1
|
Koch RT, Erazo D, Folly AJ, Johnson N, Dellicour S, Grubaugh ND, Vogels CB. Genomic epidemiology of West Nile virus in Europe. One Health 2024; 18:100664. [PMID: 38193029 PMCID: PMC10772404 DOI: 10.1016/j.onehlt.2023.100664] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
West Nile virus is one of the most widespread mosquito-borne zoonotic viruses, with unique transmission dynamics in various parts of the world. Genomic surveillance has provided important insights in the global patterns of West Nile virus emergence and spread. In Europe, multiple West Nile virus lineages have been isolated, with lineage 1a and 2 being the main lineages responsible for human infections. In contrast to North America, where a single introduction of lineage 1a resulted in the virus establishing itself in a new continent, at least 13 introductions of lineages 1a and 2 have occurred into Europe, which is likely a vast underestimation of the true number of introductions. Historically, lineage 1a was the main lineage circulating in Europe, but since the emergence of lineage 2 in the early 2000s, the latter has become the predominant lineage. This shift in West Nile virus lineage prevalence has been broadly linked to the expansion of the virus into northerly temperate regions, where autochthonous cases in animals and humans have been reported in Germany and The Netherlands. Here, we discuss how genomic analysis has increased our understanding of the epidemiology of West Nile virus in Europe, and we present a global Nextstrain build consisting of publicly available West Nile virus genomes (https://nextstrain.org/community/grubaughlab/WNV-Global). Our results elucidate recent insights in West Nile virus lineage dynamics in Europe, and discuss how expanded programs can fill current genomic surveillance gaps.
Collapse
Affiliation(s)
- R. Tobias Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Diana Erazo
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Arran J. Folly
- Vector-Borne Diseases, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, UK
| | - Nicholas Johnson
- Vector-Borne Diseases, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, UK
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, United States of America
| | - Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Lee EE, Mejia M, Matthews LA, Lee F, Shah KM, Schoggins JW, Vandergriff TW, Yancey KB, Thomas C, Wang RC. West Nile virus encephalitis presenting with a vesicular dermatitis. JAAD Case Rep 2024; 45:117-122. [PMID: 38464779 PMCID: PMC10920127 DOI: 10.1016/j.jdcr.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Affiliation(s)
- Eunice E. Lee
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas
| | - Maria Mejia
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas
| | | | - Francesca Lee
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Kishan M. Shah
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas
| | - John W. Schoggins
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas
| | - Travis W. Vandergriff
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Kim B. Yancey
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas
| | - Cristina Thomas
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Richard C. Wang
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
3
|
Nasraoui N, Moussa MLB, Ayedi Y, Mastouri M, Trabelsi A, Raies A, Wölfel R, Moussa MB. A sero-epidemiological investigation of West Nile virus among patients without any records of their symptoms from three different hospitals from Tunisia. Acta Trop 2023; 242:106905. [PMID: 36948235 DOI: 10.1016/j.actatropica.2023.106905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
West Nile virus is one of the most known arboviruses around the world, along with Dengue virus, Toscana virus, Chikungunya (CHIK). In Tunisia, many epidemics of WNV had occurred in the past. The last one dated from 2018. The aim of our work was to perform a sero-epidemiological investigation on WNV without any records of their symptoms from three different hospitals from Tunisia. Patients without any records of their symptoms of the infection of West Nile Virus (WNV) infection were included in the period from October 2017 to January 2020 from three different Virology departments in the country (the Military Hospital in Tunis, Fattouma Bourguiba Hospital in Monastir and Sahloul Hospital in Sousse). A venous blood sample was taken from all patients at the bend of the elbow using a sterile syringe under aseptic conditions. Serological investigation for WNV was conducted through ELISA and IFI assays. RT-PCR was used to confirm the infection. The study included 353 patients. Twenty-eighty percent (28.8%) of the population were tested positive for IgM antibodies, males were having less positive antibodies than women (24.6% vs. 36.3%, p<0.05). In the city of Sousse, positive IgM were found more than in the other cities. As for IgG, 19.2% of the patients were having positive antibodies. No significant association was found between genders (p>0.05). One quarter of the IgM antibodies were tested positive using IFI technique, with no difference between genders (p>0.05). Only 9.2% of the samples were positive by PCR. Our results highlight the importance of establishing sustainable entomological systems and effective clinical ones and of promoting appropriate biological control strategies to optimize the limitation of the circulation of WNV as well as other arboviruses to inhibit their harmful effects on health.
Collapse
Affiliation(s)
- Nadya Nasraoui
- Department of Medical Virology, Military Hospital of Tunis, Tunisia
| | | | - Yosr Ayedi
- Department of Epidemiology and Biostatistics, Abderrahmane Mami Hospital, Ariana, Tunisia.
| | - Maha Mastouri
- Department of Medical Microbiology, Fatouma Bourguiba Hospital, Monastir, Tunisia
| | | | - Ali Raies
- Laboratory of Active Microorganisms and Biomolecules, Faculty of Sciences, Tunis
| | - Roman Wölfel
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | |
Collapse
|
4
|
Ruiz-López MJ, Muñoz-Chimeno M, Figuerola J, Gavilán AM, Varona S, Cuesta I, Martínez-de la Puente J, Zaballos Á, Molero F, Soriguer RC, Sánchez-Seco MP, Ruiz S, Vázquez A. Genomic Analysis of West Nile Virus Lineage 1 Detected in Mosquitoes during the 2020-2021 Outbreaks in Andalusia, Spain. Viruses 2023; 15:v15020266. [PMID: 36851481 PMCID: PMC9962355 DOI: 10.3390/v15020266] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Emerging infectious diseases are one of the most important global health challenges because of their impact on human and animal health. The vector-borne West Nile virus (WNV) is transmitted between birds by mosquitos, but it can also infect humans and horses causing disease. The local circulation of WNV in Spain has been known for decades, and since 2010, there have been regular outbreaks in horses, although only six cases were reported in humans until 2019. In 2020, Spain experienced a major outbreak with 77 human cases, which was followed by 6 additional cases in 2021, most of them in the Andalusian region (southern Spain). This study aimed to characterize the genomes of the WNV circulating in wild-trapped mosquitoes during 2020 and 2021 in Andalusia. We sequenced the WNV consensus genome from two mosquito pools and carried out the phylogenetic analyses. We also compared the obtained genomes with those sequenced from human samples obtained during the outbreak and the genomes obtained previously in Spain from birds (2007 and 2017), mosquitoes (2008) and horses (2010) to better understand the eco-epidemiology of WNV in Spain. As expected, the WNV genomes recovered from mosquito pools in 2020 were closely related to those recovered from humans of the same outbreak. In addition, the strain of WNV circulating in 2021 was highly related to the WNV strain that caused the 2020 outbreak, suggesting that WNV is overwintering in the area. Consequently, future outbreaks of the same strain may occur in in the future.
Collapse
Affiliation(s)
- María José Ruiz-López
- Estación Biológica de Doñana—CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Correspondence:
| | - Milagros Muñoz-Chimeno
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana—CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Ana M. Gavilán
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Sarai Varona
- Unidad Bioinformática, Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Escuela Internacional de Doctorado de la UNED (EIDUNED), Universidad Nacional de Educación a Distancia (UNED), 28232 Madrid, Spain
| | - Isabel Cuesta
- Unidad Bioinformática, Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Josué Martínez-de la Puente
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departamento de Parasitología, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Ángel Zaballos
- Unidad Genómica, Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Francisca Molero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Ramón C. Soriguer
- Estación Biológica de Doñana—CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Maria Paz Sánchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Santiago Ruiz
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Servicio de Control de Mosquitos de la Diputación Provincial de Huelva, Ctra. Hospital Infanta Elena s/n, 21007 Huelva, Spain
| | - Ana Vázquez
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
5
|
Giakountis A, Stylianidou Z, Zaka A, Pappa S, Papa A, Hadjichristodoulou C, Mathiopoulos KD. Development of Toehold Switches as a Novel Ribodiagnostic Method for West Nile Virus. Genes (Basel) 2023; 14:237. [PMID: 36672977 PMCID: PMC9859090 DOI: 10.3390/genes14010237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
West Nile virus (WNV) is an emerging neurotropic RNA virus and a member of the genus Flavivirus. Naturally, the virus is maintained in an enzootic cycle involving mosquitoes as vectors and birds that are the principal amplifying virus hosts. In humans, the incubation period for WNV disease ranges from 3 to 14 days, with an estimated 80% of infected persons being asymptomatic, around 19% developing a mild febrile infection and less than 1% developing neuroinvasive disease. Laboratory diagnosis of WNV infection is generally accomplished by cross-reacting serological methods or highly sensitive yet expensive molecular approaches. Therefore, current diagnostic tools hinder widespread surveillance of WNV in birds and mosquitoes that serve as viral reservoirs for infecting secondary hosts, such as humans and equines. We have developed a synthetic biology-based method for sensitive and low-cost detection of WNV. This method relies on toehold riboswitches designed to detect WNV genomic RNA as transcriptional input and process it to GFP fluorescence as translational output. Our methodology offers a non-invasive tool with reduced operating cost and high diagnostic value that can be used for field surveillance of WNV in humans as well as in bird and mosquito populations.
Collapse
Affiliation(s)
- Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| | - Zoe Stylianidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| | - Anxhela Zaka
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| | - Styliani Pappa
- Department of Microbiology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anna Papa
- Department of Microbiology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Kostas D. Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
6
|
Murri S, Madrières S, Tatard C, Piry S, Benoit L, Loiseau A, Pradel J, Artige E, Audiot P, Leménager N, Lacôte S, Vulin J, Charbonnel N, Marianneau P, Castel G. Detection and Genetic Characterization of Puumala Orthohantavirus S-Segment in Areas of France Non-Endemic for Nephropathia Epidemica. Pathogens 2020; 9:pathogens9090721. [PMID: 32882953 PMCID: PMC7559001 DOI: 10.3390/pathogens9090721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/15/2020] [Accepted: 08/22/2020] [Indexed: 12/30/2022] Open
Abstract
Puumala virus (PUUV) in Europe causes nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome (HFRS). The incidence of NE is highly heterogeneous spatially, whereas the geographic distribution of the wild reservoir of PUUV, the bank vole, is essentially homogeneous. Our understanding of the processes driving this heterogeneity remains incomplete due to gaps in knowledge. Little is known about the current distribution and genetic variation of PUUV in the areas outside the well-identified zones of NE endemicity. We trapped bank voles in four forests in French regions in which NE is considered non-endemic, but sporadic NE cases have been reported recently. We tested bank voles for anti-PUUV IgG and characterized the S segment sequences of PUUV from seropositive animals. Phylogenetic analyses revealed specific amino-acid signatures and genetic differences between PUUV circulating in non-endemic and nearby NE-endemic areas. We also showed, in temporal surveys, that the amino-acid sequences of PUUV had undergone fewer recent changes in areas non-endemic for NE than in endemic areas. The evolutionary history of the current French PUUV clusters was investigated by phylogeographic approaches, and the results were considered in the context of the history of French forests. Our findings highlight the need to monitor the circulation and genetics of PUUV in a larger array of bank vole populations, to improve our understanding of the risk of NE.
Collapse
Affiliation(s)
- Séverine Murri
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (S.M.); (S.L.); (J.V.); (P.M.)
| | - Sarah Madrières
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (S.M.); (S.L.); (J.V.); (P.M.)
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Caroline Tatard
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Sylvain Piry
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Laure Benoit
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Anne Loiseau
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Julien Pradel
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Emmanuelle Artige
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Philippe Audiot
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Nicolas Leménager
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Sandra Lacôte
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (S.M.); (S.L.); (J.V.); (P.M.)
| | - Johann Vulin
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (S.M.); (S.L.); (J.V.); (P.M.)
| | - Nathalie Charbonnel
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Philippe Marianneau
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (S.M.); (S.L.); (J.V.); (P.M.)
| | - Guillaume Castel
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
- Correspondence:
| |
Collapse
|
7
|
Guo Y, Wang H, Xu S, Zhou H, Zhou C, Fu S, Cheng M, Li F, Deng Y, Li X, Wang H, Qin CF. Recovery and Genetic Characterization of a West Nile Virus Isolate from China. Virol Sin 2020; 36:113-121. [PMID: 32632819 DOI: 10.1007/s12250-020-00246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 11/27/2022] Open
Abstract
West Nile virus (WNV) is an important neurotropic flavivirus that is widely distributed globally. WNV strain XJ11129 was first isolated in Xinjiang, China, and its genetic and biological characteristics remain largely unknown. In this study, phylogenetic and sequence analyses revealed that XJ11129 belongs to lineage 1a and shares high genetic identity with the highly pathogenic strain NY99. Then, the full-length genomic cDNA of XJ11129 was amplified and assembled using a modified Gibson assembly (GA) method. The virus (named rXJ11129) was successfully rescued in days following this method. Compared with other wild-type WNV isolates, rXJ11129 exhibited virulence indistinguishable from that of the NY99 strain in vivo. In summary, the genomic and virulence phenotypes of rXJ11129 were characterized in vivo and in vitro, and these data will improve the understanding of the spread and pathogenesis of this reemerging virus.
Collapse
Affiliation(s)
- Yan Guo
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China
| | - Hongjiang Wang
- PLA Strategic Support Force Characteristic Medical Center, Beijing, 100071, China
| | - Songtao Xu
- Department of Arbovirus, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Hangyu Zhou
- Suzhou Institute of System Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, 215000, China
| | - Chao Zhou
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, 211166, China
| | - Shihong Fu
- Department of Arbovirus, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Mengli Cheng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China
| | - Fan Li
- Department of Arbovirus, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yongqiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China
| | - Xiaofeng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China
| | - Huanyu Wang
- Department of Arbovirus, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China.
| |
Collapse
|
8
|
Genetic Characterization of Porcine Circovirus 3 Strains Circulating in Sardinian Pigs and Wild Boars. Pathogens 2020; 9:pathogens9050344. [PMID: 32370251 PMCID: PMC7280999 DOI: 10.3390/pathogens9050344] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Porcine circovirus 3 (PCV3) is a recently discovered member of the Circoviridae family. So far, its presence has been reported in North America, Asia, South America, and Europe. In this study, blood and tissue samples from 189 Sardinian suids (34 domestic pigs, 115 feral free ranging pigs, and 39 wild boars) were used to genetically characterize the PCV3 strains from Sardinia. PCV3 infection in the animals was confirmed by real time PCR. The detection rate in the three groups analyzed was l7.64% in domestic pigs, 77.39% in free ranging pigs, and 61.54% in wild boars. Moreover, our results showed that co-infection of PCV3 with other viruses is quite a common occurrence. Molecular characterization of Sardinian PCV3 strains was performed by sequencing 6 complete genomes and 12 complete cap genes. Our results revealed that there is a high similarity between our strains and those identified in different countries, confirming the genetic stability of PCV3 regardless of geographical origin. Haplotype network analysis revealed the presence of 6 whole genomes or 12 unique ORF2 haplotypes and a nonsynonymous mutation in ORF2 that leads to an R14K amino acid substitution. Phylogenetic analysis of whole genome and ORF2 was also conducted. The Sardinian strains were allocated in three different clusters of phylogenetic trees of both complete genome and ORF2. With this study, we have provided a snapshot of PCV3 circulation in Sardinia. Our findings might help to achieve a deeper understanding of this emerging porcine virus.
Collapse
|
9
|
Camp JV, Nowotny N. The knowns and unknowns of West Nile virus in Europe: what did we learn from the 2018 outbreak? Expert Rev Anti Infect Ther 2020; 18:145-154. [PMID: 31914833 DOI: 10.1080/14787210.2020.1713751] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: West Nile virus (WNV) is a mosquito-borne human and animal pathogen with nearly worldwide distribution. In Europe, the virus is endemic with seasonal regional outbreaks that have increased in frequency over the last 10 years. A massive outbreak occurred across southern and central Europe in 2018 with the number of confirmed human cases increasing up to 7.2-fold from the previous year, and expanding to include previously virus-free regions.Areas covered: This review focuses on potential causes that may explain the 2018 European WNV outbreak. We discuss the role genetic, ecological, and environmental aspects may have played in the increased activity during the 2018 transmission season, summarizing the latest epidemiological and virological publications.Expert opinion: Optimal environmental conditions, specifically increased temperature, were most likely responsible for the observed outbreak. Other factors cannot be ruled out due to limited available information, including factors that may influence host/vector abundance and contact. Europe will likely experience even larger-scale outbreaks in the coming years. Increased surveillance efforts should be implemented with a focus on early-warning detection methods, and large-scale host and vector surveys should continue to fill gaps in knowledge.
Collapse
Affiliation(s)
- Jeremy V Camp
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
10
|
Hadfield J, Brito AF, Swetnam DM, Vogels CBF, Tokarz RE, Andersen KG, Smith RC, Bedford T, Grubaugh ND. Twenty years of West Nile virus spread and evolution in the Americas visualized by Nextstrain. PLoS Pathog 2019; 15:e1008042. [PMID: 31671157 PMCID: PMC6822705 DOI: 10.1371/journal.ppat.1008042] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been 20 years since West Nile virus first emerged in the Americas, and since then, little progress has been made to control outbreaks caused by this virus. After its first detection in New York in 1999, West Nile virus quickly spread across the continent, causing an epidemic of human disease and massive bird die-offs. Now the virus has become endemic to the United States, where an estimated 7 million human infections have occurred, making it the leading mosquito-borne virus infection and the most common cause of viral encephalitis in the country. To bring new attention to one of the most important mosquito-borne viruses in the Americas, we provide an interactive review using Nextstrain: a visualization tool for real-time tracking of pathogen evolution (nextstrain.org/WNV/NA). Nextstrain utilizes a growing database of more than 2,000 West Nile virus genomes and harnesses the power of phylogenetics for students, educators, public health workers, and researchers to visualize key aspects of virus spread and evolution. Using Nextstrain, we use virus genomics to investigate the emergence of West Nile virus in the U S, followed by its rapid spread, evolution in a new environment, establishment of endemic transmission, and subsequent international spread. For each figure, we include a link to Nextstrain to allow the readers to directly interact with and explore the underlying data in new ways. We also provide a brief online narrative that parallels this review to further explain the data and highlight key epidemiological and evolutionary features (nextstrain.org/narratives/twenty-years-of-WNV). Mirroring the dynamic nature of outbreaks, the Nextstrain links provided within this paper are constantly updated as new West Nile virus genomes are shared publicly, helping to stay current with the research. Overall, our review showcases how genomics can track West Nile virus spread and evolution, as well as potentially uncover novel targeted control measures to help alleviate its public health burden.
Collapse
Affiliation(s)
- James Hadfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Anderson F. Brito
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Daniele M. Swetnam
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, United States of America
| | - Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Ryan E. Tokarz
- Department of Entomology, Iowa State University, Ames, Iowa, United States of America
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
- Scripps Research Translational Institute, La Jolla, California, United States of America
| | - Ryan C. Smith
- Department of Entomology, Iowa State University, Ames, Iowa, United States of America
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
11
|
Dei Giudici S, Lo Presti A, Bonelli P, Angioi PP, Sanna G, Zinellu S, Balzano F, Salis F, Ciccozzi M, Oggiano A. Phylogenetic analysis of porcine circovirus type 2 in Sardinia, Italy, shows genotype 2d circulation among domestic pigs and wild boars. INFECTION GENETICS AND EVOLUTION 2019; 71:189-196. [PMID: 30904672 DOI: 10.1016/j.meegid.2019.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/19/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
Abstract
Porcine circovirus type 2 (PCV2) is associated with multi-factorial syndromes, commonly known as porcine-circovirus-associated diseases, which cause severe economic losses in the swine industry worldwide. Four genotypes (PCV2a, PCV2b, PCV2c, and PCV2d) have been identified. Lately, the prevalence of PCV2d has been increasing in many countries, thereby prefiguring a global replacement of PCV2b. Wild boars are also susceptible to PCV2 infection, with virus prevalence similar to that of domestic pigs. This work was aimed at expanding the knowledge about the molecular epidemiology of PCV2 in Italy. For this purpose, we analysed 40 complete ORF-2 sequences from PCV2 strains isolated from domestic pigs and wild boars in Sardinia (Italy) over a period of 5 years (2009-2013). Phylogenetic and Bayesian analyses were performed on three data sets compiled from DNA sequences over a large geographical area. PCV2b was found to be dominant in Sardinia, whereas no PCV2a and PCV2c were found. This study indicates the presence of genotype PCV2d-2 infecting both domestic and wild pigs, thus confirming its circulation in Italy. Sardinian sequences clustered mostly with Italian isolates and with strains from China, Belgium, Croatia, Taiwan, Korea, and Portugal. Genetic variability of PCV2 in Sardinia appears to be a result of both local viral evolution and different epidemic introduction events.
Collapse
Affiliation(s)
- Silvia Dei Giudici
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy.
| | - Alessandra Lo Presti
- Istituto Superiore di Sanità, Department of Infectious Diseases, Viale Regina Elena 299, 00161 Rome, Italy
| | - Piero Bonelli
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy
| | - Pier Paolo Angioi
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy
| | - Giovanna Sanna
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy
| | - Susanna Zinellu
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy
| | - Francesca Balzano
- Università degli Studi di Sassari, Dipartimento di Scienze Biomediche, Viale San Pietro, 07100 Sassari, Italy
| | - Francesco Salis
- Freelance Veterinary Practitioner, Via Minerva, 07017 Ploaghe, Sassari, Italy
| | - Massimo Ciccozzi
- Medical Statistic and Molecular Epidemiology Unit, University of Bio-Medical Campus, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Annalisa Oggiano
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
12
|
Zehender G, Veo C, Ebranati E, Carta V, Rovida F, Percivalle E, Moreno A, Lelli D, Calzolari M, Lavazza A, Chiapponi C, Baioni L, Capelli G, Ravagnan S, Da Rold G, Lavezzo E, Palù G, Baldanti F, Barzon L, Galli M. Reconstructing the recent West Nile virus lineage 2 epidemic in Europe and Italy using discrete and continuous phylogeography. PLoS One 2017; 12:e0179679. [PMID: 28678837 PMCID: PMC5497961 DOI: 10.1371/journal.pone.0179679] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/04/2017] [Indexed: 11/24/2022] Open
Abstract
West Nile virus lineage 2 (WNV-2) was mainly confined to sub-Saharan Africa until the early 2000s, when it was identified for the first time in Central Europe causing outbreaks of human and animal infection. The aim of this study was to reconstruct the origin and dispersion of WNV-2 in Central Europe and Italy on a phylodynamic and phylogeographical basis. To this aim, discrete and continuous space phylogeographical models were applied to a total of 33 newly characterised full-length viral genomes obtained from mosquitoes, birds and humans in Northern Italy in the years 2013–2015 aligned with 64 complete sequences isolated mainly in Europe. The European isolates segregated into two highly significant clades: a small one including three sequences and a large clade including the majority of isolates obtained in Central Europe since 2004. Discrete phylogeographical analysis showed that the most probable location of the root of the largest European clade was in Hungary a mean 12.78 years ago. The European clade bifurcated into two highly supported subclades: one including most of the Central/East European isolates and the other encompassing all of the isolates obtained in Greece. The continuous space phylogeographical analysis of the Italian clade showed that WNV-2 entered Italy in about 2008, probably by crossing the Adriatic sea and reaching a central area of the Po Valley. The epidemic then spread simultaneously eastward, to reach the region of the Po delta in 2013, and westward to the border area between Lombardy and Piedmont in 2014; later, the western strain changed direction southward, and reached the central area of the Po valley once again in 2015. Over a period of about seven years, the virus spread all over an area of northern Italy by following the Po river and its main tributaries.
Collapse
Affiliation(s)
- Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
- * E-mail:
| | - Carla Veo
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| | - Erika Ebranati
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| | - Valentina Carta
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| | - Francesca Rovida
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ana Moreno
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Brescia, Italy
| | - Davide Lelli
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Brescia, Italy
| | - Mattia Calzolari
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Reggio Emilia, Italy
| | - Antonio Lavazza
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Brescia, Italy
| | - Chiara Chiapponi
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Parma, Italy
| | - Laura Baioni
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Parma, Italy
| | - Gioia Capelli
- Experimental Zooprophylactic Institute of Venice, Legnaro, Padua, Italy
| | - Silvia Ravagnan
- Experimental Zooprophylactic Institute of Venice, Legnaro, Padua, Italy
| | - Graziana Da Rold
- Experimental Zooprophylactic Institute of Venice, Legnaro, Padua, Italy
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Massimo Galli
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| |
Collapse
|
13
|
Development of a microarray-based assay for rapid monitoring of genetic variants of West Nile virus circulating in the United States. J Virol Methods 2017; 239:17-25. [DOI: 10.1016/j.jviromet.2016.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/30/2016] [Accepted: 10/25/2016] [Indexed: 12/23/2022]
|
14
|
Tibayrenc M, Ayala FJ. Is Predominant Clonal Evolution a Common Evolutionary Adaptation to Parasitism in Pathogenic Parasitic Protozoa, Fungi, Bacteria, and Viruses? ADVANCES IN PARASITOLOGY 2016; 97:243-325. [PMID: 28325372 DOI: 10.1016/bs.apar.2016.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We propose that predominant clonal evolution (PCE) in microbial pathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure. The main features of PCE are (1) strong linkage disequilibrium, (2) the widespread occurrence of stable genetic clusters blurred by occasional bouts of genetic exchange ('near-clades'), (3) the existence of a "clonality threshold", beyond which recombination is efficiently countered by PCE, and near-clades irreversibly diverge. We hypothesize that the PCE features are not mainly due to natural selection but also chiefly originate from in-built genetic properties of pathogens. We show that the PCE model obtains even in microbes that have been considered as 'highly recombining', such as Neisseria meningitidis, and that some clonality features are observed even in Plasmodium, which has been long described as panmictic. Lastly, we provide evidence that PCE features are also observed in viruses, taking into account their extremely fast genetic turnover. The PCE model provides a convenient population genetic framework for any kind of micropathogen. It makes it possible to describe convenient units of analysis (clones and near-clades) for all applied studies. Due to PCE features, these units of analysis are stable in space and time, and clearly delimited. The PCE model opens up the possibility of revisiting the problem of species definition in these organisms. We hypothesize that PCE constitutes a major evolutionary strategy for protozoa, fungi, bacteria, and viruses to adapt to parasitism.
Collapse
Affiliation(s)
- M Tibayrenc
- Institut de Recherche pour le Développement, Montpellier, France
| | - F J Ayala
- University of California at Irvine, United States
| |
Collapse
|
15
|
The phylogenetic and evolutionary history of Kokobera virus. ASIAN PAC J TROP MED 2016; 9:968-972. [PMID: 27794390 DOI: 10.1016/j.apjtm.2016.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/17/2016] [Accepted: 07/16/2016] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To estimate the genetic diversity of Kokobera virus, the date of origin and the spread among different viruses in the endemic regions of Australia. METHODS Two datasets were built. The first consisting of 29 sequences of the NS5/3' UTR region of Kokobera group downloaded from GenBank, the second including only 24 sequences of Kokobera viruses, focus is on this group. RESULTS Bayesian time analysis revealed two different entries in Australia of Kokobera virus in the 50s years with the dated ancestor in 1861 year. Clades A and B showed a clear separation of the Kokobera sequences according to the geographic region. CONCLUSIONS Data from the study showed as Kokobera virus, despite of its ancient origin and its circulation before the European colonization, remained limited to the Australian country and nowadays limited mostly to the regions were Australian marsupials are mostly found.
Collapse
|
16
|
Cella E, Gabrielli I, Zehender G, Giovanetti M, Presti AL, Lai A, Dicuonzo G, Angeletti S, Salemi M, Ciccozzi M. Phylogeny of Murray Valley encephalitis virus in Australia and Papua New Guinea. ASIAN PAC J TROP MED 2016; 9:385-389. [PMID: 27086158 DOI: 10.1016/j.apjtm.2016.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/20/2016] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To study the genetic diversity of Murray Valley encephalitis virus (MVEV) in Australia and Papua New Guinea. METHODS MVEV envelope gene sequences were aligned using Clustal X and manual editing was performed with Bioedit. ModelTest v. 3.7 was used to select the simplest evolutionary model that adequately fitted the sequence data. Maximum likelihood analysis was performed using PhyML. The phylogenetic signal of the dataset was investigated by the likelihood mapping analysis. The Bayesian phylogenetic tree was built using BEAST. RESULTS The phylogenetic trees showed two main clades. The clade Ⅰ including eight strains isolated from West Australia. The clade Ⅱ was characterized by at least four epidemic entries, three of which localized in Northern West Australia and one in Papua New Guinea. The estimated mean evolutionary rate value of the MVEV envelope gene was 0.407 × 10(-3) substitution/site/year (95% HPD: 0.623 × 10(-4)-0.780 × 10(-3)). Population dynamics defines a relative constant population until the year 2000, when a reduction occurred, probably due to a bottleneck. CONCLUSIONS This study has been useful in supporting the probable connection between climate changes and viral evolution also by the vector point of view; multidisciplinary monitoring studies are important to prevent new viral epidemics inside and outside new endemic areas.
Collapse
Affiliation(s)
- Eleonora Cella
- Department of Infectious, Parasitic and Immunomediated Diseases, National Institute of Health, Rome, Italy; Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | | | - Marta Giovanetti
- Department of Infectious, Parasitic and Immunomediated Diseases, National Institute of Health, Rome, Italy; University of Rome 'Tor Vergata', Italy
| | - Alessandra Lo Presti
- Department of Infectious, Parasitic and Immunomediated Diseases, National Institute of Health, Rome, Italy
| | - Alessia Lai
- L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy
| | - Giordano Dicuonzo
- Clinical Pathology and Microbiology Laboratory, University Hospital Campus Bio-Medico of Rome, Italy
| | - Silvia Angeletti
- Clinical Pathology and Microbiology Laboratory, University Hospital Campus Bio-Medico of Rome, Italy
| | - Marco Salemi
- Department of Pathology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Massimo Ciccozzi
- Department of Infectious, Parasitic and Immunomediated Diseases, National Institute of Health, Rome, Italy; University Hospital Campus Bio-Medico, Rome, Italy.
| |
Collapse
|
17
|
Ben Hassine T, Conte A, Calistri P, Candeloro L, Ippoliti C, De Massis F, Danzetta ML, Bejaoui M, Hammami S. Identification of Suitable Areas for West Nile Virus Circulation in Tunisia. Transbound Emerg Dis 2015; 64:449-458. [PMID: 26032967 DOI: 10.1111/tbed.12384] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Indexed: 12/21/2022]
Abstract
West Nile virus (WNV) is a mosquito-transmitted Flavivirus belonging to the Japanese encephalitis antigenic complex of the Flaviviridae family. It is transmitted primarily by the bite of infected mosquitoes, particularly Culex spp. and Aedes/Ochlerotatus spp., which acquire the virus by feeding on viraemic birds. Humans, horses and other mammals are regarded as incidental or dead-end hosts. In the last decades, an increasing number of cases of WNV infection in horses and humans have been notified in the Mediterranean basin. In Tunisia, human cases of WNV-related meningoencephalitis were detected in 1997, 2003, 2007, 2010, 2011 and 2012. Based on the analysis of climatic and environmental conditions found in the locations where human cases have been reported in 2012, the aim of this study was to identify similar areas in Tunisia potentially at risk of disease occurrence. Data related to 85 neuroinvasive West Nile fever (WNF) human cases were georeferenced and a set of environmental and climatic variables (wetlands and humid areas, normalized difference vegetation index (NDVI), temperatures and elevation, migratory bird settlements) were used in the analysis. Areas, ecologically similar to those where human cases were detected, were identified using the Mahalanobis distance statistic. A leave-one-out cross-validation was performed to validate the sensitivity of the model, and 78 of 85 points were correctly classified.
Collapse
Affiliation(s)
- T Ben Hassine
- Centre National de Veille Zoosanitaire, Tunis, Tunisie
| | - A Conte
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G.Caporale', Teramo, Italy
| | - P Calistri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G.Caporale', Teramo, Italy
| | - L Candeloro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G.Caporale', Teramo, Italy
| | - C Ippoliti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G.Caporale', Teramo, Italy
| | - F De Massis
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G.Caporale', Teramo, Italy
| | - M L Danzetta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G.Caporale', Teramo, Italy
| | - M Bejaoui
- Direction des soins de santé de base, Tunis, Tunisie
| | - S Hammami
- Centre National de Veille Zoosanitaire, Tunis, Tunisie
| |
Collapse
|
18
|
Rizzoli A, Jimenez-Clavero MA, Barzon L, Cordioli P, Figuerola J, Koraka P, Martina B, Moreno A, Nowotny N, Pardigon N, Sanders N, Ulbert S, Tenorio A. The challenge of West Nile virus in Europe: knowledge gaps and research priorities. ACTA ACUST UNITED AC 2015; 20. [PMID: 26027485 DOI: 10.2807/1560-7917.es2015.20.20.21135] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
West Nile virus (WNV) is continuously spreading across Europe, and other continents, i.e. North and South America and many other regions of the world. Despite the overall sporadic nature of outbreaks with cases of West Nile neuroinvasive disease (WNND) in Europe, the spillover events have increased and the virus has been introduced into new areas. The high genetic diversity of the virus, with remarkable phenotypic variation, and its endemic circulation in several countries, require an intensification of the integrated and multidisciplinary research efforts built under the 7th Framework Programme of the European Union (FP7). It is important to better clarify several aspects of WNV circulation in Europe, including its ecology, genomic diversity, pathogenicity, transmissibility, diagnosis and control options, under different environmental and socio-economic scenarios. Identifying WNV endemic as well as infection-free areas is becoming a need for the development of human vaccines and therapeutics and the application of blood and organs safety regulations. This review, produced as a joint initiative among European experts and based on analysis of 118 scientific papers published between 2004 and 2014, provides the state of knowledge on WNV and highlights the existing knowledge and research gaps that need to be addressed with high priority in Europe and neighbouring countries.
Collapse
Affiliation(s)
- A Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, San Michele all Adige (TN), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Alfonso-Morales A, Rios L, Martínez-Pérez O, Dolz R, Valle R, Perera CL, Bertran K, Frías MT, Ganges L, Díaz de Arce H, Majó N, Núñez JI, Pérez LJ. Evaluation of a Phylogenetic Marker Based on Genomic Segment B of Infectious Bursal Disease Virus: Facilitating a Feasible Incorporation of this Segment to the Molecular Epidemiology Studies for this Viral Agent. PLoS One 2015; 10:e0125853. [PMID: 25946336 PMCID: PMC4422720 DOI: 10.1371/journal.pone.0125853] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/26/2015] [Indexed: 11/19/2022] Open
Abstract
Background Infectious bursal disease (IBD) is a highly contagious and acute viral disease, which has caused high mortality rates in birds and considerable economic losses in different parts of the world for more than two decades and it still represents a considerable threat to poultry. The current study was designed to rigorously measure the reliability of a phylogenetic marker included into segment B. This marker can facilitate molecular epidemiology studies, incorporating this segment of the viral genome, to better explain the links between emergence, spreading and maintenance of the very virulent IBD virus (vvIBDV) strains worldwide. Methodology/Principal Findings Sequences of the segment B gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank Database; Cuban sequences were obtained in the current work. A phylogenetic marker named B-marker was assessed by different phylogenetic principles such as saturation of substitution, phylogenetic noise and high consistency. This last parameter is based on the ability of B-marker to reconstruct the same topology as the complete segment B of the viral genome. From the results obtained from B-marker, demographic history for both main lineages of IBDV regarding segment B was performed by Bayesian skyline plot analysis. Phylogenetic analysis for both segments of IBDV genome was also performed, revealing the presence of a natural reassortant strain with segment A from vvIBDV strains and segment B from non-vvIBDV strains within Cuban IBDV population. Conclusions/Significance This study contributes to a better understanding of the emergence of vvIBDV strains, describing molecular epidemiology of IBDV using the state-of-the-art methodology concerning phylogenetic reconstruction. This study also revealed the presence of a novel natural reassorted strain as possible manifest of change in the genetic structure and stability of the vvIBDV strains. Therefore, it highlights the need to obtain information about both genome segments of IBDV for molecular epidemiology studies.
Collapse
Affiliation(s)
| | - Liliam Rios
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba
| | | | - Roser Dolz
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Rosa Valle
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Carmen L. Perera
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba
| | - Kateri Bertran
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Maria T. Frías
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba
| | - Llilianne Ganges
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Heidy Díaz de Arce
- Hospital Italiano de Buenos Aires, Juan D. Perón 4190, C1181ACH Buenos Aires, Argentina
| | - Natàlia Majó
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - José I. Núñez
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Lester J. Pérez
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba
- * E-mail:
| |
Collapse
|
20
|
The global ecology and epidemiology of West Nile virus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:376230. [PMID: 25866777 PMCID: PMC4383390 DOI: 10.1155/2015/376230] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/10/2014] [Indexed: 12/30/2022]
Abstract
Since its initial isolation in Uganda in 1937 through the present, West Nile virus (WNV) has become an important cause of human and animal disease worldwide. WNV, an enveloped virus of the genus Flavivirus, is naturally maintained in an enzootic cycle between birds and mosquitoes, with occasional epizootic spillover causing disease in humans and horses. The mosquito vectors for WNV are widely distributed worldwide, and the known geographic range of WNV transmission and disease has continued to increase over the past 77 years. While most human infections with WNV are asymptomatic, severe neurological disease may develop resulting in long-term sequelae or death. Surveillance and preventive measures are an ongoing need to reduce the public health impact of WNV in areas with the potential for transmission.
Collapse
|
21
|
Cordiali-Fei P, Trento E, Giovanetti M, Lo Presti A, Latini A, Giuliani M, D'Agosto G, Bordignon V, Cella E, Farchi F, Ferraro C, Lesnoni La Parola I, Cota C, Sperduti I, Vento A, Cristaudo A, Ciccozzi M, Ensoli F. Analysis of the ORFK1 hypervariable regions reveal distinct HHV-8 clustering in Kaposi's sarcoma and non-Kaposi's cases. J Exp Clin Cancer Res 2015; 34:1. [PMID: 25592960 PMCID: PMC4311464 DOI: 10.1186/s13046-014-0119-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/29/2014] [Indexed: 11/23/2022] Open
Abstract
Background Classical Kaposi’s Sarcoma (cKS) is a rare vascular tumor, which develops in subjects infected with Human Herpesvirus-8 (HHV-8). Beside the host predisposing factors, viral genetic variants might possibly be related to disease development. The aim of this study was to identify HHV-8 variants in patients with cKS or in HHV-8 infected subjects either asymptomatic or with cKS-unrelated cutaneous lymphoproliferative disorders. Methods The VR1 and VR2 regions of the ORF K1 sequence were analyzed in samples (peripheral blood and/or lesional tissue) collected between 2000 and 2010 from 27 subjects with HHV-8 infection, established by the presence of anti-HHV-8 antibodies. On the basis of viral genotyping, a phylogenetic analysis and a time-scaled evaluation were performed. Results Two main clades of HHV-8, corresponding to A and C subtypes, were identified. Moreover, for each subtype, two main clusters were found distinctively associated to cKS or non-cKS subjects. Selective pressure analysis showed twelve sites of the K1 coding gene (VR1 and VR2 regions) under positive selective pressure and one site under negative pressure. Conclusion Thus, present data suggest that HHV-8 genetic variants may influence the susceptibility to cKS in individuals with HHV-8 infection.
Collapse
Affiliation(s)
- Paola Cordiali-Fei
- Clinical Pathology and Microbiology, San Gallicano Dermatology Institute, Via Elio Chianesi 53, Rome, 00144, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ciccozzi M, Lo Presti A, Andreotti M, Mancinelli S, Ceffa S, Galluzzo CM, Buonomo E, Luhanga R, Jere H, Cella E, Scarcella P, Mirra M, Marazzi MC, Vella S, Palombi L, Giuliano M. Viral sequence analysis of HIV-positive women and their infected children: insight on the timing of infection and on the transmission network. AIDS Res Hum Retroviruses 2014; 30:1010-5. [PMID: 25103792 DOI: 10.1089/aid.2014.0143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We used high-resolution phylogenetic methods in the context of mother-to-child transmission to obtain information on the timing of the infection and on the transmission network. A total of 33 pol sequences (from maternal peripheral blood, from breast milk, and from plasma of children) belonging to five cases of HIV infant transmission were studied. Using time-scaled phylogeny we were able to estimate that in two cases the transmission occurred after the recommended duration of breastfeeding, supporting a longer, not reported, duration of breastfeeding as a significant factor associated with HIV infant acquisition in this cohort. Among the postnatal infections we were also able to demonstrate that the cell-free virus in breast milk was the most likely population associated with the event of transmission. Our study showed that a coalescent-based model within a Bayesian statistical framework can provide important information that can contribute to optimizing preventive strategies.
Collapse
Affiliation(s)
- Massimo Ciccozzi
- Department of Infectious, Parasitic, and Immune-Mediated Diseases, Epidemiology Unit, Reference Centre on Phylogeny, Molecular Epidemiology, and Microbial Evolution (FEMEM), Istituto Superiore di Sanità, Rome, Italy
- University Hospital Campus Bio-Medico, Rome, Italy
| | - Alessandra Lo Presti
- Department of Infectious, Parasitic, and Immune-Mediated Diseases, Epidemiology Unit, Reference Centre on Phylogeny, Molecular Epidemiology, and Microbial Evolution (FEMEM), Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Andreotti
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Sandro Mancinelli
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | | | - Clementina Maria Galluzzo
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Ersilia Buonomo
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | | | - Haswell Jere
- DREAM Program, Community of S. Egidio, Blantyre, Malawi
| | - Eleonora Cella
- Department of Infectious, Parasitic, and Immune-Mediated Diseases, Epidemiology Unit, Reference Centre on Phylogeny, Molecular Epidemiology, and Microbial Evolution (FEMEM), Istituto Superiore di Sanità, Rome, Italy
| | - Paola Scarcella
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Marco Mirra
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | | | - Stefano Vella
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Leonardo Palombi
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Marina Giuliano
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
23
|
Ciccozzi M, Lo Presti A, Cella E, Giovanetti M, Lai A, El-Sawaf G, Faggioni G, Vescio F, Al Ameri R, De Santis R, Helaly G, Pomponi A, Metwally D, Fantini M, Qadi H, Zehender G, Lista F, Rezza G. Phylogeny of Dengue and Chikungunya viruses in Al Hudayda governorate, Yemen. INFECTION GENETICS AND EVOLUTION 2014; 27:395-401. [PMID: 25183027 DOI: 10.1016/j.meegid.2014.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Yemen, which is located in the southwestern end of the Arabian Peninsula, is one of countries most affected by recurrent epidemics caused by emerging vector-borne viruses. Dengue virus (DENV) outbreaks have been reported with increasing frequency in several governorates since the year 2000, and the Chikungunya virus (CHIKV) has been also responsible of large outbreaks and it is now a major public health problem in Yemen. We report the results of the phylogenetic analysis of DENV-2 and CHIKV isolates (NS1 and E1 genes, respectively) detected in an outbreak occurred in Al-Hudayda in 2012. Estimates of the introduction date of CHIKV and DENV-2, and the phylogeographic analysis of DENV-2 are also presented. Phylogenetic analysis showed that the Yemen isolates of DENV belonged to the lineage 2 Cosmopolitan subtype, whereas CHIKV isolates from Yemen belonged to the ECSA genotype. All the CHIKV isolates from Yemen were statistically supported and dated back to the year 2010 (95% HPD: 2009-2011); these sequences showed an alanine in the aminoacid position 226 of the E1 protein. Phylogeographic analysis of DENV-2 virus showed that cluster 1, which included Yemen isolates, dated back to 2003 Burkina Faso strains (95% HPD 1999-2007). The Yemen, cluster dated back to 2011 (95% HPD 2009-2012). Our study sheds light on the global spatiotemporal dynamics of DENV-2 and CHIKV in Yemen. This study reinforces both the need to monitor the spread of CHIKV and DENV, and to apply significant measures for vector control.
Collapse
Affiliation(s)
- Massimo Ciccozzi
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy; University Hospital Campus Bio-Medico, Italy.
| | - Alessandra Lo Presti
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Eleonora Cella
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Giovanetti
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Alessia Lai
- Department of Biomedical and Clinical Science, Infectious Diseases and Immunopathology Section, 'L. Sacco' Hospital, University of Milan, Milan, Italy
| | - Gamal El-Sawaf
- Medical Research Institute, Alexandria University, Egypt
| | - Giovanni Faggioni
- Histology and Molecular Biology Section, Army Medical and Veterinary Research Center, Rome, Italy
| | - Fenicia Vescio
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Riccardo De Santis
- Histology and Molecular Biology Section, Army Medical and Veterinary Research Center, Rome, Italy
| | - Ghada Helaly
- Medical Research Institute, Alexandria University, Egypt
| | - Alice Pomponi
- Histology and Molecular Biology Section, Army Medical and Veterinary Research Center, Rome, Italy
| | - Dalia Metwally
- Medical Research Institute, Alexandria University, Egypt
| | - Massimo Fantini
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Gianguglielmo Zehender
- Department of Biomedical and Clinical Science, Infectious Diseases and Immunopathology Section, 'L. Sacco' Hospital, University of Milan, Milan, Italy
| | - Florigio Lista
- Histology and Molecular Biology Section, Army Medical and Veterinary Research Center, Rome, Italy
| | - Giovanni Rezza
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
24
|
Zehender G, Ebranati E, Gabanelli E, Sorrentino C, Lo Presti A, Tanzi E, Ciccozzi M, Galli M. Enigmatic origin of hepatitis B virus: An ancient travelling companion or a recent encounter? World J Gastroenterol 2014; 20:7622-7634. [PMID: 24976700 PMCID: PMC4069291 DOI: 10.3748/wjg.v20.i24.7622] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/08/2014] [Accepted: 03/13/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) is the leading cause of liver disease and infects an estimated 240 million people worldwide. It is characterised by a high degree of genetic heterogeneity because of the use of a reverse transcriptase during viral replication. The ten genotypes (A-J) that have been described so far further segregate into a number of subgenotypes which have distinct ethno-geographic distribution. Genotypes A and D are ubiquitous and the most prevalent genotypes in Europe (mainly represented by subgenotypes D1-3 and A2); genotypes B and C are restricted to eastern Asia and Oceania; genotype E to central and western Africa; and genotypes H and F (classified into 4 subgenotypes) to Latin America and Alaska. This review summarises the data obtained by studying the global phylodynamics and phylogeography of HBV genotypes, particularly those concerning the origin and dispersion histories of genotypes A, D, E and F and their subgenotypes. The lack of any consensus concerning the HBV substitution rate and the conflicting data obtained using different calibration approaches make the time of origin and divergence of the various genotypes and subgenotypes largely uncertain. It is hypothesised that HBV evolutionary rates are time dependent, and that the changes depend on the main transmission routes of the genotypes and the dynamics of the infected populations.
Collapse
|
25
|
Zhang H, Zhang Y, Hamoudi R, Yan G, Chen X, Zhou Y. Spatiotemporal characterizations of dengue virus in mainland China: insights into the whole genome from 1978 to 2011. PLoS One 2014; 9:e87630. [PMID: 24551062 PMCID: PMC3925084 DOI: 10.1371/journal.pone.0087630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/25/2013] [Indexed: 12/19/2022] Open
Abstract
Temporal-Spatial of dengue virus (DENV) analyses have been performed in previous epidemiological studies in mainland China, but few studies have examined the whole genome of the DENV. Herein, 40 whole genome sequences of DENVs isolated from mainland China were downloaded from GenBank. Phylogenetic analyses and evolutionary distances of the dengue serotypes 1 and 2 were calculated using 14 maximum likelihood trees created from individual genes and whole genome. Amino acid variations were also analyzed in the 40 sequences that included dengue serotypes 1, 2, 3 and 4, and they were grouped according to temporal and spatial differences. The results showed that none of the phylogenetic trees created from each individual gene were similar to the trees created using the complete genome and the evolutionary distances were variable with each individual gene. The number of amino acid variations was significantly different (p = 0.015) between DENV-1 and DENV-2 after 2001; seven mutations, the N290D, L402F and A473T mutations in the E gene region and the R101K, G105R, D340E and L349M mutations in the NS1 region of DENV-1, had significant substitutions, compared to the amino acids of DENV-2. Based on the spatial distribution using Guangzhou, including Foshan, as the indigenous area and the other regions as expanding areas, significant differences in the number of amino acid variations in the NS3 (p = 0.03) and NS1 (p = 0.024) regions and the NS2B (p = 0.016) and NS3 (p = 0.042) regions were found in DENV-1 and DENV-2. Recombination analysis showed no inter-serotype recombination events between the DENV-1 and DENV-2, while six and seven breakpoints were found in DENV-1 and DENV-2. Conclusively, the individual genes might not be suitable to analyze the evolution and selection pressure isolated in mainland China; the mutations in the amino acid residues in the E, NS1 and NS3 regions may play important roles in DENV-1 and DENV-2 epidemics.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Province, School of Public Health and Tropical Medicine, Southern Medical Guangzhou, Guangdong Province, China
| | - Yanru Zhang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rifat Hamoudi
- Department of Pathology, Rockefeller Building, University College London, London, United Kingdom
- UCL Cancer Institute, Paul O Gorman Building, University College London, London, United Kingdom
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, California, United States of America
| | - Xiaoguang Chen
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Province, School of Public Health and Tropical Medicine, Southern Medical Guangzhou, Guangdong Province, China
- * E-mail: (XGC); (YPZ)
| | - Yuanping Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- * E-mail: (XGC); (YPZ)
| |
Collapse
|
26
|
Platonov AE, Tolpin VA, Gridneva KA, Titkov AV, Platonova OV, Kolyasnikova NM, Busani L, Rezza G. The incidence of West Nile disease in Russia in relation to climatic and environmental factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:1211-32. [PMID: 24464233 PMCID: PMC3945534 DOI: 10.3390/ijerph110201211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 11/16/2022]
Abstract
Since 1999, human cases of West Nile fever/neuroinvasive disease (WND) have been reported annually in Russia. The highest incidence has been recorded in three provinces of southern European Russia (Volgograd, Astrakhan and Rostov Provinces), yet in 2010-2012 the distribution of human cases expanded northwards considerably. From year to year, the number of WND cases varied widely, with major WND outbreaks in 1999, 2007, 2010, and 2012. The present study was aimed at identifying the most important climatic and environmental factors potentially affecting WND incidence in the three above-mentioned provinces and at building simple prognostic models, using those factors, by the decision trees method. The effects of 96 variables, including mean monthly temperature, relative humidity, precipitation, Normalized Difference Vegetation Index, etc. were taken into account. The findings of this analysis show that an increase of human WND incidence, compared to the previous year, was mostly driven by higher temperatures in May and/or in June, as well as (to a lesser extent) by high August-September temperatures. Declining incidence was associated with cold winters (December and/or January, depending on the region and type of model). WND incidence also tended to decrease during year following major WND outbreaks. Combining this information, the future trend of WND may be, to some extent, predicted, in accordance with the climatic conditions observed before the summer peak of WND incidence.
Collapse
Affiliation(s)
- Alexander E Platonov
- Central Research Institute of Epidemiology, Novogireevskaya Street 3A, Moscow 111123, Russia.
| | - Vladimir A Tolpin
- Space Research Institute, Profsoyuznaya Street 84/32, Moscow 117997, Russia.
| | - Kristina A Gridneva
- Central Research Institute of Epidemiology, Novogireevskaya Street 3A, Moscow 111123, Russia.
| | - Anton V Titkov
- Central Research Institute of Epidemiology, Novogireevskaya Street 3A, Moscow 111123, Russia.
| | - Olga V Platonova
- Central Research Institute of Epidemiology, Novogireevskaya Street 3A, Moscow 111123, Russia.
| | - Nadezhda M Kolyasnikova
- Central Research Institute of Epidemiology, Novogireevskaya Street 3A, Moscow 111123, Russia.
| | - Luca Busani
- Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| | - Giovanni Rezza
- Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| |
Collapse
|
27
|
Chevalier V, Tran A, Durand B. Predictive modeling of West Nile virus transmission risk in the Mediterranean Basin: how far from landing? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 11:67-90. [PMID: 24362544 PMCID: PMC3924437 DOI: 10.3390/ijerph110100067] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/14/2022]
Abstract
The impact on human and horse health of West Nile fever (WNF) recently and dramatically increased in Europe and neighboring countries. Involving several mosquito and wild bird species, WNF epidemiology is complex. Despite the implementation of surveillance systems in several countries of concern, and due to a lack of knowledge, outbreak occurrence remains unpredictable. Statistical models may help identifying transmission risk factors. When spatialized, they provide tools to identify areas that are suitable for West Nile virus transmission. Mathematical models may be used to improve our understanding of epidemiological process involved, to evaluate the impact of environmental changes or test the efficiency of control measures. We propose a systematic literature review of publications aiming at modeling the processes involved in WNF transmission in the Mediterranean Basin. The relevance of the corresponding models as predictive tools for risk mapping, early warning and for the design of surveillance systems in a changing environment is analyzed.
Collapse
Affiliation(s)
- Véronique Chevalier
- Cirad, UPR AGIRs, Montpellier F-34398, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-4-6759-3706; Fax: +33-4-6759-3754
| | - Annelise Tran
- Cirad, UPR AGIRs, Montpellier F-34398, France
- Cirad, UMR TETIS, Montpellier F-34398, France; E-Mail:
| | - Benoit Durand
- Anses, Epidemiology Unit, Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort F-94706, France; E-Mail:
| |
Collapse
|
28
|
Marka A, Diamantidis A, Papa A, Valiakos G, Chaintoutis SC, Doukas D, Tserkezou P, Giannakopoulos A, Papaspyropoulos K, Patsoula E, Badieritakis E, Baka A, Tseroni M, Pervanidou D, Papadopoulos NT, Koliopoulos G, Tontis D, Dovas CI, Billinis C, Tsakris A, Kremastinou J, Hadjichristodoulou C. West Nile virus state of the art report of MALWEST Project. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:6534-610. [PMID: 24317379 PMCID: PMC3881129 DOI: 10.3390/ijerph10126534] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 11/16/2022]
Abstract
During the last three years Greece is experiencing the emergence of West Nile virus (WNV) epidemics. Within this framework, an integrated surveillance and control programme (MALWEST project) with thirteen associate partners was launched aiming to investigate the disease and suggest appropriate interventions. One out of seven work packages of the project is dedicated to the State of the Art report for WNV. Three expert working groups on humans, animals and mosquitoes were established. Medical databases (PubMed, Scopus) were searched together with websites: e.g., WHO, CDC, ECDC. In total, 1,092 relevant articles were initially identified and 258 of them were finally included as references regarding the current knowledge about WNV, along with 36 additional sources (conference papers, reports, book chapters). The review is divided in three sections according to the fields of interest: (1) WNV in humans (epidemiology, molecular characteristics, transmission, diagnosis, treatment, prevention, surveillance); (2) WNV in animals (epidemiological and transmission characteristics concerning birds, horses, reptiles and other animal species) and (3) WNV in mosquitoes (control, surveillance). Finally, some examples of integrated surveillance programmes are presented. The introduction and establishment of the disease in Greece and other European countries further emphasizes the need for thorough research and broadening of our knowledge on this viral pathogen.
Collapse
Affiliation(s)
- Andriani Marka
- Department of Microbiology, Faculty of Medicine, University of Athens, Athens 11527, Greece; E-mail:
| | - Alexandros Diamantidis
- Laboratory of Entomology and Agricultural Zoology, School of Agricultural Sciences, University of Thessaly, Volos 38446, Greece; E-mails: (A.D.); (N.T.P.)
| | - Anna Papa
- National Reference Center for Arboviruses, Department of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; E-mail:
| | - George Valiakos
- Laboratory of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (G.V); (A.G.); (K.P.); (C.B.)
| | - Serafeim C. Chaintoutis
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; E-mails: (S.C.C.); (C.I.D.)
| | - Dimitrios Doukas
- Laboratory of Pathology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (D.D.); (D.T.)
| | - Persefoni Tserkezou
- Department of Microbiology, Faculty of Medicine, University of Athens, Athens 11527, Greece; E-mail:
| | - Alexios Giannakopoulos
- Laboratory of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (G.V); (A.G.); (K.P.); (C.B.)
| | - Konstantinos Papaspyropoulos
- Laboratory of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (G.V); (A.G.); (K.P.); (C.B.)
| | - Eleni Patsoula
- Department of Parasitology, Entomology and Tropical Diseases, National School of Public Health, Athens 11521, Greece; E-mail:
| | - Evangelos Badieritakis
- Laboratory of Biological Control of Pesticides, Benaki Phytopathological Institute, Athens 14561, Greece; E-mails: (E.B.); (G.K.)
| | - Agoritsa Baka
- Hellenic Centre for Disease Control and Prevention (KEELPNO), Athens 15123, Greece; E-mails: (A.B.); (M.T.); (D.P.); (J.K.)
| | - Maria Tseroni
- Hellenic Centre for Disease Control and Prevention (KEELPNO), Athens 15123, Greece; E-mails: (A.B.); (M.T.); (D.P.); (J.K.)
| | - Danai Pervanidou
- Hellenic Centre for Disease Control and Prevention (KEELPNO), Athens 15123, Greece; E-mails: (A.B.); (M.T.); (D.P.); (J.K.)
| | - Nikos T. Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, School of Agricultural Sciences, University of Thessaly, Volos 38446, Greece; E-mails: (A.D.); (N.T.P.)
| | - George Koliopoulos
- Laboratory of Biological Control of Pesticides, Benaki Phytopathological Institute, Athens 14561, Greece; E-mails: (E.B.); (G.K.)
| | - Dimitrios Tontis
- Laboratory of Pathology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (D.D.); (D.T.)
| | - Chrysostomos I. Dovas
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; E-mails: (S.C.C.); (C.I.D.)
| | - Charalambos Billinis
- Laboratory of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (G.V); (A.G.); (K.P.); (C.B.)
| | - Athanassios Tsakris
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +30-2410-565-007; Fax: +30-2410-565-051
| | - Jenny Kremastinou
- Hellenic Centre for Disease Control and Prevention (KEELPNO), Athens 15123, Greece; E-mails: (A.B.); (M.T.); (D.P.); (J.K.)
| | | |
Collapse
|
29
|
Circulation of HIV-1 CRF02_AG among MSM population in central Italy: a molecular epidemiology-based study. BIOMED RESEARCH INTERNATIONAL 2013; 2013:810617. [PMID: 24369538 PMCID: PMC3863479 DOI: 10.1155/2013/810617] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 11/23/2022]
Abstract
Introduction. The evolutionary and demographic history of the circular recombinant form CRF02_AG in a selected retrospective group of HIV-1 infected men who have sex with men (MSM) resident in Central Italy was investigated. Methods. A total of 55 HIV-1 subtype CRF02_AG pol sequences were analyzed using Bayesian methods and a relaxed molecular clock to reconstruct their dated phylogeny and estimate population dynamics. Results. Dated phylogeny indicated that the HIV-1 CRF02_AG strains currently circulating in Central Italy originated in the early 90's. Bayesian phylogenetic analysis revealed the existence of a main HIV-1 CRF02_AG clade, introduced in the area of Rome before 2000 and subsequently differentiated in two different subclades with a different date of introduction (2000 versus 2005). All the sequences within clusters were interspersed, indicating that the MSM analyzed form a close and restricted network where the individuals, also moving within different clinical centers, attend the same places to meet and exchange sex. Conclusions. It was suggested that the HIV-1 CRF02_AG epidemic entered central Italy in the early 1990s, with a similar trend observed in western Europe.
Collapse
|
30
|
Barzon L, Pacenti M, Franchin E, Pagni S, Lavezzo E, Squarzon L, Martello T, Russo F, Nicoletti L, Rezza G, Castilletti C, Capobianchi MR, Salcuni P, Cattai M, Cusinato R, Palù G. Large human outbreak of West Nile virus infection in north-eastern Italy in 2012. Viruses 2013; 5:2825-39. [PMID: 24284876 PMCID: PMC3856417 DOI: 10.3390/v5112825] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 11/16/2022] Open
Abstract
Human cases of West Nile virus (WNV) disease have been reported in Italy since 2008. So far, most cases have been identified in north-eastern Italy, where, in 2012, the largest outbreak of WNV infection ever recorded in Italy occurred. Most cases of the 2012 outbreak were identified in the Veneto region, where a special surveillance plan for West Nile fever was in place. In this outbreak, 25 cases of West Nile neuroinvasive disease and 17 cases of fever were confirmed. In addition, 14 WNV RNA-positive blood donors were identified by screening of blood and organ donations and two cases of asymptomatic infection were diagnosed by active surveillance of subjects at risk of WNV exposure. Two cases of death due to WNND were reported. Molecular testing demonstrated the presence of WNV lineage 1 in all WNV RNA-positive patients and, in 15 cases, infection by the novel Livenza strain was ascertained. Surveillance in other Italian regions notified one case of neuroinvasive disease in the south of Italy and two cases in Sardinia. Integrated surveillance for WNV infection remains a public health priority in Italy and vector control activities have been strengthened in areas of WNV circulation.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
- Authors to whom correspondence should be addressed; E-Mails: (L.B.); (G.P.); Tel.: +39-049-821-8946 (L.B.); Fax: +39-049-827-2355 (L.B.); Tel.: +39-049-827-2350 (G.P.); Fax: +39-049-827-2355 (G.P.)
| | - Monia Pacenti
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
| | - Elisa Franchin
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
| | - Silvana Pagni
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
| | - Laura Squarzon
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
| | - Thomas Martello
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
| | - Francesca Russo
- Department of Public Health and Screening, Veneto Region, Venice I-30123, Italy; E-Mail:
| | - Loredana Nicoletti
- Department of Infectious, Parasitic and Immune-mediated Diseases, National Institute of Health (Istituto Superiore di Sanità, ISS), Rome I-00161, Italy; E-Mails: (L.N.); (G.R.)
| | - Giovanni Rezza
- Department of Infectious, Parasitic and Immune-mediated Diseases, National Institute of Health (Istituto Superiore di Sanità, ISS), Rome I-00161, Italy; E-Mails: (L.N.); (G.R.)
| | - Concetta Castilletti
- National Institute for Infectious Diseases (INMI) “L. Spallanzani”, Rome I-00149, Italy; E-Mails: (C.C.); (M.R.C.)
| | - Maria Rosaria Capobianchi
- National Institute for Infectious Diseases (INMI) “L. Spallanzani”, Rome I-00149, Italy; E-Mails: (C.C.); (M.R.C.)
| | - Pasquale Salcuni
- Department of Prevention and Communication, Ministry of Health, Rome I-00144, Italy; E-Mail:
| | - Margherita Cattai
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
| | - Riccardo Cusinato
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
- Authors to whom correspondence should be addressed; E-Mails: (L.B.); (G.P.); Tel.: +39-049-821-8946 (L.B.); Fax: +39-049-827-2355 (L.B.); Tel.: +39-049-827-2350 (G.P.); Fax: +39-049-827-2355 (G.P.)
| |
Collapse
|
31
|
Donadieu E, Bahuon C, Lowenski S, Zientara S, Coulpier M, Lecollinet S. Differential virulence and pathogenesis of West Nile viruses. Viruses 2013; 5:2856-80. [PMID: 24284878 PMCID: PMC3856419 DOI: 10.3390/v5112856] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 12/21/2022] Open
Abstract
West Nile virus (WNV) is a neurotropic flavivirus that cycles between mosquitoes and birds but that can also infect humans, horses, and other vertebrate animals. In most humans, WNV infection remains subclinical. However, 20%-40% of those infected may develop WNV disease, with symptoms ranging from fever to meningoencephalitis. A large variety of WNV strains have been described worldwide. Based on their genetic differences, they have been classified into eight lineages; the pathogenic strains belong to lineages 1 and 2. Ten years ago, Beasley et al. (2002) found that dramatic differences exist in the virulence and neuroinvasion properties of lineage 1 and lineage 2 WNV strains. Further insights on how WNV interacts with its hosts have recently been gained; the virus acts either at the periphery or on the central nervous system (CNS), and these observed differences could help explain the differential virulence and neurovirulence of WNV strains. This review aims to summarize the current state of knowledge on factors that trigger WNV dissemination and CNS invasion as well as on the inflammatory response and CNS damage induced by WNV. Moreover, we will discuss how WNV strains differentially interact with the innate immune system and CNS cells, thus influencing WNV pathogenesis.
Collapse
Affiliation(s)
- Emilie Donadieu
- Université Paris Est Créteil (UPEC), UMR 1161 Virologie, Institut National de la Recherche Agronomique (INRA), Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES) , Ecole Nationale Vétérinaire d'Alfort (ENVA), 7 avenue du Général De Gaulle, Maisons-Alfort 94700, France.
| | | | | | | | | | | |
Collapse
|
32
|
Karan LS, Ciccozzi M, Yakimenko VV, Presti AL, Cella E, Zehender G, Rezza G, Platonov AE. The deduced evolution history of Omsk hemorrhagic fever virus. J Med Virol 2013; 86:1181-7. [DOI: 10.1002/jmv.23856] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2013] [Indexed: 02/03/2023]
Affiliation(s)
| | - Massimo Ciccozzi
- Department of Infectious; Parasitic and Immunomediated Diseases; National Institute of Health; Rome Italy
| | | | - Alessandra Lo Presti
- Department of Infectious; Parasitic and Immunomediated Diseases; National Institute of Health; Rome Italy
| | - Eleonora Cella
- Department of Infectious; Parasitic and Immunomediated Diseases; National Institute of Health; Rome Italy
| | - Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences; L. Sacco Hospital; University of Milan; Milan Italy
| | - Giovanni Rezza
- Department of Infectious; Parasitic and Immunomediated Diseases; National Institute of Health; Rome Italy
| | | |
Collapse
|
33
|
Bayesian phylogeography of Crimean-Congo hemorrhagic fever virus in Europe. PLoS One 2013; 8:e79663. [PMID: 24223988 PMCID: PMC3817137 DOI: 10.1371/journal.pone.0079663] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a zoonosis mainly transmitted by ticks that causes severe hemorrhagic fever and has a mortality rate of 5-60%. The first outbreak of CCHF occurred in the Crimean peninsula in 1944-45 and it has recently emerged in the Balkans and eastern Mediterranean. In order to reconstruct the origin and pathway of the worldwide dispersion of the virus at global and regional (eastern European) level, we investigated the phylogeography of the infection by analysing 121 publicly available CCHFV S gene sequences including two recently characterised Albanian isolates. The spatial and temporal phylogeny was reconstructed using a Bayesian Markov chain Monte Carlo approach, which estimated a mean evolutionary rate of 2.96 x 10-4 (95%HPD=1.6 and 4.7 x 10-4) substitutions/site/year for the analysed fragment. All of the isolates segregated into seven highly significant clades that correspond to the known geographical clades: in particular the two new isolates from northern Albania clustered significantly within the Europe 1 clade. Our phylogeographical reconstruction suggests that the global CCHFV clades originated about one thousand years ago from a common ancestor probably located in Africa. The virus then spread to Asia in the XV century and entered Europe on at least two occasions: the first in the early 1800s, when a still circulating but less or non-pathogenic virus emerged in Greece and Turkey, and the second in the early 1900s, when a pathogenic CCHFV strain began to spread in eastern Europe. The most probable location for the origin of this European clade 1 was Russia, but Turkey played a central role in spreading the virus throughout Europe. Given the close proximity of the infected areas, our data suggest that the movement of wild and domestic ungulates from endemic areas was probably the main cause of the dissemination of the virus in eastern Europe.
Collapse
|
34
|
Molecular epidemiology and evolution of West Nile virus in North America. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:5111-29. [PMID: 24135819 PMCID: PMC3823310 DOI: 10.3390/ijerph10105111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/05/2013] [Accepted: 10/08/2013] [Indexed: 12/17/2022]
Abstract
West Nile virus (WNV) was introduced to New York in 1999 and rapidly spread throughout North America and into parts of Central and South America. Displacement of the original New York (NY99) genotype by the North America/West Nile 2002 (NA/WN02) genotype occurred in 2002 with subsequent identification of a novel genotype in 2003 in isolates collected from the southwestern Unites States region (SW/WN03 genotype). Both genotypes co-circulate to date. Subsequent WNV surveillance studies have confirmed additional genotypes in the United States that have become extinct due to lack of a selective advantage or stochastic effect; however, the dynamic emergence, displacement, and extinction of multiple WNV genotypes in the US from 1999–2012 indicates the continued evolution of WNV in North America.
Collapse
|
35
|
The complex epidemiological scenario of West Nile virus in Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4669-89. [PMID: 24084676 PMCID: PMC3823324 DOI: 10.3390/ijerph10104669] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/17/2013] [Accepted: 09/22/2013] [Indexed: 12/16/2022]
Abstract
Entomological, veterinary, and human surveillance systems for West Nile virus (WNV) infection have been implemented in Italy since the first detection of the virus in 1998. These surveillance activities documented a progressive increase of WNV activity and spread in different regions and the emergence of new WNV lineages and strains. Italy is a paradigmatic example of the complex epidemiology of WNV in Europe, where sporadic cases of WNV infection, clusters, and small outbreaks have been reported in several regions. In addition, different strains of both WNV lineage 1 and lineage 2 have been identified, even co-circulating in the same area.
Collapse
|
36
|
Pauli G, Bauerfeind U, Blümel J, Burger R, Drosten C, Gröner A, Gürtler L, Heiden M, Hildebrandt M, Jansen B, Montag-Lessing T, Offergeld R, Seitz R, Schlenkrich U, Schottstedt V, Strobel J, Willkommen H. West nile virus. Transfus Med Hemother 2013; 40:265-84. [PMID: 24179475 PMCID: PMC3776406 DOI: 10.1159/000353698] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 07/15/2012] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Rainer Seitz
- Arbeitskreis Blut, Untergruppe «Bewertung Blutassoziierter Krankheitserreger»
| | | | | | | | | |
Collapse
|
37
|
Burgher Y, Miranda L, Rodriguez-Roche R, de Almeida Campos AC, Lobo E, Neves T, Martínez O, Timenetsky J. Ureaplasma diversum in pneumonic lungs of swine. INFECTION GENETICS AND EVOLUTION 2013; 21:486-8. [PMID: 23851111 DOI: 10.1016/j.meegid.2013.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
Affiliation(s)
| | - Lucas Miranda
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Brazil; Instituto de Ciências Biomédicas-II, Universidade de São Paulo, Brazil
| | | | | | - Evelyn Lobo
- National Center for Animal and Plant Health, Cuba
| | - Tássia Neves
- Instituto de Ciências Biomédicas-II, Universidade de São Paulo, Brazil
| | | | - Jorge Timenetsky
- Instituto de Ciências Biomédicas-II, Universidade de São Paulo, Brazil
| |
Collapse
|
38
|
Ciccozzi M, Peletto S, Cella E, Giovanetti M, Lai A, Gabanelli E, Acutis PL, Modesto P, Rezza G, Platonov AE, Lo Presti A, Zehender G. Epidemiological history and phylogeography of West Nile virus lineage 2. INFECTION GENETICS AND EVOLUTION 2013; 17:46-50. [DOI: 10.1016/j.meegid.2013.03.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/14/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
|
39
|
Zehender G, Sorrentino C, Lai A, Ebranati E, Gabanelli E, Lo Presti A, Vujoševic D, Lauševic D, Terzić D, Shkjezi R, Bino S, Vratnica Z, Mugosa B, Galli M, Ciccozzi M. Reconstruction of the evolutionary dynamics of hepatitis C virus subtypes in Montenegro and the Balkan region. INFECTION GENETICS AND EVOLUTION 2013; 17:223-30. [PMID: 23603418 DOI: 10.1016/j.meegid.2013.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/26/2013] [Accepted: 04/03/2013] [Indexed: 12/13/2022]
Abstract
More than 20 million hepatitis C virus (HCV) carriers live in the countries of the Eastern Mediterranean. We determined HCV genotype distribution among chronically infected patients in Montenegro and investigated the phylodynamics and phylogeography of the most represented HCV subtypes. The HCV-NS5b sequences of the Montenegrin patients were compared with sequences isolated in different known localities of the Mediterranean area, Europe and Asia. A Bayesian approach was used in order to allow the simultaneous estimate of the evolutionary rate, time-scaled phylogeny, demography and ancestral spatial status. The most frequent HCV subtypes among the Montenegrin patients, were 1b (34.7%) and 3a (24.7%), but there was also a significant prevalence of 1a and 4d (19.5%). Subtype 3a was significantly more frequent among younger patients and intravenous drug users (IDUs), whereas subtype 1b was more frequently associated with iatrogenic exposure and older ages. The spatio-temporal analysis of the epidemic suggested that HCV-1b penetrated Europe at the beginning of the XX century, probably through Greece and Cyprus and in the 1920s reached Montenegro, where there was an exponential increase in the effective number of infections between the 1950s and 1970s. The phylogeographic and phylodynamic analysis of HCV 3a showed that its most probable origin was in the Indian sub-continent (Pakistan in our reconstruction) about 300years ago. The evolutionary dynamics analysis showed that HCV-3a reached Montenegro more recently in the late 1970s and underwent multi-phasic growth still persisting. Our data suggest multiple introduction of HCV subtypes in the area, supported by different causes of dispersion: adverse social conditions and unsafe medical practices for HCV-1b and i.v. drug use for HCV-3a.
Collapse
Affiliation(s)
- Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences L Sacco, Infectious Diseases and Tropical Medicine Chair, University of Milan, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rossini G, Carletti F, Rigoli R, Piga S, Bagnarelli P, Gaibani P, Pierro A, Nanni Costa A, Grossi P, Ippolito G, Landini MP, Di Caro A, Capobianchi MR, Sambri V. Heterogeneity of West Nile virus genotype 1a in Italy, 2011. J Gen Virol 2013; 94:314-317. [DOI: 10.1099/vir.0.046235-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
West Nile virus (WNV) is currently circulating in several European countries and, over recent decades, concomitantly with enhanced surveillance studies and improved diagnostic capabilities, an increase in the geographical distribution and in the number of cases in Europe has been documented. In Italy in 2011, 14 human cases of WNV neuroinvasive infections due to lineage 1 strains were registered in several Italian regions. Here we report WNV partial sequences obtained from serum samples of two patients living in different regions of Italy (Veneto and Sardinia). Phylogenetic analysis, performed on a fragment (566 nt) of the envelope gene, showed that WNV strains circulating in Italy in 2011 belong to lineage 1a, but are different from lineage 1a strains isolated in 2008–2009.The data reported here are consistent with the hypothesis of multiple recent introductions of WNV lineage 1a strains into Italy.
Collapse
Affiliation(s)
- Giada Rossini
- Regional Reference Centre for Microbiological Emergencies (CRREM), Unit of Clinical Microbiology, St Orsola University Hospital, University of Bologna, Bologna, Italy
| | - Fabrizio Carletti
- National Institute for Infectious Diseases (INMI) ‘L. Spallanzani’, Rome, Italy
| | | | - Sandro Piga
- Ospedale Santissima Trinità, Unit of Infectious Diseases, Cagliari, Italy
| | - Patrizia Bagnarelli
- Università Politecnica Marche, Virology Unit, Department of Biomedical Sciences and Public Health, Ancona, Italy
| | - Paolo Gaibani
- Regional Reference Centre for Microbiological Emergencies (CRREM), Unit of Clinical Microbiology, St Orsola University Hospital, University of Bologna, Bologna, Italy
| | - Anna Pierro
- Regional Reference Centre for Microbiological Emergencies (CRREM), Unit of Clinical Microbiology, St Orsola University Hospital, University of Bologna, Bologna, Italy
| | | | - Paolo Grossi
- Veneto Regional Coordinating Transplant Centre, Azienda Ospedaliera di Padova, Padua, Italy
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases (INMI) ‘L. Spallanzani’, Rome, Italy
| | - Maria Paola Landini
- Regional Reference Centre for Microbiological Emergencies (CRREM), Unit of Clinical Microbiology, St Orsola University Hospital, University of Bologna, Bologna, Italy
| | - Antonino Di Caro
- National Institute for Infectious Diseases (INMI) ‘L. Spallanzani’, Rome, Italy
| | | | - Vittorio Sambri
- Regional Reference Centre for Microbiological Emergencies (CRREM), Unit of Clinical Microbiology, St Orsola University Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
41
|
Barzon L, Pacenti M, Franchin E, Squarzon L, Lavezzo E, Toppo S, Martello T, Cattai M, Cusinato R, Palù G. Novel West Nile virus lineage 1a full genome sequences from human cases of infection in north-eastern Italy, 2011. Clin Microbiol Infect 2012; 18:E541-4. [DOI: 10.1111/1469-0691.12001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
42
|
Tibayrenc M, Ayala FJ. Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc Natl Acad Sci U S A 2012; 109:E3305-13. [PMID: 22949662 PMCID: PMC3511763 DOI: 10.1073/pnas.1212452109] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We propose that clonal evolution in micropathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure, a definition already widely used for all kinds of pathogens, although not clearly formulated by many scientists and rejected by others. The two main manifestations of clonal evolution are strong linkage disequilibrium (LD) and widespread genetic clustering ("near-clading"). We hypothesize that this pattern is not mainly due to natural selection, but originates chiefly from in-built genetic properties of pathogens, which could be ancestral and could function as alternative allelic systems to recombination genes ("clonality/sexuality machinery") to escape recombinational load. The clonal framework of species of pathogens should be ascertained before any analysis of biomedical phenotypes (phylogenetic character mapping). In our opinion, this model provides a conceptual framework for the population genetics of any micropathogen.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, Institut de Rercherche pour le Développement 224, Centre National de la Recherche Scientifique 5290, Universités Montpellier 1 and 2, 34394 Montpellier Cedex 5, France; and
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| |
Collapse
|
43
|
Phylogeography of swine influenza H3N2 in the United States: translational public health for zoonotic disease surveillance. INFECTION GENETICS AND EVOLUTION 2012; 13:224-9. [PMID: 23137647 DOI: 10.1016/j.meegid.2012.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 12/31/2022]
Abstract
The field of phylogeography has received a lot of attention for its application to molecular evolution and geographic migration of species. More recent work has included infectious diseases especially zoonotic RNA viruses like influenza and rabies. Phylogeography of viruses has the potential to advance surveillance at agencies such as public health departments, agriculture departments, and wildlife agencies. However, little is known about how these agencies could use phylogeography for applied surveillance and the integration of animal and human sequence data. Here, we highlight its potential to support 'translational public health' that could bring sequence data to the forefront of surveillance. We focus on swine influenza H3N2 because of the recent link to a variant form that has also infected humans. We discuss the implications to applied surveillance and the need for an integrated biomedical informatics approach for adoption at agencies of animal and public health.
Collapse
|
44
|
Barbić L, Listeš E, Katić S, Stevanović V, Madić J, Starešina V, Labrović A, Di Gennaro A, Savini G. Spreading of West Nile virus infection in Croatia. Vet Microbiol 2012; 159:504-8. [PMID: 22609103 DOI: 10.1016/j.vetmic.2012.04.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/20/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
Abstract
West Nile virus (WNV) is an emerging zoonotic pathogen with rapid global expansion. The virus circulation is confirmed in many countries of Mediterranean Basin and Southern and Central Europe. In our study detection of specific WNV antibodies was performed in horses and cattle sera samples collected from October 2010 to April 2011. Serum samples were randomly taken from different parts of Croatia and tested by IgG and IgM ELISA. Positive serological results were confirmed by virus neutralization assay (VN-assay) and plaque reduction neutralization test (PRNT). Results showed that WNV antibodies were present in 72 out of 2098 horse sera (3.43%) and 3 of 2695 cattle sera (0.11%). The highest seroprevalence was found in Eastern Croatia in counties next to Hungarian, Serbian and Bosnia and Herzegovinian state borders. In Adriatic part of Croatia positive animals were found only in the westernmost county, near Slovenian and Italian borders. Geographic distribution and number of positive horses indicated that WNV is highly present in Croatia and spreading from East to West. However, positive horses in westernmost part of country indicate possible second origin of spreading. Location of serological positive cattle supports the hypothesis that seropositive cattle could be indicators of high WNV activity in the respective geographic regions.
Collapse
Affiliation(s)
- Ljubo Barbić
- Faculty of Veterinary Medicine, University of Zagreb, Department of Microbiology and Infectious Diseases, Heinzelova 55, 10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li J, Ren L, Guo L, Xiang Z, Paranhos-Baccalà G, Vernet G, Wang J. Evolutionary dynamics analysis of human metapneumovirus subtype A2: genetic evidence for its dominant epidemic. PLoS One 2012; 7:e34544. [PMID: 22479641 PMCID: PMC3316673 DOI: 10.1371/journal.pone.0034544] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 03/01/2012] [Indexed: 12/29/2022] Open
Abstract
Human metapneumovirus (hMPV) is a respiratory viral pathogen in children worldwide. hMPV is divided into four subtypes: hMPV_A1, hMPV_A2, hMPV_B1, and hMPV_B2. hMPV_A2 can be further divided into hMPV_A2a and A2b based on phylogenetic analysis. The typical prevalence pattern of hMPV involves a shift of the predominant subtype within one or two years. However, hMPV_A2, in particular hMPV_A2b, has circulated worldwide with a several years long term high epidemic. To study this distinct epidemic behavior of hMPV_A2, we analyzed 294 sequences of partial G genes of the virus from different countries. Molecular evolutionary data indicates that hMPV_A2 evolved toward heterogeneity faster than the other subtypes. Specifically, a Bayesian skyline plot analysis revealed that hMPV_A2 has undergone a generally upward fluctuation since 1997, whereas the other subtypes experienced only one upward fluctuation. Although hMPV_A2 showed a lower value of mean dN/dS than the other subtypes, it had the largest number of positive selection sites. Meanwhile, various styles of mutation were observed in the mutation hotspots of hMPV_A2b. Bayesian phylogeography analysis also revealed two fusions of diffusion routes of hMPV_A2b in India (June 2006) and Beijing, China (June 2008). Sequences of hMPV_A2b retrieved from GenBank boosted simultaneously with the two fusions respectively, indicating that fusion of genetic transmission routes from different regions improved survival of hMPV_A2. Epidemic and evolutionary dynamics of hMPV_A2b were similar to those of hMPV_A2. Overall, our findings provide important molecular insights into hMPV epidemics and viral variation, and explain the occurrence of an atypical epidemic of hMPV_A2, particularly hMPV_A2b.
Collapse
Affiliation(s)
- Jianguo Li
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
| | - Lili Ren
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
| | - Li Guo
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
| | - Zichun Xiang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
| | | | | | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
46
|
Pesko KN, Ebel GD. West Nile virus population genetics and evolution. INFECTION GENETICS AND EVOLUTION 2011; 12:181-90. [PMID: 22226703 DOI: 10.1016/j.meegid.2011.11.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 12/18/2022]
Abstract
West Nile virus (WNV) (Flaviviridae: Flavivirus) is transmitted from mosquitoes to birds, but can cause fatal encephalitis in infected humans. Since its introduction into North America in New York in 1999, it has spread throughout the western hemisphere. Multiple outbreaks have also occurred in Europe over the last 20 years. This review highlights recent efforts to understand how host pressures impact viral population genetics, genotypic and phenotypic changes which have occurred in the WNV genome as it adapts to this novel environment, and molecular epidemiology of WNV worldwide. Future research directions are also discussed.
Collapse
Affiliation(s)
- Kendra N Pesko
- Department of Pathology, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | | |
Collapse
|
47
|
Sotelo E, Fernández-Pinero J, Llorente F, Vázquez A, Moreno A, Agüero M, Cordioli P, Tenorio A, Jiménez-Clavero MÁ. Phylogenetic relationships of Western Mediterranean West Nile virus strains (1996–2010) using full-length genome sequences: single or multiple introductions? J Gen Virol 2011; 92:2512-2522. [DOI: 10.1099/vir.0.033829-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, West Nile virus (WNV) has re-emerged in the Western Mediterranean region. As a result, the number of complete WNV genome sequences available from this region has increased, allowing more detailed phylogenetic analyses, which may help to understand the evolutionary history of WNV circulating in the Western Mediterranean. To this aim, the present work describes six new complete WNV sequences from recent outbreaks and surveillance in Italy in 2008–2009 and in Spain in 2008 and 2010. Comparison with other sequences from different WNV clusters within lineage 1 (clade 1a) confirmed that all Western Mediterranean WNV isolates obtained since 1996 (except one from Tunisia, collected in 1997) cluster in a single monophyletic group (here called ‘WMed’ subtype). The analysis differentiated two subgroups within this subtype, which appear to have evolved from earlier WMed strains, suggesting a single introduction in the area, and further dissemination and evolution. Close similarities between WNV variants circulating in consecutive years, one in Spain, between 2007 and 2008, and another in Italy between 2008 and 2009, suggest that the virus possibly overwinters in Western Mediterranean sites. The NS3249-proline genotype, recently proposed as a virulence determinant for WNV, has arisen independently at least twice in the area. Overall, these results indicate that the frequent recurrence of outbreaks caused by phylogenetically homogeneous WNV in the Western Mediterranean since 1996 is consistent with a single introduction followed by viral persistence in endemic foci in the area, rather than resulting from independent introductions from exogenous endemic foci.
Collapse
Affiliation(s)
- Elena Sotelo
- Centro de Investigación en Sanidad Animal (CISA)-INIA, Ctra. Algete-El Casar s/n, 28130 Valdeolmos, Spain
| | - Jovita Fernández-Pinero
- Centro de Investigación en Sanidad Animal (CISA)-INIA, Ctra. Algete-El Casar s/n, 28130 Valdeolmos, Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA)-INIA, Ctra. Algete-El Casar s/n, 28130 Valdeolmos, Spain
| | - Ana Vázquez
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Brescia, Italy
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria, Ctra Algete km. 8, 28110 Algete, Spain
| | - Paolo Cordioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Brescia, Italy
| | - Antonio Tenorio
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | | |
Collapse
|