1
|
Zamanian MY, Kamran Z, Tavakoli MR, Oghenemaro EF, Abohassan M, Kubaev A, Nathiya D, Kaur P, Zwamel AH, Abdulamer RS. The Role of ΔFosB in the Pathogenesis of Levodopa-Induced Dyskinesia: Mechanisms and Therapeutic Strategies. Mol Neurobiol 2025; 62:7393-7412. [PMID: 39890697 DOI: 10.1007/s12035-025-04720-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Levodopa-induced dyskinesia (LID) represents a significant complication associated with the long-term administration of levodopa (L-DOPA) for the treatment of Parkinson's disease (PD). This review examines the critical role of ΔFosB, a transcription factor, in the pathogenesis of LID and explores potential therapeutic interventions. ΔFosB accumulates within the striatum in response to chronic dopaminergic stimulation, thereby driving maladaptive changes that culminate in dyskinesia. Its persistent expression modifies gene transcription, influencing neuronal plasticity and contributing to the sustained presence of dyskinetic movements. This study explains how ΔFosB functions at the molecular level, focusing on its connections with dopamine D1 receptors, the cAMP/PKA signaling pathway, and its regulatory effects on downstream targets such as DARPP-32 and GluA1 AMPA receptor subunits. Additionally, it examines how neuronal nitric oxide synthase (nNOS) affects ΔFosB levels and the development of LID. This review also considers the interactions between ΔFosB and other signaling pathways, such as ERK and mTOR, in the context of LID and striatal plasticity. Emerging therapeutic strategies targeting ΔFosB and its associated pathways include pharmacological interventions like ranitidine, 5-hydroxytryptophan, and carnosic acid. Furthermore, this study addresses the role of JunD, another component of the AP-1 transcription factor complex, in the pathogenesis of LID. Understanding the molecular mechanisms by which ΔFosB contributes to LID offers promising avenues for developing novel treatments that could mitigate dyskinesia and improve the quality of life for PD patients undergoing long-term L-DOPA therapy.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Zahra Kamran
- Department of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marziye Ranjbar Tavakoli
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmacy, Delta State University, Abraka, Nigeria
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Resan Shakir Abdulamer
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
2
|
Liu D, Liu L, Zhang X, Zhao X, Li X, Che X, Wu G. Decoding driver and phenotypic genes in cancer: Unveiling the essence behind the phenomenon. Mol Aspects Med 2025; 103:101358. [PMID: 40037122 DOI: 10.1016/j.mam.2025.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/25/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Gray hair, widely regarded as a hallmark of aging. While gray hair is associated with aging, reversing this trait through gene targeting does not alter the fundamental biological processes of aging. Similarly, certain oncogenes (such as CXCR4, MMP-related genes, etc.) can serve as markers of tumor behavior, such as malignancy or prognosis, but targeting these genes alone may not lead to tumor regression. We pioneered the name of this class of genes as "phenotypic genes". Historically, cancer genetics research has focused on tumor driver genes, while genes influencing cancer phenotypes have been relatively overlooked. This review explores the critical distinction between driver genes and phenotypic genes in cancer, using the MAPK and PI3K/AKT/mTOR pathways as key examples. We also discuss current research techniques for identifying driver and phenotypic genes, such as whole-genome sequencing (WGS), RNA sequencing (RNA-seq), RNA interference (RNAi), CRISPR-Cas9, and other genomic screening methods, alongside the concept of synthetic lethality in driver genes. The development of these technologies will help develop personalized treatment strategies and precision medicine based on the characteristics of relevant genes. By addressing the gap in discussions on phenotypic genes, this review significantly contributes to clarifying the roles of driver and phenotypic genes, aiming at advancing the field of targeted cancer therapy.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
3
|
Fan G, Liu Y, Tao L, Wang D, Huang Y, Yang X. Sodium butyrate alleviates colitis by inhibiting mitochondrial ROS mediated macrophage pyroptosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167756. [PMID: 40044062 DOI: 10.1016/j.bbadis.2025.167756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory bowel disease with unclear causes and limited treatment options. Sodium butyrate (NaB), a byproduct of dietary fiber in the intestine, has demonstrated efficacy in treating inflammation. However, the precise anti-inflammatory mechanisms of NaB in colon inflammation remain largely unexplored. This study aims to investigate the effects of NaB on dextran sulfate sodium (DSS)-induced colitis in rats. The findings indicate that oral administration of NaB effectively prevent colitis and reduce levels of serum or colon inflammatory factors. Additionally, NaB demonstrated in vitro inhibition of RAW264.7 inflammation cytokines induced by LPS, along with suppression of the ERK and NF-κB signaling pathway activation. Moreover, NaB mitigated LPS and Nigericin-induced RAW264.7 pyroptosis by reducing indicators of mitochondrial damage, including increased mitochondrial membrane potential (JC-1) levels and decreased Mito-ROS production. NaB increases ZO-1 and Occludin expression in CaCo2 cells by inhibiting RAW264.7 pyroptosis. These results suggest that NaB could be utilized as a therapeutic agent or dietary supplement to alleviate colitis.
Collapse
Affiliation(s)
- Guoqiang Fan
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaxin Liu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Limei Tao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Danping Wang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yizhu Huang
- Singao Xiamen Company, Xiamen 361006, PR China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
4
|
Wu G, Gao L, Zhang X, Xue Q, Ye L, Zheng Y, Zheng J. MiR-24-3p Inhibits Migration and Proliferation of HUVECs by Downregulating CHI3L1. TOHOKU J EXP MED 2025; 265:271-278. [PMID: 39505528 DOI: 10.1620/tjem.2024.j128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Angiogenesis is regarded as a critical factor in the pathogenesis of unstable atherosclerotic plaques, and numerous proteins and microRNAs (miRNAs) were involved in this process. In our previous study, the overexpression of Chitinase 3-like 1 (CHI3L1) aggravates the neo-vessels in carotid plaques of apoE-/- mice fed with a high-fat diet. MiR-24-3p is one of target miRNAs adjusting the expression of CHI3L1. Extracellular signal-regulated kinase (ERK) signaling pathway is an important regulator related to cell proliferation and pathophysiological process of CHI3L1. This study aims to investigate whether the miR-24-3p plays a role in migration and proliferation of human umbilical vein endothelial cells (HUVECs) through influencing the expression of CHI3L1 and potential molecular mechanism. CCK8 assay, transwell and matrigel tests were used to determine the effects of miR-24-3p on proliferation, migration and tube formation of HUVECs by targeting CHI3L1. Luciferase assay was carried out to value the direct interaction between miR-24-3p and CHI3L1 3'-untranslated region (3'-UTR). Western blot was used to measure protein expression of CHI3L1, ERK and phosphorylation of ERK (p-ERK). This study demonstrated that miR-24-3p mimic inhibits the proliferation, migration and angiogenesis of HUVECs. The role of miR-24-3p affects the function of HUVECs through negative regulation of CHI3L1 expression targeting CHI3L1 3'-UTR. Furthermore, we found that p-ERK was accordant with CHI3L1 expression in HUVECs, and miR-24-3p mimics significantly diminished the CHI3L1 expression and the level of p-ERK. MiR-24-3p is one of miRNAs regulating the expression and function of CHI3L1, which may provide an efficient strategy for treatment of angiogenesis in atherosclerotic plaques.
Collapse
Affiliation(s)
- Guanjun Wu
- Department of Cardiovascular Medicine, Heart Center, Zhejiang Provincial People's Hospital/People's Hospital of Hangzhou Medical College
| | - Lei Gao
- Graduate school, Bengbu Medical University
| | - Xin Zhang
- Department of Cardiovascular Medicine, Heart Center, Zhejiang Provincial People's Hospital/People's Hospital of Hangzhou Medical College
| | - Qi Xue
- Department of Cardiovascular Medicine, Heart Center, Zhejiang Provincial People's Hospital/People's Hospital of Hangzhou Medical College
| | - Lifang Ye
- Department of Cardiovascular Medicine, Heart Center, Zhejiang Provincial People's Hospital/People's Hospital of Hangzhou Medical College
| | - Yaru Zheng
- Department of Cardiovascular Medicine, Heart Center, Zhejiang Provincial People's Hospital/People's Hospital of Hangzhou Medical College
| | - Jianlei Zheng
- Department of Cardiovascular Medicine, Heart Center, Zhejiang Provincial People's Hospital/People's Hospital of Hangzhou Medical College
- Graduate school, Bengbu Medical University
- Department of Cardiology, The Seventh Affiliated Hospital, Sun Yat-sen University
| |
Collapse
|
5
|
Aryal A, Harmon AC, Noël A, Yu Q, Varner KJ, Dugas TR. AhR Activation at the Air-Blood Barrier Alters Systemic microRNA Release After Inhalation of Particulate Matter Containing Environmentally Persistent Free Radicals. Cardiovasc Toxicol 2025; 25:651-665. [PMID: 40214911 PMCID: PMC12018632 DOI: 10.1007/s12012-025-09989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
Particulate matter containing environmentally persistent free radicals (EPFRs) is formed when organic pollutants are incompletely burned and adsorb to the surface of particles containing redox-active metals. Our prior studies showed that in mice, EPFR inhalation impaired vascular relaxation in a dose- and endothelium-dependent manner. We also observed that activation of the aryl hydrocarbon receptor (AhR) in the alveolar type-II (AT-II) cells that form the air-blood interface stimulates the release of systemic factors that promote endothelial dysfunction in vessels peripheral to the lung. AhR is a recognized regulator of microRNA (miRNA) biogenesis, and miRNA control diverse signaling pathways. We thus hypothesized that systemic EPFR-induced vascular endothelial dysfunction is initiated via AhR activation in AT-II cells, resulting in a systemic release of miRNA. Using a combustion reactor, we generated EPFR of two free radical concentrations-EPFRlo (1016-17 radicals/g particles) and EPFR (1018-19 radicals/g)-and exposed mice by inhalation. EFPR inhalation resulted in changes in a distinct array of miRNA in the plasma, and these miRNAs are linked to multiple systemic effects, including cardiovascular diseases and dysregulation of cellular and molecular pathways associated with cardiovascular dysfunction. We identified 17 miRNA in plasma that were altered dependent upon both AhR activation in AT-II cells and ~ 280 ug/m3 EPFR exposure. Using Ingenuity Pathway Analysis, we found that 5 of these miRNAs have roles in modulating endothelin-1 and endothelial nitric oxide signaling, known regulators of endothelial function. Furthermore, EPFR exposure reduced the expression of lung adherens and gap junction proteins in control mice but not AT-II-AhR deficient mice, and reductions in barrier function may facilitate miRNA release from the lungs. In summary, our findings support that miRNA may be systemic mediators promoting endothelial dysfunction mediated via EPFR-induced AhR activation at the air-blood interface.
Collapse
Affiliation(s)
- Ankit Aryal
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Qingzhao Yu
- Biostatistics, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
6
|
Bayrak O, Alper M, Basbinar Y, Bayrak S. The role of thrombin in the paradoxical interplay of cancer metastasis and the vascular system: A driving dynamic. Biomed Pharmacother 2025; 186:118031. [PMID: 40215647 DOI: 10.1016/j.biopha.2025.118031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/25/2025] Open
Abstract
The coagulation system plays a complex role in cancer therapy. Endothelial damage and tissue factor increased by chemotherapy initiate the coagulation cascade, producing active FXa and releasing thrombin. Thrombin triggers tumor growth and metastasis, leading to severe thromboembolic events in cancer patients. Direct thrombin inhibitors do not have the expected anti-metastatic effect as PAR-2 remains active and increases the risk of bleeding. Therefore, dual inhibition of thrombin by FXa inhibition and plasmin inhibition, which converts fibrin to fibrinogen, is targeted. Clinical studies show that the use of tranexamic acid in patients on NOAC therapy may be beneficial without increasing the risk of bleeding. This approach offers a promising strategy to provide an anti-metastatic effect in cancer treatment.
Collapse
Affiliation(s)
- Ozge Bayrak
- Dokuz Eylul University, Institute of Health Sciences, Department of Oncology, Izmir, Turkey
| | - Meltem Alper
- Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Izmir, Turkey
| | - Yasemin Basbinar
- Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Izmir, Turkey
| | - Serdar Bayrak
- Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Izmir, Turkey; Dokuz Eylul University, Faculty of Medicine, Department of Cardiovascular Surgery, Izmir, Turkey.
| |
Collapse
|
7
|
Almasoudi SH, Al-Kuraishy HM, Al-Gareeb AI, Eliwa D, Alexiou A, Papadakis M, Batiha GES. Role of mitogen-activated protein kinase inhibitors in Alzheimer's disease: Rouge of brain kinases. Brain Res Bull 2025; 224:111296. [PMID: 40073950 DOI: 10.1016/j.brainresbull.2025.111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Alzheimer's disease (AD) is the chief cause of dementia and related mortality worldwide due to progressive accumulation of amyloid peptide (Aβ) and hyperphosphorylated tau protein. These neuropathological changes lead to cognitive impairment and memory dysfunction. Notably, most Food drug Administration (FDA) approved anti-AD medications such as tacrine and donepezil are engaged with symptomatic relief of cognitive impairment but do not reverse the underlying AD neuropathology. Therefore, searching for new anti-AD is advisable. It has been shown that the inflammatory signaling pathways such as mitogen-activated protein kinases (MAPK) are intricate with the Aβ and tau protein neuropathology in AD. In addition, inhibition of brain MAPK plays a critical role in mitigating cognitive dysfunction in early-onset AD. Though, the fundamental mechanisms for the beneficial effects of MAPK inhibitors were not fully explained. Therefore, this review aims to discuss the potential molecular mechanisms of MAPK inhibitors in AD.
Collapse
Affiliation(s)
- Suad Hamdan Almasoudi
- Department of Biology, College of Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department Of Clinical Pharmacology and Medicine, College Of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Head of Jabir ibn Hayyan Medical University, P.O.Box13 Kufa, Al-Ameer Qu, Najaf, Iraq.
| | - Duaa Eliwa
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia; AFNP Med, Wien 1030, Austria
| | - Marios Papadakis
- University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, Wuppertal 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt.
| |
Collapse
|
8
|
Nazir MM, Mustafa G, Saeed S, Ghaffar W, Ijaz MU, Ashraf A. Isorhapontigenin: exploring a promising resveratrol analog for disease management through diverse signaling pathways-a review with computational insights. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04176-x. [PMID: 40244453 DOI: 10.1007/s00210-025-04176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Plants are a meticulous source of biologically active substances that have positive health effects. Recent studies demonstrated the existence of Isorhapontigenin, a stilbene derivative, differs by its methoxylation pattern but shares a structure identical to resveratrol. Through a review of the literature and an in silico interpretation, the current review will be centered on the anti-inflammatory, anti-cancer, anti-obesity, and other medicinal properties of Isorhapontigenin. The Gnetum genus has species that have a very significant amount of Isorhapontigenin, such as Gnetum parvifolium. Tropical zones of Africa, Asia, and South America are home to the majority of the Gnetaceae family. Several investigations have reported the compound's benefits for health. Isorhapontigenin is very effective against anti-inflammatory, anticancer, antibacterial, antifungal, neuroprotective, antiviral, and antioxidant effects and could be a possible treatment drug. Using network pharmacology (ADME, Networking and Docking), the bioavailability of compound about disorders was examined. KeGG analysis and gene ontology (GO) demonstrated that Isorhapontigenin works via many immune system and cancer pathways. Human COX-1 receptor protein 6Y3C and receptor protein 1CX2 that had the best fit with the drug were used for docking analysis: Docking scores of - 8.2 and - 8.4 for Isorhapontigenin, respectively. In conclusion, Isorhapontigenin is a novel compound in the context of drug development.
Collapse
Affiliation(s)
| | - Ghanva Mustafa
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Saira Saeed
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Warisha Ghaffar
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan.
| |
Collapse
|
9
|
Duan G, Qi M, Xun L, An Y, Zuo Z, Luo Y, Song Z. Metformin Enhances the Chemosensitivity of Gastric Cancer to Cisplatin by Downregulating Nrf2 Level. Anal Cell Pathol (Amst) 2025; 2025:5714423. [PMID: 40264514 PMCID: PMC12014253 DOI: 10.1155/ancp/5714423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 04/24/2025] Open
Abstract
Cisplatin-based chemotherapy resistance is a common issue for cancer clinical efficacy. Metformin is being studied for its possible anticancer effect. The present study aimed to investigate whether metformin affects the chemosensitivity of gastric cancer to cisplatin and reveal the molecular mechanism. In this study, the effects of combination therapy with metformin and cisplatin on cell viability, cell apoptosis, malondialdehyde, superoxide dismutase, reactive oxygen species level, glucose uptake, lactate production, protein level, and xenograft tumor formation were analyzed in gastric cancer cells. Immunohistochemical staining was performed to detect Ki67 expression in matched tumor samples. The results showed that NCI-N87 and SNU-16 cells were most resistant and sensitive to cisplatin, respectively. Metformin treatment increased the cisplatin sensitivity of gastric cancer by inhibiting cell viability and metabolic reprogramming and promoting cell apoptosis and oxidative stress. Furthermore, overexpression of nuclear factor erythroid 2-related factor 2 (Nrf2) reversed the effects of metformin in the cisplatin sensitivity of gastric cancer by inhibiting cell viability and metabolic reprogramming and promoting cell apoptosis and oxidative stress. Metformin activated p53 and AMPK pathways in cisplatin-induced NCI-N87 cells, which were reversed by upregulating Nrf2. BAY-3827 (AMPK inhibitor) or p-nitro-Pifithrin-α (p53 inhibitor) treatments also reversed the effects of metformin increased the cisplatin sensitivity of gastric cancer by inhibiting cell viability and metabolic reprogramming and promoting cell apoptosis and oxidative stress. These results suggest that metformin significantly increases chemosensitivity of gastric cancer to cisplatin by inhibiting Nrf2 expression and metabolic reprogramming and activating oxidative stress and the pathway of p53 and AMPK.
Collapse
Affiliation(s)
- Guihua Duan
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Min Qi
- Department of Radiology, The Third People's Hospital of Kunming City, The Sixth Affiliated Hospital of Dali University, Kunming, Yunnan, China
| | - Linting Xun
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying An
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zan Zuo
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yusi Luo
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhengji Song
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
10
|
Liu J, Gao L, Du C, Duan T, Liu L. Transcriptomic Characterization of miRNAs in Pyrrhalta aenescens Fairmaire in Response to 20-Hydroxyecdysone Treatment. Genes (Basel) 2025; 16:435. [PMID: 40282395 PMCID: PMC12026910 DOI: 10.3390/genes16040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Pyrrhalta aenescens, a major pest of elm trees, causes extensive ecological and economic damage through rapid population growth and defoliation. Existing research mainly focuses on its biological traits and chemical control, with little knowledge about its reproductive development mechanisms, a key factor in population expansion. In other insects, the steroid hormone 20-hydroxyecdysone (20E) regulates development and reproduction via microRNA (miRNA)-mediated pathways, but this has not been studied in P. aenescens. This study aimed to systematically identify miRNAs responsive to 20E in P. aenescens and unravel their roles in regulating reproduction and metabolic pathways, providing foundational insights into hormone-miRNA crosstalk in this ecologically significant pest. METHODS Adult beetles (collected from Baotou, Inner Mongolia) were injected with 1.0 μg/μL 20E or control. Total RNA from three biological replicates (10 adults each) was sequenced, followed by miRNA identification, differential expression analysis, target prediction, and functional enrichment. RESULTS Small RNA sequencing identified 205 miRNAs (162 conserved, 43 novel), with 12 DEMs post-20E treatment. Target prediction linked these miRNAs to 7270 genes, including key regulators of the FoxO signaling pathway and MAPK signaling pathway. KEGG analysis highlighted lipid metabolism and stress response pathways. CONCLUSIONS This study revealed that 20E modulates miRNA networks to regulate FoxO and MAPK pathways in P. aenescens, suggesting hormonal control of lipid metabolism and developmental processes. As the first miRNA resource for this pest, our findings provide mechanistic insights into 20E-miRNA crosstalk and identify potential molecular targets for disrupting its reproductive biology, laying a foundation for eco-friendly pest control.
Collapse
Affiliation(s)
| | | | | | - Tianfeng Duan
- College of Ecology and Environment, Baotou Teachers’ College, Baotou 014030, China; (J.L.); (L.G.); (C.D.); (L.L.)
| | | |
Collapse
|
11
|
Li L, Zhang Z, Jia Z, Tang A, Li Q. The Role of microRNAs in Lidocaine-Induced Spinal Cord Neurotoxicity: An Exploration Based on Bioinformatics Analysis. DNA Cell Biol 2025; 44:186-196. [PMID: 40014404 DOI: 10.1089/dna.2024.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
This study investigated the impact of lidocaine-induced neurotoxicity on microRNA (miRNA) expression in the spinal cord of rats. Sprague-Dawley rats underwent intrathecal catheterization and were randomly assigned to receive either 10% lidocaine or normal saline for three consecutive days. Post-treatment, the paw withdrawal threshold significantly increased, accompanied by notable histopathological changes. Additionally, 470 miRNAs exhibited altered expression following lidocaine treatment, with miR-155-5p, miR-3544, and miR-675-5p showing significant changes. Gene Ontology analysis identified cellular metabolic processes as the most significantly enriched functions. Kyoto encyclopedia of genes and genomes pathway analysis revealed that the enriched signaling pathways are associated with neural injury and neuroprotection, and are involved in regulating cellular metabolism. The Mitogen-Activated Protein Kinase (MAPK) signaling pathway was notably enriched, with Mitogen-activated protein kinase kinase kinase 10 (Map3k10) and Mitogen-activated protein kinase kinase kinase 14 (Map3k14) identified as target genes of miR-155-5p. Following lidocaine treatment, there was an observed increase in the expression of MAP3K10 and MAP3K14 at both the mRNA and protein levels. These results indicate that miR-155-5p, miR-3544, and miR-675-5p might be significantly involved in lidocaine-induced neurotoxicity by influencing cellular metabolism. Furthermore, miR-155-5p/MAPK shows potential therapeutic value for treating lidocaine-induced neurotoxicity.
Collapse
Affiliation(s)
- Longyan Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhong Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengwen Jia
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Aimeng Tang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Tu SN, Hu F, Zhang J, Cai H, Yang J. Research progress on the signaling pathway mechanism of terpenoids against breast cancer. Discov Oncol 2025; 16:433. [PMID: 40163255 PMCID: PMC11958888 DOI: 10.1007/s12672-025-01881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/03/2025] [Indexed: 04/02/2025] Open
Abstract
Breast cancer is the most common malignant tumor in women worldwide. Current treatments include chemotherapy, hormone therapy, radiotherapy and surgery. Terpenoids have great anti-cancer potential due to their anti-inflammatory, antioxidant, anti-tumor, antiviral and other biological activities. They have become the central drug for the prevention and treatment of breast cancer. However, their low bioavailability and stability are urgent issues that need to be addressed. This article aims to sort out the mechanism of action of terpenoids in the treatment of breast cancer. By reviewing different signal transduction pathways, it is hoped that new ideas for the joint action of multiple pathways and multiple targets will be provided, and a theoretical basis will be provided for improving basic research and clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Sheng-Nan Tu
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, 063210, China
| | - Fen Hu
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Juan Zhang
- Second Department of Mammary Gland, Tangshan People's Hospital, Tangshan, 063000, China
| | - Haifeng Cai
- Second Department of Mammary Gland, Tangshan People's Hospital, Tangshan, 063000, China.
| | - Junquan Yang
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, 063210, China.
| |
Collapse
|
13
|
Ouyang Y, Cao L, Zhao Q, Yang W, Lin C. Biodegradable Mg-1%Ca alloy inhibits the growth of cervical cancer. Biomed Mater 2025; 20:035002. [PMID: 39908673 DOI: 10.1088/1748-605x/adb2cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
The traditional treatment for cervical cancer involves aggressive surgery combined with radiotherapy and chemotherapy. Nevertheless, these treatments have certain limitations and side effects, thus breakthroughs and advances are required in cervical cancer therapy. Magnesium alloy is a promising antitumor biomaterial with excellent biocompatibility and biodegradability. However, the potential effects of magnesium alloy on cervical tumors have not been extensively explored. Recent studies have demonstrated that adding a small amount of calcium to the magnesium matrix can reduce grain size and corrosion rate while providing good biocompatibility. We conductedin vivoandin vitroexperiments to test the antitumor properties of Mg-1%Ca alloys. The results indicated that the Mg-1%Ca alloy released Mg2+and OH-more slowly, inhibited the proliferation of SiHa and HeLa cells, induced apoptosis in tumor cells, disrupted the cytoskeleton, and inhibited cell migration and invasion. At the molecular level, Mg-1%Ca alloy significantly activated the mitochondrial apoptosis pathway and inhibited the MAPK/ERK signaling pathway. In the future, Mg-1%Ca may be employed in the treatment of cervical cancer as a novel adjuvant therapeutic material with anticancer function to prevent the occurrence and progression of cancer proliferation and metastasis.
Collapse
Affiliation(s)
- Yunshan Ouyang
- Department of Pathology, School of Basic Medical Sciences
- Key Laboratory of Molecular Biology of Endemic Diseases, Xinjiang Medical University, Urumqi 830017, People's Republic of China
| | - Lingling Cao
- Department of Pathology, School of Basic Medical Sciences
- Key Laboratory of Molecular Biology of Endemic Diseases, Xinjiang Medical University, Urumqi 830017, People's Republic of China
| | - Qian Zhao
- Department of Pathology, School of Basic Medical Sciences
- Key Laboratory of Molecular Biology of Endemic Diseases, Xinjiang Medical University, Urumqi 830017, People's Republic of China
| | - Wang Yang
- Department of Pathology, School of Basic Medical Sciences
- Key Laboratory of Molecular Biology of Endemic Diseases, Xinjiang Medical University, Urumqi 830017, People's Republic of China
| | - Chen Lin
- Department of Pathology, School of Basic Medical Sciences
| |
Collapse
|
14
|
Wang X, Liu R, Liu D. The Role of the MAPK Signaling Pathway in Cardiovascular Disease: Pathophysiological Mechanisms and Clinical Therapy. Int J Mol Sci 2025; 26:2667. [PMID: 40141309 PMCID: PMC11942496 DOI: 10.3390/ijms26062667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Cardiovascular disease (CVD) is a serious global health issue with high mortality rates worldwide. Despite the numerous advancements in the study of CVD pathogenesis in recent years, further summarization and elaboration of specific molecular pathways are required. An extensive body of research has been conducted to elucidate the association between the MAPK signaling pathway, which is present in all eukaryotic organisms, and the pathogenesis of cardiovascular disease. This review aims to provide a comprehensive summary of the research conducted on MAPK and CVD over the past five years. The primary focus is on four specific diseases: heart failure, atherosclerosis, myocardial ischemia-reperfusion injury, and cardiac hypertrophy. The review will also address the pathophysiological mechanisms of MAPK in cardiovascular diseases, with the objective of proposing novel clinical treatment strategies for CVD.
Collapse
Affiliation(s)
- Xueyang Wang
- Queen Mary College, Nanchang University, Nanchang 330001, China; (X.W.); (R.L.)
| | - Ruiqi Liu
- Queen Mary College, Nanchang University, Nanchang 330001, China; (X.W.); (R.L.)
| | - Dan Liu
- Queen Mary College, Nanchang University, Nanchang 330001, China; (X.W.); (R.L.)
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
15
|
Zhou L, Zhang J, Zhao K, Chen B, Sun Z. Natural products modulating MAPK for CRC treatment: a promising strategy. Front Pharmacol 2025; 16:1514486. [PMID: 40110122 PMCID: PMC11919913 DOI: 10.3389/fphar.2025.1514486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive system, and the pathogenic mechanism is still unclear, mostly related to genetics, immunity, inflammation, and abnormal activation of tumor-related signaling pathways. MAPK belongs to the Ser/Thr kinase family, which plays an important role in complex cellular programs such as the regulation of cell proliferation, differentiation, apoptosis, angiogenesis, and tumor metastasis. Increasing evidence supports that MAPK activation is highly correlated with the risk of CRC. Targeting MAPK may be a therapeutic strategy, and natural products show great therapeutic potential in regulating MAPK-related proteins. In this paper, we searched PubMed, Web of Science and CNKI databases with keywords "colorectal cancer, natural products, MAPK pathway, ERK, P38, JNK" for relevant studies in the last 14 years from 2010 to 2024. This work retrieved 47 studies, aiming to provide new therapeutic strategies for CRC patients and lay the foundation for new drug development.
Collapse
Affiliation(s)
- Lin Zhou
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Jinlong Zhang
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Kangning Zhao
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Bo Chen
- Department of Gastroenterology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen Sun
- The Second Gastroenterology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
Liu X, Geng S, Ye D, Xu W, Zheng Y, Wang F, Lei J, Wu Y, Jiang H, Hu Y, Chen D, Yan T, Guo R, Qiu J. Global discovery, expression pattern, and regulatory role of miRNA-like RNAs in Ascosphaera apis infecting the Asian honeybee larvae. Front Microbiol 2025; 16:1551625. [PMID: 40104596 PMCID: PMC11914139 DOI: 10.3389/fmicb.2025.1551625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
Ascosphaera apis, a specialized fungal pathogen, causes lethal infection in honeybee larvae. miRNA-like small RNAs (milRNAs) are fungal small non-coding RNAs similar to miRNAs, which have been shown to regulate fungal hyphal growth, spore formation, and pathogenesis. Based on the transcriptome data, differentially expressed miRNA-like RNAs (DEmilRNAs) in A. apis infecting the Apis cerana cerana worker 4-, 5-, and 6-day-old larvae (Aa-4, Aa-5, and Aa-6) were screened and subjected to trend analysis, followed by target prediction and annotation as well as investigation of regulatory networks, with a focus on sub-networks relative to MAPK signaling pathway, glycerolipid metabolism, superoxide dismutase, and enzymes related to chitin synthesis and degradation. A total of 606 milRNAs, with a length distribution ranging from 18 nt to 25 nt, were identified. The first nucleotide of these milRNAs presented a bias toward U, and the bias patterns across bases of milRNAs were similar in the aforementioned three groups. There were 253 milRNAs, of which 68 up-and 54 down-regulated milRNAs shared by these groups. Additionally, the expression and sequences of three milRNAs were validated by stem-loop RT-PCR and Sanger sequencing. Trend analysis indicated that 79 DEmilRNAs were classified into three significant profiles (Profile4, Profile6, and Profile7). Target mRNAs of DEmilRNAs in these three significant profiles were engaged in 42 GO terms such as localization, antioxidant activity, and nucleoid. These targets were also involved in 120 KEGG pathways including lysine biosynthesis, pyruvate metabolism, and biosynthesis of antibiotics. Further investigation suggested that DEmilRNA-targeted mRNAs were associated with the MAPK signaling pathway, glycerolipid metabolism, superoxide dismutase, and enzymes related to chitin synthesis and degradation. Moreover, the binding relationships between aap-milR10516-x and ChsD as well as between aap-milR-2478-y and mkh1 were confirmed utilizing a combination of dual-luciferase reporter gene assay and RT-qPCR. Our data not only provide new insights into the A. apis proliferation and invasion, but also lay a basis for illustrating the DEmilRNA-modulated mechanisms underlying the A. apis infection.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sihai Geng
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Daoyou Ye
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhua Xu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yidi Zheng
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fangji Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianpeng Lei
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Wu
- Apiculture Science Institute of Jilin Province, Jiling, China
| | - Haibin Jiang
- Apiculture Science Institute of Jilin Province, Jiling, China
| | - Ying Hu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Tizhen Yan
- Dongguan Maternal and Children Health Hospital, Dongguan, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Jianfeng Qiu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| |
Collapse
|
17
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2025; 45:349-425. [PMID: 39185567 PMCID: PMC11796338 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic ScienceHigher Education Institute of Rab‐RashidTabrizIran
- Tuberculosis and Lung Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad Amini
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
| | | | | | | |
Collapse
|
18
|
Wu L, Yu M, Liang H, Lin L, Li H, Chen G, Muhetaer H, Li J, Wu B, Jia X, Dang Y, Zheng G, Li C. SJB2-043, a USP1 Inhibitor, Suppresses A549 Cell Proliferation, Migration, and EMT via Modulation of PI3K/AKT/mTOR, MAPK, and Wnt Signaling Pathways. Curr Issues Mol Biol 2025; 47:155. [PMID: 40136409 PMCID: PMC11941171 DOI: 10.3390/cimb47030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
OBJECTIVE Non-small cell lung cancer (NSCLC) remains one of the most significant contributors to cancer-related mortality. This investigation explores the influence and underlying mechanisms of the USP1 inhibitor SJB2-043 on A549 cells, with the aim of advancing the development of anti-NSCLC therapeutics. METHODS Publicly available databases were utilized to assess USP1 expression and its association with the progression of NSCLC. Gene expression variations were ascertained through RNA sequencing, followed by the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathway enrichment evaluations. Various doses of SJB2-043 were administered to A549 cells to evaluate its impact on cell multiplication, motility, apoptosis, and the cell cycle using CCK-8 assays, colony formation, wound healing, flow cytometry, and Western blotting (WB). RESULTS USP1 was found to be overexpressed in NSCLC specimens and linked to adverse prognosis. Treatment with SJB2-043 markedly inhibited A549 cell proliferation and migration, diminished clonogenic potential, and triggered apoptosis in a dose-dependent manner. Modifications in the cell cycle were observed, showing an elevated percentage of cells in the G2 phase while exhibiting a parallel decline in the G1 phase. WB examination demonstrated diminished protein levels of N-cadherin, CyclinB1, CDK1, C-myc, Bcl-2, p-ERK/ERK, p-p38/p38, p-JNK/JNK, p-AKT/AKT, and p-mTOR/mTOR, alongside an upregulation of E-cadherin, ZO-1, occludin, p53, Bax, p-β-catenin/β-catenin, and GSK3β. CONCLUSIONS SJB2-043 exerts a suppressive effect on A549 cell proliferation, migration, and epithelial-mesenchymal transition while enhancing apoptosis. These cellular effects appear to be mediated through the inhibition of the MAPK, Wnt/β-catenin, and PI3K/AKT/mTOR signaling cascades, in addition to modulation of the cell cycle.
Collapse
Affiliation(s)
- Lipeng Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Meng Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Huosheng Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Long Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Huajian Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Guangyang Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Halimulati Muhetaer
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Bo Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Xuejing Jia
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuanye Dang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Guodong Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Chuwen Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| |
Collapse
|
19
|
Liu S, Li H, Xi S, Zhang Y, Sun T. Advancing CNS Therapeutics: Enhancing Neurological Disorders with Nanoparticle-Based Gene and Enzyme Replacement Therapies. Int J Nanomedicine 2025; 20:1443-1490. [PMID: 39925682 PMCID: PMC11806685 DOI: 10.2147/ijn.s457393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/12/2024] [Indexed: 02/11/2025] Open
Abstract
Given the complexity of the central nervous system (CNS) and the diversity of neurological conditions, the increasing prevalence of neurological disorders poses a significant challenge to modern medicine. These disorders, ranging from neurodegenerative diseases to psychiatric conditions, not only impact individuals but also place a substantial burden on healthcare systems and society. A major obstacle in treating these conditions is the blood-brain barrier (BBB), which restricts the passage of therapeutic agents to the brain. Nanotechnology, particularly the use of nanoparticles (NPs), offers a promising solution to this challenge. NPs possess unique properties such as small size, large surface area, and modifiable surface characteristics, enabling them to cross the BBB and deliver drugs directly to the affected brain regions. This review focuses on the application of NPs in gene therapy and enzyme replacement therapy (ERT) for neurological disorders. Gene therapy involves altering or manipulating gene expression and can be enhanced by NPs designed to carry various genetic materials. Similarly, NPs can improve the efficacy of ERT for lysosomal storage disorders (LSDs) by facilitating enzyme delivery to the brain, overcoming issues like immunogenicity and instability. Taken together, this review explores the potential of NPs in revolutionizing treatment options for neurological disorders, highlighting their advantages and the future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Shuhan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Haisong Li
- Department of Neurosurgery, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Shiwen Xi
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
- International Center of Future Science, Jilin University, Changchun, People’s Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
20
|
Wang Q, Wang XY, Tao J, Nie JT, Zhou YH, Huang J, Zhao JY, Wang YN. Exploring the potential anticancer targets and mechanistic pathways of Elsholtzia densa essential oil based on network pharmacology. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-20. [PMID: 39791924 DOI: 10.1080/10286020.2024.2446294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
This study aimed to assess the composition of Elsholtzia densa essential oil (EBE) and identify potential targets for inhibiting human hepatocellular carcinoma cell proliferation. The plants were collected from four regions: Jiuzhi, Qinghai; Ruoergai, Sichuan; Aba, Sichuan; and Jiulong, Sichuan. Four EBEs (named No. 1 to No. 4) were analyzed by gas chromatograph-mass spectrometer. EBEs significantly inhibited human hepatocellular carcinoma cells. The EBE collected from Jiuzhi exhibited the most potent inhibitory effect. Core targets identified included MAPK3, EGFR, ESR1, CASP3, PTGS2, BCL2L1, and MAPK14. Notably, the four EBEs prevented hepatocellular carcinoma cell proliferation via neuroactive ligand-receptor interactions and apoptosis pathways.
Collapse
Affiliation(s)
- Qian Wang
- School of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Xiao-Ying Wang
- School of Medical Technology, Suzhou Vocational Health College, Suzhou 215009, China
| | - Jin Tao
- School of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Jin-Tao Nie
- School of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Yi-Han Zhou
- School of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Jing Huang
- School of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Jia-Yuan Zhao
- School of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Ya-Nan Wang
- School of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| |
Collapse
|
21
|
Song W, Zhang H, Ni J, Hu H, Mao W, Wang K, Peng B. ALKBH5 promotes malignant proliferation of renal clear cell carcinoma by activating the MAPK pathway through binding to HNRNPDL. Int Immunopharmacol 2025; 145:113776. [PMID: 39657539 DOI: 10.1016/j.intimp.2024.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/23/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
It is well established that ALKBH5 plays a crucial role in the malignant progression of various types of tumors. However, its role in clear cell renal cell carcinoma (ccRCC) and the underlying regulatory mechanisms remain unclear. In this study, we employed a range of techniques, including protein blotting, real-time quantitative PCR, silver staining, mass spectrometry, co-immunoprecipitation (Co-IP), GST-pull down, and immunofluorescence, to investigate the functions of ALKBH5 in ccRCC and elucidate the specific mechanisms involved. Our results demonstrated that ALKBH5 expression was significantly upregulated in ccRCC. In vitro experiments revealed that ALKBH5 promoted tumor proliferation, invasion, migration, and stemness. In vivo, ALKBH5 was shown to enhance tumor growth and lung metastasis. Mechanistically, our studies suggest that ALKBH5 accelerates the malignant progression of ccRCC by binding to heterogeneous nuclear ribonucleoprotein D-like (HNRNPDL), facilitating the nuclear translocation of MEK, ERK, and p38, and activating downstream targets such as c-Myc and PCNA.
Collapse
Affiliation(s)
- Wei Song
- Department of Urology, Shanghai Putuo District People's Hospital, School of Medicine, Tongji University, 1291 Jiangning Road, Pu'tuo District, Shanghai 200060, China; Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301, Yanchang Middle Road, 200072 Shanghai, China
| | - Houliang Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Hunan Road, Gulou District, Nanjing 210009, China
| | - Jinliang Ni
- Department of Urology, Shanghai Putuo District People's Hospital, School of Medicine, Tongji University, 1291 Jiangning Road, Pu'tuo District, Shanghai 200060, China; Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301, Yanchang Middle Road, 200072 Shanghai, China
| | - Huiqing Hu
- Department of Ultrasound, The Sixth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200240, China
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Hunan Road, Gulou District, Nanjing 210009, China.
| | - Keyi Wang
- Department of Urology, Zhongshan Hospital, School of Medicine, Fudan University, Shanghai 200032, China.
| | - Bo Peng
- Department of Urology, Shanghai Putuo District People's Hospital, School of Medicine, Tongji University, 1291 Jiangning Road, Pu'tuo District, Shanghai 200060, China; Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301, Yanchang Middle Road, 200072 Shanghai, China.
| |
Collapse
|
22
|
Zhang H, Guo R, Li Z, Ma R, Xu S, Yin L, Zhu H, Huang Z, Xing C, Yang Y, Pu Y, Cheng Z, Liu J, Peng H, Sheng Y. MSI2 mediates WNT/β-Catenin pathway function in hematopoietic stem cells. Leukemia 2025; 39:265-270. [PMID: 39438589 DOI: 10.1038/s41375-024-02447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Affiliation(s)
- Huifang Zhang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China.
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China.
| | - Ruixue Guo
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Zhenfen Li
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Rui Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Shina Xu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Le Yin
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Hongkai Zhu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Zineng Huang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Yunlong Yang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Yulin Pu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Jing Liu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China.
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China.
| | - Yue Sheng
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China.
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China.
| |
Collapse
|
23
|
Ming X, Lu Y, Huang H, Zheng J, Wang T, Li Z, Yu X, Xiong L. Xuanhong Dingchuan Tang suppresses bronchial asthma inflammation via the microRNA-107-3p/PTGS2/MAPK axis. Funct Integr Genomics 2024; 25:1. [PMID: 39704779 DOI: 10.1007/s10142-024-01506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
This study aimed to investigate the mechanism of Xuanhong Dingchuan Tang (XHDCT) in delaying bronchial asthma inflammation via the microRNA (miR)-107-3p/prostaglandin endoperoxide synthase 2 (PTGS2)/mitogen-activated protein kinase (MAPK) axis. Based on the network pharmacological analysis, XHDCT chemical constituents and targets of each chemical constituent were screened through the TCMSP database, and differential-expressed genes of bronchial asthma were obtained from the GEO database, which were intersected to get XHDCT potential anti-inflammatory targets. The key anti-inflammatory targets of XHDCT were acquired by protein-protein interaction (PPI) analysis of the candidate targets. Bronchial asthma mouse models were established and the pathological changes of lung tissues were observed. Serum IgE levels were tested. Total cells and eosinophils in bronchoalveolar lavage fluid (BALF) were counted. The expression of Th2-associated cytokines (interleukin (IL)-4, IL-5, and IL-13) and chemokines (monocyte chemoattractant protein-1 (MCP-1) and eotaxin) in BALF were measured. The targeting relationship between miR-107-3p and PTGS2 was tested. XHDCT delayed bronchial asthma inflammation in in-vivo asthma mouse models. A total of 155 active ingredients and their 341 targets were intersected with bronchial asthma-relevant genes, obtaining 20 potential targets of XHDCT for bronchial asthma treatment. Based on the PPI and "drug-component-target" network diagram, PTGS2 was found to be in a central position. PTGS2 was downregulated and miR-107-3p was upregulated in bronchial asthma mice after XHDCT treatment. PTGS2 overexpression activated the MAPK signaling pathway to promote inflammation in bronchial asthma mice, whereas inflammatory symptoms were reduced and the MAPK signaling pathway was inhibited after XHDCT treatment. miR-107-3p was an upstream regulatory miRNA for PTGS2. After miR-107-3p interference, the activation of the PTGS2/MAPK axis promoted inflammation in bronchial asthma mice, whereas the inflammatory symptoms were reduced after XHDCT treatment. XHDCT promotes anti-inflammatory effects in bronchial asthma via the miR-107-3p/PTGS2/MAPK axis.
Collapse
Affiliation(s)
- Xi Ming
- Department of Pediatrics and Department of Integrative Medicine on Pediatric, The First Hospital Affiliated Yunnan University of Chinese Medicine, 120 Guanghua Road, Kunming, Yunnan, 650021, China.
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China.
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China.
| | - Yingzhu Lu
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Huihui Huang
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Jialin Zheng
- Department of Pediatrics and Department of Integrative Medicine on Pediatric, The First Hospital Affiliated Yunnan University of Chinese Medicine, 120 Guanghua Road, Kunming, Yunnan, 650021, China
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Tianzi Wang
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Zhuoqun Li
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Xingzhu Yu
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Lei Xiong
- Department of Pediatrics and Department of Integrative Medicine on Pediatric, The First Hospital Affiliated Yunnan University of Chinese Medicine, 120 Guanghua Road, Kunming, Yunnan, 650021, China.
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China.
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China.
| |
Collapse
|
24
|
Ma CY, Yu AC, Sheng XH, Wang XG, Xing K, Xiao LF, Lv XZ, Guo Y, Long C, Qi XL. Supplementing ageing male laying breeders with lycopene alleviates oxidative stress in testis and improves testosterone secretion. Theriogenology 2024; 230:220-232. [PMID: 39341034 DOI: 10.1016/j.theriogenology.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Reproductive performance is a crucial aspect of poultry production and is carefully controlled by endocrine, paracrine, and autocrine factors. This study aimed to investigate the effect of lycopene on testosterone synthesis in Leydig cells of laying breeder roosters, clarify the mechanism of lycopene improving Leydig cells function and promoting testosterone production, and explore the role of related signal transduction pathways in testosterone synthesis. RESULTS A total of 96 healthy 55-week-old breeding roosters were randomly assigned to one of five dietary treatments. They were provided with a corn-soybean meal-based diet containing different levels of lycopene: 0 mg/kg (control), 50 mg/kg, 100 mg/kg, or 200 mg/kg. The experiment lasted for 6 weeks. With the increase in lycopene levels, the testosterone content in the plasma was significantly higher than in the control group. Testicular Leydig cells were isolated and cultured from fresh testicular tissue of 45-wk-old to 60-wk-old breeding roosters. Various doses of lycopene were administered to Leydig cells, and subsequently, cells were collected for the detection of cell viability and testosterone content. The optimal concentration of lycopene to be added was determined, and changes in mRNA expression and protein levels of key proteins involved in testosterone synthesis were investigated. The results showed that lycopene treatment significantly increased testosterone secretion, mRNA expression, and protein levels of steroid-producing enzymes. Cells were collected to measure the activity of antioxidant enzymes, the mRNA transcription level of apoptotic factors, and the protein expression of apoptotic factors after treatment with lycopene. The results showed that lycopene significantly increased the activities of antioxidant enzymes, and the ability to inhibit oxygen radicals, and decreased the content of malondialdehyde. Apoptosis was inhibited by regulating the expression of apoptosis-inducing and anti-apoptosis factors. After that, the MAPK signaling pathway and downstream SF-1, Nrf2 gene, and protein expression levels were detected. The results showed that lycopene treatment significantly increased the gene and protein expression of JNK, SF-1, and Nrf2, and significantly decreased the gene and protein expression of p38. CONCLUSIONS Lycopene treatment could promote testosterone synthesis of testicular Leydig cells by activating MAPK-SF-1 (increasing steroid-producing enzyme level) and MAPK-Nrf2 pathways (resisting oxidative damage).
Collapse
Affiliation(s)
- Chun-Yu Ma
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Ao-Chuan Yu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xi-Hui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiang-Guo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Long-Fei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xue-Ze Lv
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing, 100107, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Xiao-Long Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
25
|
Lv Z, Du Y, Zhang H, Fang H, Guo Y, Zeng L, Chen Y, Li D, Li R. Inhibition of JNK/STAT3/NF-KB pathway-mediated migration and clonal formation of lung adenocarcinoma A549 cells by daphnetin. Cell Adh Migr 2024; 18:27-37. [PMID: 39469948 PMCID: PMC11540088 DOI: 10.1080/19336918.2024.2418049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/28/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Daphnetin, a coumarin derivative isolated from Daphne odorifera, has anti-tumor effects. The MAPK, STAT3, and NF-κB signaling pathways are closely related to the pathogenesis of lung cancer. To investigate the effect of daphnetin on anti-lung adenocarcinoma A549 cells and its mechanism. The anti-tumor effects of daphnetin on the proliferation, clone formation, migration, and invasion of A549 lung adenocarcinoma cells were investigated. The results showed that daphnetin inhibited the proliferation, colony formation, migration, and invasion of A549 cells through the MAPK/STAT3/NF-KB pathway, and mainly inhibited the clonal formation and migration of A549 cells through the JNK pathway. These results provide a new research direction and theoretical basis for the use of daphnetin in the inhibition of lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhe Lv
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yuna Du
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Huiqing Zhang
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Hui Fang
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yujie Guo
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Lifeng Zeng
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yiguo Chen
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Dan Li
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Rong Li
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
26
|
Lv Y, Yuan Y, Zhong X, Yu Q, Lu X, Qu B, Zhao H. Exploration and practice of potential association prediction between diseases and drugs based on Swanson framework and bioinformatics. Sci Rep 2024; 14:29643. [PMID: 39609506 PMCID: PMC11604654 DOI: 10.1038/s41598-024-79587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Compared to traditional intermediate concepts, specific bioinformatics entities are more informative and higher directional. This study is based on the BITOLA system and combines bioinformatics methods to determine the intermediate concept which is key to improve efficiency of Literature-based Knowledge Discovery, proposes the concept of "Swanson framework + Bioinformatics", and conducts practice of Literature-based Knowledge Discovery to improve the scientificity and efficiency of research and development. Firstly, detected the disease related genes (i.e. differentially expressed genes) according to the results of gene functional analysis as intermediate concepts to carry out Literature-based Knowledge Discovery. Taking the disease "Autism Spectrum Disorder (ASD)" as an example, the potential "disease-drug" association was predicted, and the predicted drugs were verified from the perspective of bioinformatics. Two drugs potentially associated with ASD were found: Fish oil and Forskolin, which were closely related to ASD in bioinformatics analysis results and literature verification. The two "disease-drug" association results showed better scientificity. The BIOINF-ABC+ model improves the accuracy of calculations by 76% compared to using the BITOLA system alone. In addition, it also shows high accuracy and credibility in literature verification. The BIOINF-ABC+ model based on the "Swanson framework + Bioinformatics" has good practicality, applicability, and accuracy in conducting "disease-drug" association prediction in the biomedical field, and can be used for mining "disease-drug" relationships.
Collapse
Affiliation(s)
- Yanhua Lv
- Shanxi Medical University, Jinzhong, China.
| | | | | | - Qi Yu
- Shanxi Medical University, Jinzhong, China.
| | - Xuechun Lu
- Second Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Baoqiang Qu
- Institute of Scientific and Technical Information of China, Beijing, China
| | | |
Collapse
|
27
|
Zhong C, Chen D, Gong D, Sheng X, Lin Y, Li R, Li Y. Transcriptomic response of overexpression ZNF32 in breast cancer cells. Sci Rep 2024; 14:28407. [PMID: 39557972 PMCID: PMC11574142 DOI: 10.1038/s41598-024-80125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Breast cancer is one of the deadliest malignancies in women worldwide. Zinc finger protein 32 (ZNF32) has been reported to be involved in autophagy and stem cell like properties of breast cancer cells. However, the effects, mechanisms, target genes and pathways of ZNF32 in breast cancer development have not been fully explored. In this study, stable ZNF32 overexpression breast cancer cell line was generated, and we used RNA-seq and RT-qPCR to quantify and verify the changes in transcription levels in breast cancer cells under ZNF32 overexpression. Transcriptome analysis showed that high expression of ZNF32 is accompanied by changes in downstream focal adhesion, ECM-receptor interaction, PI3K-AKT, HIPPO and TNF signaling pathways, which are critical for the occurrence and development of cancer. Multiple differentially expressed genes (DEGs) were significantly involved in cell proliferation, adhesion and migration, including 11 DEGs such as CA9, CRLF1 and ENPP2P with fundamental change of regulation modes. All the 11 DEGs were validated by RT-qPCR, and 9 of them contained potential transcriptional binding sequences of ZNF32 in their promoter region. This study provides a holistic perspective on the role and molecular mechanism of ZNF32 in breast cancer progression.
Collapse
Affiliation(s)
- Chaosong Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Dingshuang Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Di Gong
- School of Basic Medical Science, Chengdu University, Chengdu, China
| | - Xueqing Sheng
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Ruiwen Li
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
28
|
Shen X, Xu S, Zheng Z, Liang W, Guo J. The regulatory role of tRNA-derived small RNAs in the prognosis of gastric cancer. Cell Signal 2024; 125:111511. [PMID: 39551416 DOI: 10.1016/j.cellsig.2024.111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
In recent years, tRNA-derived small RNAs (tsRNAs) including tRNA-derived stress-induced RNAs (tiRNAs) and tRNA-derived fragments (tRFs), with specific structure and enriched in body fluids, have been found to have specific biological functions. In this paper, the biogenesis, classification, subcellular localization, and biological functions of tsRNAs were summarized. It has been proved that tsRNAs affected tumor cells in proliferation, apoptosis, migration and invasion, and played roles in regulating the occurrence and development of various tumors. In gastric cancer (GC), the imbalance of tsRNAs, such as tRF-33-P4R8YP9LON4VDP, tRF-17-WS7K092, tRF-23-Q99P9P9NDD and others, was closely related to the clinicopathological characteristics of GC patients. Some tsRNAs, such as tRF-23-Q99P9P9NDD, tRF-31-U5YKFN8DYDZDD, and tRF-27-FDXXE6XRK45 promoted the proliferation, migration and invasion of GC cells. Other tsRNAs, such as tRF-41-YDLBRY73W0K5KKOVD, tRF-18-79MP9PO4, and tRF-Glu-TTC-027 inhibited the proliferation, migration and invasion of GC cells. The tsRNAs played roles in the occurrence of GC were through several signaling pathways, such as phosphoinositide 3-kinase (PI3K)-AKT serine/threonine kinase (AKT), Wnt-β-Catenin, and mitogen-activated protein kinase (MAPK) pathways. These findings may provide new strategies for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Xiaoban Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Shiyi Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zhinuo Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Wei Liang
- Department of Laboratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315211, China.
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
29
|
Wang X, Zhu J, Li L, Zhao Q, Huang Y, Wen C, Chen D, Wu L. Utility of patient-derived xenografts to evaluate drug sensitivity and select optimal treatments for individual non-small-cell lung cancer patients. Mol Med 2024; 30:209. [PMID: 39528952 PMCID: PMC11556205 DOI: 10.1186/s10020-024-00934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/11/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) is currently considered a preferred preclinical model to evaluate drug sensitivity, explore drug resistance mechanisms, and select individualized treatment regimens. METHODS Histopathological examination, immunohistochemistry and whole-exome sequencing confirmed similarity between our PDX tumors and primary tumors in terms of morphology and genetic characteristics. The drug reactivity of the PDX tumor was validated in vivo. The mechanisms of acquired resistance to Osimertinib PDX tumors were investigated by WES and WB. RESULTS We successfully established 13 NSCLC-PDXs derived from 62 patients, including eight adenocarcinomas, four squamous-cell carcinoma, and one large-cell neuroendocrine carcinoma. Histological subtype and clinical stage were significant factors affecting the successful PDXs establishment. The treatment responses to conventional chemotherapy in PDXs were entirely consistent with that of their corresponding patients. According to the genetic status of tumors, more appropriate targeted agents were selected in PDXs for their corresponding patients as alternative treatment options. In addition, a PDX model with acquired resistance to osimertinib was induced, and the overactivation of RAS mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) signaling pathway caused by the dual-specificity phosphatase 6 (DUSP6) M62I mutation was found to play a key role in the development of osimertinib resistance. Trametinib, a specific inhibitor of the MAPK-ERK pathway significantly slowed down the tumor growth in osimertinib-resistant PDX models, providing an alternative treatment in patients after osimertinib failure.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Ju Zhu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lingling Li
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Qilin Zhao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yutang Huang
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Chunjie Wen
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Dan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Lanxiang Wu
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
30
|
Zheng B, Li M, Lan E, Ding W, Gao L, Tang Y, Wu X, Zhang B, Zhang Y, Zhu X, Zhang H. GSK3179106 ameliorates lipopolysaccharide-induced inflammation and acute lung injury by targeting P38 MAPK. Respir Res 2024; 25:388. [PMID: 39468539 PMCID: PMC11520791 DOI: 10.1186/s12931-024-03012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Acute lung injury (ALI) is a serious acute respiratory disease that can cause alveolar-capillary barrier disruption and pulmonary edema, respiratory failure and multiple organ dysfunction syndrome. However, there is no effective drugs in clinic until now. GSK3179106 has been reported can alleviate intestinal stress syndrome, but the protective effect of GSK3179106 on ALI has not been elucidated. The present study will evaluate the pharmacological activity of GSK3179106 on lipopolysaccharide (LPS)-induced inflammation and lung injury and clarify its underlying mechanism. We found that GSK3179106 significantly attenuated LPS-induced lung injury in vivo, accompanied by inhibited infiltration of inflammatory cells and reduced expression of inflammatory cytokines. Meanwhile, GSK3179106 dose-dependently reduced the LPS-induced IL-6 expression both in protein and gene levels in macrophages. Mechanistically, GSK3179106 could inhibited the phosphorylation of P38 MAPK induced by LPS. Importantly, results showed that there is a direct combination between GSK3179106 and P38 MAPK. Together, our findings not only clarified the anti-inflammatory activity of GSK3179106 but also discovered its new clinical indications. Therefore, compound GSK3179106 may be a potential candidate for the treatment of acute inflammatory diseases.
Collapse
Affiliation(s)
- Bin Zheng
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengying Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Enhong Lan
- The Second People's Hospital of Pingyang County, Pingyang, Zhejiang, China
| | - Wenting Ding
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiao Gao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyi Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bing Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yali Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiaona Zhu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Hui Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
31
|
Chen L, Chen WD, Xu YX, Ren YY, Zheng C, Lin YY, Zhou JL. Strategies for enhancing non-small cell lung cancer treatment: Integrating Chinese herbal medicines with epidermal growth factor receptor-tyrosine kinase inhibitors therapy. Eur J Pharmacol 2024; 980:176871. [PMID: 39117263 DOI: 10.1016/j.ejphar.2024.176871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Non-small cell lung cancer (NSCLC) poses a global health threat, and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) such as gefitinib, afatinib, and osimertinib have achieved significant success in clinical treatment. However, the emergence of resistance limits the long-term efficacy of these treatments, necessitating urgent exploration of novel EGFR-TKIs. This review provides an in-depth summary and exploration of the resistance mechanisms associated with EGFR-TKIs, with a specific focus on representative drugs like gefitinib, afatinib, and osimertinib. Additionally, the review introduces a therapeutic strategy involving the combination of Chinese herbal medicines (CHMs) and chemotherapy drugs, highlighting the potential role of CHMs in overcoming NSCLC resistance. Through systematic analysis, we elucidate the primary resistance mechanisms of EGFR-TKIs in NSCLC treatment, emphasizing CHMs as potential treatment medicines and providing a fresh perspective for the development of next-generation EGFR-TKIs. This comprehensive review aims to guide the application of CHMs in combination therapy for NSCLC management, fostering the development of more effective and comprehensive treatment modalities to ultimately enhance patient outcomes.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wen-Da Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ying-Ying Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Cheng Zheng
- Zhejiang Institute for Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine, Hangzhou, 310052, China.
| | - Yuan-Yuan Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
32
|
Sun Z, Guo X, Li C, Ling J, Chang A, Zhao H, Zhuo X. Exploring the therapeutic mechanisms of resveratrol for treating arecoline-induced malignant transformation in oral epithelial cells: insights into hub targets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8290-8305. [PMID: 38934557 DOI: 10.1002/jsfa.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Betel nut chewing is a significant risk factor for oral cancer due to arecoline, its primary active component. Resveratrol, a non-flavonoid polyphenol, possesses anti-cancer properties. It has been shown to inhibit arecoline-induced oral malignant cells in preliminary experiments but the underlying mechanism remains unclear. This research therefore aimed to explore the potential therapeutic targets of resveratrol in treating arecoline-induced oral cancer. METHODS Data mining identified common targets and hub targets of resveratrol in arecoline-induced oral cancer. Gene set variation analysis (GSVA) was used to score and validate the expression and clinical significance of these hub targets in head and neck cancer (HNC) tissues. Molecular docking analysis was conducted on the hub targets. The effect of resveratrol intervention on hub targets was verified by experiments. RESULTS Sixty-one common targets and 15 hub targets were identified. Hub targets were highly expressed in HNC and were associated with unfavorable prognoses. They played a role in HNC metastasis, epithelial-mesenchymal transition, and invasion. Their expression also affected immune cell infiltration and correlated negatively with sensitivity to chemotherapeutic agents such as bleomycin and docetaxel. Experiments demonstrated that resveratrol down-regulated the expression of the hub targets, inhibited their proliferation and invasion, and induced apoptosis. CONCLUSION Resveratrol inhibits the arecoline-induced malignant phenotype of oral epithelial cells by regulating the expression of some target genes, suggesting that resveratrol may be used not only as an adjuvant treatment for oral cancer, but also as an adjuvant for oral cancer prevention due to its low toxicity and high efficacy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhen Sun
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaopeng Guo
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Changya Li
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Junjun Ling
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Aoshuang Chang
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Houyu Zhao
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianlu Zhuo
- Department of otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
33
|
Darmadi D, Aminov Z, Hjazi A, R R, Kazmi SW, Mustafa YF, Hosseen B, Sharma A, Alubiady MHS, Al-Abdeen SHZ. Investigation of the regulation of EGF signaling by miRNAs, delving into the underlying mechanism and signaling pathways in cancer. Exp Cell Res 2024; 442:114267. [PMID: 39313176 DOI: 10.1016/j.yexcr.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
The EGF receptors (EGFRs) signaling pathway is essential for tumorigenesis and progression of cancer. Emerging evidence suggests that miRNAs are essential regulators of EGF signaling, influencing various pathway components and tumor behavior. This article discusses the underlying mechanisms and clinical implications of miRNA-mediated regulation of EGF signaling in cancer. miRNAs utilize multiple mechanisms to exert their regulatory effects on EGF signaling. They can target EGF ligands, including EGF and TGF-directly, inhibiting their expression and secretion. In addition, miRNAs can modulate EGF signaling indirectly by targeting EGF receptors, downstream signaling molecules, and transcription factors implicated in regulating the EGF pathway. These miRNAs can disrupt the delicate equilibrium of EGF signaling, resulting in aberrant activation and fostering tumor cell proliferation, survival, angiogenesis, and metastasis. The dysregulation of the expression of specific miRNAs has been linked to clinical outcomes in numerous types of cancer. Specific profiles of miRNA expression have been identified as prognostic markers, reflecting tumor characteristics, invasiveness, metastatic potential, and therapeutic response. These miRNAs can serve as potential therapeutic targets for interventions that modulate EGF signaling and improve patient outcomes. Understanding the intricate relationship between miRNAs and EGF signaling in cancer can transform cancer diagnosis, prognosis, and treatment. The identification of specific miRNAs involved in the regulation of the EGF pathway opens the door to the development of targeted therapies and personalized medicine approaches. In addition, miRNA-based interventions promise to overcome therapeutic resistance and improve the efficacy of existing treatments. miRNAs are crucial regulators of EGF signaling in cancer, affecting tumor behavior and clinical outcomes. Further research is required to decipher the complex network of miRNA-mediated EGF signaling regulation and translate these findings into clinically applicable strategies for enhanced cancer treatment.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | - Beneen Hosseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | | | | |
Collapse
|
34
|
Zheng T, Jiang T, Ma H, Zhu Y, Wang M. Targeting PI3K/Akt in Cerebral Ischemia Reperfusion Injury Alleviation: From Signaling Networks to Targeted Therapy. Mol Neurobiol 2024; 61:7930-7949. [PMID: 38441860 DOI: 10.1007/s12035-024-04039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/09/2024] [Indexed: 09/21/2024]
Abstract
Ischemia/reperfusion (I/R) injury is a pathological event that results in reperfusion due to low blood flow to an organ. Cerebral ischemia is a common cerebrovascular disease with high mortality, and reperfusion is the current standard intervention. However, reperfusion may further induce cellular damage and dysfunction known as cerebral ischemia/reperfusion injury (CIRI). Currently, strategies for the clinical management of CIRI are limited, necessitating the exploration of novel and efficacious treatment modalities for the benefit of patients. PI3K/Akt signaling pathway is an important cellular process associated with the disease. Stimulation of the PI3K/Akt pathway enhances I/R injury in multiple organs such as heart, brain, lung, and liver. It stands as a pivotal signaling pathway crucial for diminishing cerebral infarction size and safeguarding the functionality of brain tissue after CIRI. During CIRI, activation of the PI3K/Akt pathway exhibits a protective effect on CIRI. Furthermore, activation of the PI3K/Akt pathway has the potential to augment the activity of antioxidant enzymes, resulting in a decrease in reactive oxygen species (ROS) and the associated oxidative stress. Meanwhile, PI3K/Akt plays a neuroprotective role by inhibiting inflammatory responses and apoptosis. For example, PI3K/Akt interacts with NF-κB, Nrf2, and MAPK signaling pathways to mitigate CIRI. This article is aimed to explore the pivotal role and underlying mechanism of PI3K/Akt in ameliorating CIRI and investigate the influence of ischemic preconditioning and post-processing, as well as the impact of pertinent drugs or activators targeting the PI3K/Akt pathway on CIRI. The primary objective is to furnish compelling evidence supporting the activation of PI3K/Akt in the context of CIRI, elucidating its mechanistic intricacies. By doing so, the paper aims to underscore the critical contribution of PI3K/Akt in mitigating CIRI, providing a theoretical foundation for considering the PI3K/Akt pathway as a viable target for CIRI treatment.
Collapse
Affiliation(s)
- Ting Zheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Taotao Jiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongxiang Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yanping Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Manxia Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
35
|
Chen X, Yan Z, Liu W, Guo L, Xu J, Shi L, Yao Y. Polymorphisms in miRNA Genes Targeting the AMPK Signaling Pathway are Associated with Cervical Cancer Susceptibility in a Han Chinese Population. Int J Gen Med 2024; 17:4171-4188. [PMID: 39308972 PMCID: PMC11414751 DOI: 10.2147/ijgm.s473133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
Purpose Cervical cancer (CC) poses a significant threat to women's health worldwide, and multiple signaling pathways have been confirmed to be involved in its development. The AMPK signaling pathway plays a central role in maintaining energy homeostasis, and its dysregulation is closely associated with the occurrence of CC. Changes in microRNA (miRNA) expression levels might be related to the AMPK signaling pathway. Single nucleotide polymorphisms (SNPs) can affect the function of miRNA and result in the development of CC. To investigate the association between the SNPs of AMPK pathway-associated miRNAs and CC in a Han Chinese population, we selected eight miRNA genes located in the AMPK pathway and analyzed nine SNP loci within these genes to explore whether they are associated with genetic susceptibility to cervical intraepithelial neoplasia (CIN) and CC. Methods A total of 2,220 subjects were included in this study, including 928 healthy controls, 421 CIN patients, and 871 CC patients. Nine candidate SNPs (rs895819 in miR-27a, rs10061133 in miR-449b, rs41291179 in miR-216a, rs76481776 in miR-182, rs10406069 in miR-5196, rs12803915 and rs550894 in miR-612, rs66683138 in miR-3622b, and rs2620381 in miR-627) were genotyped using the TaqMan method. Results The results showed significant differences in the allele distribution of rs41291179 and rs12803915 between the control group and the CIN group, as well as between the control group and the CC group (all P values < 0.005). The A allele of rs41291179 and the G allele of rs12803915 were associated with decreased risk of CIN (OR = 0.05, 95% CI: 0.01-0.39; OR = 0.61, 95% CI: 0.49-0.76) and CC (OR = 0.08, 95% CI: 0.01-0.66; OR = 0.71, 95% CI: 0.59-0.86), respectively. Conclusion Our results suggest that polymorphisms in miRNA genes of the AMPK signaling pathway are associated with the development of CC.
Collapse
Affiliation(s)
- Xueya Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, The No. 3 Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Weipeng Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Lili Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Jinmei Xu
- Department of Gynaecologic Oncology, The No. 3 Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Li Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| |
Collapse
|
36
|
Yuan Z, Wang Q, Tan Y, Wei S, Shen J, Zhuang L, Yang Q, Xu Y, Luo Y. Methylprednisolone alleviates lung injury in sepsis by regulating miR-151-5p/USP38 pathway. Int Immunopharmacol 2024; 138:112548. [PMID: 38944949 DOI: 10.1016/j.intimp.2024.112548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is manifested by increased blood vessel permeability within the lungs and subsequent impairment of alveolar gas exchange. Methylprednisolone (MP) is commonly used as a treatment for ALI to reduce inflammation, yet its molecular mechanism remains unclear. This study aims to explore the underlying mechanisms of MP on ALI in a model induced by lipopolysaccharide (LPS). MATERIAL AND METHODS The proliferation, viability, apoptosis, and miR-151-5p expression of alveolar type II epithelial cells (AECII) were detected using the cell EdU assay, Annexin V/PI Apoptosis Kit, counting kit-8 (CCK-8) assay, and RT-qPCR. Western blot analysis was used to detect the Usp38 protein level. IL-6 and TNF-α were measured by ELISA. The combination of miR-151-5p and USP38 was determined by chromatin immunoprecipitation (ChIP)-PCR and dual-luciferase reporter assay. RESULTS MP greatly improved pulmonary function in vivo, reduced inflammation, and promoted the proliferation of the alveolar type II epithelial cells (AECII) in vitro. By comparing the alterations of microRNAs in lung tissues between MP treatment and control groups, we found that miR-151-5p exhibited a significant increase after LPS-treated AECII, but decreased after MP treatment. Confirmed by a luciferase reporter assay, USP38, identified as a downstream target of miR-151-5p, was found to increase after MP administration. Inhibition of miR-151-5p or overexpression of USP38 in AECII significantly improved the anti-inflammatory, anti-apoptotic, and proliferation-promotive effects of MP. CONCLUSION In summary, our data demonstrated that MP alleviates the inflammation and apoptosis of AECII induced by LPS, and promotes the proliferation of AECII partially via miR-151-5p suppression and subsequent USP38 activation.
Collapse
Affiliation(s)
- Zhize Yuan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Qiuyun Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yongchang Tan
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Outcomes Research Consortium, Cleveland, OH, USA
| | - Jie Shen
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Lei Zhuang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Qianzi Yang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Yiqiong Xu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
37
|
Gong J, Li T, Li Y, Xiong X, Xu J, Chai X, Ma Y. UID-Dual Transcriptome Sequencing Analysis of the Molecular Interactions between Streptococcus agalactiae ATCC 27956 and Mammary Epithelial Cells. Animals (Basel) 2024; 14:2587. [PMID: 39272372 PMCID: PMC11393856 DOI: 10.3390/ani14172587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Streptococcus agalactiae ATCC 27956 is a highly contagious Gram-positive bacterium that causes mastitis, has a high infectivity for mammary epithelial cells, and becomes challenging to treat. However, the molecular interactions between it and mammary epithelial cells remain poorly understood. This study analyzed differential gene expression in mammary epithelial cells with varying levels of S. agalactiae infection using UID-Dual transcriptome sequencing and bioinformatics tools. This study identified 211 differentially expressed mRNAs (DEmRNAs) and 452 differentially expressed lncRNAs (DElncRNAs) in host cells, primarily enriched in anti-inflammatory responses, immune responses, and cancer-related processes. Additionally, 854 pathogen differentially expressed mRNAs (pDEmRNAs) were identified, mainly enriched in protein metabolism, gene expression, and biosynthesis processes. Mammary epithelial cells activate pathways, such as the ERK1/2 pathway, to produce reactive oxygen species (ROS) to eliminate bacteria. The bacteria disrupt the host's innate immune mechanisms by interfering with the alternative splicing processes of mammary epithelial cells. Specifically, the bacterial genes of tsf, prfB, and infC can interfere with lncRNAs targeting RUNX1 and BCL2L11 in mammary epithelial cells, affecting the alternative splicing of target genes and altering normal molecular regulation.
Collapse
Affiliation(s)
- Jishang Gong
- College of Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Taotao Li
- College of Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
| | - Yuanfei Li
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Xinwei Xiong
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Jiguo Xu
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Xuewen Chai
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Youji Ma
- College of Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
| |
Collapse
|
38
|
Khan AQ, Agha MV, Ahmad F, Anver R, Sheikhan KSAM, Mateo J, Alam M, Buddenkotte J, Uddin S, Steinhoff M. Metabolomics analyses reveal the crucial role of ERK in regulating metabolic pathways associated with the proliferation of human cutaneous T-cell lymphoma cells treated with Glabridin. Cell Prolif 2024; 57:e13701. [PMID: 38946222 PMCID: PMC11503255 DOI: 10.1111/cpr.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Cutaneous T-cell lymphomas (CTC) are a heterogeneous group of T-cell lymphoproliferative malignancies of the skin with limited treatment options, increased resistance and remission. Metabolic reprogramming is vital in orchestrating the uncontrolled growth and proliferation of cancer cells. Importantly, deregulated signalling plays a significant role in metabolic reprogramming. Considering the crucial role of metabolic reprogramming in cancer-cell growth and proliferation, target identification and the development of novel and multi-targeting agents are imperative. The present study explores the underlying mechanisms and metabolic signalling pathways associated with Glabridin mediated anti-cancer actions in CTCL. Our results show that Glabridin significantly inhibits the growth of CTCL cells through induction of programmed cell death (PCD) such as apoptosis, autophagy and necrosis. Interestingly, results further show that Glabridin induces PCD in CTCL cells by targeting MAPK signalling pathways, particularly the activation of ERK. Further, Glabridin also sensitized CTCL cells to the anti-cancer drug, bortezomib. Importantly, LC-MS-based metabolomics analyses further showed that Glabridin targeted multiple metabolites and metabolic pathways intricately involved in cancer cell growth and proliferation in an ERK-dependent fashion. Overall, our findings revealed that Glabridin induces PCD and attenuates the expression of regulatory proteins and metabolites involved in orchestrating the uncontrolled proliferation of CTCL cells through ERK activation. Therefore, Glabridin possesses important features of an ideal anti-cancer agent.
Collapse
Affiliation(s)
- Abdul Q. Khan
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
| | - Maha Victor Agha
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
| | - Fareed Ahmad
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology and VenereologyRumailah Hospital, Hamad Medical CorporationDohaQatar
| | - Rasheeda Anver
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
| | | | - Jericha Mateo
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
| | - Majid Alam
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology and VenereologyRumailah Hospital, Hamad Medical CorporationDohaQatar
| | - Joerg Buddenkotte
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology and VenereologyRumailah Hospital, Hamad Medical CorporationDohaQatar
| | - Shahab Uddin
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Laboratory Animal Research CenterQatar UniversityDohaQatar
| | - Martin Steinhoff
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology and VenereologyRumailah Hospital, Hamad Medical CorporationDohaQatar
- Department of MedicineWeill Cornell Medicine Qatar, Qatar Foundation‐Education CityDohaQatar
- Department of MedicineWeill Cornell MedicineNew YorkNew YorkUSA
- College of MedicineQatar UniversityDohaQatar
| |
Collapse
|
39
|
Wang S, Guo S, Guo J, Du Q, Wu C, Wu Y, Zhang Y. Cell death pathways: molecular mechanisms and therapeutic targets for cancer. MedComm (Beijing) 2024; 5:e693. [PMID: 39239068 PMCID: PMC11374700 DOI: 10.1002/mco2.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/07/2024] Open
Abstract
Cell death regulation is essential for tissue homeostasis and its dysregulation often underlies cancer development. Understanding the different pathways of cell death can provide novel therapeutic strategies for battling cancer. This review explores several key cell death mechanisms of apoptosis, necroptosis, autophagic cell death, ferroptosis, and pyroptosis. The research gap addressed involves a thorough analysis of how these cell death pathways can be precisely targeted for cancer therapy, considering tumor heterogeneity and adaptation. It delves into genetic and epigenetic factors and signaling cascades like the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways, which are critical for the regulation of cell death. Additionally, the interaction of the microenvironment with tumor cells, and particularly the influence of hypoxia, nutrient deprivation, and immune cellular interactions, are explored. Emphasizing therapeutic strategies, this review highlights emerging modulators and inducers such as B cell lymphoma 2 (BCL2) homology domain 3 (BH3) mimetics, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), chloroquine, and innovative approaches to induce ferroptosis and pyroptosis. This review provides insights into cancer therapy's future direction, focusing on multifaceted approaches to influence cell death pathways and circumvent drug resistance. This examination of evolving strategies underlines the considerable clinical potential and the continuous necessity for in-depth exploration within this scientific domain.
Collapse
Affiliation(s)
- Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jing Guo
- College of Clinical Medicine Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Cen Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yeke Wu
- College of Clinical Medicine Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
40
|
Chauhan P, Pramodh S, Hussain A, Elsori D, Lakhanpal S, Kumar R, Alsaweed M, Iqbal D, Pandey P, Al Othaim A, Khan F. Understanding the role of miRNAs in cervical cancer pathogenesis and therapeutic responses. Front Cell Dev Biol 2024; 12:1397945. [PMID: 39263322 PMCID: PMC11387185 DOI: 10.3389/fcell.2024.1397945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
Cervical cancer (CC) is the most common cancer in women and poses a serious threat to health. Despite familiarity with the factors affecting its etiology, initiation, progression, treatment strategies, and even resistance to therapy, it is considered a significant problem for women. However, several factors have greatly affected the previous aspects of CC progression and treatment in recent decades. miRNAs are short non-coding RNA sequences that regulate gene expression by inhibiting translation of the target mRNA. miRNAs play a crucial role in CC pathogenesis by promoting cancer stem cell (CSC) proliferation, postponing apoptosis, continuing the cell cycle, and promoting invasion, angiogenesis, and metastasis. Similarly, miRNAs influence important CC-related molecular pathways, such as the PI3K/AKT/mTOR signaling pathway, Wnt/β-catenin system, JAK/STAT signaling pathway, and MAPK signaling pathway. Moreover, miRNAs affect the response of CC patients to chemotherapy and radiotherapy. Consequently, this review aims to provide an acquainted summary of onco miRNAs and tumor suppressor (TS) miRNAs and their potential role in CC pathogenesis and therapy responses by focusing on the molecular pathways that drive them.
Collapse
Affiliation(s)
| | - Sreepoorna Pramodh
- Department of Biomedical Sciences, University of Birmingham Dubai, Dubai, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rahul Kumar
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, India
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
- Centre for Research Impact and Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
41
|
Feng D, Wu X, Li G, Yang J, Jiang J, Liu S, Chen J. Cuproptosis related ceRNA axis AC008083.2/miR-142-3p promotes the malignant progression of nasopharyngeal carcinoma through STRN3. PeerJ 2024; 12:e17859. [PMID: 39148682 PMCID: PMC11326429 DOI: 10.7717/peerj.17859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/13/2024] [Indexed: 08/17/2024] Open
Abstract
Background CeRNA axis is an important way to regulate the occurrence and development of Nasopharyngeal carcinoma (NPC). Although the research on inducing cuproptosis of tumor cells is in the early stage of clinical practice, its mechanism of action is still of great significance for tumor treatment, including NPC. However, the regulation mechanism of cuproptosis in NPC by ceRNA network remains unclear. Methods The ceRNA network related to the survival of nasopharyngeal carcinoma related genes was constructed by bioinformatics. Dual-luciferase reporter assay and other experiments were used to prove the conclusion. Results Our findings indicate that the AC008083.2/miR-142-3p axis drives STRN3 to promote the malignant progression of NPC. By performing enrichment analysis and phenotypic assays, we demonstrated that the changes in the expressions of AC008083.2/miR-142-3p/NPC can affect the proliferation of NPC. Mechanistically, luciferase reporter gene assays suggested that AC008083.2 acts as a ceRNA of miR-142-3p to regulate the content of STRN3. Furthermore, the regulations of STRN3 and the malignant progression of NPC by AC008083.2 depends on miR-142-3p to some extent. Conclusions Our study reveals an innovative ceRNA regulatory network in NPC, which can be considered a new potential target for diagnosing and treating NPC.
Collapse
Affiliation(s)
- Dandan Feng
- Department of Otolaryngology Head and Neck Surgery, Army Special Medical Center (Daping Hospital), Army Medical University, Chongqing, Chongqing, China
| | - Xiaoping Wu
- Department of Otolaryngology Head and Neck Surgery, Army Special Medical Center (Daping Hospital), Army Medical University, Chongqing, Chongqing, China
| | - Genping Li
- Department of Otolaryngology Head and Neck Surgery, Army Special Medical Center (Daping Hospital), Army Medical University, Chongqing, Chongqing, China
| | - Junhui Yang
- Department of Otolaryngology Head and Neck Surgery, Army Special Medical Center (Daping Hospital), Army Medical University, Chongqing, Chongqing, China
| | - Jianguo Jiang
- Department of Otolaryngology Head and Neck Surgery, Army Special Medical Center (Daping Hospital), Army Medical University, Chongqing, Chongqing, China
| | - Shunan Liu
- Department of Otolaryngology Head and Neck Surgery, Army Special Medical Center (Daping Hospital), Army Medical University, Chongqing, Chongqing, China
| | - Jichuan Chen
- Department of Otolaryngology Head and Neck Surgery, Army Special Medical Center (Daping Hospital), Army Medical University, Chongqing, Chongqing, China
| |
Collapse
|
42
|
Zhou L, Su P, Luo X, Zhong X, Liu Q, Su Y, Zeng C, Li G. Regorafenib Attenuates Osteoclasts Differentiation by Inhibiting the NF-κB, NFAT, ERK, and p38 Signaling Pathways. ACS OMEGA 2024; 9:33574-33593. [PMID: 39130575 PMCID: PMC11307286 DOI: 10.1021/acsomega.4c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Osteolytic diseases such as osteoporosis and neoplastic bone metastases are caused by the excessive activation of osteoclasts. Inhibiting the excessive activation of osteoclasts is a crucial strategy for treating osteolytic diseases. This study investigated the roles and mechanisms of regorafenib, a tyrosine kinase inhibitor, on osteoclasts and osteolytic diseases. We first identified the potential targets and mechanisms of regorafenib on osteoclast-related osteolytic diseases using network pharmacological analysis and molecular docking techniques. Then, we verified its role and mechanism on osteoclasts via cellular and animal experiments. Network pharmacology analysis identified 89 common targets shared by regorafenib and osteoclast-related osteolytic diseases. Enrichment analysis suggested that regorafenib may act on osteoclast-related osteolytic diseases by modulating targets such as AKT1, CASP3, MMP9, and MAPK3, regulating biological processes such as cell proliferation, apoptosis, and phosphorylation regulation, and influencing signaling pathways such as MAPK, PI3K/AKT, and osteoclast differentiation. The molecular docking results indicated that regorafenib and AKT1, CASP3, MMP9, MAPK3, and MAPK14 were stably docked. Cell experiments demonstrated that regorafenib significantly inhibited osteoclast differentiation and bone resorption in RAW 264.7 cells and bone marrow macrophages in a dose-dependent manner, with up to 50% reduction at 800 nM concentration without exhibiting cytotoxic effects. Furthermore, Western blot and RT-qPCR results demonstrated that regorafenib inhibited osteoclast differentiation by blocking the transduction of RANKL-induced NF-κB, p38, ERK, and NFAT signaling pathways. In vivo studies using an ovariectomized mouse model showed that regorafenib significantly improved bone volume fraction (BV/TV), bone surface to total volume (BS/TV), and number of trabeculae (TB.N), as well as reduced trabecular separation (Tb.Sp) compared to the OVX groups (P < 0.05). TRAcP staining results revealed a reduction in the number of osteoclasts with regorafenib treatment (P < 0.01). These results indicate that regorafenib exerts its protective effects against osteoclast-related osteolytic disease by inhibiting the RANKL-induced NF-κB, NFAT, ERK, and p38 signaling pathways. This study proves that regorafenib may serve as a potential therapeutic agent for osteoclast-related osteolytic diseases.
Collapse
Affiliation(s)
- Lin Zhou
- Department
of Endocrinology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education
Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Peiru Su
- Department
of Endocrinology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education
Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Xiangya Luo
- Department
of Endocrinology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education
Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Xuanli Zhong
- Department
of Endocrinology, The Affiliated Shunde
Hospital of Jinan University, Foshan 528305, Guangdong, China
| | - Qian Liu
- Guangxi
Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yuangang Su
- Guangxi
Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Chunping Zeng
- Department
of Endocrinology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education
Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Ge Li
- Department
of Endocrinology, The Affiliated Shunde
Hospital of Jinan University, Foshan 528305, Guangdong, China
| |
Collapse
|
43
|
Huang X, Zeng J, Ruan S, Lei Z, Zhang J, Cao H. The use of matrine to inhibit osteosarcoma cell proliferation via the regulation of the MAPK/ERK signaling pathway. Front Oncol 2024; 14:1338811. [PMID: 39161382 PMCID: PMC11330765 DOI: 10.3389/fonc.2024.1338811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Background Matrine is an alkaloid extracted from Sophorus beans of the legume family, and it has significant effects and a variety of pharmacological activities. Osteosarcoma(OS) is a common malignant bone tumor that is characterized by high incidence and rapid progression. There have been some preliminary studies on the therapeutic effect of matrine on OS, but the specific mechanism remains unclear. Objective The aim of this study was to investigate the antitumor effect of matrine on HOS cells and the underlying molecular mechanism. Methods The effects of matrine on the proliferation, apoptosis and cell cycle progression of HOS cells were determined by CCK-8 assay, TUNEL assay and flow cytometry in vitro. Wound healing and Transwell invasion assays were used to observe the effect of matrine on the migration and invasion of HOS cells. The mechanism underlying the antitumor effect of matrine on HOS cells was investigated by Western blotting. Results Matrine significantly inhibited HOS cell proliferation, promoted HOS cell apoptosis, and arrested HOS cells in the G1 phase of the cell cycle. Both wound healing and Transwell invasion assays showed that matrine inhibited HOS cell migration and invasion. Western blotting results showed that matrine inhibited the activation of the MAPK/ERK signaling pathway. We found that matrine also downregulated Bcl-2 expression, which may be related to protein synthesis inhibition. Conclusion Matrine can inhibit the proliferation of HOS cells, arrest HOS cells in the G1 phase, and promote HOS cell apoptosis through the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Xincheng Huang
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jun Zeng
- Department of Anesthesiology, Shiyan People’s Hospital, Shiyan, China
| | - Siyuan Ruan
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhuolin Lei
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jingyuan Zhang
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Hong Cao
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
44
|
Chen J, Liu K, Vadas MA, Gamble JR, McCaughan GW. The Role of the MiR-181 Family in Hepatocellular Carcinoma. Cells 2024; 13:1289. [PMID: 39120319 PMCID: PMC11311592 DOI: 10.3390/cells13151289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth-leading cause of cancer-related death worldwide. Due to the high mortality rate in HCC patients, discovering and developing novel systemic treatment options for HCC is a vital unmet medical need. Among the numerous molecular alterations in HCCs, microRNAs (miRNAs) have been increasingly recognised to play critical roles in hepatocarcinogenesis. We and others have recently revealed that members of the microRNA-181 (miR-181) family were up-regulated in some, though not all, human cirrhotic and HCC tissues-this up-regulation induced epithelial-mesenchymal transition (EMT) in hepatocytes and tumour cells, promoting HCC progression. MiR-181s play crucial roles in governing the fate and function of various cells, such as endothelial cells, immune cells, and tumour cells. Previous reviews have extensively covered these aspects in detail. This review aims to give some insights into miR-181s, their targets and roles in modulating signal transduction pathways, factors regulating miR-181 expression and function, and their roles in HCC.
Collapse
Affiliation(s)
- Jinbiao Chen
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Ken Liu
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Mathew A. Vadas
- Vascular Biology Program, Healthy Ageing Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (M.A.V.); (J.R.G.)
| | - Jennifer R. Gamble
- Vascular Biology Program, Healthy Ageing Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (M.A.V.); (J.R.G.)
| | - Geoffrey W. McCaughan
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| |
Collapse
|
45
|
Shakerian N, Darzi-Eslam E, Afsharnoori F, Bana N, Noorabad Ghahroodi F, Tarin M, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Therapeutic and diagnostic applications of exosomes in colorectal cancer. Med Oncol 2024; 41:203. [PMID: 39031221 DOI: 10.1007/s12032-024-02440-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Exosomes play a key role in colorectal cancer (CRC) related processes. This review explores the various functions of exosomes in CRC and their potential as diagnostic markers, therapeutic targets, and drug delivery vehicles. Exosomal long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) significantly influence CRC progression. Specific exosomal lncRNAs are linked to drug resistance and tumor growth, respectively, highlighting their therapeutic potential. Similarly, miRNAs like miR-21, miR-10b, and miR-92a-3p, carried by exosomes, contribute to chemotherapy resistance by altering signaling pathways and gene expression in CRC cells. The review also discusses exosomes' utility in CRC diagnosis. Exosomes from cancer cells have distinct molecular signatures compared to healthy cells, making them reliable biomarkers. Specific exosomal lncRNAs (e.g., CRNDE-h) and miRNAs (e.g., miR-17-92a) have shown effectiveness in early CRC detection and monitoring of treatment responses. Furthermore, exosomes show promise as vehicles for targeted drug delivery. The potential of mesenchymal stem cell (MSC)-derived exosomes in CRC treatment is also noted, with their role varying from promoting to inhibiting tumor progression. The application of multi-omics approaches to exosome research is highlighted, emphasizing the potential for discovering novel CRC biomarkers through comprehensive genomic, transcriptomic, proteomic, and metabolomic analyses. The review also explores the emerging field of exosome-based vaccines, which utilize exosomes' natural properties to elicit strong immune responses. In conclusion, exosomes represent a promising frontier in CRC research, offering new avenues for diagnosis, treatment, and prevention. Their unique properties and versatile functions underscore the need for continued investigation into their clinical applications and underlying mechanisms.
Collapse
Affiliation(s)
- Neda Shakerian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Elham Darzi-Eslam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Afsharnoori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nikoo Bana
- Kish International Campus, University of Teheran, Tehran, Iran
| | - Faezeh Noorabad Ghahroodi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Education and Extension Organization, Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
46
|
Alsharoh H, Chiroi P, Isachesku E, Tanasa RA, Pop OL, Pirlog R, Berindan-Neagoe I. Personalizing Therapy Outcomes through Mitogen-Activated Protein Kinase Pathway Inhibition in Non-Small Cell Lung Cancer. Biomedicines 2024; 12:1489. [PMID: 39062063 PMCID: PMC11275062 DOI: 10.3390/biomedicines12071489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer (LC) is a highly invasive malignancy and the leading cause of cancer-related deaths, with non-small cell lung cancer (NSCLC) as its most prevalent histological subtype. Despite all breakthroughs achieved in drug development, the prognosis of NSCLC remains poor. The mitogen-activated protein kinase signaling cascade (MAPKC) is a complex network of interacting molecules that can drive oncogenesis, cancer progression, and drug resistance when dysregulated. Over the past decades, MAPKC components have been used to design MAPKC inhibitors (MAPKCIs), which have shown varying efficacy in treating NSCLC. Thus, recent studies support the potential clinical use of MAPKCIs, especially in combination with other therapeutic approaches. This article provides an overview of the MAPKC and its inhibitors in the clinical management of NSCLC. It addresses the gaps in the current literature on different combinations of selective inhibitors while suggesting two particular therapy approaches to be researched in NSCLC: parallel and aggregate targeting of the MAPKC. This work also provides suggestions that could serve as a potential guideline to aid future research in MAPKCIs to optimize clinical outcomes in NSCLC.
Collapse
Affiliation(s)
- Hasan Alsharoh
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Ekaterina Isachesku
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | | | - Ovidiu-Laurean Pop
- Department of Morphology Sciences, University of Oradea, 410087 Oradea, Romania;
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| |
Collapse
|
47
|
Ding Y, Chen Q. Recent advances on signaling pathways and their inhibitors in spinal cord injury. Biomed Pharmacother 2024; 176:116938. [PMID: 38878684 DOI: 10.1016/j.biopha.2024.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury. Its complex pathological mechanism can lead to sensory and motor dysfunction. It has been reported that signaling pathway plays a key role in the pathological process and neuronal recovery mechanism of SCI. Such as PI3K/Akt, MAPK, NF-κB, and Wnt/β-catenin signaling pathways. According to reports, various stimuli and cytokines activate these signaling pathways related to SCI pathology, thereby participating in the regulation of pathological processes such as inflammation response, cell apoptosis, oxidative stress, and glial scar formation after injury. Activation or inhibition of relevant pathways can delay inflammatory response, reduce neuronal apoptosis, prevent glial scar formation, improve the microenvironment after SCI, and promote neural function recovery. Based on the role of signaling pathways in SCI, they may be potential targets for the treatment of SCI. Therefore, understanding the signaling pathway and its inhibitors may be beneficial to the development of SCI therapeutic targets and new drugs. This paper mainly summarizes the pathophysiological process of SCI, the signaling pathways involved in SCI pathogenesis, and the potential role of specific inhibitors/activators in its treatment. In addition, this review also discusses the deficiencies and defects of signaling pathways in SCI research. It is hoped that this study can provide reference for future research on signaling pathways in the pathogenesis of SCI and provide theoretical basis for SCI biotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
48
|
Sameti P, Amini M, Oroojalian F, Baghay Esfandyari Y, Tohidast M, Rahmani SA, Azarbarzin S, Mokhtarzadeh A, Baradaran B. MicroRNA-425: A Pivotal Regulator Participating in Tumorigenesis of Human Cancers. Mol Biotechnol 2024; 66:1537-1551. [PMID: 37332071 DOI: 10.1007/s12033-023-00756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded regulatory RNAs that are shown to be dysregulated in a wide array of human cancers. MiRNAs play critical roles in cancer progression and function as either oncogenes or tumor suppressors through modulating various target genes. Therefore, they possess great potential as diagnostic and therapeutic targets for cancer detection and treatment. In particular, recent studies have illustrated that miR-425 is also dysregulated in various human malignancies and plays a fundamental role in cancer initiation and progression. miR-425 has been reported to function as a dual-role miRNA participating in the regulation of cellular processes, including metastasis, invasion, and cell proliferation by modulating multiple signaling pathways, such as TGF-β, Wnt, and P13K/AKT pathways. Therefore, regarding recent researches showing the high therapeutic potential of miR-425, in this review, we have noted the impact of its dysregulation on signaling pathways and various aspects of tumorigenesis in a variety of human cancers.
Collapse
Affiliation(s)
- Pouriya Sameti
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Maryam Tohidast
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ali Rahmani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Azarbarzin
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
49
|
He W, Li ZQ, Gu HY, Pan QL, Lin FX. Targeted Therapy of Spinal Cord Injury: Inhibition of Apoptosis Is a Promising Therapeutic Strategy. Mol Neurobiol 2024; 61:4222-4239. [PMID: 38066400 DOI: 10.1007/s12035-023-03814-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/16/2023] [Indexed: 07/11/2024]
Abstract
Spinal cord injury (SCI) is a serious disabling central nervous system injury that can lead to motor, sensory, and autonomic dysfunction below the injury level. SCI can be divided into primary injury and secondary injury according to pathological process. Primary injury is mostly irreversible, while secondary injury is a dynamic regulatory process. Apoptosis is an important pathological event of secondary injury and has a significant effect on the recovery of nerve function after SCI. Nerve cell death can further aggravate the microenvironment of the injured site, leading to neurological dysfunction and thus affect the clinical outcome of patients. Therefore, apoptosis plays a crucial role in the pathological progression of secondary SCI, while inhibiting apoptosis may be a promising therapeutic strategy for SCI. This review will summarize and explore the factors that lead to cell death after SCI, the influence of cross talk between signaling pathways and pathways involved in apoptosis and discuss the influence of apoptosis on SCI, and the therapeutic significance of targeting apoptosis on SCI. This review helps us to understand the role of apoptosis in secondary SCI and provides a theoretical basis for the treatment of SCI based on apoptosis.
Collapse
Affiliation(s)
- Wei He
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Zhi-Qiang Li
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Qi-Lin Pan
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China.
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China.
| |
Collapse
|
50
|
Xu M, Wang X, Zhang Y, Ji N, Wang Q, Zhao T, Zhou C, Jia C. Profiling of the Proteins Interacting with Amyloid Beta Peptides in Clinical Samples by PACTS-TPP. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1310-1319. [PMID: 38780475 DOI: 10.1021/jasms.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The accumulation of amyloid beta (Aβ1-42) results in neurotoxicity and is strongly related to neurodegenerative disorders, especially Alzheimer's disease (AD), but the underlying molecular mechanism is still poorly understood. Therefore, there is an urgent need for researchers to discover the proteins that interact with Aβ1-42 to determine the molecular basis. Previously, we developed peptide-ligand-induced changes in the abundance of proTeinS (PACTS)-assisted thermal proteome profiling (TPP) to identify proteins that interact with peptide ligands. In the present study, we applied this technique to analyze clinical samples to identify Aβ1-42-interacting proteins. We detected 115 proteins that interact with Aβ1-42 in human frontal lobe tissue. Pathway enrichment analysis revealed that the differentially expressed proteins were involved mainly in neurodegenerative diseases. Further orthogonal validation revealed that Aβ1-42 interacted with the AD-associated protein mitogen-activated protein kinase 3 (MAPK3), and knockdown of the Aβ1-42 amyloid precursor protein (APP) inhibited the MAPK signaling pathway, suggesting potential functional roles for Aβ1-42 in interacting with MAPK3. Overall, this study demonstrated the application of the PACTS-TPP in clinical samples and provided a valuable data source for research on neurodegenerative diseases.
Collapse
Affiliation(s)
- Mengting Xu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiankun Wang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100070, China
| | - Qianqian Wang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ting Zhao
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Congli Zhou
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Chenxi Jia
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| |
Collapse
|