1
|
Akçay S, Gurkok-Tan T, Ekici S. Identification of key genes in immune-response post-endurance run in horses. J Equine Vet Sci 2025; 149:105418. [PMID: 40174711 DOI: 10.1016/j.jevs.2025.105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Intense physical activity in endurance horses triggers complex immune and inflammatory responses, yet the molecular mechanisms underlying these adaptations remain unclear. This study investigated immune-related transcriptomic changes following a 160 km endurance ride, focusing on sex-based differences. Using a bioinformatics approach, differentially expressed genes (DEGs), pathways, microRNAs (miRNAs), and transcription factors (TFs) were analyzed before (T0) and after (T1) the ride. A protein-protein interaction (PPI) analysis was conducted to identify key regulatory genes. Pathway enrichment analysis revealed significant activation of immune-regulatory and ribosomal pathways. Notably, TLR4, CXCL8, and CCL5 were identified as key hub genes involved in immune modulation post-exercise. Comparisons between female (FT1 vs FT0) and gelding (GT1 vs GT0) horses revealed distinct molecular responses. Female horses exhibited upregulation of ribosomal protein genes, suggesting enhanced protein synthesis and muscle recovery. In contrast, geldings showed increased expression of inflammatory and stress-related genes, indicating a heightened immune response. Notably, sex-based differences were observed, with FT1 vs FT0 and GT1 vs GT0 comparisons revealing distinct KEGG pathway enrichments. Additionally, miRNA and TF analyses revealed regulatory elements influencing endurance-related immune responses. Our findings demonstrated sex-specific molecular mechanisms underlying endurance exercise adaptation, with females prioritizing protein synthesis and recovery, while geldings exhibit stronger inflammatory responses and stress-related pathways. This study provides critical insights into how sex influences exercise physiology at the transcriptomic level, with potential applications in training and recovery strategies for endurance horses.
Collapse
Affiliation(s)
- S Akçay
- Department of Molecular Biology of Genetics, Kırşehir Ahi Evran University, Bagbaşı, 40100, Kırşehir Turkey
| | - T Gurkok-Tan
- Department of Field Crops, Food and Agriculture Vocational School, Cankiri Karatekin University, Merkez, 18100, Çankırı, Turkey
| | - S Ekici
- Veterinary Control Central Research Institute, Keçiören, 06100, Ankara, Turkey.
| |
Collapse
|
2
|
Xu T, Fang D, Xu T, Tao X, Wang Z, Liu Y. Exercise-driven gut microbiota alterations enhance colonization resistance against methicillin-resistant Staphylococcus aureus. Cell Rep 2025; 44:115424. [PMID: 40080501 DOI: 10.1016/j.celrep.2025.115424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/15/2024] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Gut microbiota plays a crucial role in resisting the invasion of pathogens, particularly multidrug-resistant (MDR) bacteria, which pose a significant threat to public health. While exercise offers numerous health benefits, its impact on host colonization resistance remains largely unclear. In this study, we demonstrate that moderate exercise significantly reduces gut colonization by methicillin-resistant Staphylococcus aureus (MRSA), a clinically important MDR pathogen. Moreover, we identify an understudied strain of the intestinal probiotic Dubosiella newyorkensis (L8) as a critical factor in mediating exercise-induced colonization resistance against MRSA. Mechanistically, L8 enhances the deprivation of fucose, a crucial carbon source essential for MRSA growth and pathogenicity. This process relies on the high binding affinity of pyruvate to the ILE257 site of the lactate dehydrogenase in L8. Overall, our work highlights the importance of moderate exercise in maintaining host colonization resistance and demonstrates L8 as a probiotic in protecting against MRSA colonization.
Collapse
Affiliation(s)
- Tingting Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Dan Fang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Tianqi Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiuying Tao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Zhang X, Chen H, Wang Y, Xu Q, Qiu X, Cheng L, Xiao Q, Liu Y, Zhang J, Zhang H, Wu H. Gut microbiota signatures in food allergy children without and with malnutrition: a cross-sectional study. BMC Pediatr 2025; 25:220. [PMID: 40108561 PMCID: PMC11924646 DOI: 10.1186/s12887-025-05578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Altered gut microbiota (GM) profiles have been documented in children with food allergies (FA) and experiencing malnutrition. This study explored the GM composition in children with FA across varying degrees of malnutrition including those without malnutrition and those with different severity levels. METHODS Fresh faecal samples were collected from 120 children aged 1-6 years, including 40 FA children with adequate weight (FANM), 40 FA children with malnutrition (FAM), and 40 healthy controls. The hypervariable region of the 16 S rDNA gene was subsequently sequenced to assess bacterial communities. RESULTS Compared with healthy controls, the FANM group displayed a greater increase in the alpha diversity index. The FAM group exhibited an increase in seven genera, including Alistipes and Parabacteroides, compared to the control group, whereas nine genera were enriched in the FANM group. An analysis of clinical characteristics revealed a positive correlation between the relative abundance of the genus Faecalibacterium and the total IgE level. Fourteen pivotal microbial markers demonstrated substantial classification potential (AUC: 89.86%, 95% CI: 76.40-99.73% for FAM; AUC: 88.92%, 95% CI: 73.58-99.65% for FANM). CONCLUSION FA children exhibit distinct GM profiles depending on the presence of malnutrition, which suggests the need for tailored microbiota-targeted therapies.
Collapse
Affiliation(s)
- Xiaojiao Zhang
- Department of Child Health Care, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Hengying Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiyuan Wang
- Department of Child Health Care, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Qiujin Xu
- Cuixiang Community Health Center, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Xinzu Qiu
- Department of Child Health Care, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Li Cheng
- Department of Child Health Care, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Qizhi Xiao
- Department of Medical Genetics and Prenatal Diagnosis, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China
| | - Yanhong Liu
- Department of Research and Development, BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, Guangdong, China
| | - Jianduan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongzhong Zhang
- Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China.
| | - Hongyuan Wu
- Department of Child Health Care, Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, China.
| |
Collapse
|
4
|
Álvarez-Herms J, Burtscher M, González-Benito A, Corbi F, Odriozola-Martínez A. The Gut Microbiota Characterization of a World-Class Mountain Trail Runner During a Complete Competition Season: A Case Report. J Athl Train 2025; 60:252-258. [PMID: 39287084 PMCID: PMC11935299 DOI: 10.4085/1062-6050-0143.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In the present case study, the gut microbiota (GM) profile of a male elite mountain runner (34 years, 171 cm, 59 kg, VO2max = 92 mL/min/kg) was analyzed over a 5-month competitive period (6 samples). Gut microbiota diversity increased throughout the season, where higher levels coincided with peak performance, and shorter and longer races (42 km versus 172 km) produced different phenotypic GM changes. Shorter races promoted elevation of protective bacteria related to positive benefits (higher production of short-chain fatty acids, lactate resynthesis, and mucin degraders). By contrast, longer races promoted an elevation of opportunistic pathogenic bacteria while reducing protective commensal bacteria. The present findings indicate that a higher resilience of the GM after competitions may support rapid recovery from maximal exercise. Gut microbiota analyses before and after competition could represent a rapid indicator for the (patho) physiological impact of exercise and provide information on gut health and the recovery time needed.
Collapse
Affiliation(s)
- Jesus Álvarez-Herms
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Spain
- Phymolab, Physiology and Molecular Laboratory, Segovia, Spain
| | | | - Adriana González-Benito
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Spain
| | - Francisco Corbi
- Institute of Physical Education of Catalonia (INEFC), Faculty of Sport Science, Lleida, Spain
| | - Adrian Odriozola-Martínez
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
5
|
Yao M, Qu Y, Zheng Y, Guo H. The effect of exercise on depression and gut microbiota: Possible mechanisms. Brain Res Bull 2025; 220:111130. [PMID: 39557221 DOI: 10.1016/j.brainresbull.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Exercise can effectively prevent and treat depression and anxiety, with gut microbiota playing a crucial role in this process. Studies have shown that exercise can influence the diversity and composition of gut microbiota, which in turn affects depression through immune, endocrine, and neural pathways in the gut-brain axis. The effectiveness of exercise varies based on its type, intensity, and duration, largely due to the different changes in gut microbiota. This article summarizes the possible mechanisms by which exercise affects gut microbiota and how gut microbiota influences depression. Additionally, we reviewed literature on the effects of exercise on depression at different intensities, types, and durations to provide a reference for future exercise-based therapies for depression.
Collapse
Affiliation(s)
- Mingchen Yao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yaqi Qu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yalin Zheng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Hao Guo
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China.
| |
Collapse
|
6
|
Xia W, Li X, Han R, Liu X. Microbial Champions: The Influence of Gut Microbiota on Athletic Performance via the Gut-Brain Axis. Open Access J Sports Med 2024; 15:209-228. [PMID: 39691802 PMCID: PMC11651067 DOI: 10.2147/oajsm.s485703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
In recent years, exercise has shown a powerful ability to regulate the gut microbiota received with concern. For instance, compared with the sedentary group, high-level athletes showed a different gut microbiota composition and remarkable capability of physiological metabolism. In addition, different diet patterns (eg, high-fat diet, high carbohydrate diet et.al) have different effects on gut microbiota, which can also affect exercise performance. Furthermore, adaptations to exercise also might be influenced by the gut microbiota, due to its important role in the transformation and expenditure of energy obtained from the diet. Therefore, appropriate dietary supplementation is important during exercise. And exploring the mechanisms by which dietary supplements affect exercise performance by modulating gut microbiota is of considerable interest to athletes wishing to achieve health and athletic performance. In this narrative review, the relationship between gut microbiota, dietary supplements, training adaptations and performance is discussed as follows. (i) The effects of the three main nutritional supplements on gut microbiota and athlete fitness. (ii) Strategies for dietary supplements and how they exerted function through gut microbiota alteration based on the gut-brain axis. (iii) Why dietary supplement interventions on gut microbiota should be tailored to different types of exercise. Our work integrates these factors to elucidate how specific nutritional supplements can modulate gut microbiota composition and, consequently, influence training adaptations and performance outcomes, unlike previous literature that often focuses solely on the effects of exercise or diet independently. And provides a comprehensive framework for athletes seeking to optimize their health and performance through a microbiota-centric approach.
Collapse
Affiliation(s)
- Wenrui Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaoang Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Ruixuan Han
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People’s Republic of China
| | - Xiaoke Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
7
|
Angelakas A, Christodoulou T, Kamposioras K, Barriuso J, Braun M, Hasan J, Marti K, Misra V, Mullamitha S, Saunders M, Cook N. Is early-onset colorectal cancer an evolving pandemic? Real-world data from a tertiary cancer center. Oncologist 2024; 29:e1680-e1691. [PMID: 39359067 PMCID: PMC11630742 DOI: 10.1093/oncolo/oyae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/07/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Early onset Colorectal Cancer (EOCRC), defined as those diagnosed under the age of 50, has been increasing rapidly since 1970. UK data on EOCRC are currently limited and better understanding of the condition is needed. MATERIALS AND METHODS A single-center retrospective study of patients with EOCRC treated over 9 years (2013-2021) at a large UK cancer center was performed. Clinicopathological features, risk factors, molecular drivers, treatment, and survival were analyzed. RESULTS In total, 203 patients were included. A significant increase in cases was reported from 2018-2019 (n = 33) to 2020-2021 (n = 118). Sporadic EOCRC accounted for 70% of cases and left-sided tumors represented 70.9% (n = 144). Median duration of symptoms was 3 months, while 52.7% of the patients had de-novo metastatic disease. Progression-free survival after first-line chemotherapy was 6 months (95% CI, 4.85-7.15) and median overall survival (OS) was 38 months (95% CI, 32.86-43.14). In the advanced setting, left-sided primary tumors were associated with a median OS benefit of 14 months over right-sided primaries (28 vs 14 months, P = .009). Finally, primary tumor resection was associated with median OS benefit of 21 months compared with in situ tumors (38 vs 17 months, P < .001). CONCLUSIONS The incidence of EOCRC is increasing, and survival outcomes remain modest. Raising public awareness and lowering the age for colorectal cancer screening are directions that could improve EOCRC clinical outcomes. There is also a need for large prospective studies to improve the understanding of the nature of EOCRC and the best therapeutic approaches.
Collapse
Affiliation(s)
- Angelos Angelakas
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Thekla Christodoulou
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Konstantinos Kamposioras
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Jorge Barriuso
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Michael Braun
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Jurjees Hasan
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Kalena Marti
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Vivek Misra
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Saifee Mullamitha
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Mark Saunders
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Natalie Cook
- The Christie NHS Foundation Trust and Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4BX, United Kingdom
| |
Collapse
|
8
|
Park SS, Park SH, Jeong HT, Shin MS, Kim MK, Kim BK, Yoon HS, Kim SH, Kim TW. The effect of treadmill exercise on memory function and gut microbiota composition in old rats. J Exerc Rehabil 2024; 20:205-212. [PMID: 39781508 PMCID: PMC11704711 DOI: 10.12965/jer.2448692.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025] Open
Abstract
Aging is associated with declines in memory function and significant change in gut microbiota. In this study, we investigated how exercise affects age-related memory decline and inflammation, and gut microbiota diversity. Bl6 mice were divided into control, control and exercise, old, and old and exercise groups. Treadmill exercise was performed once a day, 5 days a week for 8 consecutive weeks. Short-term memory was assessed using step-through test and spatial learning memory was assessed using Morris water maze task. Enzyme-linked immunosorbent assay was performed for the proinflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-6, in the hippocampus. Western blot analysis was conducted for the neurotrophic factors, brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB), in the hippocampus. In addition, fecal samples were collected for sequencing and metagenomic analysis. Old rats showed decline in short-term memory and spatial learning memory. Increment of TNF-α and IL-6 concentration with decrement of BDNF and TrkB expression were observed in the old rats. Decreased diversity of gut microbiota composition and decreased beneficial gut microbiota were found in the old rats. However, treadmill exercise improved short-term memory, decreased TNF-α and IL-6 concentration, and increased BDNF and TrkB expression in the old rats. Treadmill exercise also increased the diversity of gut microbiota composition and affected the increase of beneficial gut microbiota in the old rats. In conclusion, treadmill exercise reduced age-related inflammatory markers and effectively improved memory decline while enhancing the diversity and abundance of beneficial gut microbiota.
Collapse
Affiliation(s)
- Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul,
Korea
| | - Si-Hyeon Park
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong,
Korea
| | - Hyun-Tae Jeong
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong,
Korea
| | - Mal-Soon Shin
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong,
Korea
| | - Myung-Ki Kim
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong,
Korea
| | - Bo-Kyun Kim
- Department of Emergency Technology, College of Health Science, Gachon University, Incheon,
Korea
| | - Hye-Sun Yoon
- Department of Pediatrics, Eulji Hospital, Eulji University School of Medicine, Seoul,
Korea
| | - Sang-Hoon Kim
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, The Stat University of New Jersey, Piscataway, NJ,
USA
| | - Tae-Woon Kim
- Department of Human Health Care, Gyeongsang National University, Jinju,
Korea
| |
Collapse
|
9
|
Kearns R, Dooley J, Matthews M, McNeilly A. "Do probiotics mitigate GI-induced inflammation and perceived fatigue in athletes? A systematic review". J Int Soc Sports Nutr 2024; 21:2388085. [PMID: 39193818 PMCID: PMC11360638 DOI: 10.1080/15502783.2024.2388085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/28/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Fatigue and gastrointestinal (GI) distress are common among athletes with an estimated 30-90% of athletes participating in marathons, triathlons, or similar events experiencing GI complaints. Intense exercise can lead to increased intestinal permeability, potentially allowing members of the gut microbiota to permeate into the bloodstream, resulting in an inflammatory response and cascade of performance-limiting outcomes. Probiotics, through their capacity to regulate the composition of the gut microbiota, may act as an adjunctive therapy by enhancing GI and immune function while mitigating inflammatory responses. This review investigates the effectiveness of probiotic supplementation on fatigue, inflammatory markers, and exercise performance based on randomized controlled trials (RCTs). METHODS This review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and PICOS (Population, Intervention, Comparison, Outcome, Study design) framework. A comprehensive search was conducted in Sportdiscus, PubMed, and Scopus databases, and the screening of titles, abstracts, and full articles was performed based on pre-defined eligibility criteria. Of the 3505 records identified, 1884 were screened using titles and abstracts, of which 450 studies were selected for full-text screening. After final screening, 13 studies met the eligibility criteria and were included for review. The studies contained 513 participants, consisting of 351 males and 115 females, however, two studies failed to mention the sex of the participants. Among the participants, 246 were defined as athletes, while the remaining participants were classified as recreationally active (n = 267). All trials were fully described and employed a double- or triple-blind placebo-controlled intervention using either a single probiotic strain or a multi-strain synbiotic (containing both pro- and pre-biotics). RESULTS This review assesses the effects of daily probiotic supplementation, ranging from 13 to 90 days, on physical performance and physiological markers in various exercise protocols. Ten studies reported improvements in various parameters, such as, enhanced endurance performance, improved anxiety and stress levels, decreased GI symptoms, and reduced upper respiratory tract infections (URTI). Moreover, despite no improvements in maximal oxygen uptake (VO2), several studies demonstrated that probiotic supplementation led to amelioration in lactate, creatine kinase (CK), and ammonia concentrations, suggesting beneficial effects on mitigating exercise-induced muscular stress and damage. CONCLUSION Probiotic supplementation, specifically at a minimum dosage of 15 billion CFUs daily for a duration of at least 28 days, may contribute to the reduction of perceived or actual fatigue.
Collapse
Affiliation(s)
- R.P. Kearns
- Ulster University, School of Life and Health Sciences, Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| | - J.S.G. Dooley
- Ulster University, School of Life and Health Sciences, Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| | - M. Matthews
- Ulster University, School of Life and Health Sciences, Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| | - A.M. McNeilly
- Ulster University, School of Life and Health Sciences, Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| |
Collapse
|
10
|
Nevoit G, Jarusevicius G, Potyazhenko M, Mintser O, Bumblyte IA, Vainoras A. Mitochondrial Dysfunction and Risk Factors for Noncommunicable Diseases: From Basic Concepts to Future Prospective. Diseases 2024; 12:277. [PMID: 39589951 PMCID: PMC11592525 DOI: 10.3390/diseases12110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Noncommunicable diseases (NCDs) are a very important medical problem. The key role of mitochondrial dysfunction (MD) in the occurrence and progression of NCDs has been proven. However, the etiology and pathogenesis of MD itself in many NCDs has not yet been clarified, which makes it one of the most serious medical problems in the modern world, according to many scientists. METHODS An extensive research in the literature was implemented in order to elucidate the role of MD and NCDs' risk factors in the pathogenesis of NCDs. RESULTS The authors propose to take a broader look at the problem of the pathogenesis of NCDs. It is important to understand exactly how NCD risk factors lead to MD. The review is structured in such a way as to answer this question. Based on a systematic analysis of scientific data, a theoretical concept of modern views on the occurrence of MD under the influence of risk factors for the occurrence of NCDs is presented. This was done in order to update MD issues in clinical medicine. MD and NCDs progress throughout a patient's life. Based on this, the review raised the question of the existence of an NCDs continuum. CONCLUSIONS MD is a universal mechanism that causes organ dysfunction and comorbidity of NCDs. Prevention of MD involves diagnosing and eliminating the factors that cause it. Mitochondria are an important therapeutic target.
Collapse
Affiliation(s)
- Ganna Nevoit
- Laboratory of Population Studies, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Gediminas Jarusevicius
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Maksim Potyazhenko
- Department of Internal Medicine and Emergency Medicine, Poltava State Medical University, 36011 Poltava, Ukraine;
| | - Ozar Mintser
- Department of Fundamental Disciplines and Informatics, Shupyk National Healthcare University of Ukraine, 04112 Kyiv, Ukraine;
| | - Inga Arune Bumblyte
- Department of Nephrology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Alfonsas Vainoras
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| |
Collapse
|
11
|
Lewis G, Reczek S, Omozusi O, Hogue T, Cook MD, Hampton-Marcell J. Machine Learning Reveals Microbial Taxa Associated with a Swim across the Pacific Ocean. Biomedicines 2024; 12:2309. [PMID: 39457621 PMCID: PMC11504845 DOI: 10.3390/biomedicines12102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Purpose: This study aimed to characterize the association between microbial dynamics and excessive exercise. Methods: Swabbed fecal samples, body composition (percent body fat), and swimming logs were collected (n = 94) from a single individual over 107 days as he swam across the Pacific Ocean. The V4 region of the 16S rRNA gene was sequenced, generating 6.2 million amplicon sequence variants. Multivariate analysis was used to analyze the microbial community structure, and machine learning (random forest) was used to model the microbial dynamics over time using R statistical programming. Results: Our findings show a significant reduction in percent fat mass (Pearson; p < 0.01, R = -0.89) and daily swim distance (Spearman; p < 0.01, R = -0.30). Furthermore, the microbial community structure became increasingly similar over time (PERMANOVA; p < 0.01, R = -0.27). Decision-based modeling (random forest) revealed the genera Alistipes, Anaerostipes, Bifidobacterium, Butyricimonas, Lachnospira, Lachnobacterium, and Ruminococcus as important microbial biomarkers of excessive exercise for explaining variations observed throughout the swim (OOB; R = 0.893). Conclusions: We show that microbial community structure and composition accurately classify outcomes of excessive exercise in relation to body composition, blood pressure, and daily swim distance. More importantly, microbial dynamics reveal the microbial taxa significantly associated with increased exercise volume, highlighting specific microbes responsive to excessive swimming.
Collapse
Affiliation(s)
- Garry Lewis
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (G.L.); (S.R.)
| | - Sebastian Reczek
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (G.L.); (S.R.)
| | - Osayenmwen Omozusi
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Taylor Hogue
- Department of Kinesiology, North Carolina Agriculture and Technical State University, Greensboro, NC 27411, USA; (T.H.); (M.D.C.)
| | - Marc D. Cook
- Department of Kinesiology, North Carolina Agriculture and Technical State University, Greensboro, NC 27411, USA; (T.H.); (M.D.C.)
- Center of Integrative Health Disparities and Equity Research, North Carolina Agriculture and Technical State University, Greensboro, NC 27411, USA
| | - Jarrad Hampton-Marcell
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (G.L.); (S.R.)
| |
Collapse
|
12
|
Yoon EJ, Lee SR, Ortutu BF, Kim JO, Jaiswal V, Baek S, Yoon SI, Lee SK, Yoon JH, Lee HJ, Cho JA. Effect of Endurance Exercise Training on Gut Microbiota and ER Stress. Int J Mol Sci 2024; 25:10742. [PMID: 39409071 PMCID: PMC11476978 DOI: 10.3390/ijms251910742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Regular exercise as part of one's lifestyle is well-recognized for its beneficial effect on several diseases such as cardiovascular disease and obesity; however, many questions remain unanswered regarding the effects of exercise on the gut environment. This study aimed to investigate the impact of long-term endurance exercise on modulating inflammation and endoplasmic reticulum (ER) stress. Fifteen-week-old male Sprague-Dawley (SD) rats were subjected to six months of endurance treadmill training, while age-matched controls remained sedentary. Results showed that IL-6 mRNA levels in colon tissues were significantly higher in the exercise group compared to the sedentary group. Exercise activated a significant ER stress-induced survival pathway by increasing BiP and phosphorylation of eIF2α (p-eIF2α) expressions in the liver and colon, while decreasing CHOP in the liver. Gene expressions of MUC2, Occludin, and Claudin-2 were increased in the colon of the exercise group, indicating enhanced intestinal integrity. Furthermore, the data showed a positive correlation between microbiota α-diversity and BiP (r = 0.464~0.677, p < 0.05). Populations of Desulfovibrio C21 c20 were significantly greater in the exercise group than the sedentary group. Additionally, predicted functions of the gut microbial community in terms of enzymes and pathways supported the enhancement of fatty-acid-related processes by exercise. These findings suggest that prolonged endurance exercise can affect the colon environment, which is likely related to changes in inflammation, ER stress, mucin layers and tight junctions, associated with modifications in the gut microbiome.
Collapse
Affiliation(s)
- Eun Ji Yoon
- Research Center for Microbiome-Brain Disorders, Chungnam University, Daejeon 34134, Republic of Korea; (E.J.Y.); (S.-I.Y.)
| | - So Rok Lee
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea; (S.R.L.); (B.F.O.); (S.B.)
| | - Beulah Favour Ortutu
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea; (S.R.L.); (B.F.O.); (S.B.)
| | - Jong-Oh Kim
- Department of Sport Science, Hannam University, Daejeon 34430, Republic of Korea; (J.-O.K.); (J.H.Y.)
| | - Varun Jaiswal
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea;
| | - Sooyeon Baek
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea; (S.R.L.); (B.F.O.); (S.B.)
| | - Su-In Yoon
- Research Center for Microbiome-Brain Disorders, Chungnam University, Daejeon 34134, Republic of Korea; (E.J.Y.); (S.-I.Y.)
| | - Sang Ki Lee
- Department of Sport Science, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Jin Hwan Yoon
- Department of Sport Science, Hannam University, Daejeon 34430, Republic of Korea; (J.-O.K.); (J.H.Y.)
| | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea;
| | - Jin Ah Cho
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea; (S.R.L.); (B.F.O.); (S.B.)
| |
Collapse
|
13
|
Sun H, Chen M, Liao J, He L, Wan B, Yin J, Zhang X. The maternal lifestyle in pregnancy: Implications for foetal skeletal muscle development. J Cachexia Sarcopenia Muscle 2024; 15:1641-1650. [PMID: 39155495 PMCID: PMC11446712 DOI: 10.1002/jcsm.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
The world is facing a global nutrition crisis, as evidenced by the rising incidence of metabolic disorders such as obesity, insulin resistance and chronic inflammation. Skeletal muscle is the largest tissue in humans and plays an important role in movement and host metabolism. Muscle fibre formation occurs mainly during the embryonic stage. Therefore, maternal lifestyle, especially nutrition and exercise during pregnancy, has a critical influence on foetal skeletal muscle development and the subsequent metabolic health of the offspring. In this review, the influence of maternal obesity, malnutrition and micronutrient intake on foetal skeletal muscle development is systematically summarized. We also aim to describe how maternal exercise shapes foetal muscle development and metabolic health in the offspring. The role of maternal gut microbiota and its metabolites on foetal muscle development is further discussed, although this field is still in its 'infancy'. This review will provide new insights to reduce the global crisis of metabolic disorders and highlight current gaps to promote further research.
Collapse
Affiliation(s)
- Haijun Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Meixia Chen
- Institute of Animal Husbandry and Veterinary MedicineBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jialong Liao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Linjuan He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Boyang Wan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Frontiers Science Center for Molecular Design Breeding (MOE)BeijingChina
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Frontiers Science Center for Molecular Design Breeding (MOE)BeijingChina
| |
Collapse
|
14
|
Gacek M, Wojtowicz A, Banasik M. Selected Determinants of Diet Health Quality among Female Athletes Practising Team Sports. Nutrients 2024; 16:3294. [PMID: 39408261 PMCID: PMC11478919 DOI: 10.3390/nu16193294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
This study's aim was an analysis regarding selected determinants of diet health quality in a group of elite Polish female team sport players. Relationships were assessed between age, sport experience, personal resources and personality traits with regard to the Big Five model and the pro-Health (pHDI-10) and non-Healthy (nHDI-14) Diet Indices. This study was conducted among 181 women (median age-25 years; sport experience-7 years) with the use of the Beliefs and Eating Habits Questionnaire (KomPAN), Generalised Self-Efficacy Scale (GSES), Multidimensional Health Locus of Control Scale (MHLC-B) and NEO-PI-R personality inventory. Statistical analysis was carried out via the Wilcoxon signed-rank test, Kruskal-Wallis's ANOVA, Spearman's rank correlation coefficient and forward stepwise regression at a significance level of α = 0.05. Multivariate regression analysis indicated that the value of the pro-Health Diet Index (pHDI-10) was positively explained by professional experience and extraversion, while negatively by openness to experiences (12% of the pHDI-10 variance). In turn, a higher value of the non-Healthy Diet Index (nHDI-14) was associated with the discipline of basketball (2% of the nHDI-14 variance). In summary, the demonstrated diet health quality was low and the predictive significance of competitive experience as well as type of discipline and selected personality traits was exhibited for diet quality among female team sport players.
Collapse
Affiliation(s)
- Maria Gacek
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University of Physical Education, 31-571 Krakow, Poland
| | - Agnieszka Wojtowicz
- Department of Psychology, Institute of Social Sciences, University of Physical Education, 31-571 Krakow, Poland
| | - Marlena Banasik
- Department of Psychology, SWPS University of Social Sciences and Humanities—Jozef Tischner Campus, 31-864 Krakow, Poland
| |
Collapse
|
15
|
Patel BK, Patel KH, Lee CN, Moochhala S. Intestinal Microbiota Interventions to Enhance Athletic Performance-A Review. Int J Mol Sci 2024; 25:10076. [PMID: 39337561 PMCID: PMC11432184 DOI: 10.3390/ijms251810076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Recent years have witnessed an uptick in research highlighting the gut microbiota's role as a primary determinant of athletes' health, which has piqued interest in the hypothesis that it correlates with athletes' physical performance. Athletes' physical performances could be impacted by the metabolic activity of the assortment of microbes found in their gut. Intestinal microbiota impacts multiple facets of an athlete's physiology, including immune response, gut membrane integrity, macro- and micronutrient absorption, muscle endurance, and the gut-brain axis. Several physiological variables govern the gut microbiota; hence, an intricately tailored and complex framework must be implemented to comprehend the performance-microbiota interaction. Emerging evidence underscores the intricate relationship between the gut microbiome and physical fitness, revealing that athletes who engage in regular physical activity exhibit a richer diversity of gut microbes, particularly within the Firmicutes phylum, e.g., Ruminococcaceae genera, compared to their sedentary counterparts. In elite sport, it is challenging to implement an unconventional strategy whilst simultaneously aiding an athlete to accomplish feasible, balanced development. This review compiles the research on the effects of gut microbiota modulation on performance in sports and illustrates how different supplementation strategies for gut microbiota have the ability to improve athletic performance by enhancing physical capacities. In addition to promoting athletes' overall health, this study evaluates the existing literature in an effort to shed light on how interventions involving the gut microbiota can dramatically improve performance on the field. The findings should inform both theoretical and practical developments in the fields of sports nutrition and training.
Collapse
Affiliation(s)
- Bharati Kadamb Patel
- Department of Surgery, Yong Loo Lin School of Medicine, Level 8, NUHS Tower Block, Singapore 119278, Singapore; (B.K.P.); (C.N.L.)
| | - Kadamb Haribhai Patel
- Temasek Polytechnic, School of Applied Sciences, 21 Tampines Ave 1, Singapore 529757, Singapore;
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, Level 8, NUHS Tower Block, Singapore 119278, Singapore; (B.K.P.); (C.N.L.)
| | - Shabbir Moochhala
- Department of Surgery, Yong Loo Lin School of Medicine, Level 8, NUHS Tower Block, Singapore 119278, Singapore; (B.K.P.); (C.N.L.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, Block MD3, 16 Medical Drive, Singapore 117600, Singapore
| |
Collapse
|
16
|
Urban S, Chmura O, Wątor J, Panek P, Zapała B. The intensive physical activity causes changes in the composition of gut and oral microbiota. Sci Rep 2024; 14:20858. [PMID: 39242653 PMCID: PMC11379964 DOI: 10.1038/s41598-024-71684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
This study aimed to compare the gut and oral microbiota composition of professional male football players and amateurs. Environmental and behavioral factors are well known to modulate intestinal microbiota composition. Active lifestyle behaviors are involved in the improvement of metabolic and inflammatory parameters. Exercise promotes adaptational changes in human metabolic capacities affecting microbial homeostasis. Twenty professional football players and twelve amateurs were invited to the study groups. Fecal and oral microbiota were analyzed using next-generation sequencing of the 16S rRNA gene. Diversity in the oral microbiota composition was similar in amateurs and professionals, while the increase in training intensity reduced the number of bacterial species. In contrast, the analysis of the intestinal microbiota showed the greatest differentiation between professional football players and amateurs, especially during intensive training. Firmicutes were characterized by the largest population in all the studied groups. Intensive physical activity increases the abundance of butyrate and succinate-producing bacteria affecting host metabolic homeostasis, suggesting a very beneficial role for the host immune system's microbiome homeostasis and providing a proper function of the host immune system.
Collapse
Affiliation(s)
- Szymon Urban
- Trauma and Orthopaedics Department, University Hospital in Krakow, Kraków, Poland
| | - Olaf Chmura
- Student Society of Nutrigenomics, Department of Clinical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Julia Wątor
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Piotr Panek
- Jagiellonian University Medical College, Kraków, Poland
| | - Barbara Zapała
- Centre for Innovative Medical Education, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
17
|
Ihalainen JK, Mikkonen RS, Ackerman KE, Heikura IA, Mjøsund K, Valtonen M, Hackney AC. Beyond Menstrual Dysfunction: Does Altered Endocrine Function Caused by Problematic Low Energy Availability Impair Health and Sports Performance in Female Athletes? Sports Med 2024; 54:2267-2289. [PMID: 38995599 PMCID: PMC11393114 DOI: 10.1007/s40279-024-02065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/13/2024]
Abstract
Low energy availability, particularly when problematic (i.e., prolonged and/or severe), has numerous negative consequences for health and sports performance as characterized in relative energy deficiency in sport. These consequences may be driven by disturbances in endocrine function, although scientific evidence clearly linking endocrine dysfunction to decreased sports performance and blunted or diminished training adaptations is limited. We describe how low energy availability-induced changes in sex hormones manifest as menstrual dysfunction and accompanying hormonal dysfunction in other endocrine axes that lead to adverse health outcomes, including negative bone health, impaired metabolic activity, undesired outcomes for body composition, altered immune response, problematic cardiovascular outcomes, iron deficiency, as well as impaired endurance performance and force production, all of which ultimately may influence athlete health and performance. Where identifiable menstrual dysfunction indicates hypothalamic-pituitary-ovarian axis dysfunction, concomitant disturbances in other hormonal axes and their impact on the athlete's health and sports performance must be recognized as well. Given that the margin between podium positions and "losing" in competitive sports can be very small, several important questions regarding low energy availability, endocrinology, and the mechanisms behind impaired training adaptations and sports performance have yet to be explored.
Collapse
Affiliation(s)
- Johanna K Ihalainen
- Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland.
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland.
| | - Ritva S Mikkonen
- Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Boston, MA, USA
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ida A Heikura
- Canadian Sport Institute-Pacific, Victoria, BC, Canada
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | - Katja Mjøsund
- Paavo Nurmi Centre and Unit for Health and Physical Activity, University of Turku, Turku, Finland
- National Olympic Training Centre Helsinki, Helsinki, Finland
| | - Maarit Valtonen
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland
| | - Anthony C Hackney
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Patterson JS, Rana BK, Gu H, Sears DD. Sitting Interruption Modalities during Prolonged Sitting Acutely Improve Postprandial Metabolome in a Crossover Pilot Trial among Postmenopausal Women. Metabolites 2024; 14:478. [PMID: 39330485 PMCID: PMC11433994 DOI: 10.3390/metabo14090478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Older adults sit during most hours of the day; more than 30% are considered physically inactive. The accumulation of prolonged sitting time is an exercise-independent risk factor for aging-related conditions such as cardiometabolic disease and cancer. Archival plasma samples from a randomized controlled, four-condition crossover study conducted in 10 postmenopausal women with overweight or obesity were analyzed. During 5-hour conditions completed on separate days, the trial tested three interruption modalities: two-minute stands each 20 min (STS), hourly ten-minute standing breaks (Stand), hourly two-minute walks (Walk), and a controlled sit. Fasting baseline and 5-hour end point (2 h postprandial) samples were used for targeted metabolomic profiling. Condition-associated metabolome changes were compared using paired t-tests. STS eliminated the postprandial elevation of amino acid metabolites that was observed in the control. A norvaline derivative shown to have anti-hypertensive and -hyperglycemic effects was significantly increased during Stand and STS. Post-hoc testing identified 19 significantly different metabolites across the interventions. Tight metabolite clustering by condition was driven by amino acid, vasoactive, and sugar metabolites, as demonstrated by partial least squares-discriminant analyses. This exploratory study suggests that brief, low-intensity modalities of interrupting prolonged sitting can acutely elucidate beneficial cardiometabolic changes in postmenopausal women with cardiometabolic risk.
Collapse
Affiliation(s)
- Jeffrey S. Patterson
- College of Health Solutions, Arizona State University, 850 N. 5th Street, Phoenix, AZ 85004, USA; (J.S.P.)
| | - Brinda K. Rana
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, 850 N. 5th Street, Phoenix, AZ 85004, USA; (J.S.P.)
| | - Dorothy D. Sears
- College of Health Solutions, Arizona State University, 850 N. 5th Street, Phoenix, AZ 85004, USA; (J.S.P.)
- Department of Family Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Medicine, UC San Diego, La Jolla, CA 92093, USA
- UCSD Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA 92093, USA
| |
Collapse
|
19
|
Li T, Yin D, Shi R. Gut-muscle axis mechanism of exercise prevention of sarcopenia. Front Nutr 2024; 11:1418778. [PMID: 39221163 PMCID: PMC11362084 DOI: 10.3389/fnut.2024.1418778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Sarcopenia refers to an age-related systemic skeletal muscle disorder, which is characterized by loss of muscle mass and weakening of muscle strength. Gut microbiota can affect skeletal muscle through a variety of mechanisms. Gut microbiota present distinct features among elderly people and sarcopenia patients, including a decrease in microbial diversity, which might be associated with the quality and function of the skeletal muscle. There might be a gut-muscle axis; where gut microbiota and skeletal muscle may affect each other bi-directionally. Skeletal muscle can affect the biodiversity of the gut microbiota, and the latter can, in turn, affect the anabolism of skeletal muscle. This review examines recent studies exploring the relationship between gut microbiota and skeletal muscle, summarizes the effects of exercise on gut microbiota, and discusses the possible mechanisms of the gut-muscle axis.
Collapse
Affiliation(s)
| | | | - Rengfei Shi
- School of Health and Exercise, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
20
|
Li C, Li J, Zhou Q, Wang C, Hu J, Liu C. Effects of Physical Exercise on the Microbiota in Irritable Bowel Syndrome. Nutrients 2024; 16:2657. [PMID: 39203794 PMCID: PMC11356817 DOI: 10.3390/nu16162657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder characterized by abdominal pain, bloating, diarrhea, and constipation. Recent studies have underscored the significant role of the gut microbiota in the pathogenesis of IBS. Physical exercise, as a non-pharmacological intervention, has been proposed to alleviate IBS symptoms by modulating the gut microbiota. Aerobic exercise, such as running, swimming, and cycling, has been shown to enhance the diversity and abundance of beneficial gut bacteria, including Lactobacillus and Bifidobacterium. These bacteria produce short-chain fatty acids that possess anti-inflammatory properties and support gut barrier integrity. Studies involving IBS patients participating in structured aerobic exercise programs have reported significant improvements in their gut microbiota's composition and diversity, alongside an alleviation of symptoms like abdominal pain and bloating. Additionally, exercise positively influences mental health by reducing stress and improving mood, which can further relieve IBS symptoms via the gut-brain axis. Long-term exercise interventions provide sustained benefits, maintaining the gut microbiota's diversity and stability, supporting immune functions, and reducing systemic inflammation. However, exercise programs must be tailored to individual needs to avoid exacerbating IBS symptoms. Personalized exercise plans starting with low-to-moderate intensity and gradually increasing in intensity can maximize the benefits and minimize risks. This review examines the impact of various types and intensities of physical exercise on the gut microbiota in IBS patients, highlighting the need for further studies to explore optimal exercise protocols. Future research should include larger sample sizes, longer follow-up periods, and examine the synergistic effects of exercise and other lifestyle modifications. Integrating physical exercise into comprehensive IBS management plans can enhance symptom control and improve patients' quality of life.
Collapse
Affiliation(s)
- Chunpeng Li
- Russian Sports University, Moscow 105122, Russia;
| | - Jianmin Li
- School of Tai Chi Culture Handan University, Handan 056005, China;
| | - Qiaorui Zhou
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (C.W.)
| | - Can Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (C.W.)
| | - Jiahui Hu
- Moscow State Normal University, Moscow 127051, Russia
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
21
|
Bakinowska E, Olejnik-Wojciechowska J, Kiełbowski K, Skoryk A, Pawlik A. Pathogenesis of Sarcopenia in Chronic Kidney Disease-The Role of Inflammation, Metabolic Dysregulation, Gut Dysbiosis, and microRNA. Int J Mol Sci 2024; 25:8474. [PMID: 39126043 PMCID: PMC11313360 DOI: 10.3390/ijms25158474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic kidney disease (CKD) is a progressive disorder associated with a decline in kidney function. Consequently, patients with advanced stages of CKD require renal replacement therapies, such as dialysis and kidney transplantation. Various conditions lead to the development of CKD, including diabetes mellitus, hypertension, and glomerulonephritis, among others. The disease is associated with metabolic and hormonal dysregulation, including uraemia and hyperparathyroidism, as well as with low-grade systemic inflammation. Altered homeostasis increases the risk of developing severe comorbidities, such as cardiovascular diseases or sarcopenia, which increase mortality. Sarcopenia is defined as a progressive decline in muscle mass and function. However, the precise mechanisms that link CKD and the development of sarcopenia are poorly understood. Knowledge about these linking mechanisms might lead to the introduction of precise treatment strategies that could prevent muscle wasting. This review discusses inflammatory mediators, metabolic and hormonal dysregulation, gut microbiota dysbiosis, and non-coding RNA alterations that could link CKD and sarcopenia.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| | - Joanna Olejnik-Wojciechowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
- Independent Laboratory of Community Nursing, Pomeranian Medical University, 71-210 Szczecin, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| | - Anastasiia Skoryk
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| |
Collapse
|
22
|
Li S, Miao XY, Zhang JS, Wei DD, Dong HJ, Xue R, Li JC, Zhang Y, Feng XX, Li J, Zhang YZ. Far-infrared therapy promotes exercise capacity and glucose metabolism in mice by modulating microbiota homeostasis and activating AMPK. Sci Rep 2024; 14:16314. [PMID: 39009692 PMCID: PMC11251280 DOI: 10.1038/s41598-024-67220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
The benefits of physical exercise on human health make it desirable to identify new approaches that would mimic or potentiate the effects of exercise to treat metabolic diseases. However, whether far-infrared (FIR) hyperthermia therapy could be used as exercise mimetic to realize wide-ranging metabolic regulation, and its underling mechanisms remain unclear. Here, a specific far-infrared (FIR) rays generated from graphene-based hyperthermia devices might promote exercise capacity and metabolisms. The material characterization showed that the graphene synthesized by chemical vapour deposition (CVD) was different from carbon fiber, with single-layer structure and high electrothermal transform efficiency. The emission spectra generated by graphene-FIR device would maximize matching those adsorbed by tissues. Graphene-FIR enhanced both core and epidermal temperatures, leading to increased blood flow in the femoral muscle and the abdominal region. The combination of microbiomic and metabolomic analysis revealed that graphene-FIR modulates the metabolism of the gut-muscle axis. This modulation was characterized by an increased abundance of short-chain fatty acids (SCFA)-producing bacteria and AMP, while lactic acid levels decreased. Furthermore, the principal routes involved in glucose metabolism, such as glycolysis and gluconeogenesis, were found to be altered. Graphene-FIR managed to stimulate AMPK activity by activating GPR43, thus enhancing muscle glucose uptake. Furthermore, a microbiota disorder model also demonstrated that the graphene-FIR effectively restore the exercise endurance with enhanced p-AMPK and GLUT4. Our results provided convincing evidence that graphene-based FIR therapy promoted exercise capacity and glucose metabolism via AMPK in gut-muscle axis. These novel findings regarding the therapeutic effects of graphene-FIR suggested its potential utility as a mimetic agent in clinical management of metabolic disorders.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiao-Yao Miao
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jin-Shui Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Dong-Dong Wei
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hua-Jin Dong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Rui Xue
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing-Cao Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiao-Xing Feng
- Grahope New Materials Technologies Inc., Shenzhen, 518063, China
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - You-Zhi Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
23
|
Lennon S, Lackie T, Miltko A, Kearns ZC, Paquette MR, Bloomer RJ, Wang A, van der Merwe M. Safety and efficacy of a probiotic cocktail containing P. acidilactici and L. plantarum for gastrointestinal discomfort in endurance runners: randomized double-blinded crossover clinical trial. Appl Physiol Nutr Metab 2024; 49:890-903. [PMID: 38427981 DOI: 10.1139/apnm-2023-0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Probiotics are increasingly used to treat conditions associated with gastrointestinal injury and permeability, including exercise-induced gastrointestinal discomfort. This study assessed safety and efficacy of a probiotic in altering the intestinal milieu and mitigating gastrointestinal symptoms (GIS) in endurance runners. In a double blind, crossover study, 16 runners were randomized to 4 weeks of daily supplementation with a probiotic cocktail containing Pediococcus acidilactici bacteria and Lactobacillus plantarum or placebo. Fasting blood and stool samples were collected for measurement of gut permeability markers, immune parameters, and microbiome analyses. Treadmill run tests were performed before and after treatment; participants ran at 65%-70% of VO2max at 27 °C for a maximum of 90 min or until fatigue/GIS developed. A blood sample was collected after the treadmill run test. In healthy individuals, 4 weeks of probiotic supplementation did not alter health parameters, although a marginal reduction in aspartate aminotransferase levels was observed with probiotic treatment only (p = 0.05). GIS, gut permeability-associated parameters (intestinal fatty acid binding protein, lipopolysaccharide binding protein, zonulin, and cytokines), and intestinal microbial content were not altered by the probiotic supplementation. Post-run measurements of GIS and gut-associated parameters did not differ between groups; however, the observed lack of differences is confounded by an absence of measurable functional outcome as GIS was not sufficiently induced during the run. Under the current study conditions, the probiotic was safe to use, and did not affect gut- or immune-associated parameters, or intestinal symptoms in a healthy population. The probiotic might reduce tissue damage, but more studies are warranted.
Collapse
Affiliation(s)
- Sarah Lennon
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, Memphis, TN, USA
| | - Thomas Lackie
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, Memphis, TN, USA
| | - Adriana Miltko
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, Memphis, TN, USA
| | - Zoey C Kearns
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, Memphis, TN, USA
| | - Maxime R Paquette
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, Memphis, TN, USA
| | - Richard J Bloomer
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, Memphis, TN, USA
| | - Anyou Wang
- Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, TN 38152, USA
| | - Marie van der Merwe
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, Memphis, TN, USA
| |
Collapse
|
24
|
Álvarez-Herms J, Odriozola A. Microbiome and physical activity. ADVANCES IN GENETICS 2024; 111:409-450. [PMID: 38908903 DOI: 10.1016/bs.adgen.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Regular physical activity promotes health benefits and contributes to develop the individual biological potential. Chronical physical activity performed at moderate and high-intensity is the intensity more favorable to produce health development in athletes and improve the gut microbiota balance. The athletic microbiome is characterized by increased microbial diversity and abundance as well as greater phenotypic versatility. In addition, physical activity and microbiota composition have bidirectional effects, with regular physical activity improving microbial composition and microbial composition enhancing physical performance. The improvement of physical performance by a healthy microbiota is related to different phenotypes: i) efficient metabolic development, ii) improved regulation of intestinal permeability, iii) favourable modulation of local and systemic inflammatory and efficient immune responses, iv) efective regulation of systemic pH and, v) protection against acute stressful events such as environmental exposure to altitude or heat. The type of sport, both intensity or volume characteristics promote microbiota specialisation. Individual assessment of the state of the gut microbiota can be an effective biomarker for monitoring health in the medium to long term. The relationship between the microbiota and the rest of the body is bidirectional and symbiotic, with a full connection between the systemic functions of the nervous, musculoskeletal, endocrine, metabolic, acid-base and immune systems. In addition, circadian rhythms, including regular physical activity, directly influence the adaptive response of the microbiota. In conclusion, regular stimuli of moderate- and high-intensity physical activity promote greater diversity, abundance, resilience and versatility of the gut microbiota. This effect is highly beneficial for human health when healthy lifestyle habits including nutrition, hydration, rest, chronoregulation and physical activity.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Phymo® Lab, Physiology and Molecular Laboratory, Collado Hermoso, Segovia, Spain.
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
25
|
Álvarez-Herms J. Summatory Effects of Anaerobic Exercise and a 'Westernized Athletic Diet' on Gut Dysbiosis and Chronic Low-Grade Metabolic Acidosis. Microorganisms 2024; 12:1138. [PMID: 38930520 PMCID: PMC11205432 DOI: 10.3390/microorganisms12061138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Anaerobic exercise decreases systemic pH and increases metabolic acidosis in athletes, altering the acid-base homeostasis. In addition, nutritional recommendations advising athletes to intake higher amounts of proteins and simple carbohydrates (including from sport functional supplements) could be detrimental to restoring acid-base balance. Here, this specific nutrition could be classified as an acidic diet and defined as 'Westernized athletic nutrition'. The maintenance of a chronic physiological state of low-grade metabolic acidosis produces detrimental effects on systemic health, physical performance, and inflammation. Therefore, nutrition must be capable of compensating for systemic acidosis from anaerobic exercise. The healthy gut microbiota can contribute to improving health and physical performance in athletes and, specifically, decrease the systemic acidic load through the conversion of lactate from systemic circulation to short-chain fatty acids in the proximal colon. On the contrary, microbial dysbiosis results in negative consequences for host health and physical performance because it results in a greater accumulation of systemic lactate, hydrogen ions, carbon dioxide, bacterial endotoxins, bioamines, and immunogenic compounds that are transported through the epithelia into the blood circulation. In conclusion, the systemic metabolic acidosis resulting from anaerobic exercise can be aggravated through an acidic diet, promoting chronic, low-grade metabolic acidosis in athletes. The individuality of athletic training and nutrition must take into consideration the acid-base homeostasis to modulate microbiota and adaptive physiological responses.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Phymolab, Physiology and Molecular Laboratory, 40170 Collado Hermoso, Segovia, Spain
| |
Collapse
|
26
|
Aya JV, Vega LC, Muñoz E, Muñoz M, López DF, Guzmán MP, Martínez DF, Cruz-Saavedra LB, Castillo AK, Quintero KJ, Gónzalez Soltero R, Cala MP, Ramírez JD. Divergent Gut Microbiota: Archaeal and Bacterial Signatures Unveil Unique Patterns in Colombian Cyclists Compared to Weightlifters and Non-Athletes. Adv Biol (Weinh) 2024; 8:e2400069. [PMID: 38548661 DOI: 10.1002/adbi.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Indexed: 06/16/2024]
Abstract
Engagement in physical activity, across various sports, promotes a diverse microbiota in active individuals. This study examines the gut microbiota of Colombian athletes, specifically weightlifters (n = 16) and road cyclists (n = 13), compared to non-athletes (n = 15). Using Kruskal-Wallis tests, the physical activity level of a group of non-athletic individuals and the sports experience of a group of professional athletes is analyzed. The median age of participants is 24 years, comprising 25 men and 19 women. The microbiota is collected using fecal samples. Participants provided these samples during their pre-competitive stage, specifically during the concentration phase occurring two weeks prior to national competitions. This timing is chosen to capture the microbial composition during a period of heightened physical preparation. Questionnaire responses and microbial composition assessments identify disparities among groups. Microbial composition analysis explores core microbiome, abundance, and taxonomy using Pavian, MicrobiomeAnalyst 2.0, and GraPhlAn. ANCOM-BC2 reveals differentially abundant species. Road cyclists exhibit decreased Bacteria and increased Archaea abundance. Phylum-level variations included Planctomycetes, Acidobacteria, and Proteobacteria, while Bacteroidetes prevailed. Key families influencing gut microbiota are Bacteroidaceae, Muribaculaceae, and Selenomonadaceae. Weightlifters exhibit unique viral and archaeal community connections, while cyclists showed specialized microbial interplay influenced by endurance exercise. Correlation network analysis emphasizes distinctive microbial interactions within athlete groups, shedding light on the impact of physical activities on gut microbiota and athlete health.
Collapse
Affiliation(s)
- J V Aya
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - L C Vega
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - E Muñoz
- Universidad Santo Tomás, Bogotá, Colombia
| | - M Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Epidemiology Laboratory, Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - D F López
- Centro Latinoamericano de Nutrición (CELAN), Bogotá, Colombia
| | - M P Guzmán
- Centro Latinoamericano de Nutrición (CELAN), Bogotá, Colombia
| | - D F Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - L B Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - A K Castillo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - K J Quintero
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - R Gónzalez Soltero
- MAS Microbiota Group, Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Spain
| | - M P Cala
- MetCore - Metabolomics Core Facility, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - J D Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
27
|
Hasanian-Langroudi F, Ghasemi A, Hedayati M, Siadat SD, Tohidi M. Novel Insight into the Effect of Probiotics in the Regulation of the Most Important Pathways Involved in the Pathogenesis of Type 2 Diabetes Mellitus. Probiotics Antimicrob Proteins 2024; 16:829-844. [PMID: 37162668 DOI: 10.1007/s12602-023-10056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 05/11/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is considered one of the most common disorders worldwide. Although several treatment modalities have been developed, the existing interventions have not yielded the desired results. Therefore, researchers have focused on finding treatment choices with low toxicity and few adverse effects that could control T2DM efficiently. Various types of research on the role of gut microbiota in developing T2DM and its related complications have led to the growing interest in probiotic supplementation. Several properties make these organisms unique in terms of human health, including their low cost, high reliability, and good safety profile. Emerging evidence has demonstrated that three of the most important signaling pathways, including nuclear factor kappa B (NF-κB), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and nuclear factor erythroid 2-related factor 2 (Nrf2), which involved in the pathogenesis of T2DM, play key functions in the effects of probiotics on this disease. Hence, we will focus on the clinical applications of probiotics in the management of T2DM. Then, we will also discuss the roles of the involvement of various probiotics in the regulation of the most important signaling pathways (NF-κB, PI3K/Akt, and Nrf2) involved in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Farzaneh Hasanian-Langroudi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box, Tehran, 19395-4763, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Maryam Tohidi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box, Tehran, 19395-4763, Iran.
| |
Collapse
|
28
|
Yang K, Chen Y, Wang M, Zhang Y, Yuan Y, Hou H, Mao YH. The Improvement and Related Mechanism of Microecologics on the Sports Performance and Post-Exercise Recovery of Athletes: A Narrative Review. Nutrients 2024; 16:1602. [PMID: 38892536 PMCID: PMC11174581 DOI: 10.3390/nu16111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The diversity and functionality of gut microbiota may play a crucial role in the function of human motor-related systems. In addition to traditional nutritional supplements, there is growing interest in microecologics due to their potential to enhance sports performance and facilitate post-exercise recovery by modulating the gut microecological environment. However, there is a lack of relevant reviews on this topic. This review provides a comprehensive overview of studies investigating the effects of various types of microecologics, such as probiotics, prebiotics, synbiotics, and postbiotics, on enhancing sports performance and facilitating post-exercise recovery by regulating energy metabolism, mitigating oxidative-stress-induced damage, modulating immune responses, and attenuating bone loss. Although further investigations are warranted to elucidate the underlying mechanisms through which microecologics exert their effects. In summary, this study aims to provide scientific evidence for the future development of microecologics in athletics.
Collapse
Affiliation(s)
- Keer Yang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yonglin Chen
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Minghan Wang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yishuo Zhang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Haoyang Hou
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yu-Heng Mao
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
- Guangdong Key Laboratory of Human Sports Performance Science, Guangzhou Sport University, Guangzhou 510500, China
| |
Collapse
|
29
|
Yang M, Deng H, Zhou S, Lu D, Shen X, Huang L, Chen Y, Xu L. Irisin alleviated the reproductive endocrinal disorders of PCOS mice accompanied by changes in gut microbiota and metabolomic characteristics. Front Microbiol 2024; 15:1373077. [PMID: 38846566 PMCID: PMC11153696 DOI: 10.3389/fmicb.2024.1373077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/11/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Folliculogenesis and oligo/anovulation are common pathophysiological characteristics in polycystic ovary syndrome (PCOS) patients, and it is also accompanied by gut microbiota dysbiosis. It is known that physical activity has beneficial effects on improving metabolism and promoting ovulation and menstrual cycle disorder in PCOS patients, and it can also modulate the gastrointestinal microbiota in human beings. However, the mechanism remains vague. Irisin, a novel myokine, plays a positive role in the mediating effects of physical activity. Methods Mice were randomly divided into the control group, PCOS group and PCOS+irisin group. PCOS model was induced by dehydroepiandrosterone (DHEA) and high-fat diet (HFD). The PCOS+irisin group was given irisin 400μg/kg intraperitoneal injection every other day for 21 days. The serum sex hormones were measured by radioimmunoassay. Hematoxylin and Eosin (H&E) Staining and immunohistochemistry (IHC) were conducted on ovarian tissue. The feces microbiota and metabolomic characteristics were collected by 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS). Results In this study, we demonstrated that irisin supplementation alleviated reproductive endocrine disorders of PCOS mice, including estrous cycle disturbance, ovarian polycystic degeneration, and hyperandrogenemia. Irisin also improved the PCOS follicles dysplasia and ovulation disorders, while it had no significant effect on the quality of oocytes. Moreover, irisin could mitigate the decreased bacteria of Odoribacter and the increased bacteria of Eisenbergiella and Dubosiella in PCOS mice model. Moreover, irisin could alleviate the increased fecal metabolites: Methallenestril and PS (22:5(4Z,7Z,10Z,13Z,16Z)/ LTE4). Conclusion These results suggest that irisin may alleviate the status of PCOS mice model by modulating androgen-induced gut microbiota dysbiosis and fecal metabolites. Hence, our study provided evidence that irisin may be considered as a promising strategy for the treatment of PCOS.
Collapse
Affiliation(s)
- Meina Yang
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hongxia Deng
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Siyu Zhou
- Department of Public & Occupational Health, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Danhua Lu
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaoyang Shen
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Lu Huang
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yan Chen
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Liangzhi Xu
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
30
|
Liu H, Liu X, Liu H, Tang J, He W, Xu T, Cheng B, Shi B, Han J. Bacillus siamensis Improves the Immune Status and Intestinal Health of Weaned Piglets by Improving Their Intestinal Microbiota. Microorganisms 2024; 12:1012. [PMID: 38792841 PMCID: PMC11124100 DOI: 10.3390/microorganisms12051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Previous studies on the early interference of gut microbiota by Bacillus siamensis (B. siamensis) in weaned piglets are rarely reported, and the present trial is a preliminary study. This experiment was conducted to investigate the effects of B. siamensis supplementation on the growth performance, serum biochemistry, immune response, fecal short-chain fatty acids and microbiota of weaned piglets. Sixty weaned piglets were randomly divided into a control group (CON) and a B. siamensis group (BS), which were fed a basal diet and the basal diet supplemented with 5 × 1010 CFU B. siamensis per kg, respectively. Each group had 3 replicates and 10 piglets per replicate. The trial lasted for 28 days. The results showed that B. siamensis significantly increased the serum growth hormone (GH) and insulin-like growth factor (IGF) in piglets. Compared with the CON group, the levels of serum immunoglobulin and inflammatory factors in the BS group were significantly improved. In addition, the serum concentrations of zonulin and endotoxin (ET) in the BS group were lower. The dietary addition of B. siamensis significantly increased fecal short-chain fatty acid (SCFA) levels in piglets. Notably, B. siamensis improved the microbial composition by increasing beneficial genera, including Weissella, Lachnospiraceae_NK4A136_group and Bifidobacterium, and decreasing pathogenic genera, including Pantoea, Fusobacterium and Gemella, in piglet feces. Correlation analysis showed that the benefits of dietary B. siamensis supplementation were closely related to its improved microbial composition. In summary, the addition of B. siamensis can improve the immunity function, inflammatory response, gut permeability and SCFA levels of weaned piglets, which may be achieved through the improvement of their microbiota.
Collapse
Affiliation(s)
- Huawei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
- National Soybean Engineering Technology Research Center, Heilongjiang Academy of Green Food Science, Northeast Agricultural University, Harbin 150028, China
| | - Xinyu Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Haiyang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Jiaqi Tang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Wei He
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Tianqi Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Baojing Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Jianchun Han
- National Soybean Engineering Technology Research Center, Heilongjiang Academy of Green Food Science, Northeast Agricultural University, Harbin 150028, China
| |
Collapse
|
31
|
Clemente-Suárez VJ, Peris-Ramos HC, Redondo-Flórez L, Beltrán-Velasco AI, Martín-Rodríguez A, David-Fernandez S, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Personalizing Nutrition Strategies: Bridging Research and Public Health. J Pers Med 2024; 14:305. [PMID: 38541047 PMCID: PMC10970995 DOI: 10.3390/jpm14030305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
In recent years, although life expectancy has increased significantly, non-communicable diseases (NCDs) continue to pose a significant threat to the health of the global population. Therefore, eating habits have been recognized as key modifiable factors that influence people's health and well-being. For this reason, it is interesting to study dietary patterns, since the human diet is a complex mixture of macronutrients, micronutrients, and bioactive compounds, and can modulate multiple physiological processes, including immune function, the metabolism, and inflammation. To ensure that the data we acquired were current and relevant, we searched primary and secondary sources, including scientific journals, bibliographic indexes, and databases in the last 15 years with the most relevant articles. After this search, we observed that all the recent research on NCDs suggests that diet is a critical factor in shaping an individual's health outcomes. Thus, cardiovascular, metabolic, mental, dental, and visual health depends largely on the intake, habits and patterns, and nutritional behaviors. A diet high in processed and refined foods, added sugars, and saturated fats can increase the risk of developing chronic diseases. On the other hand, a diet rich in whole, nutrient-dense foods, such as vegetables, fruits, nuts, legumes, and a high adherence to Mediterranean diet can improve health's people.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Helia Carmen Peris-Ramos
- Faculty of Biomedical and Health Sciences, Clinical Odontology Department, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (H.C.P.-R.); (S.D.-F.)
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street, s/n, Villaviciosa de Odón, 28670 Madrid, Spain;
| | | | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | - Susana David-Fernandez
- Faculty of Biomedical and Health Sciences, Clinical Odontology Department, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (H.C.P.-R.); (S.D.-F.)
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | | |
Collapse
|
32
|
Huang B, Liang S, Li X, Xie Z, Yang R, Sun B, Xue J, Li B, Wang S, Shi H, Shi Y. Postweaning intermittent sleep deprivation enhances defensive attack in adult female mice via the microbiota-gut-brain axis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110915. [PMID: 38104921 DOI: 10.1016/j.pnpbp.2023.110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Sleep is one of the most important physiological activities in life and promotes the growth and development of an individual. In modern society, sleep deprivation (SD), especially among adolescents, has become a common phenomenon. However, long-term SD severely affected adolescents' neurodevelopment leading to abnormal behavioral phenotypes. Clinical studies indicated that sleep problems caused increased aggressive behavior in adolescents. Aggressive behavior was subordinate to social behaviors, in which defensive attack was often the last line for survival. Meanwhile, increasing studies shown that gut microbiota regulated social behaviors by affecting specific brain regions via the gut-brain axis. However, whether postweaning intermittent SD is related to defensive attack in adulthood, and if so, whether it is mediated by the microbiota-gut-brain axis are still elusive. Combined with microbial sequencing and hippocampal metabolomics, the present study mainly investigated the long-term effects of postweaning intermittent SD on defensive attack in adult mice. Our study demonstrated that postweaning intermittent SD enhanced defensive attack and impaired long-term memory formation in adult female mice. Moreover, microbial sequencing and LC-MS analysis showed that postweaning intermittent SD altered the gut microbial composition and the hippocampal metabolic profile in female mice, respectively. Our attention has been drawn to the neuroactive ligand-receptor interaction pathway and related metabolites. In conclusion, our findings provide a new perspective on the relationship of early-life SD and defensive attack in adulthood, and also highlight the importance of sleep in early-life, especially in females.
Collapse
Affiliation(s)
- Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Shihao Liang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Xinrui Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Ziyu Xie
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Binhuang Sun
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Jiping Xue
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Bingyu Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Sheng Wang
- Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; Nursing School, Hebei Medical University, Shijiazhuang 050031, China.
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China.
| |
Collapse
|
33
|
Kali VR, Meda SS. Functional nutrition for the health of exercising individuals and elite sportspersons. Nutr Health 2024; 30:49-59. [PMID: 37583297 DOI: 10.1177/02601060231191865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
INTRODUCTION Elite sportspersons who are involved in high-intensity physical sports indulge in severe training and competition schedules, which exposes them to high levels of inflammatory and oxidative stress, hence it may hamper their health sometimes. Disturbance in the health of sportspersons also induces compromised performances. THE PREMISE FOR FUNCTIONAL NUTRITION Functional nutrition is essential for elite sportspersons training for securing both rest and recovery to have proper health and anticipated performance. Apart from serving the energy needs of the sportspersons, the nutrition strategies should provide them with certain metabolic advantages, which provide greater health and immunity, to ensure proper training and competition. The diet of the sportspersons needs to contain appropriate anti-inflammatory and antioxidative nutrients, to ensure to reduction and control of the physiological stress of tissues during high-intensity physical sports, especially during marathon running. Preserving anabolic valence among sportspersons for muscle myokine optimization is an essential aspect of sports nutrition, which secures health and provides excellent performance potential. Preservation and optimization of gut microbiome among sportspersons enhance immune health and performance, through proper gut integrity and enhanced metabolic cascades. As the genes are to be properly expressed for excellent manifestation in protein synthesis and other metabolic signaling, achieving genetic valance through proper nutrition ensures the health of the sportspersons. CONCLUSION Functional nutrition seems a very necessary and potent factor in the training and competition aspects of elite sportspersons since nutrition not only provides recovery but also ensures proper health for elite sportspersons.
Collapse
|
34
|
Álvarez-Herms J, González-Benito A, Corbi F, Odriozola A. What if gastrointestinal complications in endurance athletes were gut injuries in response to a high consumption of ultra-processed foods? Please take care of your bugs if you want to improve endurance performance: a narrative review. Eur J Appl Physiol 2024; 124:383-402. [PMID: 37839038 DOI: 10.1007/s00421-023-05331-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
To improve performance and recovery faster, athletes are advised to eat more often than usual and consume higher doses of simple carbohydrates, during and after exercise. Sports energetic supplements contain food additives, such as artificial sweeteners, emulsifiers, acidity regulators, preservatives, and salts, which could be harmful to the gut microbiota and impair the intestinal barrier function. The intestinal barrier plays a critical function in bidirectionally regulation of the selective transfer of nutrients, water, and electrolytes, while preventing at the same time, the entrance of harmful substances (selective permeability). The gut microbiota helps to the host to regulate intestinal homeostasis through metabolic, protective, and immune functions. Globally, the gut health is essential to maintain systemic homeostasis in athletes, and to ensure proper digestion, metabolization, and substrate absorption. Gastrointestinal complaints are an important cause of underperformance and dropout during endurance events. These complications are directly related to the loss of gut equilibrium, mainly linked to microbiota dysbiosis and leaky gut. In summary, athletes must be cautious with the elevated intake of ultra-processed foods and specifically those contained on sports nutrition supplements. This review points out the specific nutritional interventions that should be implemented and/or discontinued depending on individual gut functionality.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Phymolab (Physiology and Molecular Laboratory), Collado Hermoso, Segovia, Spain.
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - A González-Benito
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - F Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Lleida (UdL), Lleida, Spain
| | - A Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
35
|
McAuley ABT, Hughes DC, Tsaprouni LG, Varley I, Suraci B, Bradley B, Baker J, Herbert AJ, Kelly AL. Genetic Associations With Acceleration, Change of Direction, Jump Height, and Speed in English Academy Football Players. J Strength Cond Res 2024; 38:350-359. [PMID: 38258831 DOI: 10.1519/jsc.0000000000004634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
ABSTRACT McAuley, ABT, Hughes, DC, Tsaprouni, LG, Varley, I, Suraci, B, Bradley, B, Baker, J, Herbert, AJ, and Kelly, AL. Genetic associations with acceleration, change of direction, jump height, and speed in English academy football players. J Strength Cond Res 38(2): 350-359, 2024-High-intensity movements and explosive actions are commonly assessed during athlete development in football (soccer). Although many environmental factors underpin these power-orientated traits, research suggests that there is also a sizeable genetic component. Therefore, this study examined the association of 22 single-nucleotide polymorphisms (SNPs) with acceleration, change of direction, jump height, and speed in academy football players. One hundred and forty-nine, male, under-12 to under-23 football players from 4 English academies were examined. Subjects performed 5-, 10-, 20-, and 30-m sprints, countermovement jumps (CMJs), and the 5-0-5 agility test. Simple linear regression was used to analyze individual SNP associations, whereas both unweighted and weighted total genotype scores (TGS; TWGS) were computed to measure the combined influence of all SNPs. To control for multiple testing, a Benjamini-Hochberg false discovery rate of 0.05 was applied to all genotype model comparisons. In isolation, the GALNT13 (rs10196189) G allele and IL6 (rs1800795) G/G genotype were associated with faster (∼4%) 5-, 10-, and 20-m sprints and higher (∼16%) CMJs, respectively (p < 0.001). Furthermore, the TGS and TWGS significantly correlated with all performance assessments, explaining between 6 and 33% of the variance (p < 0.001). This study demonstrates that some genetic variants are associated with power-orientated phenotypes in youth football players and may add value toward a future polygenic profile of physical performance.
Collapse
Affiliation(s)
- Alexander B T McAuley
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, West Midlands, United Kingdom
| | - David C Hughes
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, West Midlands, United Kingdom
| | - Loukia G Tsaprouni
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, West Midlands, United Kingdom
| | - Ian Varley
- Department of Sport Science, Nottingham Trent University, Nottingham, United Kingdom
| | - Bruce Suraci
- Academy Coaching Department, AFC Bournemouth, Bournemouth, United Kingdom; and
| | - Ben Bradley
- Academy Coaching Department, AFC Bournemouth, Bournemouth, United Kingdom; and
| | - Joseph Baker
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Adam J Herbert
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, West Midlands, United Kingdom
| | - Adam L Kelly
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, West Midlands, United Kingdom
| |
Collapse
|
36
|
Vazquez-Medina A, Rodriguez-Trujillo N, Ayuso-Rodriguez K, Marini-Martinez F, Angeli-Morales R, Caussade-Silvestrini G, Godoy-Vitorino F, Chorna N. Exploring the interplay between running exercises, microbial diversity, and tryptophan metabolism along the microbiota-gut-brain axis. Front Microbiol 2024; 15:1326584. [PMID: 38318337 PMCID: PMC10838991 DOI: 10.3389/fmicb.2024.1326584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
The emergent recognition of the gut-brain axis connection has shed light on the role of the microbiota in modulating the gut-brain axis's functions. Several microbial metabolites, such as serotonin, kynurenine, tryptamine, indole, and their derivatives originating from tryptophan metabolism have been implicated in influencing this axis. In our study, we aimed to investigate the impact of running exercises on microbial tryptophan metabolism using a mouse model. We conducted a multi-omics analysis to obtain a comprehensive insight into the changes in tryptophan metabolism along the microbiota-gut-brain axis induced by running exercises. The analyses integrated multiple components, such as tryptophan changes and metabolite levels in the gut, blood, hippocampus, and brainstem. Fecal microbiota analysis aimed to examine the composition and diversity of the gut microbiota, and taxon-function analysis explored the associations between specific microbial taxa and functional activities in tryptophan metabolism. Our findings revealed significant alterations in tryptophan metabolism across multiple sites, including the gut, blood, hippocampus, and brainstem. The outcomes indicate a shift in microbiota diversity and tryptophan metabolizing capabilities within the running group, linked to increased tryptophan transportation to the hippocampus and brainstem through circulation. Moreover, the symbiotic association between Romboutsia and A. muciniphila indicated their potential contribution to modifying the gut microenvironment and influencing tryptophan transport to the hippocampus and brainstem. These findings have potential applications for developing microbiota-based approaches in the context of exercise for neurological diseases, especially on mental health and overall well-being.
Collapse
Affiliation(s)
- Alejandra Vazquez-Medina
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Nicole Rodriguez-Trujillo
- Nutrition and Dietetics Program, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Kiara Ayuso-Rodriguez
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | | | - Roberto Angeli-Morales
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | | | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Nataliya Chorna
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
37
|
Khaledi M, Poureslamfar B, Alsaab HO, Tafaghodi S, Hjazi A, Singh R, Alawadi AH, Alsaalamy A, Qasim QA, Sameni F. The role of gut microbiota in human metabolism and inflammatory diseases: a focus on elderly individuals. ANN MICROBIOL 2024; 74:1. [DOI: 10.1186/s13213-023-01744-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2025] Open
Abstract
Abstract
Background
The gut microbiota plays a crucial role in regulating the host’s immune responses during aging, which was characterized by a different abundance of bacteria in several age groups.
Main body
Gut microbiota dysbiosis is associated with aging, antibiotic exposure, underlying diseases, infections, hormonal variations, circadian rhythm, and malnutrition, either singularly or in combination. The appropriate use of prebiotics and probiotics may be able to prevent or reduce this disruption.
Conclusion
The current review focuses on the gut microbiota composition across the life cycle, factors affecting gut microbiota changes with aging, and interventions to modulate gut microbiota.
Collapse
|
38
|
Wagner A, Kapounková K, Struhár I. The relationship between the gut microbiome and resistance training: a rapid review. BMC Sports Sci Med Rehabil 2024; 16:4. [PMID: 38166998 PMCID: PMC10763211 DOI: 10.1186/s13102-023-00791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
The human gut microbiome is attracting increasing attention because of its overall effect on health. Several reviews have investigated the impact of physical activity on the gut microbiome; however, these predominantly concentrate on either endurance or a combination of physical activities. This study aims to describe the effect of resistance or strength training on the gut microbiome of a human population. This rapid review follows the guidelines of the Cochrane Rapid Reviews Guidance along with PRISMA. A review of the literature was carried out using articles indexed by PubMed, Scopus, and Web of Science published in the last 12 years. None of the seven studies included find significant change in the gut microbiome in terms of bacterial taxa composition or overall diversity, though the results show that resistance training might decrease the zonulin level and increase mucin production and thereby reduce inflammation in the gut. Interestingly, two studies point to a gut-muscle axis connection and this is discussed in our paper. However, due to the small number of existing studies and certain methodological disagreements, it was hard to find a consensus on the relationship between the gut microbiome and resistance training.
Collapse
Affiliation(s)
- Adam Wagner
- Department of Sport Performance and Exercise Testing Promotion, Faculty of Sport Studies, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Kateřina Kapounková
- Department of Physical Activities and Health Sciences, Faculty of Sport Studies, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Ivan Struhár
- Department of Physical Activities and Health Sciences, Faculty of Sport Studies, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
39
|
Wang Y, Dong Y, Zhang Y, Yan J, Ren C, Ma H, Cui Z. An 8-week ketogenic diet improves exercise endurance and liver antioxidant capacity after weight loss in obese mice. Front Nutr 2023; 10:1322936. [PMID: 38223504 PMCID: PMC10785402 DOI: 10.3389/fnut.2023.1322936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024] Open
Abstract
Evolving evidence supports the role of the ketogenic diet (KD) in weight loss. However, no coherent conclusions are drawn on its impact on the effect of KD on exercise and antioxidant capacity after weight loss in obese individuals. We evaluated the exercise performance, energy metabolism and antioxidant capacity of mice after weight loss using high-fat diet-induced obese mice, and used KD and normal diet (ND) intervention, respectively, to provide a theoretical basis for further study of the health effects of KD. Our results showed that the 8-week KD significantly reduced the body weight of obese mice and improved the performance of treadmill exercise, but had no significant effect on grip strength. Serum biochemical results suggest that KD has the risk of elevating blood lipid. In liver tissue, KD significantly reduced the level of oxidative stress and increased the antioxidant capacity of the liver. Our findings suggest that the intervention with KD led to weight loss, modulate energy metabolism and improve aerobic exercise endurance in obese mice. Despite its antioxidant potential in the liver, the utilization of KD still requires caution. This study underscores the need for further investigation into the health impacts of KD, especially in regard to its potential risks.
Collapse
Affiliation(s)
- Ying Wang
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Yunlong Dong
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Ying Zhang
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Jiabao Yan
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Cuiru Ren
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Hong Ma
- Sports Department, Xi’an International Studies University, Xi’an, China
| | - Zhenwei Cui
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Porepp ODSC, Xavier MG, da Silveira LM, Lindenau I, Schellin AS, Piccoli RC, Messenburger GP, da Silva PP, Oliveira PS, Delpino FM, Pieniz S. Effect of Probiotic Supplementation on Gut Microbiota and Sport Performance in Athletes and Physically Active Individuals: A Systematic Review. J Diet Suppl 2023; 21:660-676. [PMID: 38148685 DOI: 10.1080/19390211.2023.2293842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The present systematic review aimed to evaluate the effect of probiotic supplementation on gut microbiota and sport performance in athletes and physically active individuals. This review followed the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (P RISMA). The search had no time limits and included the following databases: MEDLINE, LILACS, Scopus, Web of Science, Cochrane, and SP ORT Discus. The risk of bias was assessed through the updated version of the Cochrane tool for assessing the risk of bias in randomized trials (RoB 2). Nine randomized clinical trials (RCTs) were included, accounting for 216 participants. Of these, seven studies found positive results on sport performance. Additionally, some studies showed significant decrease in biochemical parameters linked to inflammation. It was also observed direct results in the microbiota composition of the participants, such as an increase in the abundance of probiotics and a decrease in certain pathogenic bacteria. Therefore, the use of probiotics showed improvement in inflammatory biomarkers and oxidative stress, which indirectly may contribute to the improvement of sport performance. However, the majority of the studies presented a high risk of bias, which impair the reproducibility of the results. While the field of probiotic supplementation and sport performance is emerging, the promising results from this systematic review suggest that further investigation through larger and more robust randomized clinical trials can provide valuable insights for athletes and their performance.
Collapse
Affiliation(s)
- Olavo da Silva Carvalho Porepp
- Graduate Program in Medical Sciences: Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- College of Nutrition, Federal University of Pelotas, Pelotas, Brazil
| | - Mariana Gonçalves Xavier
- Graduate Program in Nutrition, Department of Nutrition, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Isadora Lindenau
- College of Nutrition, Federal University of Pelotas, Pelotas, Brazil
| | | | | | | | | | | | - Felipe Mendes Delpino
- Graduate Program in Health Sciences, College of Nursing, Federal University of Pelotas, Pelotas, Brazil
| | - Simone Pieniz
- College of Nutrition, Federal University of Pelotas, Pelotas, Brazil
- Graduate Program in Food and Nutrition, College of Nutrition, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
41
|
Liu X, Wei X, Feng Y, Liu H, Tang J, Gao F, Shi B. Supplementation with Complex Dietary Fiber during Late Pregnancy and Lactation Can Improve Progeny Growth Performance by Regulating Maternal Antioxidant Status and Milk Quality. Antioxidants (Basel) 2023; 13:22. [PMID: 38275642 PMCID: PMC10812556 DOI: 10.3390/antiox13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
This study investigated the nutritional benefits of complex dietary fiber (beta-glucan and fructo-oligosaccharides, CDF) supplementation in sows and piglets during late pregnancy and lactation. Twenty-four sows were randomly divided into two groups: the control group was fed a basal diet (n = 12), and the experimental group was fed a CDF diet (0.25% CDF replaced the same proportion of corn in the basal diet, n = 12). Dietary treatment was given from day 107 of pregnancy to day 25 of lactation. The results of this experiment showed that CDF increased the average daily feed intake (ADFI) of sows during lactation and the weaning body weight (BW) and average daily gain of piglets. Dietary CDF supplementation improved the antioxidant capacity and immune level of sows and decreased the serum zonulin level. Dietary supplementation with CDF increased the levels of antioxidant activity, immunoglobulin, and anti-inflammatory factor interleukin-10 (IL-10) in milk. Meanwhile, piglets in the CDF group had increased serum antioxidant activity, immunoglobulin, and growth-related hormone levels; decreased malondialdehyde (MDA), interleukin-6 (IL-6), and D-lactic acid (D-LA) levels; and increased fecal short-chain fatty acid content. In addition, the CDF group increased the diversity of microorganisms in sow feces. In conclusion, the supplementation of a diet with CDF in late pregnancy and lactation can alleviate the oxidative stress of sows, improve milk quality, and have significant positive effects on the antioxidant capacity and growth performance of piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.L.); (X.W.); (Y.F.); (H.L.); (J.T.); (F.G.)
| |
Collapse
|
42
|
Pantoja-Arévalo L, Gesteiro E, Matthias T, Urrialde R, González-Gross M. Association between Food-Specific Immunoglobulin G 4 Antibodies in Adults with Self-Reported Signs and Symptoms Attributed to Adverse Reactions to Foodstuffs. Biomedicines 2023; 11:3335. [PMID: 38137556 PMCID: PMC10742047 DOI: 10.3390/biomedicines11123335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Signs and symptoms attributed to adverse reactions to foodstuffs (ARFS) need tools for research and evaluation in clinical practice. The objectives of this study were (a) to evaluate the most frequent self-reported signs and symptoms attributed to ARFS in Spanish adults, (b) to determine the prevalence of food-specific IgG4 antibody reactions (AbRs), and (c) to investigate the association between self-reported ARFS symptomatology and food-specific IgG4 AbRs. Food-specific IgG4 AbRs against 57 common food and beverages (AESKUCARE-T2FA® in vitro point-of-care test kit, Aesku.Diagnostics GmbH, Germany) were determined in capillary blood samples of 205 volunteers living in the Region of Madrid (Spain). The most frequent self-reported signs and symptoms were related to skin (43%), digestive (41%), and nervous system (NS, 33%) problems. The prevalence of food-specific IgG4 AbRs was cow's milk (73%), sheep's milk (70%), casein (66%), and goat's milk (56.10%). Positive IgG4 AbRs against tomato had a profile consisting of 3/4 of skin problems, more than half of digestive, and 2/5 of NS self-reported signs and symptoms. In conclusion, at least 1/3 of the studied sample reported skin, digestive, and NS signs and symptoms. The most frequent food-specific IgG4 AbRs were related to dairy. Skin problems were more frequent in positive tomato IgG4 AbRs.
Collapse
Affiliation(s)
- Lisset Pantoja-Arévalo
- ImFINE Research Group, Department of Health and Human Performance, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (E.G.); (M.G.-G.)
- EXERNET Spanish Research Network on Physical Exercise and Health, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Eva Gesteiro
- ImFINE Research Group, Department of Health and Human Performance, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (E.G.); (M.G.-G.)
- EXERNET Spanish Research Network on Physical Exercise and Health, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Torsten Matthias
- Department of Research and Development, Aesku.Diagnostics GmbH, 55234 Wendelsheim, Germany
| | - Rafael Urrialde
- Department of Genetics, Physiology and Microbiology, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Department of Pharmaceutical and Health Sciences, Universidad San Pablo CEU, 28040 Madrid, Spain
| | - Marcela González-Gross
- ImFINE Research Group, Department of Health and Human Performance, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (E.G.); (M.G.-G.)
- EXERNET Spanish Research Network on Physical Exercise and Health, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Biomedical Research Centre of Pathophysiology, Obesity and Nutrition-CIBERobn, Carlos III Health Institute, 28040 Madrid, Spain
| |
Collapse
|
43
|
Clark A, Mach N. The gut mucin-microbiota interactions: a missing key to optimizing endurance performance. Front Physiol 2023; 14:1284423. [PMID: 38074323 PMCID: PMC10703311 DOI: 10.3389/fphys.2023.1284423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/27/2023] [Indexed: 01/22/2025] Open
Abstract
Endurance athletes offer unique physiology and metabolism compared to sedentary individuals. Athletes training at high intensities for prolonged periods are at risk for gastrointestinal disturbances. An important factor in endurance performance is the integrity and function of the gut barrier, which primarily depends on heavily O-glycosylated mucins. Emerging evidence shows a complex bidirectional dialogue between glycans on mucins and gut microorganisms. This review emphasizes the importance of the crosstalk between the gut microbiome and host mucus mucins and some of the mechanisms underlying this symbiosis. The contribution of mucin glycans to the composition and functionality of the gut microbiome is discussed, as well as the persuasive impact of the gut microbiome on mucin composition, thickness, and immune and metabolic functions. Lastly, we propose natural and synthetic glycans supplements to improve intestinal mucus production and barrier function, offering new opportunities to enhance endurance athletes' performance and gut health.
Collapse
Affiliation(s)
- Allison Clark
- Universitat Oberta de Catalunya, Universitat de Catalunya, Barcelona, Spain
| | - Núria Mach
- Interactions hôtes-agents pathogènes, Université de Toulouse, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, École nationale vétérinaire de Toulouse, Toulouse, France
| |
Collapse
|
44
|
Kenger EB, Eren F, Ozlu T, Gunes FE. Analysis of microbiota profile and nutritional status in male professional football players. J Sports Med Phys Fitness 2023; 63:1235-1243. [PMID: 37486255 DOI: 10.23736/s0022-4707.23.15103-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND The interest in the effect of gut microbiota on athlete health has increased in recent years. Available data indicate a relationship between gut microbiota composition and physical activity, suggesting that changes in the microbiota may contribute to the host's physical performance. Studies show that leaky gut syndrome is highly correlated with upper respiratory infections and gastrointestinal disorders in endurance sports. This study aims to reveal the relationship between microbiota profiles, and the nutritional status of football players who perform endurance exercises. METHODS Twenty male professional football players playing in one of the Turkish Football Federation Second League clubs participated in the study. Fecal samples were collected and stored at -86 °C, and the fecal microbiota was analyzed through 16s rRNA gene sequencing. The body composition of the football players was measured using a bioelectrical impedance analyzer. In addition, the 3-day food intake of the participants was recorded with the help of a dietitian. RESULTS In the microbiota of football players, four phyla, 10 genera, and four species with densities above 1% were found. Body fat percentage was observed to be negatively correlated with the species of Faecalibacterium prausnitzii and Bacteroides vulgatus and the genus of Faecalibacterium (P<0.05). Considering the nutritional status, the fat intake was found to be positively correlated with Actinobacteria and Blautia coccoides; energy and fiber intake with Prevotella and Prevotella copri (P<0.05). In addition, there was a negative correlation between carbohydrate intake and Faecalibacterium (P<0.05). CONCLUSIONS Our study is the first to reveal the microbiota profile of professional Turkish football players. It was found that football players' nutritional status and anthropometric measurements of are significantly related to phylum, genus and species ranks in the microbiota. These results support the bidirectional interaction between microbiota and sports. The relationship between microbiota and sports health/performance is thought to be further clarified with future studies.
Collapse
Affiliation(s)
- Emre B Kenger
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bahcesehir University, Istanbul, Türkiye -
| | - Fatih Eren
- Institute of Gastroenterology, Marmara University, Istanbul, Türkiye
| | - Tugce Ozlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bahcesehir University, Istanbul, Türkiye
| | - Fatma E Gunes
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Medeniyet University, Istanbul, Türkiye
| |
Collapse
|
45
|
Li T, Rui Z, Mao L, Chang Y, Shao J, Chen Y, Han Q, Sui X, An N, Li H, Feng H, Jiang T, Wang Q. Eight Weeks of Bifidobacterium lactis BL-99 Supplementation Improves Lipid Metabolism and Sports Performance through Short-Chain Fatty Acids in Cross-Country Skiers: A Preliminary Study. Nutrients 2023; 15:4554. [PMID: 37960207 PMCID: PMC10648242 DOI: 10.3390/nu15214554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
(1) Background: Probiotics in the form of nutritional supplements are safe and potentially useful for strategic application among endurance athletes. Bifidobacterium animalis lactis BL-99 (BL-99) was isolated from the intestines of healthy Chinese infants. We combined plasma-targeted metabolomics and fecal metagenomics to explore the effect of 8 weeks of BL-99 supplementation on cross-country skiers' metabolism and sports performance. (2) Methods: Sixteen national top-level male cross-country skiers were recruited and randomly divided into a placebo group (C) and a BL-99 group (E). The participants took the supplements four times/day (with each of three meals and at 21:00) consistently for 8 weeks. The experiment was conducted in a single-blind randomized fashion. The subject's dietary intake and total daily energy consumption were recorded. Blood and stool samples were collected before and after the 8-week intervention, and body composition, muscle strength, blood biochemical parameters, plasma-targeted metabolomic data, and fecal metagenomic data were then analyzed. (3) Results: The following changes occurred after 8 weeks of BL-99 supplementation: (a) There was no significant difference in the average total daily energy consumption and body composition between the C and E groups. (b) The VO2max and 60°/s and 180°/s knee joint extensor strength significantly increased in both the C and E groups. By the eighth week, the VO2max and 60 s knee-joint extensor strength were significantly higher in the E group than in the C group. (c) The triglyceride levels significantly decreased in both the C and E groups. In addition, the LDL-C levels significantly decreased in the E group. (d) The abundance of Bifidobacterium animalis increased two-fold in the C group and forty-fold in the E group. (e) Plasma-targeted metabolomic analysis showed that, after eight weeks of BL-99 supplementation, the increases in DHA, adrenic acid, linoleic acid, and acetic acid and decreases in glycocholic acid and glycodeoxycholic acid in the E group were significantly higher than those in the C group. (f) Spearman correlation analysis showed that there was a significant positive correlation between Bifidobacterium animalis' abundance and SCFAs, PUFAs, and bile acids. (g) There was a significant correlation between the most significantly regulated metabolites and indicators related to sports performance and lipid metabolism. (4) Conclusions: Eight weeks of BL-99 supplementation combined with training may help to improve lipid metabolism and sports performance by increasing the abundance of Bifidobacterium, which can promote the generation of short-chain fatty acids and unsaturated fatty acids, and inhibit the synthesis of bile acids.
Collapse
Affiliation(s)
- Tieying Li
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing 100029, China
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People’s Republic of China, Beijing 100029, China
| | - Zihan Rui
- College of Exercise Science, Beijing Sport University, Beijing 100084, China
| | - Letian Mao
- College of Exercise & Health Science, Xi’an Physical Education University, Xi’an 710068, China
| | - Yashan Chang
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing 100029, China
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People’s Republic of China, Beijing 100029, China
| | - Jing Shao
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing 100029, China
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People’s Republic of China, Beijing 100029, China
| | - Yue Chen
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing 100029, China
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People’s Republic of China, Beijing 100029, China
| | - Qi Han
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing 100029, China
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People’s Republic of China, Beijing 100029, China
| | - Xuemei Sui
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Nan An
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing 100029, China
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People’s Republic of China, Beijing 100029, China
| | - Haoqiu Li
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
| | - Haotian Feng
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
| | - Tao Jiang
- College of Exercise & Health Science, Xi’an Physical Education University, Xi’an 710068, China
| | - Qirong Wang
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
| |
Collapse
|
46
|
Csader S, Chen X, Leung H, Männistö V, Pentikäinen H, Tauriainen MM, Savonen K, El-Nezami H, Schwab U, Panagiotou G. Gut ecological networks reveal associations between bacteria, exercise, and clinical profile in non-alcoholic fatty liver disease patients. mSystems 2023; 8:e0022423. [PMID: 37606372 PMCID: PMC10654067 DOI: 10.1128/msystems.00224-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/15/2023] [Indexed: 08/23/2023] Open
Abstract
IMPORTANCE Our study is applying a community-based approach to examine the influence of exercise on gut microbiota (GM) and discover GM structures linked with NAFLD improvements during exercise. The majority of microbiome research has focused on finding specific species that may contribute to the development of human diseases. However, we believe that complex diseases, such as NAFLD, would be more efficiently treated using consortia of species, given that bacterial functionality is based not only on its own genetic information but also on the interaction with other microorganisms. Our results revealed that exercise significantly changes the GM interaction and that structural alterations can be linked with improvements in intrahepatic lipid content and metabolic functions. We believe that the identification of these characteristics in the GM enhances the development of exercise treatment for NAFLD and will attract general interest in this field.
Collapse
Affiliation(s)
- Susanne Csader
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Xiuqiang Chen
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Howell Leung
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Ville Männistö
- Departments of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Milla-Maria Tauriainen
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Departments of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kai Savonen
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Hani El-Nezami
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- University of Hong Kong School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ursula Schwab
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Gianni Panagiotou
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
47
|
Fang X, Nong K, Qin X, Liu Z, Gao F, Jing Y, Fan H, Wang Z, Wang X, Zhang H. Effect of purple sweet potato-derived anthocyanins on heat stress response in Wenchang chickens and preliminary mechanism study. Poult Sci 2023; 102:102861. [PMID: 37390559 PMCID: PMC10466256 DOI: 10.1016/j.psj.2023.102861] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
This study was conducted to investigate the beneficial effect of purple sweet potato anthocyanins (PSPA) on growth performance, oxidative status, immune response, intestinal morphology, and intestinal flora homeostasis in heat-stressed Wenchang chickens. A total of 100 Wenchang chickens (50-day-old) were randomly assigned to 5 groups, including the thermoneutral environment (TN) group (26°C); high-temperature stressed (HS) group (33°C ± 1°C); low-dose PSPA treatment (L_HS) group (8 mg/kg body weight, 33°C ± 1°C); medium-dose PSPA treatment (M_HS) group and high-dose PSPA treatment (H_HS) group (16 mg/kg and 32 mg/kg body weight, respectively, 33°C ± 1°C). The results showed that PSPA reversed the adverse effects of heat stress on growth performance, meat quality, and carcass characteristics. And the effect was associated with the concentration of PSPA partially. Heat stress increased the serum lipids of Wenchang chickens. LDL-C, TG, TC, and FFA in the serum were significantly decreased, and HDL-C and LPS in the serum were increased by PSPA treatment. The digestive enzymes in duodenal chyme were significantly (P < 0.05) increased by PSPA treatment. And PSPA treatment significantly (P < 0.05) enhanced the redox status by improving antioxidant parameters (GSH-Px and SOD) and decreasing the MDA level in the serum and liver. Moreover, the level of inflammatory cytokines was significantly (P < 0.05) regulated by PSPA treatment compared to the HS group. The villus length and goblet cell numbers after PSPA treatment were significantly higher than HS group. Furthermore, PSPA also played protection on the intestine structure by decreasing the level of D-LA and DAO. 16S rRNA sequencing revealed the microbial composition was altered by PSPA, and Acetanaerobacterium and Oscillibacter were dominant in the H_HS group. Microbial functional prediction indicated that function pathways based on KEGG and metacyc database were regulated by PSPA, and intestinal flora correlated with metabolic function significantly. The spearman correlation analysis showed that Saccharibacteria and Clostridium_IV correlated with the serum lipids, antioxidant, and inflammatory cytokines. Collectively, these findings suggest that PSPA has a positive effect against heat stress in poultry.
Collapse
Affiliation(s)
- Xin Fang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Keyi Nong
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Xinyun Qin
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Zhineng Liu
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Feng Gao
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Yuanli Jing
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Haokai Fan
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Zihan Wang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Xuemei Wang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Haiwen Zhang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China.
| |
Collapse
|
48
|
Marullo AL, O'Halloran KD. Microbes, metabolites and muscle: Is the gut-muscle axis a plausible therapeutic target in Duchenne muscular dystrophy? Exp Physiol 2023; 108:1132-1143. [PMID: 37269541 PMCID: PMC10988500 DOI: 10.1113/ep091063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/17/2023] [Indexed: 06/05/2023]
Abstract
NEW FINDINGS What is the topic of this review? The contribution of gut microbial signalling to skeletal muscle maintenance and development and identification of potential therapeutic targets in progressive muscle degenerative diseases such as Duchenne muscular dystrophy. What advances does it highlight? Gut microbe-derived metabolites are multifaceted signalling molecules key to muscle function, modifying pathways contributing to skeletal muscle wasting, making them a plausible target for adjunctive therapy in muscular dystrophy. ABSTRACT Skeletal muscle is the largest metabolic organ making up ∼50% of body mass. Because skeletal muscle has both metabolic and endocrine properties, it can manipulate the microbial populations within the gut. In return, microbes exert considerable influence on skeletal muscle via numerous signalling pathways. Gut bacteria produce metabolites (i.e., short chain fatty acids, secondary bile acids and neurotransmitter substrates) that act as fuel sources and modulators of inflammation, influencing host muscle development, growth and maintenance. The reciprocal interactions between microbes, metabolites and muscle establish a bidirectional gut-muscle axis. The muscular dystrophies constitute a broad range of disorders with varying disabilities. In the profoundly debilitating monogenic disorder Duchenne muscular dystrophy (DMD), skeletal muscle undergoes a reduction in muscle regenerative capacity leading to progressive muscle wasting, resulting in fibrotic remodelling and adipose infiltration. The loss of respiratory muscle in DMD culminates in respiratory insufficiency and eventually premature death. The pathways contributing to aberrant muscle remodelling are potentially modulated by gut microbial metabolites, thus making them plausible targets for pre- and probiotic supplementation. Prednisone, the gold standard therapy for DMD, drives gut dysbiosis, inducing a pro-inflammatory phenotype and leaky gut barrier contributing to several of the well-known side effects associated with chronic glucocorticoid treatment. Several studies have observed that gut microbial supplementation or transplantation exerts positive effects on muscle, including mitigating the side effects of prednisone. There is growing evidence in support of the potential for an adjunctive microbiota-directed regimen designed to optimise gut-muscle axis signalling, which could alleviate muscle wasting in DMD.
Collapse
Affiliation(s)
- Anthony L. Marullo
- Department of Physiology, School of Medicine, College of Medicine and HealthUniversity College CorkCorkIreland
| | - Ken D. O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and HealthUniversity College CorkCorkIreland
| |
Collapse
|
49
|
Kononova S, Kashparov M, Xue W, Bobkova N, Leonov S, Zagorodny N. Gut Microbiome Dysbiosis as a Potential Risk Factor for Idiopathic Toe-Walking in Children: A Review. Int J Mol Sci 2023; 24:13204. [PMID: 37686011 PMCID: PMC10488280 DOI: 10.3390/ijms241713204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Idiopathic toe walking (ITW) occurs in about 5% of children. Orthopedic treatment of ITW is complicated by the lack of a known etiology. Only half of the conservative and surgical methods of treatment give a stable positive result of normalizing gait. Available data indicate that the disease is heterogeneous and multifactorial. Recently, some children with ITW have been found to have genetic variants of mutations that can lead to the development of toe walking. At the same time, some children show sensorimotor impairment, but these studies are very limited. Sensorimotor dysfunction could potentially arise from an imbalanced production of neurotransmitters that play a crucial role in motor control. Using the data obtained in the studies of several pathologies manifested by the association of sensory-motor dysfunction and intestinal dysbiosis, we attempt to substantiate the notion that malfunction of neurotransmitter production is caused by the imbalance of gut microbiota metabolites as a result of dysbiosis. This review delves into the exciting possibility of a connection between variations in the microbiome and ITW. The purpose of this review is to establish a strong theoretical foundation and highlight the benefits of further exploring the possible connection between alterations in the microbiome and TW for further studies of ITW etiology.
Collapse
Affiliation(s)
- Svetlana Kononova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Mikhail Kashparov
- Department of Traumatology and Orthopedics, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (M.K.); (N.Z.)
- Scientific and Practical Center for Child Psychoneurology, 119602 Moscow, Russia
| | - Wenyu Xue
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (W.X.); (S.L.)
| | - Natalia Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (W.X.); (S.L.)
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Nikolaj Zagorodny
- Department of Traumatology and Orthopedics, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (M.K.); (N.Z.)
- N.N. Priorov Central Research Institute of Traumatology and Orthopedics, 127299 Moscow, Russia
| |
Collapse
|
50
|
Álvarez-Herms J, González A, Corbi F, Odriozola I, Odriozola A. Possible relationship between the gut leaky syndrome and musculoskeletal injuries: the important role of gut microbiota as indirect modulator. AIMS Public Health 2023; 10:710-738. [PMID: 37842270 PMCID: PMC10567981 DOI: 10.3934/publichealth.2023049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 10/17/2023] Open
Abstract
This article aims to examine the evidence on the relationship between gut microbiota (GM), leaky gut syndrome and musculoskeletal injuries. Musculoskeletal injuries can significantly impair athletic performance, overall health, and quality of life. Emerging evidence suggests that the state of the gut microbiota and the functional intestinal permeability may contribute to injury recovery. Since 2007, a growing field of research has supported the idea that GM exerts an essential role maintaining intestinal homeostasis and organic and systemic health. Leaky gut syndrome is an acquired condition where the intestinal permeability is impaired, and different bacteria and/or toxins enter in the bloodstream, thereby promoting systemic endotoxemia and chronic low-grade inflammation. This systemic condition could indirectly contribute to increased local musculoskeletal inflammation and chronificate injuries and pain, thereby reducing recovery-time and limiting sport performance. Different strategies, including a healthy diet and the intake of pre/probiotics, may contribute to improving and/or restoring gut health, thereby modulating both systemically as local inflammation and pain. Here, we sought to identify critical factors and potential strategies that could positively improve gut microbiota and intestinal health, and reduce the risk of musculoskeletal injuries and its recovery-time and pain. In conclusion, recent evidences indicate that improving gut health has indirect consequences on the musculoskeletal tissue homeostasis and recovery through the direct modulation of systemic inflammation, the immune response and the nociceptive pain.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
- Phymo Lab, Physiology, and Molecular laboratory, Spain
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
| | - Francisco Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
| |
Collapse
|