Dhilushi Wijayakumara
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Apichaya Chanawong
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Roslin Russell
- Breast Cancer Genomics Group, Cancer Research UK, Cambridge Institute, Cambridge University, Cambridge, United Kingdom
| | - Carlos Caldas
- Breast Cancer Genomics Group, Cancer Research UK, Cambridge Institute, Cambridge University, Cambridge, United Kingdom
| | - Jessica L L Robinson
- Nuclear Transcription Factor Laboratory, Cancer Research UK, Cambridge Institute, Cambridge University, Cambridge, United Kingdom
| | - Jason S Carroll
- Nuclear Transcription Factor Laboratory, Cancer Research UK, Cambridge Institute, Cambridge University, Cambridge, United Kingdom
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia. Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
28
|
Verheul HAM, Blok LJ, Burger CW, Hanifi-Moghaddam P, Kloosterboer HJ. Levels of Tibolone and Estradiol and their Nonsulfated and Sulfated Metabolites in Serum, Myometrium, and Vagina of Postmenopausal Women Following Treatment for 21 Days With Tibolone, Estradiol, or Estradiol Plus Medroxyprogestrone Acetate. Reprod Sci 2016; 14:160-8. [PMID: 17636227 DOI: 10.1177/1933719106298684] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tibolone has estrogenic effects on the vagina but not on the uterus. To explain this, levels of tibolone and estradiol and their metabolites were determined in serum, myometrium, and vagina. Thirty-four postmenopausal women with uterine prolapse received either no treatment, tibolone, E(2) or E(2) + medroxyprogesterone acetate (MPA) for 21 days, or a single dose of tibolone. Twenty +/- 6 hours after administration, >98% of the 3-hydroxytibolone metabolites in serum and tissues were disulfated. Of the unconjugated metabolites, the estrogenic 3alpha-hydroxytibolone predominated in serum, whereas the progestagenic/ androgenic Delta(4)-tibolone predominated in myometrium and vagina. Levels of disulfated metabolites in serum and tissues were higher (3- to 5-fold) after multiple dosing than after a single dose. Tissue:serum ratios were <1, except for Delta(4)-tibolone. In all groups, E(2) tissue levels were higher than serum levels; the percentage of serum E(1)S was >90%. Tibolone did not affect endogenous E(1), E(2), or E(1)S levels in serum, but in myometrium and vagina, E(1) levels were significantly higher and E(1)S levels tended to be lower than in controls. Serum and tissue levels of endogenous and exogenous E(1), E(2), and E(1)S were markedly increased 20 hours after E(2) or E(2) + MPA; the percentage of E(1)S and tissue:serum ratios were not affected. MPA had no effect on the degree of sulfation of E(1). Compared with serum, tissue levels of E(2) were high in all groups; absolute E(2) levels in control and tibolone groups were much lower than in the E(2) groups. Tibolone metabolite patterns are different in serum, myometrium, and vagina.
Collapse
|
29
|
Synthesis, antiproliferative and pro-apoptotic activity of 2-phenylindoles. Bioorg Med Chem 2016; 24:4075-4099. [DOI: 10.1016/j.bmc.2016.06.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/24/2016] [Accepted: 06/25/2016] [Indexed: 01/26/2023]
|
30
|
Keely NO, Carr M, Yassin B, Ana G, Lloyd DG, Zisterer D, Meegan MJ. Design, Synthesis and Biochemical Evaluation of Novel Selective Estrogen Receptor Ligand Conjugates Incorporating an Endoxifen-Combretastatin Hybrid Scaffold. Biomedicines 2016; 4:biomedicines4030015. [PMID: 28536383 PMCID: PMC5344255 DOI: 10.3390/biomedicines4030015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/21/2016] [Accepted: 07/07/2016] [Indexed: 02/01/2023] Open
Abstract
Nuclear-receptors are often overexpressed in tumours and can thereby be used as targets when designing novel selective chemotherapeutic agents. To date, many conjugates incorporating an estrogen receptor (ER) ligand have been synthesised in order to direct chemical agents to tissue sites containing ERs. A series of ER ligand conjugates were synthesised incorporating an antagonistic ER ligand scaffold based on endoxifen, covalently-bound via an amide linkage to a variety of combretastatin-based analogues, which may act as antimitotic agents. These novel endoxifen-combretastatin hybrid scaffold analogues were biochemically evaluated in order to determine their antiproliferative and cytotoxicity effects in both the ER-positive MCF-7 and the ER-negative MDA-MB-231 human breast cancer cell lines. ER competitive binding assays were carried out to assess the binding affinity of the lead conjugate 28 towards both the ERα and ERβ isoforms. In results from the NCI 60-cell line screen, the lead conjugate 28 displayed potent and highly selective antiproliferative activity towards the MCF-7 human cancer cell line (IC50 = 5 nM). In the ER-binding assays, the lead conjugate 28 demonstrated potent ER competitive binding in ERα (IC50 value: 0.9 nM) and ERβ (IC50 value: 4.7 nM). Preliminary biochemical results also demonstrate that the lead conjugate 28 may exhibit pure antagonism. This series makes an important addition to the class of ER antagonists and may have potential applications in anticancer therapy.
Collapse
Affiliation(s)
- Niall O Keely
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Miriam Carr
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Bassem Yassin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Gloria Ana
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Dublin 2, Ireland.
| | - David G Lloyd
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Dublin 2, Ireland.
- Division of Health Sciences, University of South Australia, Adelaide SA 5000, Australia.
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Dublin 2, Ireland.
| | - Mary J Meegan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
31
|
Current knowledge of the multifunctional 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1). Gene 2016; 588:54-61. [PMID: 27102893 DOI: 10.1016/j.gene.2016.04.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 02/10/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023]
Abstract
At the late 1940s, 17β-HSD1 was discovered as the first member of the 17β-HSD family with its gene cloned. The three-dimensional structure of human 17β-HSD1 is the first example of any human steroid converting enzyme. The human enzyme's structure and biological function have thus been studied extensively in the last two decades. In humans, the enzyme is expressed in placenta, ovary, endometrium and breast. The high activity of estrogen activation provides the basis of 17β-HSD1's implication in estrogen-dependent diseases, such as breast cancer, endometriosis and non-small cell lung carcinomas. Its dual function in estrogen activation and androgen inactivation has been revealed in molecular and breast cancer cell levels, significantly stimulating the proliferation of such cells. The enzyme's overexpression in breast cancer was demonstrated by clinical samples. Inhibition of human 17β-HSD1 led to xenograft tumor shrinkage. Unfortunately, through decades of studies, there is still no drug using the enzyme's inhibitors available. This is due to the difficulty to get rid of the estrogenic activity of its inhibitors, which are mostly estrogen analogues. New non-steroid inhibitors for the enzyme provide new hope for non-estrogenic inhibitors of the enzyme.
Collapse
|
32
|
Chimote NM, Nath NM, Chimote NN, Chimote BN. Follicular fluid dehydroepiandrosterone sulfate is a credible marker of oocyte maturity and pregnancy outcome in conventional in vitro fertilization cycles. J Hum Reprod Sci 2016; 8:209-13. [PMID: 26751787 PMCID: PMC4691972 DOI: 10.4103/0974-1208.170397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
AIM: To investigate if the level of dehydroepiandrosterone sulfate (DHEA-s) in follicular fluid (FF) influences the competence of oocytes to fertilize, develop to the blastocyst stage, and produce a viable pregnancy in conventional in vitro fertilization (IVF) cycles. SETTINGS AND DESIGN: Prospective study of age-matched, nonpolycystic ovary syndrome (PCOS) women undergoing antagonist stimulation protocol involving conventional insemination and day 5 blastocyst transfer. MATERIALS AND METHODS: FF levels of DHEA-s and E2 were measured by a radio-immuno-assay method using diagnostic kits. Fertilization rate, embryo development to the blastocyst stage and live birth rate were main outcome measures. Cycles were divided into pregnant/nonpregnant groups and also into low/medium/high FF DHEA-s groups. Statistical analysis was done by GraphPad Prism V software. RESULTS: FF DHEA-s levels were significantly higher in pregnant (n = 111) compared to nonpregnant (n = 381) group (1599 ± 77.45 vs. 1372 ± 40.47 ng/ml; P = 0.01). High (n = 134) FF DHEA-s group had significantly higher percentage of metaphase II (MII) oocytes (91.5 vs. 85.54 vs. 79.44%, P < 0.0001), fertilization rate (78.86 vs. 74.16 vs. 71.26%, P < 0.0001), cleavage rate (83.67 vs. 69.1 vs. 66.17%, P = 0.0002), blastocyst formation rate (37.15 vs. 33.01 vs. 26.95%, P < 0.0001), and live birth rate (29.85 vs. 22.22 vs. 14.78%, P = 0.017) compared to medium (n = 243) and low (n = 115) FF DHEA-s groups, respectively despite comparable number of oocytes retrieved and number of blastocysts transferred. FF DHEA-s levels correlated significantly with the attainment of MII oocytes (Pearson r = 0.41) and fertilization rates (Pearson r = 0.35). CONCLUSION: FF DHEA-s level influences the oocyte maturation process and is predictive of fertilization, embryo development to the blastocyst stage and live birth rates in non-PCOS women undergoing conventional IVF cycles.
Collapse
Affiliation(s)
- Natachandra M Chimote
- Department of Endocrinology, Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India; Department of Embryology, Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India
| | - Nirmalendu M Nath
- Department of Biochemistry, Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India
| | - Nishad N Chimote
- Department of Embryology, Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India
| | - Bindu N Chimote
- Department of Embryology, Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India; Department of Biochemistry, Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India; Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India
| |
Collapse
|
33
|
Vihma V, Wang F, Savolainen-Peltonen H, Turpeinen U, Hämäläinen E, Leidenius M, Mikkola TS, Tikkanen MJ. Quantitative determination of estrone by liquid chromatography-tandem mass spectrometry in subcutaneous adipose tissue from the breast in postmenopausal women. J Steroid Biochem Mol Biol 2016; 155:120-5. [PMID: 26472555 DOI: 10.1016/j.jsbmb.2015.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 02/08/2023]
Abstract
Estrone is the most abundant estrogen after the menopause. We developed a liquid chromatography-tandem mass spectrometric method (LC-MS/MS) for determination of estrone in adipose tissue. Subcutaneous adipose tissue from the breast was collected during elective surgery in postmenopausal women undergoing mastectomy for treatment of breast cancer (n=13) or reduction mammoplasty (controls, n=11). Homogenized adipose tissue was extracted with organic solvents and the estrone fraction was purified by LH-20 column chromatography from the excess of lipids. The concentration of estrone was analyzed by LC-MS/MS. The method was accurate with an intra-assay variation of 8% and an interassay variation of 10%. The median concentration of estrone in subcutaneous adipose tissue from the breast did not differ between breast cancer and control women, 920 pmol/kg and 890 pmol/kg, respectively. In breast cancer patients but not in the controls, breast adipose tissue estrone levels correlated positively with the serum estrone concentration. In conclusion, the new method provides a reliable means to measure estrone concentrations in adipose tissue in postmenopausal women.
Collapse
Affiliation(s)
- Veera Vihma
- Folkhälsan Research Center, 00290 Helsinki, Finland; University of Helsinki and Helsinki University Central Hospital, Heart and Lung Center, 00290 Helsinki, Finland.
| | - Feng Wang
- Folkhälsan Research Center, 00290 Helsinki, Finland; University of Helsinki and Helsinki University Central Hospital, Heart and Lung Center, 00290 Helsinki, Finland
| | - Hanna Savolainen-Peltonen
- Folkhälsan Research Center, 00290 Helsinki, Finland; University of Helsinki and Helsinki University Central Hospital, Obstetrics and Gynecology, 00290 Helsinki, Finland
| | - Ursula Turpeinen
- Helsinki University Central Hospital, HUSLAB, 00290 Helsinki, Finland
| | - Esa Hämäläinen
- Helsinki University Central Hospital, HUSLAB, 00290 Helsinki, Finland
| | - Marjut Leidenius
- Helsinki University Central Hospital, Breast Surgery Unit, 00290 Helsinki, Finland
| | - Tomi S Mikkola
- Folkhälsan Research Center, 00290 Helsinki, Finland; University of Helsinki and Helsinki University Central Hospital, Obstetrics and Gynecology, 00290 Helsinki, Finland
| | - Matti J Tikkanen
- Folkhälsan Research Center, 00290 Helsinki, Finland; University of Helsinki and Helsinki University Central Hospital, Heart and Lung Center, 00290 Helsinki, Finland
| |
Collapse
|
34
|
GONZÁLEZ ALICIA, MARTÍNEZ-CAMPA CARLOS, ALONSO-GONZÁLEZ CAROLINA, COS SAMUEL. Melatonin affects the dynamic steady-state equilibrium of estrogen sulfates in human umbilical vein endothelial cells by regulating the balance between estrogen sulfatase and sulfotransferase. Int J Mol Med 2015; 36:1671-6. [DOI: 10.3892/ijmm.2015.2360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/25/2015] [Indexed: 11/05/2022] Open
|
35
|
Ji XW, Chen GP, Song Y, Hua M, Wang LJ, Li L, Yuan Y, Wang SY, Zhou TY, Lu W. Intratumoral estrogen sulfotransferase induction contributes to the anti-breast cancer effects of the dithiocarbamate derivative TM208. Acta Pharmacol Sin 2015; 36:1246-55. [PMID: 25937633 PMCID: PMC4814201 DOI: 10.1038/aps.2015.14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/02/2015] [Indexed: 12/21/2022]
Abstract
AIM Sulfotransferase-catalyzed sulfation is the most important pathway for inactivating estrogens. Thus, activation of estrogen sulfotransferase (EST) may be an alternative approach for the treatment of estrogen-dependent breast cancer. In this study we investigated the involvement of EST in anti-breast cancer effects of the dithiocarbamate derivative TM208 in vitro and in vivo. METHODS The viability of human breast cancer MCF-7 cells was determined using a SBB assay. Nude mice bearing MCF-7 cells were orally administered TM208 (50 and 150 mg·kg(-1)·d(-1)) for 18 days. The xenograft tumors and uteri were collected. The mRNA expression of EST was examined with real-time PCR. EST protein was detected with Western blot, ELISA or immunohistochemical staining assays. A radioactive assay was used to measure the EST activity. Uterotropic bioassay was used to examine the uterine estrogen responses. RESULTS Treatment with TM208 (10, 15 and 20 μmol/L) concentration-dependently increased EST expression in MCF-7 cells in vitro. Co-treatment with triclosan, an inhibitor of sulfonation, abolished TM208-induced cytotoxicity in MCF-7 cells. TM208 exhibited an apparent anti-estrogenic property: it exerted more potent cytotoxicity in E2-treated MCF-7 cells. In the nude mice bearing MCF-7 cells, TM208 administration time-dependently increased the expression and activity of EST, and blocked the gradual increase of E2 concentration in the xenograft tumors. Furthermore, TM208 administration blocked the estrogens-stimulated uterine enlargement. Tamoxifen, a positive control drug, produced similar effects on the expression and activity of EST in vitro and in vivo. CONCLUSION The induction of EST and reduction of estrogen concentration contribute to the anti-breast cancer action of TM208 and tamoxifen. TM208 may be developed as anticancer drug for the treatment of estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Xi-wei Ji
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China
| | - Guang-ping Chen
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yan Song
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ming Hua
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Li-jie Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liang Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yin Yuan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Si-yuan Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tian-yan Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Wei Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
36
|
Shen C, Qian Z, Chen R, Meng X, Hu T, Chen Z, Li Y, Huang C, Hu C, Li J. Single Dose Oral and Intravenous Pharmacokinetics and Tissue Distribution of a Novel Hesperetin Derivative MTBH in Rats. Eur J Drug Metab Pharmacokinet 2015; 41:675-688. [DOI: 10.1007/s13318-015-0293-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Ambadapadi S, Wang PL, Palii SP, James MO. Celecoxib influences steroid sulfonation catalyzed by human recombinant sulfotransferase 2A1. J Steroid Biochem Mol Biol 2015; 152:101-13. [PMID: 25960318 PMCID: PMC4501872 DOI: 10.1016/j.jsbmb.2015.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
Celecoxib has been reported to switch the human SULT2A1-catalyzed sulfonation of 17β-estradiol (17β-E2) from the 3- to the 17-position. The effects of celecoxib on the sulfonation of selected steroids catalyzed by human SULT2A1 were assessed through in vitro and in silico studies. Celecoxib inhibited SULT2A1-catalyzed sulfonation of dehydroepiandrosterone (DHEA), androst-5-ene-3β, 17β-diol (AD), testosterone (T) and epitestosterone (Epi-T) in a concentration-dependent manner. Low μM concentrations of celecoxib strikingly enhanced the formation of the 17-sulfates of 6-dehydroestradiol (6D-E2), 17β-dihydroequilenin (17β-Eqn), 17β-dihydroequilin (17β-Eq), and 9-dehydroestradiol (9D-E2) as well as the overall rate of sulfonation. For 6D-E2, 9D-E2 and 17β-Eqn, celecoxib inhibited 3-sulfonation, however 3-sulfonation of 17β-Eq was stimulated at celecoxib concentrations below 40 μM. Ligand docking studies in silico suggest that celecoxib binds in the substrate-binding site of SULT2A1 in a manner that prohibits the usual binding of substrates but facilitates, for appropriately shaped substrates, a binding mode that favors 17-sulfonation.
Collapse
Affiliation(s)
- Sriram Ambadapadi
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610-0485, USA
| | - Peter L Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610-0485, USA
| | - Sergiu P Palii
- Biomedical Mass Spectrometry Laboratory, Clinical Research Center, University of Florida, Gainesville, FL 32610-0322, USA
| | - Margaret O James
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610-0485, USA.
| |
Collapse
|
38
|
Depypere H, Bolca S, Bracke M, Delanghe J, Comhaire F, Blondeel P. The serum estradiol concentration is the main determinant of the estradiol concentration in normal breast tissue. Maturitas 2015; 81:42-5. [DOI: 10.1016/j.maturitas.2015.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
|
39
|
Delgado L, Fernandes I, González-Manzano S, de Freitas V, Mateus N, Santos-Buelga C. Anti-proliferative effects of quercetin and catechin metabolites. Food Funct 2014; 5:797-803. [PMID: 24573487 DOI: 10.1039/c3fo60441a] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dietary flavonoids have been associated with a lower incidence of some chronic diseases. However, the mechanisms behind the in vivo biological activity of flavonoids are still mostly unknown. Flavonoids are metabolized in the human body to conjugated forms (methylated, sulphated and glucuronidated derivatives) that should play a role in flavonoid activity. In this study, the anti-proliferative effects of conjugated metabolites of quercetin and (epi)catechin, major flavonoids in the diet, have been evaluated against three different cancer cell lines from breast (MCF-7), colon (Caco-2) and pancreas (BxPC-3) and one normal cell line of human foreskin fibroblasts (HFF-1), and compared with the effect of their unconjugated forms. Quercetin showed anti-proliferative activity on the three assayed cell models, whereas catechin and epicatechin were not active. Methylation on ring-B of quercetin decreased the anti-proliferative effects, especially when the methylation occurred in position 3' (isorhamnetin), although methylated metabolites still showed significant anti-proliferative activity. As to catechins, 4'-O-methyl-epicatechin and 3'-O-methyl-epicatechin were the only ones to show some activity on MCF-7 and BxPC-3 cell lines, respectively. Conjugation of quercetin with glucose or glucuronic acid eliminated the anti-proliferative effects of aglycones. Sulphated metabolites were also tested and found to be inactive in most of the explored cell lines, although quercetin-4'-O-sulphate and epicatechin-3'-O-sulphate still showed some anti-proliferative activity on MCF-7 and Caco-2 cells, respectively.
Collapse
Affiliation(s)
- Laura Delgado
- Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Universidad de Salamanca, Facultad de Farmacia, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
40
|
n-3 polyunsaturated fatty acids and mechanisms to mitigate inflammatory paracrine signaling in obesity-associated breast cancer. Nutrients 2014; 6:4760-93. [PMID: 25360510 PMCID: PMC4245562 DOI: 10.3390/nu6114760] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023] Open
Abstract
Globally, the prevalence of obesity is increasing which subsequently increases the risk of the development of obesity-related chronic diseases. Low-grade chronic inflammation and dysregulated adipose tissue inflammatory mediator/adipokine secretion are well-established in obesity, and these factors increase the risk of developing inflammation-associated cancer. Breast cancer is of particular interest given that increased inflammation within the subcutaneous mammary adipose tissue depot can alter the local tissue inflammatory microenvironment such that it resembles that of obese visceral adipose tissue. Therefore, in obese women with breast cancer, increased inflammatory mediators both locally and systemically can perpetuate inflammation-associated pro-carcinogenic signaling pathways, thereby increasing disease severity. Herein, we discuss some of these inflammation-associated pro-carcinogenic mechanisms of the combined obese breast cancer phenotype and offer evidence that dietary long chain n-3 polyunsaturated fatty acids (PUFA) may have utility in mitigating the severity of obesity-associated inflammation and breast cancer.
Collapse
|
41
|
Grosser G, Döring B, Ugele B, Geyer J, Kulling SE, Soukup ST. Transport of the soy isoflavone daidzein and its conjugative metabolites by the carriers SOAT, NTCP, OAT4, and OATP2B1. Arch Toxicol 2014; 89:2253-63. [DOI: 10.1007/s00204-014-1379-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/19/2014] [Indexed: 12/25/2022]
|
42
|
Bilal I, Chowdhury A, Davidson J, Whitehead S. Phytoestrogens and prevention of breast cancer: The contentious debate. World J Clin Oncol 2014; 5:705-712. [PMID: 25302172 PMCID: PMC4129534 DOI: 10.5306/wjco.v5.i4.705] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/26/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Phytoestrogens have multiple actions within target cells, including the epigenome, which could be beneficial to the development and progression of breast cancer. In this brief review the action of phytoestrogens on oestrogen receptors, cell signalling pathways, regulation of the cell cycle, apoptosis, steroid synthesis and epigenetic events in relation to breast cancer are discussed. Phytoestrogens can bind weakly to oestrogen receptors (ERs) and some have a preferential affinity for ERβ which can inhibit the transcriptional growth-promoting activity of ERα. However only saturating doses of phytoestrogens, stimulating both ERα and β, exert growth inhibitory effects. Such effects on growth may be through phytoestrogens inhibiting cell signalling pathways. Phytoestrogens have also been shown to inhibit cyclin D1 expression but increase the expression of cyclin-dependent kinase inhibitors (p21 and p27) and the tumour suppressor gene p53. Again these effects are only observed at high (> 10) µmol/L doses of phytoestrogens. Finally the effects of phytoestrogens on breast cancer may be mediated by their ability to inhibit local oestrogen synthesis and induce epigenetic changes. There are, though, difficulties in reconciling epidemiological and experimental data due to the fact experimental doses, both in vivo and in vitro, far exceed the circulating concentrations of “free” unbound phytoestrogens measured in women on a high phytoestrogen diet or those taking phytoestrogen supplements.
Collapse
|
43
|
Neunzig J, Sánchez-Guijo A, Mosa A, Hartmann MF, Geyer J, Wudy SA, Bernhardt R. A steroidogenic pathway for sulfonated steroids: the metabolism of pregnenolone sulfate. J Steroid Biochem Mol Biol 2014; 144 Pt B:324-33. [PMID: 25038322 DOI: 10.1016/j.jsbmb.2014.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
In many tissues sulfonated steroids exceed the concentration of free steroids and recently they were also shown to fulfill important physiological functions. While it was previously demonstrated that cholesterol sulfate (CS) is converted by CYP11A1 to pregnenolone sulfate (PregS), further conversion of PregS has not been studied in detail. To investigate whether a steroidogenic pathway for sulfonated steroids exists similar to the one described for free steroids, we examined the interaction of PregS with CYP17A1 in a reconstituted in-vitro system. Difference spectroscopy revealed a Kd-value of 74.8±4.2μM for the CYP17A1-PregS complex, which is 2.5-fold higher compared to the CYP17A1-pregnenolone (Preg) complex. Mass spectrometry experiments proved for the first time that PregS is hydroxylated by CYP17A1 at position C17, identically to pregnenolone. A higher Km- and a lower kcat-value for CYP17A1 using PregS compared with Preg were observed, indicating a 40% reduced catalytic efficiency when using the sulfonated steroid. Furthermore, we analyzed whether the presence of cytochrome b5 (b5) has an influence on the CYP17A1 dependent conversion of PregS, as was demonstrated for Preg. Interestingly, with 17OH-PregS no scission of the 17,20-carbon-carbon bond occurs, when b5 is added to the reconstituted in-vitro system, while b5 promotes the formation of DHEA from 17OH-Preg. When using human SOAT-HEK293 cells expressing CYP17A1 and CPR, we could confirm that PregS is metabolized to 17OH-PregS, strengthening the potential physiological meaning of a pathway for sulfonated steroids.
Collapse
Affiliation(s)
- J Neunzig
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, 66123 Saarbrücken, Germany
| | - A Sánchez-Guijo
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, 35392 Giessen, Germany
| | - A Mosa
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, 66123 Saarbrücken, Germany
| | - M F Hartmann
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, 35392 Giessen, Germany
| | - J Geyer
- Institute of Pharmacology and Toxicology, Justus-Liebig University of Giessen, 35392 Giessen, Germany
| | - S A Wudy
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, 35392 Giessen, Germany
| | - R Bernhardt
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
44
|
James MO, Ambadapadi S. Interactions of cytosolic sulfotransferases with xenobiotics. Drug Metab Rev 2014; 45:401-14. [PMID: 24188364 DOI: 10.3109/03602532.2013.835613] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cytosolic sulfotransferases are a superfamily of enzymes that catalyze the transfer of the sulfonic group from 3'-phosphoadenosine-5'-phosphosulfate to hydroxy or amine groups in substrate molecules. The human cytosolic sulfotransferases that have been most studied, namely SULT1A1, SULT1A3, SULT1B1, SULT1E1 and SULT2A1, are expressed in different tissues of the body, including liver, intestine, adrenal, brain and skin. These sulfotransferases play important roles in the sulfonation of endogenous molecules such as steroid hormones and neurotransmitters, and in the elimination of xenobiotic molecules such as drugs, environmental chemicals and natural products. There is often overlapping substrate selectivity among the sulfotransferases, although one isoform may exhibit greater enzyme efficiency than other isoforms. Similarly, inhibitors or enhancers of one isoform often affect other isoforms, but typically with different potency. This means that if the activity of one form of sulfotransferase is altered (either inhibited or enhanced) by the presence of a xenobiotic, the sulfonation of endogenous and xenobiotic substrates for other isoforms may well be affected. There are more examples of inhibitors than enhancers of sulfonation. Modulators of sulfotransferase enzymes include natural products ingested as part of the human diet as well as environmental chemicals and drugs. This review will discuss recent work on such interactions.
Collapse
Affiliation(s)
- Margaret O James
- Department of Medicinal Chemistry, University of Florida, Gainesville , FL , USA
| | | |
Collapse
|
45
|
Cos S, Alvarez-García V, González A, Alonso-González C, Martínez-Campa C. Melatonin modulation of crosstalk among malignant epithelial, endothelial and adipose cells in breast cancer (Review). Oncol Lett 2014; 8:487-492. [PMID: 25009641 PMCID: PMC4081418 DOI: 10.3892/ol.2014.2203] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 05/13/2014] [Indexed: 11/29/2022] Open
Abstract
Melatonin, the main secretory product of the pineal gland, is an oncostatic agent that reduces the growth and development of various types of tumors, particularly mammary tumors whose growth is dependent on estrogens. Previous in vivo and in vitro studies point to the hypothesis that melatonin interplays with estrogen signaling pathways at three different levels: i) an indirect mechanism, by interfering with the hypothalamic-pituitary-reproductive axis in such way that the level of plasma estrogens synthesized by the gonadal glands are downregulated; ii) a direct mechanism of the pineal gland at the cell cancer level, disrupting the activation of estradiol receptors, therefore behaving as a selective estrogen receptor modulator; and iii) by regulating the enzymes involved in the biosynthesis of estrogens in other tissues, thus behaving as a selective estrogen enzyme modulator. The intratumoral metabolism and synthesis of estrogens, as a result of the interactions of various enzymes, is more important than blood uptake to maintain mammary gland estrogen levels in menopausal females. Additionally, estrogens are considered to play an important role in the pathogenesis and development of hormone-dependent breast carcinoma. Paracrine interactions among malignant epithelial cells and proximal adipose and endothelial cells, through cytokines and growth factors produced by breast tumor cells, modulate estrogen production at the mammary tumor level and, as a consequence, the genesis and development of mammary tumors. The aim of the present review is to summarize the recent findings describing the mechanisms by which melatonin is able to modulate the crosstalk among malignant epithelial, endothelial and adipose cells in breast cancer.
Collapse
Affiliation(s)
- Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute, Santander 39011, Spain
| | - Virginia Alvarez-García
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute, Santander 39011, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute, Santander 39011, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute, Santander 39011, Spain
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute, Santander 39011, Spain
| |
Collapse
|
46
|
Banerjee N, Miller N, Allen C, Bendayan R. Expression of membrane transporters and metabolic enzymes involved in estrone-3-sulphate disposition in human breast tumour tissues. Breast Cancer Res Treat 2014; 145:647-61. [PMID: 24831777 DOI: 10.1007/s10549-014-2990-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/30/2014] [Indexed: 12/18/2022]
Abstract
Two-thirds of newly diagnosed hormone-dependent (HR?) breast cancers are detected in post-menopausal patients where estrone-3-sulphate (E3S) is the predominant source for tumour estradiol. Understanding intra-tumoral fate of E3S would facilitate in the identification of novel molecular targets for HR? post-menopausal breast cancer patients. Hence this study investigates the clinical expression of (i) organic anion-transporting polypeptides (OATPs), (ii) multidrug resistance protein (MRP-1), breast cancer resistance proteins (BCRP), and (iii) sulphatase (STS), 17β-hydroxysteroid dehydrogenase (17β-HSD-1), involved in E3S uptake, efflux and metabolism, respectively. Fluorescent and brightfield images of stained tumour sections (n = 40) were acquired at 4× and 20× magnification, respectively. Marker densities were measured as the total area of positive signal divided by the surface area of the tumour section analysed and was reported as % area (ImageJ software). Tumour, stroma and non-tumour tissue areas were also quantified (Inform software), and the ratio of optical intensity per histologic area was reported as % area/tumour, % area/stroma and % area/non-tumour. Functional role of OATPs and STS was further investigated in HR? (MCF-7, T47-D, ZR-75) and HR-(MDA-MB-231) cells by transport studies conducted in the presence or absence of specific inhibitors. Amongst all the transporters and enzymes, OATPs and STS have significantly (p < 0.0001) higher expression in HR? tumour sections with highest target signals obtained from the tumour regions of the tissues. Specific OATP-mediated E3S uptake and STS-mediated metabolism were also observed in all HR? breast cancer cells. These observations suggest the potential of OATPs as novel molecular targets for HR? breast cancers.
Collapse
Affiliation(s)
- Nilasha Banerjee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | | | | | | |
Collapse
|
47
|
Neunzig J, Bernhardt R. Dehydroepiandrosterone sulfate (DHEAS) stimulates the first step in the biosynthesis of steroid hormones. PLoS One 2014; 9:e89727. [PMID: 24586990 PMCID: PMC3931814 DOI: 10.1371/journal.pone.0089727] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022] Open
Abstract
Dehydroepiandrosterone sulfate (DHEAS) is the most abundant circulating steroid in human, with the highest concentrations between age 20 and 30, but displaying a significant decrease with age. Many beneficial functions are ascribed to DHEAS. Nevertheless, long-term studies are very scarce concerning the intake of DHEAS over several years, and molecular investigations on DHEAS action are missing so far. In this study, the role of DHEAS on the first and rate-limiting step of steroid hormone biosynthesis was analyzed in a reconstituted in vitro system, consisting of purified CYP11A1, adrenodoxin and adrenodoxin reductase. DHEAS enhances the conversion of cholesterol by 26%. Detailed analyses of the mechanism of DHEAS action revealed increased binding affinity of cholesterol to CYP11A1 and enforced interaction with the electron transfer partner, adrenodoxin. Difference spectroscopy showed Kd-values of 40±2.7 µM and 24.8±0.5 µM for CYP11A1 and cholesterol without and with addition of DHEAS, respectively. To determine the Kd-value for CYP11A1 and adrenodoxin, surface plasmon resonance measurements were performed, demonstrating a Kd-value of 3.0±0.35 nM (with cholesterol) and of 2.4±0.05 nM when cholesterol and DHEAS were added. Kinetic experiments showed a lower Km and a higher kcat value for CYP11A1 in the presence of DHEAS leading to an increase of the catalytic efficiency by 75%. These findings indicate that DHEAS affects steroid hormone biosynthesis on a molecular level resulting in an increased formation of pregnenolone.
Collapse
Affiliation(s)
- Jens Neunzig
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, Saarbrücken, Germany
| | - Rita Bernhardt
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
48
|
Monroe KR, Stanczyk FZ, Besinque KH, Pike MC. The effect of grapefruit intake on endogenous serum estrogen levels in postmenopausal women. Nutr Cancer 2014; 65:644-52. [PMID: 23859031 DOI: 10.1080/01635581.2013.795982] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although grapefruit intake leads to elevated serum estrogen levels when hormones are taken orally, there are no published data on the effect on endogenous levels. We conducted a pilot dietary intervention study among healthy postmenopausal volunteers to test whole grapefruit, 2 juices, and 1 grapefruit soda. Fifty-nine participants were recruited through the Love/Avon Army of Women. The study consisted of a 3-wk run-in, 2 wk of grapefruit intake, and a 1-wk wash-out. Eight fasting blood samples were collected. An additional 5 samples drawn at 1, 2, 4, 8, and 10 hr after grapefruit intake were collected during an acute-phase study for 10 women. Serum assays for estrone (E1), estradiol (E2), estrone-3-sulfate (E1S), dehydroepiandrosterone sulfate, and sex hormone-binding globulin were conducted. Whole grapefruit intake had significant effects on endogenous E1S. Peak effects were seen at 8 hr, increasing by 26% from baseline. No changes in mean E1 or E2 with whole fruit intake were observed. In contrast, fresh juice, bottled juice, and soda intake all had significant lowering effects on E2. The findings suggest an important interaction between grapefruit intake and endogenous estrogen levels. Because endogenous estrogen levels are associated with breast cancer risk, further research is warranted.
Collapse
Affiliation(s)
- Kristine R Monroe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California 90033, USA.
| | | | | | | |
Collapse
|
49
|
Galuska CE, Hartmann MF, Sánchez-Guijo A, Bakhaus K, Geyer J, Schuler G, Zimmer KP, Wudy SA. Profiling intact steroid sulfates and unconjugated steroids in biological fluids by liquid chromatography-tandem mass spectrometry (LC-MS-MS). Analyst 2013; 138:3792-801. [PMID: 23671909 DOI: 10.1039/c3an36817c] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Within the combined DFG research project "Sulfated Steroids in Reproduction" an analytical method was needed for determining sulfated and unconjugated steroids with highest specificity out of different biological matrices such as aqueous solution, cell lysate and serum. With regard to this analytical challenge, LC-MS-MS presents the technique of choice because it permits (1) analysis of the intact steroid conjugate, (2) allows for simultaneous determination of multiple analytes (profiling, targeted metabolomics approach) and (3) is independent of phenomena such as cross-reactivity. Sample work up consisted of incubation of sample with internal standards (deuterium labeled steroids) followed by solid phase extraction. Only serum samples required a protein precipitation step prior to solid phase extraction. The extract was divided in two parts: six steroid sulfates (E1S, E2S, AS, 16-OH-DHEAS, PREGS, DHEAS) were analyzed by C18aQ-ESI-MS-MS in negative ion mode and eleven unconjugated steroids (E3, 16-OH-DHEA, E1, E2, (4)A, DHEA, T, 17-OH-PREG, Prog, An, PREG) were analyzed by C18-APCI-MS-MS in positive ion mode. For steroid sulfates, we found high sensitivities with LoQ values ranging from 0.08 to 1 ng mL(-1). Unconjugated steroids showed LoQ values between 0.5 and 10 ng mL(-1). Calibration plots showed excellent linearity. Mean intra- and inter-assay CVs were 2.4% for steroid sulfates and 6.4% for unconjugated steroids. Accuracy - determined in a two-level spike experiment - showed mean relative errors of 5.9% for steroid sulfates and 6.1% for unconjugated steroids. In summary, we describe a novel LC-MS-MS procedure capable of profiling six steroid sulfates and eleven unconjugated steroids from various biological matrices.
Collapse
Affiliation(s)
- Christina E Galuska
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetlogy, Center of Child and Adolescent Medicine, Justus-Liebig-University, Feulgenstrasse 12, 35392 Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Grosser G, Fietz D, Günther S, Bakhaus K, Schweigmann H, Ugele B, Brehm R, Petzinger E, Bergmann M, Geyer J. Cloning and functional characterization of the mouse sodium-dependent organic anion transporter Soat (Slc10a6). J Steroid Biochem Mol Biol 2013; 138:90-9. [PMID: 23562556 DOI: 10.1016/j.jsbmb.2013.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 11/24/2022]
Abstract
The sodium-dependent organic anion transporter SOAT is a member of the Solute Carrier Family SLC10. In man, this carrier is predominantly expressed in the testis and has transport activity for sulfoconjugated steroid hormones. Here, we report on cloning, expression analysis and functional characterization of the mouse Soat (mSoat) and compare its characteristics with the human SOAT carrier. Quantitative mRNA expression analysis for mSoat in male mice revealed very high expression in lung and further high expression in testis and skin. Immunohistochemical studies showed expression of the mSoat protein in bronchial epithelial cells of the lung, in primary and secondary spermatocytes as well as round spermatids within the seminiferous tubules of the testis, in the epidermis of the skin, and in the urinary epithelium of the bladder. Stably transfected mSoat-HEK293 cells revealed sodium-dependent transport for dehydroepiandrosterone sulfate (DHEAS), estrone-3-sulfate, and pregnenolone sulfate (PREGS) with apparent Km values of 60.3μM, 2.1μM, and 2.5μM, respectively. In contrast to human SOAT, which has a preference for DHEAS as a substrate, mSoat exhibits the highest transport rate for PREGS, likely reflecting differences in the steroid pattern between both species. In conclusion, although certain differences between human SOAT and mSoat exist regarding quantitative gene expression in endocrine and non-endocrine tissues, as well as in the transport kinetics for steroid sulfates, in general, both can be regarded as homologous carriers.
Collapse
Affiliation(s)
- Gary Grosser
- Institute of Pharmacology and Toxicology, Justus Liebig University of Giessen, 35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|