1
|
Negrón-Piñeiro LJ, Wu Y, Mehta R, Maguire JE, Chou C, Lee J, Dahia CL, Di Gregorio A. Fine-Tuned Expression of Evolutionarily Conserved Signaling Molecules in the Ciona Notochord. Int J Mol Sci 2024; 25:13631. [PMID: 39769393 PMCID: PMC11728170 DOI: 10.3390/ijms252413631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
The notochord is an axial structure required for the development of all chordate embryos, from sea squirts to humans. Over the course of more than half a billion years of chordate evolution, in addition to its structural function, the notochord has acquired increasingly relevant patterning roles for its surrounding tissues. This process has involved the co-option of signaling pathways and the acquisition of novel molecular mechanisms responsible for the precise timing and modalities of their deployment. To reconstruct this evolutionary route, we surveyed the expression of signaling molecules in the notochord of the tunicate Ciona, an experimentally amenable and informative chordate. We found that several genes encoding for candidate components of diverse signaling pathways are expressed during notochord development, and in some instances, display distinctive regionalized and/or lineage-specific patterns. We identified and deconstructed notochord enhancers associated with TGF-β and Ctgf, two evolutionarily conserved signaling genes that are expressed dishomogeneously in the Ciona notochord, and shed light on the cis-regulatory origins of their peculiar expression patterns.
Collapse
Affiliation(s)
- Lenny J. Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Yushi Wu
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Ravij Mehta
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Julie E. Maguire
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Cindy Chou
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Joyce Lee
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Chitra L. Dahia
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Graduate School of Medical Science, New York, NY 10065, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| |
Collapse
|
2
|
Holt E, Stanton-Turcotte D, Iulianella A. Development of the Vertebrate Trunk Sensory System: Origins, Specification, Axon Guidance, and Central Connectivity. Neuroscience 2021; 458:229-243. [PMID: 33460728 DOI: 10.1016/j.neuroscience.2020.12.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/09/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022]
Abstract
Crucial to an animal's movement through their environment and to the maintenance of their homeostatic physiology is the integration of sensory information. This is achieved by axons communicating from organs, muscle spindles and skin that connect to the sensory ganglia composing the peripheral nervous system (PNS), enabling organisms to collect an ever-constant flow of sensations and relay it to the spinal cord. The sensory system carries a wide spectrum of sensory modalities - from sharp pain to cool refreshing touch - traveling from the periphery to the spinal cord via the dorsal root ganglia (DRG). This review covers the origins and development of the DRG and the cells that populate it, and focuses on how sensory connectivity to the spinal cord is achieved by the diverse developmental and molecular processes that control axon guidance in the trunk sensory system. We also describe convergences and differences in sensory neuron formation among different vertebrate species to gain insight into underlying developmental mechanisms.
Collapse
Affiliation(s)
- Emily Holt
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia B3H-4R2, Canada
| | - Danielle Stanton-Turcotte
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia B3H-4R2, Canada
| | - Angelo Iulianella
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia B3H-4R2, Canada.
| |
Collapse
|
3
|
Mencio CP, Hussein RK, Yu P, Geller HM. The Role of Chondroitin Sulfate Proteoglycans in Nervous System Development. J Histochem Cytochem 2021; 69:61-80. [PMID: 32936033 PMCID: PMC7780190 DOI: 10.1369/0022155420959147] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
The orderly development of the nervous system is characterized by phases of cell proliferation and differentiation, neural migration, axonal outgrowth and synapse formation, and stabilization. Each of these processes is a result of the modulation of genetic programs by extracellular cues. In particular, chondroitin sulfate proteoglycans (CSPGs) have been found to be involved in almost every aspect of this well-orchestrated yet delicate process. The evidence of their involvement is complex, often contradictory, and lacking in mechanistic clarity; however, it remains obvious that CSPGs are key cogs in building a functional brain. This review focuses on current knowledge of the role of CSPGs in each of the major stages of neural development with emphasis on areas requiring further investigation.
Collapse
Affiliation(s)
- Caitlin P Mencio
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Rowan K Hussein
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, China
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| |
Collapse
|
4
|
Suter TACS, Blagburn SV, Fisher SE, Anderson-Keightly HM, D'Elia KP, Jaworski A. TAG-1 Multifunctionality Coordinates Neuronal Migration, Axon Guidance, and Fasciculation. Cell Rep 2020; 30:1164-1177.e7. [PMID: 31995756 PMCID: PMC7049094 DOI: 10.1016/j.celrep.2019.12.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/25/2019] [Accepted: 12/22/2019] [Indexed: 11/03/2022] Open
Abstract
Neuronal migration, axon fasciculation, and axon guidance need to be closely coordinated for neural circuit assembly. Spinal motor neurons (MNs) face unique challenges during development because their cell bodies reside within the central nervous system (CNS) and their axons project to various targets in the body periphery. The molecular mechanisms that contain MN somata within the spinal cord while allowing their axons to exit the CNS and navigate to their final destinations remain incompletely understood. We find that the MN cell surface protein TAG-1 anchors MN cell bodies in the spinal cord to prevent their emigration, mediates motor axon fasciculation during CNS exit, and guides motor axons past dorsal root ganglia. TAG-1 executes these varied functions in MN development independently of one another. Our results identify TAG-1 as a key multifunctional regulator of MN wiring that coordinates neuronal migration, axon fasciculation, and axon guidance. Suter et al. demonstrate that the motor neuron cell surface molecule TAG-1 confines motor neurons to the central nervous system, promotes motor axon fasciculation, and steers motor axons past inappropriate targets. This study highlights how a single cell adhesion molecule coordinates multiple steps in neuronal wiring through partially divergent mechanisms.
Collapse
Affiliation(s)
- Tracey A C S Suter
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI 02912, USA
| | - Sara V Blagburn
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI 02912, USA
| | - Sophie E Fisher
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI 02912, USA
| | | | - Kristen P D'Elia
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Department of Biology, Providence College, Providence, RI 02918, USA
| | - Alexander Jaworski
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI 02912, USA.
| |
Collapse
|
5
|
Kastriti ME, Stratigi A, Mariatos D, Theodosiou M, Savvaki M, Kavkova M, Theodorakis K, Vidaki M, Zikmund T, Kaiser J, Adameyko I, Karagogeos D. Ablation of CNTN2+ Pyramidal Neurons During Development Results in Defects in Neocortical Size and Axonal Tract Formation. Front Cell Neurosci 2019; 13:454. [PMID: 31749685 PMCID: PMC6844266 DOI: 10.3389/fncel.2019.00454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/23/2019] [Indexed: 01/22/2023] Open
Abstract
Corticothalamic axons express Contactin-2 (CNTN2/TAG-1), a neuronal recognition molecule of the immunoglobulin superfamily involved in neurogenesis, neurite outgrowth, and fasciculation. TAG-1, which is expressed transiently by cortical pyramidal neurons during embryonic development, has been shown to be fundamental for axonal recognition, cellular migration, and neuronal proliferation in the developing cortex. Although Tag-1−/− mice do not exhibit any obvious defects in the corticofugal system, the role of TAG-1+ neurons during the development of the cortex remains elusive. We have generated a mouse model expressing EGFP under the Tag-1 promoter and encompassing the coding sequence of Diptheria Toxin subunit A (DTA) under quiescence with no effect on the expression of endogenous Tag-1. We show that while the line recapitulates the expression pattern of the molecule, it highlights an extended expression in the forebrain, including multiple axonal tracts and neuronal populations, both spatially and temporally. Crossing these mice to the Emx1-Cre strain, we ablated the vast majority of TAG-1+ cortical neurons. Among the observed defects were a significantly smaller cortex, a reduction of corticothalamic axons as well as callosal and commissural defects. Such defects are common in neurodevelopmental disorders, thus this mouse could serve as a useful model to study physiological and pathophysiological cortical development.
Collapse
Affiliation(s)
- Maria Eleni Kastriti
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Aikaterini Stratigi
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece.,Laboratory of Neurophysiology, Université Libre de Bruxelles, UNI, Brussels, Belgium
| | - Dimitris Mariatos
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Marina Theodosiou
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece.,Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maria Savvaki
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Michaela Kavkova
- CEITEC-Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Kostas Theodorakis
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Marina Vidaki
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tomas Zikmund
- CEITEC-Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Jozef Kaiser
- CEITEC-Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Domna Karagogeos
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| |
Collapse
|
6
|
Gostic M, Martinelli A, Tucker C, Yang Z, Gasparoli F, Ewart JY, Dholakia K, Sillar KT, Tello JA, Paracchini S. The dyslexia susceptibility KIAA0319 gene shows a specific expression pattern during zebrafish development supporting a role beyond neuronal migration. J Comp Neurol 2019; 527:2634-2643. [PMID: 30950042 PMCID: PMC6767054 DOI: 10.1002/cne.24696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 01/17/2023]
Abstract
Dyslexia is a common neurodevelopmental disorder caused by a significant genetic component. The KIAA0319 gene is one of the most robust dyslexia susceptibility factors but its function remains poorly understood. Initial RNA-interference studies in rats suggested a role in neuronal migration whereas subsequent work with double knock-out mouse models for both Kiaa0319 and its paralogue Kiaa0319-like reported effects in the auditory system but not in neuronal migration. To further understand the role of KIAA0319 during neurodevelopment, we carried out an expression study of its zebrafish orthologue at different embryonic stages. We used different approaches including RNAscope in situ hybridization combined with light-sheet microscopy. The results show particularly high expression during the first few hours of development. Later, expression becomes localized in well-defined structures. In addition to high expression in the brain, we report for the first time expression in the eyes and the notochord. Surprisingly, kiaa0319-like, which generally shows a similar expression pattern to kiaa0319, was not expressed in the notochord suggesting a distinct role for kiaa0319 in this structure. This observation was supported by the identification of notochord enhancers enriched upstream of the KIAA0319 transcription start site, in both zebrafish and humans. This study supports a developmental role for KIAA0319 in the brain as well as in other developing structures, particularly in the notochord which, is key for establishing body patterning in vertebrates.
Collapse
Affiliation(s)
- Monika Gostic
- School of Medicine, University of St Andrews, St Andrews, UK.,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Angela Martinelli
- School of Medicine, University of St Andrews, St Andrews, UK.,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Carl Tucker
- College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Zhengyi Yang
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | | - Jade-Yi Ewart
- School of Medicine, University of St Andrews, St Andrews, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Kishan Dholakia
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK.,SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - Keith T Sillar
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Javier A Tello
- School of Medicine, University of St Andrews, St Andrews, UK.,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Silvia Paracchini
- School of Medicine, University of St Andrews, St Andrews, UK.,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| |
Collapse
|
7
|
Zou JL, Sun JH, Qiu S, Chen SH, He FL, Li JC, Mao HQ, Liu XL, Quan DP, Zeng YS, Zhu QT. Spatial distribution affects the role of CSPGs in nerve regeneration via the actin filament-mediated pathway. Exp Neurol 2018; 307:37-44. [PMID: 29852179 DOI: 10.1016/j.expneurol.2018.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 11/28/2022]
Abstract
CSPGs are components of the extracellular matrix in the nervous system, where they serve as cues for axon guidance during development. After a peripheral nerve injury, CSPGs switch roles and become axon inhibitors and become diffusely distributed at the injury site. To investigate whether the spatial distribution of CSPGs affects their role, we combined in vitro DRG cultures with CSPG stripe or coverage assays to simulate the effect of a patterned substrate or dispersive distribution of CSPGs on growing neurites. We observed neurite steering at linear CSPG interfaces and neurite inhibition when diffused CSPGs covered the distal but not the proximal segment of the neurite. The repellent and inhibitory effects of CSPGs on neurite outgrowth were associated with the disappearance of focal actin filaments on growth cones. The application of an actin polymerization inducer, jasplakinolide, allowed neurites to break through the CSPG boundary and grow on CSPG-coated surfaces. The results of our study collectively reveal a novel mechanism that explains how the spatial distribution of CSPGs determines whether they act as a cue for axon guidance or as an axon-inhibiting factor. Increasing our understanding of this issue may promote the development of novel therapeutic strategies that regulate the spatial distributions of CSPGs to use them as an axon guidance cue.
Collapse
Affiliation(s)
- Jian-Long Zou
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou 510080, China
| | - Jia-Hui Sun
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Shuai Qiu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou 510080, China
| | - Shi-Hao Chen
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510127, China
| | - Fu-Lin He
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou 510080, China
| | - Jia-Chun Li
- Orthopedics Department, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xiao-Lin Liu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou 510080, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangzhou 510080, China
| | - Da-Ping Quan
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510127, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Qing-Tang Zhu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou 510080, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangzhou 510080, China.
| |
Collapse
|
8
|
The spatiotemporal relationships between chondroitin sulfate proteoglycans and terminations of calcitonin gene related peptide and parvalbumin immunoreactive afferents in the spinal cord of mouse embryos. Neurosci Lett 2017; 655:61-67. [DOI: 10.1016/j.neulet.2017.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 01/22/2023]
|
9
|
Abstract
Contactin-2/transiently expressed axonal surface glycoprotein-1 (TAG-1) is a cell adhesion molecule belonging to the immunoglobulin superfamily (IgSF). It has six immunoglobulin-like extracellular domains and four fibronectin III-like ones, with anchoring to the cell membrane through glycosylphosphatidyl inositol. Contactin-2/TAG-1 is expressed in specific neurons transiently on the axonal surface during the fetal period. In postnatal stages, Contactin-2/TAG-1 is expressed in cerebellar granule cells, hippocampal pyramidal cells, and the juxtaparanodal regions of myelinated nerve fibers. In the embryonic nervous system, Contactin-2/TAG-1 plays important roles in axonal elongation, axonal guidance, and cellular migration. In the postnatal nervous system, it also plays an essential role in the formation of myelinated nerve fibers. Moreover, Contactin-2/TAG-1 has been linked to autoimmune diseases of the human nervous system. Taken together, Contactin-2/TAG-1 plays a central role in a variety of functions from development to disease.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- a Doctoral and Master's Programs in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Ibaraki , Japan.,b Department of Neurology , Faculty of Medicine, University of Tsukuba , Ibaraki , Japan.,c Department of Neurobiology , Faculty of Medicine, University of Tsukuba , Ibaraki , Japan
| |
Collapse
|
10
|
Abstract
The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches.
Collapse
|
11
|
Kim H, W Caspar T, Shah SB, Hsieh AH. Effects of proinflammatory cytokines on axonal outgrowth from adult rat lumbar dorsal root ganglia using a novel three-dimensional culture system. Spine J 2015; 15:1823-31. [PMID: 25797812 DOI: 10.1016/j.spinee.2015.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/11/2015] [Accepted: 03/16/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Degeneration of the intervertebral disc is often associated with low back pain and increased infiltration of nerve fibers originating from dorsal root ganglia (DRG). The degenerated disc is also characterized by the presence of proinflammatory cytokines, which may influence axonal outgrowth. Toward an improved understanding of the growth of DRG neurons into compliant extracellular matrices, we developed a novel experimental system to measure axonal outgrowth of adult rat lumbar DRG neurons within three-dimensional (3D) collagen hydrogels and used this system to examine the effects of interleukin 1β (IL-1β) and tumor necrosis factor (TNF)-α treatment. PURPOSE The aim was to investigate the effects of proinflammatory cytokines on 3D neuronal growth into collagen matrices. STUDY DESIGN This was an in vitro study of neurite outgrowth from adult rat lumbar DRG into collagen gels in response to IL-1β and TNF-α. METHODS Lumbar DRG were obtained from adult Sprague Dawley rats, bisected to expose cell bodies and placed onto collagen gel constructs prepared in 24-well Transwell inserts. Dorsal root ganglia were then treated with nerve growth factor (NGF)-free Neurobasal media (negative control) or NGF-supplemented media containing 0, 1, and 10 ng/mL of IL-1β and TNF-α. After 7 days, collagen gel-DRG constructs were immunostained for phosphorylated neurofilament, an axonal marker. Simple Neurite Tracer (Fiji/ImageJ) was used to quantify 3D axonal outgrowth from confocal image stacks. Data were analyzed using one-way analysis of variance, with Tukey HSD post hoc correction at a level of p<.05. RESULTS Immunostaining showed robust axonal outgrowth into collagen gels from all NGF-treated DRG. The negative control demonstrated very few and short neurites. Tumor necrosis factor-α (1 and 10 ng/mL) significantly inhibited axonal outgrowth compared with NGF-only media (p<.026 and p<.02, respectively). After IL-1β treatment, average axon length was 10% lower at 1 ng/mL and 7.5% higher at 10 ng/mL, but these differences were not statistically significant. Among cytokine treatments, however, average axon length in the IL-1β (10 ng/mL) group was significantly higher than that in the other groups (p<.05). CONCLUSIONS A novel 3D collagen gel culture system was used to investigate factors modulating neuronal ingrowth. Our results showed that NGF was necessary to promote neurite growth into collagen gels. In the presence of proinflammatory cytokines, high concentrations of IL-1β induced significantly higher axonal outgrowth than TNF-α and low levels of IL-1β.
Collapse
Affiliation(s)
- Hyunchul Kim
- Fischell Department of Bioengineering, University of Maryland, College Park, Jeong H. Kim Engineering Building, College Park, MD 20742, USA
| | - Tyler W Caspar
- Fischell Department of Bioengineering, University of Maryland, College Park, Jeong H. Kim Engineering Building, College Park, MD 20742, USA
| | - Sameer B Shah
- Department of Orthopaedic Surgery, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Adam H Hsieh
- Fischell Department of Bioengineering, University of Maryland, College Park, Jeong H. Kim Engineering Building, College Park, MD 20742, USA; Department of Orthopaedics, University of Maryland, Baltimore, 22 S. Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
12
|
Masuda T, Sakuma C, Yaginuma H, Taniguchi M. Attractive and permissive activities of semaphorin 5A toward dorsal root ganglion axons in higher vertebrate embryos. Cell Adh Migr 2015; 8:603-6. [PMID: 25622099 PMCID: PMC4594608 DOI: 10.4161/19336918.2014.972770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Elongation of the efferent fibers of dorsal root ganglion (DRG) neurons toward their peripheral targets occurs during development. Attractive or permissive systems may be involved in this elongation. However, the molecular mechanisms that control it are largely unknown. Here we show that class 5 semaphorin Sema5A had attractive/permissive effects on DRG axons. In mouse embryos, Sema5A was expressed in and around the path of DRG efferent fibers, and cell aggregates secreting Sema5A attracted DRG axons in vitro. We also found that ectopic Sema5A expression in the spinal cord attracted DRG axons. Together, these findings suggest that Sema5A functions as an attractant to elongate DRG fibers and contributes to the formation of the early sensory network.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- a Department of Neurobiology ; Faculty of Medicine, University of Tsukuba ; Ibaraki , Japan
| | | | | | | |
Collapse
|
13
|
Purmessur D, Cornejo MC, Cho SK, Roughley PJ, Linhardt RJ, Hecht AC, Iatridis JC. Intact glycosaminoglycans from intervertebral disc-derived notochordal cell-conditioned media inhibit neurite growth while maintaining neuronal cell viability. Spine J 2015; 15:1060-9. [PMID: 25661435 PMCID: PMC4416992 DOI: 10.1016/j.spinee.2015.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/08/2014] [Accepted: 02/01/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Painful human intervertebral discs (IVDs) exhibit nerve growth deep into the IVD. Current treatments for discogenic back pain do not address the underlying mechanisms propagating pain and are often highly invasive or only offer temporary symptom relief. The notochord produces factors during development that pattern the spine and inhibit the growth of dorsal root ganglion (DRG) axons into the IVD. We hypothesize that notochordal cell (NC)-conditioned medium (NCCM) includes soluble factors capable of inhibiting neurite growth and may represent a future therapeutic target. PURPOSE To test if NCCM can inhibit neurite growth and determine if NC-derived glycosaminoglycans (GAGs) are necessary candidates for this inhibition. STUDY DESIGN Human neuroblastoma (SH-SY5Y) cells and rat DRG cells were treated with NCCM in two-dimensional culture in vitro, and digestion and mechanistic studies determined if specific GAGs were responsible for inhibitory effects. METHODS Notochordal cell-conditioned medium was generated from porcine nucleus pulposus tissue that was cultured in Dulbecco's modified eagle's medium for 4 days. A dose study was performed using SH-SY5Y cells that were seeded in basal medium for 24 hours and neurite outgrowth and cell viability were assessed after treatment with basal media or NCCM (10% and 100%) for 48 hours. Glycosaminoglycans from NCCM were characterized using multiple digestions and liquid chromatography mass spectroscopy (LC-MS). Neurite growth was assessed on both SH-SY5Y and DRG cells after treatment with NCCM with and without GAG digestion. RESULTS Notochordal cell-conditioned medium significantly inhibited the neurite outgrowth from SH-SY5Y cells compared with basal controls without dose or cytotoxic effects; % of neurite expressing cells were 39.0±2.9%, 27.3±3.6%, and 30.2±2.7% and mean neurite length was 60.3±3.5, 50.8±2.4, 53.2±3.7 μm for basal, 10% NCCM, and 100% NCCM, respectively. Digestions and LC-MS determined that chondroitin-6-sulfate was the major GAG chain in NCCM. Neurite growth from SH-SY5Y and DRG cells was not inhibited when cells were treated with NCCM with digested chondroitin sulfate (CS). CONCLUSIONS Soluble factors derived from NCCM were capable of inhibiting neurite outgrowth in multiple neural cell types without any negative effects on cell viability. Cleavage of GAGs via digestion was necessary to reverse the neurite inhibition capacity of NCCM. We conclude that intact GAGs such as CS secreted from NCs are potential candidates that could be useful to reduce neurite growth in painful IVDs.
Collapse
Affiliation(s)
- Devina Purmessur
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Marisa C Cornejo
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Samuel K Cho
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Robert J Linhardt
- Biocatalysis & Metabolic Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180
| | - Andrew C Hecht
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, One Gustave L.levy place, box 1188 New York, NY 10029, USA.
| |
Collapse
|
14
|
Cornejo M, Cho S, Giannarelli C, Iatridis J, Purmessur D. Soluble factors from the notochordal-rich intervertebral disc inhibit endothelial cell invasion and vessel formation in the presence and absence of pro-inflammatory cytokines. Osteoarthritis Cartilage 2015; 23:487-96. [PMID: 25534363 PMCID: PMC4411226 DOI: 10.1016/j.joca.2014.12.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/11/2014] [Accepted: 12/12/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND Chronic low back pain can be associated with the pathological ingrowth of blood vessels and nerves into intervertebral discs (IVDs). The notochord patterns the IVD during development and is a source of anti-angiogenic soluble factors such as Noggin and Chondroitin sulfate (CS). These factors may form the basis for a new minimally invasive strategy to target angiogenesis in the IVD. OBJECTIVE To examine the anti-angiogenic potential of soluble factors from notochordal cells (NCs) and candidates Noggin and CS under healthy culture conditions and in the presence of pro-inflammatory mediators. DESIGN NC conditioned media (NCCM) was generated from porcine NC-rich nucleus pulposus tissue. To assess the effects of NCCM, CS and Noggin on angiogenesis, cell invasion and tubular formation assays were performed using human umbilical vein endothelial cells (HUVECs) ± tumor necrosis factor alpha (TNFα [10 ng/ml]). vascular endothelial growth factor (VEGF)-A, MMP-7, interleukin-6 (IL-6) and IL-8 mRNA levels were assessed using qRT-PCR. RESULTS NCCM (10 & 100%), CS (10 and 100 μg) and Noggin (10 and 100 ng) significantly decreased cell invasion of HUVECs with and without TNFα. NCCM 10% and Noggin 10 ng inhibited tubular formation with and without TNFα and CS 100 μg inhibited tubules in Basal conditions whereas CS 10 μg inhibited tubules with TNFα. NCCM significantly decreased VEGF-A, MMP-7 and IL-6 mRNA levels in HUVECs with and without TNFα. CS and Noggin had no effects on gene expression. CONCLUSIONS We provide the first evidence that soluble factors from NCs can inhibit angiogenesis by suppressing VEGF signaling. Notochordal-derived ligands are a promising minimally invasive strategy targeting neurovascular ingrowth and pain in the degenerated IVD.
Collapse
Affiliation(s)
- M.C. Cornejo
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S.K. Cho
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - C. Giannarelli
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - J.C. Iatridis
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - D. Purmessur
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Address correspondence and reprint requests to: D. Purmessur, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029, USA. Tel: 1-212-241-1531
| |
Collapse
|
15
|
Purmessur D, Cornejo MC, Cho SK, Hecht AC, Iatridis JC. Notochordal cell-derived therapeutic strategies for discogenic back pain. Global Spine J 2013; 3:201-18. [PMID: 24436871 PMCID: PMC3854597 DOI: 10.1055/s-0033-1350053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/11/2013] [Indexed: 12/23/2022] Open
Abstract
An understanding of the processes that occur during development of the intervertebral disk can help inform therapeutic strategies for discogenic pain. This article reviews the literature to identify candidates that are found in or derived from the notochord or notochordal cells and evaluates the theory that such factors could be isolated and used as biologics to target the structural disruption, inflammation, and neurovascular ingrowth often associated with discogenic back pain. A systematic review using PubMed was performed with a primary search using keywords "(notochordal OR notochord) And (nerves OR blood vessels OR SHH OR chondroitin sulfate OR notch OR CTGF) NOT chordoma." Secondary searches involved keywords associated with the intervertebral disk and pain. Several potential therapeutic candidates from the notochord and their possible targets were identified. Studies are needed to further identify candidates, explore mechanisms for effect, and to validate the theory that these candidates can promote structural restoration and limit or inhibit neurovascular ingrowth using in vivo studies.
Collapse
Affiliation(s)
- D. Purmessur
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - M. C. Cornejo
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - S. K. Cho
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - A. C. Hecht
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - J. C. Iatridis
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States,Address for correspondence James Iatridis, PhD Professor and Director of Spine Research, Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029United States
| |
Collapse
|
16
|
Shimbo M, Ando S, Sugiura N, Kimata K, Ichijo H. Moderate repulsive effects of E-unit-containing chondroitin sulfate (CSE) on behavior of retinal growth cones. Brain Res 2013. [DOI: 10.1016/j.brainres.2012.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Schwend T, Deaton RJ, Zhang Y, Caterson B, Conrad GW. Corneal sulfated glycosaminoglycans and their effects on trigeminal nerve growth cone behavior in vitro: roles for ECM in cornea innervation. Invest Ophthalmol Vis Sci 2012; 53:8118-37. [PMID: 23132805 PMCID: PMC3522437 DOI: 10.1167/iovs.12-10832] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/16/2012] [Accepted: 10/27/2012] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Sensory trigeminal nerve growth cones innervate the cornea in a highly coordinated fashion. The purpose of this study was to determine if extracellular matrix glycosaminoglycans (ECM-GAGs), including keratan sulfate (KS), dermatan sulfate (DS), and chondroitin sulfate A (CSA) and C (CSC), polymerized in developing eyefronts, may provide guidance cues to nerves during cornea innervation. METHODS Immunostaining using antineuron-specific-β-tubulin and monoclonal antibodies for KS, DS, and CSA/C was performed on eyefronts from embryonic day (E) 9 to E14 and staining visualized by confocal microscopy. Effects of purified GAGs on trigeminal nerve growth cone behavior were tested using in vitro neuronal explant cultures. RESULTS At E9 to E10, nerves exiting the pericorneal nerve ring grew as tight fascicles, advancing straight toward the corneal stroma. In contrast, upon entering the stroma, nerves bifurcated repeatedly as they extended anteriorly toward the epithelium. KS was localized in the path of trigeminal nerves, whereas DS and CSA/C-rich areas were avoided by growth cones. When E10 trigeminal neurons were cultured on different substrates comprised of purified GAG molecules, their neurite growth cone behavior varied depending on GAG type, concentration, and mode of presentation (immobilized versus soluble). High concentrations of immobilized KS, DS, and CSA/C inhibited neurite growth to varying degrees. Neurites traversing lower, permissive concentrations of immobilized DS and CSA/C displayed increased fasciculation and decreased branching, whereas KS caused decreased fasciculation and increased branching. Enzymatic digestion of sulfated GAGs canceled their effects on trigeminal neurons. CONCLUSIONS Data herein suggest that GAGs may direct the movement of trigeminal nerve growth cones innervating the cornea.
Collapse
Affiliation(s)
- Tyler Schwend
- From the Division of Biology, Kansas State University, Manhattan, Kansas
| | - Ryan J. Deaton
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois; and
| | - Yuntao Zhang
- From the Division of Biology, Kansas State University, Manhattan, Kansas
| | - Bruce Caterson
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Gary W. Conrad
- From the Division of Biology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
18
|
Masuda T, Sakuma C, Taniguchi M, Kanemoto A, Yoshizawa M, Satomi K, Tanaka H, Takeuchi K, Ueda S, Yaginuma H, Shiga T. Development of the dorsal ramus of the spinal nerve in the chick embryo: a close relationship between development and expression of guidance cues. Brain Res 2012; 1480:30-40. [PMID: 22981415 DOI: 10.1016/j.brainres.2012.08.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/02/2012] [Accepted: 08/29/2012] [Indexed: 11/15/2022]
Abstract
The spinal nerve, which is composed of dorsal root ganglion (DRG) axons and spinal motor axons, divides into ventral and dorsal rami. Although the development of the ventral ramus has been examined in considerable detail, that of the dorsal ramus has not. Therefore, we first examined the spatial-temporal pattern of the dorsal ramus formation in the chick embryo, with special reference to the projection to the dermamyotome and its derivatives. Next, we focused on two guidance molecules, chick semaphorin 3A (SEMA3A) and fibroblast growth factor 8 (FGF8), because these are the best candidates as molecules for controlling the dorsal ramus formation. Using in situ hybridization and immunohistochemistry methods, we clearly showed a close relationship between the spatial-temporal expression of SEMA3A/FGF8 and the projection of dorsal ramus fibers to the dorsal muscles. We further examined the axonal response of motor and DRG neurons to SEMA3A and FGF8. We showed that motor axons responded to both SEMA3A-induced repulsion and FGF8-induced attraction. On the other hand, DRG axons responded to SEMA3A-induced repulsion but not to FGF8-induced attraction. These findings suggest that FGF8-induced attraction may guide early motor axons beneath the myotome and that SEMA3A-induced repulsion may prevent these early motor axons from entering the myotome. Our results also imply that the loss of SEMA3A expression in the dorsal muscles may lead to the gross projection of the dorsal ramus fibers into the dorsal muscles. Together, SEMA3A and FGF8 may contribute to the proper formation of the dorsal ramus.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Choi BD, Choi YJ. Nutraceutical functionalities of polysaccharides from marine invertebrates. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 65:11-30. [PMID: 22361178 DOI: 10.1016/b978-0-12-416003-3.00002-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many researchers are seeking functional materials from marine resources. These marine resources can be used as traditional food additives, and specifically, these are based on polysaccharides. To date, there is a big opportunity to develop new high-value added products with indispensable functional characteristics, which can be used in nutraceuticals either as additives or supplements. Also, a crossover in the pharmaceutical market may be established. Some glycosaminoglycans (GAGs) mimetic-type molecules are already being utilized in the field of nutrition as well as in the cosmetics industry. This chemical is used as a dietary supplement to maintain the structure and function of cartilages, for the relief of pain caused by osteoarthritic joints, and can also be used as an anti-inflammatory agent. Recently, in relation to the prevalence of mad cow disease and avian influenza, the production of GAGs from marine invertebrates offers new market opportunities as compared with that obtained from bovine or avian livestock.
Collapse
Affiliation(s)
- Byeong-Dae Choi
- Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong, Korea.
| | | |
Collapse
|
20
|
Banerjee S, Gordon L, Donn TM, Berti C, Moens CB, Burden SJ, Granato M. A novel role for MuSK and non-canonical Wnt signaling during segmental neural crest cell migration. Development 2011; 138:3287-96. [PMID: 21750038 DOI: 10.1242/dev.067306] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trunk neural crest cells delaminate from the dorsal neural tube as an uninterrupted sheet; however, they convert into segmentally organized streams before migrating through the somitic territory. These neural crest cell streams join the segmental trajectories of pathfinding spinal motor axons, suggesting that interactions between these two cell types might be important for neural crest cell migration. Here, we show that in the zebrafish embryo migration of both neural crest cells and motor axons is temporally synchronized and spatially restricted to the center of the somite, but that motor axons are dispensable for segmental neural crest cell migration. Instead, we find that muscle-specific receptor kinase (MuSK) and its putative ligand Wnt11r are crucial for restricting neural crest cell migration to the center of each somite. Moreover, we find that blocking planar cell polarity (PCP) signaling in somitic muscle cells also results in non-segmental neural crest cell migration. Using an F-actin biosensor we show that in the absence of MuSK neural crest cells fail to retract non-productive leading edges, resulting in non-segmental migration. Finally, we show that MuSK knockout mice display similar neural crest cell migration defects, suggesting a novel, evolutionarily conserved role for MuSK in neural crest migration. We propose that a Wnt11r-MuSK dependent, PCP-like pathway restricts neural crest cells to their segmental path.
Collapse
Affiliation(s)
- Santanu Banerjee
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Tham M, Ramasamy S, Gan HT, Ramachandran A, Poonepalli A, Yu YH, Ahmed S. CSPG is a secreted factor that stimulates neural stem cell survival possibly by enhanced EGFR signaling. PLoS One 2010; 5:e15341. [PMID: 21179491 PMCID: PMC3001889 DOI: 10.1371/journal.pone.0015341] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 11/09/2010] [Indexed: 11/18/2022] Open
Abstract
Understanding how autocrine/paracrine factors regulate neural stem cell (NSC) survival and growth is fundamental to the utilization of these cells for therapeutic applications and as cellular models for the brain. In vitro, NSCs can be propagated along with neural progenitors (NPs) as neurospheres (nsphs). The nsph conditioned medium (nsph-CM) contains cell-secreted factors that can regulate NSC behavior. However, the identity and exact function of these factors within the nsph-CM has remained elusive. We analyzed the nsph-CM by mass spectrometry and identified DSD-1-proteoglycan, a chondroitin sulfate proteoglycan (CSPG), apolipoprotein E (ApoE) and cystatin C as components of the nsph-CM. Using clonal assays we show that CSPG and ApoE are responsible for the ability of the nsph-CM to stimulate nsph formation whereas cystatin C is not involved. Clonal nsphs generated in the presence of CSPG show more than four-fold increase in NSCs. Thus CSPG specifically enhances the survival of NSCs. CSPG also stimulates the survival of embryonic stem cell (ESC)-derived NSCs, and thus may be involved in the developmental transition of ESCs to NSCs. In addition to its role in NSC survival, CSPG maintains the three dimensional structure of nsphs. Lastly, CSPG's effects on NSC survival may be mediated by enhanced signaling via EGFR, JAK/STAT3 and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Muly Tham
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Srinivas Ramasamy
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Hui Theng Gan
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Ashray Ramachandran
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Anuradha Poonepalli
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Yuan Hong Yu
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Sohail Ahmed
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
- * E-mail:
| |
Collapse
|
22
|
Tetsukawa A, Nakamura J, Fujiwara S. Identification of chondroitin/dermatan sulfotransferases in the protochordate, Ciona intestinalis. Comp Biochem Physiol B Biochem Mol Biol 2010; 157:205-12. [PMID: 20601060 DOI: 10.1016/j.cbpb.2010.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 11/22/2022]
Abstract
Sulfated glycosaminoglycans are important components of connective tissues. The pattern of sulfation is important for their biological functions. Ascidians, the closest relatives of vertebrates, have a simple chordate body plan. In the present study, we identified an almost complete set of genes encoding proteins homologous to chondroitin/dermatan sulfotransferases in the genome of the ascidian Ciona intestinalis. We found eight genes encoding 4-O-sulfotransferases, eight genes encoding 6-O-sulfotransferases, and three genes encoding uronyl 2-O-sulfotransferases. The number of sulfotransferase genes was unexpectedly large, considering that ascidians do not have a well-developed endoskeleton. In addition, most of the genes within each sub-family seemed to have arisen by gene duplication events that occurred in the ascidian lineage after divergence from the main chordate lineage. This suggests that a unique pattern of sulfation independently developed during ascidian evolution. Some of the genes identified in the present study showed tissue-specific expression in the epidermis, notochord, muscle, and central nervous system. Region-specific expression in the epidermis was also observed. The present study provides useful information for further comparative and functional analyses of sulfotransferases and proteoglycans in chordate embryos.
Collapse
Affiliation(s)
- Akira Tetsukawa
- Department of Applied Science, Faculty of Science, Kochi University, 2-5-1 Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | | | | |
Collapse
|
23
|
Chatel A, Hemming R, Hobert J, Natowicz MR, Triggs-Raine B, Merz DC. The C. elegans hyaluronidase: a developmentally significant enzyme with chondroitin-degrading activity at both acidic and neutral pH. Matrix Biol 2010; 29:494-502. [PMID: 20576486 DOI: 10.1016/j.matbio.2010.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 12/16/2022]
Abstract
Mammalian hyaluronidases degrade hyaluronan and some structurally related glycosaminoglycans. We generated a deletion mutant in the Caenorhabditis elegans orthologue of mammalian hyaluronidase, hya-1. Mutant animals are viable and grossly normal, but exhibit defects in vulval morphogenesis and egg-laying and showed increased staining with alcian blue, consistent with an accumulation of glycosaminoglycan. A hya-1::GFP reporter was expressed in a restricted pattern in somatic tissues of the animal with strongest expression in the intestine, the PLM sensory neurons and the vulva. Total protein extracts from wild-type animals exhibited chondroitin-degrading but not hyaluronan-degrading activity. Chondroitinase activities were observed at both neutral and acidic pH conditions while both neutral and acidic activities were absent in extracts from hya-1 mutant strains. We also evaluated the function of oga-1, which encodes the C. elegans orthologue of MGEA-5, a protein with hyaluronan-degrading activity in vitro. oga-1 is expressed in muscles, vulval cells and the scavenger-like coelomocytes. An oga-1 mutant strain exhibited egg-laying and vulval defects similar to those of hya-1; chondroitinase activity was unaffected in this mutant.
Collapse
Affiliation(s)
- Allison Chatel
- Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Masuda T, Yaginuma H, Sakuma C, Ono K. Netrin-1 signaling for sensory axons: Involvement in sensory axonal development and regeneration. Cell Adh Migr 2009; 3:171-3. [PMID: 19262170 DOI: 10.4161/cam.3.2.7837] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During development, dorsal root ganglion (DRG) neurons extend their axons toward the dorsolateral part of the spinal cord and enter the spinal cord through the dorsal root entry zone (DREZ). After entering the spinal cord, these axons project into the dorsal mantle layer after a 'waiting period' of a few days. We revealed that the diffusible axonal guidance molecule netrin-1 is a chemorepellent for developing DRG axons. When DRG axons orient themselves toward the DREZ, netrin-1 proteins derived from the ventral spinal cord prevent DRG axons from projecting aberrantly toward the ventral spinal cord and help them to project correctly toward the DREZ. In addition to the ventrally derived netrin-1, the dorsal spinal cord cells adjacent to the DREZ transiently express netrin-1 proteins during the waiting period. This dorsally derived netrin-1 contributes to the correct guidance of DRG axons to prevent them from invading the dorsal spinal cord. In general, there is a complete lack of sensory axonal regeneration after a spinal cord injury, because the dorsal column lesion exerts inhibitory activities toward regenerating axons. Netrin-1 is a novel candidate for a major inhibitor of sensory axonal regeneration in the spinal cord; because its expression level stays unchanged in the lesion site following injury, and adult DRG neurons respond to netrin-1-induced axon repulsion. Although further studies are required to show the involvement of netrin-1 in preventing the regeneration of sensory axons in CNS injury, the manipulation of netrin-1-induced repulsion in the CNS lesion site may be a potent approach for the treatment of human spinal injuries.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- Department of Anatomy, Fukushima Medical University School of Medicine, Japan.
| | | | | | | |
Collapse
|
25
|
Jing L, Lefebvre JL, Gordon LR, Granato M. Wnt signals organize synaptic prepattern and axon guidance through the zebrafish unplugged/MuSK receptor. Neuron 2009; 61:721-33. [PMID: 19285469 PMCID: PMC2671566 DOI: 10.1016/j.neuron.2008.12.025] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 11/13/2008] [Accepted: 12/24/2008] [Indexed: 11/24/2022]
Abstract
Early during neuromuscular development, acetylcholine receptors (AChRs) accumulate at the center of muscle fibers, precisely where motor growth cones navigate and synapses eventually form. Here, we show that Wnt11r binds to the zebrafish unplugged/MuSK ectodomain to organize this central muscle zone. In the absence of such a zone, prepatterned AChRs fail to aggregate and, as visualized by live-cell imaging, growth cones stray from their central path. Using inducible unplugged/MuSK transgenes, we show that organization of the central muscle zone is dispensable for the formation of neural synapses, but essential for AChR prepattern and motor growth cone guidance. Finally, we show that blocking noncanonical dishevelled signaling in muscle fibers disrupts AChR prepatterning and growth cone guidance. We propose that Wnt ligands activate unplugged/MuSK signaling in muscle fibers to restrict growth cone guidance and AChR prepatterns to the muscle center through a mechanism reminiscent of the planar cell polarity pathway.
Collapse
Affiliation(s)
- Lili Jing
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | - Laura R. Gordon
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| |
Collapse
|
26
|
Masuda T, Sakuma C, Kobayashi K, Kikuchi K, Soda E, Shiga T, Kobayashi K, Yaginuma H. Laminin peptide YIGSR and its receptor regulate sensory axonal response to the chemoattractive guidance cue in the chick embryo. J Neurosci Res 2009; 87:353-9. [DOI: 10.1002/jnr.21868] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Netrin-1 acts as a repulsive guidance cue for sensory axonal projections toward the spinal cord. J Neurosci 2008; 28:10380-5. [PMID: 18842897 DOI: 10.1523/jneurosci.1926-08.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During early development, the ventral spinal cord expresses chemorepulsive signals that act on dorsal root ganglion (DRG) axons to help orient them toward the dorsolateral part of the spinal cord. However, the molecular nature of this chemorepulsion is mostly unknown. We report here that netrin-1 acts as an early ventral spinal cord-derived chemorepellent for DRG axons. In the developing mouse spinal cord, netrin-1 is expressed in the floor plate of the spinal cord, and the netrin receptor Unc5c is expressed in DRG neurons. We show that human embryonic kidney cell aggregates secreting netrin-1 repel DRG axons and that netrin-1-deficient ventral spinal cord explants lose their repulsive influence on DRG axons. In embryonic day 10 netrin-1 mutant mice, we find that DRG axons exhibit transient misorientation. Furthermore, by means of gain-of-function analyses, we show that ectopic netrin-1 in the dorsal and intermediate spinal cord prevents DRG axons from being directed toward the dorsal spinal cord. Together, these findings suggest that netrin-1 contributes to the formation of the initial trajectories of developing DRG axons as a repulsive guidance cue.
Collapse
|
28
|
Shay EL, Greer CA, Treloar HB. Dynamic expression patterns of ECM molecules in the developing mouse olfactory pathway. Dev Dyn 2008; 237:1837-50. [PMID: 18570250 PMCID: PMC2787191 DOI: 10.1002/dvdy.21595] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Olfactory sensory neuron (OSN) axons follow stereotypic spatio-temporal paths in the establishment of the olfactory pathway. Extracellular matrix (ECM) molecules are expressed early in the developing pathway and are proposed to have a role in its initial establishment. During later embryonic development, OSNs sort out and target specific glomeruli to form precise, complex topographic projections. We hypothesized that ECM cues may help to establish this complex topography. The aim of this study was to characterize expression of ECM molecules during the period of glomerulogenesis, when synaptic contacts are forming. We examined expression of laminin-1, perlecan, tenascin-C, and CSPGs and found a coordinated pattern of expression of these cues in the pathway. These appear to restrict axons to the pathway while promoting axon outgrowth within. Thus, ECM molecules are present in dynamic spatio-temporal positions to affect OSN axons as they navigate to the olfactory bulb and establish synapses.
Collapse
Affiliation(s)
- Elaine L Shay
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520-8082, USA
| | | | | |
Collapse
|
29
|
Guan W, Wang G, Scott SA, Condic ML. Shh influences cell number and the distribution of neuronal subtypes in dorsal root ganglia. Dev Biol 2008; 314:317-28. [PMID: 18190905 PMCID: PMC2276661 DOI: 10.1016/j.ydbio.2007.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 11/21/2007] [Accepted: 11/26/2007] [Indexed: 11/29/2022]
Abstract
The molecular mechanisms responsible for specifying the dorsal-ventral pattern of neuronal identities in dorsal root ganglia (DRG) are unclear. Here we demonstrate that Sonic hedgehog (Shh) contributes to patterning early DRG cells. In vitro, Shh increases both proliferation and programmed cell death (PCD). Increasing Shh in vivo enhances PCD in dorsal DRG, while inducing greater proliferation ventrally. In such animals, markers characteristic of ventral sensory neurons are expanded to more dorsal positions. Conversely, reducing Shh function results in decreased proliferation of progenitors in the ventral region and decreased expression of the ventral marker trkC. Later arising trkA(+) afferents make significant pathfinding errors in animals with reduced Shh function, suggesting that accurate navigation of later arising growth cones requires either Shh itself or early arising, Shh-dependent afferents. These results indicate that Shh can regulate both cell number and the distribution of cell types in DRG, thereby playing an important role in the specification, patterning and pathfinding of sensory neurons.
Collapse
Affiliation(s)
- Wei Guan
- Interdepartmental Program in Neuroscience, University of Utah, School of Medicine 20 North 1900 East, Salt Lake City, UT 84132−3401
| | - Guoying Wang
- Department of Neurobiology and Anatomy, University of Utah, School of Medicine 20 North 1900 East, Salt Lake City, UT 84132−3401
| | - Sheryl A. Scott
- Interdepartmental Program in Neuroscience, University of Utah, School of Medicine 20 North 1900 East, Salt Lake City, UT 84132−3401
- Department of Neurobiology and Anatomy, University of Utah, School of Medicine 20 North 1900 East, Salt Lake City, UT 84132−3401
| | - Maureen L. Condic
- Interdepartmental Program in Neuroscience, University of Utah, School of Medicine 20 North 1900 East, Salt Lake City, UT 84132−3401
- Department of Neurobiology and Anatomy, University of Utah, School of Medicine 20 North 1900 East, Salt Lake City, UT 84132−3401
| |
Collapse
|
30
|
Zacharias U, Rauch U. Competition and cooperation between tenascin-R, lecticans and contactin 1 regulate neurite growth and morphology. J Cell Sci 2006; 119:3456-66. [PMID: 16899820 DOI: 10.1242/jcs.03094] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular matrix molecule tenascin-R (TN-R) and the proteoglycans of the lectican family show an overlapping distribution in the developing brain, have been implicated in similar cellular processes and form a complex network of interactions. Previously, we have demonstrated that TN-R induces microprocesses along neurites and enlarged growth cones of tectal cells by interacting with the cell adhesion molecule contactin 1. Here, we describe competition and cooperation between TN-R, lecticans and contactin 1, and their functional consequences for tectal cells. Aggrecan, brevican and neurocan inhibit the effects of TN-R on microprocess formation and growth cone size. This blocking effect is due to competition of lecticans with binding of TN-R to its neuronal receptor contactin 1, as shown by a sandwich-binding assay. Interaction of aggrecan with TN-R fibronectin type III domains 4-A is necessary for its inhibitory effect on both microprocess formation and TN-R binding to contactin 1. However, the chondroitin sulfate chains are not involved. Time-lapse video microscopy showed that aggrecan has no acute effect on motility and morphology of microprocesses and growth cones but induces long-term neurite retraction after pre-treatment with TN-R. In contrast to the competition described above, TN-R cooperates with brevican and neurocan to induce attachment of tectal cells and neurite outgrowth, probably by forming a bridge between the lectican substrate and contactin 1 as the neuronal receptor. Our findings suggest that a complex network of protein-protein interactions within the brain extracellular matrix, as shown here for TN-R and lecticans, is important for the fine-regulation of developmental processes such as microprocess formation along the neurite and neurite outgrowth.
Collapse
Affiliation(s)
- Ute Zacharias
- Max-Delbrück-Center for Molecular Medicine, R.-Rössle-Str.10, 13092 Berlin-Buch, Germany.
| | | |
Collapse
|
31
|
Kraus DM, Elliott GS, Chute H, Horan T, Pfenninger KH, Sanford SD, Foster S, Scully S, Welcher AA, Holers VM. CSMD1 is a novel multiple domain complement-regulatory protein highly expressed in the central nervous system and epithelial tissues. THE JOURNAL OF IMMUNOLOGY 2006; 176:4419-30. [PMID: 16547280 DOI: 10.4049/jimmunol.176.7.4419] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this study, we describe the identification and in vitro functional activity of a novel multiple domain complement regulatory protein discovered based on its homology to short consensus repeat (SCR)-containing proteins of the regulators of complement activation (RCA) gene family. The rat cDNA encodes a predicted 388-kDa protein consisting of 14 N-terminal CUB domains that are separated from each other by a SCR followed by 15 tandem SCR domains, a transmembrane domain, and a short cytoplasmic tail. This protein is the homolog of the human protein of unknown function called the CUB and sushi multiple domains 1 (CSMD1) protein. A cloning strategy that incorporates the two C-terminal CUB-SCR domains and 12 of the tandem SCR repeats was used to produce a soluble rat CSMD1 protein. This protein blocked classical complement pathway activation in a comparable fashion with rat Crry but did not block alternative pathway activation. Analysis of CSMD1 mRNA expression by in situ hybridization and immunolabeling of neurons indicates that the primary sites of synthesis are the developing CNS and epithelial tissues. Of particular significance is the enrichment of CSMD1 in the nerve growth cone, the amoeboid-leading edge of the growing neuron. These results suggest that CSMD1 may be an important regulator of complement activation and inflammation in the developing CNS, and that it may also play a role in the context of growth cone function.
Collapse
Affiliation(s)
- Damian M Kraus
- Division of Rheumatology, University of Colorado Health Sciences Center, Denver, 80262, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yu ACH, Sun CX, Li Q, Liu HD, Wang CR, Zhao GP, Jin M, Lau LT, Fung YWW, Liu S. Identification of a mouse synaptic glycoprotein gene in cultured neurons. Neurochem Res 2006; 30:1289-94. [PMID: 16341590 DOI: 10.1007/s11064-005-8800-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2005] [Indexed: 12/19/2022]
Abstract
Neuronal differentiation and aging are known to involve many genes, which may also be differentially expressed during these developmental processes. From primary cultured cerebral cortical neurons, we have previously identified various differentially expressed gene transcripts from cultured cortical neurons using the technique of arbitrarily primed PCR (RAP-PCR). Among these transcripts, clone 0-2 was found to have high homology to rat and human synaptic glycoprotein. By in silico analysis using an EST database and the FACTURA software, the full-length sequence of 0-2 was assembled and the clone was named as mouse synaptic glycoprotein homolog 2 (mSC2). DNA sequencing revealed transcript size of mSC2 being smaller than the human and rat homologs. RT-PCR indicated that mSC2 was expressed differentially at various culture days. The mSC2 gene was located in various tissues with higher expression in brain, lung, and liver. Functions of mSC2 in neurons and other tissues remain elusive and will require more investigation.
Collapse
|
33
|
Fujita N, Nagata S. Repulsive guidance of axons of spinal sensory neurons in Xenopus laevis embryos: roles of Contactin and notochord-derived chondroitin sulfate proteoglycans. Dev Growth Differ 2006; 47:445-56. [PMID: 16179071 DOI: 10.1111/j.1440-169x.2005.00820.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An immunoglobulin superfamily neuronal adhesion molecule, Contactin, has been implicated in axon guidance of spinal sensory neurons in Xenopus embryos. To identify the guidance signaling molecules that Contactin recognizes in tailbud embryos, an in situ binding assay was performed using recombinant Contactin-alkaline phosphatase fusion protein (Contactin-AP) as a probe. In the assay of whole-mount or sectioned embryos, Contactin-AP specifically bound to the notochord and its proximal regions. This binding was completely blocked by either digestion of embryo sections with chondroitinase ABC or pretreatment of Contactin-AP with chondroitin sulfate A. When the spinal cord and the notochord explants were co-cultured in collagen gel, growing Contactin-positive spinal axons were repelled by notochord-derived repulsive activity. This repulsive activity was abolished by the addition of either a monoclonal anti-Contactin antibody, chondroitin sulfate A or chondroitinase ABC to the culture medium. An antibody that recognizes chondroitin sulfate A and C labeled immunohistochemically the notochord in embryo sections and the collagen gel matrix around the cultured notochord explant. Addition of chondroitinase ABC into the culture eliminated the immunoreactivity in the gel matrix. These results suggest that the notochord-derived chondroitin sulfate proteoglycan acts as a repulsive signaling molecule that is recognized by Contactin on spinal sensory axons.
Collapse
Affiliation(s)
- Naoko Fujita
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyoku, Tokyo 112-8681, Japan
| | | |
Collapse
|
34
|
Washington Smoak I, Byrd NA, Abu-Issa R, Goddeeris MM, Anderson R, Morris J, Yamamura K, Klingensmith J, Meyers EN. Sonic hedgehog is required for cardiac outflow tract and neural crest cell development. Dev Biol 2005; 283:357-72. [PMID: 15936751 DOI: 10.1016/j.ydbio.2005.04.029] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 04/05/2005] [Accepted: 04/15/2005] [Indexed: 11/26/2022]
Abstract
The Hedgehog signaling pathway is critical for a significant number of developmental patterning events. In this study, we focus on the defects in pharyngeal arch and cardiovascular patterning present in Sonic hedgehog (Shh) null mouse embryos. Our data indicate that, in the absence of Shh, there is general failure of the pharyngeal arch development leading to cardiac and craniofacial defects. The cardiac phenotype results from arch artery and outflow tract patterning defects, as well as abnormal development of migratory neural crest cells (NCCs). The constellation of cardiovascular defects resembles a severe form of the human birth defect syndrome tetralogy of Fallot with complete pulmonary artery atresia. Previous studies have demonstrated a role for Shh in NCC survival and proliferation at later stages of development. Our data suggest that SHH signaling does not act directly on NCCs as a survival factor, but rather acts to restrict the domains that NCCs can populate during early stages (e8.5-10.5) of cardiovascular and craniofacial development.
Collapse
|
35
|
Masuda T, Shiga T. Chemorepulsion and cell adhesion molecules in patterning initial trajectories of sensory axons. Neurosci Res 2005; 51:337-47. [PMID: 15740797 DOI: 10.1016/j.neures.2005.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 01/06/2005] [Accepted: 01/07/2005] [Indexed: 02/02/2023]
Abstract
Research in the past decade has advanced our knowledge of the key role that diffusible cues play in axonal guidance during development. In higher vertebrates, dorsal root ganglion (DRG) neurons extend axons centrally to the spinal cord through the dorsal root entry zone and peripherally to muscle and skin targets. In this review, we focus on the role of proximate "non-target" tissues in the initial stages of DRG axonal growth. In the early stages of development, "non-target" tissues including the dermamyotome, the notochord, and the ventral spinal cord exert chemorepulsion for DRG axons. We describe how semaphorin 3A, chondroitin sulfate proteogrycans, and cell adhesion molecules participate in chemorepulsion and the way they provide spatio-temporal specificity to chemorepulsion. Axon chemorepulsion may act not only to shape DRG axonal trajectories but it also affects a variety of other axonal projections in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- Department of Anatomy, Fukushima Medical University, School of Medicine, Fukushima 960-1295, Japan
| | | |
Collapse
|
36
|
Carulli D, Laabs T, Geller HM, Fawcett JW. Chondroitin sulfate proteoglycans in neural development and regeneration. Curr Opin Neurobiol 2005; 15:116-20. [PMID: 15721753 DOI: 10.1016/j.conb.2005.01.014] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proteoglycans are of two main types, chondroitin sulfate (CSPGs) and heparin sulfate (HSPGs). The CSPGs act mainly as barrier-forming molecules, whereas the HSPGs stabilise the interactions of receptors and ligands. During development CSPGs pattern cell migration, axon growth pathways and axon terminations. Later in development and in adulthood CSPGs associate with some classes of neuron and control plasticity. After damage to the nervous system, CSPGs are the major axon growth inhibitory component of the glial scar tissue that blocks successful regeneration. CSPGs have a variety of roles in the nervous system, including binding to molecules and blocking their action, presenting molecules to cells and axons, localising active molecules to particular sites and presenting growth factors to their receptors.
Collapse
Affiliation(s)
- Daniela Carulli
- Cambridge University Centre for Brain Repair, Robinson Way, Cambridge CB2 2PY, UK
| | | | | | | |
Collapse
|
37
|
Lee PHA, Trowbridge JM, Taylor KR, Morhenn VB, Gallo RL. Dermatan Sulfate Proteoglycan and Glycosaminoglycan Synthesis Is Induced in Fibroblasts by Transfer to a Three-dimensional Extracellular Environment. J Biol Chem 2004; 279:48640-6. [PMID: 15347686 DOI: 10.1074/jbc.m407241200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Composition and architecture of the extracellular matrix dictate cell behavior. Proteoglycans bind multiple components of the extracellular matrix by serving as important regulators of cell behavior. Given the influence of culture architecture on cell function, we investigated whether switching NIH3T3 fibroblasts from growth on type 1 collagen in monolayer to a collagen gel might influence dermatan sulfate expression. Immunofluorescent staining, immunoblot, and Western blot demonstrated an induction in decorin expression in cells switched to collagen gels. This induction was associated with a 40-fold increase in decorin transcript expression determined by quantitative real time PCR. Disaccharide analysis of extracted glycosaminoglycans from collagen gels showed an increase in total glycosaminoglycan and in the ratio of chondroitin sulfate to heparan sulfate compared with monolayer culture. The ratio of chondroitin sulfate to heparan sulfate likewise increased on syndecan-1 from gel culture. Digestion with chondroitinase B showed that this induced chondroitin sulfate was dermatan sulfate. Syndecan-1 extracted from wounded mouse skin also displayed an increase in dermatan sulfate synthesis compared with unwounded skin. Furthermore, glycosaminoglycans from collagen gel culture activated keratinocyte growth factor, whereas glycosaminoglycans from monolayer culture lacked this ability. These findings suggest that regulation of dermatan sulfate and dermatan sulfate proteoglycan is dependent on extracellular matrix architecture. The ability of collagen gel culture to mimic better the in vivo dermal environment may be due in part to this influence on dermatan sulfate and dermatan sulfate proteoglycan synthesis.
Collapse
Affiliation(s)
- Phillip H A Lee
- Division of Dermatology, University of California San Diego, 92161, USA
| | | | | | | | | |
Collapse
|
38
|
Kuan CYK, Tannahill D, Cook GMW, Keynes RJ. Somite polarity and segmental patterning of the peripheral nervous system. Mech Dev 2004; 121:1055-68. [PMID: 15296971 DOI: 10.1016/j.mod.2004.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 04/29/2004] [Accepted: 05/03/2004] [Indexed: 10/26/2022]
Abstract
The analysis of the outgrowth pattern of spinal axons in the chick embryo has shown that somites are polarized into anterior and posterior halves. This polarity dictates the segmental development of the peripheral nervous system: migrating neural crest cells and outgrowing spinal axons traverse exclusively the anterior halves of the somite-derived sclerotomes, ensuring a proper register between spinal axons, their ganglia and the segmented vertebral column. Much progress has been made recently in understanding the molecular basis for somite polarization, and its linkage with Notch/Delta, Wnt and Fgf signalling. Contact-repulsive molecules expressed by posterior half-sclerotome cells provide critical guidance cues for axons and neural crest cells along the anterior-posterior axis. Diffusible repellents from surrounding tissues, particularly the dermomyotome and notochord, orient outgrowing spinal axons in the dorso-ventral axis ('surround repulsion'). Repulsive forces therefore guide axons in three dimensions. Although several molecular systems have been identified that may guide neural crest cells and axons in the sclerotome, it remains unclear whether these operate together with considerable overall redundancy, or whether any one system predominates in vivo.
Collapse
Affiliation(s)
- C-Y Kelly Kuan
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | | | | |
Collapse
|