1
|
Abdallah M, Styles IK, Quinn JF, Whittaker MR, Trevaskis NL. Thoracic lymph collection impacts the level of endogenous macromolecules in rat biological fluids. Int J Pharm 2025; 677:125633. [PMID: 40294770 DOI: 10.1016/j.ijpharm.2025.125633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
Lymph collection via insertion of a cannula into a lymphatic vessel is the most commonly used procedure to quantify the transport of pharmaceutical agents into lymph following administration to rodents. Further, lymph is derived from interstitial fluid draining specific organs and tissues such that compositional analysis of lymph collected via cannulation can provide useful information about biochemical and immune cell changes in different patho/physiological states, as well as being a resource for biomarker discovery. Nevertheless, lymph cannulation is a challenging procedure, and continuous collection of lymph for extended periods can lead to lymphocytopenia. Just as important, prolonged lymph collection might deplete other major components in lymph and plasma such as proteins and lipids, yet this has not been reported previously. Therefore, we investigated the effect of thoracic lymph collection in rats on the concentration of protein components (e.g. albumin) and specific lipids (total cholesterol and triglycerides) in lymph and plasma over time for 48 h after lymph cannulation. This study suggests that the level of total protein and albumin, but not lipids, is diminished over time during thoracic lymph collection in rats. We also provide evidence that this depletion impacts the pharmacokinetics of a drug delivery carrier that binds to albumin and lipoproteins. These findings present an important consideration to evaluating the lymphatic transport and pharmacokinetics of pharmaceutical agents that interact with endogenous proteins such as albumin.
Collapse
Affiliation(s)
- Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - John F Quinn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Michael R Whittaker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC 3000, Australia.
| |
Collapse
|
2
|
Roy S, Parveen M, Bala A, Sur D. The 3C (Cell Culture, Computer Simulation, Clinical Trial) Solution for Optimizing the 3R (Replace, Reduction, Refine) Framework during Preclinical Research Involving Laboratory Animals. ACS Pharmacol Transl Sci 2025; 8:1188-1204. [PMID: 40370984 PMCID: PMC12070318 DOI: 10.1021/acsptsci.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 05/16/2025]
Abstract
Preclinical research has traditionally utilized laboratory animals to elucidate the safety, tolerability, pharmacokinetics, and pharmacodynamics of new chemical entities prior to human trials. The use of animal models has been pivotal in advancing scientific knowledge and medical breakthroughs, contributing significantly to our understanding of the complex biological processes and human diseases. However, many promising treatments that have demonstrated efficacy in animal studies have failed to translate to human subjects during clinical trials. Consequently, animal testing faces ethical concerns and criticism regarding its predictive reliability for human responses. This has led to the development of 3R principles (Replacement, Reduction, Refinement), introduced in 1959, advocating for alternative methods and improved animal welfare in research. Furthermore, regulatory frameworks and recent legislation, such as the 2022 FDA Modernisation Act, emphasize modern scientific alternatives to traditional animal testing. Emerging approaches, known as the 3Cs-cell culture, computer simulation, and phase 0 clinical trials-offer promising nonanimal solutions that could accelerate drug development and address ethical concerns, potentially rendering preclinical research more humane and efficient.
Collapse
Affiliation(s)
- Susmita Roy
- Haldia
Institute of Pharmacy, ICARE Complex, Haldia Purba Medinipur 721657, India
| | - Mehnaz Parveen
- Division
of Pharmacology, Guru Nanak Institute of
Pharmaceutical Science and Technology, 157/F Nilgunj Road, Panihati, Kolkata 700114, India
| | - Asis Bala
- Pharmacology
and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology,
an Autonomous Institute under the Department of Science and Technology
(Govt. of India), Vigyan Path, Guwahati, Assam 781035, India
| | - Debjeet Sur
- Division
of Pharmacology, Guru Nanak Institute of
Pharmaceutical Science and Technology, 157/F Nilgunj Road, Panihati, Kolkata 700114, India
| |
Collapse
|
3
|
Ding S, Alexander E, Liang H, Kulchar RJ, Singh R, Herzog RW, Daniell H, Leong KW. Synthetic and Biogenic Materials for Oral Delivery of Biologics: From Bench to Bedside. Chem Rev 2025; 125:4009-4068. [PMID: 40168474 DOI: 10.1021/acs.chemrev.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The development of nucleic acid and protein drugs for oral delivery has lagged behind their production for conventional nonoral routes. Over the past decade, the evolution of DNA- and RNA-based technologies combined with the innovation of state-of-the-art delivery vehicles for nucleic acids has brought rapid advancements to the biopharmaceutical field. Nucleic acid therapies have the potential to achieve long-lasting effects, or even cures, by inhibiting or editing genes, which is not possible with conventional small-molecule drugs. However, challenges and limitations must be addressed before these therapies can provide cures for chronic conditions and rare diseases, rather than only offering temporary relief. Nucleic acids and proteins face premature degradation in the acidic, enzyme-rich stomach environment and are rapidly cleared by the liver. To overcome these challenges, various delivery vehicles have been developed to transport therapeutic compounds to the intestines, where the active compounds are released and gut microbiota and mucosal immune system also play an important role. This review provides a comprehensive overview of the promises and pitfalls associated with the oral route of administration of biologics, current delivery systems, applications of orally delivered therapeutics, and the challenges and considerations for translation of nucleic acid and protein therapeutics into clinical practice.
Collapse
Affiliation(s)
- Suwan Ding
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Huiyi Liang
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Rachel J Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
4
|
Wu X, Zhao F, Wang H, Schirhagl R, Włodarczyk-Biegun MK. Integrating melt electrowriting (MEW) PCL scaffolds with fibroblast-laden hydrogel toward vascularized skin tissue engineering. Mater Today Bio 2025; 31:101593. [PMID: 40104645 PMCID: PMC11914512 DOI: 10.1016/j.mtbio.2025.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Three-dimensional (3D) skin equivalents (SEs) are promising platforms for studying skin disease or assessing the safety of skin-relevant products. Vascularization, which improves the functionality of reconstructed skin, is one of the remaining hurdles in SE production that, when successfully introduced, can widen SE applications. Here, combining porous polycaprolactone (PCL) melt electrowritten (MEW) scaffolds with fibroblast-laden methacrylated gelatin hydrogel (GelMA), we developed SEs with cellular vascular structure. The MEW scaffolds were composed of two layers: random fibers for culturing the keratinocytes to fabricate the epidermis; and well-aligned shapes filled with fibroblast-laden GelMA to mimic the dermis. Three dermal designs varying in porosities and pore sizes were compared to optimize the dermis reconstruction. Within one week, the design with bigger pore sizes achieved optimal cell distribution, penetration, and extracellular matrix (ECM) deposition. Additionally, Retinoic acid (RTA) was tested for improving ECM deposition. To mimic vasculature, we incorporated vascular grafts into the optimized SEs. These were fabricated by casting endothelial fibroblast-laden Matrigel onto small-diameter MEW-tubular structures. The versatility and reproducibility of the obtained SEs offer a robust new tool for in vitro testing and exploration of fundamental biological processes of skin tissue.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Biomaterials and Biotechnology, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Fenghua Zhao
- Department of Biomaterials and Biotechnology, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hui Wang
- Nanostructured Materials and Interfaces, Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG, the Netherlands
| | - Romana Schirhagl
- Department of Biomaterials and Biotechnology, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Małgorzata K Włodarczyk-Biegun
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, the Netherlands
- Biotechnology Centre, The Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
| |
Collapse
|
5
|
Cho YW, Kang MJ, Park JH, Eom YS, Kim TH. Spatially controlled multicellular differentiation of stem cells using triple factor-releasing metal-organic framework-coated nanoline arrays. Nat Commun 2025; 16:1389. [PMID: 39910083 PMCID: PMC11799339 DOI: 10.1038/s41467-025-56373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Improved in vitro models are needed for regenerative therapy and drug screening. Here, we report on functionally aligned nanoparticle-trapped nanopattern arrays for spatially controlled, precise mesenchymal stem cell differentiation on a single substrate. The arrays comprise nanohole and nanoline arrays fabricated through interference lithography and selectively capture of UiO-67 metal-organic frameworks on nanoline arrays with a 99.8% efficiency using an optimised asymmetric spin-coating method. The UiO-67 metal-organic frameworks contain three osteogenic differentiation factors for sustained release over four weeks. The combination of differentiation factors and patterned array allows for generation of adipocytes, osteoblasts, and adipocyte-osteoblast mixtures on nanohole arrays, nanoline arrays, and at the nanohole-nanoline interface, respectively, with mature osteoblasts exhibiting higher marker expression and mineralisation. The sustained release patterned array holds potential for constructing advanced therapeutic and disease state in vitro cellular models.
Collapse
Affiliation(s)
- Yeon-Woo Cho
- Department of Intelligent Precision Healthcare Convergence, Institute for Cross-disciplinary Studies (ICS), Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Min-Ji Kang
- Department of Intelligent Precision Healthcare Convergence, Institute for Cross-disciplinary Studies (ICS), Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Joon-Ha Park
- Department of Intelligent Precision Healthcare Convergence, Institute for Cross-disciplinary Studies (ICS), Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Yun-Sik Eom
- Department of Intelligent Precision Healthcare Convergence, Institute for Cross-disciplinary Studies (ICS), Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Tae-Hyung Kim
- Department of Intelligent Precision Healthcare Convergence, Institute for Cross-disciplinary Studies (ICS), Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea.
- Department of Biomedical Engineering, ICS, SKKU, Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
6
|
Ferreira PMP, Ramos CLS, Filho JIAB, Conceição MLP, Almeida ML, do Nascimento Rodrigues DC, Porto JCS, de Castro E Sousa JM, Peron AP. Laboratory and physiological aspects of substitute metazoan models for in vivo pharmacotoxicological analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1315-1339. [PMID: 39298017 DOI: 10.1007/s00210-024-03437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024]
Abstract
New methods are essential to characterize the performance of substitute procedures for detecting therapeutic action(s) of a chemical or key signal of toxicological events. Herein, it was discussed the applications and advantages of using arthropods, worms, and fishes in pharmacological and/or toxicology assessments. First of all, the illusion of similarity covers many differences between humans and mice, remarkably about liver injury and metabolism of xenobiotics. Using invertebrates, especially earthworms (Eisenia fetida), brine shrimps (Artemia salina, Daphnia magna), and insects (Drosophila melanogaster) and vertebrates as small fishes (Oryzias latipes, Pimephales promelas, Danio rerio) has countless advantages, including fewer ethical conflicts, short life cycle, high reproduction rate, simpler to handle, and less complex anatomy. They can be used to find contaminants in organic matters and water and are easier genetically engineered with orthologous-mutated genes to explore specific proteins involved in proliferative and hormonal disturbances, chemotherapy multidrug resistance, and carcinogenicity. As multicellular embryos, larvae, and mature organisms, they can be tested in bigger-sized replication platforms with 24-, 96-, or 384-multiwell plates as cheaper and faster ways to select hit compounds from drug-like libraries to predict acute, subacute or chronic toxicity, pharmacokinetics, and efficacy parameters of pharmaceutical, cosmetic, and personal care products. Meanwhile, sublethal exposures are designed to identify changes in reproduction, body weight, DNA damages, oxidation, and immune defense responses in earthworms and zebrafishes, and swimming behaviors in A. salina and D. rerio. Behavioral parameters also give specificities on sublethal effects that would not be detected in zebrafishes by OECD protocols.
Collapse
Affiliation(s)
- Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil.
| | - Carla Lorena Silva Ramos
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - José Ivo Araújo Beserra Filho
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Micaely Lorrana Pereira Conceição
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Mateus Lima Almeida
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | | | - Jhonatas Cley Santos Porto
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - João Marcelo de Castro E Sousa
- Toxicological Genetics Research Laboratory (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Ana Paula Peron
- Laboratory of Ecotoxicology (Labecotox), Department of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão, 87301-899, Brazil
| |
Collapse
|
7
|
Vieira RSF, Venâncio CAS, Félix LM. Behavioral, metabolic, and biochemical alterations caused by an acute stress event in a zebrafish larvae model. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:25. [PMID: 39673016 PMCID: PMC11645430 DOI: 10.1007/s10695-024-01421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/03/2024] [Indexed: 12/15/2024]
Abstract
Animal welfare is a growing concern in aquaculture practices. Stress induced by handling or transportation can lead to negative impacts on the sector. Zebrafish has raised as an important aquaculture model, but still with few focus on its stress response in early life stages. Therefore, the objective of this study was to improve the evaluation of different markers of the stress response after a stress event in a zebrafish larvae model. Zebrafish larvae (96 hpf) were vortex-stimulated for 1 min at 200 rpm for acute stress induction. After 10 min, 1- and 4-h behavioral larvae outcomes and larvae were sampled to the following quantification: levels of cortisol, lactate, glucose and biochemical biomarkers (reactive oxygen species, superoxide dismutase, catalase, glutathione peroxidase, lipidic oxidation level and protein carbonylation, glutathione s-transferase, acetylcholinesterase, lactate dehydrogenase and ATPase), and the metabolic rate. The cortisol, glucose, and lactate levels had no alterations. At the behavioral level, an increase in the distance swam and in the speed was observed and the metabolic rate also increased according to the behavioral outcomes. The ATPase and GST activity showed a decrease in their activity, probably through osmoregulation changes related to the hypothetic adrenocorticotropic hormone downregulation. Overall, the acute vortex stimulation at low speed induced an early stress response independent of the HPI-cortisol pathway. In addition, this study shows zebrafish early life stages as a sensitive model to acute vortex stimulation, identifying altered parameters which can be used in future work to assess the effect on animal welfare in similar acute situations.
Collapse
Affiliation(s)
- Raquel S F Vieira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Carlos A S Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Animal Science, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
8
|
Bektas CK, Luo J, Conley B, Le KPN, Lee KB. 3D bioprinting approaches for enhancing stem cell-based neural tissue regeneration. Acta Biomater 2025; 193:20-48. [PMID: 39793745 DOI: 10.1016/j.actbio.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Three-dimensional (3D) bioprinting holds immense promise for advancing stem cell research and developing novel therapeutic strategies in the field of neural tissue engineering and disease modeling. This paper critically analyzes recent breakthroughs in 3D bioprinting, specifically focusing on its application in these areas. We comprehensively explore the advantages and limitations of various 3D printing methods, the selection and formulation of bioink materials tailored for neural stem cells, and the incorporation of nanomaterials with dual functionality, enhancing the bioprinting process and promoting neurogenesis pathways. Furthermore, the paper reviews the diverse range of stem cells employed in neural bioprinting research, discussing their potential applications and associated challenges. We also introduce the emerging field of 4D bioprinting, highlighting current efforts to develop time-responsive constructs that improve the integration and functionality of bioprinted neural tissues. In short, this manuscript aims to provide a comprehensive understanding of this rapidly evolving field. It underscores the transformative potential of 3D and 4D bioprinting technologies in revolutionizing stem cell research and paving the way for novel therapeutic solutions for neurological disorders and injuries, ultimately contributing significantly to the advancement of regenerative medicine. STATEMENT OF SIGNIFICANCE: This comprehensive review critically examines the current bioprinting research landscape, highlighting efforts to overcome key limitations in printing technologies-improving cell viability post-printing, enhancing resolution, and optimizing cross-linking efficiencies. The continuous refinement of material compositions aims to control the spatiotemporal delivery of therapeutic agents, ensuring better integration of transplanted cells with host tissues. Specifically, the review focuses on groundbreaking advancements in neural tissue engineering. The development of next-generation bioinks, hydrogels, and scaffolds specifically designed for neural regeneration complexities holds the potential to revolutionize treatments for debilitating neural conditions, especially when nanotechnologies are being incorporated. This review offers the readers both a comprehensive analysis of current breakthroughs and an insightful perspective on the future trajectory of neural tissue engineering.
Collapse
Affiliation(s)
- Cemile Kilic Bektas
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Jeffrey Luo
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Brian Conley
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Kim-Phuong N Le
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
9
|
Guimarães AI. Are Animal Models Necessary? Exploring (Dis)advantages and Alternatives. Eur J Neurosci 2025; 61:e16651. [PMID: 39780289 DOI: 10.1111/ejn.16651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025]
Abstract
Animal models have been crucial for scientific development, allowing researchers to understand the underlying mechanisms of various human conditions, and are far from becoming obsolete in scientific research. However, the ethics of animal experimentation has been a prevalent question between both experts and nonexperts. This essay tackles the advantages and disadvantages of the usage of animal models while delving into new alternatives that have emerged in light of contemporary science.
Collapse
Affiliation(s)
- Ana Isabel Guimarães
- Pharmacology and Neurobiology Laboratory of the Immunophysiology and Pharmacology Department, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Chen G, Xin Y, Hammour MM, Braun B, Ehnert S, Springer F, Vosough M, Menger MM, Kumar A, Nüssler AK, Aspera-Werz RH. Establishment of a human 3D in vitro liver-bone model as a potential system for drug toxicity screening. Arch Toxicol 2025; 99:333-356. [PMID: 39503877 PMCID: PMC11742461 DOI: 10.1007/s00204-024-03899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/17/2024] [Indexed: 01/19/2025]
Abstract
Drug toxicity is an important cause of chronic liver damage, which in the long term can lead to impaired bone homeostasis through an imbalance in the liver-bone axis. For instance, non-steroidal anti-inflammatory drugs (e.g., diclofenac), which are commonly used to control pain during orthopaedic interventions, are known to reduce bone quality and are the most prevalent causes of drug-induced liver damage. Therefore, we used human cell lines to produce a stable, reproducible, and reliable in vitro liver-bone co-culture model, which mimics the impaired bone homeostasis seen after diclofenac intake in vivo. To provide the best cell culture conditions for the two systems, we tested the effects of supplements contained in liver and bone cell culture medium on liver and bone cell lines, respectively. Additionally, different ratios of culture medium combinations on bone cell scaffolds and liver spheroids' viability and function were also analysed. Then, liver spheroids and bone scaffolds were daily exposed to 3-6 µM diclofenac alone or in co-culture to compare and evaluate its effect on the liver and bone system. Our results demonstrated that a 50:50 liver:bone medium combination maintains the function of liver spheroids and bone scaffolds for up to 21 days. Osteoclast-like cell activity was significantly upregulated after chronic exposure to diclofenac only in bone scaffolds co-cultured with liver spheroids. Consequently, the mineral content and stiffness of bone scaffolds treated with diclofenac in co-culture with liver spheroids were significantly reduced. Interestingly, our results show that the increase in osteoclastic activity in the system is not related to the main product of diclofenac metabolism. However, osteoclast activation correlated with the increase in oxidative stress and inflammation associated with chronic diclofenac exposure. In summary, we established a long-term stable liver-bone system that represents the interaction between the two organs, meanwhile, it is also an outstanding model for studying the toxicity of drugs on bone homeostasis.
Collapse
Affiliation(s)
- Guanqiao Chen
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Yuxuan Xin
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Mohammad Majd Hammour
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Bianca Braun
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Sabrina Ehnert
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Fabian Springer
- Department of Radiology, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maximilian M Menger
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Ashok Kumar
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, 208016, India
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Andreas K Nüssler
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany.
| | - Romina H Aspera-Werz
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| |
Collapse
|
11
|
Zhou S, Zhang D, Kong Y, Zhang Q, Cui X. In Vivo Bioavailability and In Vitro Bioaccessibility of Iodine in Edible Seaweeds: Method Development and Health Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22553-22562. [PMID: 39666388 DOI: 10.1021/acs.est.4c08990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Both iodine (I) deficiency and I excess can adversely affect human health. Seaweed consumption is one of the most important natural sources for I. This study assessed I relative bioavailability (RBA) in seaweed using an in vivo mouse model and compared it with I bioaccessibility measured by three in vitro methods (Physiologically Based Extraction Test (PBET), the Solubility Bioaccessibility Research Consortium (SBRC), and the Unified Bioaccessibility Research Group of Europe Method (UBM)). Total I concentrations in 26 seaweed samples from four species ranged from 52.4 to 1322 mg/kg of dry weight. The I RBA varied from 18.5% to 89.0%, significantly influenced by inorganic I percentage (r = 0.50, p < 0.01) and total dietary fiber contents (r = -0.28, p < 0.05) in seaweeds. The I bioaccessibility varied among species and methods and were affected by the pH of gastric solution, as well as the structural changes in seaweed during in vitro extraction. Correlation analysis demonstrated that PBET was the best predictor for I RBA (R2 = 0.64). These results developed an appropriate in vitro method for predicting I bioavailability in seaweeds, which is highly beneficial for the accurate assessment for I dietary intake.
Collapse
Affiliation(s)
- Shuo Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dengke Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Hwang I, Jeung EB. Embryoid Body Test: A Simple and Reliable Alternative Developmental Toxicity Test. Int J Mol Sci 2024; 25:13566. [PMID: 39769329 PMCID: PMC11676132 DOI: 10.3390/ijms252413566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The increasing emphasis on animal welfare and ethics, as well as the considerable time and cost involved with animal testing, have prompted the replacement of many aspects of animal testing with alternative methods. In the area of developmental toxicity, the embryonic stem cell test (EST) has played a significant role. The EST evaluates toxicity using mouse embryonic stem cells and somatic cells and observes the changes in heartbeat after cardiac differentiation. Nevertheless, the EST is a relatively complex testing process, and an in vitro test requires a long duration. Several attempts have been made to develop a more straightforward testing method than the EST, with improved reproducibility and accuracy, leading to the development of the embryoid body test (EBT). Unlike the EST, which involves cardiac differentiation stages, the EBT verifies toxicity by measuring the changes in the area of the embryoid body. Despite its short testing period and simple procedure, the EBT offers high accuracy and reproducibility and is fully validated through two rounds of validation, making it ready for practical application. The EBT is expected to play a crucial role in the rapidly increasing demand for alternative methods to animal testing, particularly for screening early developmental toxicity.
Collapse
Affiliation(s)
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea;
| |
Collapse
|
13
|
da Cruz do Nascimento YJ, Moutinho DS, Martins C, Cardoso AL, Amado LL. Establishment of a cell culture from the frog Leptodactylus fuscus as a model for (eco)toxicological assays. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107157. [PMID: 39536417 DOI: 10.1016/j.aquatox.2024.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/20/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Leptodactylus fuscus is a frog species widely distributed in the Neotropical region, occurring in several biomes, which makes it a potential biomonitor of environmental conditions. To advance the establishment of this species in this field, we developed a fibroblast-like cell line derived from the digits of the forelimbs (LFUfd) and evaluated its response to possible environmental stressors. An adult male L. fuscus was collected, anesthetized, and euthanized with eugenol. Digits from the forelimbs were extracted, decontaminated, and dissociated. Cells were plated and cultivated in vented flasks with DMEM/F12+GlutaMAX medium and 20% FBS at 28 °C. On the 15th passage, we made the chromosome preparations, where we placed them on slides and stained them with Giemsa for karyotype analysis. The cellular response to multiple stressors (Temperature, Hydrogen Peroxide, and Aluminum) was evaluated through the MTT assay. The temperature test evaluated two groups (28 °C and 37 °C for 24 h). The effect of hydrogen peroxide (H2O2) was analyzed by treatment for 1 h at 28 °C in different concentrations (control, 2 μM, 20 μM, 50 μM, 100 μM and 200 μM). The effects of aluminum have been tested at three concentrations (0.5 mg/L, 1 mg/L, and 10 mg/L). The karyotype obtained showed 22 chromosomes, according to the description of the species, although a small proportion of aneuploid cells was observed (∼7%). At 37 °C there was a reduction in cell survival and no effects on cell viability at the H2O2 concentrations tested; however, there was a decrease in cell viability when exposed to aluminum in all the concentrations tested.. The growth behavior and karyotype observed indicate the establishment of a continuous cell culture with a stable genome that responds to environmental changes.
Collapse
Affiliation(s)
- Yure Jefferson da Cruz do Nascimento
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil; Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Instituto de Geociências, Universidade Federal do Pará, Belém, PA, Brazil
| | - Danilo Serrão Moutinho
- Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Instituto de Geociências, Universidade Federal do Pará, Belém, PA, Brazil
| | - Cesar Martins
- Laboratório Genômica Integrativa, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Adauto Lima Cardoso
- Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Laboratório Genômica Integrativa, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Lílian Lund Amado
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil; Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Instituto de Geociências, Universidade Federal do Pará, Belém, PA, Brazil.
| |
Collapse
|
14
|
Kumar S, Deeba F, Sharma P, Kumar L, Kumari R, Chaudhary M, Yadav S, Pal A, Chander H, Anvikar A, Yadav S. Analysis of historical data to accelerate deletion of Abnormal Toxicity Test requirement for biologicals and vaccines. Toxicol Rep 2024; 13:101815. [PMID: 39669743 PMCID: PMC11635764 DOI: 10.1016/j.toxrep.2024.101815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024] Open
Abstract
Abnormal Toxicity Test (ATT) is performed as quality control test by manufacturers and National Control Laboratory (NCL) to ensure safety of biologicals. However, stakeholders are in general consensus that extraneous toxic contaminations are extremely unlikely where Good Manufacturing Practices (GMPs) and consistent production have been established. This test requiring mice and guinea pigs is still a regulatory requirement for the batch release of biologicals in several countries although it has been deleted by some National Regulatory Authorities (NRAs) and Pharmacopoeias while some are still working on its elimination. Therefore, ten years historic data of ATT performed at National Institute of Biologicals (NIB), India on 4813 batches of biologicals including blood and related products, enzymes, hormones and vaccines by using 33637 animals was analyzed. As per Indian Pharmacopeia (IP), 4783 batches of these biologicals passed the test. The test had to be repeated in 30 batches, all of which were blood products and the repetition rate was 0.62 %. Further, after repeat testing, all these 30 batches also passed the test. This data will help the regulatory authorities of countries where ATT is still a requirement, take appropriate decision regarding its deletion. The elimination of ATT from specific monographs of these biologicals will help save many thousands of animals being used globally for this test.
Collapse
Affiliation(s)
- Suresh Kumar
- National Institute of Biologicals, Ministry of Health and Family Welfare, Noida, Uttar Pradesh 201309, India
| | - Farha Deeba
- National Institute of Biologicals, Ministry of Health and Family Welfare, Noida, Uttar Pradesh 201309, India
| | - Priya Sharma
- National Institute of Biologicals, Ministry of Health and Family Welfare, Noida, Uttar Pradesh 201309, India
| | - Lakhan Kumar
- National Institute of Biologicals, Ministry of Health and Family Welfare, Noida, Uttar Pradesh 201309, India
| | - Raveena Kumari
- National Institute of Biologicals, Ministry of Health and Family Welfare, Noida, Uttar Pradesh 201309, India
| | - Mohit Chaudhary
- National Institute of Biologicals, Ministry of Health and Family Welfare, Noida, Uttar Pradesh 201309, India
| | - Shachi Yadav
- National Institute of Biologicals, Ministry of Health and Family Welfare, Noida, Uttar Pradesh 201309, India
| | - Anamika Pal
- National Institute of Biologicals, Ministry of Health and Family Welfare, Noida, Uttar Pradesh 201309, India
| | - Harish Chander
- National Institute of Biologicals, Ministry of Health and Family Welfare, Noida, Uttar Pradesh 201309, India
| | - Anup Anvikar
- National Institute of Biologicals, Ministry of Health and Family Welfare, Noida, Uttar Pradesh 201309, India
| | - Shikha Yadav
- National Institute of Biologicals, Ministry of Health and Family Welfare, Noida, Uttar Pradesh 201309, India
| |
Collapse
|
15
|
Königer L, Malkmus C, Mahdy D, Däullary T, Götz S, Schwarz T, Gensler M, Pallmann N, Cheufou D, Rosenwald A, Möllmann M, Groneberg D, Popp C, Groeber‐Becker F, Steinke M, Hansmann J. ReBiA-Robotic Enabled Biological Automation: 3D Epithelial Tissue Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406608. [PMID: 39324843 PMCID: PMC11615785 DOI: 10.1002/advs.202406608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/08/2024] [Indexed: 09/27/2024]
Abstract
The Food and Drug Administration's recent decision to eliminate mandatory animal testing for drug approval marks a significant shift to alternative methods. Similarly, the European Parliament is advocating for a faster transition, reflecting public preference for animal-free research practices. In vitro tissue models are increasingly recognized as valuable tools for regulatory assessments before clinical trials, in line with the 3R principles (Replace, Reduce, Refine). Despite their potential, barriers such as the need for standardization, availability, and cost hinder their widespread adoption. To address these challenges, the Robotic Enabled Biological Automation (ReBiA) system is developed. This system uses a dual-arm robot capable of standardizing laboratory processes within a closed automated environment, translating manual processes into automated ones. This reduces the need for process-specific developments, making in vitro tissue models more consistent and cost-effective. ReBiA's performance is demonstrated through producing human reconstructed epidermis, human airway epithelial models, and human intestinal organoids. Analyses confirm that these models match the morphology and protein expression of manually prepared and native tissues, with similar cell viability. These successes highlight ReBiA's potential to lower barriers to broader adoption of in vitro tissue models, supporting a shift toward more ethical and advanced research methods.
Collapse
Affiliation(s)
- Lukas Königer
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
| | - Christoph Malkmus
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
- Institute of Medical Engineering SchweinfurtTechnical University of Applied Sciences Würzburg‐Schweinfurt97421SchweinfurtGermany
| | - Dalia Mahdy
- Chair of Tissue Engineering and Regenerative MedicineUniversity Hospital Würzburg97070WürzburgGermany
| | - Thomas Däullary
- Chair of Tissue Engineering and Regenerative MedicineUniversity Hospital Würzburg97070WürzburgGermany
- Chair of Cellular ImmunotherapyUniversity Hospital Würzburg97080WürzburgGermany
| | - Susanna Götz
- Faculty of Design WürzburgTechnical University of Applied Sciences Würzburg‐Schweinfurt97070WürzburgGermany
| | - Thomas Schwarz
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
| | - Marius Gensler
- Chair of Tissue Engineering and Regenerative MedicineUniversity Hospital Würzburg97070WürzburgGermany
| | - Niklas Pallmann
- Chair of Tissue Engineering and Regenerative MedicineUniversity Hospital Würzburg97070WürzburgGermany
| | - Danjouma Cheufou
- Department of Thoracic SurgeryKlinikum Würzburg Mitte97070WürzburgGermany
| | | | - Marc Möllmann
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
| | - Dieter Groneberg
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
| | - Christina Popp
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
| | - Florian Groeber‐Becker
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
- Department of OphthalmologyUniversity Clinic Düsseldorf40225DüsseldorfGermany
| | - Maria Steinke
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
- Department of Oto‐Rhino‐LaryngologyPlasticAesthetic and Reconstructive Head and Neck SurgeryUniversity Hospital Würzburg97080WürzburgGermany
| | - Jan Hansmann
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
- Institute of Medical Engineering SchweinfurtTechnical University of Applied Sciences Würzburg‐Schweinfurt97421SchweinfurtGermany
| |
Collapse
|
16
|
Bila NM, Vaso CO, Belizário JA, Assis LR, Regasini LO, Fontana CR, Fusco-Almeida AM, Costa-Orlandi CB, Mendes-Giannini MJS. Toxicological Assessment of 2-Hydroxychalcone-Mediated Photodynamic Therapy: Comparative In Vitro and In Vivo Approaches. Pharmaceutics 2024; 16:1523. [PMID: 39771502 PMCID: PMC11728496 DOI: 10.3390/pharmaceutics16121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a treatment modality that uses light to activate a photosensitizing agent, destroying target cells. The growing awareness of the necessity to reduce or eliminate the use of mammals in research has prompted the search for safer toxicity testing models aligned with the new global guidelines and compliant with the relevant regulations. OBJECTIVE The objective of this study was to assess the impact of PDT on alternative models to mammals, including in vitro three-dimensional (3D) cultures and in vivo, in invertebrate animals, utilizing a potent photosensitizer, 2-hydroxychalcone. METHODS Cytotoxicity was assessed in two cellular models: monolayer (2D) and 3D. For this purpose, spheroids of two cell lines, primary dermal fibroblasts (HDFa) and adult human epidermal cell keratinocytes (HaCat), were developed and characterized following criteria on cell viability, shape, diameter, and number of cells. The survival percentages of Caenorhabditis elegans and Galleria mellonella were evaluated at 1 and 7 days, respectively. RESULTS The findings indicated that all the assessed platforms are appropriate for investigating PDT toxicity. Furthermore, 2-hydroxychalcone demonstrated low toxicity in the absence of light and when mediated by PDT across a range of in vitro (2D and 3D cultures) and in vivo (invertebrate animal models, including G. mellonella and C. elegans) models. CONCLUSION There was a strong correlation between the in vitro and in vivo tests, with similar toxicity results, particularly in the 3D models and C. elegans, where the concentration for 50% viability was approximately 100 µg/mL.
Collapse
Affiliation(s)
- Níura Madalena Bila
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
- Department of Public Health, School of Veterinary, Universidade Eduardo Modlane (UEM), Maputo 257, Mozambique
| | - Carolina Orlando Vaso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Jenyffie Araújo Belizário
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Letícia Ribeiro Assis
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Universidade Estaudal Paulista (UNESP), São José do Rio Preto 01049-010, SP, Brazil; (L.R.A.); (L.O.R.)
| | - Luís Octávio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Universidade Estaudal Paulista (UNESP), São José do Rio Preto 01049-010, SP, Brazil; (L.R.A.); (L.O.R.)
| | - Carla Raquel Fontana
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Caroline Barcelos Costa-Orlandi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| |
Collapse
|
17
|
Paul Choudhury R, Singh A, Mathai E, Sudhakar D, Tourneix F, Alépée N, Gautier F. The dimer effect: A refinement approach towards skin sensitization assessment in-chemico using Amino acid Derivative Reactivity Assay. J Appl Toxicol 2024; 44:1804-1815. [PMID: 39096042 DOI: 10.1002/jat.4681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Skin sensitization is a key endpoint for safety assessment, especially for cosmetics and personal care products. The adverse outcome pathway for skin sensitization and the chemical and biological events driving the induction of human skin sensitization are now well understood. Several non-animal test methods have been developed to predict sensitizer potential by measuring the impact of chemical sensitizers on these key events. In this work, we have focused on Key Event 1 (the molecular initiating step), which is based on formation of a covalent adduct between skin sensitizers and endogenous proteins and/or peptides in the skin. There exists three in-chemico assays approved by the Organization for Economic Co-operation and Development-(1) Direct Peptide Reactivity Assay (DPRA), (2) Amino Acid Derivative Reactivity Assay (ADRA), and (3) Kinetic Direct Peptide Reactivity Assay (kDPRA) to quantify peptide/amino acid derivative depletion after incubation with test chemicals. However, overestimated depletion of the cysteine-based peptide/amino acid derivatives is known in such assays because of the dimerization of the thiol group. In this present work, we report the synthesis and structural confirmation of the dimer of N-(2-[1-naphthyl]acetyl)-L-cysteine (NAC) from the ADRA assay to allow simultaneous determination of (a) peptide depletion by quantifying NAC monomer and (b) peptide dimerization by quantifying NAC dimer thereby eliminating the overestimation. We present a case study with three chemicals to demonstrate the importance of this approach. Thus, this simultaneous assay gives a more informed view of the peptide reactivity of chemicals to better identify skin sensitizers.
Collapse
|
18
|
Engelken JA, Butelmann T, Tribukait-Riemenschneider F, Shastri VP. Towards a 3D-Printed Millifluidic Device for Investigating Cellular Processes. MICROMACHINES 2024; 15:1348. [PMID: 39597157 PMCID: PMC11596629 DOI: 10.3390/mi15111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Microfluidic devices (µFDs) have been explored extensively in drug screening and studying cellular processes such as migration and metastasis. However, the fabrication and implementation of microfluidic devices pose cost and logistical challenges that limit wider-spread adoption. Despite these challenges, light-based 3D printing offers a potential alternative to device fabrication. This study reports on the development of millifluidic devices (MiFDs) for disease modeling and elucidates the methods and implications of the design, production, and testing of 3D-printed MiFDs. It further details how such millifluidic devices can be cost-efficiently and effortlessly produced. The MiFD was developed through an iterative process with analytical tests (flow tests, leak tests, cytotoxicity assays, and microscopic analyses), driving design evolution and determination of the suitability of the devices for disease modeling and cancer research. The design evolution also considered flow within tissues and replicates interstitial flow between the main flow path and the modules designed to house and support organ-mimicking cancer cell spheroids. Although the primary stereolithographic (SLA) resin used in this study showed cytotoxic potential despite its biocompatibility certifications, the MiFDs possessed essential attributes for cell culturing. In summary, SLA 3D printing enables the production of MiFDs as a cost-effective, rapid prototyping alternative to standard µFD fabrication for investigating disease-related processes.
Collapse
Affiliation(s)
- Jared A. Engelken
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; (J.A.E.); (F.T.-R.)
| | - Tobias Butelmann
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; (J.A.E.); (F.T.-R.)
| | | | - V. Prasad Shastri
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; (J.A.E.); (F.T.-R.)
- BIOSS Centre of Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
19
|
Rahamim VS, Patel D, Drori E, Coopersmith S, Azagury A. In vitro Models for Predicting Bioadhesion Fracture Strength to Ex Vivo Animal Buccal Tissue. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310363. [PMID: 38895967 DOI: 10.1002/smll.202310363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/03/2024] [Indexed: 06/21/2024]
Abstract
Commitment to the 3Rs principle (Replacement, Reduction, and Refinement) led to the development of a cell-based system to measure buccal bioadhesion in vitro and replace the use of porcine buccal and esophageal tissues (PBT and PET, respectively). Additionally, the aim is to bridge the gap in knowledge regarding the bioadhesion properties of PBT and PET. The in vitro models are based on the human buccal epithelial cell line-TR146 without ("Model I") or with ("Model II") 5% (w/v) mucous layer. The in vitro setup also provides a method to evaluate the bioadhesion between two soft materials. Standard bioadhesive hydrogels (alginate, chitosan, and gelatin) are used to test and compare the results from the in vitro models to the ex vivo tissues. The ex vivo and in vitro models show increased bioadhesion as the applied force and contact time increases. Furthermore, Model I exhibits bioadhesion values-of alginate, chitosan, and gelatin-comparable to those obtained with PBT. It is also found that contact time and applied force similarly affect PBT and PET bioadhesion, while PET exhibits greater values. In conclusion, Model I can replace PBT for measuring bioadhesion and be incorporated into the experimental design of bioadhesive DDS, thus minimizing animal tissue usage.
Collapse
Affiliation(s)
- Valeria Solomianski Rahamim
- Department of Chemical and Biotechnology Engineering, Ariel University, Kyriat-ha-Mada 3, Ariel, 4070000, Israel
| | - Dhaval Patel
- Department of Chemical and Biotechnology Engineering, Ariel University, Kyriat-ha-Mada 3, Ariel, 4070000, Israel
| | - Eliyahu Drori
- Department of Chemical and Biotechnology Engineering, Ariel University, Kyriat-ha-Mada 3, Ariel, 4070000, Israel
| | - Sarah Coopersmith
- Department of Chemical and Biotechnology Engineering, Ariel University, Kyriat-ha-Mada 3, Ariel, 4070000, Israel
| | - Aharon Azagury
- Department of Chemical and Biotechnology Engineering, Ariel University, Kyriat-ha-Mada 3, Ariel, 4070000, Israel
| |
Collapse
|
20
|
Lee H, Hong J. Modulation of Photosensitizing Responses in Cell Culture Environments by Different Medium Components. Int J Mol Sci 2024; 25:10016. [PMID: 39337504 PMCID: PMC11432084 DOI: 10.3390/ijms251810016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Many cell culture experiments are performed under light to evaluate the photodynamic or photosensitizing efficacy of various agents. In this study, the modulation of photosensitizing responses and phototoxicity under cell culture conditions by different medium components was investigated. The significant levels of reactive oxygen species (ROS) generated from DMEM, RPMI 1640, and MEM were observed under the irradiation of fluorescent light (FL) and white and blue LEDs, indicating that these media have their own photosensitizing properties; DMEM showed the most potent property. Phenol red-free DMEM (Pf-D) exhibited a stronger photosensitizing property than normal DMEM by 1.31 and 1.25 times under FL and blue LEDs, respectively; phenol red and riboflavin-free DMEM (PRbf-D) did not show any photosensitizing properties. The inhibitory effect on light transmission was more pronounced in DMEM than in RPMI, and the interference effect on green LED light was greatest at 57.8 and 27.4%, respectively; the effect disappeared in Pf-D. The media containing riboflavin induced strong phototoxicity in HaCaT keratinocytes by generating H2O2 under light irradiation, which was quenched by sodium pyruvate in the media. The presence of serum in the media was also reduced the phototoxicity; H2O2 levels in the media decreased serum content dependently. The phototoxicity of erythrosine B and protoporphyrin IX under FL was more sensitively pronounced in PRbf-D than in DMEM. The present results indicate that several medium components, including riboflavin, phenol red, sodium pyruvate, and serum, could modulate photosensitizing responses in a cell culture system by inducing photosensitizing activation and by interfering with irradiation efficacy and ROS generation.
Collapse
Affiliation(s)
| | - Jungil Hong
- Department of Food Science and Technology, College of Science and Convergence Technology, Seoul Women’s University, Hwarang-ro 621, Nowon-gu, Seoul 01797, Republic of Korea;
| |
Collapse
|
21
|
Oskoei P, Marçal R, Oliveira H, Guilherme S. Hitting two targets with one shot on pesticide genotoxicity assessment - Identifying risk while unveiling ex vivo approach as a throughput tool in gill-breathing animals. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134948. [PMID: 38968824 DOI: 10.1016/j.jhazmat.2024.134948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 07/07/2024]
Abstract
Pesticides in the environment often compromise the ecosystem, thus requiring reliable approaches to assess their effects. Commonly used approaches, such as in vivo, come with several disadvantages, namely in the light of the 3 R's policy. Seeking for accurate and ethical approaches, this study intended to validate the ex vivo technique as an alternative, and to assess the genotoxicity of chemically-based pesticides and a biopesticide. The ex vivo approach was applied to gill cells of Procambarus clarkii for 2, 4 and 8 h. Cell viability and DNA integrity were evaluated to determine the applicability of this approach. Crayfish gill cells only showed to be suitable for exposures of 2 h. Accordingly, genotoxicity was evaluated in gill cells exposed, for 2 h, to environmentally relevant concentrations of the chemically-based pesticides dimethoate (20 µg L-1), imazalil (160 µg L-1) and penoxsulam (23 µg L-1), as well as to the bioinsecticide Turex® (25, 50, 100, 200 and 400 µg L-1). Every chemically-based pesticide demonstrated to be genotoxic, despite not inducing oxidative DNA damage. On the other hand, Turex® showed no genotoxic effects. Overall, the ex vivo approach demonstrated to be possible and practical to implement, improving the number of outcomes with a lower number of organisms. The findings from the screening test suggest that biological pesticides may pose a lower risk to non-target organisms compared to chemically-based pesticides.
Collapse
Affiliation(s)
- Párástu Oskoei
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| | - Raquel Marçal
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Sofia Guilherme
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
22
|
Das J, Roy Sarkar S, Das A, Barui A, Mitra Mazumder P. Assessment of efficacy of chrysin in diabetes-associated cardiac complications in chick embryo and murine model. J Pharm Pharmacol 2024; 76:1225-1235. [PMID: 38989974 DOI: 10.1093/jpp/rgae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVES Patients with type 2 diabetes or prolonged diabetic condition are webbed into cardiac complications. This study aimed to ascertain the utility of chick embryo as an alternative to the mammalian model for type 2 diabetes-induced cardiac complications and chrysin as a protective agent. METHODS Diabetes was activated in ovo model (chick embryo) using glucose along with β-hydroxybutyric acid. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Alamar, and Kenacid blue assay were used to compare with chrysin-administered group. Blood glucose level, total cholesterol, triglyceride, and high-density lipoprotein were considered as endpoints. Diabetes was induced in Wistar albino rats by administering a high-fat diet and a subdued dose of streptozotocin (35 mg/kg, b.w). Percentage of glycated hemoglobin, creatinine kinase-MB, tumor necrosis factor-α, and C-reactive protein were evaluated and compared with chrysin administered group. KEY FINDINGS Chrysin treatment improved elevated blood glucose levels and dyslipidemia in a diabetic group of whole embryos. Condensed cellular growth and protein content as well as enhanced cytotoxicity in ovo were shielded by chrysin. Chrysin reduced cardiac and inflammatory markers in diabetic rats and provided cellular protection to damage the heart of diabetic rats. CONCLUSION The protective action of chrysin in ovo model induced a secondary complication associated with diabetes, evidenced that the ovo model is an effective alternative in curtailing higher animal use in scientific research.
Collapse
Affiliation(s)
- Joyani Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Suparna Roy Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Ankita Das
- Centre for Health Care Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur 711103, India
| | - Ananya Barui
- Centre for Health Care Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur 711103, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| |
Collapse
|
23
|
Sibilio S, Mennella R, Gregorio VD, Rocca AL, Urciuolo F, Imparato G, Netti PA. A novel membrane-on-chip guides morphogenesis for the reconstruction of the intestinal crypt-villus axis. Biofabrication 2024; 16:045019. [PMID: 39029501 DOI: 10.1088/1758-5090/ad6599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Reconstructing the microscale villous organisation and functionality of the small intestine is essential for developingin vitroplatforms tailored for absorption studies as well as for investigating intestinal morphogenesis in development and disease. However, the current fabrication techniques able to mimic the villus-crypt axis poses significant challenges in terms of reconstruction of the complex 3D microarchitecture. These challenges extend beyond mere structural intricacies to encompass the incorporation of diverse cell types and the management of intricate fluid dynamics within the system. Here, we introduce a novel microfluidic device calledIn-Crypts, which integrates a cell-instructive membrane aimed at inducing and guiding Caco-2 cells morphogenesis. Patterned topographical cues embossed onto the porous membrane induce the formation of a well-organized intestinal epithelium, characterized by proliferating crypt-like domains and differentiated villus-like regions. Notably, our cell-instructive porous membrane effectively sustains stem cells development, faithfully replicating the niche environment ofin vivointestinal crypts thus mirroring the cell biogeography observedin vivo. Moreover, by introducing dynamic fluid flow, we provide a faithful recapitulation of the native microenvironmental shear stress experienced by the intestinal epithelium. This stress plays a crucial role in influencing cell behaviour, differentiation, and overall functionality, thus offering a highly realistic model for studying intestinal physiology and pathology. The resulting intestinal epithelium exhibits significantly denser regions of mucus and microvilli, characteristic typically absent in static cultures, upregulating more than 1.5 of the amount expressed in the classical flattened configuration, enhanced epithelial cell differentiation and increased adsorptive surface area. Hence, the innovative design ofIn-Cryptsproves the critical role of employing a cell-instructive membrane in argument the physiological relevance of organs-on-chips. This aspect, among others, will contribute to a more comprehensive understanding of organism function, directly impacting drug discovery and development.
Collapse
Affiliation(s)
- Sara Sibilio
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for HealthCare@CRIB, Naples, Italy
| | - Raffaele Mennella
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for HealthCare@CRIB, Naples, Italy
- University of Naples Federico II, Interdisciplinary Research Centre on Biomaterials (CRIB), Naples, Italy
| | - Vincenza De Gregorio
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for HealthCare@CRIB, Naples, Italy
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Alessia La Rocca
- University of Naples Federico II, Interdisciplinary Research Centre on Biomaterials (CRIB), Naples, Italy
| | - Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for HealthCare@CRIB, Naples, Italy
- University of Naples Federico II, Interdisciplinary Research Centre on Biomaterials (CRIB), Naples, Italy
| | - Giorgia Imparato
- University of Naples Federico II, Interdisciplinary Research Centre on Biomaterials (CRIB), Naples, Italy
| | - Paolo A Netti
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for HealthCare@CRIB, Naples, Italy
- University of Naples Federico II, Interdisciplinary Research Centre on Biomaterials (CRIB), Naples, Italy
| |
Collapse
|
24
|
Park G, Rim YA, Sohn Y, Nam Y, Ju JH. Replacing Animal Testing with Stem Cell-Organoids : Advantages and Limitations. Stem Cell Rev Rep 2024; 20:1375-1386. [PMID: 38639829 PMCID: PMC11319430 DOI: 10.1007/s12015-024-10723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Various groups including animal protection organizations, medical organizations, research centers, and even federal agencies such as the U.S. Food and Drug Administration, are working to minimize animal use in scientific experiments. This movement primarily stems from animal welfare and ethical concerns. However, recent advances in technology and new studies in medicine have contributed to an increase in animal experiments throughout the years. With the rapid increase in animal testing, concerns arise including ethical issues, high cost, complex procedures, and potential inaccuracies.Alternative solutions have recently been investigated to address the problems of animal testing. Some of these technologies are related to stem cell technologies, such as organ-on-a-chip, organoids, and induced pluripotent stem cell models. The aim of the review is to focus on stem cell related methodologies, such as organoids, that can serve as an alternative to animal testing and discuss its advantages and limitations, alongside regulatory considerations.Although stem cell related methodologies has shortcomings, it has potential to replace animal testing. Achieving this requires further research on stem cells, with potential societal and technological benefits.
Collapse
Affiliation(s)
- Guiyoung Park
- School of Biopharmaceutical and Medical Sciences, Health & Wellness College, Sungshin Women's University, 55, Dobong-ro 76ga-gil, Gangbuk-gu, Seoul, Republic of Korea
| | - Yeri Alice Rim
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 4 3, Seoul, 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yeowon Sohn
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
| | - Yoojun Nam
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
- Yipscell Inc, L2 Omnibus Park, Banpo-dearo 222, Seocho-gu, Seoul, Korea.
| | - Ji Hyeon Ju
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 4 3, Seoul, 06591, Republic of Korea.
- Department of Biomedicine & Health Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Yipscell Inc, L2 Omnibus Park, Banpo-dearo 222, Seocho-gu, Seoul, Korea.
| |
Collapse
|
25
|
Zeng X, Tong L. The Impact of Diabetes on Male Silkworm Reproductive Health. BIOLOGY 2024; 13:557. [PMID: 39194495 DOI: 10.3390/biology13080557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
The increasing prevalence of diabetic reproductive complications has prompted the development of innovative animal models. The use of the silkworm Bombyx mori as a model for diabetic reproductive damage shows potential as a valuable research tool. This study employed silkworms as a novel model to investigate diabetic reproductive damage. The silkworms were fed a high-glucose diet containing 10% glucose to induce a diabetic model. Subsequently, the study concentrated on assessing the influence of diabetes on the reproductive system of male silkworms. The results indicate that diabetes resulted in reduced luteinizing hormone (LH) and testosterone (T) levels, as well as elevated triglyceride (TG) levels in male silkworms. Moreover, diabetes mellitus was associated with pathological testicular damage in male silkworms, accompanied by decreased glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels, along with increased malondialdehyde (MDA) levels in the testis. Additionally, diabetes mellitus reduced the expression of siwi1 and siwi2 genes in the testis of male silkworms. Overall, these results support using silkworms as a valuable model for studying diabetic reproductive damage.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- Qinghai University, Xining 810000, China
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Xining 810000, China
| | - Li Tong
- Qinghai University, Xining 810000, China
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Xining 810000, China
| |
Collapse
|
26
|
de Oliveira Furo I, Nogueira LS, de Sousa RPC, Silva-Oliveira GC, Dos Santos da Silva DM, Costa-Malaquias A, de Oliveira EHC. New parameters for in vitro development of cell lines of the species Astyanax bimaculatus (Linnaeus, 1758) and Geophagus proximus (Castelnau, 1855). JOURNAL OF FISH BIOLOGY 2024; 105:85-94. [PMID: 38634376 DOI: 10.1111/jfb.15731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
Intending to compare in vitro cell growth in different conditions, we established cell cultures using fin biopsies of two freshwater fishes, Astyanax bimaculatus and Geophagus proximus. Three different culture media (Leibovitz-L-15, Dulbecco's Modified Eagle Medium [DMEM], and 199) were employed, with or without the addition of AmnioMax, maintaining a standard temperature of 29°C. Based on the results obtained, we standardized a cell growth protocol in which medium 199 was less efficient for both species. Notably, G. proximus cells exhibited superior proliferation in DMEM and L-15 media, whereas A. bimaculatus cells demonstrated better parameters exclusively in the DMEM medium. Successful subculturing of cells with good proliferation index was observed, accompanied by preserved morphological characteristics. Therefore, the methodology outlined in this study represents an advancement in establishing fish cell cultures.
Collapse
Affiliation(s)
- Ivanete de Oliveira Furo
- Laboratório de Reprodução Animal, Universidade Federal Rural da Amazônia, Parauapebas, Brazil
- Laboratório de Citogenômica e Mutagênese Ambiental, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Lygia S Nogueira
- Laboratório de Citogenômica e Mutagênese Ambiental, Instituto Evandro Chagas, Ananindeua, Brazil
- Laboratório de Biologia Estrutural e Funcional, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Rodrigo Petry Corrêa de Sousa
- Laboratório de Citogenômica e Mutagênese Ambiental, Instituto Evandro Chagas, Ananindeua, Brazil
- Laboratório de Evolução, Instituto de estudos Costeiros, Universidade Federal do Pará, Bragança, Brazil
| | | | - Diovanna Mirella Dos Santos da Silva
- Laboratório de Citogenômica e Mutagênese Ambiental, Instituto Evandro Chagas, Ananindeua, Brazil
- PIBIC-PROPESP, Universidade Federal do Pará, Belém, Brazil
| | - Allan Costa-Malaquias
- Laboratório de Tecnologia e Inovação em Saúde, Faculdade de Medicina, Universidade Federal do Pará, Altamira, Brazil
| | - Edivaldo H C de Oliveira
- Laboratório de Citogenômica e Mutagênese Ambiental, Instituto Evandro Chagas, Ananindeua, Brazil
- Faculdade de Ciências Naturais, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
27
|
Razak MR, Wee SY, Yusoff FM, Yusof ZNB, Aris AZ. Zooplankton-based adverse outcome pathways: A tool for assessing endocrine disrupting compounds in aquatic environments. ENVIRONMENTAL RESEARCH 2024; 252:119045. [PMID: 38704014 DOI: 10.1016/j.envres.2024.119045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Endocrine disrupting compounds (EDCs) pose a significant ecological risk, particularly in aquatic ecosystems. EDCs have become a focal point in ecotoxicology, and their identification and regulation have become a priority. Zooplankton have gained global recognition as bioindicators, benefiting from rigorous standardization and regulatory validation processes. This review aims to provide a comprehensive summary of zooplankton-based adverse outcome pathways (AOPs) with a focus on EDCs as toxicants and the utilisation of freshwater zooplankton as bioindicators in ecotoxicological assessments. This review presents case studies in which zooplankton have been used in the development of AOPs, emphasizing the identification of molecular initiating events (MIEs) and key events (KEs) specific to zooplankton exposed to EDCs. Zooplankton-based AOPs may become an important resource for understanding the intricate processes by which EDCs impair the endocrine system. Furthermore, the data sources, experimental approaches, advantages, and challenges associated with zooplankton-based AOPs are discussed. Zooplankton-based AOPs framework can provide vital tools for consolidating toxicological knowledge into a structured toxicity pathway of EDCs, offering a transformative platform for facilitating enhanced risk assessment and chemical regulation.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
28
|
Amantino CF, do Amaral SR, Aires-Fernandes M, Oliani SM, Tedesco AC, Primo FL. Development of 3D skin equivalents for application in photodynamic biostimulation therapy assays using curcumin nanocapsules. Heliyon 2024; 10:e32808. [PMID: 38975186 PMCID: PMC11226835 DOI: 10.1016/j.heliyon.2024.e32808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
For decades, animal models have been the standard approach in drug research and development, as they are required by regulations in the transition from preclinical to clinical trials. However, there is growing ethical and scientific concern regarding these trials, as 80 % of the therapeutic potential observed in pre-clinical studies are often unable to be replicated, despite demonstrating efficacy and safety. In response to this, Tissue Engineering has emerged as a promising alternative that enables the treatment of various diseases through the production of biological models for advanced biological assays or through the direct development of tissue repairs or replacements. One of the promising applications of Tissue Engineering is the development of three-dimensional (3D) models for in vitro tests, replacing the need for in vivo animal models. In this study, 3D skin equivalents (TSE) were produced and used as an in vitro model to test photobiostimulation using curcumin-loaded nanocapsules. Photodynamic biostimulation therapy uses photodynamic processes to generate small amounts of reactive oxygen species (ROS), which can activate important biological effects such as cell differentiation, modulation of inflammatory processes and contribution to cell regeneration. The PLGA nanocapsules (NC) used in the study were synthesized through a preformed polymer deposition method, exhibiting particle size <200 nm, Zeta potential >|30| and polydispersity index between 0.5 and 0.3. Atomic force microscopy analyzes confirmed that the particle size was <200 nm, with a spherical morphology and a predominantly smooth and uniform surface. The NC biocompatibility assay did not demonstrate cytotoxicity for the concentrations tested (2.5-25 μg mL-1).The in vitro release assay showed a slow and sustained release characteristic of the nanocapsules, and cellular uptake assays indicated a significant increase in cellular internalization of the curcumin-loaded nanostructure. Monolayer photobiostimulation studies revealed an increase in cell viability of the HDFn cell line (viability 134 %-228 %) for all LED fluences employed at λ = 450 nm (150, 300, and 450 mJ cm-2). Additionally, the scratch assays, monitoring in vitro scar injury, demonstrated more effective effects on cell proliferation with the fluence of 300 mJ cm-2. Staining of TSE with hematoxylin and eosin showed the presence of cells with different morphologies, confirming the presence of fibroblasts and keratinocytes. Immunohistochemistry using KI-67 revealed the presence of proliferating cells in TSE after irradiation with LED λ = 450 nm (150, 300, and 450 mJ cm-2).
Collapse
Affiliation(s)
- Camila F. Amantino
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| | - Stéphanie R. do Amaral
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| | - Mariza Aires-Fernandes
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| | - Sonia M. Oliani
- Department of Biology, Institute of Biosciences, Languages and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto, SP, 15054-000, Brazil
| | - Antonio C. Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering – Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, 14010-100, Brazil
| | - Fernando L. Primo
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| |
Collapse
|
29
|
De Spirito M, Palmieri V, Perini G, Papi M. Bridging the Gap: Integrating 3D Bioprinting and Microfluidics for Advanced Multi-Organ Models in Biomedical Research. Bioengineering (Basel) 2024; 11:664. [PMID: 39061746 PMCID: PMC11274229 DOI: 10.3390/bioengineering11070664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Recent advancements in 3D bioprinting and microfluidic lab-on-chip systems offer promising solutions to the limitations of traditional animal models in biomedical research. Three-dimensional bioprinting enables the creation of complex, patient-specific tissue models that mimic human physiology more accurately than animal models. These 3D bioprinted tissues, when integrated with microfluidic systems, can replicate the dynamic environment of the human body, allowing for the development of multi-organ models. This integration facilitates more precise drug screening and personalized therapy development by simulating interactions between different organ systems. Such innovations not only improve predictive accuracy but also address ethical concerns associated with animal testing, aligning with the three Rs principle. Future directions include enhancing bioprinting resolution, developing advanced bioinks, and incorporating AI for optimized system design. These technologies hold the potential to revolutionize drug development, regenerative medicine, and disease modeling, leading to more effective, personalized, and humane treatments.
Collapse
Affiliation(s)
- Marco De Spirito
- Department of Neuroscience, Universita Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (M.D.S.); (V.P.); (G.P.)
- Istituti di Ricovero e Cura a Carattere Scientifico IRCSS, Fondazione Policlinico Universitario “A. Gemelli”, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Valentina Palmieri
- Department of Neuroscience, Universita Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (M.D.S.); (V.P.); (G.P.)
- Istituti di Ricovero e Cura a Carattere Scientifico IRCSS, Fondazione Policlinico Universitario “A. Gemelli”, Largo A. Gemelli 8, 00168 Rome, Italy
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, CNR, via dei Taurini 19, 00185 Rome, Italy
| | - Giordano Perini
- Department of Neuroscience, Universita Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (M.D.S.); (V.P.); (G.P.)
- Istituti di Ricovero e Cura a Carattere Scientifico IRCSS, Fondazione Policlinico Universitario “A. Gemelli”, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Massimiliano Papi
- Department of Neuroscience, Universita Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (M.D.S.); (V.P.); (G.P.)
- Istituti di Ricovero e Cura a Carattere Scientifico IRCSS, Fondazione Policlinico Universitario “A. Gemelli”, Largo A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
30
|
Kang DW, Kim JH, Kim KM, Cho SJ, Choi GW, Cho HY. Inter-Species Pharmacokinetic Modeling and Scaling for Drug Repurposing of Pyronaridine and Artesunate. Int J Mol Sci 2024; 25:6998. [PMID: 39000107 PMCID: PMC11241507 DOI: 10.3390/ijms25136998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Even though several new targets (mostly viral infection) for drug repurposing of pyronaridine and artesunate have recently emerged in vitro and in vivo, inter-species pharmacokinetic (PK) data that can extend nonclinical efficacy to humans has not been reported over 30 years of usage. Since extrapolation of animal PK data to those of humans is essential to predict clinical outcomes for drug repurposing, this study aimed to investigate inter-species PK differences in three animal species (hamster, rat, and dog) and to support clinical translation of a fixed-dose combination of pyronaridine and artesunate. PK parameters (e.g., steady-state volume of distribution (Vss), clearance (CL), area under the concentration-time curve (AUC), mean residence time (MRT), etc.) of pyronaridine, artesunate, and dihydroartemisinin (an active metabolite of artesunate) were determined by non-compartmental analysis. In addition, one- or two-compartment PK modeling was performed to support inter-species scaling. The PK models appropriately described the blood concentrations of pyronaridine, artesunate, and dihydroartemisinin in all animal species, and the estimated PK parameters in three species were integrated for inter-species allometric scaling to predict human PKs. The simple allometric equation (Y = a × Wb) well explained the relationship between PK parameters and the actual body weight of animal species. The results from the study could be used as a basis for drug repurposing and support determining the effective dosage regimen for new indications based on in vitro/in vivo efficacy data and predicted human PKs in initial clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (D.W.K.); (J.H.K.); (K.M.K.); (S.-j.C.); (G.-W.C.)
| |
Collapse
|
31
|
Mihaylova A, Shopova D, Parahuleva N, Yaneva A, Bakova D. (3D) Bioprinting-Next Dimension of the Pharmaceutical Sector. Pharmaceuticals (Basel) 2024; 17:797. [PMID: 38931464 PMCID: PMC11206453 DOI: 10.3390/ph17060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
To create a review of the published scientific literature on the benefits and potential perspectives of the use of 3D bio-nitrification in the field of pharmaceutics. This work was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for reporting meta-analyses and systematic reviews. The scientific databases PubMed, Scopus, Google Scholar, and ScienceDirect were used to search and extract data using the following keywords: 3D bioprinting, drug research and development, personalized medicine, pharmaceutical companies, clinical trials, drug testing. The data points to several aspects of the application of bioprinting in pharmaceutics were reviewed. The main applications of bioprinting are in the development of new drug molecules as well as in the preparation of personalized drugs, but the greatest benefits are in terms of drug screening and testing. Growth in the field of 3D printing has facilitated pharmaceutical applications, enabling the development of personalized drug screening and drug delivery systems for individual patients. Bioprinting presents the opportunity to print drugs on demand according to the individual needs of the patient, making the shape, structure, and dosage suitable for each of the patient's physical conditions, i.e., print specific drugs for controlled release rates; print porous tablets to reduce swallowing difficulties; make transdermal microneedle patches to reduce patient pain; and so on. On the other hand, bioprinting can precisely control the distribution of cells and biomaterials to build organoids, or an Organ-on-a-Chip, for the testing of drugs on printed organs mimicking specified disease characteristics instead of animal testing and clinical trials. The development of bioprinting has the potential to offer customized drug screening platforms and drug delivery systems meeting a range of individualized needs, as well as prospects at different stages of drug development and patient therapy. The role of bioprinting in preclinical and clinical testing of drugs is also of significant importance in terms of shortening the time to launch a medicinal product on the market.
Collapse
Affiliation(s)
- Anna Mihaylova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Nikoleta Parahuleva
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Antoniya Yaneva
- Department of Medical Informatics, Biostatistics and eLearning, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Desislava Bakova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| |
Collapse
|
32
|
Garfinkel AM, Ilker E, Miyazawa H, Schmeisser K, Tennessen JM. Historic obstacles and emerging opportunities in the field of developmental metabolism - lessons from Heidelberg. Development 2024; 151:dev202937. [PMID: 38912552 PMCID: PMC11299503 DOI: 10.1242/dev.202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The field of developmental metabolism is experiencing a technological revolution that is opening entirely new fields of inquiry. Advances in metabolomics, small-molecule sensors, single-cell RNA sequencing and computational modeling present new opportunities for exploring cell-specific and tissue-specific metabolic networks, interorgan metabolic communication, and gene-by-metabolite interactions in time and space. Together, these advances not only present a means by which developmental biologists can tackle questions that have challenged the field for centuries, but also present young scientists with opportunities to define new areas of inquiry. These emerging frontiers of developmental metabolism were at the center of a highly interactive 2023 EMBO workshop 'Developmental metabolism: flows of energy, matter, and information'. Here, we summarize key discussions from this forum, emphasizing modern developmental biology's challenges and opportunities.
Collapse
Affiliation(s)
- Alexandra M. Garfinkel
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Efe Ilker
- Max Planck Institute for the Physics of Complex Systems, Dresden 01187, Germany
| | - Hidenobu Miyazawa
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Kathrin Schmeisser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | | |
Collapse
|
33
|
Ly KL, Rajtboriraks M, Elgerbi A, Luo X, Raub CB. Recombinant Human Keratinocyte Growth Factor Ameliorates Cancer Treatment-Induced Oral Mucositis on a Chip. Adv Healthc Mater 2024; 13:e2302970. [PMID: 38351394 PMCID: PMC11144107 DOI: 10.1002/adhm.202302970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Oral mucositis (OM) is a severe complication of cancer therapies caused by off-target cytotoxicity. Palifermin, which is recombinant human keratinocyte growth factor (KGF), is currently the only mitigating treatment available to a subset of OM patients. This study used a previously established model of oral mucositis on a chip (OM-OC) comprised of a confluent human gingival keratinocytes (GIE) layer attached to a basement membrane-lined subepithelial layer consisting of human gingival fibroblasts (HGF) and human dermal microvascular endothelial cells (HMEC) on a stable collagen I gel. Cisplatin, radiation, and combined treatments are followed by a recovery period in the OM-OC to determine possible cellular and molecular mechanisms of OM under effects of KGF. Cancer treatments affected the keratinocyte layer, causing death and epithelial barrier loss. Both keratinocytes and subepithelial cells died rapidly, as evidenced by propidium iodide staining. In response to radiation exposure, cell death occurred in the apical epithelial layer, predominantly, within 24h. Cisplatin exposure predominantly promoted death of basal epithelial cells within 32-36h. Presence of KGF in OM-OC protected tissues from damage caused by cancer treatments in a dose-dependent manner, being more effective at 10 ng/mL. As verified by F-actin staining and the Alamar Blue assay, KGF contributed to epithelial survival and induced proliferation of GIE and HGF as well as HMEC within 120h. When the expression of eighty inflammatory cytokines is evaluated at OM induction (Day 12) and resolution (Day 18) stages in OM-OC, some cytokines are identified as potential novel therapeutic targets. In comparison with chemoradiation exposure, KGF treatment showed a trend to decrease IL-8 and TNF-a expression at Day 12 and 18, and TGF-β1 at Day 18 in OM-OC. Taken together, these findings support the utility of OM-OC as a platform to model epithelial damage and evaluate molecular mechanisms following OM treatment.
Collapse
Affiliation(s)
- Khanh L Ly
- Department of Biomedical Engineering, School of Engineering, The Catholic University of America, Washington, DC, 20064, USA
| | - May Rajtboriraks
- Department of Biomedical Engineering, School of Engineering, The Catholic University of America, Washington, DC, 20064, USA
| | - Ahmed Elgerbi
- Department of Biology, School of Arts and Sciences, The Catholic University of America, Washington, DC, 20064, USA
| | - Xiaolong Luo
- Department of Mechanical Engineering, School of Engineering, The Catholic University of America, Washington, DC, 20064, USA
| | - Christopher B Raub
- Department of Biomedical Engineering, School of Engineering, The Catholic University of America, Washington, DC, 20064, USA
| |
Collapse
|
34
|
Cho S, Jo H, Hwang YJ, Kim C, Jo YH, Yun JW. Potential impact of underlying diseases influencing ADME in nonclinical safety assessment. Food Chem Toxicol 2024; 188:114636. [PMID: 38582343 DOI: 10.1016/j.fct.2024.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Nonclinical studies involve in vitro, in silico, and in vivo experiments to assess the toxicokinetics, toxicology, and safety pharmacology of drugs according to regulatory requirements by a national or international authority. In this review, we summarize the potential effects of various underlying diseases governing the absorption, distribution, metabolism, and excretion (ADME) of drugs to consider the use of animal models of diseases in nonclinical trials. Obesity models showed alterations in hepatic metabolizing enzymes, transporters, and renal pathophysiology, which increase the risk of drug-induced toxicity. Diabetes models displayed changes in hepatic metabolizing enzymes, transporters, and glomerular filtration rates (GFR), leading to variability in drug responses and susceptibility to toxicity. Animal models of advanced age exhibited impairment of drug metabolism and kidney function, thereby reducing the drug-metabolizing capacity and clearance. Along with changes in hepatic metabolic enzymes, animal models of metabolic syndrome-related hypertension showed renal dysfunction, resulting in a reduced GFR and urinary excretion of drugs. Taken together, underlying diseases can induce dysfunction of organs involved in the ADME of drugs, ultimately affecting toxicity. Therefore, the use of animal models of representative underlying diseases in nonclinical toxicity studies can be considered to improve the predictability of drug side effects before clinical trials.
Collapse
Affiliation(s)
- Sumin Cho
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Harin Jo
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeon Jeong Hwang
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yong Hyeon Jo
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
35
|
Petrovic S, Bita B, Barbinta-Patrascu ME. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int J Mol Sci 2024; 25:5842. [PMID: 38892030 PMCID: PMC11172476 DOI: 10.3390/ijms25115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.
Collapse
Affiliation(s)
- Sanja Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| |
Collapse
|
36
|
Yang SL, Ma BJ, Lu YS, Chen J, Yu J, Qiu J, Qian YZ, Xu YY. Multi-omics reveals the molecular mechanism of the combined toxic effects of PFOA and 4-HBP exposure in MCF-7 cells and the key player: mTORC1. ENVIRONMENT INTERNATIONAL 2024; 188:108778. [PMID: 38815467 DOI: 10.1016/j.envint.2024.108778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
With the discovery of evidence that many endocrine-disrupting chemicals (EDCs) in the environment influence human health, their toxic effects and mechanisms have become a hot topic of research. However, investigations into their endocrine-disrupting toxicity under combined binary exposure, especially the molecular mechanism of combined effects, have rarely been documented. In this study, two typical EDCs, perfluorooctanoic acid (PFOA) and 4-hydroxybenzophenone (4-HBP), were selected to examine their combined effects and molecular mechanism on MCF-7 cell proliferation at environmentally relevant exposure concentrations. We have successfully established a model to evaluate the binary combined toxic effects of endocrine disruptors, presenting combined effects in a simple and direct way. Results indicated that the combined effect changed from additive to synergistic from 1.25 × 10-8 M to 4 × 10-7 M. Metabolomics analyses suggested that exposure to PFOA and 4-HBP caused significant alterations in purine metabolism, arginine, and proline metabolism and had superimposed influences on metabolism. Enhanced combined effects were observed in glycine, serine, and threonine metabolic pathways compared to exposure to PFOS and 4-HBP alone. Additionally, the differentially expressed genes (DEGs) are primarily involved in Biological Processes, especially protein targeting the endoplasmic reticulum, and significantly impact the oxidative phosphorylation and thermogenesis-related KEGG pathway. By integrating metabolome and transcriptome analyses, PFOA and 4-HBP regulate purine metabolism, the TCA cycle, and endoplasmic reticulum protein synthesis in MCF-7 cells via mTORC1, which provides genetic material, protein, and energy for cell proliferation. Furthermore, molecular docking confirmed the ability of PFOA and 4-HBP to stably bind the estrogen receptor, indicating that they have different binding pockets. Collectively, these findings will offer new insights into understanding the mechanisms by which EDCs produce combined toxicity.
Collapse
Affiliation(s)
- Shang-Lin Yang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing-Jie Ma
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an 710048, China
| | - Yu-Shun Lu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ju Chen
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an 710048, China
| | - Jiang Yu
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an 710048, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong-Zhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan-Yang Xu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
37
|
Freese T, Elzinga N, Heinemann M, Lerch MM, Feringa BL. The relevance of sustainable laboratory practices. RSC SUSTAINABILITY 2024; 2:1300-1336. [PMID: 38725867 PMCID: PMC11078267 DOI: 10.1039/d4su00056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/15/2024] [Indexed: 05/12/2024]
Abstract
Scientists are of key importance to the society to advocate awareness of the climate crisis and its underlying scientific evidence and provide solutions for a sustainable future. As much as scientific research has led to great achievements and benefits, traditional laboratory practices come with unintended environmental consequences. Scientists, while providing solutions to climate problems and educating the young innovators of the future, are also part of the problem: excessive energy consumption, (hazardous) waste generation, and resource depletion. Through their own research operations, science, research and laboratories have a significant carbon footprint and contribute to the climate crisis. Climate change requires a rapid response across all sectors of society, modeled by inspiring leaders. A broader scientific community that takes concrete actions would serve as an important step in convincing the general public of similar actions. Over the past years, grassroots movements across the sciences have recognized the overlooked impact of the scientific enterprise, and so-called Green Lab initiatives emerged seeking to address the environmental footprint of research. Driven by the voluntary efforts of researchers and staff, they educate peers, develop sustainability guidelines, write scientific publications and maintain accreditation frameworks. With this perspective we want to advocate for and spark leadership to promote a systemic change in laboratory practices and approach to research. Comprehensive evidence for the environmental impact of laboratories and their root-causes is presented, expanded with data from a current case study of the University of Groningen showcasing annual savings of 398 763 € as well as 477.1 tons of CO2e. This is followed by guidelines for sustainable lab practices and hands-on advice on how to achieve a systemic change at research institutions and industry. How can we expect industry, politics, and society to change, if we as scientists are not changing either? Scientists should lead by example and practice the change they want to see.
Collapse
Affiliation(s)
- Thomas Freese
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Nils Elzinga
- Green Office, University of Groningen Broerstraat 5 9712 CP Groningen The Netherlands
| | - Matthias Heinemann
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Michael M Lerch
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
38
|
Baturalp TB, Bozkurt S. Design and Analysis of a Polymeric Left Ventricular Simulator via Computational Modelling. Biomimetics (Basel) 2024; 9:269. [PMID: 38786479 PMCID: PMC11117906 DOI: 10.3390/biomimetics9050269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Preclinical testing of medical devices is an essential step in the product life cycle, whereas testing of cardiovascular implants requires specialised testbeds or numerical simulations using computer software Ansys 2016. Existing test setups used to evaluate physiological scenarios and test cardiac implants such as mock circulatory systems or isolated beating heart platforms are driven by sophisticated hardware which comes at a high cost or raises ethical concerns. On the other hand, computational methods used to simulate blood flow in the cardiovascular system may be simplified or computationally expensive. Therefore, there is a need for low-cost, relatively simple and efficient test beds that can provide realistic conditions to simulate physiological scenarios and evaluate cardiovascular devices. In this study, the concept design of a novel left ventricular simulator made of latex rubber and actuated by pneumatic artificial muscles is presented. The designed left ventricular simulator is geometrically similar to a native left ventricle, whereas the basal diameter and long axis length are within an anatomical range. Finite element simulations evaluating left ventricular twisting and shortening predicted that the designed left ventricular simulator rotates approximately 17 degrees at the apex and the long axis shortens around 11 mm. Experimental results showed that the twist angle is 18 degrees and the left ventricular simulator shortens 5 mm. Twist angles and long axis shortening as in a native left ventricle show it is capable of functioning like a native left ventricle and simulating a variety of scenarios, and therefore has the potential to be used as a test platform.
Collapse
Affiliation(s)
- Turgut Batuhan Baturalp
- Department of Mechanical Engineering, Texas Tech University, P.O. Box 41021, Lubbock, TX 79409, USA
| | - Selim Bozkurt
- School of Engineering, Ulster University, York Street, Belfast BT15 1AP, UK
| |
Collapse
|
39
|
Rodríguez D, Moscoso M, Desco M, Ripoll J, Fernández R. Development and testing of a sedation protocol for Neocaridina davidi. Sci Rep 2024; 14:9536. [PMID: 38664522 PMCID: PMC11045803 DOI: 10.1038/s41598-024-60158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Neocaridina davidi, a small freshwater shrimp native to Asia, specifically China, Japan, Korea, and Vietnam, possesses remarkable resistance to poor water quality and offers various advantages over other invertebrate species to examine crucial issues in neuroscience and other related areas. These advantages include robustness, ease of maintenance, and transparency, making them useful for in vivo studies with optical imaging techniques. Despite its suitability for research purposes, particularly in the fields of imaging and fluorescent techniques, the lack of attention given to this species has resulted in the absence of a robust and replicable sedation protocol for immobilization and safe manipulation. Consequently, researchers face challenges in performing experimental procedures while minimizing harm to this specimen. In this study, we have developed and evaluated a simple sedation protocol specifically designed for Neocaridina davidi, assessing its effectiveness using light microscopy and image processing.
Collapse
Affiliation(s)
- Diego Rodríguez
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain
| | - Miguel Moscoso
- Departamento de Matemáticas, Universidad Carlos III de Madrid, Madrid, Spain
| | - Manuel Desco
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jorge Ripoll
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Roberto Fernández
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain.
- Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
40
|
Pande A, Thakuria D, Kushwaha B, Kumar R, S M, Rastogi A, Sood N. A cell line derived from heart of rainbow trout is refractory to Tilapia lake virus. Cell Biol Int 2024; 48:347-357. [PMID: 38212941 DOI: 10.1002/cbin.12125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024]
Abstract
Cell lines are important in vitro models to answer biological mechanisms with less genetic variations. The present study was attempted to develop a cell line from rainbow trout, where we obtained a cell line from the heart, named "RBT-H." The cell line was authenticated using karyotyping and cytochrome c oxidase subunit I (COI) gene sequencing. The karyotype demonstrated diploid chromosome number (2n) as 62 and the sequence of partial COI gene was 99.84% similar to rainbow trout COI data set, both suggesting the origin of RBT-H from the rainbow trout. The heart cell line was mycoplasma-free and found to be refractory to infection with the Tilapia lake virus. The RBT-H cell line is deposited in the National Repository of Fish Cell Line (NRFC) at ICAR-NBFGR, Lucknow, India, with Accession no. NRFC0075 for maintenance and distribution to researchers on request for R&D.
Collapse
Affiliation(s)
- Amit Pande
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, India
| | - Dimpal Thakuria
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, India
| | - Basdeo Kushwaha
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | - Ravindra Kumar
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | - Murali S
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | - Aakriti Rastogi
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | - Neeraj Sood
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| |
Collapse
|
41
|
Mahieu L, Van Moll L, De Vooght L, Delputte P, Cos P. In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. FEMS Microbiol Rev 2024; 48:fuae007. [PMID: 38409952 PMCID: PMC10913945 DOI: 10.1093/femsre/fuae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.
Collapse
Affiliation(s)
- Laure Mahieu
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
42
|
House JD, Brodkorb A, Messina M, Braun M, Krul ES. Options for substantiating protein content claims for conventional foods. Appl Physiol Nutr Metab 2024; 49:395-404. [PMID: 38088347 DOI: 10.1139/apnm-2023-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In Canada and the United States, front-of-package protein content claims require data to support the quality of the protein. In general, protein quality reflects the product of the amino acid composition of the food protein relative to human amino acid requirements and a measure of digestibility. The currently accepted method in both jurisdictions is the protein digestibility-corrected amino acid score (PDCAAS) that requires the measurement of true fecal protein (nitrogen) digestibility. The latter must be measured in vivo using a rat model. This requirement for animal testing is inconsistent with international efforts to reduce the usage of animals in testing for regulatory purposes. The current commentary positions four options to remove the need to use animal testing for determining protein quality, when considering protein content claim substantiation. These options include (i) a focus on protein quantity alone; (ii) the use of the amino acid score alone, with no correction for digestibility; (iii) the use of a fixed digestibility coefficient to estimate protein quality; and (iv) the use of in vitro methods to measure protein and/or amino acid digestibility. The relative merits and deficiencies of the options are positioned with the goal of encouraging dialogue within the regulatory agencies to move towards alternative approaches for substantiating protein content claims on foods, including those derived from plant-based sources.
Collapse
Affiliation(s)
- James D House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB, Canada
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy Co., Cork, Ireland
| | - Mark Messina
- Soy Nutrition Institute Global, 1747 Pennsylvania Ave., NW, Suite 1000, Washington, DC 20006, USA
| | | | - Elaine S Krul
- EKSci LLC, 594 Gederson Lane, St. Louis, MO 63122, USA
| |
Collapse
|
43
|
Zingman I, Stierstorfer B, Lempp C, Heinemann F. Learning image representations for anomaly detection: Application to discovery of histological alterations in drug development. Med Image Anal 2024; 92:103067. [PMID: 38141454 DOI: 10.1016/j.media.2023.103067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
We present a system for anomaly detection in histopathological images. In histology, normal samples are usually abundant, whereas anomalous (pathological) cases are scarce or not available. Under such settings, one-class classifiers trained on healthy data can detect out-of-distribution anomalous samples. Such approaches combined with pre-trained Convolutional Neural Network (CNN) representations of images were previously employed for anomaly detection (AD). However, pre-trained off-the-shelf CNN representations may not be sensitive to abnormal conditions in tissues, while natural variations of healthy tissue may result in distant representations. To adapt representations to relevant details in healthy tissue we propose training a CNN on an auxiliary task that discriminates healthy tissue of different species, organs, and staining reagents. Almost no additional labeling workload is required, since healthy samples come automatically with aforementioned labels. During training we enforce compact image representations with a center-loss term, which further improves representations for AD. The proposed system outperforms established AD methods on a published dataset of liver anomalies. Moreover, it provided comparable results to conventional methods specifically tailored for quantification of liver anomalies. We show that our approach can be used for toxicity assessment of candidate drugs at early development stages and thereby may reduce expensive late-stage drug attrition.
Collapse
Affiliation(s)
- Igor Zingman
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH and Co., Biberach an der Riß, Germany.
| | - Birgit Stierstorfer
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharma GmbH and Co., Biberach an der Riß, Germany
| | - Charlotte Lempp
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH and Co., Biberach an der Riß, Germany
| | - Fabian Heinemann
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH and Co., Biberach an der Riß, Germany.
| |
Collapse
|
44
|
Kumari L, Mishra L, Sharma Y, Chahar K, Kumar M, Patel P, Gupta GD, Kurmi BD. NOTCH Signaling Pathway: Occurrence, Mechanism, and NOTCH-Directed Therapy for the Management of Cancer. Cancer Biother Radiopharm 2024; 39:19-34. [PMID: 37797218 DOI: 10.1089/cbr.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
It is now well understood that many signaling pathways are vital in carrying out and controlling essential pro-survival and pro-growth cellular functions. The NOTCH signaling pathway, a highly conserved evolutionary signaling pathway, has been thoroughly studied since the discovery of NOTCH phenotypes about 100 years ago in Drosophila melanogaster. Abnormal NOTCH signaling has been linked to the pathophysiology of several diseases, notably cancer. In tumorigenesis, NOTCH plays the role of a "double-edged sword," that is, it may act as an oncogene or as a tumor suppressor gene depending on the nature of the context. However, its involvement in several cancers and inhibition of the same provides targeted therapy for the management of cancer. The use of gamma (γ)-secretase inhibitors and monoclonal antibodies for cancer treatment involved NOTCH receptors inhibition, leading to the possibility of a targeted approach for cancer treatment. Likewise, several natural compounds, including curcumin, resveratrol, diallyl sulfide, and genistein, also play a dynamic role in the management of cancer by inhibition of NOTCH receptors. This review outlines the functions and structure of NOTCH receptors and their associated ligands with the mechanism of the signaling pathway. In addition, it also emphasizes the role of NOTCH-targeted nanomedicine in various cancer treatment strategies.
Collapse
Affiliation(s)
- Lakshmi Kumari
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| | | | - Yash Sharma
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | - Kanak Chahar
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | - Mritunjay Kumar
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, Moga, India
| | | | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| |
Collapse
|
45
|
Wang H, Lu F, Tian Y, Zhang S, Han S, Fu Y, Li J, Feng P, Shi Z, Chen H, Hou H. Evaluation of toxicity of heated tobacco products aerosol and cigarette smoke to BEAS-2B cells based on 3D biomimetic chip model. Toxicol In Vitro 2024; 94:105708. [PMID: 37806364 DOI: 10.1016/j.tiv.2023.105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
It is still a controversial topic about evaluating whether heated tobacco products (HTP) really reduce harm, which involves the choice of an experimental model. Here, a three-dimensional (3D) biomimetic chip model was used to evaluate the toxicity of aerosols came from HTP and smoke produced by cigarettes (Cig). Based on cell-related experiments, we found that the toxicity of Cig smoke extract diluted four times was also much higher than that of undiluted HTP, showing higher oxidative stress response and cause mitochondrial dysfunction. Meanwhile, both tobacco products all affect the tricarboxylic acid cycle (TCA), which is manifested by a significant decrease in the mRNA expression of TCA key rate-limiting enzymes. Summarily, 3D Biomimetic chip technology can be used as an ideal model to evaluate HTP. It can provide important data for tobacco risk assessment when 3D chip model was used. Our experimental results showed that HTP may be less harmful than tobacco cigarettes, but it does show significant cytotoxicity with the increase of dose. Therefore, the potential clinical effects of HTP on targeted organs such as lung should be further studied.
Collapse
Affiliation(s)
- Hongjuan Wang
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Fengjun Lu
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Yushan Tian
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Sen Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Shulei Han
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Yaning Fu
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Jun Li
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Pengxia Feng
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Zhihao Shi
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Huan Chen
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China.
| | - Hongwei Hou
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China.
| |
Collapse
|
46
|
Lee S, Ok SY, Moon HB, Seo SC, Ra JS. Developing a Novel Read-Across Concept for Ecotoxicological Risk Assessment of Phosphate Chemicals: A Case Study. TOXICS 2024; 12:96. [PMID: 38276731 PMCID: PMC10818528 DOI: 10.3390/toxics12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
This study introduces a novel concept approach for a read-across assessment, considering species sensitivity differences among phosphate chemicals within structurally similar compound groups. Twenty-five organic chemicals, with a log Kow of 5 or less, were categorized into three functional groups based on acetylcholinesterase (AChE) inhibition as a specific mode of action (MOA). The short-term aquatic toxicity data (LC50) for fish, crustaceans, and insects were collected from the U.S. EPA Ecotoxicology (ECOTOX) Knowledgebase. A geometric mean calculation method was applied for multiple toxic endpoints. Performance metrics for the new read-across concept, including correlation coefficient, bias, precision, and accuracy, were calculated. Overall, a slightly higher overestimation (49.2%) than underestimation (48.4%) in toxicity predictions was observed in two case studies. In Case study I, a strong positive correlation (r = 0.93) between the predicted and known toxicity values of target chemicals was observed, while in Case study II, with limited information on species and their ecotoxicity, showed a moderate correlation (r = 0.75). Overall, the bias and precision for Case study I were 0.32 ± 0.01, while Case study II showed 0.65 ± 0.06; however, the relative bias (%) increased from 37.65% (Case study I) to 91.94% (Case study II). Bland-Altman plots highlight the mean differences of 1.33 (Case study I) and 1.24 (Case study II), respectively. The new read-across concept, focusing on AChE inhibition and structural similarity, demonstrated good reliability, applicability, and accuracy with minimal bias. Future studies are needed to evaluate various types of chemical substances, diverse modes of action, functional groups, toxic endpoints, and test species to ensure overall comprehensiveness and robustness in toxicity predictions.
Collapse
Affiliation(s)
- Seokwon Lee
- Geum River Environment Research Center, National Institute of Environmental Research, Okcheon-gun 29027, Chungbuk, Republic of Korea;
| | - Seung-Yeop Ok
- Department of Environmental Fate and Modelling, Knoell Korea Ltd., Seoul 07327, Republic of Korea;
- Department of Marine Sciences and Convergent Engineering, Hanyang University, Ansan 15588, Republic of Korea;
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Engineering, Hanyang University, Ansan 15588, Republic of Korea;
| | - Sung-Chul Seo
- Department of Nano, Chemical and Biological Engineering, College of Engineering, Seokyeong University, Seoul 02173, Republic of Korea
| | - Jin-Sung Ra
- Regulatory Chemical Analysis & Risk Assessment Center, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea
| |
Collapse
|
47
|
Cramer EEA, de Wildt BWM, Hendriks JGE, Ito K, Hofmann S. Integration of osteoclastogenesis through addition of PBMCs in human osteochondral explants cultured ex vivo. Bone 2024; 178:116935. [PMID: 37852425 DOI: 10.1016/j.bone.2023.116935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
The preservation of tissue specific cells in their native 3D extracellular matrix in bone explants provides a unique platform to study remodeling. Thus far, studies involving bone explant cultures showed a clear focus on achieving bone formation and neglected osteoclast activity and resorption. To simulate the homeostatic bone environment ex vivo, both key elements of bone remodeling need to be represented. This study aimed to assess and include osteoclastogenesis in human osteochondral explants through medium supplementation with RANKL and M-CSF and addition of peripheral blood mononuclear cells (PBMCs), providing osteoclast precursors. Osteochondral explants were freshly harvested from human femoral heads obtained from hip surgeries and cultured for 20 days in a two-compartment culture system. Osteochondral explants preserved viability and cellular abundance over the culture period, but histology demonstrated that resident osteoclasts were no longer present after 4 days of culture. Quantitative extracellular tartrate resistant acid phosphatase (TRAP) analysis confirmed depletion of osteoclast activity on day 4 even when stimulated with RANKL and M-CSF. Upon addition of PBMCs, a significant upregulation of TRAP activity was measured from day 10 onwards. Evaluation of bone loss trough μCT registration and measurement of extracellular cathepsin K activity revealed indications of enhanced resorption upon addition of PBMCs. Based on the results we suggest that an external source of osteoclast precursors, such as PBMCs, needs to be added in long-term bone explant cultures to maintain osteoclastic activity, and bone remodeling.
Collapse
Affiliation(s)
- Esther E A Cramer
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Bregje W M de Wildt
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Johannes G E Hendriks
- Department of Orthopedic Surgery & Trauma, Máxima Medical Center Eindhoven/Veldhoven, 5631 BM Eindhoven, the Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
| |
Collapse
|
48
|
de Oliveira-Júnior FC, Oliveira ACPD, Pansa CC, Molica LR, Moraes KCM. Drosophila melanogaster as a Biotechnological Tool to Investigate the Close Connection Between Fatty Diseases and Pesticides. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2024; 67. [DOI: 10.1590/1678-4324-2024230091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
49
|
Herre C, Nshdejan A, Klopfleisch R, Corte GM, Bahramsoltani M. Knockdown of TPI in human dermal microvascular endothelial cells and its impact on angiogenesis in vitro. PLoS One 2023; 18:e0294933. [PMID: 38117832 PMCID: PMC10732452 DOI: 10.1371/journal.pone.0294933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/10/2023] [Indexed: 12/22/2023] Open
Abstract
INTRODUCTION Angiogenic behaviour has been shown as highly versatile among Endothelial cells (ECs) causing problems of in vitro assays of angiogenesis considering their reproducibility. It is indispensable to investigate influencing factors of the angiogenic potency of ECs. OBJECTIVE The present study aimed to analyse the impact of knocking down triosephosphate isomerase (TPI) on in vitro angiogenesis and simultaneously on vimentin (VIM) and adenosylmethionine synthetase isoform type 2 (MAT2A) expression. Furthermore, native expression profiles of TPI, VIM and MAT2A in the course of angiogenesis in vitro were examined. METHODS Two batches of human dermal microvascular ECs were cultivated over 50 days and stimulated to undergo angiogenesis. A shRNA-mediated knockdown of TPI was performed. During cultivation, time-dependant morphological changes were detected and applied for EC-staging as prerequisite for quantifying in vitro angiogenesis. Additionally, mRNA and protein levels of all proteins were monitored. RESULTS Opposed to native cells, knockdown cells were not able to enter late stages of angiogenesis and primarily displayed a downregulation of VIM and an uprise in MAT2A expression. Native cells increased their TPI expression and decreased their VIM expression during the course of angiogenesis in vitro. For MAT2A, highest expression was observed to be in the beginning and at the end of angiogenesis. CONCLUSION Knocking down TPI provoked expressional changes in VIM and MAT2A and a deceleration of in vitro angiogenesis, indicating that TPI represents an angiogenic protein. Native expression profiles lead to the assumption of VIM being predominantly relevant in beginning stages, MAT2A in beginning and late stages and TPI during the whole course of angiogenesis in vitro.
Collapse
Affiliation(s)
- Christina Herre
- Institute of Veterinary Anatomy, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Arpenik Nshdejan
- Institute of Veterinary Anatomy, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Giuliano Mario Corte
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Universität Zürich, Zurich, Switzerland
| | - Mahtab Bahramsoltani
- Institute of Veterinary Anatomy, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
50
|
Heredia-Antúnez A, Galarde-López M, Téllez-Ballesteros E, Vanda-Cantón B. Knowledge, Attitudes, and Practices on Ethics in Biomedical Animal Research in Mexico. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:478-486. [PMID: 37973149 PMCID: PMC10772910 DOI: 10.30802/aalas-jaalas-23-000012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 06/06/2023] [Indexed: 11/19/2023]
Abstract
The most widely accepted ethical concept for the mitigation of harm to animals used in biomedical research is known as the 3Rs, which refer to replacement, reduction, and refinement. The aim of our study was to determine the ethical and regulatory criteria that researchers in Mexico consider when developing their animal research protocols and that members of the ethics committees use when they evaluate and approve these protocols. We circulated a survey to 300 individuals from different research institutions and received responses from 179 researchers and members of ethics committees on questions related to their knowledge, attitudes, and practices toward the use of animals in research based on the 3Rs. The responses obtained indicate that the respondents were aware of the 3R concept, and they claim to apply these principles. However, the responses revealed resistance to using alternatives for research, testing, and teaching (66%). Nineteen percent of the researchers reported that their institutions do not have an integrated Institutional Animal Care and Use Committee (IACUC). Around 80% of respondents were aware of Mexican regulations. The knowledge and application of the 3Rs by researchers and members of the IACUC is a fundamental concept in animal research. Such knowledge contributes the use of ethical standards, attitudes, and practices relevant to the use of animals in research.
Collapse
Affiliation(s)
- Anayántzin Heredia-Antúnez
- Postgraduate Medical, Dental and Health Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Miguel Galarde-López
- Research Center on Infectious Diseases, National Institute of Public Health, Morelos, Mexico; and
| | | | - Beatriz Vanda-Cantón
- Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|