1
|
Yang X, Mei C, Nie H, Zhou J, Ou C, He X. Expression profile and prognostic values of GATA family members in kidney renal clear cell carcinoma. Aging (Albany NY) 2023; 15:2170-2188. [PMID: 36961416 PMCID: PMC10085589 DOI: 10.18632/aging.204607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
To investigate the possible diagnostic and prognostic biomarkers of kidney renal clear cell carcinoma (KIRC), an integrated study of accumulated data was conducted to obtain more reliable information and more feasible measures. Using the Tumor Immune Estimation Resource (TIMER), University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN), Human Protein Atlas (HPA), Kaplan-Meier plotter database, Gene Expression Profiling Interactive Analysis (GEPIA2) database, cBioPortal, and Metascape, we analyzed the expression profiles and prognoses of six members of the GATA family in patients with KIRC. Compared to normal samples, KIRC samples showed significantly lower GATA2/3/6 mRNA and protein expression levels. KIRC's pathological grades, clinical stages, and lymph node metastases were closely related to GATA2 and GATA5 levels. Patients with KIRC and high GATA2 and GATA5 expression had better overall survival (OS) and recurrence-free survival (RFS), while those with higher expression of GATA3/4/6 had worse outcomes. The role and underlying mechanisms of the GATA family in cell cycle, cell proliferation, metabolic processes, and other aspects were evaluated based on Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses. Furthermore, we found that infiltrating immune cells were highly correlated with GATA expression profiles. These results showed that GATA family members may serve as prognostic biomarkers and therapeutic targets for KIRC.
Collapse
Affiliation(s)
- Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha 410008, Hunan, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
2
|
Zhou Q, Yang HJ, Zuo MZ, Tao YL. Distinct expression and prognostic values of GATA transcription factor family in human ovarian cancer. J Ovarian Res 2022; 15:49. [PMID: 35488350 PMCID: PMC9052646 DOI: 10.1186/s13048-022-00974-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Accumulated studies have provided controversial evidences of expression patterns and prognostic value of the GATA family in human ovarian cancer. In the present study, we accessed the distinct expression and prognostic roles of 7 individual members of GATA family in ovarian cancer (OC) patients through Oncomine analysis, CCLE analysis, Human Protein Atlas (HPA), Kaplan–Meier plotter (KM plotter) database, cBioPortal and Metascape. Our results indicated that GATA1, GATA3, GATA4 and TRPS1 mRNA and protein expression was significantly higher in OC than normal samples. High expression of GATA1, GATA2, and GATA4 were significantly correlated with better overall survival (OS), while increased GATA3 and GATA6 expression were associated with worse prognosis in OC patients. GATA1, GATA2, GATA3 and GATA6 were closely related to the different pathological histology, pathological grade, clinical stage and TP53 mutation status of OC. The genetic variation and interaction of the GATA family may be closely related to the pathogenesis and prognosis of OC, and the regulatory network composed of GATA family genes and their neighboring genes are mainly involved in Notch signaling pathway, Th1 and Th2 cell differentiation and Hippo signaling pathway. Transcriptional GATA1/2/3/4/6 could be prognostic markers and potential therapeutic target for OC patients.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, 2, Jie-fang Road, Yi chang, Yichang, 443000, Hubei, China.
| | - Huai-Jie Yang
- Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, 2, Jie-fang Road, Yi chang, Yichang, 443000, Hubei, China
| | - Man-Zhen Zuo
- Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, 2, Jie-fang Road, Yi chang, Yichang, 443000, Hubei, China
| | - Ya-Ling Tao
- Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, 2, Jie-fang Road, Yi chang, Yichang, 443000, Hubei, China
| |
Collapse
|
3
|
Espiñeira IM, Vidal PN, Ghersevich MC, Soler Arias EA, Bosetti F, Cabrera Blatter MF, Miceli DD, Castillo VA. Adrenal cortex stimulation with hCG in spayed female dogs with Cushing's syndrome: Is the LH-dependent variant possible? Open Vet J 2021; 11:319-329. [PMID: 34307090 PMCID: PMC8288738 DOI: 10.5455/ovj.2021.v11.i2.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/23/2021] [Indexed: 11/09/2022] Open
Abstract
Background: The expression and overexpression of luteinizing hormone (LH) receptors in the canine adrenal gland cortex have been reported. Therefore, it was hypothesized that a LH-dependent form of Cushing’s syndrome (CS) could exist in dogs. Aim: To assess whether the adrenal gland post-ovariectomy (OVx) exhibits a greater response to adrenocorticotrophin (ACTH) stimulation; to evaluate whether the adrenal gland responds to human chorionic gonadotropin (hCG) stimulation by increasing the release of cortisol; and to consider whether hCG stimulus testing would be useful as a diagnosis for possible cases of LH-dependent CS. Methods: Cortisol concentrations were measured from healthy female dogs (n=16) at baseline and following ACTH stimulation before and 2 months after gonadectomy (OVx). Cortisol concentrations were also measured for female dogs with CS (n = 14) following administration of hCG (5000 IU). A post-hCG cortisol concentration greater than 140 nmol/l was used to define dogs with LH-dependent Cushing’s syndrome. Results: In normal female dogs, both pre- and post-stimulation cortisol concentrations increased following OVx (p = 0.002 and p = 0.0003, respectively). In female dogs with CS, cortisol concentrations increased following stimulation with hCG in 57% (8/14; p = 0.002). Age at the time of OVx was associated (p = 0.015) with the cortisol response to hCG [8 (5–9) years vs. 3.5 (2–6) years, p = 0.0013). Conclusion: Based on these results, an LH-dependent form of CS occurs in spayed female dogs, and that it is more likely to occur when female dogs are spayed later in life.
Collapse
Affiliation(s)
- Ignacio M Espiñeira
- Facultad de Ciencias Veterinarias, Cátedra de Clínica Médica de Pequeños Animales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Becario Estímulo UBACyT, Rep. Argentina
| | - Patricia N Vidal
- Hospital Escuela de Medicina Veterinaria-U. Endocrinología, Rep. Argentina.,Becaria Proyecto Estratégicos UBACyT, Rep. Argentina
| | - María C Ghersevich
- Facultad de Ciencias Agropecuarias, U. Católica de Córdoba-Argentina, Rep. Argentina
| | | | - Fernanda Bosetti
- Facultad de Ciencias Veterinarias, Cátedra de Clínica Médica de Pequeños Animales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Hospital Escuela de Medicina Veterinaria-U. Endocrinología, Rep. Argentina
| | - María F Cabrera Blatter
- Facultad de Ciencias Veterinarias, Cátedra de Clínica Médica de Pequeños Animales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Hospital Escuela de Medicina Veterinaria-U. Endocrinología, Rep. Argentina
| | - Diego D Miceli
- Hospital Escuela de Medicina Veterinaria-U. Endocrinología, Rep. Argentina.,IByME-CONICET, Rep. Argentina
| | - Víctor A Castillo
- Facultad de Ciencias Veterinarias, Cátedra de Clínica Médica de Pequeños Animales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Hospital Escuela de Medicina Veterinaria-U. Endocrinología, Rep. Argentina
| |
Collapse
|
4
|
Sun Z, Yan B. Multiple roles and regulatory mechanisms of the transcription factor GATA6 in human cancers. Clin Genet 2019; 97:64-72. [PMID: 31437305 DOI: 10.1111/cge.13630] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022]
Abstract
Cancer is a common type of non-communicable disease, and its morbidity and mortality are rapidly increasing. It is expected to become the largest obstacle to the promotion of global human health in the future. Some transcription factors that play important regulatory roles in embryogenesis and subsequent tissue maintenance can be selectively amplified during tumorigenesis. Due to its high expression in the embryonic endoderm and mesoderm, GATA6 plays a crucial role in the normal development of early human heart, lung, digestive system, adrenal glands, breasts, ovaries, retina, skin, and nervous system. Up to now, overexpression of the GATA6 gene has been shown to play an important role in several cancers, including lung cancer, digestive system tumors, breast cancer, and ovarian cancer. However, the human body is a complex organism, which causes the transcription factor GATA6 to have multiple roles in cancer. In this review, we summarize the multiple roles of transcription factor GATA6 in various cancers and its regulatory mechanisms. The aim is to better understand the relationship between GATA6 gene expression and cancer development and to provide new insights for exploring potential therapeutic targets.
Collapse
Affiliation(s)
- Zhaoqing Sun
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.,The Center for Molecular Genetics of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.,Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
5
|
Oulès B, Rognoni E, Hoste E, Goss G, Fiehler R, Natsuga K, Quist S, Mentink R, Donati G, Watt FM. Mutant Lef1 controls Gata6 in sebaceous gland development and cancer. EMBO J 2019; 38:embj.2018100526. [PMID: 30886049 PMCID: PMC6484415 DOI: 10.15252/embj.2018100526] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Mutations in Lef1 occur in human and mouse sebaceous gland (SG) tumors, but their contribution to carcinogenesis remains unclear. Since Gata6 controls lineage identity in SG, we investigated the link between these two transcription factors. Here, we show that Gata6 is a β‐catenin‐independent transcriptional target of mutant Lef1. During epidermal development, Gata6 is expressed in a subset of Sox9‐positive Lef1‐negative hair follicle progenitors that give rise to the upper SG. Overexpression of Gata6 by in utero lentiviral injection is sufficient to induce ectopic sebaceous gland elements. In mice overexpressing mutant Lef1, Gata6 ablation increases the total number of skin tumors yet decreases the proportion of SG tumors. The increased tumor burden correlates with impaired DNA mismatch repair and decreased expression of Mlh1 and Msh2 genes, defects frequently observed in human sebaceous neoplasia. Gata6 specifically marks human SG tumors and also defines tumors with elements of sebaceous differentiation, including a subset of basal cell carcinomas. Our findings reveal that Gata6 controls sebaceous gland development and cancer.
Collapse
Affiliation(s)
- Bénédicte Oulès
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Emanuel Rognoni
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK.,Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Esther Hoste
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK.,Unit for Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Georgina Goss
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | | | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sven Quist
- Clinic for Dermatology and Venereology, Otto-von-Guericke-University, Magdeburg, Germany
| | | | - Giacomo Donati
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK.,Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| |
Collapse
|
6
|
Doroszko M, Chrusciel M, Stelmaszewska J, Slezak T, Anisimowicz S, Plöckinger U, Quinkler M, Bonomi M, Wolczynski S, Huhtaniemi I, Toppari J, Rahman NA. GnRH antagonist treatment of malignant adrenocortical tumors. Endocr Relat Cancer 2019; 26:103-117. [PMID: 30400009 PMCID: PMC6215908 DOI: 10.1530/erc-17-0399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
Aberrantly expressed G protein-coupled receptors in tumors are considered as potential therapeutic targets. We analyzed the expressions of receptors of gonadotropin-releasing hormone (GNRHR), luteinizing hormone/chorionic gonadotropin (LHCGR) and follicle-stimulating hormone (FSHR) in human adrenocortical carcinomas and assessed their response to GnRH antagonist therapy. We further studied the effects of the GnRH antagonist cetrorelix acetate (CTX) on cultured adrenocortical tumor (ACT) cells (mouse Cα1 and Y-1, and human H295R), and in vivo in transgenic mice (SV40 T-antigen expression under inhibin α promoter) bearing Lhcgr and Gnrhr in ACT. Both models were treated with control (CT), CTX, human chorionic gonadotropin (hCG) or CTX+hCG, and their growth and transcriptional changes were analyzed. In situ hybridization and qPCR analysis of human adrenocortical carcinomas (n = 11-13) showed expression of GNRHR in 54/73%, LHCGR in 77/100% and FSHR in 0%, respectively. CTX treatment in vitro decreased cell viability and proliferation, and increased caspase 3/7 activity in all treated cells. In vivo, CTX and CTX+hCG (but not hCG alone) decreased ACT weights and serum LH and progesterone concentrations. CTX treatment downregulated the tumor markers Lhcgr and Gata4. Upregulated genes included Grb10, Rerg, Nfatc and Gnas, all recently found to be abundantly expressed in healthy adrenal vs ACT. Our data suggest that CTX treatment may improve the therapy of human adrenocortical carcinomas by direct action on GNRHR-positive cancer cells inducing apoptosis and/or reducing gonadotropin release, directing tumor cells towards a healthy adrenal gene expression profile.
Collapse
Affiliation(s)
| | | | - Joanna Stelmaszewska
- Department of Reproduction and Gynecological EndocrinologyMedical University of Bialystok, Bialystok, Poland
| | - Tomasz Slezak
- Department of Biochemistry and Molecular BiologyUniversity of Chicago, Chicago, Illinois, USA
| | | | - Ursula Plöckinger
- Interdisciplinary Center of Metabolism: EndocrinologyDiabetes and Metabolism, Charité University Medicine Berlin, Berlin, Germany
| | - Marcus Quinkler
- Endocrinology in CharlottenburgBerlin, Germany
- Department of Clinical EndocrinologyCharité Campus Mitte, Charité University Medicine Berlin, Berlin, Germany
| | - Marco Bonomi
- Department of Clinical Sciences & Community HealthUniversity of Milan, Milan, Italy
| | - Slawomir Wolczynski
- Department of Reproduction and Gynecological EndocrinologyMedical University of Bialystok, Bialystok, Poland
| | - Ilpo Huhtaniemi
- Institute of BiomedicineUniversity of Turku, Turku, Finland
- Department of Surgery and CancerFaculty of Medicine, Imperial College London, London, U.K.
| | - Jorma Toppari
- Institute of BiomedicineUniversity of Turku, Turku, Finland
- Department of PediatricsTurku University Hospital, Turku, Finland
| | - Nafis A Rahman
- Institute of BiomedicineUniversity of Turku, Turku, Finland
- Department of Reproduction and Gynecological EndocrinologyMedical University of Bialystok, Bialystok, Poland
- Correspondence should be addressed to N Rahman:
| |
Collapse
|
7
|
Casarini L, Santi D, Brigante G, Simoni M. Two Hormones for One Receptor: Evolution, Biochemistry, Actions, and Pathophysiology of LH and hCG. Endocr Rev 2018; 39:549-592. [PMID: 29905829 DOI: 10.1210/er.2018-00065] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/08/2018] [Indexed: 01/03/2023]
Abstract
LH and chorionic gonadotropin (CG) are glycoproteins fundamental to sexual development and reproduction. Because they act on the same receptor (LHCGR), the general consensus has been that LH and human CG (hCG) are equivalent. However, separate evolution of LHβ and hCGβ subunits occurred in primates, resulting in two molecules sharing ~85% identity and regulating different physiological events. Pituitary, pulsatile LH production results in an ~90-minute half-life molecule targeting the gonads to regulate gametogenesis and androgen synthesis. Trophoblast hCG, the "pregnancy hormone," exists in several isoforms and glycosylation variants with long half-lives (hours) and angiogenic potential and acts on luteinized ovarian cells as progestational. The different molecular features of LH and hCG lead to hormone-specific LHCGR binding and intracellular signaling cascades. In ovarian cells, LH action is preferentially exerted through kinases, phosphorylated extracellular-regulated kinase 1/2 (pERK1/2) and phosphorylated AKT (also known as protein kinase B), resulting in irreplaceable proliferative/antiapoptotic signals and partial agonism on progesterone production in vitro. In contrast, hCG displays notable cAMP/protein kinase A (PKA)-mediated steroidogenic and proapoptotic potential, which is masked by estrogen action in vivo. In vitro data have been confirmed by a large data set from assisted reproduction, because the steroidogenic potential of hCG positively affects the number of retrieved oocytes, and LH affects the pregnancy rate (per oocyte number). Leydig cell in vitro exposure to hCG results in qualitatively similar cAMP/PKA and pERK1/2 activation compared with LH and testosterone. The supposed equivalence of LH and hCG has been disproved by such data, highlighting their sex-specific functions and thus deeming it an oversight caused by incomplete understanding of clinical data.
Collapse
Affiliation(s)
- Livio Casarini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Giulia Brigante
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Manuela Simoni
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| |
Collapse
|
8
|
Yunqi H, Fangrui Y, Yongyan Y, Yunjian J, Wenhui Z, Kun C, Min L, Xianfeng L, Caixia B. miR-455 Functions as a Tumor Suppressor Through Targeting GATA6 in Colorectal Cancer. Oncol Res 2018; 27:311-316. [PMID: 29615149 PMCID: PMC7848416 DOI: 10.3727/096504018x15220579006875] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence indicates that microRNAs (miRNAs) are often aberrantly expressed in human cancers. Meanwhile, the importance of miRNAs in regulating multiple cellular biological processes has been appreciated. The aim of this study was to investigate the significance of miR-455 and identify its possible mechanism in regulating colorectal cancer (CRC) progression. We found that the expression of miR-455 was sharply reduced in CRC tissues and cell lines. Importantly, the low expression of miR-455 was associated with poor overall survival of CRC patients. Overexpression of miR-455 in CRC cell lines significantly inhibited cell proliferation and migration in vitro. Moreover, GATA-binding protein 6 (GATA6), whose expression can be inversely regulated by miR-455 in CRC cell lines, was validated as a direct target of miR-455. Overall, our results revealed that miR-455 functions as a tumor suppressor, and its downregulation may contribute to CRC progression. Our study may provide a novel therapeutic target for CRC in the future.
Collapse
Affiliation(s)
- Hua Yunqi
- Cancer Biotherapy Center and Oncology Department, Baotou Tumor Hospital, Clinical Oncology of Baotou Medical College, Baotou, Inner Mongolia, P.R. China
| | - Yin Fangrui
- Department of Central Laboratory, The First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, P.R. China
| | - Yang Yongyan
- Cancer Biotherapy Center and Oncology Department, Baotou Tumor Hospital, Clinical Oncology of Baotou Medical College, Baotou, Inner Mongolia, P.R. China
| | - Jin Yunjian
- Cancer Biotherapy Center and Oncology Department, Baotou Tumor Hospital, Clinical Oncology of Baotou Medical College, Baotou, Inner Mongolia, P.R. China
| | - Zhang Wenhui
- Cancer Biotherapy Center and Oncology Department, Baotou Tumor Hospital, Clinical Oncology of Baotou Medical College, Baotou, Inner Mongolia, P.R. China
| | - Cao Kun
- Cancer Biotherapy Center and Oncology Department, Baotou Tumor Hospital, Clinical Oncology of Baotou Medical College, Baotou, Inner Mongolia, P.R. China
| | - Li Min
- Cancer Biotherapy Center and Oncology Department, Baotou Tumor Hospital, Clinical Oncology of Baotou Medical College, Baotou, Inner Mongolia, P.R. China
| | - Liu Xianfeng
- Cancer Biotherapy Center and Oncology Department, Baotou Tumor Hospital, Clinical Oncology of Baotou Medical College, Baotou, Inner Mongolia, P.R. China
| | - Ba Caixia
- Cancer Biotherapy Center and Oncology Department, Baotou Tumor Hospital, Clinical Oncology of Baotou Medical College, Baotou, Inner Mongolia, P.R. China
| |
Collapse
|
9
|
Doroszko M, Chrusciel M, Belling K, Vuorenoja S, Dalgaard M, Leffers H, Nielsen HB, Huhtaniemi I, Toppari J, Rahman NA. Novel genes involved in pathophysiology of gonadotropin-dependent adrenal tumors in mice. Mol Cell Endocrinol 2017; 444:9-18. [PMID: 28131743 DOI: 10.1016/j.mce.2017.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/21/2017] [Accepted: 01/22/2017] [Indexed: 02/01/2023]
Abstract
Specific inbred strains and transgenic inhibin-α Simian Virus 40 T antigen (inhα/Tag) mice are genetically susceptible to gonadectomy-induced adrenocortical neoplasias. We identified altered gene expression in prepubertally gonadectomized (GDX) inhα/Tag and wild-type (WT) mice. Besides earlier reported Gata4 and Lhcgr, we found up-regulated Esr1, Prlr-rs1, and down-regulated Grb10, Mmp24, Sgcd, Rerg, Gnas, Nfatc2, Gnrhr, Igf2 in inhα/Tag adrenal tumors. Sex-steroidogenic enzyme genes expression (Srd5a1, Cyp19a1) was up-regulated in tumors, but adrenal-specific steroidogenic enzyme (Cyp21a1, Cyp11b1, Cyp11b2) down-regulated. We localized novel Lhcgr transcripts in adrenal cortex parenchyma and in non-steroidogenic A cells, in GDX WT and in intact WT mice. We identified up-regulated Esr1 as a potential novel biomarker of gonadectomy-induced adrenocortical tumors in inhα/Tag mice presenting with an inverted adrenal-to-gonadal steroidogenic gene expression profile. A putative normal adrenal remodeling or tumor suppressor role of the down-regulated genes (e.g. Grb10, Rerg, Gnas, and Nfatc2) in the tumors remains to be addressed.
Collapse
Affiliation(s)
- Milena Doroszko
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland
| | - Marcin Chrusciel
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland
| | - Kirstine Belling
- DTU Multi-Assay Core, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Susanna Vuorenoja
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland
| | - Marlene Dalgaard
- DTU Multi-Assay Core, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henrik Leffers
- DTU Multi-Assay Core, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - H Bjørn Nielsen
- DTU Multi-Assay Core, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ilpo Huhtaniemi
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland; Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Jorma Toppari
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland; Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Nafis A Rahman
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland; Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland.
| |
Collapse
|
10
|
Plöckinger U, Chrusciel M, Doroszko M, Saeger W, Blankenstein O, Weizsäcker K, Kroiss M, Hauptmann K, Radke C, Pöllinger A, Tiling N, Steinmüller T, Huhtaniemi I, Quinkler M, Bertherat J, Lacroix A, Rahman N. Functional Implications of LH/hCG Receptors in Pregnancy-Induced Cushing Syndrome. J Endocr Soc 2017; 1:57-71. [PMID: 29264446 PMCID: PMC5677213 DOI: 10.1210/js.2016-1021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/20/2016] [Indexed: 12/15/2022] Open
Abstract
Context: Elevated human choriogonadotropin (hCG) may stimulate aberrantly expressed luteinizing hormone (LH)/hCG receptor (LHCGR) in adrenal glands, resulting in pregnancy-induced bilateral macronodular adrenal hyperplasia and transient Cushing syndrome (CS). Objective: To determine the role of LHCGR in transient, pregnancy-induced CS. Design, Setting, Patient, and Intervention: We investigated the functional implications of LHCGRs in a patient presenting, at a tertiary referral center, with repeated pregnancy-induced CS with bilateral adrenal hyperplasia, resolving after parturition. Main Outcome Measures and Results: Acute testing for aberrant hormone receptors was negative except for arginine vasopressin (AVP)–increased cortisol secretion. Long-term hCG stimulation induced hypercortisolism, which was unsuppressed by dexamethasone. Postadrenalectomy histopathology demonstrated steroidogenically active adrenocortical hyperplasia and ectopic cortical cell clusters in the medulla. Quantitative polymerase chain reaction showed upregulated expression of LHCGR, transcription factors GATA4, ZFPM2, and proopiomelanocortin (POMC), AVP receptors (AVPRs) AVPR1A and AVPR2, and downregulated melanocortin 2 receptor (MC2R) vs control adrenals. LHCGR was localized in subcapsular, zona glomerulosa, and hyperplastic cells. Single adrenocorticotropic hormone–positive medullary cells were demonstrated in the zona reticularis. The role of adrenal adrenocorticotropic hormone was considered negligible due to downregulated MC2R. Coexpression of CYP11B1/CYP11B2 and AVPR1A/AVPR2 was observed in ectopic cortical cells in the medulla. hCG stimulation of the patient’s adrenal cell cultures significantly increased cyclic adenosine monophosphate, corticosterone, 11-deoxycortisol, cortisol, and androstenedione production. CTNNB1, PRKAR1A, ARMC5, and PRKACA gene mutational analyses were negative. Conclusion: Nongenetic, transient, somatic mutation-independent, pregnancy-induced CS was due to hCG-stimulated transformation of LHCGR-positive undifferentiated subcapsular cells (presumably adrenocortical progenitors) into LHCGR-positive hyperplastic cortical cells. These cells respond to hCG stimulation with cortisol secretion. Without the ligand, they persist with aberrant LHCGR expression and the ability to respond to the same stimulus.
Collapse
Affiliation(s)
- Ursula Plöckinger
- Interdisciplinary Center of Metabolism: Endocrinology, Diabetes and Metabolism, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Marcin Chrusciel
- Department of Physiology, Institute of Biomedicine, 20520 Turku, Finland
| | - Milena Doroszko
- Department of Physiology, Institute of Biomedicine, 20520 Turku, Finland
| | - Wolfgang Saeger
- Institute of Pathology, University of Hamburg, 2000 Hamburg, Germany
| | | | | | - Matthias Kroiss
- Endocrine and Diabetes Unit, Department of Internal Medicine I, University of Würzburg, 97080 Würzburg, Germany
| | - Kathrin Hauptmann
- Institute of Pathology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | | | - Alexander Pöllinger
- Department of Radiology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Nikolaus Tiling
- Interdisciplinary Center of Metabolism: Endocrinology, Diabetes and Metabolism, Charité University Medicine Berlin, 13353 Berlin, Germany
| | | | - Ilpo Huhtaniemi
- Department of Physiology, Institute of Biomedicine, 20520 Turku, Finland.,Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom
| | | | | | - André Lacroix
- Division of Endocrinology, Department of Medicine, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2W 1T8 Canada; and
| | - Nafis Rahman
- Department of Physiology, Institute of Biomedicine, 20520 Turku, Finland.,Medical University of Białytsok, 15001 Białytsok, Poland
| |
Collapse
|
11
|
Fouquet B, Santulli P, Noel JC, Misrahi M. Ovarian-like differentiation in eutopic and ectopic endometrioses with aberrant FSH receptor, INSL3 and GATA4/6 expression. BBA CLINICAL 2016; 6:143-152. [PMID: 27882303 PMCID: PMC5118588 DOI: 10.1016/j.bbacli.2016.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/25/2016] [Accepted: 11/02/2016] [Indexed: 11/23/2022]
Abstract
Endometriosis, the hormone-dependent extrauterine dissemination of endometrial tissue outside the uterus, affects 5–15% of women of reproductive age. Pathogenesis remains poorly understood as well as the estrogen production by endometriotic tissue yielding autocrine growth. Estrogens (E2) are normally produced by the ovaries. We investigated whether aberrant “ovarian-like” differentiation occurred in endometriosis. 69 women, with (n = 38) and without (n = 31) histologically proven endometriosis were recruited. Comparative RT-qPCR was performed on 20 genes in paired eutopic and ectopic lesions, together with immunohistochemistry. Functional studies were performed in primary cultures of epithelial endometriotic cells (EEC). A broaden ovarian-like differentiation was found in half eutopic and all ectopic endometriosis with aberrant expression of transcripts and protein for the transcription factors GATA4 and GATA6 triggering ovarian differentiation, for the FSH receptor (FSHR) and the ovarian hormone INSL3. Like in ovaries the FSHR induced aromatase, the key enzyme in E2 production, and vascular factors in EEC. The LH receptor (LHR) was also aberrantly expressed in a subset of ectopic endometriosis (21%) and induced strongly androgen-synthesizing enzymes and INSL3 in EEC, as in ovaries, as well as endometriotic cell growth. The ERK pathway mediates signaling by both hormones. A positive feedback loop occurred through FSHR and LHR-dependent induction of GATA4/6 in EEC, as in ovaries, enhancing the production of the steroidogenic cascade. This work highlights a novel pathophysiological mechanism with a broadly ovarian pattern of differentiation in half eutopic and all ectopic endometriosis. This study provides new tools that might improve the diagnosis of endometriosis in the future. In endometriosis aberrant E2 production raises questions on ovarian differentiation. FSHR and INSL3 upregulation in eutopic/ectopic, and LHR in ectopic lesions are found. Ovarian GATA4/6 are upregulated in eutopic/ectopic lesions and induced by FSHR and LHR. FSHR and LHR induce steroidogenic enzymes and the ERK pathway in endometriotic cells. New pathophysiological mechanism of endometriosis with tools for diagnosis is shown.
Collapse
Key Words
- CYP11A1, Cytochrome P450 Family 11 Subfamily A Member 1
- CYP17, Cytochrome P450 Family 17 Subfamily A Member 1
- CYP19A1, Cytochrome P450 Family 19 Subfamily A Member 1
- EEC, Epithelial Endometriotic Cells
- EGVEGF, Endocrine Gland-derived vascular endothelial growth factor
- Endometriosis
- FSHR
- FSHR, Follicle Stimulating Hormone Receptor
- GATA4/6
- GATA4/6, GATA binding protein 4/6
- INSL3
- INSL3, Insulin Like 3
- LHR
- LHR, Luteinizing Hormone Receptor
- Ovarian- like differentiation
- PTGER, Prostaglandin E Receptor
- PTGS2, Prostaglandin-Endoperoxide Synthase 2
- RT-qPCR, Reverse Transcription quantitative Polymerase Chain Reaction
- SF1, Steroidogenic Factor-1
- VEGF, Vascular Endothelial Growth Factor
Collapse
Affiliation(s)
- Baptiste Fouquet
- Faculté de Médecine Paris Sud, Univ Paris Sud, Université Paris Saclay, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Pietro Santulli
- Faculté de Médecine Paris Sud, Univ Paris Sud, Université Paris Saclay, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Jean-Christophe Noel
- Erasme University Hospital, Department of Pathology, Université Libre de Bruxelles, Belgium
| | - Micheline Misrahi
- Faculté de Médecine Paris Sud, Univ Paris Sud, Université Paris Saclay, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Corresponding author.
| |
Collapse
|
12
|
Carré J, Grunenwald S, Vezzosi D, Mazerolles C, Bennet A, Meduri G, Caron P. Virilizing oncocytic adrenocortical carcinoma: clinical and immunohistochemical studies. Gynecol Endocrinol 2016; 32:662-666. [PMID: 26954035 DOI: 10.3109/09513590.2016.1149811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Oncocytic tumors of the adrenal cortex are rare, mostly nonfunctioning and benign. SETTING Report virilizing oncocytic adrenocortical carcinoma in a 50-year-old woman. PATIENT She presented a recent and progressive virilization syndrome, associated with high blood pressure. Hormonal evaluation showed elevated serum testosterone and delta-4-androstenedione levels, normal urinary free cortisol level and incomplete suppression of cortisol at the 1 mg dexamethasone suppression test. CT scan of the abdomen revealed a 35 mm left adrenal mass. INTERVENTION The patient underwent a left adrenalectomy, and the histological study showed a 3 cm oncocytic adrenocortical carcinoma with signs of malignancy. RESULTS Immunohistochemical study revealed that tumor cells expressed the steroidogenic enzymes involved into androgen synthesis (3βHSD and P450c17α), P450 aromatase and luteinizing hormone (LH) receptors. Post-operatively, signs of virilization improved rapidly, serum testosterone and delta-4-androstenedione levels returned to normal, as did the dexamethasone suppression test. During follow-up CT-scan and 18-FDG PET/CT showed a right ovary mass, corresponding to a follicular cyst associated with hyperthecosis. The patient is alive with no recurrence 48 months after adrenal surgery. CONCLUSION Oncocytic adrenocortical carcinomas, although extremely rare, should be considered in women with a virilization syndrome. In this woman immunohistochimical studies revealed the presence of steroidogenic enzymes involved into androgen synthesis and aromatization, and LH receptors could be implicated in this pathology.
Collapse
Affiliation(s)
- Julie Carré
- a Department of Endocrinology and Metabolic Diseases , Pôle Cardio-Vasculaire Et Métabolique, CHU Larrey , Toulouse , France
| | - Solange Grunenwald
- a Department of Endocrinology and Metabolic Diseases , Pôle Cardio-Vasculaire Et Métabolique, CHU Larrey , Toulouse , France
| | - Delphine Vezzosi
- a Department of Endocrinology and Metabolic Diseases , Pôle Cardio-Vasculaire Et Métabolique, CHU Larrey , Toulouse , France
| | | | - Antoine Bennet
- a Department of Endocrinology and Metabolic Diseases , Pôle Cardio-Vasculaire Et Métabolique, CHU Larrey , Toulouse , France
| | | | - Philippe Caron
- a Department of Endocrinology and Metabolic Diseases , Pôle Cardio-Vasculaire Et Métabolique, CHU Larrey , Toulouse , France
| |
Collapse
|
13
|
Song Y, Tian T, Fu X, Wang W, Li S, Shi T, Suo A, Ruan Z, Guo H, Yao Y. GATA6 is overexpressed in breast cancer and promotes breast cancer cell epithelial-mesenchymal transition by upregulating slug expression. Exp Mol Pathol 2015; 99:617-27. [PMID: 26505174 DOI: 10.1016/j.yexmp.2015.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/08/2015] [Accepted: 10/21/2015] [Indexed: 12/18/2022]
Abstract
Metastasis is the leading cause of death in breast cancer (BC) patients. However, until now, the mechanisms of BC metastasis remain elusive. GATA6 is a member of the GATA transcription factor family that plays critical regulatory roles in tissue development, which has been proposed as an oncogene in many types of tumors; however, its role and underlying mechanisms in BC remain unclear. Here we show that GATA6 is elevated in BC and its expression level is positively correlated with metastasis. In addition Kaplan-Meier survival analysis showed that high expression of GATA6 was associated with decreased overall survival of BC patients. Overexpression of GATA6 in BC cells increased epithelial-mesenchymal transition. In contrast, silencing GATA6 in aggressive BC cells inhibited this process. Mechanistically, we found GATA6 exerts its function through active slug transcription. Slug knockdown blocked the GATA6-driven EMT. Furthermore, slug expression in human BC is positively correlated with GATA6 expression. Our results, for the first time, portray a pivotal role of GATA6 in regulating metastatic behaviors of BC cells, suggesting GATA6 is a potential therapeutic target in metastatic BCs.
Collapse
Affiliation(s)
- Yongchun Song
- Department of Oncological Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Tao Tian
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiao Fu
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wenjuan Wang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Suoni Li
- Department of Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, Shaanxi 710061, China
| | - Tingting Shi
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Aili Suo
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhiping Ruan
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hui Guo
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yu Yao
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
14
|
Characterization of transforming growth factor beta superfamily, growth factors, transcriptional factors, and lipopolysaccharide in bovine cystic ovarian follicles. Theriogenology 2015; 84:1043-52. [PMID: 26166168 DOI: 10.1016/j.theriogenology.2015.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 06/04/2015] [Accepted: 06/10/2015] [Indexed: 11/19/2022]
Abstract
The process of transformation of growing bovine follicles into cysts is still a mystery. Local expression of proteins or factors, including transforming growth factor β, growth factors, and transcription factors, plays a central role in mammals. Therefore, in abattoir-derived cystic ovarian follicles and follicular fluid, the role of some transforming growth factor β superfamily proteins, insulinlike growth factor-1 (IGF-1) and GATA-4 and GATA-6, were investigated. The relationship between intrafollicular lipopolysaccharide (LPS) and etiopathogenesis of ovarian cysts was also assessed. Data on the preovulatory follicle and the largest follicle (F1) were compared. The number of intrafollicular LPS-positive samples and LPS concentrations were higher in cysts. Immunohistochemical staining was mildly positive for IGF-1, inhibin alpha, and GATA-4 in thecal cells. Staining for anti-Müllerian hormone (AMH), growth differentiation factor-9, bone morphogenetic protein-6 (BMP-6), and GATA-6 was insufficient for their quantitation, and oocytes could not be stained for any of the proteins tested in the cystic follicles. Expression of BMP-6, inhibin alpha, and IGF-1 was moderately higher in granulosa cells of F1 follicles, and all the proteins were moderately expressed in granulosa cells in preovulatory follicles. However, loss of GATA-6 staining was significant in F1 follicles. Intrafollicular progesterone, IGF-1, and AMH concentrations in cysts and F1 follicles were significantly higher than those in preovulatory follicles. Western blot analyses revealed that follicular fluid inhibin-α was strongly expressed, whereas expression of growth differentiation factor-9, BMP-6, GATA-4 and GATA-6 was lower in cysts than in preovulatory follicles. Also, high intrafollicular AMH concentration and low BMP-6 expression were closely associated with cystic degeneration and atresia. In conclusion, immunohistochemical loss of BMP-6 and GATA-6 in the granulosa cells together with high intrafollicular LPS levels may play important roles in disruption of the ovulatory mechanism and steroidogenic reactions in type 2 cyst. Also, high intrafollicular AMH concentration along with low BMP-6 expression may be used as indicators of the bovine degenarative ovarian follicles.
Collapse
|
15
|
Röhrig T, Pihlajoki M, Ziegler R, Cochran RS, Schrade A, Schillebeeckx M, Mitra RD, Heikinheimo M, Wilson DB. Toying with fate: Redirecting the differentiation of adrenocortical progenitor cells into gonadal-like tissue. Mol Cell Endocrinol 2015; 408:165-77. [PMID: 25498963 PMCID: PMC4417465 DOI: 10.1016/j.mce.2014.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 01/07/2023]
Abstract
Cell fate decisions are integral to zonation and remodeling of the adrenal cortex. Animal models exhibiting ectopic differentiation of gonadal-like cells in the adrenal cortex can shed light on the molecular mechanisms regulating steroidogenic cell fate. In one such model, prepubertal gonadectomy (GDX) of mice triggers the formation of adrenocortical neoplasms that resemble luteinized ovarian stroma. Transcriptomic analysis and genome-wide DNA methylation mapping have identified genetic and epigenetic markers of GDX-induced adrenocortical neoplasia. Members of the GATA transcription factor family have emerged as key regulators of cell fate in this model. Expression of Gata4 is pivotal for the accumulation of gonadal-like cells in the adrenal glands of gonadectomized mice, whereas expression of Gata6 limits the spontaneous and GDX-induced differentiation of gonadal-like cells in the adrenal cortex. Additionally, Gata6 is essential for proper development of the adrenal X-zone, a layer analogous to the fetal zone of the human adrenal cortex. The relevance of these observations to developmental signaling pathways in the adrenal cortex, to other animal models of altered adrenocortical cell fate, and to human diseases is discussed.
Collapse
Affiliation(s)
- Theresa Röhrig
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim - University of Applied Sciences, Mannheim 68163, Germany
| | - Marjut Pihlajoki
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Ricarda Ziegler
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim - University of Applied Sciences, Mannheim 68163, Germany
| | - Rebecca S Cochran
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Anja Schrade
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Maximiliaan Schillebeeckx
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
16
|
Abstract
The human adult adrenal cortex is composed of the zona glomerulosa (zG), zona fasciculata (zF), and zona reticularis (zR), which are responsible for production of mineralocorticoids, glucocorticoids, and adrenal androgens, respectively. The final completion of cortical zonation in humans does not occur until puberty with the establishment of the zR and its production of adrenal androgens; a process called adrenarche. The maintenance of the adrenal cortex involves the centripetal displacement and differentiation of peripheral Sonic hedgehog-positive progenitors cells into zG cells that later transition to zF cells and subsequently zR cells.
Collapse
Affiliation(s)
- Yewei Xing
- Internal Medicine, Medical School, University of Michigan, 109 Zina Pitcher Place, 1860 BSRB, Ann Arbor, MI 48109, USA
| | - Antonio M Lerario
- Internal Medicine, Medical School, University of Michigan, 109 Zina Pitcher Place, 1860 BSRB, Ann Arbor, MI 48109, USA
| | - William Rainey
- Internal Medicine, Medical School, University of Michigan, 109 Zina Pitcher Place, 1860 BSRB, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, 2560D MSRB II, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5622, USA
| | - Gary D Hammer
- Endocrine Oncology Program, Center for Organogenesis, University of Michigan, 109 Zina Pitcher Place, 1528 BSRB, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
17
|
Abstract
This comparative review highlights animal models of adrenocortical neoplasia useful either for mechanistic studies or translational research. Three model species-mouse, ferret, and dog-are detailed. The relevance of each of these models to spontaneous and inherited adrenocortical tumors in humans is discussed.
Collapse
Affiliation(s)
- Sara Galac
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht 3508 TD, The Netherlands
| | - David B Wilson
- Departments of Pediatrics and Developmental Biology, St. Louis Children's Hospital, Washington University, 660 South Euclid Avenue, Box 8208, St Louis, MO 63110, USA.
| |
Collapse
|
18
|
SHEN FEI, LI JIANGLIN, CAI WENSONG, ZHU GUANGHUI, GU WEILI, JIA LIN, XU BO. GATA6 predicts prognosis and hepatic metastasis of colorectal cancer. Oncol Rep 2013; 30:1355-61. [DOI: 10.3892/or.2013.2544] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 04/29/2013] [Indexed: 11/06/2022] Open
|
19
|
Chrusciel M, Vuorenoja S, Mohanty B, Rivero-Müller A, Li X, Toppari J, Huhtaniemi I, Rahman NA. Transgenic GATA-4 expression induces adrenocortical tumorigenesis in C57Bl/6 mice. J Cell Sci 2013; 126:1845-57. [PMID: 23444372 DOI: 10.1242/jcs.119347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A link between elevated luteinizing hormone (LH) levels, GATA-4 and LH receptor (LHCGR) expression and gonadotropin-dependent adrenocortical tumorigenesis in humans and mice has been shown. To assess the mechanistic tumorigenic interrelationships between these factors, we transgenically expressed Gata4 under the 21-hydroxylase promoter (Cyp21a1, 21-OH) in C57Bl/6N mice. There was a gradual age-dependent increase of GATA-4 expression only in 21-OH-GATA-4 (TG) female adrenals, in association with slowly progressing neoplasia of non-steroidogenic spindle-shaped A cells in the subcapsular cortex. Gonadectomy (GDX), apparently through direct action of elevated serum LH, markedly enhanced the adrenocortical neoplasia, which now also appeared in GDX TG males. The neoplastic areas of the post-GDX TG adrenals contained, besides A cells, larger lipid-laden, steroidogenically active and LHCGR-positive B cells. Prolonged (>10 months) exposure to elevated post-GDX LH levels resulted in formation of adrenocortical adenomas in the TG mice. Intact and GDX TG mouse adrenals displayed elevated FOG-2 and decreased GATA-6 expression. Additionally, increased expression/activation of components of the Inhbb-Acvr2a-Acvr1c-Smad2/3 signaling system was observed in 12-month-old GDX TG adrenals. Our findings show that two distinct GATA-4-dependent populations of neoplastic adrenocortical cells form: non-steroidogenic LH-independent A cells and steroidogenic LH-dependent B cells.
Collapse
Affiliation(s)
- Marcin Chrusciel
- Department of Physiology, Institute of Biomedicine, University of Turku, FIN-20520, Finland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Audenet F, Méjean A, Chartier-Kastler E, Rouprêt M. Adrenal tumours are more predominant in females regardless of their histological subtype: a review. World J Urol 2013; 31:1037-43. [PMID: 23299088 DOI: 10.1007/s00345-012-1011-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/11/2012] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Adrenal tumours are a heterogeneous group of rare tumours. The aim of this article was to critically review gender-specific differences in the incidence, prognosis and symptoms of the different subtypes of adrenal tumours. METHODS Data acquisition regarding gender differences in adrenal tumours was performed using MEDLINE searches with combinations of the following keywords: adrenal tumours, gender, sex differences, adrenocortical carcinoma, pheochromocytoma, incidentaloma, risk factors and genetic aspects. RESULTS Data are scarce in the literature concerning the effects of gender on adrenal lesions. Although the incidence of most types of tumours (other than breast cancer and other gender-related tumours) is higher in men than in women, evidence suggests that adrenal tumours (i.e. incidentalomas, adrenal carcinomas, oncocytomas and adrenal cysts) are more frequent in women than in men. In addition, female patients have significantly increased numbers of self-reported signs and symptoms of pheochromocytoma than male patients, irrespective of biochemical phenotype and tumour presentation. Relatively little research has been performed examining the reasons for these disparities. However, hormonal interactions involving complex adrenal, endocrine and neurocrine functions together with variations in hormonal receptor sensitivity have been hypothesised to be involved. CONCLUSION Gender differences exist in the incidence and symptoms of several subtypes of adrenal tumours. The reasons for these disparities are not well established. In addition to epidemiological data, these results need to be further investigated to better understand the role of genetic and hormonal predispositions in the development, behaviour and aggressiveness of adrenal tumours.
Collapse
Affiliation(s)
- François Audenet
- Academic Department of Urology of Georges Pompidou European Hospital (HEGP), Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris Descartes , University Paris V, Paris, France
| | | | | | | |
Collapse
|
21
|
Yates R, Katugampola H, Cavlan D, Cogger K, Meimaridou E, Hughes C, Metherell L, Guasti L, King P. Adrenocortical Development, Maintenance, and Disease. Curr Top Dev Biol 2013; 106:239-312. [DOI: 10.1016/b978-0-12-416021-7.00007-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Beuschlein F, Galac S, Wilson DB. Animal models of adrenocortical tumorigenesis. Mol Cell Endocrinol 2012; 351:78-86. [PMID: 22100615 PMCID: PMC3288624 DOI: 10.1016/j.mce.2011.09.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 09/25/2011] [Accepted: 09/26/2011] [Indexed: 12/16/2022]
Abstract
Over the past decade, research on human adrenocortical neoplasia has been dominated by gene expression profiling of tumor specimens and by analysis of genetic disorders associated with a predisposition to these tumors. Although these studies have identified key genes and associated signaling pathways that are dysregulated in adrenocortical neoplasms, the molecular events accounting for the frequent occurrence of benign tumors and low rate of malignant transformation remain unknown. Moreover, the prognosis for patients with adrenocortical carcinoma remains poor, so new medical treatments are needed. Naturally occurring and genetically engineered animal models afford a means to investigate adrenocortical tumorigenesis and to develop novel therapeutics. This comparative review highlights adrenocortical tumor models useful for either mechanistic studies or preclinical testing. Three model species - mouse, ferret, and dog - are reviewed, and their relevance to adrenocortical tumors in humans is discussed.
Collapse
Affiliation(s)
- Felix Beuschlein
- Endocrine Research Unit, Medizinische Klinik Campus Innenstadt, Klinikum der LMU, Ziemssenstr. 1, D-80336 Munich, Germany
| | - Sara Galac
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - David B. Wilson
- Departments of Pediatrics and Developmental Biology, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
| |
Collapse
|
23
|
GATA6 promotes colon cancer cell invasion by regulating urokinase plasminogen activator gene expression. Neoplasia 2011; 12:856-65. [PMID: 21076612 DOI: 10.1593/neo.10224] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 07/09/2010] [Accepted: 07/09/2010] [Indexed: 11/18/2022] Open
Abstract
GATA6 is a zinc finger transcription factor expressed in the colorectal epithelium. We have examined the expression of GATA6 in colon cancers and investigated the mechanisms by which GATA6 regulates colon cancer cell invasion. GATA6 was overexpressed in colorectal polyps and primary and metastatic tumors. GATA6 was strongly expressed in both the nuclear and cytoplasmic compartments of the colon cancer cells. GATA6 expression was upregulated in invasive HT29 and KM12L4 cells compared with the parental HT29 and KM12 cells and positively correlated with urokinase-type plasminogen activator (uPA) gene expression. Small interfering RNA (siRNA) knockdown of GATA6 resulted in reduced uPA gene expression and cell invasion. GATA6 bound to the uPA gene regulatory sequences in vivo and activated uPA promoter activity in vitro. uPA promoter deletion analysis indicated that the promoter proximal Sp1 sites were required for GATA6 activation of the uPA promoter. Accordingly, GATA6 physically associated with Sp1 and siRNA knockdown of Sp1 decreased GATA6 activation of the uPA promoter activity suggesting that Sp1 recruits GATA6 to the uPA promoter and mediates GATA6 induced activation of the uPA promoter activity. On the basis of our results, we conclude that GATA6 is an important regulator of uPA gene expression, and the dysregulated expression of GATA6 contributes to colorectal tumorigenesis and tumor invasion.
Collapse
|
24
|
Abstract
Adrenocortical carcinomas (ACCs) are heterogeneous tumors with a poor prognosis. The rarity of this disorder causes a lack of treatment experience and material availability which is necessary to optimize existing treatments and to develop novel therapeutic strategies. Although surgery is still the treatment of choice, adjuvant therapies are urgently needed as the rate of recurrence for these tumors is high. In recent years molecular characterization of surgical tumor specimen has aided in the understanding of disease mechanisms and definition of therapeutic targets also in adrenocortical carcinoma. However, most of the functional properties of potential target molecules are still unpredictable from pure expression and sequence analysis. For functional studies of gene products, mouse models remain to be intensively utilized as an experimental system due to the similarity to humans with respect to genome organization, development and physiology. Here we give an overview on rodent models that have been described to either have adrenocortical tumors as part of their phenotype or have been utilized for therapeutic screens as adrenocortical tumor models.
Collapse
Affiliation(s)
- Constanze Hantel
- Department of Medicine, Endocrine Research, University Hospital Innenstadt, Ludwig Maximilians University, Ziemssenstr. 1, D-80336 Munich, Germany
| | | |
Collapse
|
25
|
Bielinska M, Parviainen H, Kiiveri S, Heikinheimo M, Wilson DB. Review paper: origin and molecular pathology of adrenocortical neoplasms. Vet Pathol 2009; 46:194-210. [PMID: 19261630 DOI: 10.1354/vp.46-2-194] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neoplastic adrenocortical lesions are common in humans and several species of domestic animals. Although there are unanswered questions about the origin and evolution of adrenocortical neoplasms, analysis of human tumor specimens and animal models indicates that adrenocortical tumorigenesis involves both genetic and epigenetic alterations. Chromosomal changes accumulate during tumor progression, and aberrant telomere function is one of the key mechanisms underlying chromosome instability during this process. Epigenetic changes serve to expand the size of the uncommitted adrenal progenitor population, modulate their phenotypic plasticity (i.e., responsiveness to extracellular signals), and increase the likelihood of subsequent genetic alterations. Analyses of heritable and spontaneous types of human adrenocortical tumors documented alterations in either cell surface receptors or their downstream effectors that impact neoplastic transformation. Many of the mutations associated with benign human adrenocortical tumors result in dysregulated cyclic adenosine monophosphate signaling, whereas key factors and/or signaling pathways associated with adrenocortical carcinomas include dysregulated expression of the IGF2 gene cluster, activation of the Wnt/beta-catenin pathway, and inactivation of the p53 tumor suppressor. A better understanding of the factors and signaling pathways involved in adrenal tumorigenesis is necessary to develop targeted pharmacologic and genetic therapies.
Collapse
Affiliation(s)
- M Bielinska
- Box 8208, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
26
|
Xing Y, Nakamura Y, Rainey WE. G protein-coupled receptor expression in the adult and fetal adrenal glands. Mol Cell Endocrinol 2009; 300:43-50. [PMID: 19027826 PMCID: PMC2679220 DOI: 10.1016/j.mce.2008.10.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 10/22/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
Hormonal regulation of adrenal function occurs primarily through G protein-coupled receptors (GPCR), which may play different roles in fetal vs. adult adrenal glands. In this study, we compared the transcript levels of GPCR between fetal and adult adrenal and found that gonadotropin-releasing hormone receptor (GnRHR), latrophilin 3 receptor, G protein-coupled receptor 37, angiotensin II receptor type 2, latrophilin 2 receptor and melanocortin receptor were expressed at significantly higher levels in fetal adrenal. High GnRHR protein expression was also detected in fetal adrenal using immunohistochemical analysis. To define potential ligand sources for fetal adrenal GnRHR, we demonstrated that GnRH1 mRNA was expressed at high levels in the placenta, while fetal adrenal had high expression of GnRH2. In summary, certain GPCR particularly GnRHR were highly expressed in fetal adrenal and the expression of GnRH mRNA in the placenta and the fetal adrenal raises the possibility of endocrine and/or paracrine/autocrine influences on fetal adrenal function. However, the exact function of GnRHR in fetal adrenal remains to be determined.
Collapse
MESH Headings
- Adrenal Glands/cytology
- Adrenal Glands/physiology
- Female
- Fetus/anatomy & histology
- Fetus/physiology
- Gene Expression Regulation, Developmental
- Humans
- Oligonucleotide Array Sequence Analysis
- Pregnancy
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, LHRH/genetics
- Receptors, LHRH/metabolism
- Receptors, Melanocortin/genetics
- Receptors, Melanocortin/metabolism
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
Collapse
Affiliation(s)
| | | | - William E. Rainey
- Corresponding author: William E Rainey, Ph.D., Address: Department of Physiology, Medical College of Georgia, 1120 15th Street, CA Building – Room 3094, Augusta, GA 30912, Phone: 706-721-7665, Fax: 706-721-8360,
| |
Collapse
|
27
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2008; 15:284-299. [PMID: 18438178 DOI: 10.1097/med.0b013e3283040e80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
van Hamburg JP, de Bruijn MJW, Dingjan GM, Beverloo HB, Diepstraten H, Ling KW, Hendriks RW. Cooperation of Gata3, c-Myc and Notch in malignant transformation of double positive thymocytes. Mol Immunol 2008; 45:3085-95. [PMID: 18471881 DOI: 10.1016/j.molimm.2008.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/07/2008] [Accepted: 03/10/2008] [Indexed: 12/16/2022]
Abstract
Gata transcription factors are critical regulators of proliferation and differentiation implicated in various human cancers, but specific genes activated by Gata proteins remain to be identified. We previously reported that enforced expression of Gata3 during T cell development in CD2-Gata3 transgenic mice induced CD4(+)CD8(+) double-positive (DP) T cell lymphoma. Here, we show that the presence of the DO11.10 T-cell receptor transgene, which directs DP cells towards the CD4 lineage, resulted in enhanced lymphoma development and a dramatic increase in thymocyte cell size in CD2-Gata3 transgenic mice. CD2-Gata3 DP cells expressed high levels of the proto-oncogene c-Myc but the Notch1 signaling pathway, which is known to induce c-Myc, was not activated. Gene expression profiling showed that in CD2-Gata3 lymphoma cells transcription of c-Myc and its target genes was further increased. A substantial fraction of CD2-Gata3 lymphomas had trisomy of chromosome 15, leading to an increased c-Myc gene dose. Interestingly, most lymphomas showed high expression of the Notch targets Deltex1 and Hes1, often due to activating Notch1 PEST domain mutations. Therefore, we conclude that enforced Gata3 expression converts DP thymocytes into a pre-malignant state, characterized by high c-Myc expression, whereby subsequent induction of Notch1 signaling cooperates to establish malignant transformation. The finding that Gata3 regulates c-Myc expression levels, in a direct or indirect fashion, may explain the parallel phenotypes of mice with overexpression or deficiency of either of the two transcription factors.
Collapse
|
29
|
Doghman M, Karpova T, Rodrigues GA, Arhatte M, De Moura J, Cavalli LR, Virolle V, Barbry P, Zambetti GP, Figueiredo BC, Heckert LL, Lalli E. Increased steroidogenic factor-1 dosage triggers adrenocortical cell proliferation and cancer. Mol Endocrinol 2007; 21:2968-2987. [PMID: 17761949 DOI: 10.1210/me.2007-0120] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Steroidogenic factor-1 (SF-1/Ad4BP; NR5A1), a nuclear receptor transcription factor, has a pivotal role in adrenal and gonadal development in humans and mice. A frequent feature of childhood adrenocortical tumors is SF-1 amplification and overexpression. Here we show that an increased SF-1 dosage can by itself augment human adrenocortical cell proliferation through concerted actions on the cell cycle and apoptosis. This effect is dependent on an intact SF-1 transcriptional activity. Gene expression profiling showed that an increased SF-1 dosage regulates transcripts involved in steroid metabolism, the cell cycle, apoptosis, and cell adhesion to the extracellular matrix. Consistent with these results, increased SF-1 levels selectively modulate the steroid secretion profile of adrenocortical cells, reducing cortisol and aldosterone production and maintaining dehydroepiandrosterone sulfate secretion. As a model to understand the mechanisms of transcriptional regulation by increased SF-1 dosage, we studied FATE1, coding for a cancer-testis antigen implicated in the control of cell proliferation. Increased SF-1 levels increase its binding to a consensus site in FATE1 promoter and stimulate its activity through modulation of the recruitment of specific cofactors. On the other hand, sphingosine, which can compete with phospholipids for binding to SF-1, had no effect on the SF-1 dosage-dependent increase of adrenocortical cell proliferation and expression of the FATE1 promoter. In mice, increased Sf-1 dosage produces adrenocortical hyperplasia and formation of tumors expressing gonadal markers (Amh, Gata-4), which originate from the subcapsular region of the adrenal cortex. Gene expression profiling revealed that genes involved in cell adhesion and the immune response and transcription factor signal transducer and activator of transcription-3 (Stat3) are differentially expressed in Sf-1 transgenic mouse adrenals compared with wild-type adrenals. Our studies reveal a critical role for SF-1 dosage in adrenocortical tumorigenesis and constitute a rationale for the development of drugs targeting SF-1 transcriptional activity for adrenocortical tumor therapy.
Collapse
Affiliation(s)
- Mabrouka Doghman
- Institut de Pharmacologie Moléculaire et Cellulaire Centre National de la Recherche Scientifique Unité Mixte de Recherche 6097, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|