1
|
Ganguly SC, Maity R, Manna P, Sardar A, Mukherjee S, Karati D. Amplifying therapeutic potential through optimization of bioavailability of poorly soluble flavonols via albumin-based nanoparticles. Drug Dev Ind Pharm 2025; 51:534-545. [PMID: 40186858 DOI: 10.1080/03639045.2025.2490281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
OBJECTIVE Flavonols have different pharmacological actions that render them highly promising therapeutic targets. However, their water solubility and bioavailability are low, which restricts their therapeutic potential. ABNPs, albumin-based nanoparticles, are potential nanocarriers that enhance flavonol solubility, stability, and targeted delivery. By utilizing ABNPs, in this work we provide a detailed overview of strategies employed to attain maximum bioavailability of poorly water-soluble flavonols. The review critically evaluates ABNP-mediated delivery's pharmacokinetic advantage, physicochemical properties, and formulation principles. We also highlight existing gaps in research, such as the need for stringent in vivo validity tests, standardized formulation procedures, and in-depth mechanistic understanding of flavonol-albumin interactions. SIGNIFICANCE Despite having potential therapeutic activities, the utilization of flavonoids in the form of medication is limited. Some recent studies have shown that flavonoids exhibit low solubility, low permeability and chemical instability, thereby limiting their bioavailability and therapeutic responses. METHODS To overcome these drawbacks, multiple novel drug delivery approaches have emerged in the pharmaceutical research. RESULTS These novel approaches seem to offer a viable foundation for improving the bioavailability of the flavonoids and positioning them as viable therapeutic options. Out of all the polymers implemented in enhancing the solubility and bioavailability of the flavonoids, albumin-based nanomaterials have been the most efficacious one. CONCLUSION Compared to all other polymeric nano-carriers, albumin nano-carriers offer a greater scale of drug entrapment and drug loading because of their capacity for surface modification, crosslinking, conjugation, coupling, and characteristics including biodegradability and biocompatibility.
Collapse
Affiliation(s)
| | - Ritam Maity
- Department of Pharmaceutical Technology, Brainware University, Kolkata, India
| | - Priya Manna
- Department of Pharmaceutical Technology, Brainware University, Kolkata, India
| | - Avisek Sardar
- Department of Pharmaceutical Technology, Brainware University, Kolkata, India
| | - Swarupananda Mukherjee
- NSHM College of Pharmacy and Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, Kolkata, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, West Bengal, Kolkata, India
| |
Collapse
|
2
|
Nie J, Xia H, Chen J, Wu J, Yang J, Xu X, Tang C. Bioanalytical assay for the quantification of rucaparib in rat plasma using UPLC-MS/MS: development, and validation for interaction with myricetin. Front Pharmacol 2025; 16:1576131. [PMID: 40492138 PMCID: PMC12146338 DOI: 10.3389/fphar.2025.1576131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/09/2025] [Indexed: 06/11/2025] Open
Abstract
Rucaparib is used to treat ovarian cancer patients with BRCA gene mutations. Myricetin, a flavonol that strongly inhibits CYP450, is widely found in natural plants and has some anticancer properties, with the potential for combination use. However, there is no report on the interaction between myricetin and rucaparib. Therefore, an ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) detection approach with high selectivity, reproducibility, sensitivity, and stability was established, which was used to explore the effect of myricetin on rucaparib metabolism in rats. In this study, acetonitrile was used as the protein precipitant, and fuzuloparib was used as the internal standard (IS). Method validation followed the bioanalytical method validation criteria outlined by the FDA. A good linear range was achieved in the range of 2.0-500 ng/mL. Intra-day and inter-day precision (RSD%) for rucaparib were both less than 7.1%, and accuracy (RE%) ranged from -1.2%-10.9%. Matrix effects were observed in 89.8%-99.7% with recovery exceeding 96.1%. The results of the drug-drug interaction (DDI) study showed that myricetin had no significant effect on the pharmacokinetic parameters of rucaparib, which indicating that the clinician did not need to adjust the dosage of rucaparib when it was used in combination. The UPLC-MS/MS method developed in this study was successfully used for the determination of the plasma concentrations of rucaparib orally administered in rats, which provided a reference for DDI studies and clinical pharmacokinetic studies of rucaparib.
Collapse
Affiliation(s)
- Jingjing Nie
- Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hailun Xia
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Chen
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Wu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinming Yang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuegu Xu
- Department of Pharmacy, The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Congrong Tang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Mallela VJ, Rudrapal M, Prasanth DSNBK, Pasala PK, Bendale AR, Bhattacharya S, Aldosari SM, Khan J. Lotus seed (Nelumbinis semen) extract: anticancer potential and chemoprofiling by in vitro, in silico and GC-MS studies. Front Chem 2024; 12:1505272. [PMID: 39734578 PMCID: PMC11671802 DOI: 10.3389/fchem.2024.1505272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/22/2024] [Indexed: 12/31/2024] Open
Abstract
Lotus seeds, also known as Nelumbinis semen, has been utilized for over 7,000 years as vegetable, functional food and medicine. In this study, we primarily investigated the anticancer effects of lotus seed extracts, particularly of the methanolic extract (MELS) on cell proliferation inhibition, apoptosis induction and cell cycle arrest in ovarian cancer cell lines. Further, we studied the phytochemical composition of the MELS by gas chromatography-mass spectrometry (GC-MS) analysis. Additionally, molecular docking was performed in order to substantiate the in vitro anticancer effect by in silico inhibitory study of human survivin protein. Our in vitro study demonstrated significant inhibition of SKOV3 (IC50: 79.73 ± 0.91), A2780 (IC50: 100.18 ± 2.42), SKOV3-CisR (IC50: 115.87 ± 2.2) and A2780-CisR (IC50: 138.86 ± 2.46) cells by MELS, compared to acetone, petroleum ether, n-hexane extracts, and the standard drug, cisplatin. Furthermore, MELS resulted in a substantial increase in apoptosis cell count to 78% in A2780-CisR cells and 82% in SKOV3-CisR cells, whereas a significant reduction in the G1 and G2/M phases of cells treated with MELS when compared to the control group. To identify the potential phytocompounds present in the MELS, we conducted GC-MS analysis, which led to the identification of 14 compounds. Molecular docking analysis revealed that oleic acid, stigmast-5-en-3-ol, phytol and glyceryl linolenate exhibited remarkable binding affinities of -6.1, -5.9, -5.8 and -5.6 kcal/mol, respectively against survivin. Our findings suggest that certain phytochemicals presented above found in MELS may have therapeutic potential for management of ovarian cancer.
Collapse
Affiliation(s)
- Vijaya Jyothi Mallela
- Raghavendra Institute of Pharmaceutical Education and Research, Jawaharlal Nehru Technological University Anantapur, Anantapur, India
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology and Research, Guntur, India
| | - D. S. N. B. K. Prasanth
- School of Pharmacy and Technology Management, SVKM’s Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, India
| | - Praveen Kumar Pasala
- Raghavendra Institute of Pharmaceutical Education and Research, Jawaharlal Nehru Technological University Anantapur, Anantapur, India
| | | | - Soumya Bhattacharya
- Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, India
| | - Sahar M. Aldosari
- Department of Medical Laboratory Sciences, College of Applied Medical Laboratory Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
- Health and Basic Science Research Center, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Laboratory Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
- Health and Basic Science Research Center, Majmaah University, Al Majma’ah, Saudi Arabia
| |
Collapse
|
4
|
Yuan N, Chen Y, Yan Y, Wang F, Xu X, Wang M, Diao J, Xiao W. Myricetin alleviates renal tubular epithelial-mesenchymal transition via NOX4/NF- κB/snail axis in diabetic nephropathy based on network pharmacology analysis. Heliyon 2024; 10:e35234. [PMID: 39224244 PMCID: PMC11367043 DOI: 10.1016/j.heliyon.2024.e35234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Diabetic nephropathy (DN), a leading cause of end-stage renal disease, remains a formidable challenge in diabetes management due to the complex nature of its pathogenesis, particularly the epithelial-mesenchymal transition (EMT) process. Our innovative study leverages network pharmacology to explore the therapeutic potentials of Myricetin, a natural flavonoid, focusing on its effects against NOX4, a critical mediator in DN progression. This investigation marks a pioneering approach by integrating network pharmacology to predict and elucidate the inhibitory relationship between Myricetin and NOX4. Utilizing a high-fat diet/streptozotocin (HFD/STZ) induced DN mouse model, we delved into the effects of Myricetin on renal EMT processes. Through network pharmacology analyses coupled with molecular docking studies, we identified and confirmed Myricetin's binding efficacy to NOX4. Extensive in vitro and in vivo experiments further established Myricetin's significant impact on mitigating EMT by modulating the NOX4-NF-κB-Snail signaling pathway. Results from our research demonstrated notable improvements in renal function and reductions in tissue fibrosis among treated HFD/STZ mice. By curtailing NOX4 expression, Myricetin effectively reduced reactive oxygen species (ROS) production, thereby inhibiting NF-κB activation and subsequent Snail expression, crucial steps in the EMT pathway. Supported by both theoretical predictions and empirical validations, this study unveils the mechanism underlying Myricetin's modulation of EMT in DN through disrupting the NOX4-NF-κB-Snail axis. These findings not only contribute a new therapeutic avenue for DN treatment but also underscore the utility of network pharmacology in advancing drug discovery processes.
Collapse
Affiliation(s)
- Ningning Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuchi Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yangtian Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Fujing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xinyao Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mingqing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianxin Diao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
5
|
Liaudanskas M, Šedbarė R, Janulis V. Determination of Biologically Active Compounds and Antioxidant Capacity In Vitro in Fruit of Small Cranberries ( Vaccinium oxycoccos L.) Growing in Natural Habitats in Lithuania. Antioxidants (Basel) 2024; 13:1045. [PMID: 39334704 PMCID: PMC11428458 DOI: 10.3390/antiox13091045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
The composition of flavonols, proanthocyanidins, anthocyanins, triterpene compounds, and chlorogenic acid in small cranberry fruit samples collected in natural habitats in Lithuania and variation in the antioxidant capacity of cranberry fruit extracts was determined. This study showed that in the flavonol group, hyperoside and myricetin-3-O-galactoside predominated in cranberry fruit samples; in the anthocyanin group, the predominant compounds were cyanidin-3-O-galactoside, cyanidin-3-O-arabinoside, peonidin-3-O-galactoside, and peonidin-3-O-arabinoside, and in the group of triterpene compounds, ursolic acid was predominant. The highest total amounts of flavonols and anthocyanins were found in the samples collected in Čepkeliai State Strict Nature Reserve (2079.44 ± 102.99 μg/g and 6993.79 ± 350.22 μg/g, respectively). Cluster analysis of the chemical composition of small cranberry fruit samples revealed trends in the accumulation of bioactive compounds in cranberry fruit. Cranberry fruit samples collected in central Lithuania had higher levels of triterpene compounds. Statistical correlation analysis showed the strongest correlation between the quantitative composition of cyanidin-3-O-arabinoside and peonidin-3-O-arabinoside and the reducing capacity of the ethanolic extracts of the cranberry fruit samples assessed in vitro by the FRAP assay (r = 0.882, p < 0.01 and r = 0.805, p < 0.01, respectively). Summarizing the results, the geographical factor affects the variation of the quantitative composition of biologically active compounds in cranberry fruit samples.
Collapse
Affiliation(s)
- Mindaugas Liaudanskas
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| | - Rima Šedbarė
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
- Department of Analytical and Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| | - Valdimaras Janulis
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| |
Collapse
|
6
|
Goyal A, Sikarwar O, Verma A, Solanki K, Agrawal N, Dubey N, Yadav HN. Unveiling myricetin's pharmacological potency: A comprehensive exploration of the molecular pathways with special focus on PI3K/AKT and Nrf2 signaling. J Biochem Mol Toxicol 2024; 38:e23739. [PMID: 38769721 DOI: 10.1002/jbt.23739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Myricetin can be found in the traditional Chinese medicinal plant, Myrica rubra. Myricetin is a flavonoid that is present in many vegetables, fruits, and plants and is considered to have strong antioxidant properties as well as a wide range of therapeutic applications. Growing interest has been piqued by its classification as a polyphenolic molecule because of its potential therapeutic benefits in both the prevention and management of numerous medical conditions. To clarify myricetin's traditional medical uses, modern research has investigated various pharmacological effects such as antioxidant, anticancer, anti-inflammation, antiviral, antidiabetic, immunomodulation, and antineurodegenerative effects. Myricetin shows promise as a nutritional flavonol that could be beneficial in the prevention and mitigation of prevalent health conditions like diabetes, cognitive decline, and various types of cancer in humans. The findings included in this study indicate that myricetin has a great deal of promise for application in the formulation of medicinal products and nutritional supplements since it affects several enzyme activities and alters inflammatory markers. However, comprehensive preclinical studies and research studies are necessary to lay the groundwork for assessing myricetin's possible effectiveness in treating these long-term ailments. This review summarizes both in vivo and in vitro studies investigating myricetin's possible interactions through the nuclear factor-E2-related factor 2 (Nrf2) as well as PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B) signaling pathways in an attempt to clarify the compound's possible clinical applicability across a range of disorders.
Collapse
Affiliation(s)
- Ahsas Goyal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Om Sikarwar
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kunal Solanki
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Neetu Agrawal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
7
|
Mao T, Fan J. Myricetin Protects Against Rat Intervertebral Disc Degeneration Partly Through the Nrf2/HO-1/NF-κB Signaling Pathway. Biochem Genet 2024; 62:950-967. [PMID: 37507641 DOI: 10.1007/s10528-023-10456-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a prevalent musculoskeletal disorder. Nucleus pulposus cells (NPCs) play a significant role in the normal functioning of the IVD. Myricetin is an agent that exerts anti-inflammatory and antioxidant effects in various pathological conditions. Here, we investigated the ameliorative effects of myricetin on the IVD degeneration. NPCs were obtained from the IVD of rats, and were treated with myricetin (0, 5, 10, 15, 20 μM) for 24 h before 20 ng/mL IL-1β stimulation. RT-qPCR, western blotting, and ELISA were applied to evaluate the levels of inflammatory factors (iNOS, COX-2, TNF-α, IL-6, PGE2, and Nitrite) and extracellular matrix (ECM)-associated components (MMP13, ADAMTS-5, aggrecan, and collagen II) in NPCs. Activation status of related signaling pathways (NF-κB and Nrf2) was determined using western blotting and immunofluorescence staining. Experimental rat models of IDD were established using a needle puncture method. Myricetin (20 mg/kg) was administrated intraperitoneally, and the degeneration was evaluated using histopathological analysis. Myricetin treatment attenuated the IL-1β-induced production of inflammatory factors in NPCs. Downregulation of aggrecan and collagen II as well as upregulation of MMP-13 and ADAMTS-5 in NPCs caused by IL-1β was reversed by myricetin treatment. Mechanistically, myricetin blocked NF-κB signaling by activation of Nrf2 in IL-1β-stimulated NPCs. Moreover, inhibition of Nrf2 reversed the protective effects of myricetin in NPCs. The in vivo experiments showed that myricetin ameliorated the IDD progression in rats. The present work suggests that Nrf2 is involved in the pathogenesis of IDD and shows the protective effects as well as the underlying mechanism of myricetin on Nrf2 activation in NPCs.
Collapse
Affiliation(s)
- Tian Mao
- Department of Orthopedic Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China
| | - Junchi Fan
- Department of Orthopedics Ward 1, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, No. 11, Lingjiaohu Road, Jianghan District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
8
|
Yuan N, Diao J, Dong J, Yan Y, Chen Y, Yan S, Liu C, He Z, He J, Zhang C, Wang H, Wang M, He F, Xiao W. Targeting ROCK1 in diabetic kidney disease: Unraveling mesangial fibrosis mechanisms and introducing myricetin as a novel antagonist. Biomed Pharmacother 2024; 171:116208. [PMID: 38286036 DOI: 10.1016/j.biopha.2024.116208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Diabetic kidney disease (DKD) stands as a pressing health challenge, with mesangial cell fibrosis identified as a pivotal hallmark leading to glomerular sclerosis. Gaining a deeper grasp on the molecular dynamics behind this can potentially introduce groundbreaking therapeutic avenues. Recent revelations from studies on ROCK1-deficient mice, which displayed resilience against high-fat diet (HFD)-induced glomerulosclerosis and mitochondrial fragmentation, spurred our hypothesis regarding ROCK1's potential role in mesangial cell fibrosis. Subsequent rigorous experiments corroborated our theory, highlighting the critical role of ROCK1 in orchestrating mesangial cell proliferation and fibrosis, especially in high-glucose settings. Mechanistically, ROCK1 inhibition led to a notable hindrance in the high-glucose-triggered MAPK signaling pathway, particularly emphasizing the ROCK1/ERK/P38 axis. To translate this understanding into potential therapeutic interventions, we embarked on a comprehensive drug screening journey. Leveraging molecular modeling techniques, Myricetin surfaced as an efficacious inhibitor of ROCK1. Dose-dependent in vitro assays substantiated Myricetin's prowess in curtailing mesangial cell proliferation and fibrosis via ROCK1/ERK/P38 pathway. In vivo verifications paralleled these findings, with Myricetin treatment resulting in significant renal function enhancements and diminished DKD pathological markers, all pivoted around the ROCK1/ERK/P38 nexus. These findings not only deepen our comprehension of DKD molecular underpinnings but also elevate ROCK1 to the pedestal of a promising therapeutic beacon. Concurrently, Myricetin is spotlighted as a potent natural contender, heralding a new era in DKD therapeutic design.
Collapse
Affiliation(s)
- Ningning Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianxin Diao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiamei Dong
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai 519000, Guangdong, China
| | - Yangtian Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuchi Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shihua Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Changshun Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhuoen He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinyue He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chi Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hao Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mingqing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Fei He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Ministry of Education, Guangdong Pharmaceutical University, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
9
|
Ginovyan M, Javrushyan H, Karapetyan H, Koss-Mikołajczyk I, Kusznierewicz B, Grigoryan A, Maloyan A, Bartoszek A, Avtandilyan N. Hypericum alpestre extract exhibits in vitro and in vivo anticancer properties by regulating the cellular antioxidant system and metabolic pathway of L-arginine. Cell Biochem Funct 2024; 42:e3914. [PMID: 38269521 DOI: 10.1002/cbf.3914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 01/26/2024]
Abstract
Conventional treatment methods are not effective enough to fight the rapid increase in cancer cases. The interest is increasing in the investigation of herbal sources for the development of new anticancer therapeutics. This study aims to investigate the antitumor capacity of Hypericum alpestre (H. alpestre) extract in vitro and in vivo, either alone or in combination with the inhibitors of the l-arginine/polyamine/nitric oxide (NO) pathway, and to characterize its active phytochemicals using advanced chromatographic techniques. Our previous reports suggest beneficial effects of the arginase inhibitor NG-hydroxy-nor- l-arginine and NO inhibitor NG-nitro-Larginine methyl ester in the treatment of breast cancer via downregulation of polyamine and NO synthesis. Here, the antitumor properties of H. alpestre and its combinations were explored in vivo, in a rat model of mammary gland carcinogenesis induced by subcutaneous injection of 7,12-dimethylbenz[a]anthracene. The study revealed strong antiradical activity of H. alpestre aerial part extract in chemical (DPPH/ABTS) tests. In the in vitro antioxidant activity test, the H. alpestre extract demonstrated pro-oxidant characteristics in human colorectal (HT29) cells, which were contingent upon the hemostatic condition of the cells. The H. alpestre extract expressed a cytotoxic effect on HT29 and breast cancer (MCF-7) cells measured by the MTT test. According to comet assay results, H. alpestre extract did not exhibit genotoxic activity nor possessed antigenotoxic properties in HT29 cells. Overall, 233 substances have been identified and annotated in H. alpestre extract using the LC-Q-Orbitrap HRMS system. In vivo experiments using rat breast cancer models revealed that the H. alpestre extract activated the antioxidant enzymes in the liver, brain, and tumors. H. alpestre combined with chemotherapeutic agents attenuated cancer-like histological alterations and showed significant reductions in tumor blood vessel area. Thus, either alone or in combination with Nω -OH-nor- l-arginine and Nω -nitro- l-arginine methyl ester, H. alpestre extract exhibits pro- and antioxidant, antiangiogenic, and cytotoxic effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Grigoryan
- Department of Human and Animal Physiology, YSU, Yerevan, Armenia
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, USA
| | | | | |
Collapse
|
10
|
Trivedi A, Hasan A, Ahmad R, Siddiqui S, Srivastava A, Misra A, Mir SS. Flavonoid Myricetin as Potent Anticancer Agent: A Possibility towards Development of Potential Anticancer Nutraceuticals. Chin J Integr Med 2024; 30:75-84. [PMID: 37340205 DOI: 10.1007/s11655-023-3701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 06/22/2023]
Abstract
Good nutrition plays a crucial role in maintaining a balanced lifestyle. The beneficial effects of nutrition have been found to counteract nutritional disturbances with the expanded use of nutraceuticals to treat and manage cardiovascular diseases, cancer, and other developmental defects over the last decade. Flavonoids are found abundantly in plant-derived foods such as fruits, vegetables, tea, cocoa, and wine. Fruits and vegetables contain phytochemicals like flavonoids, phenolics, alkaloids, saponins, and terpenoids. Flavonoids can act as anti-inflammatory, anti-allergic, anti-microbial (antibacterial, antifungal, and antiviral) antioxidant, anti-cancer, and anti-diarrheal agents. Flavonoids are also reported to upregulate apoptotic activity in several cancers such as hepatic, pancreatic, breast, esophageal, and colon. Myricetin is a flavonol which is naturally present in fruits and vegetables and has shown possible nutraceutical value. Myricetin has been portrayed as a potent nutraceutical that may protect against cancer. The focus of the present review is to present an updated account of studies demonstrating the anticancer potential of myricetin and the molecular mechanisms involved therein. A better understanding of the molecular mechanism(s) underlying its anticancer activity would eventually help in its development as a novel anticancer nutraceutical having minimal side effects.
Collapse
Affiliation(s)
- Anchal Trivedi
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Aditi Srivastava
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Aparna Misra
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, India.
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, 226026, India.
| |
Collapse
|
11
|
Wang D, Zhang Z, Zhao L, Yang L, Lou C. Recent advances in natural polysaccharides against hepatocellular carcinoma: A review. Int J Biol Macromol 2023; 253:126766. [PMID: 37689300 DOI: 10.1016/j.ijbiomac.2023.126766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor of the digestive system that poses a serious threat to human life and health. Chemotherapeutic drugs commonly used in the clinic have limited efficacy and heavy adverse effects. Therefore, it is imperative to find effective and safe alternatives, and natural polysaccharides (NPs) fit the bill. This paper summarizes in detail the anti-HCC activity of NPs in vitro, animal and clinical trials. Furthermore, the addition of NPs can reduce the deleterious effects of chemotherapeutic drugs such as immunotoxicity, bone marrow suppression, oxidative stress, etc. The potential mechanisms are related to induction of apoptosis and cell cycle arrest, block of angiogenesis, invasion and metastasis, stimulation of immune activity and targeting of MircoRNA. And on this basis, we further elucidate that the anti-HCC activity may be related to the monosaccharide composition, molecular weight (Mw), conformational features and structural modifications of NPs. In addition, due to its good physicochemical properties, it is widely used as a drug carrier in the delivery of chemotherapeutic drugs and small molecule components. This review provides a favorable theoretical basis for the application of the anti-HCC activity of NPs.
Collapse
Affiliation(s)
- Dazhen Wang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Zhengfeng Zhang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Lu Zhao
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Liu Yang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - ChangJie Lou
- Harbin Medical University Cancer Hospital, Harbin 150081, China.
| |
Collapse
|
12
|
Geiger K, Muendlein A, Leiherer A, Gaenger S, Brandtner EM, Wabitsch M, Fraunberger P, Drexel H, Heinzle C. Myricetin attenuates hypoxia-induced inflammation in human adipocytes. Mol Biol Rep 2023; 50:9833-9843. [PMID: 37843712 DOI: 10.1007/s11033-023-08865-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Adipose tissue hypoxia plays a crucial role in the development of chronic low-grade systemic inflammation which has been associated with the pathogenesis of obesity-related diseases. Myricetin is a natural compound present in numerous plant-based foods with presumed anti-inflammatory and beneficial health effects. The impact of this flavonoid on hypoxia-induced expression of inflammatory adipokines and hypoxia-regulated pathways is unknown so far and has been addressed in the present study. METHODS Differentiated human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were cultured with or without myricetin under normoxic and hypoxic conditions for varying time periods. The effect of hypoxia and myricetin on the expression of the investigated adipokines was measured by real-time RT-PCR. Western blot analysis was used for the detection of transcription factors involved in hypoxia-regulated pathways. RESULTS Myricetin interfered in the hypoxia-induced regulation of adipokines and the underlying pathways, which are involved in transmitting the inflammatory response. It strongly repressed hypoxia-induced expression of apelin, leptin, chemerin, asprosin, and DPP-4 and HIF-1α accumulation in the nucleus was diminished. Furthermore, the activation of the key regulators in the inflammatory response NF-κB, Akt, and CREB was suppressed by myricetin under hypoxic conditions. Myricetin also decreased hypoxia-induced accumulation of the pro-tumorigenic transcription factors Snail and Slug in the nucleus. CONCLUSION Taken together, our results indicated that myricetin regulated hypoxia-induced expression of adipokines and hypoxia-regulated pathways in human adipocytes. Our study therefore provided evidence of the anti-inflammatory effects of myricetin in hypoxia-treated human adipocytes.
Collapse
Affiliation(s)
- Kathrin Geiger
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria.
- Medical Central Laboratories, Feldkirch, Austria.
| | - Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Medical Central Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Stella Gaenger
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Eva Maria Brandtner
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
- Vorarlberger Landeskrankenhausbetriebsgesellschaft, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Christine Heinzle
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Medical Central Laboratories, Feldkirch, Austria
| |
Collapse
|
13
|
Zhang P, Fan L, Zhang D, Zhang Z, Wang W. In Vitro Anti-Tumor and Hypoglycemic Effects of Total Flavonoids from Willow Buds. Molecules 2023; 28:7557. [PMID: 38005279 PMCID: PMC10673267 DOI: 10.3390/molecules28227557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Salix babylonica L. is a species of willow tree that is widely cultivated worldwide as an ornamental plant, but its medicinal resources have not yet been reasonably developed or utilized. Herein, we extracted and purified the total flavonoids from willow buds (PTFW) for component analysis in order to evaluate their in vitro anti-tumor and hypoglycemic activities. Through Q-Orbitrap LC-MS/MS analysis, a total of 10 flavonoid compounds were identified (including flavones, flavan-3-ols, and flavonols). The inhibitory effects of PTFW on the proliferation of cervical cancer HeLa cells, colon cancer HT-29 cells, and breast cancer MCF7 cells were evaluated using an MTT assay. Moreover, the hypoglycemic activity of PTFW was determined by investigating the inhibitory effects of PTFW on α-amylase and α-glucosidase. The results indicated that PTFW significantly suppressed the proliferation of HeLa cells, HT-29 cells, and MCF7 cells, with IC50 values of 1.432, 0.3476, and 2.297 mg/mL, respectively. PTFW, at different concentrations, had certain inhibitory effects on α-amylase and α-glucosidase, with IC50 values of 2.94 mg/mL and 1.87 mg/mL, respectively. In conclusion, PTFW at different doses exhibits anti-proliferation effects on all three types of cancer cells, particularly on HT-29 cells, and also shows significant hypoglycemic effects. Willow buds have the potential to be used in functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Peng Zhang
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China; (L.F.); (D.Z.)
| | - Lulu Fan
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China; (L.F.); (D.Z.)
| | - Dongyan Zhang
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China; (L.F.); (D.Z.)
| | - Zehui Zhang
- College of Laboratory Animal Medicine and Science, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China;
| | - Weili Wang
- Liao Ning Institute for Drug Control, Shenyang 110031, China
| |
Collapse
|
14
|
Alom MM, Bonna RP, Islam A, Alom MW, Rahman ME, Faruqe MO, Khalekuzzaman M, Zaman R, Islam MA. Unveiling Neuroprotective Potential of Spice Plant-Derived Compounds against Alzheimer's Disease: Insights from Computational Studies. Int J Alzheimers Dis 2023; 2023:8877757. [PMID: 37744007 PMCID: PMC10516701 DOI: 10.1155/2023/8877757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/26/2023] [Accepted: 08/26/2023] [Indexed: 09/26/2023] Open
Abstract
Alzheimer's disease (AD) is a serious threat to the global health care system and is brought on by a series of factors that cause neuronal dysfunction and impairment in memory and cognitive decline. This study investigated the therapeutic potential of phytochemicals that belong to the ten regularly used spice plants, based on their binding affinity with AD-associated proteins. Comprehensive docking studies were performed using AutoDock Vina in PyRx followed by molecular dynamic (MD) simulations using AMBER 14. The docking study of the chosen molecules revealed the binding energies of their interactions with the target proteins, while MD simulations were carried out to verify the steadiness of bound complexes. Through the Lipinski filter and admetSAR analysis, the chosen compounds' pharmacokinetic characteristics and drug likeness were also examined. The pharmacophore mapping study was also done and analyzed for best selected molecules. Additionally, principal component analysis (PCA) was used to examine how the general motion of the protein changed. The results showed quercetin and myricetin to be potential inhibitors of AChE and alpha-amyrin and beta-chlorogenin to be potential inhibitors of BuChE, exhibiting best binding energies comparable to those of donepezil, used as a positive control. The multiple descriptors from the simulation study, root mean square deviation (RMSD), root mean square fluctuation (RMSF), hydrogen bond, radius of gyration (Rg), and solvent-accessible surface areas (SASA), confirm the stable nature of the protein-ligand complexes. Molecular mechanic Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations indicated the energetically favorable binding of the ligands to the protein. Finally, according to pharmacokinetic properties and drug likeness, characteristics showed that quercetin and myricetin for AChE and alpha-amyrin and beta-chlorogenin for BuChE were found to be the most effective agents for treating the AD.
Collapse
Affiliation(s)
- Md. Murshid Alom
- Professor O.I Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Rejwana Parvin Bonna
- Professor O.I Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Ariful Islam
- Professor O.I Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Wasim Alom
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Ekhtiar Rahman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Khalekuzzaman
- Professor O.I Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Rashed Zaman
- Professor O.I Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Asadul Islam
- Professor O.I Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
15
|
Rahmani AH, Almatroudi A, Allemailem KS, Alwanian WM, Alharbi BF, Alrumaihi F, Khan AA, Almatroodi SA. Myricetin: A Significant Emphasis on Its Anticancer Potential via the Modulation of Inflammation and Signal Transduction Pathways. Int J Mol Sci 2023; 24:9665. [PMID: 37298616 PMCID: PMC10253333 DOI: 10.3390/ijms24119665] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is a major public health concern worldwide and main burden of the healthcare system. Regrettably, most of the currently used cancer treatment approaches such as targeted therapy, chemotherapy, radiotherapy and surgery usually cause adverse complications including hair loss, bone density loss, vomiting, anemia and other complications. However, to overcome these limitations, there is an urgent need to search for the alternative anticancer drugs with better efficacy as well as less adverse complications. Based on the scientific evidences, it is proven that naturally occurring antioxidants present in medicinal plants or their bioactive compounds might constitute a good therapeutic approach in diseases management including cancer. In this regard, myricetin, a polyhydroxy flavonol found in a several types of plants and its role in diseases management as anti-oxidant, anti-inflammatory and hepato-protective has been documented. Moreover, its role in cancer prevention has been noticed through modulation of angiogenesis, inflammation, cell cycle arrest and induction of apoptosis. Furthermore, myricetin plays a significant role in cancer prevention through the inhibition of inflammatory markers such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (Cox-2). Moreover, myricetin increases the chemotherapeutic potential of other anticancer drugs through modulation of cell signaling molecules activity. This review elaborates the information of myricetin role in cancer management through modulating of various cell-signaling molecules based on in vivo and in vitro studies. In addition, synergistic effect with currently used anticancer drugs and approaches to improve bioavailability are described. The evidences collected in this review will help different researchers to comprehend the information about its safety aspects, effective dose for different cancers and implication in clinical trials. Moreover, different challenges need to be focused on engineering different nanoformulations of myricetin to overcome the poor bioavailability, loading capacity, targeted delivery and premature release of this compound. Furthermore, some more derivatives of myricetin need to be synthesized to check their anticancer potential.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wanian M. Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Basmah F. Alharbi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
16
|
Rosales TKO, Fabi JP. Valorization of polyphenolic compounds from food industry by-products for application in polysaccharide-based nanoparticles. Front Nutr 2023; 10:1144677. [PMID: 37293672 PMCID: PMC10244521 DOI: 10.3389/fnut.2023.1144677] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
In the last decades, evidence has indicated the beneficial properties of dietary polyphenols. In vitro and in vivo studies support that the regular intake of these compounds may be a strategy to reduce the risks of some chronic non-communicable diseases. Despite their beneficial properties, they are poorly bioavailable compounds. Thus, the main objective of this review is to explore how nanotechnology improves human health while reducing environmental impacts with the sustainable use of vegetable residues, from extraction to the development of functional foods and supplements. This extensive literature review discusses different studies based on the application of nanotechnology to stabilize polyphenolic compounds and maintain their physical-chemical stability. Food industries commonly generate a significant amount of solid waste. Exploring the bioactive compounds of solid waste has been considered a sustainable strategy in line with emerging global sustainability needs. Nanotechnology can be an efficient tool to overcome the challenge of molecular instability, especially using polysaccharides such as pectin as assembling material. Complex polysaccharides are biomaterials that can be extracted from citrus and apple peels (from the juice industries) and constitute promising wall material stabilizing chemically sensitive compounds. Pectin is an excellent biomaterial to form nanostructures, as it has low toxicity, is biocompatible, and is resistant to human enzymes. The potential extraction of polyphenols and polysaccharides from residues and their inclusion in food supplements may be a possible application to reduce environmental impacts and constitutes an approach for effectively including bioactive compounds in the human diet. Extracting polyphenolics from industrial waste and using nanotechnology may be feasible to add value to food by-products, reduce impacts on nature and preserve the properties of these compounds.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
17
|
Mohammed HA, Emwas AH, Khan RA. Salt-Tolerant Plants, Halophytes, as Renewable Natural Resources for Cancer Prevention and Treatment: Roles of Phenolics and Flavonoids in Immunomodulation and Suppression of Oxidative Stress towards Cancer Management. Int J Mol Sci 2023; 24:ijms24065171. [PMID: 36982245 PMCID: PMC10048981 DOI: 10.3390/ijms24065171] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Halophytes and xerophytes, plants with adequate tolerance to high salinity with strong ability to survive in drought ecosystem, have been recognized for their nutritional and medicinal values owing to their comparatively higher productions of secondary metabolites, primarily the phenolics, and the flavonoids, as compared to the normal vegetation in other climatic regions. Given the consistent increases in desertification around the world, which are associated with increasing salinity, high temperature, and water scarcity, the survival of halophytes due to their secondary metabolic contents has prioritized these plant species, which have now become increasingly important for environmental protection, land reclamation, and food and animal-feed security, with their primary utility in traditional societies as sources of drugs. On the medicinal herbs front, because the fight against cancer is still ongoing, there is an urgent need for development of more efficient, safe, and novel chemotherapeutic agents, than those currently available. The current review describes these plants and their secondary-metabolite-based chemical products as promising candidates for developing newer cancer therapeutics. It further discusses the prophylactic roles of these plants, and their constituents in prevention and management of cancers, through an exploration of their phytochemical and pharmacological properties, with a view on immunomodulation. The important roles of various phenolics and structurally diverse flavonoids as major constituents of the halophytes in suppressing oxidative stress, immunomodulation, and anti-cancer effects are the subject matter of this review and these aspects are outlined in details.
Collapse
Affiliation(s)
- Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
18
|
Nallappan D, Ong KC, Palanisamy UD, Chua KH, Kuppusamy UR. Myricetin derivative-rich fraction from Syzygium malaccense prevents high-fat diet-induced obesity, glucose intolerance and oxidative stress in C57BL/6J mice. Arch Physiol Biochem 2023; 129:186-197. [PMID: 32813560 DOI: 10.1080/13813455.2020.1808019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM A high-fat diet (HFD) can lead to obesity and related metabolic disorders. This study evaluated the preventive efficacy of myricetin derivative-rich fraction (MD) from Syzygium malaccense leaf extract against HFD-induced obesity, hyperglycaemia, and oxidative stress in C57BL/6J mice. METHODS HFD-fed mice were administered MD (50 mg/kg, 100 mg/kg, and 150 mg/kg) or 2 mg/kg metformin (positive control) orally for 16 weeks. Normal diet and HFD-fed control groups received normal saline. RESULTS MD dose of 50 mg/kg was better than 100 mg/kg and 150 mg/kg in significantly reducing weight-gain, glucose intolerance, insulin resistance, lipid accumulation in liver and kidney, and improving the serum lipid profile. Lowered protein carbonyls and lipid hydroperoxides in urine and tissue homogenates and elevated reduced glutathione, ferric reducing antioxidant power (FRAP), and Trolox equivalent antioxidant capacity (TEAC) levels in tissue homogenates indicated amelioration of oxidative stress. CONCLUSION MD has therapeutic value in the prevention and management of obesity, hyperglycaemia, and oxidative stress.
Collapse
Affiliation(s)
- Devi Nallappan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Science, Monash University, Bandar Sunway, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Ahmad G, Khan SU, Mir SA, Iqbal MJ, Pottoo FH, Dhiman N, Malik F, Ali A. Myrica esculenta Buch.-Ham. (ex D. Don): A Review on its Phytochemistry, Pharmacology and Nutritional Potential. Comb Chem High Throughput Screen 2022; 25:2372-2386. [PMID: 36330658 DOI: 10.2174/1386207325666220428105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 01/27/2023]
Abstract
Myrica esculenta is an important ethnomedicinal plant used in the traditional system of medicine and as an important nutraceutical. Several studies on the plant justify its use in alternative systems of medicine and establish a scientific rationale for its possible therapeutic application. The plant contains a range of biologically active classes of compounds, particularly diarylheptanoids, flavonoids, terpenes, tannins, and glycosides. The nutraceutical potential of the plant can be particularly attributed to its fruit, and several studies have demonstrated the presence of carbohydrates, proteins, fats, fiber content, and minerals like sodium, potassium, calcium, manganese, iron, copper, and zinc, in it. The current review aims to provide complete insight into the phytochemistry, pharmacological potential, and nutritional potential of the plant, which would not only serve as a comprehensive source of information but also will highlight the scope of isolation and evaluation of these molecules for various disease conditions.
Collapse
Affiliation(s)
- Gazanfar Ahmad
- Amity Institute of Pharmacy, Amity University, Noida, UP 201301 India
| | - Sameer Ullah Khan
- Cancer Pharmacology Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K 190005, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sameer Ahmad Mir
- Cancer Pharmacology Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K 190005, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Mir Javid Iqbal
- Department of Pharmacy, Northeastern University, 360 Huntington Avenue-140TF, Boston, Massachusetts MA, 02115, USA
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University, Noida, UP 201301 India
| | - Fayaz Malik
- Cancer Pharmacology Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K 190005, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Asif Ali
- Natural Product Laboratory, CSIR-IIIM, Jammu, J&K 180001, India
| |
Collapse
|
20
|
Crosstalk between xanthine oxidase (XO) inhibiting and cancer chemotherapeutic properties of comestible flavonoids- a comprehensive update. J Nutr Biochem 2022; 110:109147. [PMID: 36049673 DOI: 10.1016/j.jnutbio.2022.109147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/17/2021] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Gout is an inflammatory disease caused by metabolic disorder or genetic inheritance. People throughout the world are strongly dependent on ethnomedicine for the treatment of gout and some receive satisfactory curative treatment. The natural remedies as well as established drugs derived from natural sources or synthetically made exert their action by mechanisms that are closely associated with anticancer treatment mechanisms regarding inhibition of xanthine oxidase, feedback inhibition of de novo purine synthesis, depolymerization and disappearance of microtubule, inhibition of NF-ĸB activation, induction of TRAIL, promotion of apoptosis, and caspase activation and proteasome inhibition. Some anti-gout and anticancer novel compounds interact with same receptors for their action, e.g., colchicine and colchicine analogues. Dietary flavonoids, i.e., chrysin, kaempferol, quercetin, fisetin, pelargonidin, apigenin, luteolin, myricetin, isorhamnetin, phloretinetc etc. have comparable IC50 values with established anti-gout drug and effective against both cancer and gout. Moreover, a noticeable number of newer anticancer compounds have already been isolated from plants that have been using by local traditional healers and herbal practitioners to treat gout. Therefore, the anti-gout plants might have greater potentiality to become selective candidates for screening of newer anticancer leads.
Collapse
|
21
|
Mungofa N, Sibanyoni JJ, Mashau ME, Beswa D. Prospective Role of Indigenous Leafy Vegetables as Functional Food Ingredients. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227995. [PMID: 36432098 PMCID: PMC9696032 DOI: 10.3390/molecules27227995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
Indigenous leafy vegetables (ILVs) play a pivotal role in sustaining the lives of many people of low socio-economic status who reside in rural areas of most developing countries. Such ILVs contribute to food security since they withstand harsher weather and soil conditions than their commercial counterparts and supply important nutrients such as dietary fibre, vitamins and minerals. Furthermore, ILVs contain bioactive components such as phenolic compounds, flavonoids, dietary fibre, carotene content and vitamin C that confer health benefits on consumers. Several studies have demonstrated that regular and adequate consumption of vegetables reduces risks of chronic conditions such as diabetes, cancer, metabolic disorders such as obesity in children and adults, as well as cardiovascular disease. However, consumption of ILVs is very low globally as they are associated with unbalanced and poor diets, with being food for the poor and with possibly containing toxic heavy metals. Therefore, this paper reviews the role of ILVs as food security crops, the biodiversity of ILVs, the effects of processing on the bioactivity of ILVs, consumer acceptability of food derived from ILVs, potential toxicity of some ILVs and the potential role ILVs play in the future of eating.
Collapse
Affiliation(s)
- Nyarai Mungofa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Johannesburg 1709, South Africa
| | - July Johannes Sibanyoni
- School of Hospitality and Tourism, University of Mpumalanga, Mbombela Campus, Mbombela 1200, South Africa
| | - Mpho Edward Mashau
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Daniso Beswa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Johannesburg 1709, South Africa
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg 1709, South Africa
- Correspondence:
| |
Collapse
|
22
|
Preparation of myricetin nanoliposomes using film-ultrasonic dispersion method and characterization. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Alqarni MH, Foudah AI, Muharram MM, Alam A, Labrou NE. Myricetin as a Potential Adjuvant in Chemotherapy: Studies on the Inhibition of Human Glutathione Transferase A1–1. Biomolecules 2022; 12:biom12101364. [PMID: 36291574 PMCID: PMC9599097 DOI: 10.3390/biom12101364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Glutathione transferases (GSTs) are a family of Phase II detoxification enzymes that are involved in the development of multi-drug resistance (MDR) phenomena toward chemotherapeutic agents. GST inhibitors are considered candidate compounds able to chemomodulate and reverse MDR. The natural flavonoid myricetin (MYR) has been shown to exhibit a wide range of pharmacological functions, including antitumor activity. In the present work, the interaction of MYR with human glutathione transferase A1–1 (hGSTA1–1) was investigated by kinetics inhibition analysis and molecular modeling studies. The results showed that MYR binds with high affinity to hGSTA1–1 (IC50 2.1 ± 0.2 μΜ). It functions as a non-competitive inhibitor towards the electrophile substrate 1-chloro−2,4-dinitrobenzene (CDNB) and as a competitive inhibitor towards glutathione (GSH). Chemical modification studies with the irreversible inhibitor phenethyl isothiocyanate (PEITC), in combination with in silico molecular docking studies allowed the prediction of the MYR binding site. MYR appears to bind at a distinct location, partially overlapping the GSH binding site (G-site). The results of the present study show that MYR is a potent inhibitor of hGSTA1–1 that can be further exploited towards the development of natural, safe, and effective GST-targeted cancer chemosensitizers.
Collapse
Affiliation(s)
- Mohammed Hamed Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Alkharj 11942, Saudi Arabia
- Correspondence: (M.H.A.); (N.E.L.)
| | - Ahmed Ibrahim Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Alkharj 11942, Saudi Arabia
| | - Magdy Mohamed Muharram
- Department of Microbiology, College of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Alkharj 11942, Saudi Arabia
| | - Nikolaos E. Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece
- Correspondence: (M.H.A.); (N.E.L.)
| |
Collapse
|
24
|
Abo-Elghiet F, Ibrahim MH, El Hassab MA, Bader A, Abdallah QMA, Temraz A. LC/MS analysis of Viscum cruciatum Sieber ex Boiss. extract with anti-proliferative activity against MCF-7 cell line via G0/G1 cell cycle arrest: An in-silico and in-vitro study. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115439. [PMID: 35667581 DOI: 10.1016/j.jep.2022.115439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viscum cruciatum Sieb is a well-known medicinal plant in Jordan containing various secondary metabolites. It has traditionally been used to treat many ailments, most notably cancer. However, there is a significant gap between scientific research and its value in traditional medicine. AIM OF THE WORK To evaluate the antiproliferative activity of different V. cruciatum extracts against MCF-7 breast cancer cell lines and recognize the affected cell cycle phase. Besides, identifying the bioactive components present in the active extract using LC/MS technique. Also, to determine the possible mechanism of action by in silico and in-vitro study. MATERIALS AND METHODS V. cruciatum was extracted using solvents with increasing polarity. The antiproliferative effects of the extracts against MCF-7 cell lines were evaluated using SRB assay. Further, flow cytometry was used to identify the inhibited phase of the cell cycle, while LC/MS-MS technique was used to analyze the chemical composition of the most active extract. After that, the putative mechanism of action was investigated through in-silico docking, molecular dynamic simulation for compounds with the highest docking scores, and Western blot analysis of cyclin-dependent kinases (CDK2/4/6). RESULTS The chloroform/methanol 90/10 (ChMe) extract showed the most potent antiproliferative effect against MCF-7 cells (IC50 = 23.8 μg/mL), and cell cycle arrest at the G0/G1phase. Furthermore, LC-MS/MS analysis revealed the presence of several polyphenolics belonging to the flavonoids and phenolic acids classes. Additionally, quercetin-4'-glucoside, 3, 5, 7-trihydroxy-4'-methoxy flavone, and hesperetin-7-O-neohesperidoside demonstrated the highest docking binding scores and stable complexes against CDK2 and CDK4/6. Moreover, RMSD (root-mean-square deviation), RMSF (root-mean-square fluctuation), Rg (radius of gyration), and energy analysis during molecular dynamic simulation indicated the stable binding of the studied complexes. These results were supported by Western blot analysis, which revealed the downregulation of CDK2, CDK4, and CDK6 protein expression in MCF-7 cell lines. CONCLUSION These findings emphasized the potential breast anticancer activity of the V. cruciatum ChMe extract by arresting the G0/G1 phase of the cell cycle, which could be related to its flavonoid content. Moreover, the results provided experimental support for the traditional anticancer activity of V. cruciatum, and its ChMe extract might be a source of chemoprotective or chemotherapeutic isolates.
Collapse
Affiliation(s)
- Fatma Abo-Elghiet
- Department of Pharmacognosy, Faculty of Pharmacy for Girls, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Mona H Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy for Girls, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt.
| | - Ammar Bader
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Qasem M A Abdallah
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
| | - Abeer Temraz
- Department of Pharmacognosy, Faculty of Pharmacy for Girls, Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
25
|
Javed Z, Khan K, Herrera-Bravo J, Naeem S, Iqbal MJ, Raza Q, Sadia H, Raza S, Bhinder M, Calina D, Sharifi-Rad J, Cho WC. Myricetin: targeting signaling networks in cancer and its implication in chemotherapy. Cancer Cell Int 2022; 22:239. [PMID: 35902860 PMCID: PMC9336020 DOI: 10.1186/s12935-022-02663-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
The gaps between the complex nature of cancer and therapeutics have been narrowed down due to extensive research in molecular oncology. Despite gathering massive insight into the mysteries of tumor heterogeneity and the molecular framework of tumor cells, therapy resistance and adverse side effects of current therapeutic remain the major challenge. This has shifted the attention towards therapeutics with less toxicity and high efficacy. Myricetin a natural flavonoid has been under the spotlight for its anti-cancer, anti-oxidant, and anti-inflammatory properties. The cutting-edge molecular techniques have shed light on the interplay between myricetin and dysregulated signaling cascades in cancer progression, invasion, and metastasis. However, there are limited data available regarding the nano-delivery platforms composed of myricetin in cancer. In this review, we have provided a comprehensive detail of myricetin-mediated regulation of different cellular pathways, its implications in cancer prevention, preclinical and clinical trials, and its current available nano-formulations for the treatment of various cancers.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office of Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000 Pakistan
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Sajid Naeem
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Qamar Raza
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87100 Pakistan
| | - Shahid Raza
- Office of Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Munir Bhinder
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore, 54600 Pakistan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| |
Collapse
|
26
|
Myricetin Induces Apoptosis and Protective Autophagy through Endoplasmic Reticulum Stress in Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3115312. [PMID: 35677365 PMCID: PMC9168098 DOI: 10.1155/2022/3115312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
Abstract
Myricetin, a natural flavonoid, exhibits diverse biological activities, including antitumor effects. The present study aimed to investigate the effects of myricetin on hepatocellular carcinoma (HCC) cells and explore the underlying molecular mechanisms. Our results showed that myricetin significantly inhibited cell proliferation and induced apoptosis in HCC cells. The apoptosis induced by myricetin was associated with the activation of endoplasmic reticulum (ER) stress. In addition, autophagy was enhanced in response to ER stress. Inhibition of autophagy by RNA interference or chemical inhibitors resulted in increased apoptosis in myricetin-treated HCC cells. The in vivo experiment also showed that myricetin effectively reduced tumor growth in an HCC xenograft model and that combination treatment with an autophagy inhibitor significantly enhanced this effect. These results indicated that myricetin induced apoptosis in HCC cells through the activation of ER stress. Protective autophagy was also upregulated during this process. Simultaneous inhibition of autophagy enhanced the anti-HCC activity of myricetin. Myricetin might be a promising drug candidate for HCC therapy, and the combined use of myricetin with autophagy inhibitors could be an effective therapeutic strategy.
Collapse
|
27
|
Qian J, Zhang J, Chen Y, Dai C, Fan J, Guo H. Hypoglycemic activity and mechanisms of myricetin. Nat Prod Res 2022; 36:6177-6180. [DOI: 10.1080/14786419.2022.2058941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Junqing Qian
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Jinqiu Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | | | - Chengen Dai
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | | | - Hui Guo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
28
|
Kim SH, Lee YC. Plant-Derived Nanoscale-Encapsulated Antioxidants for Oral and Topical Uses: A Brief Review. Int J Mol Sci 2022; 23:ijms23073638. [PMID: 35409001 PMCID: PMC8998173 DOI: 10.3390/ijms23073638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Several plant-based nanoscale-encapsulated antioxidant compounds (rutin, myricetin, β-carotene, fisetin, lycopene, quercetin, genkwanin, lutein, resveratrol, eucalyptol, kaempferol, glabridin, pinene, and whole-plant bio-active compounds) are briefly introduced in this paper, along with their characteristics. Antioxidants’ bioavailability has become one of the main research topics in bio-nanomedicine. Two low patient compliance drug delivery pathways (namely, the oral and topical delivery routes), are described in detail in this paper, for nanoscale colloidal systems and gel formulations. Both routes and/or formulations seek to improve bioavailability and maximize the drug agents’ efficiency. Some well-known compounds have been robustly studied, but many remain elusive. The objective of this review is to discuss recent studies and advantages of nanoscale formulations of plant-derived antioxidant compounds.
Collapse
|
29
|
Massa S, Pagliarello R, Paolini F, Venuti A. Natural Bioactives: Back to the Future in the Fight against Human Papillomavirus? A Narrative Review. J Clin Med 2022; 11:jcm11051465. [PMID: 35268556 PMCID: PMC8911515 DOI: 10.3390/jcm11051465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) still represents an important threat to health worldwide. Better therapy in terms of further improvement of outcomes and attenuation of related side-effects is desirable. The pharmaceutical industry has always targeted natural substances-phytochemicals in particular-to identify lead compounds to be clinically validated and industrially produced as antiviral and anticancer drugs. In the field of HPV, numerous naturally occurring bioactives and dietary phytochemicals have been investigated as potentially valuable in vitro and in vivo. Interference with several pathways and improvement of the efficacy of chemotherapeutic agents have been demonstrated. Notably, some clinical trials have been conducted. Despite being endowed with general safety, these natural substances are in urgent need of further assessment to foresee their clinical exploitation. This review summarizes the basic research efforts conducted so far in the study of anti-HPV properties of bio-actives with insights into their mechanisms of action and highlights the variety of their natural origin in order to provide comprehensive mapping throughout the different sources. The clinical studies available are reported, as well, to highlight the need of uniformity and consistency of studies in the future to select those natural compounds that may be suited to clinical application.
Collapse
Affiliation(s)
- Silvia Massa
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Correspondence:
| | - Riccardo Pagliarello
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Paolini
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| | - Aldo Venuti
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| |
Collapse
|
30
|
Wang M, Ren S, Bi Z, Zhang L, Cui M, Sun R, Bao J, Gao D, Yang B, Li X, Li M, Xiao T, Zhou H, Yang C. Myricetin reverses epithelial–endothelial transition and inhibits vasculogenic mimicry and angiogenesis of hepatocellular carcinoma by directly targeting
PAR1. Phytother Res 2022; 36:1807-1821. [DOI: 10.1002/ptr.7427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Ming Wang
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| | - Shanfa Ren
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine Tianjin People's Republic of China
| | - Zhun Bi
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| | - Liang Zhang
- Department of Thoracic Surgery Tianjin First Central Hospital, Nankai University Tianjin People's Republic of China
| | - Mengqi Cui
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine Tianjin People's Republic of China
| | - Ronghao Sun
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| | - Jiali Bao
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine Tianjin People's Republic of China
| | - Dandi Gao
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine Tianjin People's Republic of China
| | - Bo Yang
- Department of Thoracic Surgery Tianjin First Central Hospital, Nankai University Tianjin People's Republic of China
| | - Xiaoping Li
- Department of Thoracic Surgery Tianjin First Central Hospital, Nankai University Tianjin People's Republic of China
| | - Mingjiang Li
- Department of Thoracic Surgery Tianjin First Central Hospital, Nankai University Tianjin People's Republic of China
| | - Ting Xiao
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine Tianjin People's Republic of China
| | - Hong‐gang Zhou
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine Tianjin People's Republic of China
| | - Cheng Yang
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine Tianjin People's Republic of China
| |
Collapse
|
31
|
Han SH, Lee JH, Woo JS, Jung GH, Jung SH, Han EJ, Park YS, Kim BS, Kim SK, Park BK, Choi C, Jung JY. Myricetin induces apoptosis through the MAPK pathway and regulates JNK‑mediated autophagy in SK‑BR‑3 cells. Int J Mol Med 2022; 49:54. [PMID: 35234274 PMCID: PMC8904074 DOI: 10.3892/ijmm.2022.5110] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/05/2022] Open
Abstract
Myricetin, a flavonoid found in fruits and vegetables, is known to have antioxidant and anticancer effects. However, the anticancer effects of myricetin on SK-BR-3 human breast cancer cells have not been elucidated. In the present study, the anticancer effects of myricetin were confirmed in human breast cancer SK-BR-3 cells. As the concentration of myricetin increased, the cell viability decreased. DAPI (4′,6-diamidino-2-phenylindole) and Annexin V/PI staining also revealed a significant increase in apoptotic bodies and apoptosis. Western blot analysis was performed to confirm the myricetin-induced expression of apoptosis-related proteins. The levels of cleaved PARP and Bax proteins were increased, and that of Bcl-2 was decreased. The levels of proteins in the mitogen-activated protein kinase (MAPK) pathway were examined to confirm the mechanism of myricetin-induced apoptosis, and it was found that the expression levels of phosphorylated c-Jun N-terminal kinase (p-JNK) and phosphorylated mitogen-activated protein kinases (p-p38) were increased, whereas that of phosphorylated extracellular-regulated kinase (p-ERK) was decreased. It was also demonstrated that myricetin induced autophagy by promoting autophagy-related proteins such as microtubule-associated protein 1A/1B-light chain 3 (LC 3) and beclin 1. In addition, 3-methyladenine (3-MA) was used to evaluate the association between cell viability and autophagy in cells treated with myricetin. The results showed that simultaneous treatment with 3-MA and myricetin promoted the apoptosis of breast cancer cells. Furthermore, treatment with a JNK inhibitor reduced cell viability, promoted Bax expression, and reduced the expression of p-JNK, Bcl-2, and LC 3-II/I. These results suggest that myricetin induces apoptosis via the MAPK pathway and regulates JNK-mediated autophagy in SK-BR-3 cells. In conclusion, myricetin shows potential as a natural anticancer agent in SK-BR-3 cells.
Collapse
Affiliation(s)
- So-Hee Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Jae-Han Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Joong-Seok Woo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Gi-Hwan Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Soo-Hyun Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Eun-Ji Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Young-Seok Park
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Byeong-Soo Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Sang-Ki Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Byung-Kwon Park
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Changsun Choi
- School of Food Science and Technology, Chung‑ang University, Ansung, Gyeonggi-do 17546, Republic of Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| |
Collapse
|
32
|
Lee HS, Kim Y. Myricetin Disturbs the Cell Wall Integrity and Increases the Membrane Permeability of Candida albicans. J Microbiol Biotechnol 2022; 32:37-45. [PMID: 34750288 PMCID: PMC9628827 DOI: 10.4014/jmb.2110.10014] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
The fungal cell wall and membrane are the principal targets of antifungals. Herein, we report that myricetin exerts antifungal activity against Candida albicans by damaging the cell wall integrity and notably enhancing the membrane permeability. In the presence of sorbitol, an osmotic protectant, the minimum inhibitory concentration (MIC) of myricetin against C. albicans increased from 20 to 40 and 80 μg/ml in 24 and 72 h, respectively, demonstrating that myricetin disturbs the cell wall integrity of C. albicans. Fluorescence microscopic images showed the presence of propidium iodidestained C. albicans cells, indicating the myricetin-induced initial damage of the cell membrane. The effects of myricetin on the membrane permeability of C. albicans cells were assessed using crystal violet-uptake and intracellular material-leakage assays. The percentage uptakes of crystal violet for myricetin-treated C. albicans cells at 1×, 2×, and 4× the MIC of myricetin were 36.5, 60.6, and 79.4%, respectively, while those for DMSO-treated C. albicans cells were 28.2, 28.9, and 29.7%, respectively. Additionally, myricetin-treated C. albicans cells showed notable DNA and protein leakage, compared with the DMSO-treated controls. Furthermore, treatment of C. albicans cells with 1× the MIC of myricetin showed a 17.2 and 28.0% reduction in the binding of the lipophilic probes diphenylhexatriene and Nile red, respectively, indicating that myricetin alters the lipid components or order in the C. albicans cell membrane, leading to increased membrane permeability. Therefore, these data will provide insights into the pharmacological worth of myricetin as a prospective antifungal for treating C. albicans infections.
Collapse
Affiliation(s)
- Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejongsi 30019, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon 27136, Republic of Korea,Corresponding author Phone: +82-43-649-1346 Fax: +82-43-649-1341 E-mail:
| |
Collapse
|
33
|
Agraharam G, Girigoswami A, Girigoswami K. Myricetin: a Multifunctional Flavonol in Biomedicine. CURRENT PHARMACOLOGY REPORTS 2022; 8:48-61. [PMID: 35036292 PMCID: PMC8743163 DOI: 10.1007/s40495-021-00269-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVEIW The root cause of many diseases like CVD, cancer, and aging is free radicals which exert their effect by interfering with different metabolic pathways. The sources of free radicals can be exogenous, like UV rays from sunlight, and endogenous due to different metabolic by-products.In our body, there are defense mechanisms present, such as antioxidant enzymes and antioxidant molecules to combat these free radicals, but if there is an overload of these free radicals in our body, the defense system may not be sufficient to neutralize these free radicals. In such situations, we are exposed to a chronic low dose of oxidants creating oxidative stress, which is responsible for eliciting different diseases. RECENT FINDINGS Pubmed and Google Scholar are the search engines used to sort out relevant papers on myricetin and its role in combating many diseases. Myricetin is present in many fruits and vegetables and is a known antioxidant. It can elevate the antioxidant enzyme levels; reduces the lipid peroxidation; and is known to protect against cancer. In the case of myocardial dysfunction, myricetin has been shown to suppress the inflammatory cytokines and reduced the mortality rate. Myricetin has also been found to reduce platelet aggregation and control the viral infections by interfering in the DNA replication pathways. SUMMARY In this paper, we have briefly reviewed about the different type and site of free radicals and the role of myricetin in addressing the ROS and different diseases.
Collapse
Affiliation(s)
- Gopikrishna Agraharam
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103 Tamilnadu India
| | - Agnishwar Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103 Tamilnadu India
| | - Koyeli Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103 Tamilnadu India
| |
Collapse
|
34
|
A Complexed Crystal Structure of a Single-Stranded DNA-Binding Protein with Quercetin and the Structural Basis of Flavonol Inhibition Specificity. Int J Mol Sci 2022; 23:ijms23020588. [PMID: 35054774 PMCID: PMC8775380 DOI: 10.3390/ijms23020588] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Single-stranded DNA (ssDNA)-binding protein (SSB) plays a crucial role in DNA replication, repair, and recombination as well as replication fork restarts. SSB is essential for cell survival and, thus, is an attractive target for potential antipathogen chemotherapy. Whether naturally occurring products can inhibit SSB remains unknown. In this study, the effect of the flavonols myricetin, quercetin, kaempferol, and galangin on the inhibition of Pseudomonas aeruginosa SSB (PaSSB) was investigated. Furthermore, SSB was identified as a novel quercetin-binding protein. Through an electrophoretic mobility shift analysis, myricetin could inhibit the ssDNA binding activity of PaSSB with an IC50 of 2.8 ± 0.4 μM. The effect of quercetin, kaempferol, and galangin was insignificant. To elucidate the flavonol inhibition specificity, the crystal structure of PaSSB complexed with the non-inhibitor quercetin was solved using the molecular replacement method at a resolution of 2.3 Å (PDB entry 7VUM) and compared with a structure with the inhibitor myricetin (PDB entry 5YUN). Although myricetin and quercetin bound PaSSB at a similar site, their binding poses were different. Compared with myricetin, the aromatic ring of quercetin shifted by a distance of 4.9 Å and an angle of 31° for hydrogen bonding to the side chain of Asn108 in PaSSB. In addition, myricetin occupied and interacted with the ssDNA binding sites Lys7 and Glu80 in PaSSB whereas quercetin did not. This result might explain why myricetin could, but quercetin could not, strongly inhibit PaSSB. This molecular evidence reveals the flavonol inhibition specificity and also extends the interactomes of the natural anticancer products myricetin and quercetin to include the OB-fold protein SSB.
Collapse
|
35
|
Nordin N, Jalil J, Ghani MFA, Abdullah AA, Othman R. Molecular Modelling Simulations and Inhibitory Effects of Naturally Derived Flavonoids Targeting Platelet-Activating Factor Receptor (PAFR). LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210614170322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Platelet-activating factor (PAF) is an agonist mediator in the inflammatory
process, which interacts with PAF receptor (PAFR) that eventually causes cancers, respiratory and
neurodegenerative diseases. This interaction activates the mitogen-activated protein kinase (MAPK)
pathway, leading to a pro-inflammatory cascade. The pathophysiological conditions due to activation
of inflammatory cascade could be inhibited by PAF antagonists.
Objectives:
In this study, selected naturally derived flavonoids (flavone, biochanin A, and myricetin)
with different functional groups were subjected to molecular modelling and experimental studies to
investigate their potential as PAF antagonists.
Method:
Interactions of flavonoids and PAF were assessed via Autodock Vina for molecular docking
and the AMBER program for molecular dynamic simulations. The experimentally antagonistic effects
of the flavonoids were also conducted via PAF inhibitory assay to determine the IC50 values.
Results:
The findings of docking and dynamic simulations have revealed that all selected flavonoids
interact with PAFR in the binding site with considerably good binding affinity up to - 9.8 kcal mol-1 as
compared to cedrol (- 8.1 kcal mol-1) as a standard natural PAFR antagonist. The PAFR-flavonoid
complexes exhibited four conserved active site residues, which included W73, F97, F174, and L279.
The stability of all complexes was attained in a 30 ns simulation. The findings of in silico analyses
were then compared to the experimental study on PAF inhibitory assay. Inhibitory effects of flavonoids
against PAFR showed moderate activities, ranging from 27.8 – 30.8 μgM-1.
Conclusion:
All studied flavonoids could act as promising PAF antagonists with some enhancement in
their structures to exhibit potent antagonistic activity. However, these naturally derived flavonoids
demand further investigation at cellular and animal models to develop new PAF antagonist drug candidates
for treating PAF-mediated diseases.
Collapse
Affiliation(s)
- Noraziah Nordin
- Department of Basic Medical Sciences 1, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia,
71800, Nilai, Negeri Sembilan Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan
Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Mohd Faiz Abd Ghani
- Department of Basic Medical Sciences 1, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia,
71800, Nilai, Negeri Sembilan Malaysia
| | - Adib Afandi Abdullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy,
University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rozana Othman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy,
University Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Natural Product Research and Drug Discovery
(CENAR), University Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Nanoencapsulated Myricetin to Improve Antioxidant Activity and Bioavailability: A Study on Zebrafish Embryos. CHEMISTRY 2021. [DOI: 10.3390/chemistry4010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Flavonoids are natural polyphenolic compounds that mainly possess antioxidant properties due to more hydroxyl groups in their structure and play an important role in combatting many diseases. Myricetin is a flavonoid found in grapes, green tea, fruits, and vegetables and is not only an antioxidant but also is a pro-oxidant. Myricetin is sparingly soluble in water and restricts its properties due to low bioavailability. The present study reports the liposomal nanoformulations of myricetin to improve its bioavailability with reduced pro-oxidant activity. The nanoformulated myricetin was characterized using different photophysical tools, such as dynamic light scattering (DLS), zeta potential, and scanning electron microscopy (SEM). The effect of nanoencapsulated myricetin on the developing zebrafish embryo was studied in terms of microscopic observations, cumulative hatchability, and antioxidant activities, such as catalase, glutathione peroxidase, and superoxide dismutase, after treating the zebrafish embryo with standard oxidant hydrogen peroxide. The results obtained from the cumulative hatchability, developmental studies, and antioxidant assays indicated that the liposomal nanoformulation of myricetin had enhanced antioxidant activity, leading to defense against oxidative stress. The formulation was highly biocompatible, as evidenced by the cumulative hatching studies as well as microscopic observations. The positive effects of liposomal nanoformulation on zebrafish embryos can open an avenue for other researchers to carry out further related research and to check its activities in clinical studies and developmental studies.
Collapse
|
37
|
Li H, Li H, Jiang S, Xu J, Cui Y, Wang H, Dai L, Lin Y, Zhang J. Study of the metabolism of myricetin in rat urine, plasma and feces by ultra-high-performance liquid chromatography. Biomed Chromatogr 2021; 36:e5281. [PMID: 34792824 DOI: 10.1002/bmc.5281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Myricetin is a common natural flavonoid compound with various pharmacological activities. However, the metabolite characterization of this substance remains inadequate. In this study, a simple and rapid system strategy based on UHPLC-Q-Exactive Orbitrap mass spectrometry combining parallel reaction monitoring mode was established to screen and identify myricetin metabolites in rat urine, plasma and feces after oral administration. A total of 38 metabolites were fully or partially characterized based on their accurate mass, characteristic fragment ions, retention times, corresponding cLogP values, etc. These metabolites were presumed to be generated through glucuronidation, glucosylation, sulfation, dihydroxylation, acetylation, hydrogenation, hydroxylation and their composite reactions. In addition, the characteristic fragmentation pathways of flavonoids with more metabolites were summarized for the subsequent metabolite identification. The study provides an overall metabolic profile of myricetin, which would be of great help in predicting the in vivo pharmacokinetic profiles and understanding the action mechanism of this active ingredient.
Collapse
Affiliation(s)
- Huajian Li
- School of Pharmacy, BIN ZHOU Medical University, Yantai, China
- School of Chinese Pharmacy, Shandong University of Chinese Medicine, Shandong, China
| | - Haoran Li
- School of Pharmacy, BIN ZHOU Medical University, Yantai, China
- School of Chinese Pharmacy, Shandong University of Chinese Medicine, Shandong, China
| | - Shan Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Xu
- School of Pharmacy, BIN ZHOU Medical University, Yantai, China
- School of Chinese Pharmacy, Shandong University of Chinese Medicine, Shandong, China
| | - Yifang Cui
- School of Pharmacy, BIN ZHOU Medical University, Yantai, China
- School of Chinese Pharmacy, Shandong University of Chinese Medicine, Shandong, China
| | - Hong Wang
- School of Pharmacy, BIN ZHOU Medical University, Yantai, China
- School of Chinese Pharmacy, Shandong University of Chinese Medicine, Shandong, China
| | - Long Dai
- School of Pharmacy, BIN ZHOU Medical University, Yantai, China
| | - Yongqiang Lin
- Shandong Provincial Institute for Food and Drug Control, Shandong Engineering Laboratory for Standard innovation and Quality Evaluation of TCM, Jinan, China
| | - Jiayu Zhang
- School of Pharmacy, BIN ZHOU Medical University, Yantai, China
| |
Collapse
|
38
|
Varela-Rodríguez L, Sánchez-Ramírez B, Saenz-Pardo-Reyes E, Ordaz-Ortiz JJ, Castellanos-Mijangos RD, Hernández-Ramírez VI, Cerda-García-Rojas CM, González-Horta C, Talamás-Rohana P. Antineoplastic Activity of Rhus trilobata Nutt. ( Anacardiaceae) against Ovarian Cancer and Identification of Active Metabolites in This Pathology. PLANTS 2021; 10:plants10102074. [PMID: 34685883 PMCID: PMC8540642 DOI: 10.3390/plants10102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Rhus trilobata (RHTR) is a medicinal plant with cytotoxic activity in different cancer cell lines. However, the active compounds in this plant against ovarian cancer are unknown. In this study, we aimed to evaluate the antineoplastic activity of RHTR and identify its active metabolites against ovarian cancer. The aqueous extract (AE) and an active fraction (AF02) purified on C18-cartridges/ethyl acetate decreased the viability of SKOV-3 cells at 50 and 38 μg/mL, respectively, compared with CHO-K1 (>50 μg/mL) in MTT assays and generated changes in the cell morphology with apoptosis induction in Hemacolor® and TUNEL assays (p ≤ 0.05, ANOVA). The metabolite profile of AF02 showed a higher abundance of flavonoid and lipid compounds compared with AE by UPLC-MSE. Gallic acid and myricetin were the most active compounds in RHTR against SKOV-3 cells at 50 and 166 μg/mL, respectively (p ≤ 0.05, ANOVA). Antineoplastic studies in Nu/Nu female mice with subcutaneous SKOV-3 cells xenotransplant revealed that 200 mg/kg/i.p. of AE and AF02 inhibited ovarian tumor lesions from 37.6% to 49% after 28 days (p ≤ 0.05, ANOVA). In conclusion, RHTR has antineoplastic activity against ovarian cancer through a cytostatic effect related to gallic acid and myricetin. Therefore, RHTR could be a complementary treatment for this pathology.
Collapse
Affiliation(s)
- Luis Varela-Rodríguez
- Facultad de Enfermería y Nutriología, Universidad Autónoma de Chihuahua, Chihuahua CP 31125, CHIH, Mexico
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua CP 31125, CHIH, Mexico
| | - Blanca Sánchez-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua CP 31125, CHIH, Mexico
| | - Erika Saenz-Pardo-Reyes
- Facultad de Enfermería y Nutriología, Universidad Autónoma de Chihuahua, Chihuahua CP 31125, CHIH, Mexico
| | - José Juan Ordaz-Ortiz
- Laboratorio de Metabolómica y Espectrometría de Masas, Unidad de Genómica Avanzada-CINVESTAV, Irapuato CP 36824, GTO, Mexico
| | | | - Verónica Ivonne Hernández-Ramírez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México CP 07360, CDMX, Mexico
| | - Carlos Martín Cerda-García-Rojas
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México CP 07360, CDMX, Mexico
| | - Carmen González-Horta
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua CP 31125, CHIH, Mexico
| | - Patricia Talamás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México CP 07360, CDMX, Mexico
| |
Collapse
|
39
|
Duan J, Guo H, Fang Y, Zhou G. The mechanisms of wine phenolic compounds for preclinical anticancer therapeutics. Food Nutr Res 2021; 65:6507. [PMID: 34512232 PMCID: PMC8396239 DOI: 10.29219/fnr.v65.6507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/24/2021] [Accepted: 05/02/2021] [Indexed: 11/20/2022] Open
Abstract
Background Wine is one of the oldest and most popular drinks worldwide, which is rich in phenolic compounds. Epidemiological studies show that moderate consumption of wine can reduce the risk of certain diseases, and this effect is attributed to its phenolic compounds. Objective The objective of this review was to elaborate the effects of wine-derived phenolic compounds for preclinical anticancer therapeutics and their major mechanisms. Methods In this review, we discuss the classification and content of common phenolic compounds in wine and summarize previous studies that have evaluated the anticancer properties of wine-derived phenolic compounds and their mechanisms. Results Wine-derived phenolic compounds have been proven to participate in several mechanisms against cancers, including deoxyribonucleic acid damage, oxidative stress, cell proliferation, cell cycle arrest, cell apoptosis, autophagy, cell invasion and metastasis, immunity and metabolism, regulation of multiple signaling molecules, and gene expression. However, the exact anticancer mechanisms of the phenolic compounds in wine need to be further investigated. Conclusion Wine-derived phenolic compounds are promising chemoprotective and chemotherapeutic agents for cancer.
Collapse
Affiliation(s)
- Jing Duan
- College of Enology, Northwest A&F University, Yangling, China
| | - Hua Guo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yulin Fang
- College of Enology, Northwest A&F University, Yangling, China
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
40
|
Yan T, Tao Y, Wang X, Lv C, Miao G, Wang S, Wang D, Wang Z. Preparation, characterization and evaluation of the antioxidant capacity and antitumor activity of myricetin microparticles formated by supercritical antisolvent technology. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
The Involvement of Natural Polyphenols in the Chemoprevention of Cervical Cancer. Int J Mol Sci 2021; 22:ijms22168812. [PMID: 34445518 PMCID: PMC8396230 DOI: 10.3390/ijms22168812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
From all types of cancer, cervical cancer manages to be in top four most frequent types, with a 6.5% rate of occurrence. The infectious vector that induces the disease, the high-risk Human papillomavirus (HPV), which is a sexually transmitted virus, is capable of transforming the host cell by modulating some of the principal signaling pathways responsible for cell cycle arrest, proliferation, and survival. Fortunately, like other cancer types, cervical cancer can be treated by chirurgical interventions or chemoradiotherapy, but these methods are not exactly the lucky clover of modern medicine because of the adverse effects they have. That is the reason why in the last years the emphasis has been on alternative medicine, more specifically on phytochemicals, as a substantial number of studies showed that diet contributes to cancer prevention and treatment. All these studies are trying to find new chemopreventive agents with less toxicity but high effectiveness both in vitro and in vivo. The aim of this review is to evaluate the literature in order to underline the advantages and disadvantages of polyphenols, a class of dietary compounds, as chemopreventive and chemotherapeutic agents. This review also aims to present polyphenols from different perspectives, starting with mechanisms of action and ending with their toxicity. The bigger picture illustrates that polyphenols have great potential in cervical cancer prevention, with strong effects on gene modulation.
Collapse
|
42
|
Ijaz MU, Anwar H, Iqbal S, Ismail H, Ashraf A, Mustafa S, Samad A. Protective effect of myricetin on nonylphenol-induced testicular toxicity: biochemical, steroidogenic, hormonal, spermatogenic, and histological-based evidences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22742-22757. [PMID: 33423203 DOI: 10.1007/s11356-020-12296-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Nonylphenol (NP) is an environmental contaminant, which induces testicular toxicity through oxidative stress. Myricetin (MYR) is a naturally occurring flavonol having powerful antioxidant activity. The current research was planned to examine the ameliorative role of MYR against NP-induced testicular damage. A total of 24 adult male Sprague-Dawley rats were randomly divided into 4 equivalent groups: control (0.1% DMSO), NP group (50 mg kg-1), NP + MYR group (50 mg kg-1; 100 mg kg-1), and MYR-treated group (100 mg kg-1). NP administration significantly (p < 0.05) decreased the activity of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GSR), and protein content while significantly (p < 0.05) elevating the thiobarbituric acid reactive substances (TBARS) and reactive oxygen species (ROS) levels. Additionally, NP significantly (p < 0.05) reduced the sperm motility, gene expression of testicular steroidogenic enzymes (3β-HSD, 3β-hydroxysteroid dehydrogenase; 17β-HSD, 17β-hydroxysteroid dehydrogenase; StAR, steroidogenic-acute regulatory protein), level of luteinizing hormone (LH), follicle-stimulating hormone (FSH), plasma testosterone, and daily sperm production (DSP). On the other hand, it raised the testicular cholesterol, dead sperms, and head, midpiece, and tail abnormalities along with abnormal histomorphometry. However, MYR remarkably abrogated NP-induced damages. In conclusion, the outcomes of the study suggest that MYR can effectively alleviate the NP-induced oxidative stress and testicular damages.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Shabnoor Iqbal
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Hammad Ismail
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Shama Mustafa
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Samad
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
43
|
Ma H, Song X, Huang P, Zhang W, Ling X, Yang X, Wu W, Xu H, Wang W. Myricetin protects natural killer cells from arsenite induced DNA damage by attenuating oxidative stress and retaining poly(ADP-Ribose) polymerase 1 activity. Mutat Res 2021; 865:503337. [PMID: 33865543 DOI: 10.1016/j.mrgentox.2021.503337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/30/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022]
Abstract
Environmental exposure to arsenite (As+3) is known to induce immunotoxicity. Natural killer (NK) cells are innate lymphoid cells act as professional killers of tumor cells. Our previous report indicated that 500 ppb As+3 drinking water exposure induced significant DNA damage in the NK cells of C57BL/6 mice. Myricetin is a plant-derived flavonoid known as a strong antioxidant. In this study, daily administration of myricetin at 20 mg/kg was found to alleviate the cell population decrease and DNA damage in the NK cells of BALB/c mice exposed to 500 and 1000 ppb As+3 via drinking water. Oxidative stress and poly(ADP-ribose) polymerase 1 (PARP-1) inhibition were induced by As+3 at 1 and 2 μM in isolated mouse NK cells in vitro, which were attenuated by 20 μM myricetin. The mitigatory effect of myricetin on the PARP-1 inhibition in NK cells treated with As+3 was also found to be the result of its prevention of the zinc loss induced by As+3 on PARP-1. Collectively, these results demonstrated, for the first time, that myricetin could protect NK cells from As+3 induced DNA through attenuating oxidative stress and retaining PARP-1 activity, indicating that myricetin may be utilized for the prevention of the immunotoxicity induced by As+3 in NK cells.
Collapse
Affiliation(s)
- Huijuan Ma
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Xiaodong Song
- Medical Laboratory Department, Hua Shan Hospital North, Fudan University, Shanghai, 201907, China
| | - Ping Huang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Weiwei Zhang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Xinyue Ling
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Xiaoning Yang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Wenwei Wu
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Huan Xu
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China.
| | - Wei Wang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China; Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-0207, USA.
| |
Collapse
|
44
|
Stefanowicz-Hajduk J, Hering A, Gucwa M, Hałasa R, Soluch A, Kowalczyk M, Stochmal A, Ochocka R. Biological activities of leaf extracts from selected Kalanchoe species and their relationship with bufadienolides content. PHARMACEUTICAL BIOLOGY 2020; 58:732-740. [PMID: 32715869 PMCID: PMC7470146 DOI: 10.1080/13880209.2020.1795208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Kalanchoe species (Crassulaceae) are widely used in traditional medicine as remedies in infectious diseases and cancer treatment. OBJECTIVE Cytotoxic and antimicrobial activities of Kalanchoe daigremontiana Raym.-Hamet & H. Perrier, K. pinnata (Lam.) Pers., and K. blossfeldiana Poelln. extracts were determined. The relationship between biological activities and the extracts bufadienolides content was also investigated. MATERIALS AND METHODS Fresh leaves of Kalanchoe species were macerated with 95% ethanol or water. The quantitative analysis of bufadienolides in the extracts was carried out with mass spectrometry. Cytotoxicity tests were performed on human cancer cell lines - HeLa, SKOV-3, MCF-7, and A375 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay and Real-Time Cell Analysis system. The microbiological study was done using a few bacteria strains (β-hemolytic Streptococcus, Corynebacterium diphtheriae, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus hirae, Escherichia coli) and Candida albicans. RESULTS The K. blossfeldiana ethanol extract and K. daigremontiana water extract exhibited the most potent cytotoxic activity (IC50 < 19 µg/mL for HeLa and SKOV-3 cells). The strongest antibacterial effects showed ethanol extract of K. blossfeldiana and K. pinnata (MIC values were 8.45, 8.45, 0.25 and <33.75 µg/mL for S. aureus, S. epidermidis, and E. hirae, respectively). The highest total amount of bufadienolides was in K. daigremontiana ethanol extract. In contrast, K. blossfeldiana ethanol extract did not show the presence of these compounds. CONCLUSIONS Kalanchoe blossfeldiana ethanol extract is a potential candidate for cancer and bacterial infection treatment. Additionally, the biological effects of Kalanchoe extracts are not dependent on the presence and amount of bufadienolides in the plant extracts.
Collapse
Affiliation(s)
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| | - Magdalena Gucwa
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| | - Rafał Hałasa
- Department of Pharmaceutical Microbiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Agata Soluch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Puławy, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Puławy, Poland
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Puławy, Poland
| | - Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
45
|
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020; 25:molecules25225243. [PMID: 33187049 PMCID: PMC7697716 DOI: 10.3390/molecules25225243] [Citation(s) in RCA: 560] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Sidra Munir
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
- Correspondence: (S.L.B.); (M.J.)
| | - Noreen Khan
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Lubna Ghani
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 13230, Pakistan;
| | - Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
- Correspondence: (S.L.B.); (M.J.)
| |
Collapse
|
46
|
Abd Ghani MF, Othman R, Nordin N. Molecular Docking Study of Naturally Derived Flavonoids with Antiapoptotic BCL-2 and BCL-XL Proteins toward Ovarian Cancer Treatment. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2020; 12:S676-S680. [PMID: 33828360 PMCID: PMC8021047 DOI: 10.4103/jpbs.jpbs_272_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/22/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
The naturally derived flavonoids are well known to have anticarcinogenic effects. Flavonoids could be an alternative strategy for ovarian cancer treatment, due to existing platinum-based drugs are reported to develop resistance with low survival rates. Inhibition of antiapoptotic proteins, namely B-cell lymphoma (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl), is the key target to stimulate apoptosis process in cancer cells. This study aimed to determine the binding interaction of five naturally derived flavonoids (biochanin A, myricetin, apigenin, galangin, and fisetin) with potential antiapoptotic target proteins (Bcl-2 and Bcl-xl). The molecular docking study was conducted using AutoDock Vina program. The binding affinity and the presence of hydrogen bonds between the flavonoids and target proteins were predicted. Our findings showed that all the flavonoids showed better binding affinity with Bcl-xl than that of Bcl-2 proteins. The highest binding affinity was recorded in fisetin-Bcl-xl protein complex (-8.8 kcal/mol). Meanwhile, the other flavonoids docked with Bcl-xl protein showed binding affinities, ranging from -8.0 to -8.6 kcal/mol. A total of four hydrogen bonds, four hydrophobic contacts, and one electrostatic interaction were detected in the docked fisetin-Bcl-xl complex, explaining its high binding affinity with Bcl-xl. The present results indicate that all flavonoids could potentially serve as Bcl-xl protein inhibitors, which would consequently lead to apoptotic process in ovarian cancers.
Collapse
Affiliation(s)
- Mohd Faiz Abd Ghani
- Department of Basic Medical Sciences, Faculty Medicine & Health Sciences, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
- School of Pharmacy, KPJ Healthcare University College, Nilai, Malaysia
| | - Rozana Othman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Natural Product Research and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Noraziah Nordin
- Department of Basic Medical Sciences, Faculty Medicine & Health Sciences, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Xu Z, He WQ, Liu CS, Kong JQ. Enzymatic synthesis of myricetin 3-O-galactoside through a whole-cell biocatalyst. CHINESE HERBAL MEDICINES 2020; 12:384-389. [PMID: 36120167 PMCID: PMC9476700 DOI: 10.1016/j.chmed.2020.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 11/17/2022] Open
Abstract
Objective Myricetin 3-O-galactoside is an active compound with pharmaceutical potential. The insufficient supply of this compound becomes a bottleneck in the druggability study of myricetin 3-O-galactoside. Thus, it is necessary to develop a biosynthetic process for myricetin 3-O-galactoside through metabolic engineering. Methods Two genes OcSUS1 and OcUGE1 encoding sucrose synthase and UDP-glucose 4-epimerase were introduced into BL21(DE3) to reconstruct a UDP-D-galactose (UDP-Gal) biosynthetic pathway in Escherichia coli. The resultant chassis strain was able to produce UDP-Gal. Subsequently, a flavonol 3-O-galactosyltransferase DkFGT gene was transformed into the chassis strain producing UDP-Gal. An artificial pathway for myricetin 3-O-galactoside biosynthesis was thus constructed in E. coli. Results The obtained engineered strain was demonstrated to be capable of producing myricetin 3-O-galactoside, reaching 29.7 mg/L. Conclusion Biosynthesis of myricetin 3-O-galactoside through engineered E. coli could be achieved. This result lays the foundation for the large-scale preparation of myricetin 3-O-galactoside.
Collapse
|
48
|
Taheri Y, Suleria HAR, Martins N, Sytar O, Beyatli A, Yeskaliyeva B, Seitimova G, Salehi B, Semwal P, Painuli S, Kumar A, Azzini E, Martorell M, Setzer WN, Maroyi A, Sharifi-Rad J. Myricetin bioactive effects: moving from preclinical evidence to potential clinical applications. BMC Complement Med Ther 2020; 20:241. [PMID: 32738903 PMCID: PMC7395214 DOI: 10.1186/s12906-020-03033-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022] Open
Abstract
Several flavonoids have been recognized as nutraceuticals, and myricetin is a good example. Myricetin is commonly found in plants and their antimicrobial and antioxidant activities is well demonstrated. One of its beneficial biological effects is the neuroprotective activity, showing preclinical activities on Alzheimer, Parkinson, and Huntington diseases, and even in amyotrophic lateral sclerosis. Also, myricetin has revealed other biological activities, among them as antidiabetic, anticancer, immunomodulatory, cardiovascular, analgesic and antihypertensive. However, few clinical trials have been performed using myricetin as nutraceutical. Thus, this review provides new insights on myricetin preclinical pharmacological activities, and role in selected clinical trials.
Collapse
Affiliation(s)
- Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Oksana Sytar
- Department of Plant Biology Department, Taras Shevchenko National University of Kyiv, Institute of Biology, Volodymyrska str., 64, Kyiv, 01033 Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Ahmet Beyatli
- Department of Medicinal and Aromatic Plants, University of Health Sciences, 34668 Istanbul, Turkey
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Gulnaz Seitimova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248001 India
- Uttarakhand State Council for Science and Technology, Vigyan Dham, Dehradun, Uttarakhand 248007 India
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248001 India
- Himalayan Environmental Studies and Conservation Organization, Prem Nagar, Dehradun, Uttarakhand 248001 India
| | - Anuj Kumar
- Uttarakhand Council for Biotechnology, Silk Park, Prem Nagar, Dehradun, Uttarakhand 248007 India
| | - Elena Azzini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, 4070386 Concepción, Chile
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899 USA
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043 USA
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag X1314, Alice, 5700 South Africa
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
49
|
Zhu ML, Zhang PM, Jiang M, Yu SW, Wang L. Myricetin induces apoptosis and autophagy by inhibiting PI3K/Akt/mTOR signalling in human colon cancer cells. BMC Complement Med Ther 2020; 20:209. [PMID: 32631392 PMCID: PMC7336643 DOI: 10.1186/s12906-020-02965-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The compound 3,3',4',5,5',7-hexahydroxyflavone (myricetin) is a natural flavonoid with antitumour activity. Most of the studies on myricetin have focused on the induction of tumour cell apoptosis, and little is known about the regulatory effects of myricetin on autophagy in colorectal cancer. METHODS Here, we studied the effects of myricetin on colon cancer cell proliferation, apoptosis and autophagy. We detected colon cancer cell apoptosis induced by myricetin via flow cytometry and Hoechst 33258 staining. Transmission electron microscopy was performed to observe the morphological changes associated with autophagy. The expression levels of apoptosis-, autophagy- and PI3K/Akt/mTOR signalling-related proteins were measured by Western blot analysis. RESULTS This study confirmed that myricetin inhibits the proliferation of 4 kinds of colon cancer cell lines. Myricetin induced cell apoptosis and autophagy by inhibiting PI3K/Akt/mTOR signalling pathway. In addition, the inhibition of autophagy with 3-methyladenine (3-MA) promoted the apoptosis of myricetin-treated colon cancer cells. CONCLUSIONS Considering that myricetin induces apoptosis and autophagy in colon cancer cells, myricetin may become a viable candidate for chemotherapy; it could be used to exert tumour inhibitory effects alone or as adjuvant chemotherapy to inhibit autophagy. These studies may provide further evidence for the potential use of myricetin in the treatment of colon cancer.
Collapse
Affiliation(s)
- Ming-Liang Zhu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Pei-Min Zhang
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, China
| | - Min Jiang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shu-Wen Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, China.
| | - Lu Wang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, China.
| |
Collapse
|
50
|
Guevara M, Proaño A, Tejera E, Ballesteros I, Sánchez ME, Granda-Albuja MG, Freire B, Chisaguano AM, Debut A, Vizuete K, Santos-Buelga C, González-Paramás AM, Battino M, Alvarez-Suarez JM. Protective effect of the medicinal herb infusion "horchata" against oxidative damage in cigarette smokers: An ex vivo study. Food Chem Toxicol 2020; 143:111538. [PMID: 32615239 DOI: 10.1016/j.fct.2020.111538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
Abstract
Cigarette smoking has been associated with an increase in oxidative stress (OS) and is considered a predisposing factor to chronic noncommunicable diseases, whilst dietary antioxidants has been proposed as an alternative to cope with this oxidative stress. In this study, 20 smokers and 20 non-smokers were studied with the aim of determining their antioxidant status, as well as the ability of an infusion of 23 medicinal plants, to counteract the damage caused by OS. The plasma, red blood cells (RBCs) and polymorphonuclear cells (PBMCs) of both groups were incubated or not with the horchata infusion extract and then the OS markers, genotoxicity, nanostructure of RBCs membrane and genes related to oxidative responses and cellular functionality were evaluated. Up to 33 different compounds, mainly quercetin glycosides, were identified in the extract. A significant deterioration in the antioxidant status in smokers compared to non-smokers was found. The horchata infusion extract improved the nanostructure of RBCs and DNA damage, as well as the activity of the endogenous antioxidant enzymes and markers of oxidative damage to lipid, and proteins in plasma, RBCs and PBMCs in both groups, whilst no significant changes were found in the expression of different genes related to OS response.
Collapse
Affiliation(s)
- Mabel Guevara
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, 37007, Spain; AgroScience & Food Research Group, Universidad de Las Américas, Quito, 170125, Ecuador
| | - Adrián Proaño
- AgroScience & Food Research Group, Universidad de Las Américas, Quito, 170125, Ecuador
| | - Eduardo Tejera
- Grupo de Bio-Quimioinformática (CBQ), Universidad de Las Américas, Quito, 170125, Ecuador
| | - Isabel Ballesteros
- AgroScience & Food Research Group, Universidad de Las Américas, Quito, 170125, Ecuador
| | - María E Sánchez
- AgroScience & Food Research Group, Universidad de Las Américas, Quito, 170125, Ecuador
| | | | - Byron Freire
- Laboratorios de Investigación, Universidad de Las Américas, Quito, 170125, Ecuador
| | - Aida M Chisaguano
- Nutrición y Dietética, Escuela de Salud Pública, Facultad de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, 170901, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas (ESPE), Sangolquí, 171-5-231B, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas (ESPE), Sangolquí, 171-5-231B, Ecuador
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, 37007, Spain
| | - Ana M González-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, 37007, Spain
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez, Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy; Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - José M Alvarez-Suarez
- AgroScience & Food Research Group, Universidad de Las Américas, Quito, 170125, Ecuador; King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|