1
|
U KP, Gao L, Zhang H, Ji Z, Lin J, Peng S, Zhang X, Xue S, Qin W, Tsang LL, Kong Y, Xia Y, Tang PMK, Wang T, Lee WYW, Li G, Jiang X. KDM3A controls postnatal hippocampal neurogenesis via dual regulation of the Wnt/β-catenin signaling pathway. Cell Death Differ 2025:10.1038/s41418-025-01470-2. [PMID: 40033066 DOI: 10.1038/s41418-025-01470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/03/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
Hippocampal neurogenesis, the generation of new neurons in the dentate gyrus (DG) of mammalian hippocampus, is essential for cognitive and emotional processes. Despite advances in understanding the transcription factors and signaling pathways that regulate DG neurogenesis, the epigenetic mechanisms underlying the molecular changes necessary for granule neuron generation remain poorly understood. In this study, we investigate the role of the H3K9 demethylase KDM3A in postnatal neurogenesis in mouse DG. Using Kdm3a-tdTomato reporter mice, we demonstrate that KDM3A is predominantly expressed in neural stem/progenitor cells (NSPCs) during postnatal DG development. Conventional or conditional knockout (cKO) of Kdm3a in NSPCs hinders postnatal neurogenesis, compromising learning and memory abilities and impairing brain injury repair in mice. Loss of KDM3A in NSPCs suppresses proliferation and neuronal differentiation while promoting glial differentiation in vitro. KDM3A localizes both in the nucleus and cytoplasm of NSPCs and regulates the Wnt/β-catenin signaling pathway through dual mechanisms. Firstly, KDM3A modulates the transcription of Wnt targets and a set of neurogenesis-related genes through its histone demethylase activity. Secondly, in the cytoplasm, KDM3A interacts with casein kinase I alpha (CK1α), regulating its ubiquitination. Loss of KDM3A enhances CK1α stability, leading to increased phosphorylation and degradation of β-catenin. Finally, quercetin, a geroprotective small molecule, upregulates KDM3A protein expression and promotes adult hippocampal neurogenesis following brain injury. However, these effects are diminished in Kdm3a KO mice, indicating that quercetin primarily promotes hippocampal neurogenesis through the regulation of KDM3A. In conclusion, our study highlights KDM3A as a crucial regulator of postnatal hippocampal neurogenesis, influencing NSPC proliferation and differentiation via the Wnt/β-catenin signaling pathway. These findings have potential implications for the development of new therapeutic approaches for neurological disorders and injuries.
Collapse
Affiliation(s)
- Kin Pong U
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lin Gao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huan Zhang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zeyuan Ji
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiacheng Lin
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shenyi Peng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaohu Zhang
- Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weifeng Qin
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lai Ling Tsang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yonglun Kong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tao Wang
- Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China
| | - Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Center for Locomotor System Regenerative Medicine and Technology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, University Town of Shenzhen, 518055, Shenzhen, PR China
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, PR China.
| |
Collapse
|
2
|
Villoch‐Fernandez J, Martínez‐García N, Martín‐López M, Maeso‐Alonso L, López‐Ferreras L, Vazquez‐Jimenez A, Muñoz‐Hidalgo L, Garcia‐Romero N, Sanchez JM, Fernandez A, Ayuso‐Sacido A, Marques MM, Marin MC. A novel TAp73-inhibitory compound counteracts stemness features of glioblastoma stem cells. Mol Oncol 2025; 19:852-877. [PMID: 39090849 PMCID: PMC11887682 DOI: 10.1002/1878-0261.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/01/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024] Open
Abstract
Glioblastoma (GB) is the most common and fatal type of primary malignant brain tumor for which effective therapeutics are still lacking. GB stem cells, with tumor-initiating and self-renewal capacity, are mostly responsible for GB malignancy, representing a crucial target for therapies. The TP73 gene, which is highly expressed in GB, gives rise to the TAp73 isoform, a pleiotropic protein that regulates neural stem cell biology; however, its role in cancer has been highly controversial. We inactivated TP73 in human GB stem cells and revealed that TAp73 is required for their stemness potential, acting as a regulator of the transcriptional stemness signatures, highlighting TAp73 as a possible therapeutic target. As proof of concept, we identified a novel natural compound with TAp73-inhibitory capacity, which was highly effective against GB stem cells. The treatment reduced GB stem cell-invasion capacity and stem features, at least in part by TAp73 repression. Our data are consistent with a novel paradigm in which hijacking of p73-regulated neurodevelopmental programs, including neural stemness, might sustain tumor progression, pointing out TAp73 as a therapeutic strategy for GB.
Collapse
Affiliation(s)
| | | | | | - Laura Maeso‐Alonso
- Instituto de Biomedicina y Departamento de Biología MolecularUniversidad de LeónSpain
| | - Lorena López‐Ferreras
- Instituto de Biomedicina y Departamento de Biología MolecularUniversidad de LeónSpain
| | | | | | - Noemí Garcia‐Romero
- Faculty of Experimental SciencesUniversidad Francisco de VitoriaMadridSpain
- Brain Tumor Laboratory, Fundación VithasGrupo Hospitales VithasMadridSpain
- Faculty of MedicineUniversidad Francisco de VitoriaMadridSpain
| | | | | | - Angel Ayuso‐Sacido
- Faculty of Experimental SciencesUniversidad Francisco de VitoriaMadridSpain
- Brain Tumor Laboratory, Fundación VithasGrupo Hospitales VithasMadridSpain
- Faculty of MedicineUniversidad Francisco de VitoriaMadridSpain
| | - Margarita M. Marques
- Instituto de Desarrollo Ganadero y Sanidad Animal y Departamento de Producción AnimalUniversidad de LeónSpain
| | - Maria C. Marin
- Instituto de Biomedicina y Departamento de Biología MolecularUniversidad de LeónSpain
| |
Collapse
|
3
|
Correia CD, Calado SM, Matos A, Esteves F, De Sousa-Coelho AL, Campinho MA, Fernandes MT. Advancing Glioblastoma Research with Innovative Brain Organoid-Based Models. Cells 2025; 14:292. [PMID: 39996764 PMCID: PMC11854129 DOI: 10.3390/cells14040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Glioblastoma (GBM) is a relatively rare but highly aggressive form of brain cancer characterized by rapid growth, invasiveness, and resistance to standard therapies. Despite significant progress in understanding its molecular and cellular mechanisms, GBM remains one of the most challenging cancers to treat due to its high heterogeneity and complex tumor microenvironment. To address these obstacles, researchers have employed a range of models, including in vitro cell cultures and in vivo animal models, but these often fail to replicate the complexity of GBM. As a result, there has been a growing focus on refining these models by incorporating human-origin cells, along with advanced genetic techniques and stem cell-based bioengineering approaches. In this context, a variety of GBM models based on brain organoids were developed and confirmed to be clinically relevant and are contributing to the advancement of GBM research at the preclinical level. This review explores the preparation and use of brain organoid-based models to deepen our understanding of GBM biology and to explore novel therapeutic approaches. These innovative models hold significant promise for improving our ability to study this deadly cancer and for advancing the development of more effective treatments.
Collapse
Affiliation(s)
- Cátia D. Correia
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (S.M.C.); (M.A.C.)
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve (UAlg), Campus de Gambelas, 8005-139 Faro, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (S.M.C.); (M.A.C.)
- Faculdade de Ciências e Tecnologia (FCT), Universidade dos Açores (UAc), 9500-321 Ponta Delgada, Portugal
| | - Alexandra Matos
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (S.M.C.); (M.A.C.)
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (S.M.C.); (M.A.C.)
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve (UAlg), Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (S.M.C.); (M.A.C.)
- Escola Superior de Saúde (ESS), Universidade do Algarve (UAlg), Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marco A. Campinho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (S.M.C.); (M.A.C.)
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve (UAlg), Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (S.M.C.); (M.A.C.)
- Escola Superior de Saúde (ESS), Universidade do Algarve (UAlg), Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
4
|
Ferguson KM, Blin C, Garcia-Diaz C, Bulstrode H, Bardini Bressan R, McCarten K, Pollard SM. Modelling quiescence exit of neural stem cells reveals a FOXG1-FOXO6 axis. Dis Model Mech 2024; 17:dmm052005. [PMID: 39499086 PMCID: PMC11625887 DOI: 10.1242/dmm.052005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/30/2024] [Indexed: 11/07/2024] Open
Abstract
The molecular mechanisms controlling the balance of quiescence and proliferation in adult neural stem cells (NSCs) are often deregulated in brain cancers such as glioblastoma multiforme (GBM). Previously, we reported that FOXG1, a forebrain-restricted neurodevelopmental transcription factor, is frequently upregulated in glioblastoma stem cells (GSCs) and limits the effects of cytostatic pathways, in part by repression of the tumour suppressor Foxo3. Here, we show that increased FOXG1 upregulates Foxo6, a more recently discovered FOXO family member with potential oncogenic functions. Although genetic ablation of Foxo6 in proliferating NSCs had no effect on the cell cycle or entry into quiescence, we found that Foxo6-null NSCs could no longer efficiently exit quiescence following FOXG1 elevation. Increased Foxo6 resulted in the formation of large acidic vacuoles, reminiscent of Pak1-regulated macropinocytosis. Consistently, Pak1 expression was upregulated by FOXG1 overexpression and downregulated upon FOXO6 loss in proliferative NSCs. These data suggest a pro-oncogenic role for FOXO6, downstream of GBM-associated elevated FOXG1, in controlling quiescence exit, and shed light on the potential functions of this underexplored FOXO family member.
Collapse
Affiliation(s)
- Kirsty M. Ferguson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Carla Blin
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Claudia Garcia-Diaz
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Harry Bulstrode
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Raul Bardini Bressan
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Katrina McCarten
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Steven M. Pollard
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
5
|
Dave B, Tailor J. Human stem cell models to unravel brain cancer. BMC Cancer 2024; 24:1465. [PMID: 39609728 PMCID: PMC11603633 DOI: 10.1186/s12885-024-13187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Pre-clinical animal models of human brain tumors have been invaluable tools for studying cancer pathogenesis and exploring novel treatment modalities. Such models recapitulate important aspects of the human disease such as the stem-progenitor-differentiated cell hierarchy. Although powerful, we argue that animal models are inherently limited in their ability to phenocopy certain important aspects of human brain tumor biology. We specifically highlight the inability of mouse models to generate certain forms aggressive pediatric medulloblastoma likely owing to cellular, anatomic, and genetic differences between the human and mouse brains. Additionally, we review some limitations of human brain tumor derived cell lines and outline why they are a sub-optimal system for purposes of pre-clinical modeling. Below, we present the case for human stem cell-based models of brain tumors, focusing mainly on glioblastoma and medulloblastoma. Drawing on several recently published studies, we review the exciting progress that has been made towards modeling human brain tumors using two-dimensional adherent stem cell cultures and three-dimensional organoids. We identify the important advances arrived at using these human stem cell-based models and suggest opportunities for future work in this direction. In this review article, we aim to highlight the utility and promises of human stem cell-based models of brain tumors as a complementary system to traditional transgenic animal and cell line systems.
Collapse
Affiliation(s)
- Biren Dave
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jignesh Tailor
- Division of Pediatric Neurosurgery, Riley Hospital for Children, Indianapolis, IN, USA.
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Krishna S, Prajapati B, Seth P, Sinha S. LncRNA BASP1-AS1 is a positive regulator of stemness and pluripotency in human SH-SY5Y neuroblastoma cells. Biochem Biophys Res Commun 2024; 733:150691. [PMID: 39303525 DOI: 10.1016/j.bbrc.2024.150691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Neuroblastoma is the most common extra-cranial solid tumor diagnosed mostly in children below the age of five years and comprises of about 15 % of all paediatric cancer deaths. Tumor initiating cancer stem cells (CSCs) can be targeted for better treatment approaches. BASP1-AS1 is a long non coding (Lnc) RNA that is a divergent LncRNA for its coding gene brain abundant membrane attached signal protein 1 (BASP1). We had earlier demonstrated it to be expressed in foetus derived human neural progenitor cells (hNPCs), where it was a positive regulator of BASP1 and was critical for neural differentiation. In this study, we have investigated the role of BASP1-AS1 in CSCs derived from the human neuroblastoma cell line SH-SY5Y. We cultured SH-SY5Y cells on Poly-d-Lysine coated flasks in serum free media supplemented with growth factors, which led to the enrichment of CSCs as determined by marker expression. When grown on ultra-low attachment flasks, these cells formed CSCs enriched neurospheres. We examined the effects of BASP1-AS1 siRNA mediated knockdown on CSCs enriched SH-SY5Y cells and SH-SY5Y derived neurospheres. BASP1-AS1 knockdown decreased the levels of the corresponding gene BASP1 and the rate of cell proliferation of CSCs enriched cells along with low expression of Ki67. It also reduced the mRNA levels of stem cell and pluripotency gene markers (CD133, CD44, c-KIT, SOX2, OCT4 and NANOG), as also Wnt 2 and the Wnt pathway effector β catenin. It also abrogated the formation of neurospheres in ultra-low attachment flasks. A similar effect on proliferation and stemness related properties was seen on BASP1 knockdown. BASP1-AS1 and its related pathways may provide a point of intervention for the CSCs population in neuroblastoma.
Collapse
Affiliation(s)
| | - Bharat Prajapati
- National Brain Research Centre, Manesar, Gurugram, India; Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, Gothenburg, Sweden
| | - Pankaj Seth
- National Brain Research Centre, Manesar, Gurugram, India.
| | - Subrata Sinha
- National Brain Research Centre, Manesar, Gurugram, India; Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
7
|
Hendriks D, Pagliaro A, Andreatta F, Ma Z, van Giessen J, Massalini S, López-Iglesias C, van Son GJF, DeMartino J, Damen JMA, Zoutendijk I, Staliarova N, Bredenoord AL, Holstege FCP, Peters PJ, Margaritis T, Chuva de Sousa Lopes S, Wu W, Clevers H, Artegiani B. Human fetal brain self-organizes into long-term expanding organoids. Cell 2024; 187:712-732.e38. [PMID: 38194967 DOI: 10.1016/j.cell.2023.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 09/27/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024]
Abstract
Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform.
Collapse
Affiliation(s)
- Delilah Hendriks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| | - Anna Pagliaro
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Ziliang Ma
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Immunos, Singapore 138648, Singapore; Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Joey van Giessen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Simone Massalini
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Carmen López-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Gijs J F van Son
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Jeff DeMartino
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - J Mirjam A Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Iris Zoutendijk
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Nadzeya Staliarova
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Annelien L Bredenoord
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Frank C P Holstege
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | | | | | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Immunos, Singapore 138648, Singapore; Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| | | |
Collapse
|
8
|
Liu Z, Mao S, Hu Y, Liu F, Shao X. Hydrogel platform facilitating astrocytic differentiation through cell mechanosensing and YAP-mediated transcription. Mater Today Bio 2023; 22:100735. [PMID: 37576868 PMCID: PMC10413151 DOI: 10.1016/j.mtbio.2023.100735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Astrocytes are multifunctional glial cells that are essential for brain functioning. Most existing methods to induce astrocytes from stem cells are inefficient, requiring couples of weeks. Here, we designed an alginate hydrogel-based method to realize high-efficiency astrocytic differentiation from human neural stem cells. Comparing to the conventional tissue culture materials, the hydrogel drastically promoted astrocytic differentiation within three days. We investigated the regulatory mechanism underlying the enhanced differentiation, and found that the stretch-activated ion channels and Yes-associated protein (YAP), a mechanosensitive transcription coactivator, were both indispensable. In particular, the Piezo1 Ca2+ channel, but not transient receptor potential vanilloid 4 (TRPV4) channel, was necessary for promoting the astrocytic differentiation. The stretch-activated channels regulated the nuclear localization of YAP, and inhibition of the channels down-regulated the expression of YAP as well as its target genes. When blocking the YAP/TEAD-mediated transcription, astrocytic differentiation on the hydrogel significantly declined. Interestingly, cells on the hydrogel showed a remarkable filamentous actin assembly together with YAP nuclear translocation during the differentiation, while a progressive gel rupture at the cell-hydrogel interface along with a change in the gel elasticity was detected. These findings suggest that spontaneous decrosslinking of the hydrogel alters its mechanical properties, delivering mechanical stimuli to the cells. These mechanical signals activate the Piezo1 Ca2+ channel, facilitate YAP nuclear transcription via actomyosin cytoskeleton, and eventually provoke the astrocytic differentiation. While offering an efficient approach to obtain astrocytes, our work provides novel insights into the mechanism of astrocytic development through mechanical regulation.
Collapse
Affiliation(s)
- Zhongqian Liu
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shijie Mao
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Yubin Hu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Feng Liu
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiaowei Shao
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
9
|
Foss A, Pathania M. Pediatric Glioma Models Provide Insights into Tumor Development and Future Therapeutic Strategies. Dev Neurosci 2023; 46:22-43. [PMID: 37231843 DOI: 10.1159/000531040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
In depth study of pediatric gliomas has been hampered due to difficulties in accessing patient tissue and a lack of clinically representative tumor models. Over the last decade, however, profiling of carefully curated cohorts of pediatric tumors has identified genetic drivers that molecularly segregate pediatric gliomas from adult gliomas. This information has inspired the development of a new set of powerful in vitro and in vivo tumor models that can aid in identifying pediatric-specific oncogenic mechanisms and tumor microenvironment interactions. Single-cell analyses of both human tumors and these newly developed models have revealed that pediatric gliomas arise from spatiotemporally discrete neural progenitor populations in which developmental programs have become dysregulated. Pediatric high-grade gliomas also harbor distinct sets of co-segregating genetic and epigenetic alterations, often accompanied by unique features within the tumor microenvironment. The development of these novel tools and data resources has led to insights into the biology and heterogeneity of these tumors, including identification of distinctive sets of driver mutations, developmentally restricted cells of origin, recognizable patterns of tumor progression, characteristic immune environments, and tumor hijacking of normal microenvironmental and neural programs. As concerted efforts have broadened our understanding of these tumors, new therapeutic vulnerabilities have been identified, and for the first time, promising new strategies are being evaluated in the preclinical and clinical settings. Even so, dedicated and sustained collaborative efforts are necessary to refine our knowledge and bring these new strategies into general clinical use. In this review, we will discuss the range of currently available glioma models, the way in which they have each contributed to recent developments in the field, their benefits and drawbacks for addressing specific research questions, and their future utility in advancing biological understanding and treatment of pediatric glioma.
Collapse
Affiliation(s)
- Amelia Foss
- Department of Oncology and the Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, UK
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Manav Pathania
- Department of Oncology and the Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Wenger A, Karlsson I, Kling T, Carén H. CRISPR-Cas9 knockout screen identifies novel treatment targets in childhood high-grade glioma. Clin Epigenetics 2023; 15:80. [PMID: 37161535 PMCID: PMC10170782 DOI: 10.1186/s13148-023-01498-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Brain tumours are the leading cause of cancer-related death in children, and there is no effective treatment. A growing body of evidence points to deregulated epigenetics as a tumour driver, particularly in paediatric cancers as they have relatively few genomic alterations, and key driver mutations have been identified in histone 3 (H3). Cancer stem cells (CSC) are implicated in tumour development, relapse and therapy resistance and thus particularly important to target. We therefore aimed to identify novel epigenetic treatment targets in CSC derived from H3-mutated high-grade glioma (HGG) through a CRISPR-Cas9 knockout screen. RESULTS The knockout screen identified more than 100 novel genes essential for the growth of CSC derived from paediatric HGG with H3K27M mutation. We successfully validated 12 of the 13 selected hits by individual knockout in the same two CSC lines, and for the top six hits we included two additional CSC lines derived from H3 wild-type paediatric HGG. Knockout of these genes led to a significant decrease in CSC growth, and altered stem cell and differentiation markers. CONCLUSIONS The screen robustly identified essential genes known in the literature, but also many novel genes essential for CSC growth in paediatric HGG. Six of the novel genes (UBE2N, CHD4, LSM11, KANSL1, KANSL3 and EED) were validated individually thus demonstrating their importance for CSC growth in H3-mutated and wild-type HGG. These genes should be further studied and evaluated as novel treatment targets in paediatric HGG.
Collapse
Affiliation(s)
- Anna Wenger
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Ida Karlsson
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Teresia Kling
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden.
| |
Collapse
|
11
|
Latham LE, Dobrovolsky VN, Liu S, Talpos JC, Hanig JP, Slikker W, Wang C, Liu F. Establishment of neural stem cells from fetal monkey brain for neurotoxicity testing. Exp Biol Med (Maywood) 2023; 248:633-640. [PMID: 37208932 PMCID: PMC10350806 DOI: 10.1177/15353702231168145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 05/21/2023] Open
Abstract
Neurotoxicity assessments are generally performed using laboratory animals. However, as in vitro neurotoxicity models are continuously refined to reach adequate predicative concordance with in vivo responses, they are increasingly used for some endpoints of neurotoxicity. In this study, gestational day 80 fetal rhesus monkey brain tissue was obtained for neural stem cells (NSCs) isolation. Cells from the entire hippocampus were harvested, mechanically dissociated, and cultured for proliferation and differentiation. Immunocytochemical staining and biological assays demonstrated that the harvested hippocampal cells exhibited typical NSC phenotypes in vitro: (1) cells proliferated vigorously and expressed NSC markers nestin and sex-determining region Y-box 2 (SOX2) and (2) cells differentiated into neurons, astrocytes, and oligodendrocytes, as confirmed by positive staining with class III β-tubulin, glial fibrillary acidic protein, and galactocerebroside, respectively. The NSC produced detectable responses following neurotoxicant exposures (e.g. trimethyltin and 3-nitropropionic acid). Our results indicated that non-human primate NSCs may be a practical tool to study the biology of neural cells and to evaluate the neurotoxicity of chemicals in vitro, thereby providing data that are translatable to humans and may also reduce the number of animals needed for developmental neurotoxicological studies.
Collapse
Affiliation(s)
- Leah E Latham
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR 72079, USA
| | - Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR 72079, USA
| | - Shuliang Liu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR 72079, USA
| | - John C Talpos
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR 72079, USA
| | - Joseph P Hanig
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD 20903, USA
| | - William Slikker
- Office of Director, National Center for Toxicological Research, U.S. FDA, Jefferson, AR 72079, USA
| | - Cheng Wang
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR 72079, USA
| | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR 72079, USA
| |
Collapse
|
12
|
Nistor-Cseppentö DC, Jurcău MC, Jurcău A, Andronie-Cioară FL, Marcu F. Stem Cell- and Cell-Based Therapies for Ischemic Stroke. Bioengineering (Basel) 2022; 9:717. [PMID: 36421118 PMCID: PMC9687728 DOI: 10.3390/bioengineering9110717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 09/12/2023] Open
Abstract
Stroke is the second cause of disability worldwide as it is expected to increase its incidence and prevalence. Despite efforts to increase the number of patients eligible for recanalization therapies, a significant proportion of stroke survivors remain permanently disabled. This outcome boosted the search for efficient neurorestorative methods. Stem cells act through multiple pathways: cell replacement, the secretion of growth factors, promoting endogenous reparative pathways, angiogenesis, and the modulation of neuroinflammation. Although neural stem cells are difficult to obtain, pose a series of ethical issues, and require intracerebral delivery, mesenchymal stem cells are less immunogenic, are easy to obtain, and can be transplanted via intravenous, intra-arterial, or intranasal routes. Extracellular vesicles and exosomes have similar actions and are easier to obtain, also allowing for engineering to deliver specific molecules or RNAs and to promote the desired effects. Appropriate timing, dosing, and delivery protocols must be established, and the possibility of tumorigenesis must be settled. Nonetheless, stem cell- and cell-based therapies for stroke have already entered clinical trials. Although safe, the evidence for efficacy is less impressive so far. Hopefully, the STEP guidelines and the SPAN program will improve the success rate. As such, stem cell- and cell-based therapy for ischemic stroke holds great promise.
Collapse
Affiliation(s)
- Delia Carmen Nistor-Cseppentö
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | | | - Anamaria Jurcău
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Felicia Liana Andronie-Cioară
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Florin Marcu
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
13
|
Pattwell SS, Arora S, Nuechterlein N, Zager M, Loeb KR, Cimino PJ, Holland NC, Reche-Ley N, Bolouri H, Almiron Bonnin DA, Szulzewsky F, Phadnis VV, Ozawa T, Wagner MJ, Haffner MC, Cao J, Shendure J, Holland EC. Oncogenic role of a developmentally regulated NTRK2 splice variant. SCIENCE ADVANCES 2022; 8:eabo6789. [PMID: 36206341 PMCID: PMC9544329 DOI: 10.1126/sciadv.abo6789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Temporally regulated alternative splicing choices are vital for proper development, yet the wrong splice choice may be detrimental. Here, we highlight a previously unidentified role for the neurotrophin receptor splice variant TrkB.T1 in neurodevelopment, embryogenesis, transformation, and oncogenesis across multiple tumor types in humans and mice. TrkB.T1 is the predominant NTRK2 isoform across embryonic organogenesis, and forced overexpression of this embryonic pattern causes multiple solid and nonsolid tumors in mice in the context of tumor suppressor loss. TrkB.T1 also emerges as the predominant NTRK isoform expressed in a wide range of adult and pediatric tumors, including those harboring tropomyosin receptor kinase fusions. Affinity purification-mass spectrometry proteomic analysis reveals distinct interactors with known developmental and oncogenic signaling pathways such as Wnt, transforming growth factor-β, Sonic Hedgehog, and Ras. From alterations in splicing factors to changes in gene expression, the discovery of isoform specific oncogenes with embryonic ancestry has the potential to shape the way we think about developmental systems and oncology.
Collapse
Affiliation(s)
- Siobhan S. Pattwell
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Division of Pediatrics, Department Hematology/Oncology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
| | - Nicholas Nuechterlein
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Michael Zager
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Center for Data Visualization, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Keith R. Loeb
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, 325 9th Avenue, Box 359791, Seattle, WA 98104, USA
| | - Patrick J. Cimino
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, 325 9th Avenue, Box 359791, Seattle, WA 98104, USA
| | - Nikolas C. Holland
- Center for Neural Science, New York University, 4 Washington Place, #809, New York, NY 10003, USA
- Department of Psychiatry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA
| | | | - Hamid Bolouri
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
- Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Damian A. Almiron Bonnin
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
| | | | - Tatsuya Ozawa
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Michael J. Wagner
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
- Division of Medical Oncology, University of Washington, 825 Eastlake Ave E., Seattle, WA 98109, USA
| | - Michael C. Haffner
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, 325 9th Avenue, Box 359791, Seattle, WA 98104, USA
| | - Junyue Cao
- Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Eric C. Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
- Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| |
Collapse
|
14
|
Varga BV, Faiz M, Pivonkova H, Khelifi G, Yang H, Gao S, Linderoth E, Zhen M, Karadottir RT, Hussein SM, Nagy A. Signal requirement for cortical potential of transplantable human neuroepithelial stem cells. Nat Commun 2022; 13:2844. [PMID: 35606347 PMCID: PMC9126949 DOI: 10.1038/s41467-022-29839-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/21/2022] [Indexed: 01/26/2023] Open
Abstract
The cerebral cortex develops from dorsal forebrain neuroepithelial progenitor cells. Following the initial expansion of the progenitor cell pool, these cells generate neurons of all the cortical layers and then astrocytes and oligodendrocytes. Yet, the regulatory pathways that control the expansion and maintenance of the progenitor cell pool are currently unknown. Here we define six basic pathway components that regulate proliferation of cortically specified human neuroepithelial stem cells (cNESCs) in vitro without the loss of cerebral cortex developmental potential. We show that activation of FGF and inhibition of BMP and ACTIVIN A signalling are required for long-term cNESC proliferation. We also demonstrate that cNESCs preserve dorsal telencephalon-specific potential when GSK3, AKT and nuclear CATENIN-β1 activity are low. Remarkably, regulation of these six pathway components supports the clonal expansion of cNESCs. Moreover, cNESCs differentiate into lower- and upper-layer cortical neurons in vitro and in vivo. The identification of mechanisms that drive the neuroepithelial stem cell self-renewal and differentiation and preserve this potential in vitro is key to developing regenerative and cell-based therapeutic approaches to treat neurological conditions.
Collapse
Affiliation(s)
- Balazs V Varga
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada. .,Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK.
| | - Maryam Faiz
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Surgery, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Helena Pivonkova
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK
| | - Gabriel Khelifi
- Cancer Research Center, Université Laval, Quebec City, QC, Canada.,CHU of Québec-Université Laval Research Center, Oncology Division, Quebec City, QC, Canada
| | - Huijuan Yang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Shangbang Gao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Emma Linderoth
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ragnhildur Thora Karadottir
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Samer M Hussein
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Cancer Research Center, Université Laval, Quebec City, QC, Canada.,CHU of Québec-Université Laval Research Center, Oncology Division, Quebec City, QC, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada. .,Department of Obstetrics and Gynaecology, and Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Singh DK, Shivalingappa PKM, Sharma A, Mondal A, Muzumdar D, Shiras A, Bapat SA. NSG-70, a new glioblastoma cell line with mixed proneural-mesenchymal features, associates NOTCH1-WNT5A signaling with stem cell maintenance and angiogenesis. J Neurooncol 2022; 157:575-591. [DOI: 10.1007/s11060-022-04002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/03/2022] [Indexed: 11/24/2022]
|
16
|
Beiriger J, Habib A, Jovanovich N, Kodavali CV, Edwards L, Amankulor N, Zinn PO. The Subventricular Zone in Glioblastoma: Genesis, Maintenance, and Modeling. Front Oncol 2022; 12:790976. [PMID: 35359410 PMCID: PMC8960165 DOI: 10.3389/fonc.2022.790976] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a malignant tumor with a median survival rate of 15-16 months with standard care; however, cases of successful treatment offer hope that an enhanced understanding of the pathology will improve the prognosis. The cell of origin in GBM remains controversial. Recent evidence has implicated stem cells as cells of origin in many cancers. Neural stem/precursor cells (NSCs) are being evaluated as potential initiators of GBM tumorigenesis. The NSCs in the subventricular zone (SVZ) have demonstrated similar molecular profiles and share several distinctive characteristics to proliferative glioblastoma stem cells (GSCs) in GBM. Genomic and proteomic studies comparing the SVZ and GBM support the hypothesis that the tumor cells and SVZ cells are related. Animal models corroborate this connection, demonstrating migratory patterns from the SVZ to the tumor. Along with laboratory and animal research, clinical studies have demonstrated improved progression-free survival in patients with GBM after radiation to the ipsilateral SVZ. Additionally, key genetic mutations in GBM for the most part carry regulatory roles in the SVZ as well. An exciting avenue towards SVZ modeling and determining its role in gliomagenesis in the human context is human brain organoids. Here we comprehensively discuss and review the role of the SVZ in GBM genesis, maintenance, and modeling.
Collapse
Affiliation(s)
- Jamison Beiriger
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nicolina Jovanovich
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Chowdari V. Kodavali
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Lincoln Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| |
Collapse
|
17
|
Lange J, Gillham O, Alkharji R, Eaton S, Ferrari G, Madej M, Flower M, Tedesco FS, Muntoni F, Ferretti P. Dystrophin deficiency affects human astrocyte properties and response to damage. Glia 2022; 70:466-490. [PMID: 34773297 DOI: 10.1002/glia.24116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
In addition to progressive muscular degeneration due to dystrophin mutations, 1/3 of Duchenne muscular dystrophy (DMD) patients present cognitive deficits. However, there is currently an incomplete understanding about the function of the multiple dystrophin isoforms in human brains. Here, we tested the hypothesis that dystrophin deficiency affects glial function in DMD and could therefore contribute to neural impairment. We investigated human dystrophin isoform expression with development and differentiation and response to damage in human astrocytes from control and induced pluripotent stem cells from DMD patients. In control cells, short dystrophin isoforms were up-regulated with development and their expression levels changed differently upon neuronal and astrocytic differentiation, as well as in 2-dimensional versus 3-dimensional astrocyte cultures. All DMD-astrocytes tested displayed altered morphology, proliferative activity and AQP4 expression. Furthermore, they did not show any morphological change in response to inflammatory stimuli and their number was significantly lower as compared to stimulated healthy astrocytes. Finally, DMD-astrocytes appeared to be more sensitive than controls to oxidative damage as shown by their increased cell death. Behavioral and metabolic defects in DMD-astrocytes were consistent with gene pathway dysregulation shared by lines with different mutations as demonstrated by bulk RNA-seq analysis. Together, our DMD model provides evidence for altered astrocyte function in DMD suggesting that defective astrocyte responses may contribute to neural impairment and might provide additional potential therapeutic targets.
Collapse
Affiliation(s)
- Jenny Lange
- Department of Developmental Biology and Cancer, Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Olivia Gillham
- Department of Developmental Biology and Cancer, Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Reem Alkharji
- Department of Developmental Biology and Cancer, Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Simon Eaton
- Department of Developmental Biology and Cancer, Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Monika Madej
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michael Flower
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, UK
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- The Francis Crick Institute, 1 Midland Road, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Patrizia Ferretti
- Department of Developmental Biology and Cancer, Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
18
|
Huang J, U KP, Yang F, Ji Z, Lin J, Weng Z, Tsang LL, Merson TD, Ruan YC, Wan C, Li G, Jiang X. Human pluripotent stem cell-derived ectomesenchymal stromal cells promote more robust functional recovery than umbilical cord-derived mesenchymal stromal cells after hypoxic-ischaemic brain damage. Am J Cancer Res 2022; 12:143-166. [PMID: 34987639 PMCID: PMC8690936 DOI: 10.7150/thno.57234] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Aims: Hypoxic-ischaemic encephalopathy (HIE) is one of the most serious complications in neonates and infants. Mesenchymal stromal cell (MSC)-based therapy is emerging as a promising treatment avenue for HIE. However, despite its enormous potential, the clinical application of MSCs is limited by cell heterogeneity, low isolation efficiency and unpredictable effectiveness. In this study, we examined the therapeutic effects and underlying mechanisms of human pluripotent stem cell-derived ectomesenchymal stromal cells (hPSC-EMSCs) in a rat model of HIE. Methods: hPSC-EMSCs were induced from either human embryonic stem cells or induced pluripotent stem cells. Stem cells or the conditioned medium (CM) derived from stem cells were delivered intracranially or intranasally to neonatal rats with HIE. Human umbilical cord-derived MSCs (hUC-MSCs) were used as the therapeutic comparison control and phosphate-buffered saline (PBS) was used as a negative control. Lesion size, apoptosis, neurogenesis, astrogliosis and microgliosis were evaluated. The rotarod test and Morris water maze were used to determine brain functional recovery. The PC-12 cell line, rat primary cortical neurons and neural progenitor cells were used to evaluate neurite outgrowth and the neuroprotective and neurogenesis effects of hPSC-EMSCs/hUC-MSCs. RNA-seq and enzyme-linked immunosorbent assays were used to determine the secretory factors that were differentially expressed between hPSC-EMSCs and hUC-MSCs. The activation and suppression of extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) were characterised using western blotting and immunofluorescent staining. Results: hPSC-EMSCs showed a higher neuroprotective potential than hUC-MSCs, as demonstrated by a more significant reduction in lesion size and apoptosis in the rat brain following hypoxia-ischaemia (HI). Compared with PBS treatment, hPSC-EMSCs promoted endogenous neurogenesis and alleviated astrogliosis and microgliosis. hPSC-EMSCs were more effective than hUC-MSCs. hPSC-EMSCs achieved a greater recovery of brain function than hUC-MSCs and PBS in rats with HIE. CM derived from hPSC-EMSCs had neuroprotective and neurorestorative effects in vitro through anti-apoptotic and neurite outgrowth- and neurogenesis-promoting effects. Direct comparisons between hPSC-EMSCs and hUC-MSCs revealed the significant enrichment of a group of secretory factors in hPSC-EMSCs, including nerve growth factor (NGF), platelet-derived growth factor-AA and transforming growth factor-β2, which are involved in neurogenesis, synaptic transmission and neurotransmitter transport, respectively. Mechanistically, the CM derived from hPSC-EMSCs was found to potentiate NGF-induced neurite outgrowth and the neuronal differentiation of NPCs via the ERK/CREB pathway. Suppression of ERK or CREB abolished CM-potentiated neuritogenesis and neuronal differentiation. Finally, intranasal delivery of the CM derived from hPSC-EMSCs significantly reduced brain lesion size, promoted endogenous neurogenesis, mitigated inflammatory responses and improved functional recovery in rats with HIE. Conclusion: hPSC-EMSCs promote functional recovery after HI through multifaceted neuromodulatory activities via paracrine/trophic mechanisms. We propose the use of hPSC-EMSCs for the treatment of HIE, as they offer an excellent unlimited cellular source of MSCs.
Collapse
|
19
|
Gupta P, Shinde A, Illath K, Kar S, Nagai M, Tseng FG, Santra TS. Microfluidic platforms for single neuron analysis. Mater Today Bio 2022; 13:100222. [PMID: 35243297 PMCID: PMC8866890 DOI: 10.1016/j.mtbio.2022.100222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
Single-neuron actions are the basis of brain function, as clinical sequelae, neuronal dysfunction or failure for most of the central nervous system (CNS) diseases and injuries can be identified via tracing single-neurons. The bulk analysis methods tend to miscue critical information by assessing the population-averaged outcomes. However, its primary requisite in neuroscience to analyze single-neurons and to understand dynamic interplay of neurons and their environment. Microfluidic systems enable precise control over nano-to femto-liter volumes via adjusting device geometry, surface characteristics, and flow-dynamics, thus facilitating a well-defined micro-environment with spatio-temporal control for single-neuron analysis. The microfluidic platform not only offers a comprehensive landscape to study brain cell diversity at the level of transcriptome, genome, and/or epigenome of individual cells but also has a substantial role in deciphering complex dynamics of brain development and brain-related disorders. In this review, we highlight recent advances of microfluidic devices for single-neuron analysis, i.e., single-neuron trapping, single-neuron dynamics, single-neuron proteomics, single-neuron transcriptomics, drug delivery at the single-neuron level, single axon guidance, and single-neuron differentiation. Moreover, we also emphasize limitations and future challenges of single-neuron analysis by focusing on key performances of throughput and multiparametric activity analysis on microfluidic platforms.
Collapse
|
20
|
Shao X, Wang C, Wang C, Han L, Han Y, Nižetić D, Zhang Y, Han L. Mechanical Stress Induces a Transient Suppression of Cytokine Secretion in Astrocytes Assessed at the Single-Cell Level with a High-Throughput Microfluidic Chip. Adv Healthc Mater 2021; 10:e2100698. [PMID: 34549544 DOI: 10.1002/adhm.202100698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/27/2021] [Indexed: 11/11/2022]
Abstract
Brain cells are constantly subjected to mechanical signals. Astrocytes are the most abundant glial cells of the central nervous system (CNS), which display immunoreactivity and have been suggested as an emerging disease focus in the recent years. However, how mechanical signals regulate astrocyte immunoreactivity, and the cytokine release in particular, remains to be fully characterized. Here, human neural stem cells are used to induce astrocytes, from which the release of 15 types of cytokines are screened, and nine of them are detected using a protein microfluidic chip. When a gentle compressive force is applied, altered cell morphology and reinforced cytoskeleton are observed. The force induces a transient suppression of cytokine secretions including IL-6, MCP-1, and IL-8 in the early astrocytes. Further, using a multiplexed single-cell culture and protein detection microfluidic chip, the mechanical effects at a single-cell level are analyzed, which validates a concerted downregulation by force on IL-6 and MCP-1 secretions in the cells releasing both factors. This work demonstrates an original attempt of employing the protein detection microfluidic chips in the assessment of mechanical regulation on the brain cells at a single-cell resolution, offering novel approach and unique insights for the understanding of the CNS immune regulation.
Collapse
Affiliation(s)
- Xiaowei Shao
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
- Suzhou Research Institute Shandong University Suzhou 215123 China
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore 308232
| | - Chunhua Wang
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
| | - Chao Wang
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
| | - Lei Han
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
| | - Yunrui Han
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
| | - Dean Nižetić
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore 308232
- The Blizard Institute Barts and The London School of Medicine Queen Mary University of London London E1 2AT UK
| | - Yu Zhang
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
| | - Lin Han
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
| |
Collapse
|
21
|
Daura E, Tegelberg S, Yoshihara M, Jackson C, Simonetti F, Aksentjeff K, Ezer S, Hakala P, Katayama S, Kere J, Lehesjoki AE, Joensuu T. Cystatin B-deficiency triggers ectopic histone H3 tail cleavage during neurogenesis. Neurobiol Dis 2021; 156:105418. [PMID: 34102276 DOI: 10.1016/j.nbd.2021.105418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022] Open
Abstract
Cystatin B (CSTB) acts as an inhibitor of cysteine proteases of the cathepsin family and loss-of-function mutations result in human brain diseases with a genotype-phenotype correlation. In the most severe case, CSTB-deficiency disrupts brain development, and yet the molecular basis of this mechanism is missing. Here, we establish CSTB as a regulator of chromatin structure during neural stem cell renewal and differentiation. Murine neural precursor cells (NPCs) undergo transient proteolytic cleavage of the N-terminal histone H3 tail by cathepsins B and L upon induction of differentiation into neurons and glia. In contrast, CSTB-deficiency triggers premature H3 tail cleavage in undifferentiated self-renewing NPCs and sustained H3 tail proteolysis in differentiating neural cells. This leads to significant transcriptional changes in NPCs, particularly of nuclear-encoded mitochondrial genes. In turn, these transcriptional alterations impair the enhanced mitochondrial respiration that is induced upon neural stem cell differentiation. Collectively, our findings reveal the basis of epigenetic regulation in the molecular pathogenesis of CSTB deficiency.
Collapse
Affiliation(s)
- Eduard Daura
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Saara Tegelberg
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden
| | - Christopher Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Francesca Simonetti
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Katri Aksentjeff
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Sini Ezer
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Paula Hakala
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Shintaro Katayama
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden
| | - Juha Kere
- Folkhälsan Research Center, 00290 Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Tarja Joensuu
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
22
|
O’Connor SA, Feldman HM, Arora S, Hoellerbauer P, Toledo CM, Corrin P, Carter L, Kufeld M, Bolouri H, Basom R, Delrow J, McFaline‐Figueroa JL, Trapnell C, Pollard SM, Patel A, Paddison PJ, Plaisier CL. Neural G0: a quiescent-like state found in neuroepithelial-derived cells and glioma. Mol Syst Biol 2021; 17:e9522. [PMID: 34101353 PMCID: PMC8186478 DOI: 10.15252/msb.20209522] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Single-cell RNA sequencing has emerged as a powerful tool for resolving cellular states associated with normal and maligned developmental processes. Here, we used scRNA-seq to examine the cell cycle states of expanding human neural stem cells (hNSCs). From these data, we constructed a cell cycle classifier that identifies traditional cell cycle phases and a putative quiescent-like state in neuroepithelial-derived cell types during mammalian neurogenesis and in gliomas. The Neural G0 markers are enriched with quiescent NSC genes and other neurodevelopmental markers found in non-dividing neural progenitors. Putative glioblastoma stem-like cells were significantly enriched in the Neural G0 cell population. Neural G0 cell populations and gene expression are significantly associated with less aggressive tumors and extended patient survival for gliomas. Genetic screens to identify modulators of Neural G0 revealed that knockout of genes associated with the Hippo/Yap and p53 pathways diminished Neural G0 in vitro, resulting in faster G1 transit, down-regulation of quiescence-associated markers, and loss of Neural G0 gene expression. Thus, Neural G0 represents a dynamic quiescent-like state found in neuroepithelial-derived cells and gliomas.
Collapse
Affiliation(s)
- Samantha A O’Connor
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZUSA
| | - Heather M Feldman
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Sonali Arora
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Pia Hoellerbauer
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleWAUSA
| | - Chad M Toledo
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleWAUSA
| | - Philip Corrin
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Lucas Carter
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Megan Kufeld
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Hamid Bolouri
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Ryan Basom
- Genomics and Bioinformatics Shared ResourcesFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Jeffrey Delrow
- Genomics and Bioinformatics Shared ResourcesFred Hutchinson Cancer Research CenterSeattleWAUSA
| | | | - Cole Trapnell
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
| | - Steven M Pollard
- Edinburgh CRUK Cancer Research CentreMRC Centre for Regenerative MedicineThe University of EdinburghEdinburghUK
| | - Anoop Patel
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Department of NeurosurgeryUniversity of WashingtonSeattleWAUSA
| | - Patrick J Paddison
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleWAUSA
| | | |
Collapse
|
23
|
Bressan RB, Southgate B, Ferguson KM, Blin C, Grant V, Alfazema N, Wills JC, Marques-Torrejon MA, Morrison GM, Ashmore J, Robertson F, Williams CAC, Bradley L, von Kriegsheim A, Anderson RA, Tomlinson SR, Pollard SM. Regional identity of human neural stem cells determines oncogenic responses to histone H3.3 mutants. Cell Stem Cell 2021; 28:877-893.e9. [PMID: 33631116 PMCID: PMC8110245 DOI: 10.1016/j.stem.2021.01.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/22/2020] [Accepted: 01/20/2021] [Indexed: 01/06/2023]
Abstract
Point mutations within the histone H3.3 are frequent in aggressive childhood brain tumors known as pediatric high-grade gliomas (pHGGs). Intriguingly, distinct mutations arise in discrete anatomical regions: H3.3-G34R within the forebrain and H3.3-K27M preferentially within the hindbrain. The reasons for this contrasting etiology are unknown. By engineering human fetal neural stem cell cultures from distinct brain regions, we demonstrate here that cell-intrinsic regional identity provides differential responsiveness to each mutant that mirrors the origins of pHGGs. Focusing on H3.3-G34R, we find that the oncohistone supports proliferation of forebrain cells while inducing a cytostatic response in the hindbrain. Mechanistically, H3.3-G34R does not impose widespread transcriptional or epigenetic changes but instead impairs recruitment of ZMYND11, a transcriptional repressor of highly expressed genes. We therefore propose that H3.3-G34R promotes tumorigenesis by focally stabilizing the expression of key progenitor genes, thereby locking initiating forebrain cells into their pre-existing immature state.
Collapse
Affiliation(s)
- Raul Bardini Bressan
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark
| | - Benjamin Southgate
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Kirsty M Ferguson
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Carla Blin
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Vivien Grant
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Neza Alfazema
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Jimi C Wills
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Maria Angeles Marques-Torrejon
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Gillian M Morrison
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - James Ashmore
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Faye Robertson
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Charles A C Williams
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Leanne Bradley
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Simon R Tomlinson
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
24
|
Gangoso E, Southgate B, Bradley L, Rus S, Galvez-Cancino F, McGivern N, Güç E, Kapourani CA, Byron A, Ferguson KM, Alfazema N, Morrison G, Grant V, Blin C, Sou I, Marques-Torrejon MA, Conde L, Parrinello S, Herrero J, Beck S, Brandner S, Brennan PM, Bertone P, Pollard JW, Quezada SA, Sproul D, Frame MC, Serrels A, Pollard SM. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell 2021; 184:2454-2470.e26. [PMID: 33857425 PMCID: PMC8099351 DOI: 10.1016/j.cell.2021.03.023] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 12/18/2020] [Accepted: 03/11/2021] [Indexed: 12/22/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor for which current immunotherapy approaches have been unsuccessful. Here, we explore the mechanisms underlying immune evasion in GBM. By serially transplanting GBM stem cells (GSCs) into immunocompetent hosts, we uncover an acquired capability of GSCs to escape immune clearance by establishing an enhanced immunosuppressive tumor microenvironment. Mechanistically, this is not elicited via genetic selection of tumor subclones, but through an epigenetic immunoediting process wherein stable transcriptional and epigenetic changes in GSCs are enforced following immune attack. These changes launch a myeloid-affiliated transcriptional program, which leads to increased recruitment of tumor-associated macrophages. Furthermore, we identify similar epigenetic and transcriptional signatures in human mesenchymal subtype GSCs. We conclude that epigenetic immunoediting may drive an acquired immune evasion program in the most aggressive mesenchymal GBM subtype by reshaping the tumor immune microenvironment.
Collapse
Affiliation(s)
- Ester Gangoso
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Benjamin Southgate
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Leanne Bradley
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Stefanie Rus
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Felipe Galvez-Cancino
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London WC1E 6BT, UK
| | - Niamh McGivern
- CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Esra Güç
- Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Chantriolnt-Andreas Kapourani
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Adam Byron
- CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Kirsty M Ferguson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Neza Alfazema
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Gillian Morrison
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Vivien Grant
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Carla Blin
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - IengFong Sou
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Maria Angeles Marques-Torrejon
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Lucia Conde
- Bill Lyons Informatics Centre, Department of Cancer Biology, University College London Cancer Institute, London WC1E 6BT
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London WC1E 6BT, UK
| | - Javier Herrero
- Bill Lyons Informatics Centre, Department of Cancer Biology, University College London Cancer Institute, London WC1E 6BT
| | - Stephan Beck
- Medical Genomics Research Group, Department of Cancer Biology, University College London Cancer Institute, London, WC1E 6BT
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Paul M Brennan
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Paul Bertone
- Department of Medicine, Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Jeffrey W Pollard
- Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London WC1E 6BT, UK
| | - Duncan Sproul
- CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Margaret C Frame
- CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK
| | - Alan Serrels
- Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; CRUK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH42XR, UK.
| |
Collapse
|
25
|
Dell' Amico C, Tata A, Pellegrino E, Onorati M, Conti L. Genome editing in stem cells for genetic neurodisorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:403-438. [PMID: 34175049 DOI: 10.1016/bs.pmbts.2020.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recent advent of genome editing techniques and their rapid improvement paved the way in establishing innovative human neurological disease models and in developing new therapeutic opportunities. Human pluripotent (both induced or naive) stem cells and neural stem cells represent versatile tools to be applied to multiple research needs and, together with genomic snip and fix tools, have recently made possible the creation of unique platforms to directly investigate several human neural affections. In this chapter, we will discuss genome engineering tools, and their recent improvements, applied to the stem cell field, focusing on how these two technologies may be pivotal instruments to deeply unravel molecular mechanisms underlying development and function, as well as disorders, of the human brain. We will review how these frontier technologies may be exploited to investigate or treat severe neurodevelopmental disorders, such as microcephaly, autism spectrum disorder, schizophrenia, as well as neurodegenerative conditions, including Parkinson's disease, Huntington's disease, Alzheimer's disease, and spinal muscular atrophy.
Collapse
Affiliation(s)
- Claudia Dell' Amico
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Alice Tata
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Enrica Pellegrino
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy; Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy.
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
26
|
Khazaei M, Ahuja CS, Nakashima H, Nagoshi N, Li L, Wang J, Chio J, Badner A, Seligman D, Ichise A, Shibata S, Fehlings MG. GDNF rescues the fate of neural progenitor grafts by attenuating Notch signals in the injured spinal cord in rodents. Sci Transl Med 2021; 12:12/525/eaau3538. [PMID: 31915299 DOI: 10.1126/scitranslmed.aau3538] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 04/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Neural progenitor cell (NPC) transplantation is a promising strategy for the treatment of spinal cord injury (SCI). In this study, we show that injury-induced Notch activation in the spinal cord microenvironment biases the fate of transplanted NPCs toward astrocytes in rodents. In a screen for potential clinically relevant factors to modulate Notch signaling, we identified glial cell-derived neurotrophic factor (GDNF). GDNF attenuates Notch signaling by mediating delta-like 1 homolog (DLK1) expression, which is independent of GDNF's effect on cell survival. When transplanted into a rodent model of cervical SCI, GDNF-expressing human-induced pluripotent stem cell-derived NPCs (hiPSC-NPCs) demonstrated higher differentiation toward a neuronal fate compared to control cells. In addition, expression of GDNF promoted endogenous tissue sparing and enhanced electrical integration of transplanted cells, which collectively resulted in improved neurobehavioral recovery. CRISPR-induced knockouts of the DLK1 gene in GDNF-expressing hiPSC-NPCs attenuated the effect on functional recovery, demonstrating that this effect is partially mediated through DLK1 expression. These results represent a mechanistically driven optimization of hiPSC-NPC therapy to redirect transplanted cells toward a neuronal fate and enhance their integration.
Collapse
Affiliation(s)
- Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Christopher S Ahuja
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hiroaki Nakashima
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Narihito Nagoshi
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Lijun Li
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Jian Wang
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Jonathon Chio
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anna Badner
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David Seligman
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Ayaka Ichise
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
27
|
Hajj GNM, Nunes PBC, Roffe M. Genome-wide translation patterns in gliomas: An integrative view. Cell Signal 2020; 79:109883. [PMID: 33321181 DOI: 10.1016/j.cellsig.2020.109883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Gliomas are the most frequent tumors of the central nervous system (CNS) and include the highly malignant glioblastoma (GBM). Characteristically, gliomas have translational control deregulation related to overactivation of signaling pathways such as PI3K/AKT/mTORC1 and Ras/ERK1/2. Thus, mRNA translation appears to play a dominant role in glioma gene expression patterns. The, analysis of genome-wide translated transcripts, together known as the translatome, may reveal important information for understanding gene expression patterns in gliomas. This review provides a brief overview of translational control mechanisms altered in gliomas with a focus on the current knowledge related to the translatomes of glioma cells and murine glioma models. We present an integrative meta-analysis of selected glioma translatome data with the aim of identifying recurrent patterns of gene expression preferentially regulated at the level of translation and obtaining clues regarding the pathological significance of these alterations. Re-analysis of several translatome datasets was performed to compare the translatomes of glioma models with those of their non-tumor counterparts and to document glioma cell responses to radiotherapy and MNK modulation. The role of recurrently altered genes in the context of translational control and tumorigenesis are discussed.
Collapse
Affiliation(s)
- Glaucia Noeli Maroso Hajj
- International Research Institute, A.C.Camargo Cancer Center, Rua Taguá, 440, São Paulo ZIP Code: 01508-010, Brazil; National Institute of Oncogenomics and Innovation, Brazil.
| | - Paula Borzino Cordeiro Nunes
- International Research Institute, A.C.Camargo Cancer Center, Rua Taguá, 440, São Paulo ZIP Code: 01508-010, Brazil
| | - Martin Roffe
- International Research Institute, A.C.Camargo Cancer Center, Rua Taguá, 440, São Paulo ZIP Code: 01508-010, Brazil; National Institute of Oncogenomics and Innovation, Brazil.
| |
Collapse
|
28
|
Andreatta F, Beccaceci G, Fortuna N, Celotti M, De Felice D, Lorenzoni M, Foletto V, Genovesi S, Rubert J, Alaimo A. The Organoid Era Permits the Development of New Applications to Study Glioblastoma. Cancers (Basel) 2020; 12:E3303. [PMID: 33182346 PMCID: PMC7695252 DOI: 10.3390/cancers12113303] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GB) is the most frequent and aggressive type of glioma. The lack of reliable GB models, together with its considerable clinical heterogeneity, has impaired a comprehensive investigation of the mechanisms that lead to tumorigenesis, cancer progression, and response to treatments. Recently, 3D cultures have opened the possibility to overcome these challenges and cerebral organoids are emerging as a leading-edge tool in GB research. The opportunity to easily engineer brain organoids via gene editing and to perform co-cultures with patient-derived tumor spheroids has enabled the analysis of cancer development in a context that better mimics brain tissue architecture. Moreover, the establishment of biobanks from GB patient-derived organoids represents a crucial starting point to improve precision medicine therapies. This review exemplifies relevant aspects of 3D models of glioblastoma, with a specific focus on organoids and their involvement in basic and translational research.
Collapse
Affiliation(s)
- Francesco Andreatta
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Giulia Beccaceci
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Nicolò Fortuna
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Martina Celotti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Dario De Felice
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Marco Lorenzoni
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Veronica Foletto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Sacha Genovesi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Josep Rubert
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
- Interdisciplinary Research Structure of Biotechnology and Biomedicine, Department of Biochemistry and Molecular Biology, Universitat de Valencia, 46100 Burjassot, Spain
| | - Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| |
Collapse
|
29
|
Zhao S, Duan K, Ai Z, Niu B, Chen Y, Kong R, Li T. Generation of cortical neurons through large-scale expanding neuroepithelial stem cell from human pluripotent stem cells. Stem Cell Res Ther 2020; 11:431. [PMID: 33008480 PMCID: PMC7532602 DOI: 10.1186/s13287-020-01939-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/22/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023] Open
Abstract
Background Considerable progress has been made in converting human pluripotent stem cells (hPSCs) into cortical neurons for disease modeling and regenerative medicine. However, these procedures are hard to provide sufficient cells for their applications. Using a combination of small-molecules and growth factors, we previously identified one condition which can rapidly induce hPSCs into neuroepithelial stem cells (NESCs). Here, we developed a scalable suspension culture system, which largely yields high-quality NESC-spheres and subsequent cortical neurons. Methods The NESC medium was first optimized, and the suspension culture system was then enlarged from plates to stirred bioreactors for large-scale production of NESC-spheres by a stirring speed of 60 rpm. During the expansion, the quality of NESC-spheres was evaluated. The differentiation potential of NESC-spheres into cortical neurons was demonstrated by removing bFGF and two pathway inhibitors from the NESC medium. Cellular immunofluorescence staining, global transcriptome, and single-cell RNA sequencing analysis were used to identify the characteristics, identities, purities, or homogeneities of NESC-spheres or their differentiated cells, respectively. Results The optimized culture system is more conducive to large-scale suspension production of NESCs. These largely expanded NESC-spheres maintain unlimited self-renewal ability and NESC state by retaining their uniform sizes, high cell vitalities, and robust expansion abilities. After long-term expansion, NESC-spheres preserve high purity, homogeneity, and normal diploid karyotype. These expanded NESC-spheres on a large scale have strong differentiation potential and effectively produce mature cortical neurons. Conclusions We developed a serum-free, defined, and low-cost culture system for large-scale expansion of NESCs in stirred suspension bioreactors. The stable and controllable 3D system supports long-term expansion of high-quality and homogeneous NESC-spheres. These NESC-spheres can be used to efficiently give rise to cortical neurons for cell therapy, disease modeling, and drug screening in future.
Collapse
Affiliation(s)
- Shumei Zhao
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Kui Duan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Zongyong Ai
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Baohua Niu
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yanying Chen
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Ruize Kong
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Tianqing Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China. .,Xi'an ChaoYue Stem Cell Co, Ltd, Xi'an, China.
| |
Collapse
|
30
|
Hoellerbauer P, Kufeld M, Arora S, Wu H, Feldman HM, Paddison PJ. A simple and highly efficient method for multi-allelic CRISPR-Cas9 editing in primary cell cultures. Cancer Rep (Hoboken) 2020; 3:e1269. [PMID: 32721120 PMCID: PMC7685144 DOI: 10.1002/cnr2.1269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND CRISPR-Cas9-based technologies have revolutionized experimental manipulation of mammalian genomes. None-the-less, limitations of the delivery and efficacy of these technologies restrict their application in primary cells. AIMS To create an optimized protocol for penetrant, reproducible, and fast targeted genome editing in cell cultures derived from primary cells, using patient-derived glioblastoma stem-like cells (GSCs) and human neural stem/progenitor cells (NSCs) for proof-of-concept experiments. METHODS AND RESULTS We employed transient nucleofection of Cas9:sgRNA ribonucleoprotein complexes composed of chemically synthesized 2'-O-methyl 3'phosphorothioate-modified sgRNAs and purified Cas9 protein. Insertion-deletion mutation (indel) frequency and size distribution were measured via computational deconvolution of Sanger sequencing trace data. We found that this optimized technique routinely allows for >90% indel formation in only 3 days, without the need to create clonal lines for simple loss-of-function experiments. Using Western blotting, we observed near-total protein loss of target genes in cell pools. Additionally, we found that this approach allows for the creation of targeted genomic deletions. Furthermore, by using RNA-seq in edited NSCs to assess gene expression changes resulting from knockout of tumor suppressors commonly altered in glioblastoma, we also demonstrated the utility of this method for quickly creating a series of gene knockouts that allow for the study of oncogenic activities. CONCLUSION Our data suggest that this relatively simple method can be used for highly efficient and fast gene knockout, as well as for targeted genomic deletions, even in hyperdiploid cells (such as GSCs). This represents an extremely useful tool for the cancer research community when wishing to inactivate not only coding genes, but also non-coding RNAs, UTRs, enhancers, and promoters. This method can be readily applied to diverse cell types by varying the nucleofection conditions.
Collapse
Affiliation(s)
- Pia Hoellerbauer
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleWashingtonUSA
| | - Megan Kufeld
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
- Antibody DiscoverySeattle GeneticsBothellWashingtonUSA
| | - Sonali Arora
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Hua‐Jun Wu
- Department of Biostatistics and Computational BiologyDana‐Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public HealthBostonMassachusettsUSA
| | - Heather M. Feldman
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Patrick J. Paddison
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
31
|
Simpson JE, Gammoh N. The impact of autophagy during the development and survival of glioblastoma. Open Biol 2020; 10:200184. [PMID: 32873152 PMCID: PMC7536068 DOI: 10.1098/rsob.200184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is the most common and aggressive adult brain tumour, with poor median survival and limited treatment options. Following surgical resection and chemotherapy, recurrence of the disease is inevitable. Genomic studies have identified key drivers of glioblastoma development, including amplifications of receptor tyrosine kinases, which drive tumour growth. To improve treatment, it is crucial to understand survival response processes in glioblastoma that fuel cell proliferation and promote resistance to treatment. One such process is autophagy, a catabolic pathway that delivers cellular components sequestered into vesicles for lysosomal degradation. Autophagy plays an important role in maintaining cellular homeostasis and is upregulated during stress conditions, such as limited nutrient and oxygen availability, and in response to anti-cancer therapy. Autophagy can also regulate pro-growth signalling and metabolic rewiring of cancer cells in order to support tumour growth. In this review, we will discuss our current understanding of how autophagy is implicated in glioblastoma development and survival. When appropriate, we will refer to findings derived from the role of autophagy in other cancer models and predict the outcome of manipulating autophagy during glioblastoma treatment.
Collapse
Affiliation(s)
| | - Noor Gammoh
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| |
Collapse
|
32
|
Baggiani M, Dell’Anno MT, Pistello M, Conti L, Onorati M. Human Neural Stem Cell Systems to Explore Pathogen-Related Neurodevelopmental and Neurodegenerative Disorders. Cells 2020; 9:E1893. [PMID: 32806773 PMCID: PMC7464299 DOI: 10.3390/cells9081893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022] Open
Abstract
Building and functioning of the human brain requires the precise orchestration and execution of myriad molecular and cellular processes, across a multitude of cell types and over an extended period of time. Dysregulation of these processes affects structure and function of the brain and can lead to neurodevelopmental, neurological, or psychiatric disorders. Multiple environmental stimuli affect neural stem cells (NSCs) at several levels, thus impairing the normal human neurodevelopmental program. In this review article, we will delineate the main mechanisms of infection adopted by several neurotropic pathogens, and the selective NSC vulnerability. In particular, TORCH agents, i.e., Toxoplasma gondii, others (including Zika virus and Coxsackie virus), Rubella virus, Cytomegalovirus, and Herpes simplex virus, will be considered for their devastating effects on NSC self-renewal with the consequent neural progenitor depletion, the cellular substrate of microcephaly. Moreover, new evidence suggests that some of these agents may also affect the NSC progeny, producing long-term effects in the neuronal lineage. This is evident in the paradigmatic example of the neurodegeneration occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Matteo Baggiani
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Maria Teresa Dell’Anno
- Cellular Engineering Laboratory, Fondazione Pisana per la Scienza ONLUS, 56017 Pisa, Italy;
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa and Virology Division, Pisa University Hospital, 56100 Pisa, Italy;
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38122 Trento, Italy;
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
33
|
Jones LE, Hilz S, Grimmer MR, Mazor T, Najac C, Mukherjee J, McKinney A, Chow T, Pieper RO, Ronen SM, Chang SM, Phillips JJ, Costello JF. Patient-derived cells from recurrent tumors that model the evolution of IDH-mutant glioma. Neurooncol Adv 2020; 2:vdaa088. [PMID: 32904945 PMCID: PMC7462278 DOI: 10.1093/noajnl/vdaa088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background IDH-mutant lower-grade gliomas (LGGs) evolve under the selective pressure of therapy, but well-characterized patient-derived cells (PDCs) modeling evolutionary stages are lacking. IDH-mutant LGGs may develop therapeutic resistance associated with chemotherapy-driven hypermutation and malignant progression. The aim of this study was to establish and characterize PDCs, single-cell-derived PDCs (scPDCs), and xenografts (PDX) of IDH1-mutant recurrences representing distinct stages of tumor evolution. Methods We derived and validated cell cultures from IDH1-mutant recurrences of astrocytoma and oligodendroglioma. We used exome sequencing and phylogenetic reconstruction to examine the evolutionary stage represented by PDCs, scPDCs, and PDX relative to corresponding spatiotemporal tumor tissue and germline DNA. PDCs were also characterized for growth and tumor immortality phenotypes, and PDX were examined histologically. Results The integrated astrocytoma phylogeny revealed 2 independent founder clonal expansions of hypermutated (HM) cells in tumor tissue that are faithfully represented by independent PDCs. The oligodendroglioma phylogeny showed more than 4000 temozolomide-associated mutations shared among tumor samples, PDCs, scPDCs, and PDX, suggesting a shared monoclonal origin. The PDCs from both subtypes exhibited hallmarks of tumorigenesis, retention of subtype-defining genomic features, production of 2-hydroxyglutarate, and subtype-specific telomere maintenance mechanisms that confer tumor cell immortality. The oligodendroglioma PDCs formed infiltrative intracranial tumors with characteristic histology. Conclusions These PDCs, scPDCs, and PDX are unique and versatile community resources that model the heterogeneous clonal origins and functions of recurrent IDH1-mutant LGGs. The integrated phylogenies advance our knowledge of the complex evolution and immense mutational load of IDH1-mutant HM glioma.
Collapse
Affiliation(s)
- Lindsey E Jones
- Department of Neurological Surgery, University of California, San Francisco, California, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, California, USA
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Matthew R Grimmer
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Tali Mazor
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Joydeep Mukherjee
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Andrew McKinney
- Department of Neurological Surgery, University of California, San Francisco, California, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, California, USA
| | - Tracy Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Russell O Pieper
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| |
Collapse
|
34
|
Three Growth Factors Induce Proliferation and Differentiation of Neural Precursor Cells In Vitro and Support Cell-Transplantation after Spinal Cord Injury In Vivo. Stem Cells Int 2020; 2020:5674921. [PMID: 32774390 PMCID: PMC7399764 DOI: 10.1155/2020/5674921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 11/25/2022] Open
Abstract
Stem cell therapy with neural precursor cells (NPCs) has the potential to improve neuroregeneration after spinal cord injury (SCI). Unfortunately, survival and differentiation of transplanted NPCs in the injured spinal cord remains low. Growth factors have been successfully used to improve NPC transplantation in animal models, but their extensive application is associated with a relevant financial burden and might hinder translation of findings into the clinical practice. In our current study, we assessed the potential of a reduced number of growth factors in different combinations and concentrations to increase proliferation and differentiation of NPCs in vitro. After identifying a “cocktail” (EGF, bFGF, and PDGF-AA) that directed cell fate towards the oligodendroglial and neuronal lineage while reducing astrocytic differentiation, we translated our findings into an in vivo model of cervical clip contusion/compression SCI at the C6 level in immunosuppressed Wistar rats, combining NPC transplantation and intrathecal administration of the growth factors 10 days after injury. Eight weeks after SCI, we could observe surviving NPCs in the injured animals that had mostly differentiated into oligodendrocytes and oligodendrocytic precursors. Moreover, “Stride length” and “Average Speed” in the CatWalk gait analysis were significantly improved 8 weeks after SCI, representing beneficial effects on the functional recovery with NPC transplantation and the administration of the three growth factors. Nevertheless, no effects on the BBB scores could be observed over the course of the experiment and regeneration of descending tracts as well as posttraumatic myelination remained unchanged. However, reactive astrogliosis, as well as posttraumatic inflammation and apoptosis was significantly reduced after NPC transplantation and GF administration. Our data suggest that NPC transplantation is feasible with the use of only EGF, bFGF, and PDGF-AA as supporting growth factors.
Collapse
|
35
|
Pattwell SS, Arora S, Cimino PJ, Ozawa T, Szulzewsky F, Hoellerbauer P, Bonifert T, Hoffstrom BG, Boiani NE, Bolouri H, Correnti CE, Oldrini B, Silber JR, Squatrito M, Paddison PJ, Holland EC. A kinase-deficient NTRK2 splice variant predominates in glioma and amplifies several oncogenic signaling pathways. Nat Commun 2020; 11:2977. [PMID: 32532995 PMCID: PMC7293284 DOI: 10.1038/s41467-020-16786-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Independent scientific achievements have led to the discovery of aberrant splicing patterns in oncogenesis, while more recent advances have uncovered novel gene fusions involving neurotrophic tyrosine receptor kinases (NTRKs) in gliomas. The exploration of NTRK splice variants in normal and neoplastic brain provides an intersection of these two rapidly evolving fields. Tropomyosin receptor kinase B (TrkB), encoded NTRK2, is known for critical roles in neuronal survival, differentiation, molecular properties associated with memory, and exhibits intricate splicing patterns and post-translational modifications. Here, we show a role for a truncated NTRK2 splice variant, TrkB.T1, in human glioma. TrkB.T1 enhances PDGF-driven gliomas in vivo, augments PDGF-induced Akt and STAT3 signaling in vitro, while next generation sequencing broadly implicates TrkB.T1 in the PI3K signaling cascades in a ligand-independent fashion. These TrkB.T1 findings highlight the importance of expanding upon whole gene and gene fusion analyses to include splice variants in basic and translational neuro-oncology research.
Collapse
Affiliation(s)
- Siobhan S Pattwell
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
| | - Patrick J Cimino
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
- Department of Pathology, University of Washington School of Medicine, 325 9th Avenue, Box 359791, Seattle, WA, 98104, USA
| | - Tatsuya Ozawa
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
| | - Pia Hoellerbauer
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Tobias Bonifert
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
| | - Benjamin G Hoffstrom
- Antibody Technology Resource, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98109, USA
| | - Norman E Boiani
- Antibody Technology Resource, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98109, USA
| | - Hamid Bolouri
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
- Systems Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA, 98101, USA
| | - Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98109, USA
| | - Barbara Oldrini
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research Centre, 28209, Madrid, Spain
| | - John R Silber
- Department of Neurological Surgery, Alvord Brain Tumor Center, University of Washington School of Medicine, Seattle, WA, 98104, USA
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research Centre, 28209, Madrid, Spain
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA.
- Department of Neurological Surgery, Alvord Brain Tumor Center, University of Washington School of Medicine, Seattle, WA, 98104, USA.
- Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98109, USA.
| |
Collapse
|
36
|
Vagaska B, Gillham O, Ferretti P. Modelling human CNS injury with human neural stem cells in 2- and 3-Dimensional cultures. Sci Rep 2020; 10:6785. [PMID: 32321995 PMCID: PMC7176653 DOI: 10.1038/s41598-020-62906-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/16/2020] [Indexed: 12/16/2022] Open
Abstract
The adult human central nervous system (CNS) has very limited regenerative capability, and injury at the cellular and molecular level cannot be studied in vivo. Modelling neural damage in human systems is crucial to identifying species-specific responses to injury and potentially neurotoxic compounds leading to development of more effective neuroprotective agents. Hence we developed human neural stem cell (hNSC) 3-dimensional (3D) cultures and tested their potential for modelling neural insults, including hypoxic-ischaemic and Ca2+-dependent injury. Standard 3D conditions for rodent cells support neuroblastoma lines used as human CNS models, but not hNSCs, but in all cases changes in culture architecture alter gene expression. Importantly, response to damage differs in 2D and 3D cultures and this is not due to reduced drug accessibility. Together, this study highlights the impact of culture cytoarchitecture on hNSC phenotype and damage response, indicating that 3D models may be better predictors of in vivo response to damage and compound toxicity.
Collapse
Affiliation(s)
- Barbora Vagaska
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Olivia Gillham
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Patrizia Ferretti
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK.
| |
Collapse
|
37
|
Helenes González C, Jayasinghe SN, Ferretti P. Bio-electrosprayed human neural stem cells are viable and maintain their differentiation potential. F1000Res 2020; 9:267. [PMID: 32518635 PMCID: PMC7255967 DOI: 10.12688/f1000research.19901.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Bio-electrospray (BES) is a jet-based delivery system driven by an electric field that has the ability to form micro to nano-sized droplets. It holds great potential as a tissue engineering tool as it can be used to place cells into specific patterns. As the human central nervous system (CNS) cannot be studied in vivo at the cellular and molecular level, in vitro CNS models are needed. Human neural stem cells (hNSCs) are the CNS building block as they can generate both neurones and glial cells. Methods: Here we assessed for the first time how hNSCs respond to BES. To this purpose, different hNSC lines were sprayed at 10 kV and their ability to survive, grow and differentiate was assessed at different time points. Results: BES induced only a small and transient decrease in hNSC metabolic activity, from which the cells recovered by day 6, and no significant increase in cell death was observed, as assessed by flow cytometry. Furthermore, bio-electrosprayed hNSCs differentiated as efficiently as controls into neurones, astrocytes and oligodendrocytes, as shown by morphological, protein and gene expression analysis. Conclusions: This study highlights the robustness of hNSCs and identifies BES as a suitable technology that could be developed for the direct deposition of these cells in specific locations and configurations.
Collapse
Affiliation(s)
- Citlali Helenes González
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Suwan N Jayasinghe
- BioPhysics Group, Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Patrizia Ferretti
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
38
|
Helenes González C, Jayasinghe SN, Ferretti P. Bio-electrosprayed human neural stem cells are viable and maintain their differentiation potential. F1000Res 2020; 9:267. [PMID: 32518635 PMCID: PMC7255967 DOI: 10.12688/f1000research.19901.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2020] [Indexed: 03/30/2024] Open
Abstract
Background: Bio-electrospray (BES) is a jet-based delivery system driven by an electric field that has the ability to form micro to nano-sized droplets. It holds great potential as a tissue engineering tool as it can be used to place cells into specific patterns. As the human central nervous system (CNS) cannot be studied in vivo at the cellular and molecular level, in vitro CNS models are needed. Human neural stem cells (hNSCs) are the CNS building block as they can generate both neurones and glial cells. Methods: Here we assessed for the first time how hNSCs respond to BES. To this purpose, different hNSC lines were sprayed at 10 kV and their ability to survive, grow and differentiate was assessed at different time points. Results: BES induced only a small and transient decrease in hNSC metabolic activity, from which cells recovered by day 6, and no significant increase in cell death was observed, as assessed by flow cytometry. Furthermore, bio-electrosprayed hNSCs differentiated as efficiently as controls into neurones, astrocytes and oligodendrocytes as shown by morphological, protein and gene expression analysis. Conclusions: This study highlights the robustness of hNSCs and identifies BES as a suitable technology that could be developed for the direct deposition of these cells in specific locations and configurations.
Collapse
Affiliation(s)
- Citlali Helenes González
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Suwan N. Jayasinghe
- BioPhysics Group, Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Patrizia Ferretti
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
39
|
Lundin A, Ricchiuto P, Clausen M, Hicks R, Falk A, Herland A. hiPS-Derived Astroglia Model Shows Temporal Transcriptomic Profile Related to Human Neural Development and Glia Competence Acquisition of a Maturing Astrocytic Identity. ACTA ACUST UNITED AC 2020; 4:e1900226. [PMID: 32402123 DOI: 10.1002/adbi.201900226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 11/10/2022]
Abstract
Astrocyte biology has a functional and cellular diversity only observed in humans. The understanding of the regulatory network governing outer radial glia (RG), responsible for the expansion of the outer subventricular zone (oSVZ), and astrocyte cellular development remains elusive, partly since relevant human material to study these features is not readily available. A human-induced pluripotent stem cell derived astrocytic model, NES-Astro, has been recently developed, with high expression of astrocyte-associated markers and high astrocyte-relevant functionality. Here it is studied how the NES-Astro phenotype develops during specification and its correlation to known RG and astrocyte characteristics in human brain development. It is demonstrated that directed differentiation of neurogenic long-term neuroepithelial stem cells undergo a neurogenic-to-gliogenic competence preferential change, acquiring a glial fate. Temporal transcript profiles of long- and small RNA corroborate previously shown neurogenic restriction by glia-associated let-7 expression. Furthermore, NES-Astro differentiation displays proposed mechanistic features important for the evolutionary expansion of the oSVZ together with an astroglia/astrocyte transcriptome. The NES-Astro generation is a straight-forward differentiation protocol from stable and expandable neuroepithelial stem cell lines derived from iPS cells. Thus, the NES-Astro is an easy-access cell system with high biological relevance for studies of mechanistic traits of glia and astrocyte.
Collapse
Affiliation(s)
- Anders Lundin
- Translational Genomics, BioPharmaceuticals R&D, Discovery Sciences, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Piero Ricchiuto
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Darwin Building, 310 Milton Rd, Cambridge, CB4 0WG, UK
| | - Maryam Clausen
- Translational Genomics, BioPharmaceuticals R&D, Discovery Sciences, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Ryan Hicks
- Translational Genomics, BioPharmaceuticals R&D, Discovery Sciences, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Anna Herland
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden.,Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, 10044, Sweden.,AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet, Stockholm, 17177, Sweden
| |
Collapse
|
40
|
Sundaramoorthy V, Godde N, J. Farr R, Green D, M. Haynes J, Bingham J, O’Brien CM, Dearnley M. Modelling Lyssavirus Infections in Human Stem Cell-Derived Neural Cultures. Viruses 2020; 12:E359. [PMID: 32218146 PMCID: PMC7232326 DOI: 10.3390/v12040359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
Rabies is a zoonotic neurological infection caused by lyssavirus that continues to result in devastating loss of human life. Many aspects of rabies pathogenesis in human neurons are not well understood. Lack of appropriate ex-vivo models for studying rabies infection in human neurons has contributed to this knowledge gap. In this study, we utilize advances in stem cell technology to characterize rabies infection in human stem cell-derived neurons. We show key cellular features of rabies infection in our human neural cultures, including upregulation of inflammatory chemokines, lack of neuronal apoptosis, and axonal transmission of viruses in neuronal networks. In addition, we highlight specific differences in cellular pathogenesis between laboratory-adapted and field strain lyssavirus. This study therefore defines the first stem cell-derived ex-vivo model system to study rabies pathogenesis in human neurons. This new model system demonstrates the potential for enabling an increased understanding of molecular mechanisms in human rabies, which could lead to improved control methods.
Collapse
Affiliation(s)
- Vinod Sundaramoorthy
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory (AAHL), East Geelong, VIC 3219, Australia; (V.S.); (N.G.); (R.J.F.); (D.G.); (J.B.)
| | - Nathan Godde
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory (AAHL), East Geelong, VIC 3219, Australia; (V.S.); (N.G.); (R.J.F.); (D.G.); (J.B.)
| | - Ryan J. Farr
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory (AAHL), East Geelong, VIC 3219, Australia; (V.S.); (N.G.); (R.J.F.); (D.G.); (J.B.)
| | - Diane Green
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory (AAHL), East Geelong, VIC 3219, Australia; (V.S.); (N.G.); (R.J.F.); (D.G.); (J.B.)
| | - John M. Haynes
- Monash Institute of Pharmaceutical Sciences, 399 Royal Parade, Parkville, VIC 3052, Australia;
| | - John Bingham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory (AAHL), East Geelong, VIC 3219, Australia; (V.S.); (N.G.); (R.J.F.); (D.G.); (J.B.)
| | - Carmel M. O’Brien
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Megan Dearnley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory (AAHL), East Geelong, VIC 3219, Australia; (V.S.); (N.G.); (R.J.F.); (D.G.); (J.B.)
| |
Collapse
|
41
|
Kruminis-Kaszkiel E, Osowski A, Bejer-Oleńska E, Dziekoński M, Wojtkiewicz J. Differentiation of Human Mesenchymal Stem Cells from Wharton's Jelly Towards Neural Stem Cells Using A Feasible and Repeatable Protocol. Cells 2020; 9:cells9030739. [PMID: 32192154 PMCID: PMC7140706 DOI: 10.3390/cells9030739] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 12/15/2022] Open
Abstract
The transplantation of neural stem cells (NSCs) capable of regenerating to the cells of the central nervous system (CNS) is a promising strategy in the treatment of CNS diseases and injury. As previous studies have highlighted mesenchymal stem cells (MSCs) as a source of NSCs, this study aimed to develop a feasible, efficient, and reproducible method for the neural induction of MSCs isolated from Wharton's jelly (hWJ-MSCs). We induced neural differentiation in a monolayer culture using epidermal growth factor, basic fibroblast growth factor, N2, and B27 supplements. This resulted in a homogenous population of proliferating cells that expressed certain neural markers at both the protein and mRNA levels. Flow cytometry and immunocytochemistry confirmed the expression of neural markers: nestin, sex-determining region Y (SRY) box 1 and 2 (SOX1 and SOX2), microtubule-associated protein 2 (MAP2), and glial fibrillary acidic protein (GFAP). The qRT-PCR analysis revealed significantly enhanced expression of nestin and MAP2 in differentiated cells. This study confirms that it is possible to generate NSCs-like cells from hWJ-MSCs in a 2D culture using a practical method. However, the therapeutic effectiveness of such differentiated cells should be extended to confirm the terminal differentiation ability and electrophysiological properties of neurons derived from them.
Collapse
Affiliation(s)
- Ewa Kruminis-Kaszkiel
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (A.O.); (E.B.-O.); (J.W.)
- Correspondence:
| | - Adam Osowski
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (A.O.); (E.B.-O.); (J.W.)
| | - Ewa Bejer-Oleńska
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (A.O.); (E.B.-O.); (J.W.)
| | - Mariusz Dziekoński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (A.O.); (E.B.-O.); (J.W.)
| |
Collapse
|
42
|
p53 controls genomic stability and temporal differentiation of human neural stem cells and affects neural organization in human brain organoids. Cell Death Dis 2020; 11:52. [PMID: 31974372 PMCID: PMC6978389 DOI: 10.1038/s41419-019-2208-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022]
Abstract
In this study, we take advantage of human induced pluripotent stem (iPS) cell-derived neural stem cells and brain organoids to study the role of p53 during human brain development. We knocked down (KD) p53 in human neuroepithelial stem (NES) cells derived from iPS cells. Upon p53KD, NES cells rapidly show centrosome amplification and genomic instability. Furthermore, a reduced proliferation rate, downregulation of genes involved in oxidative phosphorylation (OXPHOS), and an upregulation of glycolytic capacity was apparent upon loss of p53. In addition, p53KD neural stem cells display an increased pace of differentiating into neurons and exhibit a phenotype corresponding to more mature neurons compared to control neurons. Using brain organoids, we modeled more specifically cortical neurogenesis. Here we found that p53 loss resulted in brain organoids with disorganized stem cell layer and reduced cortical progenitor cells and neurons. Similar to NES cells, neural progenitors isolated from brain organoids also show a downregulation in several OXPHOS genes. Taken together, this demonstrates an important role for p53 in controlling genomic stability of neural stem cells and regulation of neuronal differentiation, as well as maintaining structural organization and proper metabolic gene profile of neural progenitors in human brain organoids.
Collapse
|
43
|
Belousov A, Titov S, Shved N, Garbuz M, Malykin G, Gulaia V, Kagansky A, Kumeiko V. The Extracellular Matrix and Biocompatible Materials in Glioblastoma Treatment. Front Bioeng Biotechnol 2019; 7:341. [PMID: 31803736 PMCID: PMC6877546 DOI: 10.3389/fbioe.2019.00341] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
During cancer genesis, the extracellular matrix (ECM) in the human brain undergoes important transformations, starting to resemble embryonic brain cell milieu with a much denser structure. However, the stiffness of the tumor ECM does not preclude cancer cells from migration. The importance of the ECM role in normal brain tissue as well as in tumor homeostasis has engaged much effort in trials to implement ECM as a target and an instrument in the treatment of brain cancers. This review provides a detailed analysis of both experimental and applied approaches in combined therapy for gliomas in adults. In general, matrix materials for glioma treatment should have properties facilitating the simplest delivery into the body. Hence, to deliver an artificial implant directly into the operation cavity it should be packed into a gel form, while for bloodstream injections matrix needs to be in the form of polymer micelles, nanoparticles, etc. Furthermore, the delivered material should mimic biomechanical properties of the native tissue, support vital functions, and slow down or stop the proliferation of surrounding cells for a prolonged period. The authors propose a two-step approach aimed, on the one hand, at elimination of remaining cancer cells and on the other hand, at restoring normal brain tissue. Thereby, the first bioartificial matrix to be applied should have relatively low elastic modulus should be loaded with anticancer drugs, while the second material with a higher elastic modulus for neurite outgrowth support should contain specific factors stimulating neuroregeneration.
Collapse
Affiliation(s)
- Andrei Belousov
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Sergei Titov
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
| | - Nikita Shved
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Mikhail Garbuz
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Grigorii Malykin
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Valeriia Gulaia
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Alexander Kagansky
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
44
|
Yang S, Cao Z, Zhu J, Zhang Z, Zhao H, Zhao L, Sun X, Wang X. In Vitro Monolayer Culture of Dispersed Neural Stem Cells on the E-Cadherin-Based Substrate with Long-Term Stemness Maintenance. ACS OMEGA 2019; 4:18136-18146. [PMID: 31720516 PMCID: PMC6843705 DOI: 10.1021/acsomega.9b02053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/13/2019] [Indexed: 05/08/2023]
Abstract
Neural stem cells (NSCs) play an important role in neural tissue engineering because of their capacity of self-renewal and differentiation to multiple cell lineages. The in vitro conventional neurosphere culture protocol has some limitations such as limited nutrition and oxygen penetration and distribution causing the heterogeneity of cells inside, inaccessibility of internal cells, and inhomogeneous cellular morphology and properties. As a result, cultivation as a monolayer is a better way to study NSCs and obtain a homogeneous cell population. The cadherins are a classical family of homophilic cell adhesion molecules mediating cell-cell adhesion. Here, we used a recombinant human E-cadherin mouse IgG Fc chimera protein that self-assembles on a hydrophobic polystyrene surface via hydrophobic interaction to obtain an E-cadherin-coated culture plate (ECP). The rat fetal NSCs were cultured on the ECP and routine tissue culture plate (TCP) from passage 2 to passage 5. NSCs on TCP formed uniform floating neurospheres and grew up over time, while cells on the ECP adhered on the bottom of the plate and exhibited individual cells with scattering morphology, forming intercellular connections between cells. The cell proliferation and differentiation behaviors that were evaluated by Cell Counting Kit-8 assay (CCK-8), immunofluorescence staining, and real-time quantitative polymerase chain reaction showed NSCs could maintain the capacity for self-renewal and ability to differentiate into neurons, oligodendrocytes, and astrocytes after the long-term in vitro cell culture and passaging. Therefore, our study indicated that hE-cad-Fc could provide a homogeneous environment for individual cells in monolayer conditions to maintain the capacity of self-renewal and differentiation by mimicking the cell-cell interaction.
Collapse
Affiliation(s)
- Shuhui Yang
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zheng Cao
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jinjin Zhu
- Department
of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College
of Zhejiang University, Sir Run Run Shaw
Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China
| | - Zhe Zhang
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - He Zhao
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodan Sun
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiumei Wang
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Robertson FL, Marqués-Torrejón MA, Morrison GM, Pollard SM. Experimental models and tools to tackle glioblastoma. Dis Model Mech 2019; 12:dmm040386. [PMID: 31519690 PMCID: PMC6765190 DOI: 10.1242/dmm.040386] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest human cancers. Despite increasing knowledge of the genetic and epigenetic changes that underlie tumour initiation and growth, the prognosis for GBM patients remains dismal. Genome analysis has failed to lead to success in the clinic. Fresh approaches are needed that can stimulate new discoveries across all levels: cell-intrinsic mechanisms (transcriptional/epigenetic and metabolic), cell-cell signalling, niche and microenvironment, systemic signals, immune regulation, and tissue-level physical forces. GBMs are inherently extremely challenging: tumour detection occurs too late, and cells infiltrate widely, hiding in quiescent states behind the blood-brain barrier. The complexity of the brain tissue also provides varied and complex microenvironments that direct cancer cell fates. Phenotypic heterogeneity is therefore superimposed onto pervasive genetic heterogeneity. Despite this bleak outlook, there are reasons for optimism. A myriad of complementary, and increasingly sophisticated, experimental approaches can now be used across the research pipeline, from simple reductionist models devised to delineate molecular and cellular mechanisms, to complex animal models required for preclinical testing of new therapeutic approaches. No single model can cover the breadth of unresolved questions. This Review therefore aims to guide investigators in choosing the right model for their question. We also discuss the recent convergence of two key technologies: human stem cell and cancer stem cell culture, as well as CRISPR/Cas tools for precise genome manipulations. New functional genetic approaches in tailored models will likely fuel new discoveries, new target identification and new therapeutic strategies to tackle GBM.
Collapse
Affiliation(s)
- Faye L Robertson
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Maria-Angeles Marqués-Torrejón
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Gillian M Morrison
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
46
|
Ostermann L, Ladewig J, Müller FJ, Kesavan J, Tailor J, Smith A, Brüstle O, Koch P. In Vitro Recapitulation of Developmental Transitions in Human Neural Stem Cells. Stem Cells 2019; 37:1429-1440. [PMID: 31339593 DOI: 10.1002/stem.3065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 06/16/2019] [Indexed: 11/09/2022]
Abstract
During nervous system development, early neuroepithelial stem (NES) cells with a highly polarized morphology and responsiveness to regionalizing morphogens give rise to radial glia (RG) cells, which generate region-specific neurons. Recently, stable neural cell populations reminiscent of NES cells have been obtained from pluripotent stem cells and the fetal human hindbrain. Here, we explore whether these cell populations, similar to their in vivo counterparts, can give rise to neural stem (NS) cells with RG-like properties and whether region-specific NS cells can be generated from NES cells with different regional identities. In vivo RG cells are thought to form from NES cells with the onset of neurogenesis. Therefore, we cultured NES cells temporarily in differentiating conditions. Upon reinitiation of growth factor treatment, cells were found to enter a developmental stage reflecting major characteristics of RG-like NS cells. These NES cell-derived NS cells exhibited a very similar morphology and marker expression as primary NS cells generated from human fetal tissue, indicating that conversion of NES cells into NS cells recapitulates the developmental progression of early NES cells into RG cells observed in vivo. Importantly, NS cells generated from NES cells with different regional identities exhibited stable region-specific transcription factor expression and generated neurons appropriate for their positional identity. Stem Cells 2019;37:1429-1440.
Collapse
Affiliation(s)
- Laura Ostermann
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Julia Ladewig
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany.,Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany.,HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franz-Josef Müller
- Department of Psychiatry and Psychotherapy, Centre for Integrative Psychiatry, Kiel, Germany.,Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jaideep Kesavan
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Jignesh Tailor
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Philipp Koch
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany.,Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany.,HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
47
|
Zhao Y, Carter R, Natarajan S, Varn FS, Compton DA, Gawad C, Cheng C, Godek KM. Single-cell RNA sequencing reveals the impact of chromosomal instability on glioblastoma cancer stem cells. BMC Med Genomics 2019; 12:79. [PMID: 31151460 PMCID: PMC6545015 DOI: 10.1186/s12920-019-0532-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Background Intra-tumor heterogeneity stems from genetic, epigenetic, functional, and environmental differences among tumor cells. A major source of genetic heterogeneity comes from DNA sequence differences and/or whole chromosome and focal copy number variations (CNVs). Whole chromosome CNVs are caused by chromosomal instability (CIN) that is defined by a persistently high rate of chromosome mis-segregation. Accordingly, CIN causes constantly changing karyotypes that result in extensive cell-to-cell genetic heterogeneity. How the genetic heterogeneity caused by CIN influences gene expression in individual cells remains unknown. Methods We performed single-cell RNA sequencing on a chromosomally unstable glioblastoma cancer stem cell (CSC) line and a control normal, diploid neural stem cell (NSC) line to investigate the impact of CNV due to CIN on gene expression. From the gene expression data, we computationally inferred large-scale CNVs in single cells. Also, we performed copy number adjusted differential gene expression analysis between NSCs and glioblastoma CSCs to identify copy number dependent and independent differentially expressed genes. Results Here, we demonstrate that gene expression across large genomic regions scales proportionally to whole chromosome copy number in chromosomally unstable CSCs. Also, we show that the differential expression of most genes between normal NSCs and glioblastoma CSCs is largely accounted for by copy number alterations. However, we identify 269 genes whose differential expression in glioblastoma CSCs relative to normal NSCs is independent of copy number. Moreover, a gene signature derived from the subset of genes that are differential expressed independent of copy number in glioblastoma CSCs correlates with tumor grade and is prognostic for patient survival. Conclusions These results demonstrate that CIN is directly responsible for gene expression changes and contributes to both genetic and transcriptional heterogeneity among glioblastoma CSCs. These results also demonstrate that the expression of some genes is buffered against changes in copy number, thus preserving some consistency in gene expression levels from cell-to-cell despite the continuous change in karyotype driven by CIN. Importantly, a gene signature derived from the subset of genes whose expression is buffered against copy number alterations correlates with tumor grade and is prognostic for patient survival that could facilitate patient diagnosis and treatment. Electronic supplementary material The online version of this article (10.1186/s12920-019-0532-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanding Zhao
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Robert Carter
- Departments of Oncology and Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Departments of Oncology and Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Frederick S Varn
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Present Address: Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Duane A Compton
- Department of Biochemistry and Cell Biology, HB7200, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Charles Gawad
- Departments of Oncology and Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chao Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA. .,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA. .,Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA. .,Present Address: Baylor College of Medicine, Houston, TX, USA.
| | - Kristina M Godek
- Department of Biochemistry and Cell Biology, HB7200, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA. .,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
48
|
Pacitti D, Privolizzi R, Bax BE. Organs to Cells and Cells to Organoids: The Evolution of in vitro Central Nervous System Modelling. Front Cell Neurosci 2019; 13:129. [PMID: 31024259 PMCID: PMC6465581 DOI: 10.3389/fncel.2019.00129] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/14/2019] [Indexed: 02/05/2023] Open
Abstract
With 100 billion neurons and 100 trillion synapses, the human brain is not just the most complex organ in the human body, but has also been described as "the most complex thing in the universe." The limited availability of human living brain tissue for the study of neurogenesis, neural processes and neurological disorders has resulted in more than a century-long strive from researchers worldwide to model the central nervous system (CNS) and dissect both its striking physiology and enigmatic pathophysiology. The invaluable knowledge gained with the use of animal models and post mortem human tissue remains limited to cross-species similarities and structural features, respectively. The advent of human induced pluripotent stem cell (hiPSC) and 3-D organoid technologies has revolutionised the approach to the study of human brain and CNS in vitro, presenting great potential for disease modelling and translational adoption in drug screening and regenerative medicine, also contributing beneficially to clinical research. We have surveyed more than 100 years of research in CNS modelling and provide in this review an historical excursus of its evolution, from early neural tissue explants and organotypic cultures, to 2-D patient-derived cell monolayers, to the latest development of 3-D cerebral organoids. We have generated a comprehensive summary of CNS modelling techniques and approaches, protocol refinements throughout the course of decades and developments in the study of specific neuropathologies. Current limitations and caveats such as clonal variation, developmental stage, validation of pluripotency and chromosomal stability, functional assessment, reproducibility, accuracy and scalability of these models are also discussed.
Collapse
Affiliation(s)
- Dario Pacitti
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London, United Kingdom
- College of Medicine and Health, St Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Riccardo Privolizzi
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, London, United Kingdom
| | - Bridget E. Bax
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London, United Kingdom
| |
Collapse
|
49
|
Taylor AC, González CH, Ferretti P, Jackman RB. Spontaneous Differentiation of Human Neural Stem Cells on Nanodiamonds. ACTA ACUST UNITED AC 2019; 3:e1800299. [PMID: 32627432 DOI: 10.1002/adbi.201800299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/28/2019] [Indexed: 12/17/2022]
Abstract
The potential use of stem cells in regenerative medicine requires the ability to be able to control stem cell fate as cellular networks are developed. Here, nanodiamonds (≈10 nm) are supported on glass and shown to be an excellent host for the attachment and proliferation of human neural stem cells. Moreover, it is shown that spontaneous differentiation into neurons occurs on nanodiamonds. The use of variously oxygen terminated and hydrogen terminated nanodiamonds has been explored. It is shown that O-ND monolayers promote the differentiation of human neural stem cells into neurons with increased total neurite length, degree of branching, and density of neurites when compared with H-NDs or the glass control. The total number of neurites and total neurite length expressing MAP2, a protein enriched in dendrites, is over five times higher for spontaneously differentiated neurones on the O-NDs compared to the control. The fact that inexpensive nanodiamonds can be attached through simple sonication from water on 2D and 3D shapes indicates significant promise for their potential as biomaterials in which neuro-regenerative diseases can be studied.
Collapse
Affiliation(s)
- Alice C Taylor
- London Centre for Nanotechnology and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK
| | - Citlali Helenes González
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Patrizia Ferretti
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Richard B Jackman
- London Centre for Nanotechnology and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK
| |
Collapse
|
50
|
Pearl JR, Colantuoni C, Bergey DE, Funk CC, Shannon P, Basu B, Casella AM, Oshone RT, Hood L, Price ND, Ament SA. Genome-Scale Transcriptional Regulatory Network Models of Psychiatric and Neurodegenerative Disorders. Cell Syst 2019; 8:122-135.e7. [DOI: 10.1016/j.cels.2019.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 10/19/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
|